ON LINEAR STRUCTURE AND
PHASE ROTATION INVARIANT PROPERTIES OF
BLOCK 2^l-PSK MODULATION CODES

Technical Report
to
NASA
Goddard Space Flight Center
Greenbelt, Maryland 20771

Grant Number NAG 5-931
Report Number NASA 90-001

Shu Lin
Principal Investigator
Department of Electrical Engineering
University of Hawaii at Manoa
Honolulu, Hawaii 96822

January 31, 1990
ON LINEAR STRUCTURE AND PHASE ROTATION IN Variant PROPERTIES OF BLOCK 2^t-PSK MODULATION CODES

ABSTRACT

In this correspondence, we investigate two important structural properties of block 2^t-ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid carrier-phase resynchronization after temporary loss of synchronization. It is desirable for a modulation code to have as many phase symmetries as possible. In this paper, we first represent a 2^t-ary modulation code as a code with symbols from the integer group, $S_{2^t,PSK} = \{0, 1, 2, \ldots, 2^t - 1\}$, under the modulo-$2^t$ addition. Then we define the linear structure of block 2^t-ary PSK modulation codes over $S_{2^t,PSK}$ with respect to the modulo-2^t vector addition, and derive conditions under which a block 2^t-ary PSK modulation code is linear. Once the linear structure is developed, we study phase symmetry of a block 2^t-ary PSK modulation code. In particular, we derive a necessary and sufficient condition for a block 2^t-ary PSK modulation code, which is linear as a binary code, to be invariant under $180^\circ/2^{t-h}$ phase rotation, for $1 \leq h \leq t$. Finally, a list of short 8-PSK and 16-PSK modulation codes is given together with their linear structure and the smallest phase rotation for which a code is invariant.
1. Introduction

As the application of coded modulation in bandwidth-efficient communications grows, there is a need of better understanding of the structural properties of modulation codes, especially those properties which are useful in: error performance analysis, implementation of optimum (or suboptimum) decoders, efficient resolution of carrier-phase ambiguity, and construction of better codes. In this paper, we investigate two important structural properties of block 2^t-ary PSK modulation codes, namely: linear structure and phase symmetry. For an AWGN channel, the error performance of a modulation code depends on its squared Euclidean distance distribution [1-4]. Linear structure of a code makes the error performance analysis much easier [2, 4]. Furthermore, it may lead to a simpler implementation of encoder and decoder. Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring rapid carrier-phase resynchronization after temporary loss of synchronization [1, 5-8]. It is desirable for a modulation code to have as many phase symmetries as possible.

Suppose the integer group \{0, 1, 2, \ldots, 2^t - 1\} under the modulo-2^t addition, denoted $S_{2^t}\text{PSK}$, is chosen to represent a two-dimensional 2^t-PSK signal set. Then a block 2^t-ary PSK modulation code C of length n may be regarded as a block code of length n over the integer group $S_{2^t}\text{PSK}$, and a codeword in C is simply an n-tuple over $S_{2^t}\text{PSK}$. If each integer in $S_{2^t}\text{PSK}$ is represented by its binary expression of t bits, then a block code of length n over $S_{2^t}\text{PSK}$ can be considered as a binary block code of length tn. The resultant binary code is linear if it is closed under the component-wise modulo-2 addition. Most of the known block 2^t-ary PSK modulation codes are linear as binary codes. A linear code in this sense is not necessarily closed under the component-wise modulo-2^t addition. For two integers s and s' in $S_{2^t}\text{PSK}$, the squared Euclidean distance between two signal points represented by s and s' respectively depends only on $s - s'$ (modulo 2^t), but is not always determined by the Hamming distance between the binary expressions of s and s'. For an additive white Gaussian noise (AWGN) channel, error performance of a modulation code is determined by its squared
Euclidean distance distribution. If a code C over $S_{2^t,PSK}$ is either closed under the component-wise modulo-2^t addition or a union of relatively small number of cosets of a subcode which is closed under the component-wise modulo-2^t addition, then the error performance analysis of C is much easier than a code without such a property [2, 4]. In this paper, we present a condition for a code over $S_{2^t,PSK}$, which is linear as a binary code, to be closed under the component-wise modulo-2^t addition. In particular, we present a necessary and sufficient condition for a basic multilevel block code over $S_{2^t,PSK}$, which is linear as a binary code, to be closed under the component-wise modulo-2^t addition.

An important issue in coded modulation is the resolution of carrier-phase ambiguity. Several methods have been proposed to resolve the carrier-phase ambiguity for coded PSK modulations [6, 8, 9]. In these methods, the phase-rotation invariant property of a code over $S_{2^t,PSK}$ plays the central role. Tanner [8] has proposed a simple phase ambiguity resolution method for 2^t-ary PSK modulation codes which are invariant under $360^\circ/2^t$ phase shift. In this paper, we present a necessary and sufficient condition for a code over $S_{2^t,PSK}$, which is linear as a binary code, to be invariant under $180^\circ/2^t$ phase shift with $1 \leq h \leq t$.

Finally, we give a list of short block 8-PSK and 16-PSK modulation codes together with their closure (or linear) properties under the component-wise modulo-2^t addition, the smallest phase shifts for which these codes are invariant, and other parameters.

2. Linear Block 2^t-PSK Modulation Codes

Let t be a positive integer. Suppose the integer group $\{0, 1, 2, \ldots, 2^t - 1\}$ under the modulo-2^t addition, denoted $S_{2^t,PSK}$, is used to represent a two-dimensional 2^t-PSK signal set. We define the distance between two integers s and s' in $S_{2^t,PSK}$, denoted $d(s, s')$, as the squared Euclidean distance between the two 2^t-PSK signal points represented by s and s' respectively. Then $d(s, s')$ is given below:

$$d(s, s') = 4 \sin^2 \left(2^{-t} \pi (s - s') \right). \tag{2.1}$$

Let d_i denote $d(2^{t-1}, 0)$. From (2.1), we see that

$$d_i = 4 \sin^2 (2^{t-1-1} \pi).$$
For a positive integer \(n \), let \(S_{2^t-PSK}^n \) denote the set of all \(n \)-tuples over \(S_{2^t-PSK} \). Define the distance between two \(n \)-tuples \(\bar{v} = (v_1, v_2, \ldots, v_n) \) and \(\bar{v}' = (v'_1, v'_2, \ldots, v'_n) \) over \(S_{2^t-PSK} \), denoted \(d(\bar{v}, \bar{v}') \), as follows:

\[
d(\bar{v}, \bar{v}') = \sum_{j=1}^{n} d(v_j, v'_j)
\]

Then it follows from (2.1) and (2.2) that

\[
d(\bar{v}, \bar{v}') = d(\bar{v} - \bar{v}', \vec{0})
\]

where \(-\) denotes the component-wise modulo-2\(^t\) subtraction and \(\vec{0} \) denotes the all-zero \(n \)-tuple over \(S_{2^t-PSK} \). For an \(n \)-tuple \(\bar{v} \) over \(S_{2^t-PSK} \), define \(|\bar{v}|_d \) as follows:

\[
|\bar{v}|_d \triangleq d(\bar{v}, \vec{0}).
\]

We may regard that \(|\bar{v}|_d \) is the squared Euclidean weight of \(\bar{v} \).

Consider a block code \(C \) of length \(n \) over \(S_{2^t-PSK} \). The minimum distance of \(C \), denoted \(D[C] \), with respect to the distance measure \(d(\cdot, \cdot) \) given by (2.2) is defined as follows:

\[
D[C] \triangleq \min \{ d(\bar{v}, \bar{v}') : \bar{v}, \bar{v}' \in C \text{ and } \bar{v} \neq \bar{v}' \}.
\]

If each component of a codeword \(\bar{v} \) in \(C \) is mapped into the corresponding signal point in the two-dimensional \(2^t \)-PSK signal set, we obtain a block \(2^t \)-PSK modulation code with minimum squared Euclidean distance \(D[C] \). The effective rate of this code is given by

\[
R[C] = \frac{1}{2n} \log_2 |C|,
\]

which is simply the average number of information bits transmitted per dimension.

Let \(\bar{u} = (u_1, u_2, \ldots, u_n) \) and \(\bar{v} = (v_1, v_2, \ldots, v_n) \) be two \(n \)-tuples over \(S_{2^t-PSK} \). Let \(\bar{u} + \bar{v} \) denote the following \(n \)-tuple over \(S_{2^t-PSK} \):

\[
\bar{u} + \bar{v} \triangleq (u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n),
\]

where \(u_i + v_i \) is carried out in modulo-2\(^t\) addition. A code over the integer group \(S_{2^t-PSK} \) is said to be linear with respect to (w.r.t.) "+", if \(C \) is closed under the component-wise modulo-2\(^t\) addition, i.e., for any \(\bar{u} \) and \(\bar{v} \) in \(C \), \(\bar{u} + \bar{v} \) is also in \(C \). It follows from (2.3) to (2.5) that, for a linear code \(C \) w.r.t. +, we have

\[
D[C] = \min \{ |\bar{v}|_d : \bar{v} \in C - \{ \vec{0} \} \}.
\]
As a result, for a linear code \(C \) over \(S_{2^t,PSK} \) w.r.t. +, the error performance analysis of \(C \) based on the distance measure \(d(\cdot, \cdot) \) is reduced to that of \(C \) in terms of the weight measure \(| \cdot |_d \). This simplifies the error performance analysis and computation of code \(C \) [2, 4].

Let \((b_1, b_2, \ldots, b_t) \) be the binary representation of an integer \(s \) in \(S_{2^t,PSK} \), where \(b_1 \) and \(b_t \) be the least and most significant bits respectively. Then \(s = \sum_{i=1}^{t} b_i 2^{i-1} \). Let \(\bar{v} = (v_1, v_2, \ldots, v_n) \) be an \(n \)-tuple over \(S_{2^t,PSK} \) with \(v_j = \sum_{i=1}^{t} v_{ij} 2^{i-1} \) and \(v_{ij} \in \{0, 1\} \) for \(1 \leq i \leq \ell \) and \(1 \leq j \leq n \). Then \(\bar{v} \) can be expressed as the following sum:

\[
\bar{v} = \bar{v}^{(1)} + 2\bar{v}^{(2)} + \cdots + 2^{t-1}\bar{v}^{(t)},
\]

(2.8)

where \(\bar{v}^{(i)} = (v_{i1}, v_{i2}, \ldots, v_{in}) \) is a binary \(n \)-tuple, for \(1 \leq i \leq \ell \). We call \(\bar{v}^{(i)} \) the \(i \)-th binary component \(n \)-tuple of \(\bar{v} \). The sum of (2.8) may be regarded as the binary expansion of the \(n \)-tuple \(\bar{v} \). For \(1 \leq i \leq \ell \), let \(C_i \) be a binary \((n, k_i)\) code with minimum Hamming distance \(\delta_i \).

Define the following block code \(C \) over \(S_{2^t,PSK} \),

\[
C = C_1 + 2C_2 + \cdots + 2^{t-1}C_t
\]

\[
\Delta \{ \bar{v}^{(1)} + 2\bar{v}^{(2)} + \cdots + 2^{t-1}\bar{v}^{(t)} : \bar{v}^{(i)} \in C_i \text{ for } 1 \leq i \leq \ell \}.
\]

(2.9)

The code \(C \) defined by (2.9) is called a basic multi-level code. Basic multilevel codes were first introduced by Imai and Hirakawa [10] and then studied by other [3, 11, 12]. For \(1 \leq i \leq \ell \), \(C_i \) is called the \(i \)-th binary component code of \(C \). The minimum distance of \(C \) is

\[
D[C] = \min_{1 \leq i \leq t} \delta_i d_i.
\]

(2.10)

where \(d_i = d(2^{i-1}, 0) \). If every component of a codeword in \(C \) is mapped into a signal point in a two-dimensional \(2^{t}\)-PSK signal constellation, then \(C \) is a basic multi-level \(2^{t}\)-PSK modulation code with a minimum squared Euclidean distance,

\[
D[C] = \min_{1 \leq i \leq t} \{ 4\delta_i, \sin^2(2^{i-1}\pi) \}.
\]

For \(n \)-tuples \(\bar{u} \) and \(\bar{v} \) over \(S_{2^t,PSK} \), let \(\bar{u} \oplus \bar{v} \) denote the \(n \)-tuple over \(S_{2^t,PSK} \), such that the \(i \)-th binary component \(n \)-tuple of \(\bar{u} \oplus \bar{v} \) is the modulo-2 vector sum of the \(i \)-th binary component \(n \)-tuple of \(\bar{u} \) and the \(i \)-th binary component \(n \)-tuple of \(\bar{v} \). A code \(C \) over \(S_{2^t,PSK} \) is said to be linear w.r.t. \(\oplus \), if \(C \) is closed under addition \(\oplus \). Most of the known block codes for
2^t-PSK modulation are linear w.r.t. \oplus. A linear code w.r.t. \oplus is not necessarily linear w.r.t. \oplus. In the following, we will derive a condition for a linear code w.r.t. \oplus to be linear w.r.t. \oplus.

Let \bar{u} and \bar{v} be two n-tuples over $S_{2^t.\text{PSK}}$, and let \bar{w} denote $\bar{u} + \bar{v}$. For $1 \leq i \leq \ell$, let the i-th binary component n-tuples of \bar{u}, \bar{v} and \bar{w} be represented as $\bar{u}^{(i)} = (u_{1i}, u_{2i}, \ldots, u_{ni})$, $\bar{v}^{(i)} = (v_{1i}, v_{2i}, \ldots, v_{ni})$, and $\bar{w}^{(i)} = (w_{1i}, w_{2i}, \ldots, w_{ni})$, respectively. Then the following recursive equations hold [13]:

\begin{align*}
 w_{ji} &= u_{ji} \oplus v_{ji} \oplus x_{ji}, \quad \text{for } 1 \leq i \leq \ell, \quad (2.11) \\
 x_{ji} &= u_{j-1} v_{j-1} \oplus (u_{j-1} \oplus v_{j-1}) x_{j-1}, \quad \text{for } 1 < i \leq \ell, \quad (2.12) \\
 x_{j1} &= 0. \quad (2.13)
\end{align*}

For $1 \leq i \leq \ell$, let $c^{(i)}(\bar{u}, \bar{v})$ be defined as

\begin{equation}
 c^{(i)}(\bar{u}, \bar{v}) \triangleq (x_{1i}, x_{2i}, \ldots, x_{ni}). \quad (2.14)
\end{equation}

For two binary n-tuples, $\bar{a} = (a_1, a_2, \ldots, a_n)$ and $\bar{b} = (b_1, b_2, \ldots, b_n)$, let $\bar{a} \cdot \bar{b}$ be defined as

\begin{equation}
 \bar{a} \cdot \bar{b} \triangleq (a_1 \cdot b_1, a_2 \cdot b_2, \ldots, a_n \cdot b_n),
\end{equation}

where $a_j \cdot b_j$ denotes the logical product of a_j and b_j.

It follows from (2.11) to (2.14) that for $1 \leq i < \ell$,

\begin{equation}
 c^{(i+1)}(\bar{u}, \bar{v}) = \bar{u}^{(i)} \cdot \bar{v}^{(i)} \oplus (\bar{u}^{(i)} \oplus \bar{v}^{(i)}) \cdot c^{(i)}(\bar{u}, \bar{v}). \quad (2.15)
\end{equation}

Let $c(\bar{u}, \bar{v})$ be defined as

\begin{equation}
 c(\bar{u}, \bar{v}) \triangleq c^{(1)}(\bar{u}, \bar{v}) + 2c^{(2)}(\bar{u}, \bar{v}) + \ldots + 2^{\ell-1}c^{(\ell)}(\bar{u}, \bar{v}). \quad (2.16)
\end{equation}

Then,

\begin{equation}
 \bar{u} + \bar{v} = \bar{u} \oplus \bar{v} \oplus c(\bar{u}, \bar{v}). \quad (2.17)
\end{equation}

Now consider a block code C over $S_{2^t.\text{PSK}}$ which is linear w.r.t. \oplus. Let \bar{u} and \bar{v} be two codewords in C. Then it follows from (2.17) that $\bar{u} + \bar{v} \in C$ if and only if

\begin{equation}
 c(\bar{u}, \bar{v}) \in C. \quad (2.18)
\end{equation}

For $1 \leq i \leq \ell$, let $C^{(i)}$ and C_i be defined as

\begin{align*}
 C^{(i)} &\triangleq \{ \bar{v}^{(i)} : \bar{v}^{(1)} + \ldots + 2^{i-1}\bar{v}^{(i)} + \ldots + 2^{\ell-1}\bar{v}^{(\ell)} \in C \}, \quad (2.19) \\
 C_i &\triangleq \{ \bar{v}^{(i)} : 2^{i-1}\bar{v}^{(i)} \in C \}. \quad (2.20)
\end{align*}
By definition

\[C_i \subseteq C^{(i)}. \] \hspace{1cm} (2.21)

Since \(C \) is linear w.r.t. \(\oplus \), \(C^{(i)} \) and \(C_i \) are also linear w.r.t. \(\oplus \) and

\[C_1 + 2C_2 + \cdots + 2^t-1C_t \subseteq C_i, \] \hspace{1cm} (2.22)

where the equality holds if \(C \) is a basic multilevel code. For binary codes \(C \) and \(C' \) of the same length, let \(C \cdot C' \) be defined as

\[C \cdot C' \overset{\Delta}{=} \{ \bar{u} \cdot \bar{v} : \bar{u} \in C \text{ and } \bar{v} \in C' \}. \]

Now we present two lemmas regarding to the closure property of a \(2^t \)-PSK code.

Lemma 1: Suppose that \(C \) is a linear code over \(S_{2^t,PSK} \) w.r.t. \(\oplus \) and for \(1 \leq i \leq \ell \),

\[C^{(i)} \cdot C^{(i)} \subseteq C_{i+1}. \] \hspace{1cm} (2.23)

Then \(C \) is closed under the component-wise modulo-\(2^t \) addition, and hence is linear w.r.t. \(+ \).

Proof: By induction, we show that for \(1 \leq i \leq \ell \)

\[c^{(i)}(\bar{u}, \bar{v}) \in C_i. \] \hspace{1cm} (2.24)

Since \(c^{(i)}(\bar{u}, \bar{v}) = 0, c^{(i)}(\bar{u}, \bar{v}) \in C_1 \). Suppose that \(c^{(j)}(\bar{u}, \bar{v}) \in C_j \) for \(1 \leq j \leq i < \ell \). Since \(C^{(i)} \) and \(C_{i+1} \) are linear w.r.t. \(\oplus \), it follows from (2.15), (2.21) and (2.23) that \(c^{(i+1)}(\bar{u}, \bar{v}) \in C_{i+1} \). Consequently (2.18) follows from (2.16), (2.22) and (2.24), and this lemma holds.

Lemma 2: Suppose that \(C \) is a linear basic multilevel code over \(S_{2^t,PSK} \) w.r.t. \(\oplus \). Then \(C(= C_1 + 2C_2 + \cdots + 2^t-1C_t) \) is closed under the component-wise modulo-\(2^t \) addition, if and only if

\[C_i \cdot C_i \subseteq C_{i+1}, \quad \text{for } 1 \leq i < \ell. \] \hspace{1cm} (2.25)

Proof: Only if part: Let \(\bar{u} \) (or \(\bar{v} \)) denote the \(n \)-tuple over \(S_{2^t,PSK} \) whose \(i \)-th binary component \(n \)-tuple is \(\bar{u}^{(i)} \in C_i \) (or \(\bar{v}^{(i)} \in C_i \)) and whose other binary component \(n \)-tuples are the all-zero \(n \)-tuple \(\bar{0} \). Assume that \(\bar{u} + \bar{v} \in C \). It follows from (2.11) to (2.13) that for these specific \(\bar{u} \) and \(\bar{v} \),

\[z_{j,i+1} = u_j v_j, \quad \text{for } 1 \leq i \leq \ell. \] \hspace{1cm} (2.26)
From (2.14), (2.18) and (2.26), we see that
\[c^{(i+1)}(\tilde{u}, \varphi) = \tilde{u}^{(i)} \cdot \varphi^{(i)} \in C_{i+1}. \]
That is, \(C_i \cdot C_i \subseteq C_{i+1} \).

If part: Since \(C \) is a basic multilevel code, \(C_i = C^{(i)} \) for \(1 \leq i \leq \ell \). Then if part follows from Lemma 1.

3. A Necessary and Sufficient Condition for a \(2^\ell \)-PSK Modulation Code to be Invariant Under \(180^\circ / 2^{\ell-h} \) Phase Shift with \(1 \leq h \leq \ell \)

Now we consider the phase symmetry of a block \(2^\ell \)-ary PSK modulation code. To determine the phase symmetry of a code, we need to know the smallest rotation under which the code is invariant.

For \(1 \leq h \leq \ell \), let \(2^{h-1} \bar{1} \) denote the \(n \)-tuple over \(S_{2^\ell, PSK} \) whose \(h \)-th binary component \(n \)-tuple is the all-one \(n \)-tuple and whose other binary component \(n \)-tuples are the all-zero \(n \)-tuple. A code \(C \) of length \(n \) over \(S_{2^\ell, PSK} \) is said to be invariant under \(180^\circ / 2^{\ell-h} \) phase shift if for any codeword \(\bar{v} \) in \(C \),
\[\bar{v} + 2^{h-1} \bar{1} \in C. \tag{3.1} \]

By letting \(\tilde{u} = 2^{h-1} \bar{1} \) in (2.11) to (2.16), we obtain the following equations:

1. \(w_{j_1} = v_{j_1} \oplus x_{j_1}, \quad \text{for} \quad 1 \leq i \leq \ell. \tag{3.2} \)

2. If \(h < \ell \), then \(x_{j_i} = v_{j_{i-1}} x_{j_{i-1}} \), for \(h < i \leq \ell. \tag{3.3} \)

3. \(x_{j_h} = 1. \tag{3.4} \)

4. If \(1 < h \), then \(x_{j_i} = 0, \quad \text{for} \quad 1 \leq i < h. \tag{3.5} \)

It follows from (3.2) to (3.5) that we have Lemma 3.
Lemma 3: For \(1 \leq h \leq \ell\), a linear code \(C\) over \(S_{2^\ell, PSK}\) w.r.t. \(\oplus\) is invariant under \(180^\circ/2^{\ell-h}\) phase shift if and only if for any codeword \(\tilde{\mathbf{v}}^{(1)} + 2\tilde{\mathbf{v}}^{(2)} + \cdots + 2^{\ell-1}\tilde{\mathbf{v}}^{(\ell)}\) in \(C\),

\[
2^{h-1}\mathbf{1} + 2^h\tilde{\mathbf{v}}^{(h)} + 2^{h+1}(\tilde{\mathbf{v}}^{(h)} \cdot \tilde{\mathbf{v}}^{(h+1)}) + \cdots + 2^{\ell-1}(\tilde{\mathbf{v}}^{(h)} \cdot \tilde{\mathbf{v}}^{(h+1)} \cdot \cdots \tilde{\mathbf{v}}^{(\ell-1)}) \in C,
\]

where \(\mathbf{1}\) denotes the all-one \(n\)-tuple.

\[\Delta\Delta\]

If \(C\) is a linear basic \(\ell\)-level code w.r.t. \(\oplus\), denoted \(C_1 + 2C_2 + \cdots + 2^{\ell-1}C_{\ell}\), then the necessary and sufficient condition (3.6) is expressed as follows:

(1) \(\tilde{\mathbf{1}} \in C_h\), and

(2) if \(h < \ell\), then \(C_h \cdot C_{h+1} \cdot \cdots \cdot C_{j-1} \subseteq C_j\), for \(h + 1 < j \leq \ell\).

Obviously, a linear code \(C\) over \(S_{2^\ell, PSK}\) w.r.t. \(\oplus\) is invariant under \(180^\circ/2^{\ell-h}\) phase shift, if and only if \(\tilde{\mathbf{1}}_h \in C\).

4. Code Examples

In Table 1, seven basic multilevel block codes [3] and four nonbasic block codes for 8-PSK and 16-PSK modulations are given. The number of states of a trellis diagram for each basic multilevel block code is computed based on the numbers of states of trellis diagrams for its binary component codes [14]. Among four nonbasic codes, two zero-tail Ungerboeck trellis codes for 8-PSK modulation [1] are shown. In Table 1, \(V_n\), \(P_n\), \(P_n^\perp\), \(RM_{2^h}\), \(s\cdot RM_{2^h}\), and ex-Golay denote the set of all the binary \(n\)-tuples, the set of all even weight binary \(n\)-tuples, the dual code of \(P_n\) which consists of the all-zero and all-one \(n\)-tuples, the \(j\)-th order Reed-Muller code of length \(2^h\), a shortened \(j\)-th order Reed-Muller code of original length \(2^\ell\), and the extended (24,12) code of binary Golay code. \(F_1\) and \(F_2\) denote two codes over \(\{0, 1, 2, 3\}\) which are defined as following [4]. Let \(p(x_1, x_2, \cdots, x_h)\) be a boolean polynomial which is used to represent the binary \(2^h\)-tuple whose \(i\)-th bit is given by \(p(i_1, i_2, \cdots, i_h)\) where \((i_1, i_2, \cdots, i_h)\) is the binary representation of the integer \(i - 1\), i.e. \(i - 1 = \sum_{j=1}^{h} i_j 2^{j-1}\). Let \(g_{h,i}\) denote the
Next we consider the phase rotation invariant property of codes given in Table 1. Since codes $C[1], C[4], C[5], C[6]$ and $C[11]$ are linear w.r.t. $+$ and $\bar{1}$ is contained in P_n^\perp, $R_{M+},$ or ex-Golay, these codes are invariant under $180^\circ/2^{t-1}$ phase shift. It follows from the properties (i) and (ii) of Reed-Muller codes that codes $C[8], C[9]$ with $n \equiv 0 \bmod 4$ and $C[10]$ are readily shown to meet the conditions given by (3.7) and (3.8) with $h = 1$. Code $C[2]$ is shown to contain $2\bar{1}$, and therefore is invariant under 90° phase shift. Code $C[3]$ contains $2^2\bar{1}$ only and is invariant only under 180° phase shift, and code $C[7]$ does not contain even $2^2\bar{1}$.
References

Table 1: Some Short 8-PSK, 16-PSK Codes

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Definition</th>
<th>n</th>
<th>$R[C]$</th>
<th>$D[C]$</th>
<th>The number of states of a trellis diagram</th>
<th>Linearity w.r.t. $+$</th>
<th>Phase shift invariance</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-PSK</td>
<td>$C[1] \triangleq P_8^1 + 2P_8 + 4V_8$</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>2^2</td>
<td>Yes</td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>$C[2] \triangleq F_1 + 4V_8$</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>2^2</td>
<td>Yes</td>
<td>90°</td>
</tr>
<tr>
<td></td>
<td>$C[3] \triangleq$ zero-tail Ungerboeck code</td>
<td>n</td>
<td>$\frac{n-1}{n}$</td>
<td>4</td>
<td>2^2</td>
<td>No</td>
<td>180°</td>
</tr>
<tr>
<td></td>
<td>$C[4] \triangleq RM_{4,1} + 2P_{16} + 4V_{16}$</td>
<td>16</td>
<td>$\frac{9}{8}$</td>
<td>4</td>
<td>2^4</td>
<td>Yes</td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>$C[5] \triangleq F_2 + 4V_{16}$</td>
<td>16</td>
<td>$\frac{9}{8}$</td>
<td>4</td>
<td>2^4</td>
<td>Yes</td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>$C[6] \triangleq$ ex-Golay+2$P_{24} + 4V_{24}$</td>
<td>24</td>
<td>$\frac{59}{48}$</td>
<td>4</td>
<td>2^7</td>
<td>Yes</td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>$C[7] \triangleq$ zero-tail Ungerboeck code</td>
<td>n</td>
<td>$\frac{2n-3}{2n}$</td>
<td>4</td>
<td>2^3</td>
<td>No</td>
<td>360°</td>
</tr>
<tr>
<td></td>
<td>$C[8] \triangleq P_{19}^1 + 2RM_{4,2} + 4P_{16}$</td>
<td>16</td>
<td>$\frac{27}{32}$</td>
<td>8</td>
<td>2^6</td>
<td>No</td>
<td>45°</td>
</tr>
<tr>
<td></td>
<td>$C[9] \triangleq P_n^1 + 2s-RM_{5,3} + 4P_n$</td>
<td>$16 < n \leq 32$</td>
<td>$\frac{n-3}{n}$</td>
<td>8</td>
<td>2^6</td>
<td>No</td>
<td>45° for $n \equiv 0 \pmod{4}$</td>
</tr>
<tr>
<td></td>
<td>$C[10] \triangleq RM_{5,1} + 2RM_{5,3} + 4P_{32}$</td>
<td>32</td>
<td>$\frac{63}{64}$</td>
<td>8</td>
<td>2^6</td>
<td>No</td>
<td>45°</td>
</tr>
<tr>
<td>16-PSK</td>
<td>$C[11] \triangleq P_{32}^1 + 2RM_{5,2} + 4P_{32} + 8V_{32}$</td>
<td>32</td>
<td>$\frac{3}{4}$</td>
<td>4</td>
<td>2^8</td>
<td>Yes</td>
<td>22.5°</td>
</tr>
</tbody>
</table>