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Abstract

The Gamma Ray Observatory includes four experiments designed to observe

the gam:m_--ray universe. Jerry Fishman in the High Energy Astrophysics Branch

at Marshall Space Flight Center is tile principal investigator for one of these exper-

iments, the Burst And Transient Source Experiment (BATSE).

During my first summer with the BATSE team in 1988, we completed lal)o-

ratory measurements to test the response of the BATSE modules to gamma-ray

sources that are non-axial. The results of these observations are necessary for the

correct interpretation of BATSE data obtained after it is put in Earth orbit.

Subsequent analysis of the data revealed a shift in the centroids of the full-

energy photopeaks for angles of incidence between about 70 ° and 110 °. This effect

was diagnosed as being due to a radial dependence of the light collecting efficiency

of the large-area detector (LAD). Energy-depositing events that occur near the

perimeter of the 10-inch radius NaI disc are not as efficiently collected as those

events that occur near the disc's center.

In this ret)ort we analyze this radial response and in so doing we are able to

,,xl)lain the non-gaussian shape of the photopeaks seen in the spectra taken at all

angles.
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1. Introduction:

1.1 The Gamma-Ray Observatory

Before the year 2000 NASA plans to launch more than 9 major space mismons.

These observatories will study the universe in the infrared, visible, ultraviolet, x-ray,

and gamma-ray portions of the spectrum. The objects to be studied include the

earth, the planets, the sun, and other more exotic, cosmological objects in which

high-energy processes are taking place.

One of the more enigmatic objects that will be studied is the gamma ray burster

(GP,[t). Since the discovery of the first in 1969 we have recorded hundreds of these

i)cculiar objects. The frequency of discovery has reached approximately one GRB

cv,'ry two days.

The spectra of GRB's are confined almost totally to the gamma ray portion

of the spectrmn. The is quite strange for explosive astronomical bodies. Attempts

to locate visual counterparts have been only partially successful. This inability

to locate a companion means it is also difficult to assign distances to GRB's and

therefore their absolute magnitudes remain unknown. Typical burst durations are

on the order of tens of seconds with the shortest being measured in milliseconds

and the longest several minutes. In general they show very short rise times and

somewhat longer decays. Further, several GRB's display periodicities in brightness

during the decay phase. Current GRB models adopt a neutron star as the primary

source of energy. An excellent review of gamma-ray bursters has been given by

Hurley (1989).

All agree that better data are needed. Higher resolution in time, space, and

cn('rgy are necessary to eliminate the dozens of models which currently abound. For-

tunately, this imp,'ovement in GRB data is imminent. One major, earth-orbiting

platform for the study of GRB's is nearing completion. The Gamma Ray Observa-

t()ry (GRO) is, at the time of this writing, undergoing final testing before its launch
in the summer of 1990.

GRO is a 17-ton satellite carrying 4 experiments; the Oriented Scintillation

Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL),

the Energetic Gamma-Ray Experiment (EGRET), and the Burst And Transient

Source Experiment (BATSE). Together, these instruments detect gamma radiation

at energies from 30 keV to 30 GeV. GRO is scheduled to be launched to a nominal

altitude of 250 miles (450 km). Its nominal lifetime is five years.

The High-Energy Astrophysics Branch in the Space Science Laboratory at Mar-
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shall Space Flight Center has designed, built, and is now testing the BATSE detec-

tors. As a NASA/ASEE Summer Faculty Fellow I have been involved in some of

the laboratory testing of the BATSE modules and in the analysis of the acquired
data.

1.2 Burst And Transient Source Experiment

BATSE is composed of eight detector modules (Figure 1). These modules will

be situated at the eight "corners" of GRO. In this orientation it is able to monitor

the complete sky except for that part temporarily blocked by the earth. As the

name implies, BATSE is designed to observe and record gamma-ray events that are

short-lived. Although its raison d'etre is the study of gamma-ray bursters, it also

has been designed to observe sources of gamma radiation that are long-lived - such

ms the sun, pulsars, and black holes.

The principal detector in each module is called the Large-Area detector (LAD).

This is a sodium iodide crystal in the shape of a disc with a diameter of 20 inches

and a thickness of 0.5 inches. The shape and size of the crystal were chosen to

make BATSE more sensitive to the low-energy gamma ray spectrum (i.e., 30 keV,-_

240 keV) and to permit the measurement of very weak sources.

1.2.1 BATSE Testing and Calibration

One of the problems inherent in an observational science is the effect that the

observer's instrument has on the data. That is, given a uniquely-valued input,

the output contains a finite spread in values reflecting the instrument's nature. In

the case of a gamma-ray instrument, such as BATSE, there are contributions to

this dispersion from inhomogeneities in the crystal, statistical fluctuations in the

conversion of gamma-ray energy into an electrical signal, electronic noise, and other

sources. Each of these contributions tends to spread the monoenergetic input into

an approximate gaussian shape (Price, 1964). Examples of the resultant output

spectra are shown in Figure 2. As seen here, a typical gamma-ray spectrum has

additional complexity. Not only is the input energy spread into a wide peak (of. 662

k_'V peak in Figure 2), but scattering events which result in only partial deposition

in the crystal add other features to the spectrum.

When a monoenergetic beam of photons strikes the sodium iodide crystal in

the detector, some of the photons are completely converted into an electrical re-

sponse that becomes recorded as counts in one of the channels of the photopeak.

However, some photons deposit only part of their energy and are scattered out of

the detector. These become recorded as lower-energy events and show up as counts

in the Compton continuum. Still other photons lose some energy outside of (often
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behind) the crystal and are then scattered back into the crystal where they becom("

recorded as counts in the backscatter peak. As seen in this figure, even when th('

input is monoenergetic, these effects distort the spectrum in a very complicated

way. When the source is not monoenergetic, as in the case of gamma ray bursters,

the situation is considerably more complicated.

Figure 3 presents an observation of a gamma-ray burster (Metzger et. aI., 1974).

The exponentially decaying energy spectrum is typical of these events and is con-

sistent with a model based on thermal bremstrahlung. These are certainly more

complicated than the monoenergetic case. Before we can determine the true spec-

trmn that was incident on the detector, we must solve a complicated problem that

depends on how the detector responds to incident photons. This response is a func-

ti(,n of not only the incident energy but also of the angle of incidence. At MSFC

part of our responsibility is to provide a response matrix that describes the detec-

tor's eff¢'cts on -m input spectrum. To this end we have spent the past year and

a half measuring the spectra with several sources under various conditions. This

report presents results of the radial response tests.

2. Radial Response: TPS-119

During a gamma-ray event for BATSE in earth orbit there are at least four

detectors responding to the flux of radiation. Since these detectors are oriented in

diffhrent directions, it is important to know how the detector response changes as

a flmction of th(" angle of incidence.

The expected effect is the decrease in efficiency due to the smaller projected

ar(:_t as the crystal is turned relative to the flux. This decrease was observed. What

was also observed, but not fully expected, was a shift in the peak centroids as

th( crystal was rotated. In other words the observed energy of the incident beam

d_.crea._cd as the angle of incidence changed from 70 ° to 90 °. This decrease for Cs-

137 and Se-75 photopeaks is shown in Figure 4. The total angular dependence of

this decrease' is complicated and is discussed in greater detail by Lestrade (1988). In

this report we are primarily concerned with the implications of this secondary effect

-- the apparent decrease of the incident energy with increasing angle of incidence.

The discovery of the shift in the centroids of the full-energy photopeaks for

allgles of incidence between about 70 ° and 90 ° was diagnosed as being due to a

radial dependence of the light collecting efficiency of the large-area detector (LAD).

Measurements showed that for energy deposited near the perimeter, the detector has

a light collection efficiency that is about 12% less than for that deposited near the

c('nter. This is not a property of the scintillator, but rather, a property of the light-

,:()lloction i)rocess. As the crystal is turned the principal area of energy deposition

m(,ves from the whole disc at 0 ° to that local area of the perimeter facing the
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sourceat 90° . Therefore, when the crystal is illuminated at any angle, the output is

a superposition of many gaussians, not centered about the true centroid, but shaded

to the left (i.e., lower energies).

At angles near 0 ° the resultant photopeak shows contributions from all areas

of the disc. However, for angles of incidence near 90 ° (or 270 °) the photopeak is

representative of only the perimeter.

The former effect is seen in Figure 5. This figure presents the 662 keV peak of

Cs-137 at an angle of 0 °. Note that at normal incidence the peak is a superposition

of gaussians. The theoretical gaussian shown in this figure has a centroid at 662

keV. Similar spectra taken at 266 °, on the other hand, peak at a lower energy, are

l¢.ss dispersed, and show a purer gaussian shape because they arise from a more

localized region of the crystal (cf. Lestrade, 1988).

2.1 Disc Integration

If we assume azimuthal symmetry, then the centroids of the individual gaussians

that constitute the photopeak are functions of only the radius, r. In this case, the

contribution from the annulus between r and r + dr of the LAD is the simple

gaussian given by

2rrdre- _ ( E- Eo (r)) 2, ( 1 )

where a is a constant yet to be determined, and the centroid position E0(r) is the

radial response. The total photopeak, P(E), in counts per channel is therefore given

by the integration of these annuli from disc center to perimeter, viz.

1°
P(E) = 2_rre-a(E-E°(r))_dr. (2)

One might expect, given a measured spectrum P(E), to be able to solve Equa-

tion (2) for E0(r). This is not an easy task. We decided to approach the problem

in a more straight-forward way - we would directly measure E0(r).

2.1 Measurement of the Radial Response

The table below lists the radioactive sources used in this test. The Am-241

and Na-22 sources were used on only detector DM 1. Mercury-203 was used for all

nine modules (eight flight and one protoflight). For the purposes of this report and

hi.qtorical reasons the modules are numbered 1-7, 0/8, and 'P'.
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Radioactive Sources Used in Radial Response

Isotope ASymbol Half-Life Energies (MeV)*

Americium-241 241A._.g5 .... 458 yr. 59.5

90Mercury-203 203 Hg 47 d. [72.9], 279.2

Sodium-22 22
11Na 2.62 yr. 511, 1275

* underscore indicates coincident gammas, square brackets indicate sum peaks.

With a source holder and collimator especially built for this test, we were able

to restrict the gamma-ray flux to local regions of the disc (Figure 6). Fifteen radial

positions as shown in Figure 7 were chosen. The illuminated spot size on the dis(:

was calculated to be approximately 0.75 inches. By illuminating such a small region

wc were hoping to measure 1) the shift in peak centroid as the holder was moved

across the face of the crystal and 2) the width of the gaussians that were a result of

the electronic response of the instrument and not contaminated by the combination

of gaussians fronl all portions of the disc.

2.2 Results

Figure 8 presents three Hg-203 spectra to show the shift in peak centroid with

increasing radial position. There is minimal shift in the centroid for points as far

(,1,t as 6 inches from the disc center. However, at 9.5 inches the shift is significant.

Figure 9 presents the centroid positions for modules 1 through 3 as a function

of radius for Hg-203. (In this and following radial response figures, the data from

the left and right sides of the disc are averaged.) Note the singular depression in

the radial response for DM 1 near the disc center. At first we thought that this

may have been caused by an error in measurement. However, as Figure 10 shows,

th," same deficiency is evident in the spectra of all nuclides when DM 1 is used.

Further checking found the culprit - a small piece of tin purposely left in the center

of this module a ft_:r removal of an unneeded light sensor. Its presence will not affect

other measurements. Included in this figure are the formulae for the energy of the

centroid as a quadratic in radius for these three peaks.

For completeness Figure 11 and Figure 12 present the centroid positions vs. ra-

dbls for the 279 keV peak for the remaining 6 modules.

With an idea of the width of the gaussians from the localized regions of the disc

alL_l the radial dependence of the centroids of these peaks, we thought it would be

int,:resting to try to reconstruct the photopeaks measured in full-disc illumination

by substituting for o_ and Eo(r) and performing the integration in equation (2). In

order to simplify the functional form of the radial response, E0(r), we assumed a
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constant centroid position for gaussiansformed within a distance r0 of disc center

and a linear decrease from that point to the perimeter. Three such functions along

with the measurements of the 279 keV peak are shown in Figure 13. Remembering

that the depression at r = 0 is not representative of what is actually going on near

thc center, this simple model fits the radial response quite well.

The radial response function in this case is given by

Eo(r) { f°o-r(1 0_<r<r0;"= -f)-fro)
(10-to) £0 r0 < r < 10.

(3)

where £0 is independent of r and equals the centroid position for gaussians that

result from events where r < r0 and f is the "edge deficiency" or fractional shift

in centroid position for gaussians originating from the perimeter. For example, in

figure 12 f = 0.12 and r0 = 5 in.

With this function, equation (2) reduces to

jr0 r° _rl 0
P(E) = 27rrc-_(E-£°)2dr + 27rre-_{E-_°[l°-r(1-f)-fr°]/(l°-r°)}2dr, (4)

Performing the first integration gives

7rr_e -_(E-g°)2 + 2_rre-_{E-_o[l°-r(l-f)-fro]/(l°-_o)}2dr"

o

(5)
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3. Conclusions

The three variables in this model are thus f, r0, and a. However, these axe not

totally free variables. They are constrained by the radial response measurements as

shown in Figures 8-10. Still, even with these restrictions the results are very good.

Figure 14 presents the Cs-137 662 keV peak (from Figure 5) along with P(E)

calculated from Equation 5 for the three cases of edge deficiencies of 10%, 12%, and

14(_. The data are clearly much better fit by the 12% case.

The next figure (Figure 15) shows the same peak but with P(E) calculated for

an ._dge deficiency of 12% and center radii, r0, of 5, 5.5, and 6 in. Here an r0 of 5.5

in. provides a better fit.

Fina!ly Figure 16 shows that an a near 0.020 is correct.

It is reassuring that these parameters are independent and in rough agreement

with the radial response test results. For example, Figures 8 and 11 indicate that

an edge deficiency of 12% and an r0 of 5.5 are reasonable values.

Pendleton (1989) recently used the quadratic fits to radial response in his Monte

Carlo simulation of a mercury-203 spectrum in the Absolute Efficiency Tests (TPS-

11S). Figure 17 shows a coxnparison of the observations with his calculated spec-

trum.

There are still several questions that remain unanswered about the effect of

tl_,, LAD radial response on the output photopeaks. For example, several Na-22

511 keV photopeaks measured during the science tests in 1988 (TPS-59) showed

a double-peak structure. At that time we attributed this to cracks in the crystal

structure. It would be interesting to see if a "simple" radial response function could

explain at least part of this shape.
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