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ABSTRACT

A numerical method, based on the contour dynamics method for two-dimension-

al patches of uniform vorticity, is extended to aacisymmetric regions that contain
vorticity varying linearly from the axis of symmetry. Such a distribution remains
invaxiant in time and only the motion of the boundaries of vorticity regions needs

to be tracked, reducing the dimensionality of the problem by one. A simple model
that retains only the elliptic degree of freedom in the core shapes is also developed to

explain some of the features observed with contour dynamics. Passage and collision
interactions of two identical rings axe studied focusing on core deformation, sound

generation and stirring of fluid elements.

With respect to core deformation it is found that not only the strain rate but
how rapidly it varies is important and accounts for a greater susceptibility to vor-
tex tearing than in two-dimensions. For slowly varying strain, core deformations are
reversible in the sense that core shapes remain in equilibrium. For example, as a

passage interaction is completed and the strain relaxes the cores return to their orig-
inal shape. For sufficiently rapidly varying strain, permanent deformations remain.
For collisions, if the strain changes slowly the cores migrate through the shapes of a
known family of two-dimensional steadily translating vortex pairs up to the limiting
member of the family. Thereafter the energy constraint does not allow the cores to
maintain this or any other constant shape as the vortices stretch. For rapidly varying

strsin, core deformation is severe and a head-ta_l structure in good agreement with
experiments is formed. The head has very nearly the shape of the two-dimensional
limiting pair.

With respect to sound generation, good agreement with the measured acoustic
signal for colliding rings is obtained and a feature that was thought to be due to
viscous effects is shown to be an effect of inviscid core deformation alone. For passage

interactions core pulsations lead to a component of high frequency and in certain

cases high amplitude. Evidence for the presence and importance of this noise source
in existing jet-rig noise spectra is provided.

Finally, transport of fluid elements in time periodic vortex flows is studied
using techniques from non-lineax dynamics. The processes of fluid engulfment and
rejection for an isolated unsteady vortex ring axe studied using the stable and unstable
mmlifolds. Because fluid is drawn out along it, the unstable manifold shows excellent
agreement with flow visualization experiments for leapfrogging rings suggesting that
it may be a good tool for numerical flow visualization in time periodic flows.
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VORTEX IMAGERY

"When Strife had reached to the lowest depth of the whirl, and Love was in the

middle of the eddy, under her do all these things come together so as to be one, not

all at once, but congregating each from different directions at their will. And as they

came together Strife began to move outwards to the circumference. Yet alternating

with the things that were being mixed many other things remained unmixed, all that

Strife, still aloft, retained; for not yet had it altogether retired from them, blamelessly,

to the outermost boundaries of the circle, but while some parts of it had gone forth,

some still remained within. And in proportion as it was ever running forth outwards,

so a gentle immortal stream of blamdess Love was ever coming in." (Empedocles of

Acragas, ca. 442 B.C. From Minahen (1983), p. 178.)

"The Nature of infinity is this: That every thing has its

Own Vortex, and when once a traveller thro' Eternity

Has pass'd that Vortex, he perceives it roll backward behind

His path, into a globe itself infolding like a sun,

Or like a moon, or like a universe of starry majesty

While he keeps onwards in his wondrous journey on the earth,

Or like a human form, a friend with whom he liv'd benevolent.

As the eye of man views both the east and west encompassing

Its vortex, and the north and south with all their starry host,

Also the rising sun and setting moon he views surrounding

His cornfields and his valleys of five hundred acres square,

Thus is the earth one infinite plane, and not as apparent

To the weak traveller confin'd beneath the moony shade.

Thus is the heaven a vortex pass'd already, and the earth

A vortex not yet pass'd by the traveller thro' Eternity."

(William Blake, 1757-1827. From Minahen (1983),p. 288.)
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"The center of the cyclone is that rising quiet central low-pressure place in

which one can learn to live eternally. Just outside of this Center is the rotating storm

of one's own ego, competing with other egos in a furious high-velocity circular dance.

As one leaves the center, the roar of the rotating wind deafens one more and more

one joins this dance. One's centered thinking-feellng-being, one's own Satoris, are

in the center only, not outside. One's pushed-puUed driven states, one's snti-Satori

modes of functioning, one's self-created hells, axe outside the center. In the center of

the cyclone one is off the wheel of Karma, of life, rising to join the Creators of the

Universe, the Creators of us.

Here we find that we have created Them who are Us." (Lilly 1972, frontispiece)
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Volume of vortical fluid.

Non-dimensional speed of propagation of vortex ring defined in
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Eigenvectors of the Jacobian matrix A.
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Center, stable and unstable manifolds of the fixed point _.
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dent variables in a system of ordinary differential equations (§6.2.5).
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differential equations or a discrete map (§6.2.5).
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tions (4.2.51)and (4.2.52).
Unit vector in the direction of coordinate z.
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Space coordinate vector.
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ao Free parameter in vortex filament method.

Angular coordinate in plane polar coordinates (_,_).

Angular coordinate of plane polar coordinates (_,_) having a differ-

ent origin than (_,_) coordinates.
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(4.2.48)); eigenvalues for Love (1893) waves on the boundary of an
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Quantities defined in Equation (6.4.7).
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Value of vorticity inside a two-dimensional patch of uniform vortic-
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CHAPTER1

GENERAL INTRODUCTION

1.1. The fascination of vortices t

We are fascinated by vortices because they appeal to both our imaginative (aes-

thetic) and deductive (noetic) faculties. With respect to the first, the dynamic power

of wind and water has, from the earliest times, influenced rational and mythical at-

tempts to come to terms with the mystery of the origin of the world, life, and their

underlying forces. The whirl as a symbol for life, energy, ethical forces and states of

higher (and lower) consciousness recurs in many ages, cultures and literatures. Yah-

weh speaks to Job from a whirlwind. According to yon K£rm£n (1967) the vortex

has also been "the ultimate symbol of danger to men. 'Beware the eyes of the strange

woman,' says a translation from the Bible. 'Her eyes are like a vortex.'" An almost

identical association is made in the ancient Egyptian "Boulak Papyrus" (Minahen

1983, p. 158). Minahen (1983) devotes an entire thesis to the interpretation of the

vortex symbol in the writings of Homer, pre-Socratic philosophers, Dante, William

Blake and nineteenth century symbolists such as Edgar Allen Poe. Minahen gives

many delightful quotes; two favorites appear on pages vi-vii together with a quote

from a recent work by J. Lilly; we may not agree entirely, but we can be eclectic.

The vortex is a powerful primordial symbol in what Jungian psychologists call

the "collective unconscious" of man and it has also surfaced in art and in scientific

thought. In an article that deals with the role of computer generated images in

stirring the intuition, Zabusky (1981) ends by quoting a statement by W. Pauli, a

sober physicist. It states that new knowledge and understanding of nature is based

on a matching of pre-existent inner primitive emotional images with external objects

and their behavior.

Lugt (1983), in the first section of his book on vortex motion gives several ex-

amples of the appearance of the vortex motif in art and myth but as a personal and

contemporary example of how internal images can surface in art and be in accordance

t The title of this section was inspired by Peregrine's (1981) article entitled "The fascination of
fluid mechanics."



with unseen physical reality, there is the painting "Two macaques: mid-morning"t,

in which the Kenyan born artist Jesse Allen depicts the sun in his imaginary world of

fantasy with a pattern that evokes a sense of great but subdued power. Is it merely

an accident that the pattern corresponds to the magnetic-force surfaces in the stellar

model of Prendergast (1956)? Or, is it based on the type of intuition that Pauli

describes? One teachers in graduate school here said that when people claim to be

using intuition they are only recalling an argument they once learned or knew but

simply could not trace through all the steps; in other words, intuition is knowing

something to be true but forgetting why! We think that, while this is true in many

circumstances, the testimonies given in Hadamard (1954) of the flashes of inspiration

of many great mathematicians belong to a different category.

There are examples of the appearance of the vortex symbol in science. For a

century preceding the acceptance of Newton's ideas on gravitation, the vortex theory

of planetary motion published by Descartes in 1644 was propounded by his followers

(Alton 1972). They proposed that the planets must be carried in a fluid medium

that was set into motion by the influencing body. The Cartesians rejected Newton's

theory because the action at a distance concept was not compelling to them just as

it is also not satisfying for us today.

It was a similar displeasure with unseen forces that led Kelvin to seek a theory

of physical processes that used only the notions of matter and motion. Then in

1867, during its translation by Tait, Kelvin became enchanted with the 1858 paper of

Helmholtz which laid the foundations of rotational motion. In fact, as an appendix

to its translation, Tait published a letter by Kelvin in which he provided, without

proof, the famous formula for the speed of translation of a vortex ring of circular

cross-section. Vortex rings seemed ideal candidates for the essential constituents of

the theory that Kelvin was seeking. In the same year in a paper entitled "On Vortex

Atoms" Kelvin laid the beginnings of a theory that he was to proclaim until about

1880 (Buchwald 1976).

The topic set for the Adams Prize of 1882 was a "general investigation of the

action upon each other of two closed vortices in a perfect incompressible fluid" (Heft-

bron 1976), a subject considered in this work. In his prize winning contribution "A

Treatise on the Motion of Vortex Rings", J.J. Thomson (1883) went much further

than required. He proceeded to explain many properties of matter: radiation, heat

t Vorpal Galleries, San Francisco.



conduction, chemical reactions by appealing to known facts about vortex rings and

his own very original and still lasting deductions.

We turn next to the way in which vortices appeal to the logical and deductive

side of our nature by providing us with a tool for explaining many fluid phenomena

with only a little arm-waving and finger curling. Even though the aim of the early

work towards a theory of atoms as being rotational motion in some postulated fluid

possessing inertia (the a_ther) never materialized, the mathematical ideas and purely

hydrodynamic results that were discovered are still used today. These authors have

come to an appreciation that classical work has more relevance to the behavior of

"real" vortex rings than one admits at first sight. With only minor additions to the

classical line of inquiry, many experimentally observed features can be explained. In

his inaugural lecture at the Imperial College, D.W Moore (1979) expresses a similar

sentiment. He begins by stressing the "continuing vitality of the ideas contributed by

the founders of the subject (of vortex motion), H. yon Helmholtz and Lord Kelvin."

This vitality exists because many phenomena can be described by appealing to the

concept of vorticity e.g. lift. It provides a powerful intuitive tool and increased

knowledge and new examples of vortex behavior serves to sharpen it. Many facts

known to us analytically can receive satisfying mechanical and geometric explanation

in terms of vorticity. For example, LighthiU (1966) explains many phenomena in

rotating fluids using vorticity "as the sole theoretical tool," Hornung (1988) is able to

quickly deduce without any mathematics that in a flow with a rotating lid, no steady

solutions are possible at sufllciently high Reynolds number. Lin (1955, §4.4) explains

the inflection point instability in terms of vorticity. The analogy between vorticity

tilting and gyroscopic precession is used by Stuart (1967) to understand Rayleigh's

criterion for centrifugal instability and by Squire & Winter (1951) to understand the

occurence of secondary vorticity in wind-tunnel turning vanes.

Turbulence is often defined as "fluctuating vorticity." Many find displeasure in

statistical theories of turbulence and grope for physical or structural models. In

the early seventies (Brown & Roshko 1974, Winant & Browand 1974) it came to be

realized that many turbulent flows of engineering interest are not as chaotic as once

thought but contain large scale vortex structures whose behavior is independent of

Reynolds number when it is sufilciently large, which maintain their identity for long

periods and between which recognizable interactions occur. Better understanding



of vortex dynamics is sure to lead to understanding of discrete events present in

turbulent flows and, with it, an ability to control them.

1.2. Objectives

The motion of vortex rings has been the subject of longstanding inquiry. Most of

the theoretical knowledge deals with the speed of translation of thin rings, interactions

between vortices of such thin cores that their deformation may be neglected or, as in

the case of Hill's spherical vortex and the Norbury-Fraenkel family of vortex rings,

with inviscid steadily translating vortices (see §2.7 for a review). In referring to the

latter, whose interactions are a primary subject of this work, Saffman (1981b) has

said "The use of such vortex structures as models of the quasi-permanent coherent

structures of a turbulent flow makes the study of their interactions and stability

a matter of pressing interest." This work aims to provide a contribution in that

direction.

Interest centers on the three issues related to the roles played by the inviscid

dynamics of quasi-permanent structures in turbulent shear flows:

(i) The permanence versus destruction of vortez rings when they interact and

the generation of fine scale features. It is known that two-dimensional vortices dis-

integrate when the strain they are subjected to by other vortices exceeds a critical

value (Moore & Saffman 1971). How do these ideas apply to the axisymmetric case?

Whether one vortex ring can pass through another has been the subject of a series

of interesting exchanges in the literature (see §2.6.3 for a review). In the context of

inviscid flow, what factors determine a successful passage?

(ii) Generation of sound. D. Kfichemann (1965) referred to vortices as the

"sinews and muscles" of fluid motion. Mftller & Obermeier (1988) suggested that

since,for small Much number, vortex motion ispracticallythe only source of aerody-

namic sound, we might also callvorticesthe "voice of the flow." Indeed, according to

Minahen (1983), "the words 'whirl'and 'whorl',associatedwith the vortex,for exam-

ple,the breathy 'wh' in combination with the churning 'rl'indicatessomething more

than a simply arbitrary relationshipbetween the idea and itsacousticalimage..." In

order to understand some basic sources of sound by vortex motions we shall study

the sound generated by sxisymmetric vortex dynamics. Kambe & Minota (1983)

provide measurements of the acoustic radiation generated by two collidingrings and



the present simulations reproduce them well. In particular a feature in the signal

they thought was due to viscous e_ects will be explained in terms of inviscid core

deformation.

Winant & Browand (1974) suggested that pairing of vortex rings is the primary

mechanism responsible for the generation of jet noise (under conditions in which

pairing is in fact present, which it is not always). Since then, much experimental

evidence has been gathered to favor this view. See Crighton (1980) for an excellent

review. What particular aspects of the pairing process accounted for in the present

analysis are important? In the so-called preferred mode of a jet, pairing does not occur

and other mechanisms have to be sought. Hussain (1983) suggested that vortex llne

reconnection when vortex ring like structures break down is the dominant source

of sound in this case. Is the sound due to purely axisymmetric degrees of freedom

consistent in these cases with the observed noise characteristics?

(iii) Stirring. One of the properties of vortices is that they transport fluid.

From the common experience of stirring cream into a cup of co_ee we know that the

motion of the two vortices causes complicated winding and folding of the interface

before molecular mixing occurs. In the context of shear layers, one of their outstanding

features is spatial growth of the width of the vortical region--the laminar mixing

layer grows as the square-root of the downstream distance while the turbulent layer

is observed to grow linearly. Dimotakis (1984) explains the manner in which a parcel

of irrotational fluid from outside a shear layer or jet becomes endowed with vorticity

as a two step process: engulfment by the Biot-Savart induced velocity followed by

straining and molecular dif[usion.

Chapter 6 addresses the first step for idealized and abstracted situations. A

steady vortex ring carries with it a body of fluid. When the ring is unsteady it

constantly rejects fluid and engulfs fresh fluid. How and at what rate does this occur?

Tracers such as dye, smoke, air-bubbles, water-vapor, density or temperature often

allow us to visualize fluid flow--indeed on a personal level, our immediate experience

(equations and hot-wire traces aside) of fluid motion is mostly a visual one. How are

tracers transported? In what ways might our inferences of the underlying vorticity

field based on visualization be mistaken? What accounts for the layered filamentary

patterns that dye often takes on? These certainly are broad questions but a brief

attempt in this direction in the context of vortex rings is made in Chapter 6.
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1.3. Organization

In the next chapter a review of the known facts about axisymmetric vortex rings

is provided. The results axe mostly experimental but some theoretical results and nu-

merlcal simulations axe included. Issues that receive attention in the present work axe

pointed out and some open questions axe discussed. Most of the observed phenomena

await deeper inquiry by more careful, systematic and sophisticated experiments and

theoretical or numerical modeling. We hope that the reader will take up some of

these challenges.

Axisymmetry is assumed throughout this work although there is an observed

(and explained) instability which causes azimuthal waviness followed perhaps, by

breakdown to turbulence. To understand what limitations this places on the current

results, the chapter will be concluded by a discussion of the stability of axisymmetric

rings.

In Chapter 3 we develop an inviscid numerical method that is suited for vortex

rings of a particular class, namely, those in which the azimuthal vorticity varies lin-

early with respect to distance from the axis of symmetry. The vorticity of a circular

vortex line increases linearly as it stretches so such a distribution is maintained for all

time. Hence one needs to follow only the motion of the boundary between regions in

which the ratio of vorticity to distance from the axis takes different constant values.

The evolution of the boundary is formulated as a 1-D integro-differential equation

which is solved numerically. The method is an extension to axisymmetric flow of

the contour dynamics method developed for two-dimensions by Zabusky, Hughes &

Roberts (1979). Tests of accuracy and convergence axe provided.

Chapter 4 discusses some simple but restricted models for this class of rings.

First, the classical model due to Dyson (1893) is reviewed and some of its properties

axe discussed. It assumes (a) that the core size is sufficiently small compared to the

radius allowing circular cores to be steady in isolation; (b) that interacting vortices

remain sufficiently distant so that one vortex influences the other only via the leading

fax-field term of its induced velocity, for which the vorticity may be considered to

be concentrated on an infinitesimally thin circle, and (c) that deviations of the cores

from being circular due to straining may be neglected.

Then a simple model is constructed which relaxes assumption (c) above by allow-

ing the cores to be strained into ellipses; it was inspired by a model for two-dimensional

vortices by Melander, Zabusky & Styczek (1986). Six ODEs govern the position and



shape of each vortex. The axisymmetric model incorporates Moore's (1980) elliptic

core vortex ring solution to obtain the self-induced motion and Kida's (1981) solution

of a two-dimensional elliptic patch of vorticity in a strain to obtain the core defor-

mation due to plane strain. The elliptic model allows one to anticipate many of the

features observed with contour dynamics and provides one with a terminology for

explaining them.

Chapter 5 contains the main results of the simulations. The results deal with

passage and head-on collisions of two initially identical rings and the accompanying

generation of sound. Comparison with the flow visualization experiments of Oshima

and her co-workers and the sound measurements of Kambe & Minota (1983) for col-

liding rings is provided. Wherever possible a connection is made with observations of

axisymmetric shear-layers and jet-noise characteristics. Essential differences between

two-dimensional and axisymmetric vortex behavior are pointed out. The differences

in behavior presented by rings with a vorticity distribution that is more realistic than

the linear distribution of the contour dynamics method is studied. To this end the

vortex filament method (discussed in Appendix 6.B) is first tested for accuracy against

the linear vorticity solutions and then applied to peaked vorticity distributions.

In Chapter 6 use is made of some basic notions from dynamical systems theory to

study how unsteady vortex rings engulf and stir parcels of fluid. The main objective

is to understand features observed in flow visualization experiments. Some of these

features have been identified as being vortical whereas they may be due to stretching,

winding and folding of smoke or dye in irrotational or weakly vortical regions. Two

main cases are considered: first, a time periodic vortex ring to address some obser-

vations of "turbulent rings" and finally two rings alternately passing through each

other to address a controversy concerning the interpretation of the flow visualization

experiments of Yamada & Matsui (1978).

Chapter 7 states the conclusions and suggests spedfic sub-problems as extensions.

1.4. Summary of main results

We now provide a summary of the results of the numerical simulations in Chapters

5 and 6. Both overtaking or "passage" and "collision" (head-on) interactions are

presented. The experimental literature on the subject is reviewed in §2.6. Acoustic

signals are calculated using the low Mach number theory of MShring (1978). The final



result of that theory, given in Equations (4.2.49) and (4.2.50), shows that to obtain

the time behavior of the acoustic pressure requires merely the evaluation of the third

time derivative of the centroid of the vorticity as defined by Helmholtz (1858, or see

Lamb 1932, §162).

Unless otherwise specified, the initial core shapes are chosen from the steadily

translating family of solutions computed by Norbury (1973). The initial shapes are

parametrized by a, the ratio of area-effective core radius to toroidal radius Lo. The

ratio of initial separation to Lo is denoted as d.

Qualitative appreciation of the differences in the interactions of thin versus thick

cores can be obtained from the elliptic model by considering the ratio of two time

scales. On one hand there is the inverse of the vorticity, say rl, which determines the

natural period of perturbations of the core. On the other hand there is the time scale

of the overall motion of the rings, say r:, which determines how fast the field imposed

by the other vortex is changing. Using Kelvin's speed formula (Equation 2.7.3) to

estimate 1"2one obtains

~ a2 log(i/a), (1.4.1)

i.e. for thin cores, internal rotation is faster than translation. The effect of this ratio

may be qualitatively understood in terms of a spring-mass system. The extension of

the spring is analogous to the aspect ratio of the core while gravity is analogous to

the varying strain-rate imposed by the other vortex. The analogy can be justified

only in the context of the elliptic model. When a vortex is nutating or rotating, time

varying strain appears as time-dependent forcing on a system with solutions that are

periodic with a frequency set by the vorticity.

If the spring is initially in equilibrium and gravity changes sufficiently slowly in

comparison with the natural frequency of the spring, the length will remain close to

the equilibrium values corresponding to the instantaneous values of gravity. If the

spring is initially oscillating and gravity changes slowly, subsequent oscillations will

take place about the slowly varying equilibrium. However, if the value of gravity

changes rapidly, the spring will overshoot the equilibrium. If the spring is linear

and elastic, when the value of gravity is restored to its initial value, oscillations will

occur about the equilibrium, but if it is non-linear, oscillations may occur about

some other position or the spring may continue to" stretch indefinitely if there is

no equilibrium at large extensions. Similarly, for thin cores we shall observe that

core shapes follow the instantaneous equilibrium and nearly return to the initial



shape when the strain relaxes. For fatter cores, there is deviation from equilibrium

without a return to the initial shape when the strain relaxes. We shall refer to this

as "permanent deformation" without any connotation of irreversibility.

1.4.1. Summary of passage cases

Four types of outcomes were encountered in contrast with the "leapfrogging"

that is predicted by Dyson's model. The determining parameters are c_ and d. An

exhaustive exploration of the parameter space was not undertaken; we merely suggest

trends and sketch the relevant physical effects. The attempt of one vortex ring to slip

through another represents the initial phase of pairing in jets subjected to jet-column

excitation as seen in Hussain & Zaman (1980). The value of dis unity for all cases but

the last and corresponds roughly to that resulting from jet-column mode excitation

(J. Bridges, private communication).

The four outcomes observed are as follows:

(i) The classical picture holds for only the thinnest cores; this is represented by

the first case (a = 0.1, §5.1.1). Core deformations are imperceptible to the eye with

maximum aspect ratio 1.14 and nearly periodic with no permanent deformation. Yet,

they induce acoustic oscillations with large frequency and amplitude superimposed on

the circular-core result (Dyson's model). These oscillations increase the total radiated

power by a factor of 6.8 over the invariant core result. The elliptic model predicts

the core deformation and acoustic signature very well.

Although Dyson's model fails to predict the acoustic signal, it approximates the

velocity field well in this case since the eMpticity is small. Using Dyson's model,

motion of passive particles is investigated in §6.4 with a view to establishing a con-

nection with flow visualization experiments. This is clone by calculating the unstable

manifold, a concept from dynamical systems theory which is reviewed in §6.2. The

manifold bears a striking resemblance to even fine scale features in the smoke visu-

alizations of Yamsda & Matsui (1978). The paper by Yamada & Matsui elicited the

comment that classical models of vortex rings are of little use in understanding real

flows. The present result suggests that the observed smoke pattern may in fact be due

to complex motion of tracer, with vorticity behaving in an approximately classical

manner.

(ii) For the previous case (a = 0.1) the eMptic model shows that the cores pulsate

about the equilibrium shape corresponding to the instantaneous strain rate, e.g. as



the rear vortex completes its passage and the strain rate to which it is subjected

decreases, its aspect ratio also decreases to its initial value--recaU the spring-mass

analogy. However, in a case that has cores only slightly thicker than the previous

case (a = 0.14, §5.1.3), the elliptic model shows that even though the strain-rate is

small, it changes sufficiently rapidly that each successive passage excites a permanent

deformation in the passing vortex. The contour dynamics calculation exhibits the

same feature.

(iii) For the third type of interaction involving even thicker cores (a : 0.20,

§5.1.2), it is observed that the rear vortex undergoes unabated elongation and part of

it is captured by the leading one. The elliptic model represents the elongation process

well and from it we learn that the elongation is not due to the fact that the strain

rate induced by the other ring exceeds the axisymmetric analog of the critical value

(set by Moore & Saa_man (1971) for tearing, see §4.2.4), but rather that even though

the strain is weak, it varies sufficiently rapidly in time that the core "overshoots"

its equilibrium. This contrasts with the analogous interaction of a pair of like-signed

vortices in two-dimensions which is more resilient because the strain rate does not

vary.

(iv) In the fourth example (,_ = 0.40, aT = 2, §5.1.4) the critical value of the

strain rate is exceeded according to the elliptic model, the rear vortex is considerably

elongated in the axial direction, and a thin wisp of it starts to roll-up around the

leading vortex. The features are in agreement with the experimental photographs

of Oshima, Kambe & Asaka" (1975). In this experiment, electrolyte grains produced

at the edge of the orifice were injected directly into the shear layer i.e. the vortical

region. Hence, here the tracer is not prone to the effects of passive advectlon discussed

above. However, the Schmidt number of the tracer is typically very large so that the

vorticlty may be considerably more diffused than tracer.

For passage cases the acoustic signals oscillate at a frequency of about half the

vorticity which reflects elliptic mode core deformations. Section 5.1 will be concluded

by demonstrating that peaks measured in jet-rig noise spectra correspond to half the

peak phase averaged vorticity of the structures.

1.4.2. Summary of collision cases

In two-dimensions, collisions between vortex pairs have been studied by McWiU-

Jams & Zabusky (1983) for the quasi-geostrophic equivalent barotropic equation and
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Overman & Zabusky (1982a) for the Euler equations. Axisymmetfic collisions differ in

two respects. First, vortex rings approach each other to an arbitrarily small distance,

whereas vortex pairs asymptotically approach a finite separation. Second, whereas

in two-dimensions the cores nearly attain a steady shape, in the axisymmetric case

continual production of thin sheet-like regions must take place due to the energetics

of the stretching process. For thin vortices (a = 0.2, §5.2.1), the rate at which cores

approach is much smaller than internal rotation so the shapes remain in equilibrium

with respect to the instantaneous induced field of the other vortex. When the separa-

tion of the cores is smaller than their radius, the flow is nearly two-dimensional locally

and the sequence of shapes follows the family of two-dimensional steadily translat-

ing pairs calculated by Pierrehumbert (1980) up to its touching member (Sadovskii

1971). Thereafter, energy conservation does not allow the core to retain this or any

other constant shape and a thin tail is shed. This may be one mechanism by which

self-stretching of paired vorticity leads to the formation of fine scales in turbulence.

For a collision of thick cores (a = 1, §5.2.3), the strain changes rapidly so the

cores deviate from equilibrium and attain a large aspect ratio before the cores make

"contact". However, the shape does not continue to flatten uniformly. It "fills-out" or

thickens in one region to form a head, that has the shape of the Sadovsldi eddy, and a

long remnant tail. The head-tail structure agrees with the experimental photographs

of Oshima (1978a).

With regard to the acoustic aspects of collisions (§5.2.4), comparisons will be

made with the measurements of Kambe & Minota (1983) (henceforth KM). The

agreement with experiment holds up to much later times than with Dyson's model.

In particular, a dip in the acoustic pressure signal which was thought by KM to be

due to viscous effects is shown to be a manifestation of inviscid core deformation.

1.5. Evolution of the objectives and approach

The stated objectives of a work are usually formulated while it is performed, as

capabilities and tools are developed. The goals expressed in §1.2 were no exception.

Our own assimilation of the concerns ex-pressed there was rather oblique. It was not

as if we read Saffman's statement and decided to come to the rescue. It is therefore

perhaps of interest to discuss how the work actuary developed the way it did.
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In the initial phases of this research, the goal was to numerically simulate complex

aerodynamic flows (separated unsteady wakes behind three-dimensional bluff bodies,

in particular a slant-back car which experiments had shown produced a sharp increase

in the drag coefficient at a particular slant angle). We expected to employ interacting

computational vortex elements. The fact that at high Reynolds numbers the vorticity

is confined to small regions and, for incompressible flows, the entire flow field can

be computed from it and boundary conditions, means that the vorticity provides

an economical representation of the flow. Thus storage is a computer resource one

seldom needs to worry about in vortex methods. The vorticity was to be discretized

into vorticity bearing elements which were to be convected with the flow velocity

averaged over the element, neglecting the deformation of the elements. Leonard (1985)

provides a review of such methods. However, it was suggested by P. Spalart at NASA

Ames that, despite the existence of mathematical proofs of convergence to solutions

of the inviscid equations as the number of computational elements is increased, of

at least one such method, these methods had never been subjected to tests in three-

dimensions against either analytic solutions or those which had been obtained by

more accurate though less general computational techniques. All the demonstrations

of the efficacy of this modeling technique for three-dimensions were qualitative in

nature. The Hill's spherical vortex solution (see Lamb 1932, §165), and the family

of axisymmetric steadily translating vortex ring solutions studied by Norbury (1973)

and Fraenkel (1972) were considered good but" restricted test cases. Good in the

sense that vortex stretching, one of the distinguishing features of three-dimensional

flows was present but restricted because (i) the stretching is purely geometric, (ii)

the solutions can be made steady in a translating frame in an Eulerian description

and (iii) the accuracy of the method in treating variations along the computational

vortex filaments could not be studied.

In initial studies it became clear that the overall properties of the Norbury-

Fraenkel vortices, for example their speed of translation, could be easily reproduced

with only a small number of filaments and that a more demanding study of un-

steady behavior was needed. No exact unsteady solutions were available except for

the linear stability analysis of Hill's spherical vortex by Moffatt & Moore (1978) and

Moore's (1980) asymptotic solution of a slender elliptical core vortex ring. Moore's

solution was reproduced well by the method as were the general features of the Hill's
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vortex instability. The behavior encountered (for example the shedding of tails, en-

trainment of irrotational fluid) was deemed interesting and perhaps relevant to jets.

It was suggested that if these physical processes was what interested us then they

ought to be investigated rather by the more accurate, though specialized, technique

of contour dynamics, if it could be extended to axisymmetric flow. This approach

was developed and exploited by Zabusky and co-workers for two-dimensional vortex

patches of constant vorticity. Since, in two dimensions, vorticity is convected with

the fluid the patches maintain a constant vorticity and only the shape of these bound-

aries evolves. An integro-differential equation for the motion of the boundary can be

obtained. This approach was extended to the axisymmetric case and the objectives

stated in §1.2 evolved. In relation to the original concerns, however, accurate un-

steady solutions which could be used as a better benchmark for the vortex filament

method were obtained. After the vortex Filament method was qualified for the linear

vorticity case it could be used to study the behavior of rings with a peaked vorticity

distribution which better represents real vortex rings.

So, this is how our attention was diverted to vortex rings.
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CHAPTER 2

BACKGROUND ON AXISYMMETRIC

VORTEX RINGS AND THEIR STABILITY

2.1. Introduction

Instead of reviewing only those results which have a direct bearing upon this work,

a broader perspective will be taken. It may seem pointless to review experimental and

theoretical work since the assumptions of inviscid flow and confined linear vortlcity

made in most of this work are too idealized. However, we axe able to reproduce

flow visualizations of interacting rings and to obtain the measured acoustic signature

of colliding vortex rings. These are exceptions. There are many experimentally

observed phenomena whose mechanisms remain unclear and they provide a challenge

for theoretical and numerical models. The purpose of this chapter is to pose challenges

for both this work and others; only a small subset of these challenges is met in this

work. This chapter will also serve to indicate the degree to which our results are

relevant to experimental vortex rings. To avoid confusion a clear distinction will be

made between questions that are given attention here and those we would like to see

addressed.

An excellent and concise introduction to vortex rings is provided in pp. 157-164

of the review article by Widnall (1975).

Satfman (1981a), in encapsulating the vortex ring problem, said that "the for-

mation of vortex rings is a problem of vortex sheet dynamics, the steady state is a

problem of existence, their duration is a problem of stability, and if there are sev-

eral we have a problem of vortex interactions." We shall do our best to follow this

paradigm in organizing this chapter but sometimes we are forced to a make a division

along experimental/theoretical/numerical and viscous/inviscid lines.

In the first three sections we focus on the problem of formation by discussing how

rings are generated naturally or in the laboratory, the resulting structure and, finally,

what factors determine whether the formed rings are laminar or turbulent.

Section 5 discusses observations of laminar rings and simple models which have

been proposed. We then take up the issue of coaxial interactions. The discussion
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is mostly experimental. In Chapters 5 and 6 we shall attempt to address, using the

inviscid assumption, some of the issues raised here.

The flavor then changes sharply towards theory beginning with a discussion con-

cerning the existence and properties of steadily translating inviscid rings (§2.?). Then

we discuss unsteady inviscid behavior including coaxial interactions, which are the

main topics of the present work. The next section reviews theoretical and numerical

work on viscous vortex rings. Finally we take up the subject of azimuthal instabilities,

an area in which theory has been reasonably successful in accounting for experimental

observation.

2.2. The formation process

2.2.1. Introduction

In his book, Sommerfeld (1950) concludes an exposition of the classical theory of

vortex rings with a note of dissatisfaction: the theory had to be left incomplete with

respect to one essential point, the uncertainty about the assumed vorticity distribution

in the core. He states that this uncertainty could be removed by investigation of

the vortex formation process. Since that statement was made, understanding of how

vortex rings form in various circumstances has increased. The next subsection reviews

methods for producing vortex rings. In the laboratory, the most common technique

is to push a slug of fluid through a circular pipe or orifice. Models which address the

characteristics of rings produced in this way are discussed in §2.2.3.

2.2.2. Techniques for producing vortez rings

The simplest "home-brew" way of producing a vortex ring is to allow a drop of

water, lightly colored with milk or food dye, to fall from an eye dropper or pipette

into a glass of water. A variation that provides consistency and repeatability is to

hold a partially formed drop at the tip of the dropper, slowly lowering it until it makes

contact with the surface of the water. Surprisingly a vortex ring is also formed without

the drop having any initial kinetic energy, indicating that there is another source for

the energy of the rotational motion. It is entertaining to toy with different conditions.

For example, increasing the concentration of coloring produces a negatively buoyant
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ring which cascadesinto many smaller rings. For a realization of this with heavy

smoke in air see Chen & Chang (1972).

In any case, upon entering the water the spherical drop quickly deforms to a

toroidal shape. This phenomenon was reported by W.B. Rogers (1858, the founder of

M.I.T.), studied in greater detail by Thomson & Newall (1885) and photographed by

Okabe & Inoue (1961); some of the pictures have been reproduced in Batchelor (1973,

Plate 21).

The process by which the toroidal shape forms remains unclear. Chapman _:

Critcldow (1967) provide an explanation based upon conversion of surface energy into

kinetic energy as the drop surface disappears. A thorough study of the characteristics

of the rings produced and even the derivation of qualitative estimates needed to

confirm this mechanism are tasks that await doing.

Rayfield & Reif (1963) showed that nearly inviscid vortex rings may be produced

in superfluid helium by subjecting it to helium ions from a radioactive source. A ring

becomes tagged with an ion which allows a determination of its energy and speed

of translation. The measured values are fit extremely well by the corresponding

relationship for Kelvin's (Tait 1867) thin core ring. The rings have one quantum unit

of circulation (.998 × 10-Scm2/sec) and effective core size to radius ratios down to

10-4.

Another interestingmethod can be found in the May 1976 issue of National

Geographic (p. 602). A beautiful photograph shows a diver blowing air rings in

water. The rings become remarkably large in radius clueto buoyancy forces which

increase the momentum of the ring. The phenomenon has been studied by Waiters

& Davidson (1963). Initiallyspherical air bubbles acquire a distributionof surface

vorticityclueto buoyancy. The vorticitycauses the sphericalvolume to deform into a

torus after which, experiments suggest, the circulationremains nearly constant. We

shallhenceforth limitthe discussionto flows with a singlefluid.

An alternative,but lesserknown and studied scheme for generating vortex rings

is to let a shock-wave emerge at the open end of a cylindricaltube. Two types of

apparati have been used. The firstmethod isdocumented in Elder & De Haas (1952)

and references therein, Sturtevant & Kulkarny (1978) and Sturtevant (1981). It

consistsof a circulartube with a compression chamber filledwith helium or nitrogen.

This gas is separated by a diaphragm from an open expansion chamber. After the

diaphragm is ruptured, a shock propagates into the expansion chamber trailedby a
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slower moving contact surface which separates the fluid initially in the two chambers.

The contact surface may be thought of as a piston which drives the fluid between

itself and the shock. An expansion wave propagates into the compression chamber,

reflects off the end wall and as it propagates, brings to rest fluid behind it. The tube

is long enough that it catches up with the contact discontinuity, thus preventing the

helium or nitrogen from exiting. The length of the ejected slug and hence the core

size of the produced vortex are determined by the length of the compression chamber.

Plate 78 in Van Dyke (1982) shows a Schlieren visualization of a ring produced in this

way by Sturtevant. The core radius is quite small. In some cases Sturtevant found

that the volume of fluid transported with the vortex becomes "turbulent" even before

the core exhibits azimuthal instability. In §6.4 we will suggest that this may be due

to core unsteadiness causing chaotic particle paths in the irrotational fluid carried

along with the vortex i.e., the vortex is in fact not turbulent.

The second type of apparatus has been used by Kambe & Minota (1983) to study

the acoustic radiation when two vortex rings collide head-on. We will simulate this

case and compare our calculated results with theirs in §5.2.4. In their technique, the

shock passes through a second diaphragm without rupturing it and bifurcates through

two pipes which turn to face each other. The length of the ejected slug is limited by

the second diaphragm.

The advantages of using a shock-tube is that vortices approaching the idealized

ring may be produced i.e. they have large Reynolds numbers and thin cores. Also,

as the vortex sound is proportional to some power of the propagation velocity, high

speed rings produce measurable acoustic signals making possible fundamental studies

into the nature of vortex sound. Moreover, shadowgraph and Schlieren visualization

techniques, when used to visualize the different density of the core, are not affected by

history of the motion as is dye. On this basis, Sturtevant (1981) proposed a different

scenario of events leading to breakdown of vortex rings which will be discussed further

in §2.10. Sturtevant also employs the technique of thermally tagging the fluid initially

in the shock tube by cooling its walls, in which case, history effects are important. A

disadvantage of shock-tubes is that no velocimetry technique has yet been devised to

provide detailed flowfield information. LDV is not possible because there is insufficient

time for seed particles to begin to move with the rapidly accelerated fluid, and, being

heavy, they move outward and away from the region of interest in a rotational fow.
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We would llke to suggest that a greater variety of studies of vortex dynamics

should be done with shock tubes. For example the "cut and connect" process which

Hussain (1983) believes is the dominant source of jet noise could be studied by creating

several vortex rings in tandem analogous to the low speed experiments of Oshima &

Asaka (1977).

2.2.3. Models of ring formation at an edge

The technique most often employed to produce vortex rings is to push a slug of

fluid, through a pipe or the orifice of a chamber, using a piston with stroke L. If the

history of the piston velocity scaled by the average piston vdocity (Up) as a function

of time normalized by the ejection time (Te) remains fixed as these two parameters

are varied, then the character of the ring depends upon the piston velocity curve,

Rep = -UpD/v and D/L where D is the diameter of the aperture. The boundary

layer inside the pipe separates at the sharp edge of the opening and roUs-up into a

vortex spiral. Didden (1979, 1982) has studied this process experimentatly for a pipe,

focusing on how the vortex attains its circulation via a flux of vorticity from inside

and outside the pipe. Some of his flow visualization photographs are contained in

Van Dyke (1982, Plate 76). In the 1982 paper a comparison is made of the measured

growth of circulation in the spiral against the predictions of a slug flow model and

a model (due to Pullin 1979) which relies upon known similarity solutions for the

rolling up of a vortex sheet in two-dimensional impulsively started flow past a wedge.

The slug flow model is often employed in vortex simulations of jets to determine the

circulation of the numerical vortex dements released. The latter type of model has

been used by Saffman (1975, 1978) to estimate the overall properties of the rings.

Both models ignore the production of vortidty of sign opposite to the main spiral

required to maintain a slip free wall This secondary vorticity is ingested into the

spiral and, for one set of experimental conditions in Didden's paper, was about a

quarter of the main vorticity. Another drawback of the self-similar roll-up model is

that its validity rests upon the absence of a length scale which is true only in two-

dimensions. In other words, the diameter of the spiral is assumed small compared

with the diameter of the pipe so that the latter does not enter as a length scale. This

is satisfied only during the initial stages of roll-up but at this stage the thickness

of the vorticity layer is comparable to the dimensions of the spiral and similarity

assumptions fail once again. These factors account for the poor agreement of the
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model with experiments. Considering this state of affairs, a numerical study of the

roll-up of axisymmetric vortex sheets using the techniques recently developed by

Krasny (1987) to evolve vortex sheets in two-dimensions, would be a worthwhile

venture.

In the slug flow model, the piston velocity Up(t) alone governs the rate of growth

of vortex strength r. It is assumed that the velocity external to the pipe boundary

layer at the exit plane is the piston velocity so that the flux of vorticity is

dr auffi 1 2
-_ =/w_ufda _ /--_ufd. _ _U;(t). (2.1.1)

The integrals extend over the boundary layer; the first approximation sign means

boundary layer assumptions are being invoked and the second, that the boundary

layer edge velocity is the piston speed. In reality, the velocity external to the boundary

layer at early times is determined by the local potential flow past the edge with the

velocity imposed only at the piston. The sharp turn of the potential flow past the

edge does not occur because a small bubble, surrounding the small piece of vortex

sheet that has been shed, serves to smooth the turning of the flow. The boundary

layer edge velocity is higher than the piston speed. As noted by Glezer (1981) this

would be more pronounced for a tube without a backplane than in his apparatus,

in which an exit is formed by the intersection of a cylindrical cavity with a plane

wall, in which the flow turns through a smaller angle. At later times, the maximum

velocity relaxes toward the piston velocity but remains slightly higher due to a slight

constriction caused by the displacement thickness. Thus the overall effect is that the

slug flow model underestimates the total circulation of the vortex, the error being

larger for shorter pulses. The slug model is often used in vortex simulations of jets

where it is probably adequate because there is no start-up transient and rings form

due to a shear layer instability.

2.3. The structure of the core

In spite of its shortcomings, the model of self-similar roll-up together with con-

siderations of the effect of viscosity does suggest the form of the vorticity distribution

in the core and its dependence on the parameters of the generating process. In the

analysis of Moore & Saffman (1973) for the structure of aircraft trailing vortices,

which has been applied to vortex tings by Pullin (1979), the core has three regions.
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An inner viscous subcore has radius O(ut) 1/2. In the outer two regions, the growth is

governed by inviscid self-similar roll-up and proceeds as a power of time determined

by the interior angle of the edge and the assumed power law of the piston velocity

history. The need to regard this region as composed of two parts arises because in

the inner portion the radial distance between successive turns of the sheet is smaller

than the thickness of the sheet determined by viscous diffusion. In this intermediate

region the distribution of vorticity is smooth. In the outermost region the shear layer

is rolled up in a tightly wound spiral whose discrete structure is not lost. The size of

the intermediate region may be overestimated because the total length of the vortex

sheet is much larger than the emitted slug length so a large amount of stretching

takes place and diminishes the width of the diffused layer. The rapid stretching also

stabilizes the spiral against Kelvin-Helmholtz instabilities (Moore & Griffith-Jones

1974).

Based on this model, Moore _ Sa_man (1973) obtained the velocity distribution

for the core of the aircrafttrailingvortex (Pullinextended the resultto vortex rings)

by matching a solutionfor the inner viscous subcore to the solution for the interme-

diate region. The resultisexpressed in terms of a confluent hypergeometric function.

A comp_ixison of thisresultto experiments stillneeds to be made. In any case, the

vorticityis highly peaked at the center of the core and decays algebraically."

Experiments qualitativelyconfirm thisdistribution.Maxworthy (1972) used the

distortionof a lineof hydrogen bubbles to inferthat the vorticitywas not confined

to a thin core as assumed by classicalmodels but spread throughout the volume

of fluid it transports. Furthermore, the vorticitywas not distributed linearlywith

radialdistance. Sullivan,Widnall & Ezekiel (1973) used LDV to study rings formed

in air by pulsing fluidthrough a sharp edged orificeusing a loudspeaker. Figure 9

of their paper shows that the vorticitydistributionhas a bellshape. In their rings,

which were less viscous than Maxworthy's, the vorticitywas concentrated in a thin

core and they concluded that Maxworthy's findings were probably peculiar to low

Reynolds number vortices.In 1977 Maxworthy studied high Reynolds number rings

and essentiallyrecovered the resultsof Sullivan,Widnall _z Ezekiel but thought it

significantthat even though the vorticityat the edge of the moving volume is more

than two orders of magnitude lessthan the maximum in the core,itwas measurable.

The presence ofthisweak vorticityisimportant in Maxworthy's conception of laminar

vortex rings at any Reynolds number. We willdescribe hisideas in §2.5. The factthat
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real vortex rings do not resemble the class of vortex rings we are able to study with

contour dynmnics will motivate us to study the differences in passage interactions

when the distribution is closer to experiments (Chapter 5).

2.4. Initially laminar vs. turbulent rings

Depending on the parameters of the generation process, the behavior immedi-

ately _fter the ejection may be either laminar or turbulent. The Reynolds number

is not the only governing parameter; the details of the piston motion, because they

affect the core structure are also important. In Ssffman (1975, p. 267) it is hypothe-

sized that if the piston velocity history is such that the strength (circulation per unit

length) of the produced sheet is maximum at its leading edge then it will roll-up as

a single spiral, which is presumably stable, but if the maximum strength occurs at

some other point then the sheet rolls up as a double spiral which may be unstable

and lead to a ring which appears turbulent from the outset. However Glezer (1981,

Figure 2) reproduces some data from Didden's (1977) thesis which shows that two

piston velocity histories, one which slug flow reasoning suggests would produce a

monotonically decreasing sheet strength, and another with a'bump shaped distribu-

tion which should roll-up as a double spiral, both result in lmninar rings. Thus the

role of the piston velocity history in determining the character of the ring remains

unclear. Another factor in producing initially unstable rings is the ingestion of nega-

tive vorticity into the core. This would make it susceptible to Rayleigh's centrifugal

instability. To demonstrate this, Maxworthy (1972) enhanced the creation of negative

vorticity by placing a centerpiece protruding from the hole along the axis of symme-

try. The resulting vortex ring was violently unstable. Two points are in order. First,

the Rayleigh stability criterion is valid for inviscid two-dimensional flow with circular

streamlines and may be invoked for sufficiently thin cores. It states that if the sense

of local rotation (vorticity) is anywhere opposite to the direction of overall rotation

(angular velocity), then the flow is unstable to three-dimensional disturbances (this

version is due to Coles 1965, p. 386n). It would be interesting to study the most

unstable mode for a given profile and the effects of finite core and viscosity. Second,

Maxworthy's demonstration is somewhat artificial in that his apparatus would cause

a negative layer of vorticity around the periphery of the core whereas without the

centerpiece the negative vorticity is wound with the sheet vorticity and it is possible
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that viscouscancellation occurs before nearly circular streamlines are established in

the core. Clearly there must be some explanation for the fact that the pipe geometry

produces stable rings.

2.5. The dynamics of laminar rings

In this section we present what is known about the behavior of laminar vortex

rings. As pointed out by Maxworthy (1972) it was O. Reynolds (1876) who seems to

have observed that contrary to Kelvin's picture, vortex rings realized in the laboratory

do not have a permanent form. The volume of fluid transported along with a ring

continually increases due to entrainment of external fluid and its velocity decreases

because its momentum has to be shared with a greater mass of fluid. Maxworthy's

measurements for rings with Re _ 600 based on translation speed and maximum

diameter showed that growth of this mass proceeded roughly as t 1/3 and the speed of

propagation as t -1. He was able to construct a theory based on order of magnitude

estimates to account for this dependence. We hope that accurate simulations with

schemes such as that developed by Stanaway, CantweU & Spalart (1986) win be able

to provide a refined picture.

The increase in volume was explained with the aid of a physical picture based on

the high Reynolds number spherical drop solution of Harper & Moore (1968). Max-

worthy's argument has three ingredients: a hypothesis of entrainment, conservation

of impulse and self-similarity. With respect to the first, the fact that measurable vor-

ticity extends up to the edge of the volume carried with the vortex (called the bubble)

is crucial in Maxworthy's view. Irrotational fluid is contaminated with vorticity by

diffusion as it flows along the surface of the bubble. Due to an associated loss in total

pressure, this fluid is unable to traverse the surface of the bubble and it is entrained

into the bubble at a volumetric rate proportional to the speed of propagation and the

area of the diffused layer normal to the flow.

With respect to the second, the linear momentum of the fluid in the entire flow

domain (assumed to be unbounded) is an invariant even in the presence of viscosity

in the absence of body forces. Its definition for axisymmetric flow reads (with density

set to unity)

= Ir [_i,v 2 dz &r,P (2.5.1)
,/
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where the integral is taken over a meridional half-plane. If F is the circulation and Z

some length scale of the vortex then

v =/3rZ 2, (2.5.2)

where

/3 = _r f _2 d_ d_. (2.5.3)

The hats represent values normalized using F and Z. If, as the vortex expands,

its shape as well as the vorticity distribution remains similar then/3 is a constant.

So, to maintain P constant, the observed increase in Z must be accompanied by a

decay in circulation. We return to this point later. At the same time the speed of

propagation, U(t), decreases because the impulse is proportional to the speed per unit

volume. The entrainment hypothesis and conservation of impulse with self-similarity

give the following power laws

U~t -1 (2.5.4)

r ~

The first two agree well with dye visualization. A difficulty occurs with the'l_t

relationship. In the context of the given model, loss in circulation can occur only due

to viscous cancellation at the axis of symmetry. However an analysis of this process

yields a slower rate of decay than that given above. Thus one has an inconsistent

model. This is remedied by allowing vorticity to be lost to a wake. Of course neither

the assumption of self similar growth nor of constant bubble impulse is now true.

The model remains valid only at small times when the wake is small. In a subsequent

paper (Maxworthy 1974) the analysis is improved to account for the loss of impulse

from the bubble.

2.6. Coaxial interactions

2.6.1. Introduction

Here we give a review of the known experimental facts and classical explanations

concerning the interaction of two vortex rings initially placed a certain distance apart

on a common axis of symmetry. A detailed numerical study of such interactions will

be the subject of Chapter 5. The treatment there is based on the assumption of
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inviscid flow. Nevertheless, one is able to reproduce many of the experimental tracer

visualizations and the radiated acoustic signal. The only known inviscid model, that

due to Dyson (1893), is not equipped to predict the variety of observational data. Its

inability to predict core distortion and merging has encouraged the view that invisdd

models have little application in understanding the behavior of real vortex rings. The

model we will develop extends Dyson's by allowing deformation of vortex cores and

finite size. Some of the observations discussed below can then be reproduced and

understood.

The experiments to be described were performed at a time when the effect of

apparatus parameters on the characteristics of the rings had not been appreciated.

Thus as one parameter of the generation process is varied, all the characteristics of

the vortex change. The precise characteristics of experimental vortices, for example

the circulation and vorticity distribution are difficult to measure. But, with some

of the knowledge one now has about the formation process, it is hoped that these

characteristics will be controlled in future experiments. At present therefore it is

difficult to precisely place each experiment in the space of dimensionless parameters

that govern the interaction. An experimental studies have been qualitative, focusing

on flow visualization. It should be remembered that smoke, dye and hydrogen bubbles

have very large Schmidt numbers (ratio of momentum to tracer diffusivity) so that

tracer does not mark all of the vorticity containing region. Thus when we say below,

"vortex", "core" or "ring" in describing the experiments we mean simply the "region

of tracer". Thermal tagging is less prone to misinterpretation by Schmidt number

effects (since the Prandtl number of air _ 1) and has been utilized by Sturtevant and

his co-workers (1978, 1979, 1981) for isolated ring experiments by cooling the walls

of the shock tube. We are not aware of any interaction experiment which utilizes it.

Thermal tagging would still be prone to the effects of passive advection, a subject

taken up in Chapter 6.

2.6.2. Motivation

There are two kinds of interactions. If the vortices have the same sense of rotation,

they travel in the same direction and, under certain conditions, the rear vortex will

attempt to pass through the front one. The motivation for studying such interactions

is that they are observed in the jet column mode of a round jet near the exit where
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they play important role in sound generation and mixing (Hussain & Zaman 1980,

Zaman 1985). Here, we will concern ourselves with just two isolated vortices.

If the vortices have opposite senses of rotation, they travel towards each other

i.e., a head-on collision takes place. The reasons for studying collisions are indirect.

Firstly, they shed light on what happens when two counter-rotating sections of three-

dimensional vortex tubes interact closely. Intense stretching occurs locally. In free

turbulence, this would lead to energy transfer to small scales. Siggia & Pumir (1987)

studied three-dimensional collisions with a filament model in order to understand

possible finite-time singularities of the Euler equations resulting from a succession

of such collisions. Based on our preliminary results, they concluded that the largest

uncertainty in their model is "inviscid core deformation which would turn the cores

into ribbons as they stretch." Pumir & Kerr (1987) studied such interactions using

a spectral method in a periodic domain and the pattern of core deformation in a

plane of symmetry resembles both the experimental and the present results for col-

liding vortex rings. Secondly, collision has been used by Kambe and his co-workers

primarily to test theories of vortex sound generation, but they too have recognized

that the collision may be representative of a fundamental process in turbulence. Fi-

nally, MeWilliams (1983) studied collisions between vortex solutions to the plane

quasigeostrophic equations. He suggested that studying vortex collisions may lead to

similar achievements as for colliding particles. Just as particle collisions have led to

the discovery of new types of particles, "this may also prove to be true for isolated

vortices; the appropriate apparatus in this case is the computer used to solve the

governing equations." We think that this motivation is not too fanciful. For example

in Chapter 5, from a vortex ring collision, there emerges a structure with the shape

of a known two-dimensional translating pair.

2.6.3. Passage Interactions

In his original memoir on vortex motion, Helmholtz (1858) describes the motion

of two vortex rings having the same axis and circulation. Due to the velocity induced

by the rear vortex, the leading vortex widens and travels more slowly because its self

induced velocity decreases with increasing radius. Similarly, "the pursuer shrinks and

travels faster, till finally, if their velocities are not too different, it overtakes the first

and penetrates it. Then the same game goes on in opposite order, so that the rings

pass through each other alternately" (Tait's 1867 translation). Later, Dyson (1893)
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carried out a formal study using a model based on the assumptions of widely separated

vortices having slender circular cores. The details of his model are given in §4.1. He

obtained criteria that determine which of the two possible outcomes occurs: the rings

continue to revolve about each other or they separate with time.

The notion that this description applies to real rings has permeated into text-

books and has led to controversy. Sommerfeld (1950, pp. 164-166) states that the

"leapfrogging" can be observed several times in succession for rings generated by

drops penetrating a free-surface. In an earlier printing of Batchelor (1967, pp. 523-

524) there is the statement: "it is possible to demonstrate in the laboratory one or

two such passages of one vortex through the other before they decay." The remark

was deleted from the first paperback edition of 1973 presumably because Maxwor-

thy (1972) questioned whether the process could be realized experimentally after an

unsuccessful attempt at reproducing it. Instead, for rings with Reynolds numbers less

than 600 (based on initial translatory velocity and maximum ring diameter) he found

that the two rings merged into one. Only when the rear ring is sufficiently stronger

than the forward one does it pass through, and even then it gains some of the vorticity

of the front vortex. Oshima, Kambe & Asaka (1975) tried harder. They varied several

parameters: orifice diameter, ejection period and time between ejections, but were

never able to obtain a clean passage. The Reynolds number of the produced rings

based on initial propagation speed and orifice diameter ranged from 200 to 300. They

report that the observed outcomes could be classified into three categories depending

on the relative magnitudes of the initial translation velocities. However, inspection of

the three cases they consider as being representative of each range of velocities shows

that the core sizes and separation distance also varied widely. Hence we will discuss

each of the cases as unique rather than as a member of a larger set. In the first case,

the leading ring had a higher velocity and, as the initial separation was large, the rear

ring was unable to slow it down and distance between the two continued to increase.

In the second case, the rear ring is stronger by about 10% in terms of initial speed. It

is considerably distorted as it attempts to pass through and begins to roll-up around

the core of the first. Both rings had the same ejection time so we suspect that the two

rings had nearly identical strength. The higher velocity of the rear ring is probably

due to the fact that as it is produced, the first ring is close enough to influence it. In

Chapter 5 the core deformation in a simulation compares well with the photographs

for this case. The authors describe the rolling-up as eventually leading to merging.

27



In the third case, the ejection period of the rear ring is larger and it has speed greater

than 50% compared to the first vortex. The rings are observed to merge, leaving

behind a portion of the foremost vortex in the shape of a flared skirt.

Finally in 1978, Yaanada & Matsui were the first to provide proof that a successful

passage could be achieved in the laboratory. Their photographs are reproduced in

Van Dyke (1982, Plate 79). In some cases, a second passage occurred and in others, in

particular for the photographs contained in Van Dyke, the interpretation of Yaraada

& Matsui of their photographs is that the first vortex was so distorted after the other

had passed through it that it merged during its own passage, leaving some residual

smoke. The fact that it is the passed that appears to suffer deformation is contrary

to the results of contour dynamics (Chapter 5) which predict that the passing vortex

is subjected to a larger strain. The study of particle motions in §6.4 suggest in the

experiments it is only smoke in the irrotational region that appears to distort.

Yamada & Matsui attribute their success to higher ReD (._ 1600). In addition,

we believe that the fact that the rings were produced by the impact of a pendulum

must have resulted in a short piston stroke and hence smaller cores which would

suffer weaker deformation. However, in comments upon this work, Maxworthy (1979)

doubts that a successful passage characterized by the vorticity remaining distinct

had indeed occurred. Arguing that smoke does not track vortidty, he suggested that

the vorticity of the two rings diffuses together at the first passage and that smoke

appears distinct only because at high Reynolds number the peaks of the vorticity

distribution remain distinct. He believes that the subsequent pairing of the two rings

is merely a delayed manifestation (due to slower diffusion) of the same process he had

reported in 1972. Our view is this: First, the outcome of the interaction (assuming

that two identical rings are produced) must depend on the shape of the vorticity

distribution which has as one parameter the ratio of the initial effective core size

to mean toroidal radius Lo, the reduced initial separation d/Lo, and the Reynolds

number. The experimental work has focussed on the Reynolds number as the most

important parameter while our inviscid study is defined by the first two parameters.

Second, in §6.4, we will apply concepts of non-linear dynamics to show that a classical

invisdd model with thin, circular and non-deforming cores gives almost identically

the same smoke pattern as the photographs of Yamada & Matsui. Hence one ought

to be very careful in interpreting tracer visualizations. Our view therefore is that
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the truth lles between our inviscid calculations and Maxworthy's reliance on diffusion

arguments. A synthesis of the two views will lead to a more balanced picture.

In Oshima (1978b), the ReD, diD plane was surveyed to identify regimes of

successful passage for two identical rings. We will focus on the air experiments since

the rings in water were not reproducible, diD was varied by the interval between

puffs. ReD was varied between 500 and 1600 by changing orifice diameters as well the

displacement and speed of a driving speaker diaphragm. Hence the core size varied.

Oshima found that the only effect of separation distance (other parameters fixed) was

that if it is too small, the rings are not distinct initially and there is no passage. If it

is too large the second ring does not catch up to the first. In intermediate cases, clean

passages occurred. Our results suggest greater influence of the separation distance.

It affects the history of strain that each vortex encounters which in turn determines

the amount of core distortion during the interaction. Indeed, the case from Oshima,

Kambe & Asaka (1975), in which there is considerable deformation followed by a

partial merger, does not fall into either of the above descriptions of failed passage.

The effect of changing the initial propagation velocity (both ReD and core size to

radius ratio change) is that, for small values, the circulation was too weak to cause

an interaction (the interaction was so slow that that either the length of the apparatus •

was too short or the rings dissipated by loss of circulation at the symmetry axis). If

the translational speed was too large, an instability along the circumference occurred

before a passage could be completed.

2.6.4. Head-on collisions

Next we consider collisions of oppositely signed rings. With perfect symmetry,

each vortex can be regarded as the image of the other with respect to a slip wall,

for example a free liquid surface at Froude numbers so small that the surface does

not deform. Experiments on collision of rings against a solid surface have also been

performed but do not represent the desired situation well at late times, the production

of secondary vortidty leading to a rebound of the ring. We do not consider such

interactions here.

Owing to their self-induction the rings approach and due to mutual induction

their radii grow and they decelerate. According to Dyson's model, which regards the

vortices as having zero cross-section for the mutual interaction, the cores overlap at

some point and the model becomes invalid. In Chapter 5, deviations from Dyson's
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model in the late stages of collision will be studied. Oshima (1978a) carried out

experimental collisions at ReD between 260 and 400. The size of the orifice was

held fixed; ReD was increased by increasing the level of d.c. current to a speaker.

Apparently the displacement of the driving speaker also increases since thicker cores

are formed. For small cores, the smoke cross-sections deform from a circular to an

aerofoil shape as they collide. For thicker cores the core deformation is stronger. The

dye forms a head with a long trailing tail. These features are reproduced weU and

explained by the simulations to be discussed in Chapter 5. Subsequently, the head

pinches-off and continually increases in radius. At larger radii, a.n azimuthal waviness

occurs and the filaments of dye in the head intertwine. The ejected tail possibly grows

another head.

Ka_nbe & Minota (1983) studied the acoustic signal resulting from the collision of

high speed rings (ReD = 3-6 x 104). They present an acoustic theory which assumes

that the Mach number, based on the maximum velocity in the vortical region, is

small. The theory predicts that the far-fidd acoustic pressure has a quadrupole and

a monopole part. The latter depends on second time derivatives of the kinetic energy

and is absent in inviscid flow. Kambe & Minota (1983) separate the two parts in the

measured signal using their predicted angular dependence. Shadowgraph pictures

are given in Kambe & Murakami (1979) but because they represent a_u integrated

view, the core deformations discussed above are not discernible. Nevertheless, the

quadrupole part of the measured acoustic signature compares well with the present

inviscid simulations and a particular feature of the signal wiU be shown to be a result

of core distortion, rather than viscous effects as previously believed.

2.7. Theory of steadily translating inviscid vortex rings

2.7.1. Problem statement

We begin this section with a review of the theory of steadily translating axisym-

metric vortex rings without an azimuthal velocity component (called swift) and then

discuss effects of swirl. For inviscid swirl-free axisymmetric flow the equation for the

azimuthal vorticity is (Batchelor 1973, p. 508)

= 0, (2.7.1)
Dt
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where _r is the cylindrical radial coordinate. The equation describes the convection

of vortex lines and the purely geometric stretching of the vorticity. We consider flows

which are steady in a reference frame translating with the vortex. The speed of the

frame is determined as part of the solution. The condition for steadiness is that _¢/cr

be constant on streamlines, that is _÷/_r = f(_p) where _ is the Stokes streamfunction

and f(_) is an arbitrary function. Then the streamfunction-vorticity relation

02_b 02_ 1 0_ tr2f(,#) ' (2.7.2)

together with the condition of uniform flow at infinity defines the elliptic problem

to be solved. Note that the operator D 2 is not the Laplacian due to the sign of

the last term. One is usually interested in solutions in which the vorticity vanishes

at infinity. The known axisymmetric solutions are exclusively those in which the

vorticity is confined i.e. where f(_) vanishes outside some region 2_. One then has to

solve (2.7.2) separately in the interior and exterior of _D subject to the condition that

_k = constant on the boundary of _D. An additional condition that in two instances is

not employed is the continuity of tangential velocity across the boundary. When it is

not imposed, the resulting solutions have a vortex sheet on the boundary and f(_k)

has a delta-function on the boundary. This is inconsistent with the form assumed for

f(_). In this category are the ellipsoidal "extensions" of Hill's vortex obtained by

O'Brien (1961) and the family of toroidal rings obtained using finite-differences by

Durst & Schonung (1982).

The problem outlined above is difficult because the shape of the boundary is

unknown. The difficulty of free-boundary value problems is nicely illustrated in a

simple one-dimensional example by Berger & Fraenkel (1975).

2.7.2. The case f(_b) -" const

We now give an exposition of the case in which f(_b) = const in D and zero

everywhere else. This has been a favorite for over a century; our understanding of it

is quite thorough. This is also the case referred to in the Prandtl-Batchelor theorem

(Batchelor 1956) for the form of a steady redrculating eddy behind axisymmetric

bodies at vanishingly small but non-zero viscosity. For example, Fornberg (1988)

numerically found that the steady recirculating eddy behind a sphere at sufficiently

large Reynolds number has very nearly f(_) = const and resembles Hill's spherical

vortex.
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Kelvin (Tait 1867) considered steady behavior in the limit of thin cores. In this

case, to leading order, the core dynamics in a frame moving with the core are the

same as for a rectilinearvortex with uniform vorticity.A steady solution in two-

dimensions is the circular (Rankine) vortex; a circular core is also steady to leading

order in the axisymmetric case. The speed of the reference frame or equivalently the

speed of translation of the vortex relative to a frame in which the velocity vanishes

at infinity is given by the celebrated formula presented by Kelvin without proof as

an appendix to Hdmholtz (1858):

[ 1U= r log - +O(a, aloga)], (2.7.3)

where r is the circulation, 6 the radius of the core, Lo the toroidal radius and c_ is the

slendexness parameter, ,5/Lo. After Kelvin published it, this formula was the source

of much controversy. Various authors presented their own derivations and, in place of

-1/4, J.J. Thomson is said to have favored -1 and Lichtenstein's method gives -3/16

(Fraenkel 1970). It turned out that Kdvin's value is correct though we can only guess

how he obtained it.

The discrepandes are due to lack of care in keeping the orders of neglected terms

straight. One obtains simply, using the Biot-Savart law, the leading order stream-

function in the vicinity of the core. Then, to get the axial velocity, one differentiates

with respect to _r a quantity in which c, variations have been neglected; errors of O (1)

are thereby introduced. Clearly, higher order terms in a for the shape of the core and

the streamfunction are needed. These are formidable to obtain but Fraenkel (1970,

1972) has succeeded.

In his textbook, Lamb (1932, §162-163) presents an ingenious and simple method

of circumventing the difficnlty. It is referred to as "Lamb's transformation" by

Saffman (1970) and Moore (1980) but can be traced to Hdmholtz (1858) although

he does not carry to completion the calculation of the speed. The trick is that for a

steady ring, all the axial centroids of the vorticity, no matter how they are defined,

have the same speed. The idea is to choose a convenient definition. Helmholtz and

Lamb define an axial centroid of the vorticity weighted by o 2 without telling the

reader why. Then they evaluate its speed and use the expression for the energy and

conservation of impulse to eliminate a term which would otherwise require knowledge

of the streamfunction beyond the zeroth order in a. The result is given as Equation

(gb) in Helmholtz (1858) after correcting for a slight algebraic error that originates
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in Equation (8a). We shallreferto it as Helmholtz's transformation. In article163,

Lamb obtains the streamfunction and then the energy to zeroth order to complete the

calculationof the speed. Presumably, thisisalsothe method used by Kelvin starting

from Equation (9b) in Helmholtz.

The choice of the centroid is immaterial in the steady case. This leads one to

expect that the terms that dropped out would do so regardless of the centroid def-

inition. Indeed, Saffman (1970, §2) finds that they do so as a consequence of the

equations of motion regardlessof the choice of centroid. What Helmholtz stumbled

upon was a centroid whose speed could be easilyevaluated even in the unsteady case.

This fact is used by Saffman (1970) to evaluate the speed of a viscous ring in which

the vorticityis Gaussian and spreads as v/'_.

A more physically appealing way of obtaining the speed of translationis by a

force balance. The method has been used by Widnall & Bliss (1971) and Moore &

Saffman (1972) and by Moore (1985) in which he obtains a compressibilitycorrection

to Kelvin's formula. The idea isthat the velocityaround the vortex core isincreased

from its two-dimensional value on the concave side due to contraction of area and

decreased on the convex side.This contributesto a pressure difference,called"vortex

line tension", which would tend to shrink the radius. However, this would violate

conservation of momentummthe momentum of a ring isthe product of itscirculation

and frontal area. Hence the force must be balanced by a Kutta liftfrom forward

translation.Hicks (1884,p. 162) statesthe argument without invoking Kutta liftand

conservation of momentum. The forcebalance method has alsobeen applied to curved

vortex tubes in general. The nice thing isthat, as in the Helmholtz method, one does

not need to know how the streamlines are distorted from the rectilinearvortexmthe

required pressure can be obtained from the zeroth order (basicallytwo-dimensional)

solution.Lundgren & Ashurst (1988) have, on the basis of a force balance, formulated

model equations for the motion of a three-dimensional vortex tube which allow the

core radius to vary along the tube and in time. Gray (1914) gives yet a different

method for obtaining Kelvin's speed formula that yields the correct answer.

A general deduction about the speed of rings was made by Roberts (1972). He

found, regardless of core thickness and the form of the vorticity distribution f(_b),

that for steady rings the speed of translation is the derivative of the energy with

respect to the impulse holding circulation and volume of vortical fluid fixed.
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Hicks (1885) obtained the speed of translation of hollow rings--ones in which fluid

has circulation without any rotational fluid; the fluid in the core can be thought of

as having velocity but zero density. The hollow vortex idealization has served well to

illustrate some mechanisms or the mathematical structure of a problem, for example

it is used by Moore & Saffman (1974) to gain insight into the azimuthal stability

of vortex rings. From a practical viewpoint the hollow ring is an approximation

for cavitated rings if surface tension is neglected. An expression for the speed of

translation of vapor rings including the effects of surface tension has been derived by

Chahine & Genoux (1983).

We now consider thicker core members of the f(_) = const family. Dyson (1893),

in an extraordinary paper that Fraenkel (1972) called "bewildering to modern eyes,"

investigated, among many other things, corrections to the circular shape up to fourth

order in a - lis/Lo, the ratio of area-effective core radius to toroidal radius. At

the opposite extreme, Hill (1894) discovered that a spherical core was also steady.

In this case, (2.7.2) is amenable to solution by separation of variables although it

appears that Hill found the solution by trial. These solutions led Batchelor (1967,

p. 526) to expect that a continuous family of steady rings ranging from a ring of zero

cross-section to Hill's vortex may exist. Fraenkel (1970) indeed was able to prove

existence for a wider class of vorticity distributions than f(_b) -- const for small

c_. In ignorance of Dyson's work he obtained specific solutions with f(_) = const

providing the core shapes and the properties of the vortex to lower order than Dyson.

Fraenkel (1972) also provides a specific solution valid to first order in c_ for rings with

a peaked vorticity distribution. Because a peaked vorticity is more representative of

rings generated in the laboratory we consider also their interactions in Chapter 5.

A more complete discussion of these peaked vorticity solutions is given in Appendix

5.B. Norbury (1972) proved existence and obtained specific f(_) = const solutions

in the neighborhood of Hill's vortex. Norbury (1973) wrote down the formal solution

of (2.7.2) in terms of the Green's function of the D 2 operator. The problem is thus

recast as an integral equation, the unknown being the region over which the integral is

performed. He solved the problem numerically, approximating the integral by plane

quadratures and exhibited specific solutions in the entire range for f(_) = const.

In Appendix 3.B we reduce the area integral to a line integral, i.e., a 1-D integral

equation. We hope it will be useful in finding other steady solutions, for example

those in which f(_b) is a different constant in different bands.
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Finally, throughout this work, we shall refer to the class of rings with f(_b) = const

as the Norbury-Fraenkel (NF) family.

2.7.3. Global ezistence proofs for general f(_b)

In 1974 Fraenkel & Berger used a variational technique to prove existence of

steady vortex rings for a large class of vorticity distributions in the entire range of a.

Benjamin (1976) poses a simpler and more natural variational form of the problem

of steady confined vortex rings of a broad class as follows. Consider all possible

bounded vorticity distributions with a given axial centroid with specified impulse in

which the vorticity distributions (divided by _r) are rearrangements of a prescribed

non-negative bounded function ._(z, or) defined on a connected core. Within this class

of rings, steady solutions maximize the kinetic energy.

The rearrangements h(z,tr) of a function _(z, tr) can be visualized by imagining

to be a passive scalar with initial distribution _(z, tr) that is convected by stream-

functions that are more or less arbitrary functions of space and time. We include this

technicality to emphasize the fact that in Benjamin's formulation one does not maxi-

mize the energy over vorticity distributions that have a prescribed vorticity function

f(_b). Rather, if the variational problem has a solution, to every specified _(z, _)

there will correspond a certain f(_b) that is unknown beforehand. The variational

formulation of Fraenkel & Berger (1974) is more cumbersome but has the advantage

that f(_) is prescribed. Benjamin uses his formulation to establish existence of a

steady solution within the stated class; note again that it does answer the question

of existence for a given f(_b). The formulation is ideally suited to establish non-

linear stability with respect to axisymmetric disturbances in the sense that a positive

definite functional of the perturbation remains bounded in terms of its initial value.

Two points are in order. First, Benjamin (p. 20) ostensibly takes this functional to

be the difference in energy between the perturbed motion and the stationary flow

rather than a norm of the perturbation (for example the energy of the difference mo-

tion) which is the usual practice in establishing Lyapunov stability (Arnol'd 1965).

Second, even Lyapunov stability does not preclude behavior such as the growth of

wavy perturbations or the shedding of tails which are instabilities by other definitions.

Friedman & Turkington (1981) give a variational formulation similar to Benjamin's

with yet different technicalities. From a practical point of view, the greatest value
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of variational statements is that they lead to efficient numerical schemes for finding

steady solutions; one example is given below.

A less mathematical, more geometric, and remarkably simple method for demon-

strating the existence of steady rings is due to Moffatt (1986). It is a constructive

argument and suggests a procedure for finding them. Moffatt exploits the anal-

ogy between the steady inviscid equations and the equations for magnetostatics in

a fluid with infinite magnetic conductivity. The idea is to consider the relaxation

to magnetostatic equilibrium of the magnetohydrodynamic equations which are the

Navier-Stokes equations with a Lorentz force term and an equation which expresses

the fact that the magnetic field lines are convected and stretched with the fluid. If

the initial condition is such that the velocity field is zero but the Lorentz force is non-

conservative (it can otherwise be absorbed into the pressure) then motion will ensue

i.e. magnetic energy is transferred to kinetic energy where it dissipated by viscosity.

Now the lines of the magnetic field intensity B, llke vortex lines, follow the fluid hence

the magnetic energy which is the integral of the square of B has the interpretation

of the length of magnetic field lines. Both therefore continually decrease as long as

the Lorentz force is non-conservative. Now consider how this decrease would affect a

flux-tube of B (the analog of a streamtube). Lines on the surface of the tube contract

but the volume of the tube must remain constant because it follows the fluid, so the

tube fattens. Thus process will continue until it is impeded by a non-trivial topology

of the B field. For example a cylindrical tube can shrink indefinitely in surface area

with volume remaining constant but two linked doughnuts cannot. Thus to obtain

non-trivial solutions one imagines situations like this in which the magnetic energy

has a lower bound. Kinetic energy will eventually dissipate to zero leaving the Lorentz

force to be balanced by pressure gradient:

jxB=Vp, j=VxB, (2.7.4)

wherej is the current density and units are chosen such that the magnetic permeability

is unity. Equations (2.7.4) are analogous to the steady Euler equations:

wxu=-VH, w=Vxu (2.7.5)

Hence a certain of class of steady Euler flows correspond to magnetic equilibria arrived

at by the process of relaxation. Moffatt (1985) discusses many 3-D possibilities and

vortex rings (Moffatt 1986, pp. 297-300). To obtain vortex rings one considers an
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initial axisymmetric B field whose flux tubes are nested tori inside some closed region

containing the axis and infinite surfaces of revolution outside (see Figure 2.1). As the

relaxation proceeds the tori follow the fluid and maintain the same volume Vol(x)

where _ is the streamfunction of B which identifies each tube. In the relaxed state ;_

is analogous to _b and one has realized a vortex ring with the corresponding Vol(_),

the volume of the streamsurfaces which Moffatt calls the signature of the vortex. Like

Benjamin's variational statement this has the disadvantage that it does not allow one

to specify the vorticity distribution f(_b); indeed the relation between Vol(_) and

f(_b) may be quite complicated.

2.7.4. Steady az/symrnetric vortex rings with swirl

We now discuss steady solutions in which there is present a velocity component in

the azimuthal direction. Interest in them partly stems from the occurrence of nearly

axisymmetric breakdown bubbles in leading edge vortices over delta wings. We shall

however limit ourselves here to discussing isolated ring-like solutions in which swirl

is confined to the same region as the azimuthal vorticity whereas for the breakdown

problem there is swirl present upstream of the bubble.

The problem of existence has been addressed by Turkington (1986) and Mof-

fatt (1988) generalized his magnetic relaxation method to vortex rings with swirl. In

addition to the signature function referred to earlier, one also specifies the flux W(X)

of the azimuthal component of the magnetic field B#. W(X) remains invariant during

relaxation and in the magnetostatic state becomes analogous to the volumetric flux

through a streamtube _b = const.

• What is the effect of swirl on the speed of translation of thin rings? Since cen-

trifugal force helps to balance vortex line tension, less Kutta lift is required and the

speed of translation is reduced (Bliss 1973, p. 76). For a more complete description

one solves the vorticity strearnfunction equation that remains identical to Equation

(2.7.2); the streamfunction now describes the projection of the velocity vector in an

azimuthal plane. Only the condition for steadiness changes. It can be deduced by

formal manipulation of the equations of motion (Batchelor 1973, p. 545) or from the

basic physics and geometry of the problem (Benjamin 1962, pp. 623-625). Due to

axisymmetry, any initially circular material line will remain circular as it moves on a

streaznsufface (_ = const). By Kelvin's theorem the circulation K" = 27r_r(z,_r,t)u_b
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will remain constant following the line. Hence K = K(_b). The steady vorticity

equation is

u × w = VH, (2.7.6).

where H = p/p -t- lu2 is the Bernoulli head. Hence velocity vectors lie on surfaces

of H = const so that streamsurfaces coincide with surfaces of constant H, i.e., H =

H(_b). Benjamin, using a vector diagram similar to that used for turbomachinery,

expresses the azimuthal vorticity in terms of the two arbitrary functions H and K as

_ = K(_)K'(_) - H'(_)-, (2.7.7)
O"

where primes denote differentiation with respect to the argument. When substituted

into (2.7.2) this gives the so-called Squire-Long equation. It is subject to the same

conditions stated earlier and the line of inquiry is the same: try different forms for

H(_) and K(_). To our knowledge confined vortex solutions have been obtained

only when H(_b) = Ho + X_b in the core and H = Ho in the exterior potential flow

and K(_b) - 4-_ in the core and zero in the exterior swirl free region. Now, the

swirl free limit _, = 0 corresponds to the linear vorticity distribution and solutions

exist i.e. the NF family and, in particular, Hill's vortex. What happens as the

swirl parameter _ is increased? It turns out, rather nicely, that the modified Hill's

vortices remain spherical. The solutions are given by Moffatt (1969) and can be

obtained via separation of variables. The force balance argument does not apply for

such a thick core and the speed of translation of Hill's vortices with small swirl is

larger than in the swirl-free case. Swirling extensions of toroidal members of the

NF family have been obtained by Eydeland & Turkington (1988) using a variational

approach geared to efficient numerical solution. They-found that for all solutions

the angular impulse was bounded by a constant times the linear impulse suggesting

that steady solutions are possible only up to a critical level of swirl. This seemed

consistent with experimental results communicated to them by D. Bergerud. Vortex

lines lie on toroidal streamsurfaces and are helically wound around them. For almost

all streamsurfaces the number of times that a vortex line winds around the core for

every one turn around the azimuth will be irrational and the line will continue to fill

the surface without closing.

The limit X = 0 gives flows (called BeltraznJ) in which the vorticity is parallel

to the velocity: u = ±_,w and streamlines coincide with vortex lines. The confined
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sphere solution in this limit had been obtained earlier in the context of magnetic fields

in which the Lorentz force is zero (Moffatt 1978, p. 29 and the references therein).

Due to the enormous variety of steady inviscid solutions there naturally arises

the question of what determines the selection of solutions in particalar situations.

Some dues are provided by spedflc examples. In shear layers the structure may be

chosen from the unstable eigenmodes of the shear profile which saturate and thereby

become finite amplitude extensions of neutral modes (of perhaps a different basic

shear profile). For example, the Stuart (1967b) vortices in two-dimensions represent

finite amplitude extensions of the neutral wave of the tanh !t profile, but how they

arise from an instability of perhaps a different profile remains to be investigated. Then

there is the selective decay hypothesis (see Appendix 5.B for examples) by which a bit

of viscosity may affect one invariant of inviscid flow more than another thus leading

to the selection of solutions in which the less robust invariant is minimized while

others remain fixed. We may also finally mention the Prandtl-Batchelor hypothesis

(Batchelor 1956) for the form of the vorticity in steady separation bubbles at high

Reynolds number, of course they are probably unstable.

2.8. Unsteady behavior and coaxial interactions of inviscid rings

All the results reviewed in this section are valid in certain asymptotic limits. The

aim of the present work is to add to the repertoire of unsteady inviscid behavior by

calculating numerical solutions.

A model for interacting vortex rings was proposed by Dyson (1893). It assumes

(i) that vortices axe sufficiently far apart compared to their core sizes that the velocity

field induced by one ring on another is the same as if all its vorticity were concentrated

on a line of zero thickness, (ii) that this velocity field does not deform the core, and

(iii) that the cores are thin and circular so that, for the linear vorticity case, their

self-induced velocity is given by Kelvin's formula. The model does not appear to be

a consistent asymptotic limit to the equations of motion, but we suggest in Chapter

4 that it may be one in the sense of an average over the fast time scale of core

deformations. The elliptic model of Chapter 4 extends Dyson's model to allow core

deformation. Further discussion about Dyson's model and its applications appears in

Chapter 4.
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Moore (1980) considered a vortex ring with thin elliptical cross-section with linear

vorticity. When the core is thin compared to its radius, the flow is locally two-

dimensional and given by Kirchhoff's elliptic vortex (Lamb §159) which rotates at

constant angular velocity. Only the self-induced motion remains to be determined.

Moore uses Helmholtz's method to obtain the motion of Helmholtz's centroid and

relates it to the centroid of the shape. The calculation of the energy required in

this method is performed by obtaining the local streamfunction using an asymptotic

matching procedure; however a simple expansion also suffices (Chapter 4). Moore

finds that the translational speed oscillates in time, with a period equal to half the

core rotation period; the average speed is obtained from Kelvin's result by replacing

the core radius with the mean of the major and minor axis dimensions. The radial

centroid of the core also oscillates. This solution is an element of the elliptic model

in Chapter 4.

Moffatt & Moore (1978) studied the linear stability of Hill's spherical vortex

to perturbations of the boundary. They found that if the vortex is squashed so

that initially its long side is along the axis of symmetry, it sheds a tail of volume

proportional to the disturbance amplitude from its rear stagnation area. If the vortex

is squashed the other way, irrotational fluid enters through a spike from the rear.

Bliss (1973) also studied the problem less completely and argues for the presence of a

short wave instability. Pozrikidis (1986) independently developed a contour dynamics

formulation for the linear vorticity case and used it to study the non-linear stability of

Hill's vortex. He found (as did we) that when a tail is shed the remnant vortex is very

nearly spherical, even for large perturbations i.e. a perturbed Hill's vortex returns to

a Hill's vortex by shedding a tail. When a spike of irrotational fluid is entrained, the

spike travels towards the front stagnation point, forming a thin spherical cap. Aside

from the thin cap, the resultant vortex is toroidal i.e. if the thin cap is neglected, a

hole has been punched through the vortex. Pozrikldis concluded that the resulting

vortex was a member of the NF family; we do not agree because the core shapes are

not fore-aft symmetric. His point is based on resultant core shapes having a similar

energy-impulse relationship as the NF family. In our calculations there appeared a

high wavenumber sawtooth instability as suggested by Bliss (1973) but Pozrikidis'

calculations are free of them. In the rest of this work, we shall not present results

which overlap with Pozrilddis'. Rather, we shall concentrate on thinner core vortices

and coaxial interactions.
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2.9. Theory and numerical simulations of viscous vortex rings

2.9.1. Final period of decay

We have already mentioned Satfman's (1970) viscous solution for a diffusing Gaus-

sian core ring. It remains valid so long as the core remains thin i.e. for small times.

We now discuss the large time limit. The total momentum of the fluid is constant.

As the core diffuses, the momentum has to be shared with more fluid and velocities

decrease. Eventually the Stokes flow limit is reached. Phillips (1956) showed that

any unbounded flow that has net linear momentum decays to a vortex ring solution

of the Stokes equations. Basically, the idea is to consider the evolution of the Fourier

transform of the velocity expanded in the powers of the wavenumber k:

fi(t) ,_ ]5 + (0(t) + .4)k + .... (2.9.1)

The expansion is written symbolically so as to bring out the salient points. Here ]5

and A represent the conserved linear and angular impulse respectively (the latter is

zero for swirl-free axisymmetric flow), and _) is the quadrupole moment, a quantity

that is a function of time. Assume that subsequent to some instant to the non-linear

terms in the Navier-Stokes equation can be neglected, so the solution is given by the

inverse Fourier transform

u(x,t) ~ f (]5 + (O(to) + Y,)k +..
dk. (2.9.2)

We are interested in an asymptotic expansion for large (t - to). By Laplace's method,

the dominant contribution to the integral will come from a small sphere of radius

near k = 0. This allows one to use only a finite number of terms in the series for fi,

say the first two. More terms lead to higher order expansions valid earlier in time

(for the Stokes equations only). Next one argues that the contribution to the integral

from outside the small sphere is exponentially small which allows us to once again

integrate over all of k. This incongruous looking step is nicely explained in Bender

& Orszag (1978, p. 261). PhitUps (p. 141) himself never invokes Laplace's method;

instead he keeps only the first term in the expansion of fi before doing the integral.

In any case, performing the integral one obtains the first two terms in the long time

expa.nsion. The first term describes a self-similar vortex ring for which translational

motion has ceased, velocities decay as [v(t-to)]-_, lengths increase as [v(t-to)]½ and

the strength is the conserved impulse. This behavior can also be argued dimensionally
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(assuming self-similarity) since the ouly relevant parameters at large times are P, v

and t. Phillips exhibits the solution explicitly. If the angular impulse is zero, the

second term represents a ring together with its image of the opposite vorticity, for

which velocities decay as {v(t- to)l-2, lengths increase as [v(t- to)]½ and where

the strength is the value of the quadrupole moment Q(to) at the termination of the

non-linear phase of the evolution which depends on the entire history of the non-

linear evolution. By substituting the expansion for _ into the transform of the Stokes

equation one sees that Q is an invariant for Stokes flow so Q asymptotes to some

value at the end of the non-linear evolution. Lack of knowledge of Q(to) precludes a

closed higher order expansion to earlier times even within the Stokes limit. In some

situations, for example that of two colliding vortex rings, the net linear impulse is

zero, the first term vanishes and one is left with the second term as the large time

solution but with an undetermined strength Q(to).

2.9.2. Improvement of the Stokes solution

The Stokes vortex ring does not propagate, however, one might expect that large

time solutions of the Navier-Stokes equations would continue to drift at an ever de-

creasing speed. How does one obtain this asymptotic drift? We shall first describe

some heuristic ideas and then describe an alternate point of view developed in Rott

& Cantwell (RC, 1988). A similar analysis for the two-dimensional pair is to be

found in Cantwell & Rott (1988) and, due to the simpler geometry, provides a good

introduction to the vortex ring situation.

The Stokes ring does have net momentum, fluid does drift forward, indeed the

motion of fluid particles is interesting (Allen 1984), but, due to the absence of con-

vection terms particles do not transport any vorticity. Suppose one did calculate this

transport from the full Navier-Stokes equations and expressed the answer in terms of

the motion of Helmholtz's definition of the centroid. Ka_nbe & Oshima (1975) per-

form this exercise and find that the speed of the centroid U has the same power law

decay (U(t) _ (t - to)-_) as the velocity field of the Stokes solution. We sha/1 refer

to this result as the Stokes drift. RC have given it meaning but, before discussing it,

some historical remarks are in order.

Kambe & Oshima (1975) attempted to obtain the second term in the expansion in

terms of inverse powers of time (for the Navier-Stokes equation). In the second order

problem, the Stokes operator acting on the second order solution is equal to forcing
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terms consisting of the non-linear operator acting on the first order solution (the

pressure gradient of the first order solution is zero in the present case). On solving

this, they encounter a non-uniformity in which the second-order solution becomes

arbitrarily large compared to the first order solution at large distances from the

origin. A similar situation occurs in the improvement of Stokes flow past a sphere

(Whitehead's paradox). Kambe & Oshima attempt to resolve the difficulty by means

of matched asymptotic expansions but the analysis is left incomplete.

RC show that a uniformly valid second approximation can be obtained after

impressing a uniform drift on the first order solution. The value of the drift is obtained

by solving for the second order pressure and equating it to its value at infinity. The

resulting drift velocity is the same as that obtained from evaluating the speed of

Helmholtz's centroid using the Navier-Stokes equations as explained above. The

result is
P

U(t) = 0.0037038 3, (2.9.1)
[v(t- to)] 

where P is the impulse with density set to unity. In numerical simulations of vis-

cous rings using a spectral method described below, Stanaway, Cantwell & Spalart

(1988a, b) discovered that, from a variety of initial conditions, the speed U(t) of the

centroid had this behavior in the final stages of decay. Hence, the Stokes drift does

have meaning for the decay of a vortex ring proceeding from the Navier-Stokes equa-

tions. RC obtain the second order solution which contains an undetermined constant

which reflects loss of information about the non-linear part of the evolution.

In bringing the theoretical part of the discussion to a close we should like to

mention for completeness that Tung & Ting (1967) have studied the thin diffusing ring

using matched asymptotic expansions and Batishchev & Srnbshchik (1971) studied

the diffusion of Hill's spherical vortex at small times with small viscosity.

2.9.3. Numerical solutions of viscous vortez rings

We now turn to a discussion of numerical solutions for viscous vortex rings. Some

preliminary attempts are included here for completeness.

Kambe & Mya Oo (1982, 1984) solve the axisymmetric vorticity equation us-

ing ADI splitting of both the centrally differenced viscous and convective terms. A

uniform cartesian grid with 136 × 121 points is used. The Poisson equation for stream-

function is inverted using successive over-relaxation and the velocities are calculated
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from the streamfunction by a fourth-order implicit formula. The conditions w_ = 0

and _ -- 0 are applied on a finite boundary. Collisions of vortex rings with Re - 50-

500 based on initial translation speed and toroidal radius are presented. The size of

the domain (inferred from the figures) in the quarter plane is 8 × 8 initial toriodal radii

in the axial and radial directions. The decay of energy and circulation are studied.

For the highest Re case the circulation remains nearly constant initially and then

decays as the cores "make contact n and gradients intensify at the collision plane. On

the other hand, the energy decreases throughout. For the low Re cases the vorticity

dissipates rapidly before the cores stretch very much. For the highest Re case, the

cores stretched to 21 radii at the latest time shown and the cores deformed into a

head and diffuse tail. Accuracy was judged by comparing the value of the kinetic en-

ergy dissipation rate, obtained from an integral expression, versus the rate of energy

decay. At the latest time for which this accuracy check is provided the cores have

stretched to 1½ radii and the rate of energy decay exceeds the dissipation by 22%. The

calculated quadrupole part of the acoustic signal at the highest Re agrees very well

with the experimental measurements of Kambe & Minota (1983) at a much higher

Re - 20,000. They find that the dip in the experimentally measured signal, which

we shall claim in Chapter 5 is due to inviscid core deformation, is coincident with

the beginning of circulation decay and hence is taken as confirming the hypothesis in

Kambe & Minota (1983) of its viscous origins. On the other hand, the monopole part

of the signal which arises from kinetic energy dissipation is very much underpredicted.

Kambe & Oshima (1975) use a similar method except that the Crank-Nicolson

(implicit) method is used. They study the generation of a vortex ring resulting from

applying a velocity profile at the computational boundary for a certain period of

time. The vortex propagates and collides with the right boundary on which inviscid

boundary conditions are applied. Qualitative comparison with the experimentally

measured speed of propagation is provided.

One of the difficulties of simulating these flows with finite difference methods is

that boundary conditions have to be applied at a finite distance. Liu & Ting (1982)

developed a strategy in which they employ far-field expansions to supply boundary

data. The head-on collision of vortex rings is considered. Numerical details are

not presented in the paper cited. The information we present is obtained partially

from Chamberlain & Liu (1984) in which a three-dimensional example for obliquely

interacting and reconnecting rings is given. The vorticity equation is advanced using
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the Dufort-Frankel scheme (explicit). The velocity is obtained from the vorticity by

the curl of the vector potential which is related to the vorticity via a Poisson equation.

It is solved, using a second-order direct solver, in a smaller subdomain with boundary

data for the vector potential supplied using a multipole expansion with three terms.

This expansion contains coefficients which are integrals of the vorticity and they

are calculated using Simpson's rule. The vector potential outside the subdomain is

calculated with the far-field expansion. The velocity field is then calculated from the

vector potential by taking its curl using second-order central differences. Results are

provided for a vortex ring collision with a Reynolds number (- to/v) equal to 201,

a very small initial separation equal to 0.2 of the toroidal radius and a core radius of

0.05 times the toroidal radius. Results are presented for a short time during which

the rings have stretched to only 1.6 the initial radius.

Stanaway, Cantwell & Spalart (1986, 1988a, b, hereafter SCS) developed a numer-

ical method which is attractive in several respects. A spectral method was employed

and it was verified to converge exponentially. The Navier-Stokes equation is solved

in spherical coordinates in an unbounded domain using basis functions chosen to give

the proper decay of velocity at infinity. A weak formulation of the Navier-Stokes

equations is used in which inversion of a Poisson equation is not required. The time-

stepping algorithm is second-order with the Crank-Nicolson (implicit) scheme for

the viscous terms and Adams-Bashforth (explicit) for the convective terms. Several

physical insights have been obtained:

(i) Fraenkel (1970, 1972) in his higher order treatment of inviscid steady rings

found that the formal error estimate for the ring speed, obtained using the Helmholtz

method, is too conservative. SCS found that this is also true for Saffman's (1970) for-

mula for a diffusing ring and study the behavior for fatter cores. Maxworthy's (1972)

model of laminar rings in which vorticity is deposited in a wake and his model esti-

mates should be amenable to testing by the method.

(ii) The large time behavior in the decay of a vortex ring was studied and, as

mentioned earlier, it is shown that the Stokes drift has a physical meaning.

(iii) With respect to leapfrogging interactions, we shall see in Chapter 5 that one

important inviscid effect is the unequal strain rates experienced by the two vortices.

This causes the passing vortex to undergo a permanent deformation at the end of the

passage. The simulations of SCS reveal another important asymmetry when viscosity

is present. The initially rear vortex undergoes compression of vortex lines followed
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by extension whereas the opposite happens for the rear vortex. The stretching ver-

sus compression affects the rate of diffusion. For example see Lundgren (1982) or

Kambe (1984) who show how a rectilinear vortex that is axially strained diffuses as

if it were unstrained with only spatial and time scales modified. One might therefore

expect the two rings to undergo not only different deformation but different diffusion.

$C$ find that the initially forward ring undergoes more diffusion and weakening of

vorticity. Therefore during its passage which follows, it is more susceptible to being

torn and merged.

2.10. Azimuthal instabilities of vortex rings

2.10.1. Introduction

Although this work deals with the axisymmetric dynamics of vortex rings, one

needs to be aware of three-dimensional effects which arise in practice. Three-dimen-

sionality may influence the emitted sound. For example, Hussain (1983) suggested

that reconnection of vortex lines when vortex ring-like structures breakdown near the

end of the potential core of a jet may be a dominant source of jet noise. In this section

we focus primarily on the breakdown of an isolated vortex ring. The breakdown of jet

vortices is qualitatively similar but straining due to other vortices must be accounted

for. We will discuss experimental observations and the mechanisms which have been

proposed to explain them. The unfolding of the problem and the history of ideas is

an interesting case study in the process of scientific dialogue. It is noteworthy that

the problem was finally resolved when a spurious instability was being investigated.

In the recent history of the problem, a denouement seems to have occurred with

the work of Widnall & Tsai (1977). There remain several unresolved issues, some

were recognized by the original participants in the saga and others were suggested by

subsequent experiments.

2.10.2. Early theoretical work

The story begins with Kelvin and as the reader will discern, finds temporary

shelter,'a hundred years later, in ideas that are minor extensions of his. This is

not to say that convincing proof of these ideas has been a simple achievement; the

analysis presented in Widnall & Tsai (1977) is formidable. In 1880 Kelvin published
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an article entitled "Vortex Statics" which treats helical waves on vortex rings, as is

apparent from the title, as static; the definition of "static" includes stable oscilla-

tions. There is ample recognition of the tentative nature of the discussion and as a

first step in rigorously demonstrating stability, a month later Kelvin (1880b) showed

that a rectilinear vortex with an initially circular core containing uniform vorticity

could support a spectrum of neutrally stable modes of vibration. According to Wid-

null & Sullivan (1973), in 1867 he described the analogous calculation for the modes

of oscillation of a vortex ring. He did not complete the calculation (the analysis is

not trivial) but expressed the conviction that like the straight vortex, the situation

would be stable. Early work reinforced Kelvin's beliefs. J.J. Thomson (1883) studied

the stability of infinitesimal sinusoidal perturbations on a vortex ring but considered

the limit of very small core size and a small number of waves, Nw. To the order of

the analysis, all modes are neutrally stable with a definite frequency of osciUation.

Pocklington (1895) provided a solution for waves on a hollow vortex ring of small

cross-section. A hollow vortex ring is an idealization in which the rotational core is a

vacuum permitting the surface of the core to be held at constant pressure. This tim-

plification allows one to investigate mathematical properties of the general problem.

The solution was valid to linear order in a, the ratio of core and ring radii. It was

found that all modes are stable.

2.10.3. Early ezperimental work

The necessity to reconcile classical theoretical results suggesting stability with

experimentally observed instability, has motivated much of the theoretical work of

the past decade. The first photographs of the instability of vortex rings produced

by ejecting a slug of fluid from an orifice were presented by Krutzsch (1939). He

observed between 5 and 12 waves as the parameters of the generation (slug length,

etc.) were varied. But, instead of suggesting that Kelvin might have been mistaken,

he attributed the phenomenon to foreign matter acquired from the region outside the

orifice during the generation of the ring. Maxworthy (1972) reported the appearance

of an azimuthal waviness with 5 peaks for _energetic" rings (those for which the

Reynolds number based on propagation speed and maximum diameter of the bubble

exceeded 600). He posited that the ingestion of secondary vorticity of the opposite

sign during the generation process was responsible; this would make the core unstable
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by Rayleigh's criterion (strictly speaking, the condition is applicable for disturbances

to two-dimensional flow with circular streamlines).

2.10.4. Analysis usin9 the filament approximation

From the experimental observations, one is tempted to conclude that the type

of ring studied in the classical analyses, namely one with a thin core with uniform

vorticity, has little in common with the behavior of real vortex rings. But not dis-

couraged and perhaps spurred by the success of Crow (1970) in explaining the wavy

instability of aircraft trailing vortices via a filament approximation, Widnall & Sul-

livan (1973) undertook an analysis for vortex rings in which they treated the vortex

ring as a filament in which variations of the core structure (in time and along the

filament) are ignored; the motion of the filament is governed by the Biot-Savart law.

First a filament of zero cross-section is considered. The singularity of the Biot-Savart

integral is treated by the cut-off approximation suggested by Hama (1962) and used

with remarkable success by Crow (1970). In this method the Biot-Savart integral

is "cut-off" at a certain arc length on either side of the point where the velocity is

evaluated. For thin cores (compared to the radius of curvature), the cut-off distance

can be rigorously related to the local structure of the core. Filament models assume

an invariant core structure and apply to a vortex tube only for variations along the

tube which have a wavelength much larger than the size of the core, a condition which

needs to be checked a posteriori. In any case, Widnall & Sullivan considered pertur-

bations which distort the filament into a helical shape. They predicted the spatial

amplification rate for each value of Nw; it is strongly dependent on a single parameter

P', a non-dimensional velocity of propagation:

= log(8ro/6 )- 1/2 + i, (2.10.1)

where Lo is the toroidal radius, //c is a characteristic core size and A is a constant

that depends on the distribution of swirl velocity in the core and the way in which

6c is defined. Each value of N,, has a narrow range of _r for which it is amplified.

For larger values of Nw, larger values of P" (hence smaller core sizes, with fixed shape

of the velocity profile) are required. This feature is exhibited in the experiments of

Widnall & Sullivan. However, quantitative agreement with experiment coald not be

obtained. The theory underpredicts the number of waves; the error increases with V.

The ratio of unstable wavelength to core diameter for a linear vorticity distribution
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is about 2 a_ad led the investigators to question the applicability of their filament

treatment for such short waves.

In a reply, Moore & Saffman (1974) cast doubts on even the qualitative correctness

of the theory by showing that the instability predicted by the filament approximation

is spurious. The question of why it is spurious which Widnall and her co-workers must

have asked, enabled thinking to get on the track to where it currently stands. Moore

& Saffman started with Pocldington's (1895) solution for the period of vibrations

(all of which are stable) on the hollow core vortex ring which is valid to Hnear order

in core size to radius ratio but unrestricted as to wavelength. They found that

a Biot-Savart formulation for this case gave a spurious instability. However they

emphasized that Pocldington's result does not prove the stability of even a hollow

vortex. One could not, and this turned out to be crucial, rule out that a higher order

expansion of the vibration frequency in terms of a might contain imaginary (growth)

terms. Nevertheless they concluded by expressing the belief that the instability of

experimental vortices was to be accounted for by Maxworthy's explanation based on

the generation process rather than an inherent instability of the ideal vortex ring.

Things seemed to regress back to Kelvin's notion about the indestructibility of ideal

vortex rings.

2.10.5. A proposal for the mechanism of the azimuthal instability

The next contribution (Widnall, Bliss & Tsai 1974, hereafter WBT) is a result

of a search for the cause of the erroneous instability of the filament approximation.

After finding the mechanism they propose that the same physical process may apply

to the actual situation. Their ideas lead to predictions for the number of waves that

are in much closer agreement with experiment than those of Widnal] & Sullivan.

Furthermore, their explanation accounts for the effect of the detailed distribution of

vorticity in the core.

The chronological progress of thought probably occurred in the following se-

quence. When Crow's (1970) work on trailing vortices was reexamined they noted

that, in addition to a long wave instability which matches observations, he found a

short wavelength instability which is not observed in practice and which is incompati-

ble with the assumptions of the filament approximation. Crow, however, not realizing

this (a systematic derivation of the cut-off approximation and the conditions for its

validity came later with the work of Moore & Saffman 1972) states that"nothing in
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the stability theory precludestheir appearance"and goeson to suggestthat atmo-

spheric agitation favors the long-wavemode. Crow did realize, and this is crucial,

that the band of unstable short waves was centered about the wave whose self in-

duced rotation rate is zero according to the cut-off theory. Such a wave would diverge

under the induced strain of the other vortex. Wavelengths whose rotation rates are

smaller than the imposed strain rate would also diverge. Yet when WBT plot the

self induced rotation rate for small amplitude bending waves for an isolated uniform

core columnar vortex as studied by Kelvin (1880b), they find that short waves always

have a finite rate of rotation. Therefore, the filament approximation is erroneous

in predicting instability of these waves. Incidentally, in numerical calculations via

the filament method, the size of segments must be chosen larger than the numerical

core size to keep the spurious mode outside the resolvable range. Winkelmanns

Leonard (1986, private communication) developed an improved core function that

reproduces the behavior of short waves of pure bending.

If the same mechanism is also responsible for the instability of real vortex rings,

then the mode involved cannot be a pure bending wave. There are other bending

modes for which the rotation rate is zero. These have a more complex radial struc-

ture of the eigenfunction for the perturbation velocity, having at least one node at

some radius in the core. WBT postulate that it is the mode with the least radial

structure that appears. For the constant vorticity case, it is found from Kelvin's

(18805) formulae that this mode attains a zero self induced rotation at (kz6)c-rit = 2.5

(kz is the axial wavenumber and 5 is the core radius). Then together with the re-

qnirement that an integer number of waves exist on the ring (kz = N,,,/Lo), this

gives the discrete values of the ratio of core size to radius which would result in the

amplification of a given number of waves.

Experimental evidence provides credence to the WBT proposal. Maxworthy

(1977) confirmed that during the small amplitude phase, stagnant (non-rotating and

non-propagating) waves grow at 45 ° relative to the direction of ring propagation. At

large amplitudes, the waves begin to rotate and the core fluid is mixed and becomes

turbulent. That it is the second radial mode of bending that appears is seen in

Plate 114 of Van Dyke (1982). Focusing on a cross-section at which the inner core

(the darkest portion of dye) moves outward, one observes that the outward portions of

the core are displaced inward so that a profile of the eigenfunction for radial velocity

has one nodal line within the core.
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2.10.6. Mathematical justification of the WBT mechanism

In their next two contributions, Tsai & Widnall (1976, Widnall & Tsai 1977)

place their theory on a firm mathematical footing for the case of a uniform vorticity

distribution. In particular, the hypothesis put forward in WBT is deficient in the

following respects. First, one cannot speak of the instability of a circular core in a

straining field because the cross-section is deformed into an ellipse. Second, there is

no support for the contention that among all the bending modes of Kelvin (1880b)

which have zero rotation rate, it is the one with the least radial structure that should

appear. Third, as pointed out by Moore & Saffman (1975b), it is insufficient to

consider the individual stagnated eigenmodes as the only candidates for instability;

two modes of the same wavenumber but different radial structure and sense of twist,

can have the same direction and value for the rotation rate. When superposed these

produce a standing wave that propagates in the axial direction but maintains the same

angular orientation so it too can be unstable under an imposed strain. Fourth, WBT

demonstrated that one of the effects of curvature was to produce a quasi-stagnation

point flow in the vicinity of the core but there axe other effects of curvature of the

same order which may be stabilizing.

The first three issues are addressed in the 1976 paper dealing with the stability of

a rectilinear vortex with constant vorticity under a weak straining field in which the

basic state has an elliptical cross-section. They show that the unstable wavenumbers

lie in bands whose width is proportional to the imposed strain rate. The growth rate

is maximized locally at wavenumbers corresponding to the center of the band. These

wavenumbers axe of two kinds. The first group corresponds to non-rotating waves

in the unstrained circular vortex. The second group consists of some but not all of

those wavenumbers at which two bending modes with the same rotation rate but

different radial structure can exist simultaneously, in agreement with the assertion

of Moore & Saffman (1975b). These modes are referred to as being degenerate.

There does not appear to be a general rule to decide whether a given degenerate

pair of modes leads to instability, each has to be tested on a case by case basis.

For some cases treated numerically the former class had maximum growth rates an

order of magnitude larger than the latter class and, among these, the second radial

mode, which was conjectured to occur on vortex rings, had the largest growth rate.

Unfortunately, the third radial mode has a growth rate only 0.2% smaller so the

second objection is not met satisfactorily. It is possible that under the influence of
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viscosity, the higher radial mode is damped. It has wavelength which is 60% smaller.

Maxworthy (1977) reported experimental observations of what he calls a "himodal"

type of instability in which two modes, one exactly twice the wavelength of the other,

are observed simultaneously in a certain range of Reynolds number. It is possible

that these are the second and third radial modes but Saffman (1978) doubts this for

reasons that are not made explicit. Saffman & Robinson (1984) numerically studied

the same problem for finite strains and find that the asymptotic analysis of Tsai &

Widnall provides fairly accurate predictions for even large values of strain; the main

difference is a slight decrease in the most amplified wavenumber with strain rate. For

large strains, the bands widen and eventually overlap. Thus there is little selectivity of

a preferred mode indicating sensitivity to the properties of the external disturbance.

This would be an important consideration for turbulent shear flows where each vortex

lies in the straining field of others. It might also prevent the emergence of a distinct

number of waves on vortex rings with thicker cores. It is important to keep in mind,

however, that for long waves, a mechanism does exist for mode selection. This comes

from the realization that perturbations on the influencing vortex can have an effect

of the same order as the strain induced by that vortex were it unperturbed. This is

suggested by the fact that for an isolated rectilinear vortex in a strain field, sui_ciently

long waves such that the strain rate exceeds the rate of rotation are all unstable;

the growth rate increases with wavelength until it asymptotes to the strain rate for

infinitely long waves.. Hence there is no preferred mode. If one accounts for the

velocity field caused by waviness of the influencing vortex a preferred mode does

emerge. This is precisely the long wave mode for aircraft trailing vortices identified

by Crow.

The final objection of the WBT proposal which regards the effects of curvature is

met in Widnall _z Tsai (1977) in which a rigorous stability analysis is performed for

a vortex ring with vorticity varying linearly from the axis of symmetry. The results

are obtained as a perturbation expansion to O(a 2) for the frequencies of oscillation,

the zeroth order solutions being identical to those for the uniform rectilinear vorticity

obtained by Kelvin (1880b). Recall that Pocklington's (1895) analysis for the hollow

ring predicted stability. The reason is that in the expansion of the basic state with

respect to the same parameter, at O(c_) deviations from local two-dimensionality

of the flow simply make the streamlines non-concentric. Indeed, Widnall & Tsai

find no correction to the frequency at this order for their case also. Destabilizing
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strain like terms appear first only at O(a_). It is found that the coupling of this

strain to the zeroth order bending waves of Kelvin (1880b) is the dominant effect

of curvature. The analysis is carried to completion only for the second and third

radial modes, the former being only slightly more unstable. Thus the mechanism of

WBT is shown to be correct at least for the uniform vorticity distribution and for

thin cores and observations are explained by appealing only to the classical picture

of the vortex ring. Hence Kelvin was incorrect in believing the ideal vortex ring to be

"indestructible." ALso proved to be too pessimistic were those who believed that the

behavior of the ideal vortex ring had little to do with the behavior of "real" vortex

rings.

The work to be described now was anti-climactic but stiLl necessary. It attempted

to address the fact that the vorticity distribution measured for rings generated by a

piston or orifice apparatus tends to be peaked (Sullivan, Widnall & Ezekiel 1973)

unlike the linear distribution used in the WidnaU & Tsai (1977) analysis.

In WBT it was shown that if the analysis of Kelvin is used to determine the

wavenumber of the stagnant second radial mode for a particular peaked distribution

of vorticity, the prediction for the number of waves agrees slightly better with exper-

iments. Saffman (1978) carried this further by analyzing distributions derived from

careful consideration of the process of generation of the vortex. The experiments of

Leiss & Didden (1976) show that if the translational velocity is held fixed over suc-

cessive realizations of various rings (this fixes the speed-effective core size), but the

Reynolds number of generation Rep (based on piston velocity and orifice diameter)

is allowed to vary, then the number of waves changes significantly. This indicates

that the character of the vorticity is altered so that (k//)mt for the stagnant mode

also changes (_ now represents the speed-effective core size of the vorticity distribu-

tion). Saffman used his vortex sheet roLl-up model to predict the form of the vorticity

and hence the value of (k//)crit as a function of Rep. The agreement for the num-

ber of waves compared with the experiments of Leiss & Didden was excellent thus

lending support to the applicability of the WBT mechanism to non-uniform vorticity

distributions.

2.10.7. Unresolved issues

There remain several unresolved issues that deserve further investigation:
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1) What is the precise nature and dynamical significance of flow along the axis of

the core that experiments show is set-up in the later stages, after the waves break

about 10 diameters downstream of the exit? Maxworthy (1977) observed that

regions of non-uniform dye concentration tended to rotate intermittently about

the axis through several wavelengths of the primary instability accompanied by a

pulsation in core diameter. The axial flow velocity was quite rapid, about half of

the maximum swirl velocity. It is conjectured that the axial flow occurs because

waves do not break at different azimuthal locations at the same time, creating an

azimuthal pressure gradient. It is believed that the axial flow is accompanied by

a solitary bulge wave. The axial flow profile is reversed at the periphery of the

core to give zero net momentum. It has been suggested that axial flow prevents

further instability since the resulting turbulent vortex is apparently stable. There

has been no theoretical justification of this. Only Krutzsch (1939) has observed

a repeat of the wavy instability.

2) What is the sequence of events leading to a turbulent vortex ring? In contrast

to the above observations of Maxworthy, the experiments of $turtevant (1981)

using $chlieren visualization Of shock-tube generated rings show a different sce-

nario. The waves never grow and break, instead they simply decay and vanish!

$turtevant is unsure whether the difference is clue to the unreliability of dye

visualization or because in previous studies the cores have been thicker with a

Reynolds number an order of magnitude smaller. Compressibility effects may also

play a role. Moreover, Sturtevant observes "turbulent vortex rings" even before

the occurrence of waviness. However, the phrase "turbulent vortex ring" as used

by Sturtevant very likely has a different meaning than as used by Maxworthy.

The term is attached to observations in the following experiment. The walls of

the shock tube are cooled to aid in visualization. As the vortex ring is formed,

the rotational core consists of both fluid from the tube and ambient fluid. The

irrotational fluid surrounding the core but carried with it is mostly cold fluid.

The interface between it and ambient fluid flowing past appears as a line in the

Schlieren photographs. Initially it is sharply defined but before the wavy insta-

bility occurs, it becomes irregular. Disturbances on this interface "protrude into

the surrounding fluid and after being convected along the boundary to the rear

of the ring, seem to grow almost explosively outward from the rearward surface."

It is only later that instability waves develop on the core. In §6.4 we will provide
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results which suggest that a similar process occurs for a non-turbulent core; a

simple form of core unsteadiness (periodic rotation of an elliptic core at constant

angular velocity) can produce complicated particle paths and distortions of the

interface similar to those described by Sturtevant. However, in the experiments,

irregular azimuthal variations in the distortion of the interface are also noted and

this we are unable to account for. In any case, the first observation of Sturtevant

seems to stand.

3) What is the status of the bimodal instability? Is it a non-llnear effect or the

concurrent appearance of the second and third radial modes?

4) What are the effects of viscosity in the initial mode selection process? Can one

verify the inhibition of the third radial mode which has an inviscld growth rate

nearly identical to the second radial mode?

5) Finally, in the context of an inviscid model, would a thicker core have a broadband

amplification spectrum to preclude the appearance of a definite number of waves?

This statement can be checked by a simulation via the filament method.

FIGURE 2.1. Initial topology of a magnetic field which leads to a magnetostatic state
analogous to a steady vortex ring.
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CHAPTER 3

A CONTOUR DYNAMICS ALGORITHM

FOR AXISYMMETRIC FLOW

3.1. Introduction

In this chapter, the method of contour dynamics developed for two dimensions

by Zabusky, Hughes & Roberts (1979) is extended to axisymmetric flows for vorticity

distributions that vary linearly with normal distance from the symmetry axis. We

will discuss the derivation and implementation of the scheme, verify its accuracy and

convergence, and present a qualitative illustration. A detailed study of interacting

vortex rings of this class will be presented in Chapter 5.

In two dimensions, the contour dynamics approach has made possible the study

of the invisdd motion of vortex patches containing piecewise constant vorticity. Since

vorticity follows the fluid, such a distribution remains unaltered in time and only the

contours surrounding the regions have to be tracked as they convect with the fluid

velocity. The velocity can be expressed as a line integral along the contours, thus re-

dueing the dimensionality of the problem by one. In principle, arbitrary distributions

may be approximated by region-wise constant ones, but to date most of the work has

focussed on vortices containing single regions. Some exceptions to this are listed in

Appendix 3.C which also provides an annotated list of works for various categories

of uniform vorticity flows. These studies have yielded mathematical insight into the

nature of solutions of the Euler equations as well as understanding of physical pro-

cesses in shear layers and two-dimensional turbulence. As a highlight of the first, we

mention the work of Dritschel (1985, 1986) who elucidated the role of energetics in

the merger and fission of vortices and in more general topological changes that occur

during their long time evolution. Specifically, perturbations of equilibrium solutions

tend asymptotically to different equilibrium states which are energetically compatible

with the original state. With respect to the second, Moore & Saffman (1975) studied

the stability of an array of uniform elliptical vortices. Their work stimulated them

to propose "tearing" as one mechanism in the growth of mixing layers. Melander,
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Zabusky & McWiUiams (1988) used an elliptical core model to provide explicit cri-

teria for the convective pairing of two like signed uniform vortices. Their predictions

agree well with the results of spectral simulations. Neu (1984), motivated to explain

the genesis of streamwise braid vortices in mixing layers, showed that highly flattened

uniform vorticity cores "coLlapse" to a circular shape with concentrated vorticity when

subjected to a three-dimensional strain which models the influence of spanwise rollers

and neighboring streamwise vortices. Lin & Corcos (1984), using finite-difference

calculations of the two-dimensional Navier-Stokes equations with out of plane strain

confirmed the mechanism for an array consisting of counter rotating pairs. PuUin &

Jacobs (1986) provided further evidence with contour dynamics simulations of vor-

tex arrays employing multiple contours. Recently M.M. Rogers & R.D. Moser (1988,

private communication) at NASA Ames have shown the relevance of Neu's collapse

mechanism to the fully three-dimensional time developing mixing layer.

In this chapter we generalize the method of contour dynamics to vortex rings

in the hope that it may play a similar role in providing insight for axisymmetric"

flow that contour dynamics has for planar flows. The extension to axisymmetric

flow provides the possibility of expanding the repertoire of possible vortex behavior

by allowing an important effect lacking in planar flow, namely vortex stretching. It

is expected and demonstrated in Chapter 5 that vortex stretching, which inevitably

arises when vortices interact, leads to qualitatively different behavior than one finds in

two dimensions. In particular, we will see that the energetics of stretching necessitates

the generation of smaller scales in vortex ring collisions.

In §3.2 we give a derivation of the evolution equations for the case in which w¢/_,

(the ratio of vorticity to cylindrical radius) is constant within each vorticity region.

This form of the vorticity has been studied for over a century; the focus has mainly

been on steadily translating core shapes and interacting tings in the limit of thin cores

and large separations in which core dynamics is neglected. That work was reviewed

in more detail in §§2.7 and 2.8.

In §3.3 we discuss the numerical implementation of the algorithm. Care is required

to maintain accuracy; we stress proper handling of the local contribution to the

velocity field resulting from those portions of the contour which neighbor the point

at which the velocity is evaluated. In §3.4 we verify the accuracy and convergence of

the numerical scheme.
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Finally, in §3.5 we present a qualitative illustration of the method for the behavior

of an annular vortex layer.

During the course of this work, Pozrikidis (1986) independently developed a con-

tour dynamics algorithm for axisymmetric flow. We wiU remark on the significant

differences between the two formulations where appropriate.

Before proceeding to the axisymmetric case, let us briefly review the contour

dynamics formulation for two dimensions. Barotropic (or uniform density), incom-

pressible (V. u - O) and inviscid flow is governed by:

Dwz Ow_
-- + u. Vwz = 0, (3.1.1a)

Dt - at

w,_ = V x u. (3.1.15)

The firstequation expresses the factthat votticityisconvected with the fluid.Hence

piecewise uniform vorticityremains so, and only the boundaries between regions have

to be tracked as they followthe fluid.To obtain the velocitytake the curl of (3.1.15)

and use incompressibility(V. u = 0):

V2u = S x Vwz. (3.1.2)

For free space, this has the solution

1/u(x)=_ (_xVw.)loglx-x'ld£. (3.1.3)

The gradient for piecewisc constant vorticityisa Dirac 6 concentrated on the bound-

ary and points in the directionfinormal to it (choose either sense). Denote by wo

and w, the value of the vorticitytowards the positiveand negative normal directions,

respectively.Divide up the interfacesinto pieces c.across which the jump in vortic-

ity, [Wz], -- Wo -w,, is uniform. Then after integration with respect to the normal

direction (3.1.3) becomes

1 iu(x) = _-_ _. [w,], t(s)log Ix- x'(s)] ds, (3.1.4)
i

$

where t -- _ × fi is the unit tangent.

For numerical implementation each c_ is represented by a discrete set of node

points which are usually convected as material particles. For flows in which the fluid

velocity is dominated by the component tangent to the boundary, shape changes

are slow yet the former scheme requires that the time step be some fraction of the
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period of revolution of a particle. In such cases it is better to evolve node points

by the component of velocity norms] to the boundary, however, the projection of the

velocity on to the norms] may be inaccurate if the boundary is not defined sufficiently

smoothly. Two other choices have to be made: the interpolation scheme to obtain

x'(a) between node points and the quadrature rule to compute the integral over

the interpolated boundary. Item (2) in Appendix 3.C provides severs] references

that discuss numerics] procedures, including higher order schemes and specialized

techniques for obtaining steady solutions. If he or she wishes, the reader can quickly

begin experimenting with linear interpolation; in this case the contribution, from each

linear segment can be obtained exactly. To this end it is convenient to write (3.1.41

in complex notation (and to use complex arithmetic on the computer):

$ i

The contribution, say Lm(z), to the line integral from a segment defined by

z'=z,,_+_Az_, 0<_<1,

Az_ ---- Zm+l -- zm,

is

(3.1.5)

(3.1.6)

{/01 }Lm(z) = Az,n_ log(z - zm - _Az, r,)dg,

= A_,,,_ _ [(_+_ _ _)log(_- _,_+_)+ (_- _)log(_ - _,,,)1- 1 .
(3.1.?)

3.2. Axisymmetric contour dynamics formulation

In this section we derive the equations of motion for contours which bound regions

in which the vorticity is a linear function of the cylindrics] radius, _r. The reason for

using this distribution will be explained below.

Consider cylindrical polar coordinates (z,_, _b) as shown in Figure 3.1; z and _r

measure distance along and norms] to the axis of symmetry respectively and ff is the

azimuths] angle. Let the vorticity w be entirely azimuths] and independent of _b:

,,,= (o,o,,,,_0,,,,)). (3.2.1)
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The velocity field is

u = (uz(x,a),u.(x,a),0). (3.2.2)

Then for invlscid and incompressible flow of constant density the vorticity obeys the

dynamical equation (Batchelor 1973, p. 508)

-0. (3.2.3)
Dt

The inclusion of the metric ¢r in (3.2.3) is a consequence of the fact that a circular

vortex line which moves from a radius al to a radius _r2 undergoes a change in vorticity

proportional to _r2/al, i.e. according to the relative change in its circumference. If, in

some region 9, we initially have

w_ = .Act, (3.2.4)

where .4 is a constant for the region, then this distribution is maintained for all time.

Then to solve (3.2.3) it is necessary to follow only the interfaces between such regions

which are advected according to the local fluid velocity.

We now seek a representation of the velocity field in terms of line integrals along

the generators of the bounding surfaces of the vortical regions. Several vortex struc-

tures may be present and there may be several nested regions within each structure,

but, for brevity of the presentation and notation we will only consider the case of a

single contour. Nested regions can be treated by superposition. A kinematic relation

between the velocity and vorticlty is the Poisson equation

V2u = -V x w, (3.2.5)

whose inversion for an unbounded fluid yields the Biot-Savart expression

1 fv V × w(x') dx'. (3.2.6)uCx)=

Here, A - Ix- x'] is the distance between the source and field points. In his nu-

merical study of steadily translating rings, Norbury (1973) used a formulation based

on the Stokes streamfunction which is more convenient than a velocity formulation

for calculating steady shapes. Reduction to contour integrals was not made and this

necessitated costly plane quadratures. In Appendix 3.B we obtain this reduction

for the Stokes streamfunction which might prove useful in studying steady solutions

more complicated than the Norbury-Fraenkel (NF) family including ones with nested

regions.
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For future use we note that in cylindrical polar coordinates

A 2 = A - B cos(¢- _b'),
(3.2.7)

A = (z - z') 2 + o.2+ o.,2, B - 2o.o.'.

For an axisymmetric distribution of vorticity w_ = w_(z, o.), wffi = w_ = 0, the curl of

the vorticity which appears in the integrand of (3.2.6) is

V x _o(x) - 10(w_o.) Dw_
o. 0o. x Oz _" (3.2.8)

The vorticity suffers jumps at the boundary of the vortical region so the derivatives

above must be interpreted in the sense of distributions. In two-dimensional flow with

uniform vorticity, V x co is non-zero only where jumps in vorticity occur and so a

formulation in terms of contour integrals is almost immediate. In the present situation

V x ca = 2.4 _ inside 2) and a Dirac 6 "function" concentrated on the boundary, 02),

due to the discontinuity. Hence, it is convenient to decompose the velocity field, as

given by (3.2.6), into a contribution due to the continuous vorticity distribution and

another due to the jump across the interface:

u = Uc + u,. (3.2.9)

3.2.1. Jump contribution to the velocity field

One way of obtaining uj is to evaluate the Biot-Savart integral over a shell of

thickness 2¢ surrounding 0_D and then pass to the limit of zero ¢. This is best

accomplished by transforming to an orthogonal surface oriented coordinate system

(n, s, _b) as shown in Figure 3.2. To ensure unit metrics let n and s measure arc length

along the respective coordinate lines. The metric for the _b coordinate lines is o.. If 0

is the angle, with respect to the axis of symmetry, of the normal direction, then these

coordinates are described by the transformation

ds = -- sin 0(s, n)

d4, 0 s,nO .,n,O)cos O(s,n) 0 do" .
o i d¢

(3.2.1o)

On the surface of the vortex, n = O, one has O(s,n) = O(s), the orientation of the

outward pointing normal relative to the axis of symmetry. Expressing (3.2.8) in this
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system,weobtain

- cos
\ On Os /

(3.2.11)

Upon insertion of this expression into the Biot-Savart equation (3.2.6), the contribu-

tions of the tangential derivatives, being finite, vanish in the limit as e tends to zero,

as will the last term in the first parenthesis. This leaves only normal derivatives of

the vorticity; each becomes the jump in vorticity, -.A.cr', after integration over the

direction normal to the surface. Thus we are left with

t 2f - sin 0' _ + cos O' _'
g{ _r'2 da' J0 dO',u_ = _ (3.2.12)

where the contour c is the generator of the surface in the meridional plane. The

numerator of the inner integrand is the unit vector tangent to the surface in this

plane. The unit vector _' in the radial direction depends on the integration variable

and must be retained inside the integration (_' = cos 0'Y + sin ¢'_ from Figure 3.1).

Substituting this into (3.2.12), choosing to evaluate the velocity on the zy plane

(0 = 0), and identifying _ with _ on this plane, gives

uj = Arc KI(s') dg, (3.2.13)

where
K1Cs') = .'[- a(8') sin 0'_ + H(,') cos 0'_],

O(n') = _ _ dO', H(g)= _ _,- dO'.

The integrals G and H are (Gradshteyn & Ryzhik 2.571.4; Bierens De Haan, Table

68, item 25, respectively)

O -I

O(g) - a-A_-_-B+ K(_),

2_'_r -_+BK(_)- E(_) _ ,

_- A+B'

(3.2.15)

in which K and E are the complete elliptic integrals of the first and second kind

respectively, _ is their modulus and A and B are defined in (3.2.7).
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3.2.2. Contribution due to the continuous part of the vorticity

After substituting the fact that V × w = 2.A_ inside D into the Biot-Savart

expression (3.2.6) one obtains

A 1

dx') _. (3.2.161u0( /ox
The volume integral is transformed to a surface integral by use of Green's second

identity:

f_[q-'V'_o - _oV'_b] dx' = fov[_b grad _o - _ograd _bl • fi' dS. (3.2.171

Choosing _b = 1 and _o = (1/2)A we find that V2_o = 1/A where the Laplacian is

taken with respect to the source point. Thus we obtain

The use of Green's identity is valid provided V2_o = 1/A is regular. This holds for

field points exterior to 21 but fails otherwise. However one can apply the identity to a

region which excludes a spherical region of radius e about the singularity for interior

field points and excludes a similar hemispherical region for field points on the surface.

It can then be shown that the volume and surface integrals m'ising from the excluded

region vanish in both cases as e _ 0. This renders (3.2.181 valid everywhere in the

flow domain.

For an axisymmetric surface the integrand in (3.2.181 can be simplified as follows.

First, write the quantity grad A in Cartesian coordinates.

1

gradA=--_[(z-z')_c+(y-y')y+(z-z')_]. (3.2.19)

Next put y = a and z = 0, our previous choice of the azimuthal location of the field

point, y' = a' cos ¢' and z' = a' sin ¢'. From Figure 3.2, we observe that the normal

vector can be expressed as

fi' = cos 0' _ + sin 0' _r^'

(3.2.20)
= cos 0' _ + sin 0' cos _b'y + sin 0' sin _b'[.

Substituting (3.2.19) and (3.2.20) into (3.2.18) and expressing the resulting integral

in terms of the quantities, G and H defined previously we obtain

uc = Arc K2(s') ds', (3.2.21)
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where

K2(a') = {a(s') [(z' - z)cosO' + oe'sinO'] - H(s')o'sin 0'} _. (3.2.22)

3.2.3. Summary of the formulation

Finally, combining the two contributions to the velocity field and invoking the

dynamical fact that the boundary is convected with the fluid, the contour dynamics

formulation for axisymmetric flow reads

= ds',

where

(3.2.23)

K(s') = [(w'-z)aCs')cose'-_H(s') sin 8'] _ + o.'H(s')cose' 8.. (3.2.24)

The formulation of Pozrikidis (1986) differs from ours in the following respects. The

radial component of the velocity arises from the jump contribution only. For it,

Pozrikidis' formulation is analogous to ours and the two-dimensional case. The dif-

ference lies in the treatment of the axial component of the velocity. Pozrikidis ex-

presses the velocity potential external to the vortex as an integral over the core of

the potential due an elemental vortex filament, which can be written in terms of

elliptic integrals of the third kind. To obtain the axial velocity this expression is

differentiated with respect to z and Green's theorem in the plane is used to secure a

contour integral for the velocity. Because the formulation relies on a velocity potential

a branch cut needs to be introduced to make it single valued. His final expression

involves the elliptic integral of the third kind which can be written in terms of com-

plete and incomplete elliptic integrals of the first and second kind. The latter can

be computed iteratively. The present formulation is in terms of the complete elliptic

integrals which are calculated explicitly by a log-polynomial approximation.

3.3. Numerical implementation

Equation (3.2.23) is a non-linear integro-differential equation for motion of the

boundaries of the vortex cores. For numerical purposes, the contours are represented
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by a discrete set of node points which are convected as material particles. The inte-

grals are approximated by connecting the points with straight line segments. In the

planar case, the segment integrals are carried out in closed form. However, quadra-

ture is sometimes used to save computing time. This requires that the singularity

be removed with integration by parts. In the axisymmetric case, neither of these

approaches is possible. Instead just the contribution to the integrals from segments

not adjacent to the field point is evaluated by two-point Gaussian quadrature. The

eUiptic integrals are calculated using the approximations of Cody (1965); the formula

which is accurate to 10 -s is being used. Due to the logarithmic singularity of the

integrand as the modulus F --, 1, the contribution from segments neighboring the

field point is evaluated by expanding the terms in (3.2.24) in a series of powers and

logarithms about the singularity along an adjacent segment. This series is then inte-

grated exactly term by term. The expansions obtained using MACSYMA have the

form

K(_) -- P1J(_) + P_(_) log (_) , (3.3.1)

where Pi J denotes a polynomial of degree J with vector coefficients, I is the length

of the segment and _ is a parameter along the segment such that 0 _< _ _< 1. The

coefficients of the polynomials depend upon the segment geometry and are listed in

Appendix 3.A.

To assess the number of terms in the expansion necessary for accuracy and to

check the analysis we compared the values of the integrand for several J against the

kernels obtained using the approximations of Cody. This comparison is meaningful

because Cody's expressions have the proper analytic behavior of the elliptic integrals

in the limits F --, 0 and F -4 1. For example Figure 3.3 shows the approximations for

the case of a segment for Hill's vortex spanning an arc between polar angles # = 25 °

and # : 75 ° measured from the forward stagnation point. This length is much larger

than any we used in the simulations yet the representation using five terms is accurate

throughout the segment.

Figure 3.4 compares the exact and computed axial velocity on the surface of

HiU's vortex using only 15 segments of identical length. It serves as a check of the

overall formnlation and underscores the care with which the logarithmic contribution

to the velocity must be treated. The results are excellent, the error at the point of

maximum velocity being 4%. The dashed curve shows the result obtained when the

66



contribution of adjacent segmentsis deleted. One observes that away from the axis

the contribution from adjacent segments is substantial.

There is a standard approach for treating singular kernels which arise frequently in

potential theory (see for example the book by Jawson & Symm 1977). This technique

was adopted by Pozrikidis (1986). Here, one subtracts out just the singular part of

the kernd. In our formulation this would be the constant term in pN(_) times

the log term. The contribution of this term over the entire contour may then be

computed exactly for the segment or drcular arc discretization. This contribution is

then added to the result of the non-singular integration. In order to also accurately

integrate terms like _ log _, _2 log _ etc near the singularity which cannot be integrated

accurately enough with polynomial quadrature rules, we chose not to follow this

approach. Rather we exactly integrate terms up to _4 log _.

The time integration was performed using the fourth order Runge-Kutta scheme.

In initial tests it was found that too large a time step resulted in a shrinking volume

of vortical fluid. The time step At was chosen to satisfy

fiat < ¢, (3.3.2)

where f_ is half the vorticity at the center of the core and represents the magnitude

of the eigenvalues of the ODE system for a particle undergoing solid body rotation

at angular velocity f_. Numerical tests indicated that a constraint in volume change

of AV/V < 0.01% over one eddy turnover period dictated that e < 0.05.

The program halves the length of segments which have stretched beyond a sped-

fled tolerance (currently 0.016Lo) and removes nodes when segments become too short

(< 0.004Lo) provided the curvature is sufficiently small Here Lo is the initial mean

toroidal radius of the vortex rings. It is also essential that the length of segments

dose to the axis of symmetry be kept proportional to the distance of the segment from

the axis. This is because the expansion of the eUiptic integrals proceeds in powers

and logarithms of the complementary modulus, r* = x/'f- _ (see Appendix 3.A).

Now, the first term in the expansion for r* itsdf is proportional to (lflr)_ so we want

I/cr : O(1) or better. The node insertion routine ensures that l/_r < 0.15 if this

condition is more stringent than previous criteria.

The amount of insight that one may obtain from a contour dynamics run and

ones confidence in it are increased by extensive diagnostics. To gauge the accuracy

of a calculation we monitor the flow invariants: volume, circulation, impulse and
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energy together with its radial spectrum. The overall motion of the vortices was

obtained by calculating the positions of the centroids of the core shape and of the

vorticity distribution. Their corresponding time-rates were also monitored. It is

not enough to merely visually observe the core shape. This remark also applies to

vortex calculations via finite difference or spectral methods. Even very weak strains

caused by the presence of another vortex result in the excitation of small but complex

deformation modes. Hence the overall features of the core deformation were obtained

by fitting an ellipse to the core shape. The dimensions and orientation of the ellipse

are related to the eigenvalues and eigenvectors of the matrix of second order moments.

3.4. Test of accuracy and convergence

Figure 3.5 shows the convergence in the discrete L 2 norm of the axial sad radial

velocity as a function of the number of segments in the case of Hill's vortex. The slope

is close to -2, consistent with the second order accuracy of the segment discretization.

There is a slight decrease in the slope as we approach machine round-off (single

precision on a VAX for this test). This represents a static test of the algorithm. A

good dynamic test (suggested to us by Prof. Zabusky) is to ensure that for Norbury's

(1973) equilibrium shapes, the core remains steady up to the accuracy of the Fourier

coefficients in his paper. Adopting the mean toroidal radius Lo as a reference length,

we specify the boundary by

-- 2o + _ (_j cosj/3 + bj sin j/3). (3.4.1)
Lo j=l

The initial shapes are symmetric in z, about' z = 0 say, _ is measured from the point

z = O, tr = Lo and/3 runs counterclockwise from the point of maximum _r on the

line z = 0. We studied the excursions of the coefficients from the values supplied by

Norbury for the duration of three revolutions of a particle on the boundary for an

a = 0.6 vortex. Here ct is the ratio of area-effective core radius (_) to Lo.

The observed deviations must have two parts. The first reflects inherent unsteadiness

due to errors in the initial shape; a 'cautious' estimate of the error in the initial

coefficients is +0.0001 according to Norbury. The second is due to inaccuracies in

the present method; runs with 200, 400, 800, and 1200 segments were made to check
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that it converged to zero. An overall measure of the departure from the initial shape

is the quantity

rms deviation = 2(6 o) 2 + 2 + (gi) 2 , (3.4.2)
j=l

which isequal, by Parseval'sidentity,to

1 f. (3.4.3),

where 6 signifies the difference from the Norbury value and J = 11, the number of

coefficients furnished by Norbury.

The results are shown in Figure 3.6. Time has been normalized using Lo and

the translation speed Uo. By 1200 segments the behavior has visually converged

and nearly repeats every particle revolution; individual coefficients exhibit the same

periodicity. A small but otherwise arbitrary disturbance on a two-dimensional circular

vortex with uniform vorticity is also periodic according to Kelvin's analysis because

the period of particle revolution is an integer multiple of the period required for any

Fourier mode to advance one wavelength. A power law fit to the rms deviations at

the last instant produced an order of convergence of 2.3, consistent with the segment

discretization. The amplitude of the rms deviation for 1200 nodes is less than that

obtained by applying Norbury's bound to every coefficient. The maximum variation

was observed in _2 with an amplitude of 0.00008, close to Norbury's estimate.

3.5. A qualitative illustration

As a qualitative illustration of the method, we simulated a Hill's spherical vortex

with a region of vortical fluid removed. The removed region has as its initial boundary,

one of the interior streamsuffaces of Hill's vortex. The time evolution is shown in

Figure 3.7 where the shading indicates the vorticity containing region. Time t" has

been normalized using the mean toroidal radius and speed of translation of a Hill's

vortex without the hole. A violent instability occurs during the time that the centroid

of the outer boundary has propagated 2½ radii. Irrotational fluid pushes through the

rear, forming a thin cap. The vortex layer at the outer radii thickens in spots as it

rolls-up. This illustrates that distinct vortex patches can form from vortex layers by
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a fast convective action without the intervention of the mechanisms of roll-up into

a spiral followed by viscous smoothing across the turns of the spiral. A direct and

detailed study of this phenomenon for two-dimensional layers was made by Shelley

(1985, private communication) who was also the first to observe it. The final state

in Figure 3.7 is composed of patches connected by thin sheets and a distorted region

of vorticity. The total number of node points increased from 400 to 806 during the

calculation. Up to the third frame, the circulation and impulse decreased by 0.1% but

subsequently more inaccuracy resulted from the closeness of non-adjacent nodes. The

integrand behaves logarithmically and polynomial quadrature is no longer accurate.

Accurate computation of the integrals requires that the distance between quadrature

points be smaller than the distance between non-adjacent nodes. At the last frame,

these invariants have decreased by 1%.

Appendix 3.A. Contribution to the induced velocity from adjacent seg-

ments

The purpose of this appendix is to obtain the contribution to the velocity at a

given node point from segments which are adjacent to it. We proceed by expanding

the kernel K(8') in a series of powers and logarithms. The series is then integrated

exactly term by term.

Let the field point be the nth node located at (z,,, _r,,). Let (Iz, l=) be the axial and

radial components of the vector with length l, pointing in the direction of integration

along the forward adjacent segment. Then along this segment we have

z' = z_+ _Iz, _' = _ + _Io, (3.A.1)

where _ is a parameter which runs from 0 to 1 on the segment. The quantities A and

B defined in (3.2.7), are along the segment

A=f(Z+p(+q, B=p(+q, (3.A.2)

where

f = l2, p = 2_nl_, q = 2crnz. (3.A.3)

70



The coefficients f, p and q above are functions of the segment geometry and the

expansions of the kernels depend only on them. The contribution to the velocity at

the nth node due to the segment is

1Aua -- J[/a dr'H d_

Auz = .,4 -l_ (z,_ - x')G + l. e,_H d( .

We provide expansions for each of the integrands which appears above. They are

obtained with the aid of the expansions of the elliptic functions K(_') and E(F) about

= 1 given in Byrd & Friedmann (1971). We write these out up to

o 1,
where r* is the complementary modulus Vfi" - _. The leading term in the expansion

of r* is O(_) so for consistency the highest power in _ that may be retained in any

term is four. Each of the kernels in (3.A.4) assumes the following form

(8o',t_ E ci_ i + E c)_ i " (3.A.6)
C log k I_ ] i=o i=o

For a'H and tr,tH, J = 4 but for (z - z')G it is consistent to go up to J = 5. Each

of the coefficients in (3.A.6) has the structure

c i = aria + bia,_, (3.A.7)

The following combination of terms recur often so it is convenient to define them

at the outset.

T1 = fpq2, T2 = p3 q, T3 = f2 q2,

T4 = fp2 q, Ts = p4, Ts = f q3,

T7 = p2 q2, T8 = pq3, Ta = q4.

(3.A.8)
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For a'H, J = 4 and

a4 = 288T_ - 96T2, b4 = 902"3- 216T4 + 60T5,
a_t = - 384TI + 224T2, b'4 = -932"3 -4- 3602"4 - 152Ts,

a3 = - 576T6 + 192T7, b3 ---- a4,

a_ - 192T_ - 384T7, b_ = a_t,

a2 = - 768Ts, b2 = as,

a'2= - as, b'2= a'3,
al= -1536T9, bl = as,

a'1 = 3072T9, b'1 = a_,

04) -- 0_ bo = al,

ab= 0, b'o=a'l,
1 1C= 2f 1536q";"

After the entries

(3.A.9)

for a'H have been generated, to obtain the corresponding entries

54Ts - 360T4 + 420T5

-632"3 + 552T4 - 704T5

for er,_H simply zero out the a I and a'j above.

For (z. - z')G, J = 5 sad

a5 = 288Tx - 480T2 b5 =

a_ = - 384T1 + 736T2 b's =

a4=- 192Te+5762"7 b4=a5

a_t = 192T_ - 768T7 b'4 = a'5

a3 = - 768Ts b3 = a4

a_ = -a3 b_ = a_
a2 = 1536T9 b2 = a3

'6 = o b'2= '6
al 0 bl a2

a_ 0 b'l 0

ao 0 bo 0

rio o

Finally, each integral is obtained by integrating (3.A.6) for 0 < _ < 1:

C cj (J + 112log .= j+l + =0 +

(3.A.10)

. (3.A.II)

For the segment behind the node, if (l-z, l-a) are its components (in the direction of

integration) then the expansions are identical except that (-l=,-l'o) replace (Ix, l_)

in forming f, p and q.
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Appendix 3.B. Contour formulation for the streamfunction

An expression for the velocity field has been derived in terms of contour integrals.

We now attempt to do the same for the Stokes streamfunction, ¢.

In calculating the shapes of steadily translating vortex rings, the condition that

the streamfunction be constant on the surface of the vortex (in a steadily translating

frame whose velocity is determined as part of the solution) is easier and more accurate

to impose than one requiring that the velocity be tangent to the surface. Using the

formulation one could compute the Prandtl-Batchelor eddy behind an axisymmetric

body or calculate steady shapes more complicated than the NF family, for example

rings with nested contours. In his work, Norbury (1973) did not have available a con-

tour formulation for the streamfunction and this necessitated costly and less accurate

plane quadratures for the solution of the integral equation for steadily translating

rings.

The vector potential, A is defined as

u = V x A, (3.B.1)

V.A=0. (3.B.2)

Given a certain u, A is defined up to the gradient of a scalar function. The condition

(3.B.2) is a convenient choice that makes A unique. Writing (3.B.1) in cylindrical

coordinates and comparing it with the definition of the Stokes streamfunction one

finds

¢ = _rA_. (3.B.3)

Hence it is enough to calculate the vector potential. Equations (3.B.1) and (3.B.2)

V2A = -w, (3.B.4)

together imply

whose solution for an unbounded fluid is

1 /9 X dx', (3.B.5)

where T_ is the vorticity containing region. The goal is to transform this equation

into a form in which the integrand is concentrated on the boundary. First, as noted

previously 1/A = V2Q where Q = (1/2)A so that

1 f:vw(x,)V2Qdx," (3.B.6)A =
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Next, applying Green's second identity for any region :D+ containing/_ in order to

make boundary terms vanish leads to the desired form:

/z_+ w(x')V2{_ dx' =/z_+ QV2w(x') dx'. (3.B.7)

Decompose the right hand side into two parts, one for the interior of/)+ and another

for a thin shell of width 2_ which surrounds 0V. Then take the Unfit as e -+ 0. The

first part vanishes because the Laplacian of the linear vorticity is zero.*

To work out the second part, introduce orthogonal curvilinear coordinates (n, s, ¢)

such that the surfaces n = -e, 0, e coincide with the inner boundary of the shell, the

surface of the vortex and the outer boundary of the sheU, respectively. If s and n are

chosen to be the arc lengths on the lines along which they vary then the metrics are

(h,,,h,,h,/,) = (1, 1,_r). With these metrics the Laplacian becomes

= -sin_ + cos ¢_,

(3.B.8)

where O(e) denotes terms which disappear upon integration as e --, 0. These arise

from s derivatives of the vorticity. As before, let us choose the field point to be on

the ¢ = 0 plane where A¢ = Az and A = v/A - B cos ¢' with A and B as defined in

(3.2.7). Then

1 lim de' cos ds' dr/a'A . (3.B.9)
A+(z,a) = _ ,.-.o , Or; ]

Denote the innermost integral by In. Applying integration by parts twice gives

l+" +,
In = tr'A [ On' 1_, - a _n' [w,]_, + O(e). (3.8.10)

In the limit as e --, 0

--._tO "l ,

÷"
On'.] -_ -"* -.AsinO'.

(3.B.11)

* At this point, one might think that the formulation could be used to obtain steady vortex
rings for more general vorticity distributions with vanishing Laplacian in/_. Such steady flows
are called _controllable _ by the TruesdeU school of mechanics. Unfortunately, however, Marris &
Aswani (1977) have provided a long and complicated proof that the only non-rectilinear controllable

axisymmetric motions are those in which w¢/_ = constant.
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Finally,

s--_ _ A cos¢' de' (3.B.12)

The two integrals with respect to _b' can be expressed explicitly in terms of tab-

ulated integrals denoted as 11,12 and Is below. The first is obtained after substi-

tuting for 0/X/0n' from (3.2.19) and (3.2.20) and the second after an integration by

parts:

fo 2_ OA_ cos¢'d¢' = 2 [(_'-_)I2cosO'-_I3sinO'+ _72 sin0'],
(3.B.13)

where

" de'11 - ,cA - B cos ¢' =

f0" cos¢'12 -- _/A - B cos¢' d_' =

fo r c°s2 _'Is = v/A - B cos ¢' de' =

2
__.K(_),

J-_+ B
2A 2

K(_) - _,v/"A + BE(_),Bv_ + B

2 [(2A 2 + B2)K(_)- 2A(A + B)E(_')]
3B2_

7B"
(3.B.14/

This formulation was checked numerically against the exact expression for Hill's

spherical vortex given in Batchelor (1973, Equation 7.2.18) relative to a reference •

frame travelling with the vortex. For example, at the point where the streamfunction

has a peak, the errors with 15, 30 and 60 segments were -2.4%, -.61% and -.15%,

respectively, indicating the second order convergence of the segment discretization.
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Appendix 3.C. Literature on two-dimensional patches of uniform vorticity

(1) Reviews

• Saffman (1982): Review of steady solutions induding single patches, corotat-

ing pairs and arrays.

s Aref (1983): A general review of plane vortex motion, including patches of

uniform vorticity.

• Melander, Overman & Zabusky (1987): Review of steady solutions, the el-

liptic model, axisymmetrization, convective merger and interactions between

pairs.

• Saffman (1988): Brings Satfman (1982) up to date and includes an overview
of three-dimensional instabilities.

(2) Numerical procedures

• Zabusky, Hughes & Roberts (1979): Contour dynamics algorithm.

• Satfman & Schatzman (1981, Appendix A): Comment on the formal infinite

order accuracy achieved when using singularity subtraction and trapezoidal
rule.

• Zabusky & Overman (1983): Filtering to allow longer time simulations.

• Wu, Overman & Zabusky (1984): Higher order discretization of the contour

integral.

• Pozrikidis & Higdon (1985): Circular arc discretization.

• Meiron, Saffman & Schatzman (1984), Kamm (1987): Method of Schwarz
functions.

• Dritschel (1988b): Contour surgery to allow long time simulations.

• Zou, Overman, Wu & Zabusky (1988): Curvature controlled initial node

placement.

(3) Isolated steadily rotatin 9 vortices

(a) m-fold symmetric vortices

(i) m = 2
• Kirchhoff (see Lamb 1932, §159): Uniform ellipses.

• Love (1893): Stability of elliptical vortex.

• Dritschel (1988f): Steady states with multiple contours and their

stability.

(ii) m > 2

• Kelvin (1880b, see in addition Lamb 1932, §158): Linear waves on a
circular vortex.
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• Deem & Zabusky (1978): First finite amplitude examples.

• Su (1979): Analytic solution for small but finite deviation from cir-

cularity.

• Burbea & Landau (1982): Steady shapes and linear stability.

• Wu, Overman & Zabusky (1984): Steady shapes with local analy-

sis and corrections to Burbea & Landau (1982) for shapes near the

limiting members.

(b) Steadily rotatin 9 vortices not symmetric under rotation

• Kamm (1987): Bifurcations from ellipses at points of stability ex-

change.

(4) Gorotating configurations of n vortices (invariant under rotation by 2r/n) and

annular vortez layers

(a) n = 2
• Saffman & Szeto (1980): Steady shapes & Kelvin's energy stability argu-

ment.

• Overman & Zabusky (1982b): Calculations of convective merger and tran-

sitions to ellipses.

• Dritschel (1985): Steady shapes, linear stability and energetically com-

patible transitions to ellipses.

• Melander, Zabusky & McWilliams (1988): Explicit criteria for convective

merger using the elliptic model.

(b) n>2

• Thomson (1883), Havelock (1931): Point vortex limit including stability.

• Dritschel (1985): Steady shapes for arbitrary area, linear stability and
non-linear evolution.

(c) Annular layers

• Baker (1980, p. 216): Linear stability of the sheet limit.

• Snow (1978): Linear stability of finite layers.

• Dritschel (1986): Non-linear development of perturbed finite layers and

possible transitions to non-symmetric corotating configurations.

• Dritschel (1988e): Stabilization of finite layers by adverse shear.

(5) Steadily translatin 9 counter rotating pairs

• Sadovskii (1971): Calculation of limiting member.

• Deem & Zabusky (1978): Calculation of intermediate member.
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• Pierrehumbert (1980, 1981): Calculation of several members and corrigendum

for limiting member, respectively.

• Sa:ffman &: Tanveer (1982): Analysis of the shape of the limiting member near

the symmetry line.

• Wu, Overman & Zabusky (1984): Careful recomputation of several members

and local analysis of limiting member.

(6) Spatially periodic configurations

(a) Finite thickness layers

• Rayleigh (1945, §367): Linear stability.

• Pullin (1981): Vorticity layer adjacent to a slip wall.

• Pozrikidis & Higdon (1985), Shelley (1985): Non-linear development of

the Kelvin-Helmholtz instability for finite vortex layers.

• Dritschel (1988e): Stabilization by adverse shear.

(b) Single arrays (model of developed shear layers)

• Moore & Satfman (1975): Tearing mechanism.

static elliptic model with point vortex far-field.

Stability according to

Pierrehumbert & Widnall (1981): Steady shapes.

Sa_man & Szeto (1981): Steady shapes and Kelvin's energy stability

argument.

• Kamm (1987): Steady shapes using Schwarz functions.

(c) Double arrays (model of wakes)

• yon Kgrmgn (1912, see Lamb 1932): Point vortex limit and its stability.

• Kochin (1939, see Kochln, Kibel' & Roze (1964), §5.21): Higher order

instability of the single linearly stable point vortex configuration.

• Sacffman & Schatzmaa (1981): Steadily propagating shapes with finite
core.

• Saffman & Schatzman (1982): Stabilization of subharmonic disturbances

by finite core.

• Kida (1982): Analysis for small core area and disturbances not restricted
to the subharmonic.

• Melron, Sa_man & Schatzman (1984): Persistence of an isolated margin-
ally stable configuration for finite cores.

• Jimenez (1986a): Uses Hamiltonian formalism to provdide an analytical

basis of the Melton, Saffman & Schatzman (1984) result for translative

modes of vortex arrays "close" to the K£rmKa model.
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• Jimenez (1986b), Kamm (1987): Lack of stabilization by two rows having

unequal area.

(7) Vortices subjected to strain

• Moore _ Saffman (1971): Steady ellipses in an external strain field and their

stability to elliptic and non-elliptic modes.

• Burbea (1980), Burbea (1981), Burbea (1983): Steady shapes under higher

order strain and their stability.

• Kida (1981), Neu (1984): Unsteady behavior of ellipses subjected to strain.

• Jacobs & PuUin (1985): Convective merger of two vortices in the presence of

stretching along their axes.

• Pullin & Jacobs (1986): Evolution of streamwise braid vortices in a mixing

layer.

• Kamm (1987): Bifurcations from the steady ellipses.

(8) Filamentation and breaking of the boundary

• Deem & Zabusky (1978).

• Dritschel (1988d): Repeated filaanentation and the development of complexity
of the interface.

(9) Elliptic model: formalism and applications

• Sa:ffman (1979): Quasi-steady elliptic model.

• Melander, Styczek & Zabusky (1984), MelaJader, Zabusky & Styczek (1986):

Hamiltonian elliptic model.

• Melander, Zabusky & McWiUiams (1988): Conditions for convective merger.

(10) Motion of vortex pairs with a common azis

• Love (1894): Point vortex limit.

• Sa:ffman (1979): Collision of identical pairs using a quasi-steady elliptic model.

• Overman & Zabusky (1982a): Passage and collision interactions of pairs using

contour dynamics.

(11) Misc.

• Hebert (1983): Infinite dimensional Hamiltonian and Lagrangian formulation.

• Tang (1985): Lyapunov stability for circular and elliptical vortex patches.

• Dritschel (1988c), Kimura (1988, Appendix B): Contour dynamics on a

sphere.
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• Dritschel (1988a): Lyapunov stability for states with rotational or transla-

tional symmetry and with monotonic vorticity.
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FIGURE 3.1. Cylindrical coordinates.
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n = CONST

FIGURE 3.2. Surface oriented coordinates (n, s, _) defined in the text.
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FIGURE 3.3. Integrand for the axial velocity along the chord of an arc between 25 °
and 75 ° on a HiU's vortex with unit radius. _, exact; .... , 5 term expansion;
........ ,3 terms; -----, 2 terms.
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FIGURE 3.4. Axial velodty at node points on a Hill's vortex of unit radius and .4. = I.
_, exact; ........ , computed with 15 segments; .... , deleting the contribution from
adjacent segments.
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FIGURE 3.5. Error in velocities evaluated at the node points of a Hill's vortex with

unit radius and .z[ = I. n, •, for the axial and radial component, respectively.
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FIGURE 3.6. History of the rms deviation of the Fourier coei_cients of the core
boundaxy from the initial Norbury (1973) shape for different number of segments Ns.
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D

FIGURE 3.7. Evolution of a vortex formed by removing a region of vortical fluid
from a sphere. Times normalized using the mean toroidal radius and the speed of
translation of the vortex without the hole: A, 0; By 4.27; C, 8.53; D, 12.80.
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CHAPTER 4

SIMPLE MODELS

In this chapter, we present two simple models for the interaction of vortex rings

belonging to the class we are studying. They are valid for cores which are thin

compared to toroidal radii and separations distances. The first model is due to Dyson

(1893) in which core deformations are neglected. It has been used to study the

acoustic signal of vortex ring interactions (Kambe & Minota 1981, 1983) and for

simulating round jets (Acton 1980, Kitaplioglu & Kibens 1980) in which many discrete

rings are used to represent a vortex structure. In the second model to be presented,

corrections for core deformation are made by allowing the cores to be strained into

ellipses. The elliptic model will be used in Chapter 5 to predict and gain physical

understanding of core deformations and accompanying acoustic radiation observed in

the contour dynamics runs.

4.1. Dyson's (1893) model

4.1.1. Evolution equations

In two dimensions, the simplest model of vortex motion is based on point vor-

tices. Its validity stems from both physical and mathematical considerations. From

the mathematical perspective, the motion of point vortices constitutes a weak solu-

tion to the Euler equations, in a sense that has been recently clarified by Greengard

& Thomann (1988). The issue of whether the trajectories of many point vortices

converge to the particle trajectories of smooth solutions of the Euler equations has

received attention in the mathematics and statistical mechanics literature; however,

it is not pertinent here since we do not intend to use such models to represent arbi-

trary distributions of vorticity. Rather our purpose is to represent vortices by single

elements and the following physical considerations are therefore more relevant: If one

has vorticity containing regions which are distant from each other compared to their

core sizes then (i) the velocity induced by one region on another is well approximated

by that due to a point vortex located at the vorticity centroid; thus point vortices
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are useful kinematic replacements, (ii) the vorticity centroid of each patch is not dis-

placed by its own velocity; thus point vortices also provide a valid dynamic model in

the limit of large separations.

In three dimensions, vortex lines are curved and the same physical notions cannot

be transplanted without modification. Even though the model of a line vortex (zero

cross-section) is the kinematic limit at large distances, the displacement of a vortex

tube is influenced by the local structure of the core. In Dyson's model, the assump-

tions about the core structure are that the vorticity varies linearly with distance from

the axis of symmetry, that the core is thin compared to the radius, that it is initially

circular and remains so. Then, the self-induced motion is a translation at a uniform

velocity given by Kelvin's celebrated formula (Lamb 1932, §163)

U_=4_r___II'd log\ 6d )--g+O(a_'a_l°ga_ , (4.1.1)

for the ith vortex say, with core and toroidal radii //i and _i, respectively; ai is

the ratio of these radii. The error term is based on Fraenkel's (1972) higher order

treatment rather than the formal error term expected from Lamb's derivation. For

the mutual induction, the velodty that the jth vortex induces in the far-field is the

same as that due to a circular line vortex (also called a Helmholtz ring (1858)) placed

at the centroid of the circular shape. For thin cores, this choice guarantees that,

for the core being modeled, both the far-fidd of the quasi two-dimensional flow in

the vicinity of the core and the far-fidd relative to the toroidal radius, in which the

impulse is the coefficient of the leading term, are identical to those for the Helmholtz

ring. The axial and radial velocities induced by the Helmholtz ring at the ith vortex

are, according to the Biot-Savart law,

u(_i, _i; zj, _j) - I'j [2,_ _i_j cos ¢ - _,_
d¢,

4_"J0 (A - B cos ¢)3/2

rj f2. (_i - _)_J cos¢
_'(_'_;_J'_) - 4_-_. (A- Bcos¢) 3/z

de,

A = - )

B = 2_i_j.

(4.1.2)
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The integrals can be expressed in terms of K and E, the complete elliptic integrals

of the first and second kind:

r_ [I5(_)- _I_(,)]4_---v_

r_ (_--j_--._)i5(_),
41rv_ _j

(4.1.3)

where

fo" d_ _E(_),I4(_)- (1+ u --Cost)3/2=

" cos _bd_b _ 2 [I+PE(_)_K(?) ]l
,u (1 + # - cos¢) 3/2 _ [---_ ' (4.1.4)

2+p'

.-A/B-1.

The integrals were obtained from Bierens de Haa_ (1939), Table 67, item 3 and the

book of corrections by Lindman (1944), Table 67, item 4, respectively. For a system

of vortex tings, the complete system of ODEs for the motion of the tings is

_-----_= u_'+ E,.,(_. o-_;_,o-i),
dt

d_i
d-_-= E"(_,_; _J,_).

(4.1.5)

These equations need to be supplemented with the requirement of "volume con-

servation" that

5_i = constant, (4.1.6)

which may also be considered as an assumption about the nature of the local straining

process. The deformation matrix evaluated at the center of the core can be split as

v,:: v,a = u,a -u,z-v/2o'] ÷ 0 -v/2o" '

on account of the incompressibility and irrotationMity conditions

u,z + v,c, + - = 0,
o"

7,tO. -- 'Oz "" 0.

(4.1.8)
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The first part of (4.1.7) represents a plane strain which preserves area but not volume

and the second, an isotropic compression of the core (for v > 0). Condition (4.1.6)

respects only the second of these which seems inconsistent. The first part is not

smaller than the second. To neglect it is to presume something about its long-term

dynamical effect, namely, that variations in self-induced translation clue to core de-

formations occur on a fast time scale and average to zero over the slower time scale

of variations caused by the isotropic term.

For the acoustic signal, small core deformations, even when their effect on the

overall motion averages to zero, can radiate considerable power. Furthermore, even

when the overall motion is periodic, core deformations may not be---the first term

in (4.1.7) may induce permanent deformations of the core. It is these considerations

that motivate the elliptic model of §4.2 in which explicit treatment is given to the

first term.

4.1.9.. Conserved quantities

Dyson's model is known to possess at least two invariants of the motion. They

are useful for checking the accuracy of the numerical procedure for time advancement

and they provide trajectories for the case of two rings. The two quantities are most

readily observed after writing the evolution equations (4.1.5) in Hamiltonian form,

using as conjugate wxiables the positions _i and linear impulses Pi = _Fi'_.

First, one sees from (4.1.1) that

O t7
- Op i , (4.1.9)

- ,

where

(4.1.10)

provided 6_i = constant. If one wishes to hold 5i fixed (as is done in certain vortex

methods) then the 7/4 in (4.1.10) should be replaced by 5/4. The quantity 7f_ f (with

7/4) is the kinetic energy (with density set to unity) of the flow induced by the ring as

shown in Lamb §163. The fact that Kelvin's speed is the derivative of the energy with

respect to the impulse, keeping circulation and volume fixed, exemplifies a general

result due to Roberts (1972) for steadily translating invisdd rings of arbitrary core

structure and thickness.
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Next onewrites the velocities in the summation of (4.1.5) in terms of the stream-

function of Helmholtz rings to obtain

_ 04
dt OPt'

dt O-_i '

(4.1.11)

where

_'/- 7/_ -I- Y]_ 27/,i,

it, . (4.1.12)

The streamfunction _ due to a Helmholtz ring of unit strength located at (_i,F1) is

obtained by evaluating the Biot-Savart integral explicitly (Helmholtz 1858, p. 506,

Lamb §161)

g(_,a; x_,_i) =

1

_= A+B'

--2
A = (x - ej)2 + a2 + ai,

B = 2a_j.

(4.1.13)

Due to the symmetry of 7/ii under interchange of i and j (4.1.11) can be written

in the canonical form
d-_ 07/

dt OPi '

dPi 07-t
dt O-_i '

7/= E nr' + E T/i .
(4.1.14)

k j,k
J_

It follows that d_/dt = O. The quantity P = _i Pi corresponding to the total impulse

is also conserved since
dP 07/

d---t-= - _ o'_i 0. (4.1.15)
i

The last equality holds because 7"/depends only on differencesof axial positions.

The Hamiltonian representationforvortex ringsbears a closeranalogy to the motion

of point masses in their mutual potentials than does the two-dimensional motion

of point vortices where the conjugate variablesare related to the z and y positions
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(Lamb §157). A similar analogy probably holds for two-dimensional vortex dipoles

however.

Dyson's model is frequently applied outside its range of validity. The limitations

arising from the distant-interaction assumption are often ignored on the basis of the

argument that if the energy is conserved the results cannot be too far from the truth.

Let us attempt to make this statement more precise. We begin by making a distinction

between the assertion that a model or vortex method possesses a conserved energy

function 7"/and that it conserves energy. By the latter we mean that the fluid energy

E of the hydrodynamic field predicted by the model is conserved. As an example of

when the two statements are not equivalent, suppose 61 is kept constant. A conserved

Hamiltonian still exists but it does not correspond to E if 6_ is interpreted as the core

radius of an actual vortex; in fact 1/? would change in time.

We shall see presently that, for Dyson's model, _ and E are equivalent for thin

rings as long as cores do not overlap. One concludes that an attempt to make near-

field corrections to the interaction Hamiltonian of the model would not be successful--

the model would remain unchanged. Whether the model can be corrected to prevent

overlap, or, if overlapped configurations may be interpreted in some way that does

conserve E are questions that are yet to be answered.

Direct calculation of B is not possible for all cases because of the complicated

form of the integrals. Rather we shall proceed by showing the equivalence of g and

7f for two limits. First, as expected the equivalence holds for interactions in which

vortices are separated by distances much larger than their core radii. Second, it also

holds for dose interactions in which the separation distance is small compared to

the toroidal radii, provided the cores do not overlap. This is surprising since the

assumptions of the model are violated. Because the two limits share a common range

the equivalence holds uniformly.

The kinetic energy for an axisymmetric distribution of vorticity is (Lamb §162)

= _ f _(_, _)¢(z, _,)dz d_, (4.1.18)B

provided the additive constant in _b is chosen to make _/, vanish at the symmetry axis

and I_bul decays faster than 1/r at large distances; both conditions are satisfied in

what follows. For the time being we shall drop the _ subscript on the azimuthal

vorticity but will revert to it again when the distinction with the two-dimensional
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vorticity needs to be emphasized.

necessarily disjoint):

then

If the vorticity is non-zero in regions T_j (not

(4.1.17)

(4.1.18)

J

where Cj(z,_r) represents the flow induced by wj(z,_r) alone. We substitute (4.1.17)

and (4.1.18) into (4.1.16) and separate the double sum into self-energies E_._f and

interaction energies Ejk,j _ k, where

dz d_. (4.1.19)

We have already stated that Lamb has shown the equivalence of the self-energy with

the one-vortex Hamiltonlan so it suffices to establish that Ejk = 7"/jk. Notice that

7/jk corresponds to the interaction energy of two Helmholtz rings. We shall see that

it also corresponds to the interaction energy of two finite circular core vortices.

It is because the integral in (4.1.19) cannot be evaluated for arbitrary configura-

tions of two circular cores that we now consider two independent limits. In all that

follows we shall, consistent with the model, neglect terms of linear order in a, the

quotient of core size to radius. To this order the vorticity in (4.1.19) is uniform.

For the case in which Ajk, the distance between the centers of j and k, is large

compared to core radii, ¢k becomes the Helmholtz ring streamfunction and may be

Taylor expanded to linear order about the center of j. The linear terms vanish upon

integration and one is left with

(6j+ 6__ (4.1.20)ej_ = _rjr_(_,_; ,_,_) + o (_j)+ o k A_ /'

which is the same as _jk as expected.

The limit of small Ajk compared to toroidal radii is more involved. First introduce

the small parameter

AJk (4.1.21)_-- I"

2(_)_

The argument of the elliptic integrals is in terms of e,

72= 1
1 + e2" (4.1.22)
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With the aid of expansions of the elliptic integrals about _ = 1 (Byrd & Friedman

1971) we get

Next we evaluate Ejk for finite circular cores in the same limit. Whereas 7_jk

represents the interaction energy of two Helmholtz rings, Ejk is the interaction energy

of the distribution of elemental Helmholtz rings in two circular core regions. The

streamfunction due to the vorticity in region k is

Ck(z,a) =/wk(z',a')_(z,_,; z',a')dz'd_,'. (4.1.24)

After expwading Q for field points in the vicinity of the vortex, this becomes

ek(-,,,') = { +
(4.1.25)

where

• (z,a) = (4.1.26)

is the two-dimensional streamfunction of a vortex cylinder with the arbitrary additive

constant chosen so that _ -., -r/21r log p, at a large distauce p from the center of the

core. The two small parameters which appear in (4.1.25) are defined a.s

&,r, ak = _--. (4.1.27)

Care isrequired in not confusing these parameters. It is too restrictiveto say that

because the ratiosof core size to radius mad distance to radius are small that both

are of the same order. This is true only in the interioror small neighborhood of the

core. We want to leave a range of validity that is shared by (4.1.20), viz, _j + 6k <<

Ajk << (_j_t,) 1/_. Equation (4.1.25) has the useful interpretation that the flow in

the vicinity of thin cores is a simple modification of two-dimensional flow. This fact

will be used again in Chapter 5. Equation (4.1.25) invites comparison with Moore's

(1980) derivation for the streamfunction for a thin vortex ring of elliptic cross-section.

In this case • is the streamfunction for the Kirchhoffelliptic vortex (Lamb §159) with

the additive constant adjusted to give the required behavior at infinity. The result

agrees with Moore's which is obtained by a matching argument.
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For the present case, substituting the Rankine vortex solution

= _-_ [log6,- 1/2(1- e2/6_)], e<_5,;
( --_ log 0, 0 > 6,;

into (4.1.25) gives that _,(z,_) equals

2+o ((',,"log@]+o(_,),

(4.1.28)

, g_<6k;

Next, consider the interaction energy between _b, and the vorticity of core j which

is assumed not to overlap with core k so that the strea_mfunction exterior to k is used.

The only variable part of the integra_d is log Q. Its integrM is evaluated in polar

coordinates (_,_) with origin at the center of J and _ measured counteraockwise

from the llne joining the centers of cores j mad k:

/o, /o'"log _ dz do" = _ _ d_ log [_ + A_, + 2$Aj, cos _] d/_ (4.1.30)

The angular integrM is tabulated (Gradshteyn & Ryzhik 4.224.14) as

4_'log Aj,, _ _ A./,; (4.1.31)4z log _, _ >_AI,.

The first case is appropriate when _Dj does not contain the center of _D, and is certainly

true when there is no overlap:

Ej, = rsr, , [ (8(_;_,1_--_(_k_j) _ log _k

d' -- A j,

- 2 + 0 (e,,z, da log e")] + 0 (o_i, oq:),

which is the same as 7"/ik given in (4.1.23).

(4.1.32)

The equivalence breaks down when the cores overlap. One must then use the

interior streamfunction in Dj N _D,. When core j does not contain the center of k the

dzdcr + O(aj,a,).

(4.1.33)

difference between Eft, and 74jk is

1

Ejk - _#k = = _62 fD, nO_
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The integral in the overlap region appearsintractable, however,since0 < #/6k < 1

the integrand is everywhere _ 0 and the error non-zero.

In summary, the interaction energy Ejk of two thin circular core rings is equivalent

to the interaction energy 74j_ of two Helmholtz rings in the following ranges:

(i) (6j + 6k) << Ajk
1

(ii) Ajk << (_j_j)_, provided the cores do not overlap.

The second range contains a portion of the first so that Ejk = 7/jk is uniformly

true. This means that Dyson's model conserves energy for thin non-overlapping cores.

4.1.3. The final period of collision accordin9 to Dyson's model

Now, based upon constancy of the F[amiltonian we shah note, for reference in

Chapter 5, some facts about the behavior of Dyson's model for the head-on collision

of a vortex ring pair at large times.

Consider the collision of two identical but oppositely signed vortices with _2 =

-_, = _, _, = _2 = _, F1 = -I'2 = F. In the final stage of collision e -- _/_ is small

and the Hamiltonian becomes

7_ = I"_ flog (-_)+1] + O (e',e'loge). (4.1.34)

Setting this equal to its value when the vortices are well separated so that the inter-

action energy is zero gives the asymptotic trajectory as

1 To og - .
log + 4 = _ \ 6o ]

With _/_o --+ oo this has an asymptote for which

(4.1.35)

--_0.3896. (4.1.36)

For initially thinner cores, this happens at larger values values of_/_o. Thus the cores

approach a self-similar configuration in which axial motion is balanced by shrinking

core area. The fact that _ becomes arbitrarily small contrasts with the collision

of vortex pairs in two-dimensions in which the pairs never come closer than a finite

distance (Lamb §155). Since the cores have overlapped, (4.1.33) shows the true energy

to be larger than the Hamiltonian. Even if it were possible to concoct an interaction
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Hamiltonlan to give instead of (4.1.36) the hard-core asymptote _ _ g the energy

would be from (4.1.10) and (4.1.32)

E --* 0.943F2_, (4.1.37)

which is still not conserved.

When the distance between the vortices is smaller than their radii, the radial

motion will be the same as that for a pair of translating line vortices separated by

distance 2-_:

- r (4.1.38)
= 4_,

which can also be shown from the equations of motion. Substituting (4.1.36) into this

we get

--i- ---* 0.909 = constant, (4.1.39)

where V = 2_r262_ is the volume. For later comparison with contour dynamics, note

that

so that

r= f f (4.1.40)

.2"
_r

-'7 _ 0.363v/-_ = constant. (4.1.41)

In contrast, the contour dynamics simulations to be presented in Chapter 5 show that

because cores do not overlap the peak rate of stretching attained even for thin cores

is considerably smaller, viz

--_ = 0.164V/-_. (4.1.42)
1

4.2. Development of an elliptic model for axisymmetric vortices

4.2.1. Introduction

The contour dynamics equations are exact but have infinite degrees of freedom.

The elliptic model permits a limited number of degrees of freedom. As with Dyson's

model, the approximations become more accurate as the distance between interacting

cores becomes large compared to their sizes and as the ratios of core size to toroidal

radius become small.
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The present treatment was inspired by a similar model for two-dimensional vor-

tices by Mdander, Zabusky & Styczek (1986, hereafter MZS). They constructed a

consistent truncation of the kernel in the evolution equation for the shape of the

boundaries of the vortices, keeping moments of the core shape up to second order,

which define an ellipse. In the axisymmetric case, the complexity of the kernels pre-

cludes such a rigorous approach. Even if the task were possible, moments arise which

cannot be related to the shape of an elLipse. We therefore chose a heuristic approach

not based on expansion of the contour dynamics equations. Rather one considers the

flow induced locally at one vortex by the others i.e., we expand the induced velocity

fidd about the centroid of the vortex and retain only the linear terms. To obtain the

velocity field induced by other vortex rings, the Helmholtz ring representation is used

as in Dyson's model.

Elliptic core models have been used quite successfully in two dimensions. Saffman

(1979) followed this approach in dealing with the motion of a translating vortex pair

towards a plane slip surface. Saffman & Szeto (1980) used it to study equilibrium

shapes of co-rotating pairs of vortices and found excellent agreement with exact so-

lutions. Safgman, in unpublished work, used the model to study the existence of

steady configurations of a yon Kgrmgn street in which the vortex rows have unequal

strengths. We will describe the differences between Saffman's approach and that of

MZS after background material has been furnished.

In §4.2.2 it is demonstrated how the heuristic approach works for two dimensions.

It yields evolution equations for the centroids, the orientation angles of the ellipses

and the lengths of their major and minor axes which are identical to those obtained in

MZS. In the derivation, we will try to convey a physical understanding of each term

in their equations. Next, in §4.2.3 the methodology will be applied to the axisym-

metric case. In §4.2.4 a correspondence of variables between the two-dimensional and

axisymmetric cases will be made. This makes Neu's (1984) phase plane portraits of

the deformations of an elliptic vortex in a plane strain relevant to the axisymmetric

case and provides one with a language for discussing the core deformations observed

with contour dynamics. Finally, in §4.2.5, departures to be expected from the elliptic

model will be discussed.
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4.2.2. Background for an elliptic model for two-dimensions

(i) The far-field of an elliptic vortez. Consider several interacting patches

of vorticity. Points inside the patches are eonvected by the combined influence of

vorticity in the same patch (the near-field) and by the influence of other patches

(the induced field). For the latter assume that the patches are distant relative to

their sizes. Then we ask: What is the influence of a distant vortex patch? The

streamfunction due to the vortex is

1 f logIx- x'l_az(x')dx'. (4.2.1)*(x) = 2_

If _ -- Ix[, the distance from the origin to the point of evaluation, is large compared

to I_elthen a Taylor series expansion about x gives

(4.2.2)

When this is substituted into (4.2.1), the moments, mij of the vorticity distribution

appear:

mij = f z'iydWz(Z ', y') dz' dy'. (4.2.3)

In terms of them, the far-field expansion of the streamfunction is

• (x,_) =
z1 flog _-- -_mlO Y2_"

(4.2.4)

Thus, in the far-field the vorticity distribution can be represented in terms of a few

overall properties. The first term in equation (4.2.4) is the streamfunction generated

by a point vortex at the origin whose circulation is that of the patch. If we locate the

vorticity centroid of the patch at the origin, the terms of O(1/_) vanish and the point

vortex approximation is valid up to 1/# 2. The last retained terms involve second

order moments about the vorticity centroid. For an ellipse with uniform vorticity,
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area S, aspect ratio _ = a/b, and orientation angle _ relative to the z axis these

moments are

(I 4,m2o= 41rA [_2+ _A2) sin 2

£S (1 cos2 _]too2 = 4a'_ [)_2 + _ ,_2) , (4.2.5)

1'5' (1- A')sin2_p.mn = - 8_'---X

Using these in (4.2.4), the velocities can be obtained from the streamfunction after

differentiation:

r[u=_

v=_-_

sin/3 + S(1 - A2) sin(3/3 _ 2_) + O (_)]@ 4_r_o 3

COS/3 S(1 ___2) (_)]e cos(3 - + 0 ,

where/3 is the angle, relative to the z axis, of the line directed from the centroid to

the field point.

(ii) Induced motion of the centroid. We now consider a "field" vortex (denoted

by the index f) under the influence of the far-fidd of another vortex (denoted by index

s for "source") whose centroid is at the origin. The velocity at the field vortex due

to the source vortex may be expanded to second order about its centroid (xl) as

u,, -- u.(_/) 4- ('u,ffi u,_" / (_)_t_ 1 (.'u,ff-t-2._,_u,z.-t-._2u,..). (4.2.7,

The double index fs above should be read "at f due to s.n All velocity derivatives are

evaluated at the centroid of vortex f and _ = x - _j. The effect of the first term is

to rigidly translate the vortex with the velocity evaluated at its centroid. The second

term corresponds to plane strain. We will see later that it preserves the elliptical

shape of the vortex but alters its aspect ratio and orientation.

The last term distorts the shape from ellipticity, an effect we neglect. However, it

has a non-negligible effect on the motion of the centroid. This can be seen as follows.

By its definition, the centroid moves with the average induced velocity over the core

i.e.,

1

x.. - _/. uf,(_) d_. (4.2.8)
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Substituting the expansion (4.2.7) into this gives

1 (j,ou,ffiffi+2jllu,ffi,+jo, u.,,)xt -- u,(_t) -t- _ \ j20v,== + 2jllv,tu -4-jo2v,_u "

The moments of the core shape about the centroid are

(4.2.9)

(4.2.10)

The highest order term contained in the far-field expansion of the first term in

(4.2.9) is O(1/e3). The second part of (4.2.9) yields a term of the same order from the

point vortex part of the far-field which we cannot ignore. This represents a correction

to the velocity evaluated at the centroid that must be included in order to obtain

equations for the centroid motion that are consistent with the expansion (4.2.6). Due

to the constraints of continuity and irrotationality there are two independent second

derivatives, say, u.=® and u=y. Then (4.2.9) becomes

1 ((j20 --joz)u,== + 2jllu,=_ )_1 = u,(_l) -I- _ _ (j20 -- j0z) u,=_ - 2jllu,== "

For the point vortex part of the far-fidd, these second derivatives are

(4.2.11).

(4.2.12)

where/_# is the angle of the line, relative to the z axis, from the center of s to the

center of f and e,t is its length. When (4.2.12) is substituted into (4.2.11) together

with the relationships between moments and ellipse parameters given in equation

(4.2.5) we obtain three terms in the equation for the centroid motion. These are:

A. Centroid motion due to leading order far-field velocity evaluated at the centroid:

r, ( - sin/_# _ (4.2.13)x1,-
2_r0,1 \/cos _,t

B. Centroid motion due to second order fax-fieldevaluated at the centroid:

r, S,(1 - A,2) ( sin(3flo!- 2_s)) (4.2.14)-I- 2_r 4_'A.0.3/ -cos(3/_./- 2_,)

C. Centroid motion due to second derivatives of the point vortex part of the far-field:

r. S,(1-A_)(sin(3_#-2_t)) (4.2.15)2r 4rAi0,_t - cos(3fl,/- 2_t) "
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This expressionmay be compared with equation (3.24) in MZS. The similar form

of the last two terms is not fortuitous. It leads to antisymmetry of FI_10 with respect

to permutation of the indices f and s which assures conservation of the global centroid

of the system, equivalent to conservation of linear impulse. This is another indication

that in a higher order far-field treatment, vortices must not be convected by the

velocity induced at the centroid.

(iii) Induced evolution of the ellipse shape. Here we are interested in the effect

upon the shape of the ellipse of the straining component of the velocity fleld (4.2.7)

about the centroid of a field vortex. It is here that our treatment differs from that

of MZS. We make use of the solution of an elliptic vortex subjected to strain (Kida

1981) rather than a formal expansion. Due to continuity and irrotationality the strain

term is

s:(:;)(:)
where

evaluated at the centroid.

obtained from

p = u,z = - v,_; q = u_ = v,z, (4.2.17)

The orientation, &, of the principal strain directions is

tan 2& = q
P

which have a maximum rate of extension given by

(4.2.18)

e : psec 2_. (4.2.19)

e > 0 corresponds to extensive strain along that direction and vice-versa. When p

and q are computed as derivatives of the far-field velocity, it is consistent to keep only

the strain arising from the leading (point vortex) term:

{ sin 2j3,!

--_2/ _ - cos28,t ]" (4.2.20)

From this (4.2.18) gives the well known result that, for point vortices, the prindpal

axis of strain is at 45 ° from the line joining their centers. Kida (1981) has studied

the response of an elliptic vortex to a straining fidd which does not change in time

and his results can be applied to determine the influence of S. However, before

doing so, one must realize that in general, the strain axes may rotate arbitrarily and
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Kida's analysisneedsslight generalization. A priori one can say that because rotation

of the strain axes does not involve rotation of the fluid, no additional rotation is

imparted to the ellipse so that one should merely replace the orientation angle by the

orientation relative to the instantaneous strain axes without making the corresponding

replacement for the rate of the orientation. In other words, the rate of change of the

ellipse shape should only depend on the instantaneous velocity field. To convince

ourselves of this the following formal reasoning may be applied.

Let us define new cartesian axes (z', y') with origin at the centroid of vortex f

and the z" axis along one of the principal strain directions. Then the equation for

the boundary of the ellipse is

h(=,y, t)= (="cose(t)+ y,sine(t)) 2
a2(t)

+ (-z"sinO(t)+v"c°sO(t))2 - 1 =0,
b2(t)

(4.2.21)

where E)(t) = _(t) - a(t). The deformation of the ellipse due to strain is obtained by

imposing, in a fized set of coordinates, the kinematic condition that the boundary is

a material line

Dh (Oh) +S-Vh=0onh=0, (4.2.22)_-= -07 ,,

where for emphasis we have indicated that the time derivative be evaluated holding

z and y fixed i.e., using the chain rule

(Oh) Oh Oz" Oh Oy" Oh. Oh. Oh. Oh- (4.2.23)-g-i , = g-_,-_ + g-_y._ + _ a + -ggb+ -Y6_ - -E6_ "

Using the equation of the ellipse (4.2.21) we find that the sum of the first, second and

last terms vanishes. This means that the rate, _, at which the strain axis rotates does

not enter into the solution, only its instantaneous orientation relative to the ellipse

is important. Then after substitution of (4.2.16) for S and transformation to strain

axes coordinates (4.2.22) becomes

Oh. Oh. Oh . Oh . Oh

_a a + --_b+ _--_o + ez"O=_ - ey _ = O, (4.2.24)

The rates of change of ellipse parameters, h, b and _ are obtained by carrying out the

required differentiations of h(z, y, t) and setting the coefficients of the three monomials

z._., y.2 and z"y" separately to zero. This leads to a linear system of equations for

the three unknowns. Kida (1981) has done this for the case of an isolated vortex
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in a fixed straining field in which case the equation to be solved is identical to the

one above except with _b replaced by O. His sohtion with _b replacing O and _ -

repladng ® is

= eacos2(_o- _),

b = -eb cos2(_,- a), (4.2.25)
a 2 + b2

= -e-r:-__b2sin2(_ - a).

Note that the area -,_ ab of the vortex is constant. Substituting in the values for the

strain rate and the straining direction for the point vortex part of the far field and

calculating the evolution of the aspect ratio A = a/b we obtain:

D. Evolution of aspect ratio due to strain of leading far-field behavior:

,_/F, .
_I, = _ sln2(_,j - _,). (4.2.26)

E. EUipse rotation due to strain of leading far-fleld behavior:

11+____Az r,
_bi,= -- _ cos 2 (_,] - _ol) • (4.2.27)21-

These expressions are the same as equations (3.19) and (3:20) in MZS.

(iv) Self-induced evolution of the ellipse shape. The solution for the self in-

duced motion is Kirchhoff's elliptic vortex (Lamb §159) which rotates with constant

angular velocity without changing shape:

F.

_1 = 1'1
a'(a, + bj) 2 (4.2.28)

(v) Commengs. Items A-F represent the effects that comprise the elliptic

model for two-dimensions. For several interacting vortices a summation over the

index s excluding the s = f term is implied. When A-F are superposed, they give

the model developed in MZS.

We are now in a position to comment on an elliptic model for two-dimensions

introduced in Saffman (1979) to treat the approach of a vortex pair to a plane slip

surface and used in Sa/gman & Szeto (1980) for a stationary problem. It has the

foLlowing differences with the approach MZS: (a) The velocity and strain induced

by one vortex on another is calculated from Kirchhoff's eUiptic vortex rather than

a far-field expansion as in MZS. This may seem advantageous but is not consistent
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in view of the fact that, (b) The core centroids are moved according to the velocity

induced there rather than by the average of the induced vdocity over the core. When

the vortices are weU separated, the error incurred would be the effect represented by

equation (4.2.15). Since this term is comparable to higher order terms in the far-

field expansion, it is not consistent to use the exact Kirchhoff solution; it does not

ensure conservation of the global centroid. In Safman (1979), however, the centroid

is conserved trivially due to symmetries of the problem considered. (c) The evolution

equations for the ellipse parameters are complicated and require numerical solution.

Saffman did not have these evolution equations which were developed later by Kida

(1981). Instead, he used an algebraic equation for the equilibrium value of the aspect

ratio as a function of the instantaneous strain rate. In other words he knew only of

the fixed points in the evolution equations and used this information to obtain an

algebraic expression for the variation of the aspect ratio along the trajectory of the

vortex pair. Implicit in this is the assumption that the shape follows the equilibrium

as it migrates towards larger aspect ratios with increasing strain. Hence Saffman's

approach may be termed quasi-steady. In reality, because the equilibrium point in a

phase plane is a center (as long as the strain rate is below a certain critical value) the

aspect ratio wiU tend to either oscillate about the equilibrium if the strain rate varies

very slowly, or, as we will observe in particular cases in Chapter 5, if the strain rate

changes suffidently rapidly the shape will overshoot the equilibrium aspect ratio and

undergo permanent deformation or tearing at strain rates below the critical value.

4.2.3. Elliptic model for azisymmetric vortices

We shall now incorporate the ideas set forth in the preceding subsection into

a derivation of an elliptic model for the axisymmetric case. The development is an

assembly of the effects identified previously; for each one there is an available solution

in the literature which can be used. The content of each roman numeral item paraUels

that for the corresponding item in §4.2.2.

(i) The far-field of a ring vortez. As in two dimensions, assume that the

vortices initially have cores of ellipticaJ cross-section and remain well separated. In

two dimensions the notion of separation was based on core size. However, for a

vortex ring with a finite core, the presence of two reference lengths, namely, the

core dimension and the toroidsl radius lead to two definitions of the far-field. The
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expansion of the induced velocity in a manner similar to that employed to derive

equation (4.2.4) would be valid for points distant according to the more restrictive

criterion. It yields a multi-pole expansion in which the coefficients of the various

inverse powers of the distance are moments of the vorticity distribution. Even for

linearly varying vorticity these are not second order moments of the core shape. The

main reason for not using this expansion is that one based on the core size allows

for closer interactions. However, only the leading term is expressible in dosed form.

This term represents the velocity induced by a vortex ring of zero cross-section i.e.,

a Hdmholtz ring located at the shape centroid. From the Biot-Savart law the axial

and radial velocities it induces are given by equations (4.1.2)-(4.1.4).

For later use we will also require the strain in the far-field. Differentiating the

kernels of (4.1.2) we have

3r(z-_) f- _cos_-_z
- J0 d_,p - u, _ (A - B cos_)s/2

[/o /0 ,]- _ 3(z - _)2 _cos _ dr _" -o" cos_ d_ +
q-- _'_ = 4_ (A_ Bcos_)_/2 (A_ Bcos_)S/2 •

The integral with the 3/2 exponent in the denominator has already been dealt wi.th

previously in connection with the velocity field itself and can be expressed in terms

of I4(p) and Is(p) defined in (4.1.4). The integrals with a 5/2 exponent can also be

expressed in terms of I4 and/5 as follows using an identity in Gradshteyn & Ryzhik

(2.554.1):

(A- Bcos_) 5/2 = (A2_ B2)Bs/_ AI4(_)+ BI5(_) ,

_ 1 I ](A- Bcos¢)5/2 - (A2- B2)B3/2 BI4(U)+ AI5(.) .

Then (4.2.29) becomes

3F

q _['B-_I'r_i5(,) 3(z__)z_iT(u)]

(4.2.30)

(4.2.31)

(ii) Induced motion of the centroid. In the discussion for two-dimensions it was

noted that, if a higher-order term in the far-field is retained, a correction term must
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be added to the velocity induced at the centroid. Since we keep only the leading

term in the far-field, this correction is not applied here. Hence the model for the

axisymmetric case is less accurate by one order in the ratio of core size to separation

distance and only item A is required:

A. Centroid motion due to the leading-order far-field velocity evaluated at the cen-

troid:

_,. = u(_,,o,; zs,_,) (4.2.32)

where u and v denote expressions (4.1.3).

(iii) Induced evolution of _he ellipse shape. The induced velocity expanded

about the centroid of the field vortex is the same as (4.2.7) with y replaced by or, but,

because the conditions of continuity and irrotationality are now, respectively

I?

u,. + v,a + - = 0,
(7

the analog of the strain term (4.2.16) takes the form

(4.2.33)

(4.2.34)

where _ denotes v(_,_). The first term represents plane strain; the contributions to

p and q from a single vortex are given in equation (4.2.31). The second term serves

to preserve volume in the presence of stretching. It has the form of a unidirectional

stretch (for _ < 0) and wiU be referred to as an "extra strain." The motion of the

boundary is determined from the kinematic condition (4.2.22) which retains the same

form with y replaced by a. Because of its linearity, the effect of the two straining com-

ponents can be evaluated separately. The first part gives the same evolution equations

as in two-dimensions. For the second part, the kinematic constraint becomes

Oh _ , Oh
Ot ==o = o

on (g-cost(t) +  sin z
aZ(t)

+
(-g- sin _o(t) + _ cos _o(t)) z

-1=0.
bZ(t)

(4.2.35)

Carrying out the required differentiations of h and setting each of the coefficients of

the monomials g,z, ffz and g-ff on the left hand side to zero provides a system of three
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linear equations for h(t), b(t) and _(t). We display the answer together with the

solution for plane strain:

B. Induced evolution of ellipse shape due to plane strain:

_1, = el, alCOS 2 (_1 - _1,),

bl, = -el, b1 cos 2 (_1 - _1,),

t$1 -- b_/

C. Induced evolution of ellipse shape due to extra strain:

(4.2.36)

w

ht, = v---_J'atsin2 _s,
tr!

m

bl, = - v----'/'b/c°s2 _1,

= _a,9

(4.2.3?)

Note that volume (hence circulation) is conserved for the induced evolution.

(iv) Self-induced motion. Moore (1980) studied the self-induced motion of a

vortex ring with a thin elliptical cross-section. In this limit the core dynamics are

locally two-dimensional so the core rotates with the constant angular velocity of the

plane Kirchhoff vortex:

D. Self-induced rotation:

_! _ I'!
_r(a! + b!) 2 (4.2.38)

Unlike in two dimensions, however, the core rotation influences the motion of the

centroid thus:

E. Self-induced centroid motion:

[ 1zl = 1'___2_!log
4_rR! ½ (a I + bl) 4

- 1"1 [ 3(a1-b1) ]_! - 47rR! 2 (a! _ b!) sin 2_o! .

3 (al - b!) ]

2 (a I + bl) cos 2_o1J
(4.2.39)

R 1 is the impulse radius which is conserved for a vortex in isolation:

(4.2.40)
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where Pj the impulse of the vortex is

p,_ dz do.,
J!

which evaluates to

(4.2.41)

f _ 3
(4.2.42)

Note that the v_xial velocity oscillates about a mean value which is less than that

given by Kelvin's formula for a circular core with the same area in which case the

geometric mean of a I and b/replaces their arithmetic mean in the argument of the

logarithm in equation (4.2.39).

The interpretation of Moore's solution and its use in a model of interacting rings

requires care. First consider an isolated vortex. Since O (a/R) variations in the

shape have been neglected, the explicitly computed volume, circulation and impulse

integrals correspond to their conserved counterparts to within error terms of the same

order. The I' I and R I in Equation (4.2.39) represent the conserved variables so, for

example, R f should be computed using (4.2.40) and (4.2.42) at the initial instant. For

interacting rings, R! changes due to the induced effect of other rings and one must

be careful to evaluate it in a manner that would exactly yield the isolated vortex

solution in the limit of no induction. For this purpose, rather than evaluate (4.2.40)

and (4.2.42) at each instant, we differentiate these expressions and enforce the fact

that the self-induced motion does not alter the impulse:

'#1 (4.2.42a)

Equation (4.2.42a) represents an additional evolution equation, giving a total of six

for each vortex.

Superposition of items A-C (with summation over the index, (, # f)) together

with items D-E for the self-induced motion gives the complete equations for the

model. Each is illustrated schematically in Figure 4.1.

4.2.4. The deformation phase plane

The two contributions for the evolution of the aspect ratio and orientation angle

due to plane and extra strain can be combined into one which has the appearance
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of the former. This makes the analyses of Kids (1981) and a certain phase plane

representation introduced by Neu (1984) for two dimensions directly relevant to this

study. Inducting the self rotation term these equations for any vortex become

-- 2_g cos 2 (_o - ¢v),

1 + _2 _÷_ (4.2.43)

_b = gl_-'-_ sin 2 (_° - w) + (_ + 1)='

where _÷ is the average vorticity (F/_rab). These are identical to the deformation

equations in two-dimensions (4.2.25) except that the rate of plane strain e is replaced

by

cos 2&, (4.2.44)
1 _2 e_

g= e2 +

which is a "composite n strain rate. The straining angle & is replaced by a composite

angle

1 ( e sin 2&_--_tan -1 1 _ _os2a/ . (4.2.45)

Figure 4.2 shows contours of g(z,_) for a Helmholtz ring with F = 1. To avoid

crowding, contours near the core are not shown. The effect of the axisymmetric

geometry is that for the same distance from the core, points with radial location

smaller than the vortex radius have higher strain rates than those with a larger radius.

In two dimensions, a point vortex induces a radially symmetric strain field. It will

be argued in Chapter 5 that the spatial variation of strain rate in the axisymmetric

geometry leads to greater susceptibility to tearing in the passage of one vortex ring

through another than in the case of two co-rotating vortices in two-dimensions.

Equations (4.2.43) are coupled to and externally forced by the equations of cen-

troid motion via g(t) and w(t). In turn, core deformation affects the motion of the

centroid via (4.2.39). If g and w are constant (set tv = 0 without loss of generality)

one recovers the equations analyzed by Kids (1981) and Neu (1984). Consideration

of their results, apart from being suitable when g and tv vary sufficiently slowly, leads

to a useful terminology for describing what is observed in the general situation.

We now review some of the known features of solutions to equations (4.2.43)

under fixed strain. First, to find equilibrium shapes (he, _e) set the right hand side

of the system to zero. The first equation implies

_Oe=(2rt+l) 3 , rt=0,1,2,3. (4.2.46)
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When this is substituted into the second

he(he- 1) = g(-1)n (4.2.47)
(1 + he)Ch 2 + 1) _q_

To proceed, we need to be clearerabout how h and _ are defined. We shallinsistthat

h _> 1 which allows _ to jump abruptly by _r/2 when an ellipsestrained along the

minor axis transitsthrough a circle.Then the lefthand-side of (4.2.47)ispositive.For

g/F@ > 0, n must be even which restrictsthe equilibriato liein second and fourth

quadrants; conversely for g/_ < 0 equilibria He in the first and third quadrants.

Hence the ellipse is oriented so that its vorticity opposes the strain. The maximum

value of the left hand side occurs when he _ 2.89 and is _ 0.15, so for values of [g/-_¢[

greater than this no steady elliptical solutions are possible. As will be shown later,

when this happens the vortex will eventually elongate indefinitely. This is the Moore

& Saffman (1971) criterion for tearing and quoting them, it says "that a cylindrical

vortex has only a finite strength to resist deformation by an imposed strain." For

[g/-_[ < 0.15 the cubic equation (4.2.47) has two real roots for he E [1, oo], one on

each side of he = 2.89. To track the migration of the stable root as the strain rate

varies is the approach of the quasi-steady elliptic model of Saffman.

To determine the stability of the stationary states, linearize (4.2.43) about them

and calculate the eigenvalues, _, of the system:

1g-2 = (1 + he) 2 (1 ---_,)_:] "

For he < 2.89 the term in brackets is negative; the eigenvalues are purely imaginary

implying a neutrally stable center in the (h,_) plane, with closed periodic orbits

about it. Hence a small perturbation leads to small fluctuations in orientation angle

and aspect ratio which is called nutation or libration. The frequency of nutation

is the imaginary part of the eigenvalues. For he > 2.89 the eigenvalues are purely

real implying an unstable saddle with perturbations leading locally to irreversible

elongation.

Both Kida (1981) and Neu (1984) have studied the global behavior of equa-

tions (4.2.43) but we prefer to discuss the more graphical and visual presentation

of Neu. He considers trajectories in the phase plane (X,Y) - (h cos _,hsinT_).

The equations possess a conserved energy function 7_¢(h, _) whose level curves are

possible trajectories. For the cases of time varying strain in Chapter 5 the plane
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(X,Y) - ()_ cos(_o - =),)_sin(_ - _)) will be used to display the pattern of defor-

mation. To acquaint the reader with its interpretation we reproduce Neu's plot for

g/_ - 0.11 in Figure 4.3. The dotted lines represent the regime of nutation; solid

lines, full rotation and dashed lines, irreversible elongation. The empty areas consist

of elongating trajectories which have been omitted for clarity. The thick lines are

separatrices which bound the three regimes. Since we have defined _ _ 1, trajecto-

ries inside the unit circle are not shown. An orbit on the separatrix of the nutating

and rotating regions jumps abruptly by lr/2 when it encounters the unit circle. The

direction of the jump does not affect the shape of the ellipse.

For other values of g/'_÷ we shall oaly describe the features. From the previous

discussion, as g/-_ increases, the saddle and center approach each other thus shrink-

ing the region of rotation to narrower annular bands until it disappears altogether at

g/'_¢, = 0.1227. At g/_¢, = 0.15 the center and saddle coalesce and there are no initial

conditions (apart from an exceptional set of measure zero) which will not eventually

lead to unabated elongation.

4.2.5. Ezpected deviations from the elliptic model

Here we shall discuss the deviations to be expected from the elliptic model arising

from more complex core dynamics. If we suppose that the vortex tings are well

separated then assumptions about core structure are the most critical, especially for

the acoustic signal. The only place where core structure is essential in the elliptic

model is in the self-induced motion for which Moore's solution (1980) was used. We

consider Moore's (1980) solution and first calculate the acoustic signal it generates.

In Chapter 6 this will provide a useful estimate for interacting tings if one of the

vortices is in the rotation regime in Neu's phase plane. Then we discuss deviations

that may arise in practical situations. Finally we use contour dynamics to assess

deviations from Moore's sohtion for thicker cores.

Of interest first are the time behavior of the acoustic signal and the acoustic

efficiency which we define to be the fraction of the total energy of the flow which is

radiated during one complete rotation of the core boundary.

According to MOhring's (1978) theory of vortex sound, the acoustic source func-

tion for the axisymmetric case is

Q(t) = fw_(z,_,t)z. 2 dzd¢. (4.2.49)
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In terms of Q(t), the acoustic pressure (in the far-fidd) is

P° l (cos' - l) O-(t - ,/Co), (4.2.50)=

where co and po are the speed of sound and density in the medium at rest, and _9 is

the polar angle.

Next, introduce an axial coordinate z' which moves with velocity U(t) parallel to

the z-axis:

(z')z'= z- Zo + U(t')dt' . (4.2.51)

In terms of this coordinate

The first integral is constant if U(t) is chosen to be Helmholtz's (1858) definition for

the speed of an unsteady vortex ring. Saffman (1970) calculated U(t) for n viscous

vortex ring, and Inter Moore (1980) calculated it for the situation we are considering.

It can be computed without knowledge of the deviations of the dynamics from local

two-dimensionality. Thus, as we shall see, even when the core departs from ellipticity

due to curvature effects, the prediction of the acoustic signal remains good. For this

vdocity, Moore (1980) obtained

U(t)= F [ (16R _ 1 3(a-b) ]4_-R 1Og\a+b/-4 +2_)c°s2_° ,

I't
_(t) = _o+

r(a -1- b) 2'

Here R is the "impulse radius" of the core defined by

where P the impulse is
I"

P
-- _ / ¢_(Z, 0-, t) 0 -2 dzd0-,

which is also the integral in the second term in (4.2.52).

proportional to the third time derivative of (4.2.52), hence

Q'(t) = Zu-(t).

(4.2.53)

(4.2.54)

(4.2.55)

The acoustic signal is

(4.2.56)

111



The acoustic signal is thus related to the motion of a particular centroid of the vortex.

Substitution of (4.2.53) into (4.2.56) gives

Q'(t)
- cos 2_,C

3P1/2r T/2 (a - b) (4.2.57)
C=

2_r'/2 (a+b)5"

The acoustic signal is thus sinusoidal at twice the frequency of the core rotation.

Since it may be of interest to check this result in the laboratory we shall now

discuss possible deviations from it. Consider an experiment in which the core is

distorted into an elliptical shape by passing it through a converging section. If the

vortex ring is perturbed to an aspect ratio of 1.2 and has a core size to radius ratio

of 0.3, the value Kambe & Minota (1983) estimate their apparatus produces, then

(4.2.57) together with (4.2.50) predicts an amplitude of 1 Pa. for a Mach number

based on translational speed of 0.2. This amplitude is about a fifth of the peak value

they measured for colliding vortex rings and is certainly detectable. One may be

concerned about the fact that the core structure may evolve during the course of

several core rotations. For example, Melander, McWilliams & Zabusky (1987), using

a spectral simulation in two dimensions, found that an elliptica_ vortex with a peaked

vorticity distribution, which is closer to the experimental situation, tends to become

nearly circular in just two eddy turnover times. Hence Moore's solution may not

apply. Nevertheless, if changes of the core structure occur they should be detectable

acoustically.

To estimate the effect of viscosity, if we now substitute the expression for the

velocity of a viscous vortex ring obtained by Sa_man (1970) into (4.2.56) we get

F2R

Q"(t)- 81rt2, (4.2.58)

which is independent of the viscosity. Here t is measured from a virtual origin when

the vortex is a Helmholtz ring. Equation (4.2.58) holds so long as the assumptions in

Saffman's theory remain valid, namely, that the core is so slender that the vorticity

diffuses in a two-dimensional fashion and viscous cancellation of circulation at the

axis of symmetry is negligible. Equation (4.2.58) represents the quadrupole part

of the noise; according to the formulation of Kambe & Minota (1983) there is also

a monopole contribution due to energy dissipation which is negligible in Saffman's

theory.
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The energy per unit density radiated during the interval [0, T] through a sphere

of radius r in the far-field is

Ea=2_rr'foT fo"d_ p_(r,_,0 sin_ d_. (4.2.59)
Po Co

Putting (4.2.50) into this and then setting T to the period of core rotation one obtains

1 rTR2 (a- b)2 (4.2.60)
E.= 20_ lr 3 (a+b)S'

whereas, from Moore's paper the energy of the hydrodynamic flow is

Let us define the radiation efficiency , _?a, as the ratio Ea/E:

8r_e_ M s (4.2.62)
_a --

5a ,6 [log (_) - ¼]5 [log (_,) - ¼]

where a', is a measure of the thickness of the core and is defined as

a+b
a' - (4.2.63)

2R

M is Mach number associated with the average translation velocity, and ee is a mea-

sure of the eccentricity:
_-1

(4.2.64)
eel- A+I"

For any fixed non-zero value of ee, as the core shrinks to a point, ya blows up. However,

the acoustic theory remains valid only if the energy radiated away by the sound does

not deplete a significant portion of the total energy. Hence, as the core size becomes

thin, one must place a limit on the maximum Mach number. Figure 4.4 plots the

acoustic efficiency as a function of a' for various aspect ratios for a vortex Mach

number of 0.2 which is typical for the vortex rings produced in Kambe's apparatus.

We now describe how the acoustic signal was numerically evaluated for many

interacting rings in the elliptic model. In this case, the right hand side of (4.2.52) is

to be summed over individual rings, using separate coordinates, each chosen to move

at the speed Ui(t) of the Helmholtz centroid of the ring in order to make the first

integral in (4.2.52) a constant:

£O(0 = constant+ + Ui(t')dt'. (4.2.64a)
i i
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The second term above is proportional to the total impulse and is also constant. The

speed of the Helmholtz centroid is the speed of the shape centroid minus the speed

of the shape centroid relative to the Helmholtz centroid. The latter is provided by

Moore (Equation 3.5) so that after substitution Equation (4.2.64a) becomes

3 2 sin2_i_ constant. (4.2.64/))
$

We shall now study how the acoustic signal of Moore's vortex deviates from

solutions computed with contour dynamics for thick cores. These runs constitute

a test of the effects of curvature on local two-dimensionality. Two cases were run

with the same aspect ratio of 1.5 but different thickness. In the first case, the initial

major-axis to radius ratio a/Lo = 0.30 which is out of the range of the applicability of

Moore's solution. The contour was represented by 300 segments. The initial and final

states are displayed in Figure 4.5. The total translation is about 2 radii during which

time a particle on the boundary undergoes 3½ revolutions. The core does not remain

eUiptical; a fine wisp has broken from the surface. The dotted line is the trajectory

of the vorticity centroid exaggerated by a factor of 15 for clarity. It undergoes small

radial oscillations at twice the frequency of the core rotation in accord with Moore's

prediction. The letters A-H indicate centroid positions every half of a particle rotation

and Figure 4.6 shows the corresponding core shapes. As your eye follows the top row

of frames (A, C, E & G) which correspond to the same phase, observe steepening

of the contour at the rightmost point, the formation of a cusp and breaking against

the direction of rotation as required by conservation of angular momentum. In the

lower row of figures (also at equal phase) note the flattening in the left regions of the

boundary, the formation of an indentation, and finally the shedding of a filamentary

region. Aside from this wisp, frames F and H have nearly identical shapes. The main

difference is that the bump-like region has receded inwards whereas the flattened

portion has bulged outward giving the core a rounder appearance. This tendency

is depicted quantitatively in Figure 4.7 showing the variation of aspect ratio (of the

ellipse fit by moments) with time. The maxima correspond with the upper frames in

Figure 4.6 and the minima with the lower ones. Note the secular decline of the mean

level of the fluctuations. It is tempting to conjecture that the vortex is approaching a

steady state close to a member of the NF family if the shed wisps are ignored. Another

possibility is that the core is tending towards a periodic orbit more complicated than

a rotating shape. An interesting study would be to numerically determine the family
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of periodic orbits from the axisymmetric contour dynamics equations. When the core

thickness parameter is increased from zero, one family of solutions would bifurcate

from Moore's solution and other families from the two-dimensional rotating solutions

of Wu, Overman & Zabusky (1984).

The determination of which, if any, of the two outcomes wiU prevail is not possible

at present because the algorithm loses accuracy when two non-adjacent portions of

contours come dose together. For example in the above calculation, the relative

change in circulation and impulse was -0.05%; about 60% of this change took place

in the last few time steps when the wisp began to thin.

Figure 4.8 shows the axial velocity of the shape centroid (solid) compared with

Moore's solution. The theory overpredicts the actual amplitude with an increasing

error. One would then expect the acoustic radiation to be overpredicted also. That

this is so is shown in Figure 4.9. The amplitude is about 65% of the asymptotic result

with a secular decrease and phase drift.

The next case is for a thinner core (a/Lo = 0.10) which is better approximated

by the theory. Figure 4.10 shows the trajectory of the shape centroid for just over six

particle rotations. The letters identify frames in Figure 4.11. Compared to the thick

core case they show that a finer wisp is shed after roughly twice as many periods. Fig-

ure 4.12 shows that again the aspect ratio osciUates as it decreases. Figure 4.13 shows

that the acoustic signal (solid) compared with the prediction (dashed) is exceUent.

Studies in connection with azimuthal instabilities (Widnall & Tsai 1977) have

shown that to second order in core thickness the effect of curvature is the appearance

of strain-like terms. This accounts for the oscillations observed in aspect ratio as

follows. Saffman (1978, Equation 4.2) provides an estimate for the strain rate due to

curvature. For our case his expression becomes

e 3ab [l (16_ 17] (4.2.65),

and evaluates to 0.0023 and 0.039 for the thin and thick core cases. From (4.2.25)

the amplitude of small aspect ratio osciUations can be estimated after using the fact

that when the aspect ratio is not close to unity and the strain rate to vorticity ratio

is small, the self-rotation term dominates and _b can be taken to be its unstrained

value. We obtain

)_tmap _ ()_ + 1) 2 me, (4.2.66)
w4,
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from which _amp -" 0.025 and 0.14 for the thin and thick core cases respectively. This

compares well with the observed amplitudes of 0.023-0.026 and 0.13.

The reason for the non-ellipticity and secular decrease in aspect ratio is less clear.

Love (1893) showed that an unstrained elliptical vortex is stable to non-ellipticai per-

turbations if _ < 3. The presence of the weak strain due to curvature is therefore

important. The analysis of Moore & Sa_ffman (1971) shows that a strained steady el-

liptical vortex in two-dimensions is stable to non-elliptic perturbations for the present

values of e/_¢. Thus the conjecture is that unsteadiness in the presence of strain is

important and therefore what needs to be considered (as a problem that we would

like to suggest) is the stability to non-eUiptic perturbations of a two-dimensional ellip-

tical vortex undergoing periodic motion on one of Neu's closed integral curves. The

periodic unsteadiness allows the possibility of parametric excitation of non-elliptic

modes.

4.3. Summary

We began this chapter by reviewing Dyson's (1893) model for interacting vortex

rings. The model assumes that cores are thin, widely separated and always circular.

Equations of motion (§4.1.1) were provided and then cast into Hamiltonian form

(§4.1.2) in order to discern two conserved quantities. These quantities are the sum of

the generalized momenta which corresponds to the linear impulse and the Hamiltonian

which corresponds to the total energy for thin non-overlapping cores. The invariants

were used to obtain the trajectories at large times for the collision of two identical

vortex rings, and, for later comparison with contour dynamics, the asymptotic rate

of stretching was given (§4.1.3).

In §4.2, an elliptic model which allows cores to be deformed into ellipses, but

which retains the assumptions of thinness and large separation, was assembled from

known solutions. An elliptic model for two dimensions has been developed in Me-

lander, Zabusky & Styczek (1986, MZS) by formal expansion of the contour dynamics

equations. A similar technique appeared intractable for the axisymmetric case so a

simpler approach was followed. The approach was first shown to be valid for two-

dimensions in §4.2.2 and was then applied to the axisymmetric case in §4.2.3. It made

use of Kida's (1981) analysis for the behavior of an elliptic two-dimensional vortex

subjected to strain and Moore's (1980) solution for the self-induced motion of a thin
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vortex ring of eUiptical cross-section. Section 4.2.4 considered the case of fixed strain,

and the terminology of nutation, rotation and tearing was reviewed. FinaUy, the

acoustic signal that Moore's solution generates was studied and the departure from

Moore's solution for thick cores were investigated using contour dynamics (§4.2.5).

Two deviations were observed. The aspect ratio osdllates with an amplitude that can

be accounted for by self-induced strain due to curvature. In addition, the aspect ra-

tio underwent a secular decline accompanied by an instability of a non-elliptic mode,

possibly due to parametric excitation by the primary osdllations.
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FIGURE 4.3. Phase portrait for the evolution of an elliptic vortex subjected to a
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FIGURE 4.5. Motion of an initially elliptical core with an aspect ratio of 1.5 and

a/Lo = 0.3. ----, trajectory of the vorticity centroid with amplitude ezaggerated by

a factor 15; A-H , indicate instants for which the core shapes are plotted in the next
figure.
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FIGURE 4.7. Variation of aspect ratio for an initially elliptical core with aspect ratio
1.5 and a/Lo = 0.3. tiT is the time normalized by the core rotation period.
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period. _, contour dynamics; .... , Moore's solution, Equation (4.2.39).
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dynamics; .... , asymptotic result, Equation {4.2.57).
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core shapes are given in Figure 4.11.
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FIGURE 4.11. Core shapes at the instants A-F indicated in the previous figure. The
symmetry a_is is horizontal across the page. +, vorticity centroid.

124



,<

1.50

1.48

1.46

1.44

1.42

I I

t/

! ! !

t
1.40 i I I I

0 0.5 1 1.5 2 3.5

t/T

/

I I

2.5 5

FIGURE 4.12. Variation of aspect ratio for an initially elliptical core with aspect

ratio 1.5 and a/Lo = 0.1. tit is the time normalized by the core rotation period.

JI e i o I _ • w

Q i D w II m

0.5

-0.5

. i

-I

0 0.5 1 1.5 2 2.5 3

t/'r
3.5

FIGURE 4.13. Acoustic signal for an initially elliptical core with aspect ratio 1.5
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CHAPTER 5

ACOUSTICS AND DYNAMICS OF

COAXIAL INTERACTING VORTEX RINGS

Using the contour dynamics method for inviscid axisymmetric flow developed in

Chapter 3, we examine the effects of core deformation on the dynamics and acoustic

signatures of two coaxial interacting vortex rings. Both "passage" and "collision"

(head-on) interactions are studied for initially identical vortices. Good correspon-

dence with experiments is obtained. A simple model developed in Chapter 4 which

retains only the elliptic degree of freedom in the core shape is also used to explain

some of the calculated features.

Acoustic signals are calculated using the low Mach number theory of M6hring

(1978). The final result was given in Equations (4.2.49) and (4.2.50). As these

expressions show, to obtain the time behavior of the far-field acoustic pressure requires

merely the evaluation of the third time derivative of the centroid of the vorticity as

defined by Helmholtz (1858). The time factor of the acoustic pressure is denoted as

Qm(t) in the figures.

Unless otherwise spedfied, the initial core shapes were chosen from the steadily

translating family of solutions computed by Norbury (1973). The initial shapes are

parametrized by a which is the ratio of area-effective core radius to toroidal radius

Lo. The ratio of initial separation to Lo is denoted as d.

5.1. Passage cases

5.1.1. A weak passage interaction (a = O.l,d= 1)

Figure 5.1 shows the successful passage of one ring through another. Since Nor-

bury (1973) does not provide them, properties required for normalization were ob-

tained from Fraenkel's (1972) asymptotic analysis. The cores hardly distort and re-

main slender. One may therefore expect Dyson's model to predict the acoustics well.

However, Figure 5.2 shows this not to be the case. Dyson's model (chain-dashed)

predicts a minimum when the vortex centers are coplanar and symmetry about this
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point. The contour dynamics result (solid) is similar but has superimposed oscilla-

tions of unexpectedly large amplitude. These are due to core deformations excited

by the straining field of each vortex on the other as we discuss below. The dashed

curve is the prediction of the elliptic model.

The acoustic efficiency t/, is the ratio of the energy radiated during the simulation

to twice the energy of each vortex in isolation. Dyson's model gives _a = 2.04M s,

where M is the Mach number based on the initial self-induced velocity of each vortex.

For contour dynamics, r/a is 6.8 times larger. The literature often points to bulk core

motion as the source of sound without regard for small variations in that motion.

This case demonstrates that, because the signal is proportional to the third time

derivative of the centroid, even very small variations in the motion can be significant

noise sources.

The frequency of core oscillations scales with the vorticity which, for thin cores

and large separations, is larger than the passage frequency. Figure 5.3 plots the

spectrum of the acoustic signal calculated for four passages with the elliptic model.

The number of data points is 4804 so the highest frequencies shown are well below

the sampling frequency. The signal was truncated using the Harming function

fH(t)=C. - _cos-_-, / 0 <t<T., (5.1.1)

where Ts is length of the signal and the constant CR was chosen to give the same

energy as the top-hat truncated signal. The passing frequency (about n = 4) is

not dominant; the peak of the first band occurs at about three times this frequency.

This is because overall motion, as represented by Dyson's model, does not produce a

sinusoidal signal but rather a peak that is localized about the midpoint of the passage.

The second band is due to core deformations. The frequency corresponding to half

the initial vorticity is n = 76. The dominant frequency is about 25% larger.

Next we discuss the core deformations which produce the high frequency part of

the signal. Figure 5.4 shows aspect ratios of the ellipses fit to the moments of the core

shapes predicted by contour dynamics. The solid line is for the initially trailing vortex

which undergoes compression. This is maztifested as a decrease in the frequency of

the oscillations. The oscillations occur about a level which increases as the strain

experienced by the core increases. The behavior for the initially leading vortex is

shown by the dashed line. As it stretches, the frequency of oscillations increases. The

level about which oscillations occur varies weakly because the ratio of strain rate to
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vorticity varies little: the effect of smaller separation is compensated by the reduced

strain at larger radii (see Figure 4.2) as well as increased vorticity.

The above interpretations were suggested by the elliptic model whose results We

display in Figure 5.5. The overall features are reproduced. A notable difference is

•the absence of a dip in the aspect ratio of the compressed vortex hMfway through

the interaction. This is probably due to the combined effect of thickening of the

core and proximity of the cores which violate assumptions of the model. The dotted

and chain-dashed lines correspond to the stable fixed point as the strain rate varies.

In this case, the osdUations follow the fixed points, however, in the next case the

strain rate varies sufficiently rapidly that there is a marked excursion. Notice the

aperiodicity of the deformations; both contour dynamics and the elliptic model show

a phase lag at the end of the passage for the initially front vortex.

The ellipse orientation (Figure 5.6) shows that the initially forward vortex exe-

cutes rotations while the rear vortex nutates. The number of peaks in the acoustic

signal is twice the number of peaks in the orientation angle of the stretched vortex.

At these small aspect ratios the nutation frequency from (4.2.47) and (4.2.48) is

1

(5.1.2)

while the rotation frequency is ham this. For rotation at fixed strain, the shape

repeats every half a rotation as should the acoustic signal. Therefore at small fixed

strain, both nutation and rotation produce an acoustic signal with frequency given

by (5.1.2). Figure 5.7 shows individual contributions to the acoustic signal for the

elliptic model. It is surprising that the self-acoustic-energy for the front vortex which

rotates at smaller aspect ratio is 34% larger than for the nutating rear vortex.

The elliptic model is used to consider the effect of equilibrium initial conditions.

The NF shapes are perturbed initially by the presence of the other vortex. In the

"tamest" initial conditions, the core shapes are in equilibrium with the field induced

by the other vortex. We shall not attempt to say if this is more realistic vis _ vis

experiments. The question has to do with the effect on the rolling-up process at the

lip of the orifice by the presence of another vortex. A similar situation occurs in

the roll-up of aircr_t trailing vortices where two halves of the sheet, evolving in the

presence of an image, form non-circular spirals.

Figure 5.8 shows the aspect ratio for two passage periods. The initial (equilib-

rium) value is about 1.025. Small amplitude oscillations are excited on the passing
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vortex after the mid-point of the first passage. The increase in efficiency of the acous-

tic signal (Figure 5.9) over Dyson's model is 1.71 in the first passage, much smaller

than for "perturbed" initial shapes.

5.1.2. A moderately strong passage interaction (a = 0.2, g = i)

For the case shown in Figure 5.10 the core sizes were doubled from the previ-

ous case. The solid line was calculated using contour dynamics and the dashed line

with the elliptic model. As before, the deformation of the stretched vortex is com-

paratively weak but the compressed vortex undergoes unabated elongation. Until

- Uot/Lo = 1.35 the elliptic model describes the elongation process well. There-

after a thin filament torn from the trailing vortex begins to wrap around the leading

vortex. The vorticity centroid shown as the '+' sign lies outside the vortex and the

elliptic model cannot be expected to work well. To continue the calculation beyond

t'- 1.49, thinned leading portions of the filament were removed. At t'= 1.89 the core

pinches. Subsequently, a thin umbilical sheet connects the captured region and the

region that moves away. This umbilical sheet was also removed. 60% of the circula-

tion of the vortex is captured, 24% resides in the sheet-like structure that propagates

away a_ad 16% is lost in the removal of thinned regions.

In" the two-dimensional case, the analogous interaction is a pair of co-rotating

patches. Due to symmetry, moderately strong interactions are characterized by an

exchange (Overman & Zabusky 1982b) rather than capture of vortical fluid. The

asymmetry in the axisymmetric case is due to unequal strain rate histories experi-

enced by the vortices. To realize the two-dimensional outcome would require small

core sizes and separations compared to the radius. Capture has also been observed

in jet shear layers by Hussain (1980): "Evolution of large-scale structures occurs not

primarily through complete pairing as widely believed, but frequently through 'frac-

tional pairing' when substructures torn from larger structures pair up, or 'partial

pairing' when one structure captures only a part of another."

One may think that the tearing occurs because the strain rate exceeds the a_x-

isymmetric equivalent of the critical value above which no stable equilibrium exists

(Moore & Saffman 1971). In §4.2.4 we saw that for g/(F/Trab) > 0.15 a vortex sub-

jected to fixed strain will elongate for any initial condition. Figure 5.11 shows that the

strain-rate at the passing vortex remains well below the critical value. The reason for

the elongation is that the strain-rate a_ad its orientation vary sufficiently rapidly that
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the core shape overshoots the equilibrium and finds itself in a regime of elongation.

This is depicted in Figure 5.12 where the solid line shows the aspect ratio for the

elongating vortex and the dotted line is the stable equilibrium value corresponding

to the strain rate of the previous figure. The deviation from equilibrium is marked.

The two-dimensional analog is two co-rotating vortices. Compare equivalent el-

liptic models for the axisymmetric and two-dimensional cases. By equivalent we

mean that in the two-dimensional model only the point vortex part of the far-field

is considered in determining the strain rate and the motion of the centroids. Such

a model has been considered by Moore & Saffman (1971). For the two-dimensional

model, the strain is constant in time so whether tearing occurs is determined by the

initial conditions and the Moore & Saffman criterion applies. Further, it is known

(Moore 1979) that for two circular vortices to tear according to the elliptic model,

they must initially overlap! Two-dimensional vortices tear due to the larger strain on

the major axis side than the point vortex value given by the elliptic model. Roberts

& Christiansen (1972) found that for initially circular vortices, d/6, the separation to

core radius ratio had to be less than 3.4 for (convective) merging; Saffman & Szeto

(1980) found no steady co-rotating solutions to be possible for d/6s < 3.16, where 6s

is the area-effective core radius. The present case has digs = 5, yet tearing occurs.

Variation of strain is therefore important in the axisymmetric case.

Consider plane shear layers. The Moore & Saffman criterion does account for

tearing because, in a linear array of vortices, the strain can be supercritical if the

spacing is small enough (Moore & Sa_man 1975a). Consider however a pairing inter-

action in which the condition for tearing is not met but vortices in the array co-rotate

due to the sub-harmonic instability. The strain-rate does vary and deviation from

equilibrium may occur, a dynamic (non-linear) effect not accounted for in the stability

analyses. In axisymmetric arrays additional strain variations occur due to curvature

and this may be one reason (in addition to azimuthal instabilities) why axisymmet-

ric shear layers exhibit less organization than planar ones. According to Zaman &

Hussain (1984), Clark's (1979) flow visualization experiments reveal enhanced tear-

ing and fractional pairing in jets compared to plane mixing layers. It is likely that

overshoot due to strain variation accounts for this.

We now discuss the acoustic signal shown in Figure 5.13 up to _" = 1.49 when

the wisps were cut. In addition to oscillations, there is a large dip associated with

local elongation, viz the rolling up of the wisp. Uniform elongation prior to this time
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does not result in a significant deviation from Dyson's model (chain-dashed) nor does

the uniform elongation of the elliptic model. The acoustic efflciencies are 4.62M s for

Dyson's model and 23.6M 5 for contour dynamics.

The long-dashed curve in Figure 5.19. shows the aspect ratio for the rear vortex

corresponding to equilibrium initial conditions. Elongation is not prevented and the

long-dashed curve in Figure 5.13 shows that apart from a phase lag resulting from a

smaller self-induced velocity (see the remark following Equation 4.2.42) the acoustic

signal is almost identical to Dyson's model. We conclude that the acoustic signal is

sensitive to small changes in initial conditions but whether elongation occurs is not

affected. Uniform elongation does not yield a significant contribution to the acoustic

signal.

Next, a passage interaction with the same circulation and core size as the present

case but a peaked vorticity distribution is studied using the vortex filament method

described in Appendix 5.B. The rings employed are due to Fraenkel (1972) and are

discussed further in §5.B.4. Relative to the linear vorticity case, the vorticity is

stronger in the inner region but weaker in an outer band. Specifically, in units of

Figure 5.63, the linear vorticity varies between 6.37 and 9.56. Is this distribution

more or less resilient to being strained?

First the filament method is benchmarked for the linear vorticity case. The ini-

tial discretization is documented in Appendix 5.B. Figure 5.14 compares the location

of filaments (dots) with the contour dynamics result (solid line). The agreement is

excellent until sheet-like regions form and resolution degrades. In particular, note

the clumping of filaments in the sheet-like regions in a manner suggestive of Kelvin-

Helmholtz instability. This is not present in the contour dynamics result. Figure 5.15

shows the filament calculation beyond the final instant possible with contour dynam-

ics. It shows that the thin region which initially avoided being captured is eventually

captured. The acoustic signal is the chain-dotted curve in Figure 5.13. It is almost

identical to the contour dynamics result until the latter has a sharp dip. The signal

for the entire calculation is provided separately in Figure 5.16.

Figure 5.17 shows a passage for peaked vorticity. Except for a fine wisp that is

captured by the front vortex the passage is successful! A spiral arm forms, similar to

that which is later observed for the a = 0.18 linear vorticity case. The second passage

shown in Figure 5.18 is also successful. The passing vortex again forms a spiral arm

and there is an exchange of filaments between the vortices.
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The acoustic signal is shown in Figure 5.19; note the higher frequency of the

initial oscillations and the production of higher harmonics. To obtain an indication

of the dominant frequency, a spectrum (Figure 5.20) was calculated but, as the length

of the record here is not long and fine scales are unresolved, we urge caution in its

interpretation. The peak frequency is 0.47 of the initial maximum vorticity and

corresponds to 16 oscillations in the record.

5.1.3. Behavior in the range 0.1 < a < 0.2, d= 1

Because the differences between the a = 0.1 and a = 0.2 cases proved to be

so dramatic, the elliptic model was used to probe intermediate values of a at inter-

vals Aa = 0.02. The purpose of the study was to identify the significant qualitative

differences that occur as a changes, and to examine the extent to which contour dy-

namlcs also exhibits these differences. For the contour dynamics simulations, because

Norbury (1973) did not provide the steady core shapes in this range, the asymptotic

solution of Fraenkel (1972) valid for small a was used.

First the a = 0.1 case for the elliptic model was extended to give 8 passages of the

initially rear vortex and the near-periodic behavior of the deformation was verified.

Attention will focus mainly on the initially rear vortex and to avoid repetition it will

be referred to as 'the vortex.'

Figure 5.21 shows the aspect ratio for a = 0.12 during 6 passages. The dashed

line is the equilibrium value corresponding to the instantaneous strain rate. The

largest value of strain occurs when the vortex is almost directly below its partner.

The strain remains relatively small and constant during those periods in which the

vortex is being stretched and passed. During the first passage there is nutation about

the equilibrium. An overshoot occurs when the strain changes rapidly but then the

oscillations follow the equilibrium and there is no permanent deformation. In the

second passage, the overshoot is larger and the mean of the oscillations fails to relax

to equilibrium. The orientation angle shows that this is accompanied by a transition

from nutation to rotation. In the first four passages, the aspect ratio rises after each

passage but is later reduced.

For a = 0.14, similar behavior is observed except that permanent deformation

occurs. A phase diagram is displayed in Figure 5.22. The distance of a point from the

origin is the aspect ratio and the angle with respect to the X-axis is the orientation

relative to the instantaneous strain axis, the equilibrium being situated on a 45 °
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llne. The initial condition lies on the unit circle at arbitrary orientation, however,

an infinitesimal time later it becomes aligned with the strain direction end begins

nutating. The solid circles mark points at which the radius is a minimum; the points

of maximum rate of change of strain slightly precede these. Overshoot followed by

relaxation to a cycle of higher aspect ratios consistently occurs in the vicinity of these

points.

Next we investigated whether this behavior is exhibited by contour dynamics.

Figure 5.23 depicts successive instants during a single passage. The net increase in

the aspect ratio of the passing vortex is evident at the last instant. Also noticeable is

a region of large curvature where a wisp later forms leading to breakdown of the simu-

lation. Aspect ratios are shown as circles in Figure 5.24. Overshoot and excitation to

higher aspect ratio are present and satisfactorily follow the prediction of the elliptic

model (dashed line). We cannot state with certitude that subsequent wisp formation

will not significantly diminish the excitation. In §4.2.5 it was observed that, for finite

cores, deviations from the elliptic model are manifested as slow reduction of aspect

ratio via wisp formation. It was conjectured that this is an analog of the Love (1893)

instability that occurs in the axisymmetric case at aspect ratios less than 3 due to

parametric excitation by the straining field of the vortex itself. It is believed that this

phenomenon occurs here with the induced strain also playing a significant role.

The transition from nutation to rotation at higher aspect ratios causes larger

acoustic amplitudes in the second half of the passage as shown in Figure 5.25. The

efficiency of the radiation is ,7 -- 15.02M 5, larger than in the a = 0.1 case in which the

vortex always nutates. In both cases, the second vortex rotates with small eccentricity.

If it is assumed that during the period of weak strain at the end of the passage each

core is rotating independently, then Equation (4.2.57) can be usecl to estimate the

amplitude. Using mean values of the required quantities at the end of the passage

gives an amplitude of 10.8 which is close to the observed value; 85% of the sound

comes from the vortex with larger aspect ratio.

RecaLl that for ct = 0.2 tearing is observed at the first passage. For c_ = 0.18

the elliptic model predicts tearing at the third passage. The largest strain rate is

40% of the critical tearing value. Figure 5.26 portrays the deformation in the phase

plane. The circle for A = 3 is the critical value in two-dimensions for non-elliptic

modes to become unstable in the absence of strain (Love 1893). At the first passage

the overshoot grazes this point but settles down to a cycle with Amax = 2.4. At the
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next passage, there is overshoot followed by undershoot during which the shape be-

comes nearly circular. The ensuing cycle has a lower _m_x = 2. Unabated elongation

along the strain axis occurs at the third passage (fifth if both vortices are counted).

In experiments (Oshima & Asaka 1977; Yamada & Matsui 1978, 1979) the number

of successful passages of dye before strong deformation and merging occurs ranges

between 1 and 4 (counting both vortices). Successive excitations of the aspect ratio

foUowed by eventual excitation into a regime of elongation may be the process. Asym-

metric weakening by diffusion observed by Stanaway, Cantwell & Spalart (1988a) (see

§2.9), would also play a role.

The contour dynamics result for a = 0.18 is shown in Figure 5.27 with the

corresponding aspect ratios in Figure 5.28. The grazing of _ = 3 predicted by the

elliptic model is also realized in the simulation but then the instability to a non-eUiptic

mode is accompanied by a larger drop in aspect ratio than in the model.

Finally, for completeness, we mention that for cz = 0.16 the elliptic model again

predicted tearing at the third passage. The main differences with the previous ease

were that at the first passage the aspect ratio peaked at the lower value of 2.25

followed by a cycle with _m_ = 1.75. However, at the second passage, instead of

de-excitation there was excitation to a cycle with _xn_ = 3.

These examples demonstrate that weak strains that fluctuate sufficiently rapidly

can excite (or de-excite) permanent elongation. This fact may be used to devise

schemes to control the break-up and acoustic emission of vortices in plane and ax-

isymmetric shear layers. Where shrouds may be used, the strain may be induced by

bumps in the wall.

5.1.4. Passage ofc_ = 0.40, d= 2

Figure 5.29 compares core shapes with the experiment of Oshima, Kambe &

Asaka (1975). The elliptic model predicts that for the rear vortex, the criticai value

for tearing is exceeded at Uot/Lo = 3.11 (rougMy frame (b)). The rear vortex is

considerably elongated near the symmetry axis and develops an anchor shape as part

of it rolls up around the leading vortex. This and other cases (a = 0.18, a = 0.20)

show that the remnants of tearing protrude towards, or are deposited along, the axis

of symmetry." This may explain why, unlike the plane mixing layer, axisymmetric jets

do not exhibit phase coherence between velocity traces on the high and low speed

sides (Zaman & Hussain 1984). The acoustic signals are given in Figure 5.30.
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We end with some studies using the vortex filament method. The method was first

tested for the linear vorticity distribution using 316 filaments per vortex. Figure 5.31a

compares the filament locations with the contour dynamics result at the final instant.

Aside from a small lag in the position, the agreement is very good. The acoustic

signal shown in Figure 5.32 (long dashed) also agrees well except for the final dip, a

feature also observed for a = 0.2. Figures 5.31b and c are two results for a peaked

distribution having the same circulation and area-effective core size as the linear case.

For (b) the core overlap factor fc defined in §5.B.4 was chosen to be 3, the same as for

the linear vorticity case but the resulting flow had 11.1% more energy. For (c), with

.fc = 5.9 the energy is the same as case (a). The initial vorticities for the two cases

are compared in Figure 5.33. The more energetic distribution is more peaked and the

corresponding configuration (Figure 5.30b) leads the contour dynamics result. There

are no other significant differences from the linear vorticity case. This is unlike the

= 0.2 case in which the peaked distribution was more robust and the passage was

successful. Figure 5.34 compares the speeds of the vorticity centroids of each ring

for the three filament computations and contour dynamics. The peaked distributions

have oscillations due to inherent unsteadiness. This unsteadiness is present because,

as explained towards the end of Appendix 5.B, the vorticity distribution employed is

steady only for small a. The oscillations are greatly magnified in the acoustic signal

shown in Figure 5.32. The initial frequency is about 0.39 of the peak vorticity. For

the linear vorticity case, the period associated with half the vorticity at the center of

the core is 6.29 and corresponds well with the period of the first acoustic oscillation,

which is about 6.25.

5.1.5. Characteristics of jet noise spectra

The main features of the acoustic signals presented for passage interactions can

be summarized as follows. Oscillations occur at a frequency corresponding to half the

instantaneous average vorticity. This reflects elliptic mode core nutation and rotation.

In cases in which the passage is not successful and one vortex is captured by the other,

the combined vortex continues to radiate at the same frequency as exemplified by the

filament method continuation of the a = 0.20 case. This is analogous to an isolated

elliptic vortex ring which has a purely sinusoidal signal at half'the vorticity (see

§4.2.5). For peaked vorticity distributions the frequency of acoustic oscillations is

roughly half the initial peak vorticity. In the case where the passage was successful
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(a = 0.1) the spectrum also had another peak at three times the passing frequency.

This is due to the bulk motion of the cores which produces a localized peak about the

midpoint of the passage. The precise form of the initial conditions is important: if the

shapes are initially in equilibrium with respect to the strain field of the other vortex,

the amplitude of the high-frequency part of the signal was substantially reduced. This

is probably a rare occurrence, however.

The purpose of this subsection is to document the presence of a frequency equal to

half the vorticity in jet noise measurements and the absence of a peak at the passing

frequency. We shall focus mainly on the experiments reported in the following series

of papers: Zaman & Hussain (1980, 1984), Hussain & Zaman (1980, 1981) and Zaman

(1985), which shall be denoted by roman numerals I-V, respectively. The last paper

contains acoustic spectra while the rest document other flow characteristics, including

the vorticity. The following notation is employed: StD: Strouhal number based on

jet diameter and jet exit velocity, Ue; Rej: Reynolds number similarly defined; fp and

fjc denote preferred and jet-column excitation frequencies (Hz), respectively.

In addition to the natural jet, three modes of excitation were employed in the

experiments: (i) the shear-layer mode in which several successive pairings of vortices

with initial core dimension comparable to the momentum thickness, 8m take place if

the shear-layer is laminar; (ii) the preferred mode (StD = 0.3) in which the shear layer

forms vortices with elongated cores (they are rounder with increasing Rej) which do

not pair but undergo azimuthal break-down (The preferred mode is the most frequent

occurrence in a natural high speed jet with white background noise (II, IV)); (iii) the

jet-column mode (I, III, StD = 0.85) which results in strong vortex pairing of thicker

core vortices regardless of the state of the exit boundary layer.

Let us first consider the preferred mode and assume, contrary to the conjecture in

Hussain (1983) that the azimuthal breakdown will not significantly contribute to jet

noise. This is suggested by the analysis of Michalke (1983) who demonstrated that

a large azimuthal coherence length is necessary for sound generation by a monopole

ring. We then suppose that internal core dynamics produce sound at a frequency

equal to half the peak vorticity so that the Strouhal number is

StD- (o:#)maxD (5.1.3)
47rUe
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Now in IV (Table 2) it is found that the peak phase averaged vorticity scaled on

the preferred mode frequency is the same for different Rej and state of the initial

boundary layer even though the size and orientation of the structures changes:

where

(W )max_ 10.25 0.95, (5.1.4)
/p

fp - 0.30- . (5.1.5)

Substituting (5.1.4) and (5.1.5) into (5.1.3) we get for the acoustic frequency

StD = 0.24 + 0.02,

which agrees well with the peak at StD = 0.25 observed for both the high speed

natural jet cases as well as those forced in the preferred mode (V: Figures 11, 12,

13 d, 15, 16).
Let us now turn to the jet-column mode which is represented by the ring passage

simulations. The absence of a peak at the passing frequency in the simulation spectra

is not without precedent. Moore (1977a, 1977b) has provided a puzzling piece of

evidence. Forcing at 0.2% of the jet velocity was applied in the jet-column mode.

Pairing of axisymmetric vortex rings was observed via flow visualization at about

three diameters downstream of the exit, and an acoustic telescope technique located

the acoustic source for all frequencies around the pairing location. Yet a subharmonic

was not detectable in the acoustic spectra though it is present in velocity spectra (V).

This led some to question the acoustic significance of pairing even when it is present.

Imagine that in a simulation, one vortex is created and propagates with its self induced

velocity Uo and that the second vortex is created Tc = dLo/Uo later. Then the ratio

of the passing period Tp to the creation period is UoTp/dLo. For the present cases

this ratio is about 2.0 so the passing frequency is roughly the subharmonic of the

forcing frequency.

More comprehensive data for the jet-column mode is provided in V. It has Rej =

60,000 for which the exit boundary layer is laminar; the level of forcing is 1_ of the

jet velocity at StD = 0.85. There is periodic vortex pairing with little jitter. Noise

spectra are given in V: Figures 7 and 8 at two angles to the jet axis. A small but

noticeable subharmonic spike is present. The peak in the spectrum occurs at six

times the subharmonic at StD -- 2.55. If the shear-layer mode were present it would
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contribute at StD = 1.5 and the natural jet spectrum does have such a peak. If the

higher frequency peak in the forced case is due to elliptic mode core deformations at

half the peak vorticity then one should have

(_)_'_ - 38.0. (5.1.7)

An earlier paper (III) provides phase averaged vorticity contours unfortunately for

Rej = 32,000 but with forcing at the same StD. However it is stated that the ratio of

the peak vorticity in the rolled up cores to the peak vorticity in the Blasius boundary

layer in the pipe is 0.60. We shall assume that this ratio holds for the experiment at

Rej = 60,000 and combine the following facts:

(o_,)ma x 0.60(.4696)'_, Om/D = 0.004, fjc= 0.85U,D (5.1.8)

The expressions are 0.60 of the peak vorticity for the Blasius solution, the momentum

thickness at the exit from V:Figure 26 and the forcing frequency. One obtains

(_°÷)m_x = 38.9, (5.1.9)

which agrees very well with (5.1.7).

In conclusion, there is evidence that peaks in measured acoustic spectra corre-

spond t6 half the peak phase averaged vorticity in both the preferred and jet-column

modes; this is consistent with elliptic mode core deformations being the sound source.

It is possible that other features such as the breaking of waves on the boundary may

also radiate at the same frequency. In the jet-column case this frequency is larger

than the pairing frequency.

On the other hand, laminar shear layer mode pairing (e.g. in natural low speed

jets) does produce a peak at the pairing frequency. If several stages of pairing take

place, as happens under forcing, then subharmonics are also present. For example,

V: Figures 13a and 17c-d show two distinct peaks, one at the forcing frequency and

another at a frequency six times larger. Zaman believes (and we agree) that part of

the noise is internal to the jet facility and that the high frequency peak corresponds

to the first stage of pairing. For example for V:Figure 13a, Rej = 120,000 which

implies from V:Figure 2a that Om/D = 0.003. The roll-up frequency corresponds to

Store= 0.012 so that the subharmonic is at StD = 2.0 which is close to the high
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frequency peak at StD = 2.3. In these low-speed cases even high amplitude preferred

mode forcing up to 1.25% of the jet velocity does not eliminate the high frequency

peak suggesting that shear layer mode pairing is still present.

The current study has not addressed interaction of vortex rings that are closely

spaced, have thin cores and hence result in nearly two-dimensionM interactions that

are characteristic of shear layer mode pairing. Investigation of this region of the

parameter space is planned and preliminary results indicate that because of local

two-dimenslonality the angular velocity of the line joining the centers of the vortices

is constant resulting in one period of a nearly sinusoidal signal for the overall motion

(Dyson's model). This is analogous to the acoustic signal that Moore's elliptic core

vortex ring produces in half a rotation. On the other hand, recall that for jet-colunm

like interactions Dyson's model produces a localized peak at the midpoint of the

passage. When core deformation effects are included via the elliptic model it is found

that the spectrum shows a peak only at the passing frequency provided the passage

period is comparable to the period of core deformations. This occurs for initial

conditions in which the core size and separation distance are comparable. Whether

this parameter range is correct for the shear-layer mode is one of the questions that

will be addressed.

Finally, we would like to mention the important and intriguing phenomenon of

broadband amplification which is one of the chief objectives of Zaman's paper (V).

Jets forced in the jet-column mode show a significant (up to 8dB) noise increase over

the unforced jet at all frequencies and angles. Very low threshold levels of forcing

are required; these levels certainly exist in jet engines. There is now considerable

experimental evidence that this noise is associated with vortex pairing. The question

remaining is what aspects of pairing are important. We have seen that internal core

dynsmics_ especially the elliptic mode, can radiate. However, in the jet-column mode_

slow azimuthal wa'iations also occur and they may be important. In this regard the

recent unpublished work of M6hring reported briefly by M_fller _: Obermeier (1088)

on the sound radiation by a vortex filament distorted szimuthally in the shape of an

ellipse may be relevant. From Fohl _ Turner (1075, Equation 1) the frequency of the

elliptic azimuthal mode for a thin isolated ring is

_-- 2 [log -
024,
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and therefore dependent on the core size. At present therefore we are unable to

connect it to measurements in circular jets. Nevertheless, the importance of core

distortions relative to azimuthal ones needs to be studied.

5.2. Collision cases

5.2.1. Collision ofa = 0.20, aT= 8

This case has the thinnest cores among the collision examples considered. The

shapes of the cores (at equal time intervals except the last) are shown in Figure 5.35

along with the trajectory of vorticity centroids. The shape at the final instant is

magnified in Figure 5.36a and compared with the two-dimensional steadily translating

pair (dotted) first calculated by Sadovskii (1971).* The agreement is very good.

Assume that in their subsequent motion the cores retain the shape of the Sadovskii

pair while increasing in radius and shrinking in area. If the core dimensions and inter-

centroid separation are small in comparison with the radius, the rate of stretching

of the centroid will be the speed of the 2-D state provided by Saffman and Tanveer

(1982)

37.1Is(t)' . (5.2.1)

where S(t) is the cross-sectional area of one member of the pair. Substituting r =

.A_TS where .A is the constant of proportionality for the linear variation of vorticlty

inside the vortices, we obtain

_a/2 = F_-3-_- 1 = constant, (5.2.2)

so that _ _ _ _,, t 2. Equation (5.2.2) allows one to check whether the dynamics

at the last instant are consistent with a stretching 2-D shape. Figure 5.37 plots

* We are indebted to Prof. D.I. Pullin for pointing out this reference. Several have indepen-

dently worked on steadily translating two-dimensional pairs and their contributions should also be

acknowledged. Deem & Zabusky (1978) conjectured the existence of a continuous family of solu-

tions and calculated one intermediate member. Pierrehumbert (1980) calculated several members

and, independently but with erroneous cusps at the symmetry plane, the touching pai_ obtained by

Sadovskii (1971). The error was noted by Pierrehumbert (1981) in a corrigendum. A more complete
analysis of the shape near the symmetry plane was performed by Saffman & Tanveer (1982) who

also provide a more accurate recomputation. Wu, Overman tz Zabusky (1984) performed a local

analysis and carefully calculated and documented the shapes.
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the evolution of the quantity _/_1/2 during the simulation with Equation (5.2.2) as

the dashed line. The curve seems to asymptote to the presumed behavior. At this

point, one may suspect that the cores will continue to maintain a constant shape

while stretching and shrinking in area. However, this violates energy conservation.

Using formulae derived in Appendix 5.A the energy was computed at several points

along the assumed motion. The computed points in Figure 5.38 show that the energy

increases linearly with _ if the core remains unaltered.

This behavior can also be argued as follows. The kinetic energy (with density set

to unity) for an axisymmetric distribution of vorticity is (see Lamb 1932, §162)

= ,r / Cw_ dz da, (5.2.3)E

where ¢(z, _r) is the Stokes streamfunction

= foJ_(z',a')g(z,a;z',o")dz' da'. (5.2.4)¢(z..)

Assuming that the vortex pair is slender and expanding the Green's function _ (given

in Equation (4.1.13)) in terms of the small parameter

A
- ,, A = (z - z') 2+ (_ - _,)2, (5.2.5)

2(_'):

and discarding terms which vanish upon integration for a symmetric z-independent

vorticity distribution gives

1

¢(z._) - 2_

Consider the contribution ¢1 from the left half and write

_ O .I

O"

_'= _(I-¢'),_"- (5.2.7)

Since ¢ is to be evaluated inside the core for the evaluation of the energy {9 (e) =

O(e") = O (e'), where e' is the ratio of core size to radius. Then,

÷o
The second term in the integrand vanishes if the cores are symmetric in a about _.

The resulting expression for ¢ with error of relative order d 2 will be used later, but

for now we shall be content to replace a by _ thereby incurring errors of O (e'):

¢(z._) = _(z. _)(1 + o (_')). (5.2.9)
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where • is the streamfunction of a two-dimensional pair with uniform vorticity ±.A_.

At the expense of introducing additional terms of O (e'), (5.2.3) becomes

= (1+ o o-) do-.E (5.2.10)

The energy (per unit span) contained in a large circle of radius _ for a two-dimensional

pair with vorticity ±fiat is (Batchelor 1973, p. 529)

1 f r 2E2-D = _ (±.A_)_(z,o')dzd_r + _-_logs. (5.2.11)

The second term is zero for a vortex pair and comparing with (5.2.10) we have

E - 21r_E2_D (1 + O (e')) = 0.128=_F 2 (1 + O (e')), (5.2.12)

the last equality being obtained from the value of E2-D given by Pierrehumbert (1980

Table 1). This simple result that the energy is the two-dimensional energy per unit

span times the circumference of the ring is true only when the total circulation is

zero. Equation (5.2.12) gives the dashed line in Figure 5.38 and agrees very well with

the computed values.

The cores must change shape as they stretch in order to conserve energy. A

glimpse into how this takes place was obtained by adding node points and continuing

the calculation until accuracy began to degrade." Figure 5.36b shows that a narrow

tail is shed but the head retains the shape of the 2-D pair.

At this point one must wonder why the cores attain the shape of the Sadovskii

pair. A possible explanation suggested by the spring-mass analogy (§1.4) is that,

since thin core vortices approach each other very slowly compared to their rotation

rate, the shapes remain in equilibrium with the induced field of the other vortex.

Furthermore, when the separation is smaller than the radius, the flow is nearly two-

dimensional locally, and we might expect the cores to evolve as 2-D equilibrium pairs.

To check this, Figure 5.39 plots the shapes (solid) for instants when the separation to

radius ratio is _< 0.6 and local two-dimensionality should begin to hold. The shapes

were rescaled to have the same z centroid. The dashed shapes are 2-D pairs from

Figure 4a in Wu, Overman & Zabusky (1984). The shapes at the last two instants

are slightly flatter, otherwise the agreement is very good.
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If varying time in thin axisymmetric collisionscorrespondsto varying the parame-
ter that characterizesthe family of 2-D steadypairs* then careful considerationof the

axisymmetric collision might lead oneto a mapping that links the 2-D steady shapes.

We now describe a partial attempt in this direction that also suggests a mechanism

for the tail formation.

We retained O (e _) terms in (5.2.8) to obtain the leading order velocity field

without introducing O (1) errors in differentiation:

l°n_b Y½ ( °n_ _(1 + O(e))) (5.2.13a)

lamb Y'°n" (_)ua - ---- = (5.2.135)

Note that we have reverted to e, the ratio of separation to radius as the small pa-

rameter here. Now if the successive cross-sections are 2-D translating pairs, then on

their boundary $ - _o(t) - zVo(t), where Vo is the speed of translation of the 2-D

pair. Substituting this into (5.2.13) and replacing _r by _', which introduces terms of

O (e'), gives for the evolution of the boundary:

dZd__t_: (uffi)2-D -F _,,(t)- zVo(t)2_# (1 -F 0 (e) -F 0 (e')),

"_-=(ua)2-D(1-t-O(_'))+O e .

(5.2.14a)

(5.2.14b)

The two-dimensional velocity rigidly translates the cross-sections in or. The second

term in (a) causes them to rigidly approach at a decreasing velocity, because both

is increasing and _o(t) is tending to zero as the cores touch. The third term serves

to preserve volume by uniform axial compression. The hypothesis is that the axial

compression leads to tail-shedding in a manner similar to the tail formation of a

compressed Hill's spherical vortex (Moffatt & Moore 1978, Pozrikidis 1986). When

a stagnation region is formed, the perturbation due to compression is swept to the

rear, amplifies and is ejected by the straining flow.

* We are reminded, perhaps inappropriately, of the fact that time evolving solutions of the
KdV equation correspond to a one parameter family of potentials that satisfy a steady SchrSdinger
equation after one identifies time with the p_ameter. The KdV equation has the property of
"elasticity" that solitary waves return to their original shape when they sep_ate after collisions
or when one overtakes another. This type of elastic behavior is similar to what we observed for

the passage of thin rings. For fatter cores the interactions are inelastic and the analogy with KdV
breaks down. Rather, the features are then closer to those of non-integrable wave equations in which
solitary wave interactions lead to the production of smaller scales.
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Equation (5.2.14) does not completdy link all the 2-D translating pairs. If one

applies it starting at the limit of circular cores, the succeeding shapes are ellipses.

When (5.2.14) becomes valid at separations smaller than the radius, the cores have

already been deformed by higher order effects not accounted for in these equations.

An alternate means of conserving energy in the presence of stretching would be

for the cores to flatten without forming a tail. The shape constant 0.128 in Equation

(5.2.12) reflects the aspect ratio of the core and scales inversely with it. For example

the energy of two rectangular layers of width 2h and radial extent l containing uniform

vorticity of opposite sign is

E=y

under the assumption of local two-dimensionality. Energy can be conserved if h/l ...

(_)-1. However, the simulation suggests that the cores do not become sheet-like but

eject a tail with a head that remains tube-like. It should be emphasized that oniy

seLf-stretching can cause core distortion i.e., if the stretching of the pair were induced

by other vortices the increase of seLf-energy would merely reflect transfer of energy to

the pair.

In summary, the formation of the tail may be viewed in two ways: i) as a means

of conserving energy in the presence of stretching, or ii) as a response of the Sadovskii

pair when subjected, because of a_dsymmetry, to axial compression.

5.2.2. Collision of a = 0.5, d = 8

Figure 5.40 shows the motion at equal time intervals except for the last instant.

The dotted line is the trajectory of the vorticity centroids. The arrowhead follows a

particle on the surface to convey the relative time scales for translation and rotation.

A thin tail has been formed in the last snapshot; Figure 5.41 gives an enlarged

view. The shape of the head is well approximated by the Sadovskii pair (dotted).

Subsequently the calculation breaks down as segments near the collision plane become

longer than the distance between opposing node points.

Figure 5.42 shows that the stretching rate (solid) is smaller than the prediction of

Dyson's model (long dashed) and peaks at the value for the Sadovskii shape but then

decreases due to tail formation. An estimate for the rate of circulation deposited into

the tail and the accompanying decrease in stretching rate can be made by assuming

that it is sufficiently flat that each half carries finite circulation but that the tail's self-
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and interaction energy with the head can be neglected i.e., only the head contributes

to the energy. This will hold only until the head has not depleted a substantial

portion of its vorticity. The assumptions are justified by modeling the tail as two

adjacent layers of width 2h and radial extent t containing uniform shears of opposite

sense with zero velocity outside, neglecting terms of O (h/t), and assuming local two-

dimensionality. The self energy is {9 (h/t) according to (5.2.15). To estimate the

energy for the induced field of the head interacting with the tail, assume that the

layers are embedded in a stagnation point flow that represents the influence of the

head. The strain rate on the collision plane scales as

vo6 
e-,_ p_ , (5.2.16)

where p is the distance from the head centroid, 6s and Vo are the core size and radial

velocity (,,, Fhead/6s) of the head. Then the interaction energy is

E ~ rh..drt  , (.5.2.17)

which can be neglected. If the head always maintains the shape of the Sadovskii pair

the total energy is

E -- 0.12 87r_hesdrh2ead, (5.2.18)

which when substituted into (5.2.1) gives

d_head = 1; C = 0.206 _. (5.2.19)
1 dt

This represents stretching at the rate _head _'_ t_ which is slightly slower than the t 2

behavior for an invariant shape and the asymptotic result for Dyson's model (§4.1.3).

Figure 5.43 shows that the quantity on the left hand side of (5.2.19), determined by

the node point with largest radius, asymptotes to unity when the tail is mature but

clearly a long time simulation is needed to better verify the estimate. From (5.2.18)

the circulation of the head decreases as

! 2

rhead _ _h:ad _" t-s. (5.2.20)

5.2.3. Collision of a = 1.0, d= 10

Figure 5.44 shows successive instants during this collision. The core rotation is

slow compared to translation: at Uot/Lo = 4.44 after the rings have travelled several
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radii, a particle has made only about 3/4-revolutions. At (d) the core shapes are

roughly rectangular with aspect ratio 5.04 which is greater than the value 3:1 for a

Sadovskii pair. Then as a means of forming such a state with smaller aspect ratio,

the cote begins to "fill-out" as in (e). At (h) a head of smaller aspect ratio has been

formed. It is connected to a long fattened tail by a thin umbilical. Figure 5.45 is a

magnified view of the head and umbilical. The head is fit weU by the Sadovskii eddy

(dotted line). The location of the vorticity centroid (plus sign) shows that roughly

half the circulation resides in the tall. Owing to the considerable straining of the

vortex boundaries near the collision plane and on the umbilical the total number of

node points increased from 600 to 1972. Loss of accuracy began a few time steps

prior to the last instant shown. This manifested itself as sharply increasing errors in

the invariants. Neverthdess, the total change in the volume of vortical fluid was only

-.034%.

At present, one can only conjecture about what may happen subsequently. Due

to its larger vorticity, the head will evolve rapidly compared to the tail. The head and

tail will continue to separate and their mutual interaction will diminish and each- will

evolve independently. From previous reasoning, we know that the head cannot stretch

and shrink in cross-sectional area while retaining its circulation. It may continually

deposit vorticity in the umbilical below it. Changes in the shape of the tail will occur

relatively slowly. Its shape is a higher aspect ratio version of state (e) so it may form

a smaller head and leave yet another tail. The entire process may repeat ad infinilum.

The concept "inelasticity of the collision", used by workers dealing with one-

dimensional solitary waves may apply to vortex ring interactions. It refers to the

relative amount of small scale production of some conserved quantity that occurs

when two solitary waves interact to form two smaller solitons and debris. The fact

that collisions of thicker cores result in a larger relative volume of fluid in the tail

means that the inelasticity is greater. This is analogous to solitary wave coUisions of

the RLW equation studied by Lewis & Tjon (1979) in which the inelasticity is greater

for larger amplitude, faster moving solitons. They observed that the solitary waves

disintegrate into a hierarchical procession of solitary waves in order of decreasing size.

The analogy would be strengthened, for example, if the speculation that a hierarchy

of Sadovskii eddies forms could be shown to be true. We are indebted to Prof. N.J.

Zabusky for pointing out the possible connection with inelastic solitons.
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We now present comparisonswith the flow visualizations of Oshlma (1978a).

Since her discussion focussed on the azimuthal instabilities of the rings as they col-

lided rather than on core deformations, we present the visualization photographs and

discuss them from the latter point of view. Vortex rings of several initial speeds were

collided. The case with the fastest speed results in a clear head-tail structure. The

faster rings undergo larger core deformation. The reason is as follows. The speeds

were varied by increasing the d.c. current applied to a loudspeaker diaphragm. This

increased its displacement and hence led to a thicker core (see for example Equation

3.3b in Sa_man (1978) which shows that the core size varies as the 2/3 power of

the stroke length in a piston-orifice apparatus). Figure 5.46 shows the smoke visu-

alization pictures. The Reynolds number based on initial translation velocity and

orifice diameter is about II00. The upper row (U) shows, at successive instants, the

meridional plane illuminated by a sheet of light. The lower row (L) is an oblique view

30 ° to the plane of collision. In U(b) a head with a long tail similar to the contour

dynamics result of Figure 5.44h is seen. In L(b) this appears as a concentration of

smoke around the periphery of the flattened rings. In L(c) the head has pinched-off

and moves independently of the tail. Probably due to asymmetry in the initial con-

ditions U(c) shows that it moves at an angle from the collision plane. The tail also

fails to remain planar. Nevertheless axisymmetry is not broken until L(d) where the

head has short waves around the circumference. Concentration of dye is seen at the

periphery of the tail; this may indicate the formation of another head.

The head-tail structure also occurs in a plane of symmetry in three-dimensional

symmetric collisions, for example in experiments on two vortex rings fired at an angle

by Schatzle (1987) and in numerical simulations of two rectilinear tubes perturbed

by bending them into sine waves. (M.V. Melander 1988, private communication).

However, this plane of symmetry is subject to an out of plane strain not present in

the axlsymmetric case.

We conclude this case with a presentation of the evolution of the energy spectrum

and its rate of change (the transfer spectrum) computed as described in Appendix

5.A. Figure 5.47 shows transfer spectra at the instants depicted in Figure 5.44. The

trailing oscillations at the last instant are due to insufficient resolution. There is a

forward cascade with the wavenumber of peak input drifting towards smaller scale.

Subsequent to (d), peaks diminish and the transfer extends out both towards large

and small _. Closer examination reveals that up to Uot/Lo = 3.70 the largest scales
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lose energy but thereafter there is a slight inverse cascade. This is also indicated by

a change in slope of the square of the acoustic source function which depends on the

behavior at small t_ (Appendix 5.A).

Figure 5.48 shows spectra of the total energy and the sum of the self-energies,

their difference being the interaction terms. For small s the interaction spectrum

is negative but at a value of t; that increases with time it becomes slightly positive

and oscillates in sign. The interaction energy is present at scales approaching and

larger than the vortex separation distance; at these scales the dipolar nature of the

vorticity comes into play. The second vortex causes the velocity to decay faster at

large distances, hence, the interaction spectrum is negative. At smaller scales the self

spectra dominate. Notice the initial decrease and subsequent increase in the energy at

large scales consistent with the behavior of the acoustic source function. The _2 and

_4 ranges at large scales are well known and correspond to flows with and without

net impulse (Appendix 5.A). The t¢-4 at large t; reflects the jump in vorticity at the

vortex surface. Due to the forward cascade an intermediate t¢_ range develops in the
5

total energy. In the same range, the self spectrum develops a _;-_. Three remarks are

in order: First, despite the decrease with time in transfer at each t; these ranges may

still represent a transient. Second, as pointed out by A. Wray, the t¢-_ in the self-

energy would be a useful fact only if the interaction spectrum in this range vanishes

in a non-independent ensemble of collisions.

powers is due to the combined presence of the

example for the self-energy, a slender tube-like

the core size and radius (Appendix 5.A). On

produces _:-_ (Townsend 1951). For the total

Third, the appearance of non-integer

tube-like head and sheet-like tail. For

core has a t: -1 range at scales between

the other hand an infinitesimal sheet

energy, just the dipolar head has a _1
2

range and the present combination with a tail produces t¢_.

The evolution of the self and total energies is shown in Figure 5.49. Note the

slight increase in the computed energy at the last instant. The reason for this is

explained following Equation (5.A.16).

5.2.4. Acoustics of collisions

We now discuss sound generation in the collision cases. Figure 5.50 is a normalized

version of Figure 17a in Kambe & Minota (1983, hereafter KM). The solid line is the

experimental signal averaged over several realizations; it peaks at a value of 0.5 and

then dips to -0.8. The dashed line shows KMs best prediction with Dyson's model,
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obtained with a = 0.3. The dip is not predicted and the curve asymptotes to a

constant. The lack of agreement in the final stages led KM to propose that the dip

is due to viscosity. After modeling its effects they obtained the dotted curve which

overpredicts the minimum. The Reynolds number based on initial ring radius and

initial translational velocity is 2.1 × 104.

Our results show that the dip can be accounted for by inviscid core deformation

alone. Figure 5.51 shows the calculated result (dotted line) for a :- 0.50 compared

with the experimental result of the previous figure. Both the maximum and minimum

are well predicted, but the final peak is not obtained. The instants at which the signal

attains a maximum and minimum are labeled A and B in this figure. These instants

are also labeled in Figure 5.40 anti mark the interval during which the core changes

orientation. This is also demonstrated in Figure 5.52 which plots the orientation

angle of the fit ellipse. The present case is beyond the range of validity of the elliptic

model. Nevertheless, its prediction is included as the chain dashed line. The critical

strain rate is exceeded and the cores elongate indefinitely resulting in a sharp drop in

the signal.

This case provides the best overall agreement for the average over several exper-

imental realizations. The signatures of individual realizations contain fluctuations.

From Figure 3 in Kambe (1986) one sees that they are not reproducible and averag-

ing filters them. We believe that they arise from high frequency core dynamics. The

irreproducibility of the signals is perhaps due to the sensitivity to initial conditions

for thin cores suggested by the numerical results below. For the thick core case pre-

sented, high frequencies are absent which accounts for the good agreement with the

average. The core size to radius ratio of the experimental vortex is very likely smaller

than the value (0.5) used in the simulation. Using Dyson's model KM find that using

c_ = 0.3 produces the best fit to the peak in the pressure wave. The smaller core size

is also seen in shadowgraph photographs (Kambe _z Murakami 1079). This motivates

us to consider a thinner core.

Figure 5.53 shows that the acoustic signal for a = 0.2 contains amplifying oscil-

lations. Figure 3 in Kambe (1986) shows that measured fluctuation r.m.s, becomes

larger as the cores approach.

Figure 5.54 shows the oscillations at early times. The contour dynamics signal

shows the presence of two frequencies. A Fourier decomposition of its deviation

from Dyson's model during the first five periods has a fundamental with period 0.43
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and amplitude 0.025 and a first harmonic with amplitude 0.015. The two modes

reflect small propagating waves on the contour of the form e ira(/3-g¢) where/3 is the

azimuthal coordinate with respect to an origin at the centroid of the contour and

is the (angular) phase velocity. For such corrugations on a 2-D circular patch of

constant vorticity with radius//, _ has been worked out by Kelvin (1880b, see Lamb

§158):
_= (m- 1) r

2m _6 2" (5.2.21)

We willconsider Equation (5.2.21)validfor the present case since the core isslender.

Of course in the present situationthe perturbations are evolving in the presence of

strainbut Equation (3.17) in Moore & Sa_man (1971) shows that for weak strains

the frequency is close to the unstrained natural frequency. The acoustic frequency

produced by each mode ism_; for m = 2 (ellipticmode) and m = 3 thispredicts the

observed frequencies extremely well.

From Figure 5.54 we see that elliptic model fails to reproduce the amplitude of

the m = 2 mode. This is due to a slight inaccuracy in the shape of the steady vortex

computed by Norbury. The inherent unsteadiness in Norbury's solution was verified

by running an isolated vortex. It was found to radiate with an amplitude consistent

with that observed for the m = 2 mode.

Given that the initial oscillations are due to slight unsteadiness not caused by

strain, it is natural to wonder about the extent to which the character of the sub-

sequent large amplitude osdllations is determined by them. To answer this we per-

formed another simulation using the asymptotic solution of Fraenket (1972) as the

initial shapes. The pattern of the initial oscillations is shown as the dotted curve in

Figure 5.54. Their amplitude is smaller than for the Norbury vortex indicating that

the asymptotic solution is a closer approximation to the steady shape. The harmonic

is stronger than the fundamental, their respective amplitudes being 0.015 and 0.003.

Figure 5.55 compares the acoustics at a later stage in the collision. The differences

reflect the differences at early times, namely, the Fraenkel vortex produces twice the

number of peaks of smaller amplitude due to initial dominance of the harmonic. The

frequencies increase due to stretching and their value agree well with ra_.

We conclude therefore that for thin core collisions the acoustic signal is sensitive

to the precise form of the initial conditions; initial deviations from the steady shape

are amplified by the continually increasing strain rate.
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Figure 5.56 shows the calculated acoustic signal for the case of thickest cores

(a : 1.0). Kambe's experimental result (solid) has been included as a reference, with

time origin shifted to make the zero crossings coincide. The feature near the end

of the calculated result is due to the beginning of inaccuracy mentioned previously.

The letters indicate the corresponding frames of Figure 5.44. Compared to thinner

core cases the peak and minimum are broader with slightly larger values, and high

frequency oscillations are absent due to the long eddy turnover time. The formation

of the head and the elongation of the tail do not produce special features in the signal.

Appendix 5.A. Calculation of the energy and its spectrum

5.A.1. Introduction

This describes how the energy spectra and total energies presented in this chap-

ter were computed. At the end, spectra of representative members of the Norbury-

Frsenkel family are presented. At present they remain curiosities but we hope that

they will be useful in designing physical models of turbulence in which known vor-

tex solutions are the kinematic constituents. One of the emerging challenges is to

represent information about physical structure gained from numerical simulations in

statistical models. Some steps in this direction have already been taken. In 1943,

Synge & Lin used a model consisting of a superposition of Hill's spherical vortices

with random position, strength and orientation. As Saffman (1981b) points out, their

model resulted in the correct prediction of the asymptotic behavior of the longitudinal

correlation for large separations, a result not obtainable from statistical considerations

alone. In 1951, Townsend showed that the representation of dissipation scale eddies

in isotropic turbulence in terms of a random superposition of vortex sheets in which

vorticity stretching is balanced by diffusion resulted in an energy spectrum that was

in closer agreement with experiment than an alternative model in which vortex tubes

were employed. Chou & Huang (1975) extended the work of Synge & Lin to include

viscous vortex rings and obtained the correct decay law for the energy. Lundgren

(1982) obtained an inertial range spectrum from a model employing stretching and

diffusing spiral sheets. His model is dynamic and provides a plausible mechanism for

the energy cascade. In the arena of inhomogeneous flows Perry, Henbest & Chong

(1986) modelled the wall region of a turbulent boundary layer in terms of a hierarchy

of A shaped vortices in different stages of stretching.
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In the courseof the derivation a calculableexpressionfor the velocity transform

will be obtained. This is the only piece of information about the flow that is required

to compute, according to the theory of Kambe & Mya Oo (1981), the scattered

sound field when a plane acoustic wave is incident on a localized steadily translating

region of vorticity. For unsteady motions an additional time transform needs to be

performed. They provide approximate numerical results for scattering by a steadily

moving vortex ring with thin core. Howe (1983) obtained an exact expression in the

limit when the incident wave has long wavelength in which case the core structure

does not matter. The present formulae may be used in more general cases.

5.A.2. Derivation

The total energy per unit density is the following integral over the flow domain

(which is assumed unbounded):

1 f u2(x) dx. (5.A.1)

By Paxseval's relation this is also

1 1
f fi2(k) dk, (5.A.2)E = 2 (2"n')3

where the hat denotes the complex Fourier transform. In our case, the vorticity is a

simple specified function for all time and the boundary of its support is specified at

every instant. Hence the goal is to express (5.A.2) in terms of line integrals about the

boundaries. One begins by writing the integrand in (5.A.2) in terms of the vorticity.

The transform of the relation V2u = - V x w is

h2fi = ik x _, (5.A.3)

and, as a consequence of the divergence free property of the vorticity, its transform

is orthogonal to the wave vector so that

_2

fi2(k) = _-. (5.A.4)

Substituting this into (5.A.2) and performing the integration in spherical coordinates

in wave space (h, 0k, Ck) one has

ZE - E(k) dk, (5.A.S)

11fo" fo_"E(h) = ] (2_.) 3 dCk dtg/_ _2(k) sinzg/,. (5.A.6)
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E(k) is the radial energy spectrum function and E(k)dk represents the contribution

to the total energy from a spherical shell with radius k and thickness dk.

Next we obtain the Fourier transform of the vorticity:

_(k) = fv e-_k'xto(x) dx, (5.A.7)

where l) is the vorticity containing region. Before evaluating this integral for an

axisymmetric vorticity distribution to = (0, 0, wO(z, _)) it is necessary to fix the orien-

tation of wave space relative to physical space. The most convenient choice is to align

the Cartesian axes in the two systems. One may then define cylindrical coordinates

(zk, _rk, _bk) in wave space in a manner analogous to those in physical space. Then

(5.A.7) becomes

_(k)= f0'" d_fcs, [- _0,(z,,) sin_y + w÷(z,,) cos_b_]
(5.A.8)

x e -i[_=_+_ co.(_-÷d] dz d_.

Here CS denotes the cross-section of the vortex rings in a meridional plane. The

integral in the azimuthal direction is obtained by introducing _ = _b - _bk as one

can integrate over any period, in particular _ G [0, 2_]. The integrand has parts

that are symmetric and antisymmetric about _ = _. The second part vanishes upon

integration and the first can be expressed in terms of a Bessel function (Gradshteyn

& Ryzhik 3.915.2):

= -2, i k fcs (5.A.9)

The Fourier transform of the vorticity is also axisymmetric and azimuthal. For our

case, CS consists of several regions (CS)j in each of which w_(z,o') = .Aja. The area

integrals in (5.A.9) can then be reduced to line integrals via Green's theorem in the

plane. In spherical coordinates (k, Ok, _6k) defined by

zk = kcosdk, _k = ksin_k, (5.A.I0)

the result is

J

d_,

(5.A.11)
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where_ parametrizes the contour. When 0 = lr/2 the integrand becomes independent

of z, the integral vanishes, the above expression is indeterminate and has the value

i (5.A.12)

• j

Note that the real part of _÷_ is antisymmetric about 0k -- z'/2 and the imaginary

part is symmetric. Consequently, the integrand in (5.A.6) is symmetric and can be

integrated over a hemisphere:

E(k) = _ Eli(k), (5.A.13)Eli(k) = fo ½ dOk sin OkSiS_,
ij

where the asterisk denotes complex conjugation and S' should be used at Oh = _r/2.

Integration and summation were interchanged because we wish to retain the identities

of individual contributions to the spectrum. We shall refer to terms Eij(k) (i = j) as

self-spectra and Eij(k) + Eji(k) (i _ j) as interaction spectra.

5.A.3. Numerical implementation

Line integrals were evaluated by interpolating linearly between node points and

using two point Gauss quadrature for each segment. We chose A_ = 1 along each

segment. The integrand becomes highly oscillatory for large k and, to have a sufficient

number of quadrature points between zero crossings, one must place a limit on the

largest k for which the spectrum is computed. This limit can be estimated as follows.

The local period between zero crossings of the integrand at some point _ = _1 can be

approximated as
2_r

7', = , (5.A.14)
kla cos 0k 5= klz sin 0h

where lz and la are the z and a components of the vector directed along the segment

containing _1. This was based on a Taylor series expansion to linear order of the

phase function in the exponential term and the behavior of -/1 for large argument. In

the worst case
2_r

T. = --, (5.A.15)
klmax
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where /max is the length of the longest segment. Requiring at least one segment

between zero crossings implies
2r

k < ?_. (5.A.16)

Spectra were computed at 257 equispaced points in log10 k up to the full decade

containing this limit and then integrated using Romberg quadrature with 8 sub-

divisions to obtain the self and interaction energies. The fact that the limit (5.A.16)

was not strictly observed resulted in some spurious oscillations at large k but the

spectrum had decreased by several decades and the oscillations are too small to cause

significant error in the total energy, with the exception of the last point in Figure 5.49.

The integral over co-latitude was computed similarly with the same number of points.

Transfer spectra and transfer rates defined by

T(k) = aE(k)ot ' T_j(k) = aE_(k)at ' T_j = aEijat (5.A.17)

were calculated by differencing across one time step.

For single and two identical rings, the graphs are made dimensionless as follows:

E(k) E T(k) (5.A.18)
_=kDo, /_(_)= A2DoS, /_= A2DoT, T(_)=[.AI3Dog,

where Do is the initial mean toroidal diameter.

5.A.4. Asymptotic behavior of the spectrum

The spectrum at low k reflects the far-field behavior of the velocity field which in

turn depends on overall properties of the vorticity rather than its detailed structure.

So one expects to be able to construct a power series for E(k) valid at sufficiently small

k in which the coefficients depend on successively higher moments of the vorticity

distribution. Define these moments as

?

mij = J aizJw_(z, a)
dz da.

The Bessel function Jl(#) has the following expansion about # = 0

Jl( ) - F),."

(5.A.19)

(5.A.20)
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Substituting this into (5.A.9) and using (5.A.6) leads to the desired result. Omitting

the algebraic details, which were performed using MACSYMA, we quote the result.

lm2 k 2 _

1
(2m20m_0 + 4m2om42 - 8rn21m41 + 3rn_0 + 4m22m40

(5.A.21)

A similar expansion for the velocity transform of a patch of inhomogeneous turbulence

has been given by Phillips (1956). The moment rn20 in the coefficient of the leading

term is proportional to the conserved impulse P (with unit density):

P
m2o = --. (5.A.22)

For symmetric collisions of vortex rings, the impulse as well as all other moments

with even index j vanish. In this case the leading behavior is

E(k) = ±_2 ¢
30"°21 •

(5.A.23)

It is interesting to note that m21 is the acoustic source function Q(t) defined in §4.2.5,

hence the largest scales are not invariant as the flow evolves.

Similarly, the leading behavior for large k may be obtained by using the method

of stationary phase together with the expansion of J1 for large arguments. The

result is an oscillating function that decays as k -4. The coefficient is a complicated

function of the curvature of the contour at the stationary points to which no physical

interpretation could be given.

5.A.5. Spectra of the Norbury-Fraenkel vortices

For the results provided here contours were represented by 600 segments. As a

check E(_¢) was computed for Hill's vortex and its integral was found to be E =

0.0797825. The exact energy is E = 8/315_r = 0.0797865 .... Figure 5.57 shows

spectra for a = 0.1 (solid) and a = 0.6 (dashed). The slopes for small and large

are as predicted by the asymptotic expressions. The scale associated with the peak

in the spectra (the integral scale) is the toroidal radius. For ct = 0.1 there is an

intermediate k -1 region between the scales of the radius and core size. For a core of

zero thickness this range persists as _; _ oo (see Leonard 1985, Figure 12). For scales
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smaller than the core radius, the spectra decay as k -4 which is characteristic of the

jump in vorticity at the boundary.

Appendix 5.B. Implementation of the vortex filament to axisymmetric flow

This appendix describes the specialization of the vortex filament method to ax-

isymmetric flow. It was used in the body of the chapter to study interactions of

vortex rings with peaked vorticity distributions that axe more representative of those

observed experimentally (see for example the experiments of Sullivan, Widnall &

Ezekiel 1973). The method described as scheme 'C' in Leonard (1980) is used. The

presentation is divided into four parts. First, a review of the ideas behind the vor-

tex filament method is provided followed by the equations of filament motion for the

axisymmetric case. The third subsection describes the computation of the acoustic

signal and diagnostics of accuracy. Finally, the procedures used to discretize the

initial vorticity field will be presented.

5.B.1. The vortez filament method

Following the approach in two-dimensions of representing the vortidty as a su-

perposition of "blobs" (Chorin & Bernard 1973), Leonard (1980) suggested that in

three-dimensions the vorticity could be approximated by a superposition of filaments,

each filament being a continuous superposition of blobs about a space curve r(_):

I" fc _ Or, fw(x,t)= Y]_ri 7[Ix-ril,6i]_-(_, 7(y)dy= 1. (5.B.1)
i=1

The resulting vorticity is divergence-fxee if the Ci are closed curves. Here 7 is the

core function. In keeping with all 3-D applications to date, it has been chosen to be

spherically symmetric* and characterized by 6i, the core size. In the axisymmetric

case, 51 does not vary along the filament. For the 3-D case it is argued that core size

variations would lead to waves traveling along the vortex tube which would smooth

out any variations. This argument is plausible because for thin cores, the waves are

much faster than the filament motion. In some applications this may not be true. For

example Siggia & Pumir (1987) argue that for their case filament dynamics are more

rapid and so they allow non-uniform cores. Also, to show that the method conserves

* For an exception in 2-D see Teng (1982).
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energy and impulse one needs uniform 6j. The representation of waves in the fLlament

model is a problem that should receive more attention in the future.

The equation giving the velocity in terms of the vorticity for an unbounded domain

is the Biot-Savart law.

I f xu( ,0= -4-7- 3 (s.B.2)

Next, substitute (5.B.1) into (5.B.2), define y = x' - ri and perform the y integral

in spherical coordinates choosing x - ri to be aligned with the polar direction. Then

with the aid of the integrals (Bierens de Haan 1939, Table 67, Items 10 _ 11):

fo_r sin0 dO
(i - 2#cos 0 + #2)s/2

f0_ sin0 cos d dO
(I - 2/zcos O +/_2)3/2

>1

-- 2 _2 >1

(5.B.3)

one obtains

1 L /C, (X-- ri) x -_q(Ix-- ril,6i )i_1 ri Ix r_l3 d_,u(x,t) = -_r .= - (5.B.4)

_0 _
q(r,6)- 4_r t2,,/(t,6)dt, q(oo) - 1.

One usually firstchooses a q(r,6) that is computationally convenient and/or repro-

duces a known exact solution and, from it,infersthe core function % In the present

study we used (Leonard 1980, pp. 308-309)

q(r,6)- [1 + Oto62/r2] -s/2 , (5.B.5)

which implies from the second of (5.B.4) that

_/(r, 6) - 3°_°62 - .

]:[ere c_o is a free parameter. The choice ao = 0.413 reproduces both the exact long-

wavelength dynamics of small waves on a rectilinear vortex as well as the speed of

translation of a thin vortex ring. This gives reason to hope that the method may be

more general. The value of ao is pertinent only when a single filament is employed

to represent a vortex tube; we intend to use a swarm of filaments, nevertheless, this

choice of ao is retained.

159



So far the discussion has been purely kinematic and the errors introduced are

those associated with interpolation of a given vorticity field by a superposition of

blobs. The dynamics is expressed by the Helmholtz theorems that vortex lines are

convected with the local velocity field given by (5.B.4) and that the circulation is

constant. In general the local velocity would distort each blob from the assumed

structure but the only degrees of freedom the method allows are the shapes of the

space curves and 6i(t). How should one make the best of this limitation? One may

argue that as an increasing number of filaments is used to represent a continuous

vorticity distribution the total deformation of the filament cores is reduced, hence

one may convect each filament by the velocity induced on the space curve. With

(5.B.5) for q this results in the so-called Moore-Rosenhead scheme (Leonard 1985).

An alternate procedure (Scheme 'D' in Leonard 1980) regards each point on the space

curves as the vorticity centroid of a blob and as such it is convected by the "7 weighted

average of u around the point. The resulting rule for convecting filaments reads

0ri(_,t) 1 L f (ri- rj) x _,8(Ir i -- rjl,_i,6j)
ot - Jc, (5.B.7)j=l Iri -- rJl _

For our purposes it suffices to say that s is symmetric in 6i and 6j. For the precise

form of 8 in terms of "7 the reader should consult Leonard (1980); the form is not

computational]y convenient and perhaps for this reason it has never been implemented

to the author's knowledge. The scheme has the nice properties that it conserves

impulse and angular impulse of the u field constructed by (5.B.4) using an arbitrary

spherically symmetric "7. The reason for the arbitrariness is that both these quantities

are independent of "7. The symmetry of 8 in 6i and 5j is alone sufficient for these

conservation properties to hold. If the core sizes are held constant in time then

scheme 'D' also conserves energy of the u field with the actual 7, but for this property

symmetry alone is not enough.

Scheme 'C' is a compromise between Moore-Rosenhead and 'D' in that filaments

are convected as in (5.B.7) but with 8 chosen merely to be the symmetrized version

of q, i. e.,

• (y, Si,,Sj) = q(y,¢1/2(5"_ + 5_)). (5.B.8)

Conserwtion of impulse and angular impulse are guaranteed. If volume conservation

is imposed for each filament i. e.

5_(t)f..i(t) = constant, (5.B.9)
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where £i(t) is the total length of the filament, then the scheme conserves energy

provided the cores have negligible overlap, a condition not satisfied by the present

calculations. For this reason we considered it essential to monitor the energy of the u

field. We describe its calculation in §5.8.3. For a vortex tube represented by a single

filament, Equation (5.8.9) represents vorticity stretching.

h conclusion, using (5.8.7) with q given by (5.B.5), the scheme used to advance

the filaments reads

Ori(_,t) I /' [ (ri- rj)X -_
= _-'_ I'j d_', (5.B.10)

Jc, 1 2G "= [Ir,- rjl + +

with core dynamics given by (5.B.9).

5.B.2. Equations of filament motion for the azisymmetric case

Equation (5.B.10) is particularly convenient in the azdsymmetric case because the

resulting equations of motion are the same as for Dyson's (1893) model (see §4.1.1)

except that the argument of the elliptic integtMs is slightly different and a separate

term for the self-induced translation is not required since (5.8.7) is well defined when

i = j. Dropping bars but otherwise using the same notation as §4.1.1 the equations

of motion for the axial and radial coordinates of the circular filaments are

dzi
a--t-= _ u(xi,_i; z;,_j),

i (5.B.11)
dai

J

where u and v axe as given in Equation (4.1.3) with only the quantityA redefined as

2 2 _ao(6; + 6_). (5.8.12)A = (zi - my) 2 + 0ri + aj - 2_riorj + 1 2

5.B.3. Diagnostics

(i) Calculation of the total energy. To compute the energy, we follow the same

procedure as that used for contour dynamics, namely, determine and then integrate

the radial spectrum of the energy. Much of the development is from the unpublished

notes of A. Leonard (undated) which were intended to assert the energy conservation
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conditions stated previously. In addition Equation (5.B.16) below was used by De-

gani & Leonard (1976 unpublished, see Figure 13 in Leonard 1985) to calculate the

energy spectrum of a patch of free turbulence simulated using vortex filaments. In

their study, it was remarkable that with only a small number of filaments the experi-

mentally measured spectrum for low Reynolds number homogeneous turbulence was

reproduced.

From (5.A.6) the radial spectrum can be computed from the Fourier transform

of the vorticity which for the filament representation (5.B.1) is

$

where Gi(k) is the transform of the core function 7(Y). For spherically symmetric 7

it reduces to the sine transform

(5.B.14)

The integral over the spherical shell was performed by aligning k with the polar

direction in spherical y coordinates. For the core function given by (5.B.6) the sine

transform is tabulated (Erd_lyi, Tables of Integral Transforms, p. 67, Item 37):

Gi(k) = aikK1(aik), ai = V_o6i, (5.B.15)

where K1 is the modified Bessel function of the second kind. Substituting (5.B.13)

into (5.A.6) gives

E(k)= 1

"
= -

(5.B.16)

The required integral over the spherical shell was obtained by aligning A =- ri-rj with

the polar direction. This expression gives the energy spectrum for any configuration

of filaments. The large k asymptote may be obtained by applying the method of

stationary phase. It says that the dominant contribution to the double line integral

arises from pairs of points _, _' which extremize A(_, _'), i.e., points of local closest and

farthest approach. This contribution is proportional to k -_ and largest for dose points

at which the second derivatives of A(_, _') are small and the vorticity parallel (or
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anti-parallel). If one considers, in addition, scales smaller than the core sizes at such

points (ka(_),ka(_') >> 1) then, using the asymptotic form of the Bessel function, the

contribution to the spectrum from such points is proportional to k-le-k(a(O+a(_')).

Recall that for a vortex ring with a point core, the asymptote is ,-_ k -1 without the

exponential cut-off.

To obtain the total energy, (5.B.16) can be integrated exactly from k = 0 to

k = oo (Erd_lyi, Tables of Integral Transforms, p. 107, Item 61):

',
# = 2aiaj "

(5.B.17)

P_] is a Legendre function of the toroidal variety. Fortunately, to compute it an in-

tegral representation exists (Erddyi, Higher Transcendental Functions, vol. 1, p. 156,

item 7) which allows it to be expressed in terms of complete elliptic integrals:

4--1

Pi/20,)= 3,-i,"_v"E4-_[_'(_'+ _,*)E(_)-g(_)],

#, = _#2 _ i _=_ 2#*' #+#*

(5.B.18)

For the axisymmetric case (5.B.17) reduces to

3,, r, rj_,_j f. PD'_(t,)
e = _ _ Jo _,* cos_d_,

id av/a_

(_ _ _j)2+ _ + _ + _ + _ _ 2_,_jcos_
# = 2alaj

(5.B.19)

The integrand is indeterminate when _b = 0 and i = j but using the integral repre-

sentation of the Legendre function one finds its value to be 1/2.

In the numerical implementation, the double sum was done first, making use of

symmetry in i and j, then the integral was computed using the Romberg method

with seven sub-divisions (129 points). For the ct = 0.2 passage case (linear vorticity)

the energy monotonically increased by 0.2% of its initial value during the simulation.

A third of this occurred between frames (e) and (f) of Figure 5.14. For a = 0.4,

AE =.18% (linear vorticity case), 0.37% (peaked vorticity; over-energetic case) and

1.1% (peaked vorticity; matched energy).
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(ii) Calculation of the vorticity. Contour plots of the vorticity were generated

by calculating the vorticity as follows. Substituting the core function (5.B.6) into

(5.B.1) gives for the axisymmetric case

3_o _ f02" cos¢ d__(_' _)= 4--__r_, (a - B cost)5/2'

A = - + + + B =
(5.B.20)

This integral has been worked out earlier in (4.2.30) in connection with the elliptic

model.

(iii) Calculation of the impulse. Substitute the vorticity representation (5.B. 1)

into P = ½ f(x × w) dx, the definition of the linear impulse (with density set to unity,

Batchelor 1973, p. 519). Then let y = x- ri and note that f T(y)dy = 1 and

fc, ari/a_ d_ = 0. The result is

1 fC,( ari_P = _ _. r_ rl x 0_ / d_. (5.B.21)
$

Thus the impulse is independent of the core function. The magnitude [ri × dri[ of the

integrazad is twice the area of the fight triangle made by ri and dri so the integral

is twice the signed area fc, ndS enclosed by the filament. Therefore, for a system of

coaxial circular filaments

P = x_-_ri_R. (5.B.22)
i

In allthe runs presented, the relativechange of totalimpulse was lessthan 10-s. The

angular impulse iszero for axisymmetric swirl-freeflow.

(iv) Calculation of the acoustic source function. According to M6hrlng's

(1978) theory of vortex sound, the far-field acoustic pressure for an acoustically com-

pact three-dimensional region of vorticity is

po zizj d _

p.(_,t) = _°2 _s _Q_j(t - r/Co),
(5.B.23a)

1

where po and Co are the density and speed of sound in the undisturbed medium and

the summation convention is being employed. The evaluation of Qij proceeds along
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similar lines as the impulse except that one has to also note that f Y3'(Y)dy = 0 for

a spherically symmetric 3'. The result is

Q j(t) = 12-- r. ,? ra x ] j

which also does not depend on the core function. For the axisymmetric case,

-1 -1) Q(t), Q(t) = (5.B.24)
@t

Inserting this into (5.B.23a) gives for the far-field acoustic pressure in polar coordi-

nates

p.(r, zg,t) = AP--_°2(cos 2 _ - 1/3)Q'(t- r/co). (5.B.25)
4rc o

5.B.4. Initial discretization of the vorticity field

We are currently equipped to start with four types of vortex rings: Hill's spherical

vortex, those members of the Norbury-Fraenkel family for which Norbury (1973)

provides Fourier coefficients of the shape, elliptic cross-sections whose behavior has

been studied by Moore (1980) in the limit of thin cores, and the steadily translating

rings with a peaked vorticity distribution obtained by Fraenkel (1972) to first order

in core thickness. For all these cases the vorticity is confined and to discretize it into

filaments the vorticity region is divided into cells and a vortex filament having the

circulation of the cell is placed at the vorticity centroid of the cell. The core size 6i of

the filament is chosen to be some 'overlap' factor fc times the area-effective radius of

the cell. The overlap factor was chosen to give a good approximation to the desired

initial vorticity distribution. Too small values resulted in distinct peaks around each

filament and for large values the vorticity was less confined and its discontinuities

were smeared.

We now describe in turn how the cells were arranged for each of the four cases.

(i) Hill's spherical vortez. P. Spalart at NASA Ames suggested that in order

that filaments not be wasted each cell should be chosen to have the same circulation.

This was feasible for HiU's vortex because of the closed form description of the shape

and vorticity distribution. First the semi-circular cross-section is divided into a spec-

ified number of horizontal layers each having the same circulation, then each layer
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is divided into specified number of cells with the same circulation. The cells along

the edges are not approximated to be rectangular; their exact shape is accounted for.

The edge cells may have different types of shapes which are unknown a priori so one

guesses the type, determines where the vertical boundary must fall in order to obtain

a certain circulation, and checks that the guess was correct. For some cell types the

circulation of the cell is a transcendental function of the location of the vertical side

so Newton-Raphson iteration is needed to locate it. A typical discretization is shown

in Figure 5.58.

(ii) Norbury-Fraenkel vortices. In this case a simpler procedure was employed

because of the complicated description of the core shape. All cells including those on

the edge are rectangalar and roughly identical. Trapezoidal edge cells were not used

because their strength would be consistently under approximated. First we specify

the maximum number of cells in the axial and radial directions. Then the limit

box which surrounds the core is determined by iteration and cell dimensions Az and

A_ axe calculated from the extent of the box. Finally, we consider a succession of

radial slices, determine the radial extent of the vortex at the midpoint of each slice

by iteration and slightly adjust A_, in order to fit an integer number of cells in the

slice. The discretization for the a = 0.20 passage case considered in this chapter

is shown in Figure 5.59. The resulting vorticity distribution contours are shown in

Figure 5.60 and the distribution along the central radial slice compared with the

desired distribution is shown in Figure 5.61. An identical discretization procedure

was used for elliptic cores.

(iii) Fraenkel's (197_, pp. 1_8-130) peaked vorticity cores. In the above cases,

the vorticity is a linear function of the distance from the symmetry axis. For the

present case it is spedfied, as explained below, by a certain mapping of a two-

dimensional circular vortex with concentric circular streamlines. Like the Norbury-

Fraenkel vortices this is a family of steadily translating rings but solutions are known

only to first order in c_, the ratio of core to toroidal radius. In order to study inter-

actions of rings with peaked vorticity distributions that are more realistic we could

have used any distribution, not necessarily one that was steady in isolation. Our

choice was motivated by a desire to minimize secondary effects caused by inherent

unsteadiness such as formation of spiral arms during an initial transient.

Of all the possible inviscid vortex ring solutions with a peaked vorticity that

might qualify as being "realistic" is there one that might be preferred when small
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(but non-negligible) viscosity is present? This is a difficult question. Leith (1984)

found that the two-dimensional analog of Fraenkel's solution yields a local minimum

of the enstrophy within the class of radially symmetric vortices with fixed circulation

and energy. The idea is that vortices reach a steady state by internal re-organlzation

and production of small scales i.e. via an enstrophy cascade. Such initial transients are

often observed in experiments and numerical calculations. The shed vorticity carries

enstrophy but very little energy to small scales where it is dissipated by viscosity.

McWiUiams (1984) hypothesized that in the presence of a small amount of damping

some integrals of the non-dissipative motion (in this case the energy) are subjected

to a far lower rate of decay than others such as the enstrophy. This is called the

selective decay hypothesis and some numerical evidence in its favor has been provided

by McWilliams (1984) and Basdevant at al (1984). In the latter study, pairs which

had very nearly the structure of the Batchelor (1973, p. 535) pair, which has the same

vorticity-streamfunction relation as Leith's minimum enstrophy solution were formed

in a wake; however, it remains to be seen whether Batchelor's solution is in fact a

minimum enstrophy pair.

We now briefly describe Fraenkel's solution. One can think of steady rings as

perturbations of two-dimensional vortices with circular streamlines; the core size to

radius ratio a is the expansion parameter. To zeroth order, the two-dimensional

solution is unmodified; at first order, the streamlines remain circular but become non-

concentric; to second order, the core becomes more elongated in the axial direction

because at each cross-section it feels the strain of neighboring curved portions of the

ring. Consider first the zeroth order two-dimensional solution. The condition for

steadiness is that the vorticity be some function of its corresponding streamfunction.

The simplest choice, which leads to the Rankine vortex, is to assume that this function

is a constant inside the vortex. A peaked vorticity results at the next level of difficulty

i.e. a linear function:

{ g0) 0 < e < 1;= e > 1. (5.B.26)

For convenience the radial extent of the vortex has been normalized so that it occupies

the unit disk. Note that polar coordinates (_, 8) are used. The streamfunction _i in

the interior satisfies

d2_i 1 d@i _ k2(_ _ _ g0), (5.B.27)v2 , = +
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whosesolution is $i($) = ClJo(ko) + ¢1o. On the boundary of the vortex let qJ assume

the constant value 5'1(J0(k)- 1). Then • i( e) = Cl(Jo(ks )- 1). If the circulation is set

to _r, the streamfunction in the exterior of the vortex is q_e = (1/2) log e+C_ (Jo(k)- 1)

to ensure continuity of ql across the boundary. The tangential velocity 0_/O0 at the

boundary must also match for the two solutions and this determines the value of C1.

The final solution is

1

_i(#) = 2kJ1(k) {Jo(k#) - 1} 0 _< e -< 1, (5.B.2S)

and the corresponding vorticity is

k

wz(s) = 2Jl(k)JO(k_) 0 _< 0 _< 1. (5.B.29)

The peakiness of the vorticity distribution is characterized by k. If k = 0 then the

vorticity is constant and if k = j0,1 _ 2.405 the first root of J0, then the vorticity

is peaked at the origin and falls to zero at the boundary. This is the case that was

simulated. Intermediate values of k result in less sharply peaked distributions which

are discontinuous at the boundary. For k > J0,1 the vorticity changes sign.

Now from this two-dimensional solution, Fraenkel defines a vortex ring solution

_(_, _)
- _ ,.3 Wz(LO), (5.B.30)

O" _'0_ _o

is given by the following mapping to O (,_)

= 6(e+ cos = f/. (5.B.31)

Here _ and _ are polar coordinates centered on the cross-section of the core of the

vortex ring, _ being measured counterclockwise from the point on the cross-section

having the greatest radius, 5 is the core radius and QI(_) is an expression given in

Fraenkel (1972); we shall not repeat it here.

In the discretization algorithm the unit disk is first divided into cells. This pro-

ceeds by first dividing the radial direction into a specified number of annular strips

N,t. Up to a certain radius the radial spacing is uniform but thereafter geometric

clustering is used in order to minimize smearing of the derivative discontinuity of the

vorticity. Two parameters specify the clustering: the clustering factor rc and the

number of strips in the clustered region, N¢. Each strip is then divided in the angular
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direction, the number of cells being chosen to make the cell aspect ratios approxi-

mately unity. A filament is then placed at the centroid of vorticity in the mapped

image of each cell and assigned its circulation. The cell pattern on the unit disk

for the a = 0.2 passage case presented in the chapter is shown in Figure 5.62. The

parameters used were Ns = 10, Nc = 6, rc = 0.80. This resulted in 513 filaments per

vortex. The resulting vorticity contours are presented in Figure 5.63, note that they

are nearly circular but non-concentric. For thick cores Fraenkel's solution is outside

its range of validity and the mapping (5.B.31) is no longer onto. For such cases, in

particular the c_ = 0.4 passage, only the zeroth order term in (5.B.31) is retained and

this accounts for the inherent unsteadiness observed in the motion of the centroid.
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........ , trajectory of vortlcity centroids; 4-, vorticity centroids. Uo_/Lo: A, 0; B, 0.37;

C, 0.74; D, 1.11; E, 1.48; F, 1.85; G, 2.22.

1.6

1.5

1.4

_: 1.5

1.2

1.1

I

0 0.5

I I I I

i
i

/
;: •

• o • w

D e • •

w _ t • I

i ;

1 I I I

1 1.5 2 2.5

Uo t / Lo

FIGURE 5.24. Aspect ratio of the inJtlal]y rear vortex for the passage of a = 0.14, d'=
1. -O-, contour dynamics; .... , eUiptic model; _, stable equilibrium.

185



15 I I I ! I I I I I I

10

..,..,,
3 5
J

-5

s_

I i I i i I i

0.25 0.50 0.75 I 1.25 1.50 1.75

Uo f / Lo

-I0 i i

0 2 2.75

FIGURE 5.25. Acoustic radiation for the passage of ,_ = 0.14,d = 1o --, contour

dynamics; .... , elliptic model; -----, Dyson's model.

>-

5

-1

-3

I I I I

...-

S /

--5 , L , I I , I

-5 -3 -I 1 3 5

X

FIGURE 5.26. Elliptic model phase plane trajectory of the initially rear vortex for

passage of a = 0.18, d= I. • , m, points of minimum and maximum radial centroid,
respectively.

186



D

FIGURE 5.27. Core shapes at equal time intervals for the passage of a = 0.18, d'-- 1.

........ , trajectory of vorticity centroicis; +, vorticity centroicis. Uot/Lo: A, 0; B, 0.34;
C, 0.68; D, 1.02; E, 1.37; F, 1.71.
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FIGURE 5.29. a = 0.40 passage. Uot/I,o: (a) 2.32; (b) 3.16; (c) 3.58; (d) 4.22. The
photographs axe from Oshlma, Kambe & Asaka (1975). Reproduced with permission.
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FIGURE 5.30. Comparison of the normalized acoustic signal for the passage of a -

0.4, d'= 2. --, contour dynamics; .... , elliptic model; m_--, Dyson's model.
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FIGURE 5.31. a = 0.4 passage, d= 2. Comparison of filament method and contour

dynamics. (a) Linear vorticity; (b) Peaked over-energetic vorticity; (c) Peaked vor-

ticity with energy matched to (a). m, +, filaments from the initially rear and front
vortices, respectively.

190



0.10 • , , , , • I , " ' " '

0.05

0.00

-0.05

-0.10

--0.15 , I . J , I , I , I , I , I , J

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5

rt/l..o
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FIGURE 5.33. Initial vorticity normalized by r//,o 2 for the two peaked vorticity

passage cases (_x = 0.4, d'= 2). (a) Over-energetic; (b) Energy matched to the linear

vorticity case.
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FIGURE 5.35. Core shapes for the comsion of a -- 0.2, d - 8. At equaJ time intervals

except for the last instant. Uo_/Lo - O, 0.54, 1.09, 1.63, 2.17, 2.72, 3.26, 3.80, 4.35,
4.89, 5.57. +, vorticity centroids; .... , trajectory of vorticity centroids.
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FIGURE 5.36. (a) Shape at Uot/Lo : 5.57 magnified from the previous figure; (0)
Uot/Lo = 5.62. _, computed; ........ , Sadovskii (1971) pair; +, vorticity centroids.
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FIGURE 5.37. Rate of the radial shape centroid scaled on _1/2. _, simulation;
.... , based on a core shape in the form of a Sadovskii (1971) pair.
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FIGURE 5.39. Rescaled core shapes (solid) for the collision of a = 0.2, d = 8.

Uot/Lo = 3.94-5.57 at equal intervals. ----, two-dimensional translating pairs num-

bered 6-11 and 13 in Figure 4a of Wu et al. (1984).
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FIGURE 5.40. Core shapes for the collision ofa = 0.5, d'= 8. At equal time intervals

except for the last instant. Uo_/Lo - O, 1.33, 2.67, 4.00, 5.49. The arrowhead tracks

a particle in its motion around the bounds_/. Only between the last two instants is
the rotation larger than 2x. +, vorticity centroids; A, B, points of maximum and
minimum, respective]y, in the acoustic signal shown in Figure 5.51.
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FIGURE 5.41. Shape at Uo_/Lo = 5.49 masni£ed from the previous figure.

computed shape; ........ , Sadovskii (1971) pair.
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FIGURE 5.42. Rate of stretching of the centroid for the collision of a = 0.5. --,

contour dynamics; .... , based on a coze having the shape of the Sadovskii (1971)
pair; , Dyson's model.
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FIGURE 5.43. Rate of stretching of the head for the collision of a = 0.5 as determined
by the node point with maximum radius. Unity corresponds to the estimate (5.3.19).
The point 'A' marks the inception of tail formation a_ determined by the appearance
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FIGURE 5.45. Magnified portion of the shape at Uot/Lo = 8.89 from the previous

figure. --, computed shape; ........ 2-D limiting translating pair; +, vorticity
centroid.
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FIGURE 5.46. Smoke visualization of the collision of two vortex rings by Oshima

(1978a). U, upper series which show a meridional plane illuminated by a sheet of
light; L, lower series which is an oblique view at 30 ° from plane of collision. Reproduced

with permission.
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FIGURE 5.51. Acoustic signal for the collision ofa = 0.5, d= 8. _, experiment of

Kambe and Minota (1983) from the previous figure; .... , contour dynamics; -----,

elliptic model. The letters A and B refer to the correspondingly labeled points in
Figure 5.40.
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CHAPTER 6

PARTICLE MOTIONS DUE TO UNSTEADY VORTEX RINGS

6.1. Introduction

Applying some notions from dynamical systems theory, this chapter considers the

motion of particles in the irrotational portions of unsteady time periodic vortex ring

flOWS.

The aim is to understand the features observed when tracer is experimentally

used to visualize such flows. The study focuses on two situations. The first is that of

the "turbulent vortex ring", a term sometimes used only as a label when the motion

of a tracer appears chaotic. It will be shown that some of the features observed

experimentally may be produced by simple inviscid, periodic unsteadiness of the

vortex core. These include puffness and striations in the tracer, a trailing wake, and

the entrainment of fluid from a patch of dye placed in the path of an initially unmarked

vortex ring. Axisymmetric unsteadiness in which the cross-section of the core of the

ring is elliptical and rotates at constant angular velocity is considered. Qualitative

agreement with experiment does not necessarily mean that a sufficient explanation

has been offered. The boundary of the core may have an arbitrary number of waves

or there may be azimuthal waves of the type reviewed in §2.10. Sailer & Widmayer

(1974) have indeed measured irregular hot-wire signals for turbulent rings. We only

wish to suggest that relatively simple unsteady models may be fruitful in elucidating

large scale aspects of the mixing.

The second situation is that of two leapfrogging rings. In Chapter 5 contour

dynamics results corresponded well with flow visualization experiments. In those

experiments, a tracer is injected into the shear layer at the lip so that aside from

Schmidt number effects there is little ambiguity between vorticity and tracer. But,

what happens if tracer is injected not only into the shear layer emitted from the orifice

but also into the non-vortical fluid outside the cores? The vorticity may induce tracer

particle motions in the irrotational region which can be easily confused as being

associated with the vorticity. We will provide an instance from the experimental

literature concerning leapfrogging rings where this appears to be the case. It will be
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suggested that the descriptions which have been applied to these photographs ought

to be reconsidered.

In the next section the necessary background material from dynamical systems

theory is canvassed. In §6.3 a survey is made of those papers employing tools from

dynamical systems theory to understand particle motions and mixing. The results

are contained in §6.4. Three cases of perfectly periodic vortex dynamics are dealt

with. The first considers vortex rings with elliptical cross-section and is meant to

address flow visualization observations of "turbulent vortex rings," however, it may

be useful in understanding aspects of fluid engulfment in the initial stages of pairing

when two neighboring rings co-rotate and also after the merging when an elongated

core is formed. The second set of cases was an outgrowth of the need to under-

stand the presence of islands of non-chaotic particle motion embedded in a region of

chaotic motion which were observed for the first case and the extent to which they

persist under the presence of disturbances on the core. Because the flow in the vicin-

ity of the core is locally two-dimensional we approach this question by considering

Kirchhoff's two-dimensional elliptic vortex and superimpose neutrally stable waves

on the boundary of the core (Love 1893). The final case addresses leapfrogging rings.

Dyson's (1893) model is applied to study particle motions for a case from Chapter 5.

The case chosen is one for which contour dynamics showed the core deformations to

be weak and hence Dyson's model to be a good approximation.

6.2. Terminology

The purpose of this section is to acquaint the reader with the terminology of this

chapter. A more comprehensive treatment of dynamical systems theory can be found

in a number of books on the subject. Below, some basic concepts are extracted from

Guckenheimer & Holmes (1983). A good descriptive and less technical book is by

Thompson & Stewart (1986).

Consider the equations governing the motion of particles in a three-dimensional

unsteady flow:

=

212



with

z(O))= ( o,yo,Zo).

The solution may be thought of as a curve in (z,y, z) space (the phase space)

parametrized by time. The curves for different (zo, yo, yo) may intersect albeit only

at different t. However, in the geometric approach one would like the solution curves

to be such that we can talk about surfaces containing the solution curves. It is better

to introduce time as an extra direction in the phase space. For this purpose (6.2.1) is

written as an autonomous system (with right hand side not explicitly dependent on

time) at the expense of increasing the dimension of the phase space by one:

=
= (6.2.2)

¢=I

The solution is represented by curves in (z, y, z, _) space which do not intersect. Note

that if the velocity field is time periodic with period 2_r say, then it is sufficient to

define ¢ to be modulo 2_r to guarantee that trajectories do not intersect. To see this,

assume that two trajectories coincide at the point zl,yl, zl, (¢mod2_r)x in the phase

space. If the velocity field is time periodic then the trajectories must continue to

coincide for both time running forward and backward.

To compress the notation, consider the general case of an n-degree of freedom

autonomous system

= f(z), x E R". (6.2.3)

To say that z belongs to cartesian space is general enough for our purposes. In some

situations in fluid mechanics, we may want to consider particle motions on a curved

streamsurface, for example a torus in an axisymmetric flow with swirl. However,

points on the surface may be described by a transformation to cartesian coordinates.

Discrete maps are an important class of dynamical systems. They may be studied

in their own right or they may arise from a continuous dynamical system. For example

the cases to be presented have periodic unsteadiness and we shall be concerned with

how particles are mapped in successive periods. Such a map is a special case of a
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Poincard map. Hence after integrating (6.2.3) from period i to i+1, either numerically

or exactly we obtain

z i+1 = g(zi), z E R '_. (6.2.4)

A map produced from a continuous system in this way will have one less degree

of freedom. Given initial conditions z(0) = zo for (6.2.3) and z ° = Zo for (6.2.4),

the resulting solution curve for (6.2.3) and discrete set of points for (6.2.4) in the

phase space is called an orbit. The fixed poin_ or equilibria Z of (6.2.3) and (6.2.4)

are defined respectively by

= 0; (6.2.5a)

g(Z) - Z = 0. (6.2.5b)

The particle path equations (6.2.2) have no fixed points but, if the flow is time

periodic, it may have periodic particle paths which are the fixed points of the Poincar_

map. The systems llnearized about the fixed points are

= A_; (6.2.6a)

= (6.2.6b)

where A and B axe constant n x n matrices with elements

bjk = 0zk Iz--_"

(6.2.7)

The llnearized systems lead to the notion of eigenspaees. For the continuous system

divide the generMized eigenvectors * of A into three groups, having eigenvalues with

real parts positive, negative and zero, respectively. Each group spans a subset of R",

referred to as the stable, unstable and center eigenspaces, denoted as E', E u and

E c, respectively. For maps, these eigenspaces are constructed from the generalized

eigenvectors of B associated with eigenvalues having modulus > 1, < 1 and = 1,

respectively. A fixed point having no eigenvalue with zero real part in the case of a

continuous system or having no eigenvalue with unit modulus in the case of a map is

called hyperbolic.

• The qualifier 'generalized' is needed when A does not possess a linearly independent set of

eigenvectors. For further discussion consult, for example, the textbook by Franklin (1968) under the

index entry of 'principal vector.'
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The Hartman-Grobman theorem (Guckenheimer & Holmes, p. 13) says that near

a hyperbolic fixed point the orbits of the linearized and full system are qualitatively

similar. In particular they can be deformed to each other in a continuous, invertible

and one-to-one fashion. As an illustration consider two-dimensional separated flow

above a no-slip wall as shown in Figure 6.1. The entire wall consists of fixed points.

The only non-zero element of the Jacobian matrix at the wall is c?u/c?y which itself

vanishes at the separation point S. The Jacobian matrix is already in Jordan form, has

two zero eigenvalues and the eigenvectors span the center eigenspace which consists

of the entire half plane. Because no fixed point is hyperbolic it is understandable

from the Hartman-Grobman theorem that near the separation point, streamlines for

a linear shear cannot be deformed to the actual streamlines.

An important property of the eigenspaces is that each is an invariant subspace

for the linearized system; that is to say an orbit on each set remains there always

for -oo < t < oo for (6.2.6a) and -oo < i < oo for (6.2.6b). This is so because the

general solution of (6.2.6a) is

=  jPj(t)vj, (6.2.8)

j=l

where Pj(t) are polynomials with unit coefficients such that Pi(O) = 1 and _ are

the generalized eigenvectors. One sees that if at the initial instant _ lies on a space

spanned by a subset of the _, then it does so always.

For hyperbolic fixed points the stable and unstable manifolds of _ denoted as

WS(_) and Wu(E), respectively, are non-linear extensions of the eigenspaces. The

manifolds contain information about fluid transport and the results to be presented

suggest that certain blobs of fluid near the unstable manifold are drawn out along

it and acquire its structure implying that it may be useful for numerical flow vlsu-

alization. The conventional approach to numerical flow visualization is to follow the

trajectories of arbitrary clusters of particles. This has the disadvantage that it is

expensive to place particles with sufficient resolution wherever dye is located initially.

One usually starts with a judiciously selected blob but this does not yield a global

picture.

One begins by defining the manifolds locally in some region _ (not necessarily

small) containing _. WlSoc(_) is the set of all orbits in Z_ which tend to _ as t --* oo and

never leave Z_ for t > 0. Similarly W_lo¢(_ ) is the set of all orbits in Z_ which tend to
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as t -* -oo and never leave ?2 for t < 0. This definition is general and does not refer

to the eigenspaces but the stable manifold theorem for continuous systems as weU as

maps asserts that for a hyperbolic fixed point W_c(_ ) and 14_toc(_ ) ezist, are tangent

to Es(_) and Eu(_) at _ and have the same dimensions rts and ha. In either case,

the global 14_(_) is then defined constructively by letting the local unstable manifold

flow forward under the dynamical system. Similarly, the global stable manifold is

constructed by letting the corresponding local manifold flow backward in time. By

construction, the manifolds are invariant subspaces; they always contain the same

fluid particles.

To illustrate these definitions consider first the separated flow example of Fig-

ure 6.1. The only fixed point having an unstable manifold is S and the manifold is

the streamline emanating from it. Because S is not hyperbolic the unstable manifold

bears no connection to the eigenspaces.

Next consider a vortex ring in a reference frame traveling with the ring. For a suf-

ficiently thin core the streamlines in a meridional plane look like those in Figure 6.2a.

There is a hyperbolic fixed point 5, a saddh. The stable and unstable manifolds of

coincide in the loop connecting the saddie to itself. Such a loop is called a homoclinic

orbit and _ is called a homoclinic point. As the core size increases to some value,

there occurs a change in the topology of the flow. Then there exist two saddles on

the symmetry axis as sketched in Figure 6.2b (Batchelor 1967, p. 525).

The dividing streamline is both the unstable manifold of F (excluding the point

R) and the stable manifold of R (excluding the point F). Connections such R--F

and the dividing streamline which join two saddles are called heteroclinic orbits and

together they form a heteroclinic cycle. In the present case the unstable and stable

manifolds of the forward and rear stagnation points coincide. This situation is highly

exceptional; if the ring were slightly disturbed, the body of fluid carried with it would

leak. This will manifest itself as a splitting of the manifolds. In the early seventies

several papers motivated their study of vortex rings by suggesting that vortex rings

could be used to transport chimney wastes to high altitudes. We should be thankful

that the scheme was never implemented.

The final concept which is needed is that of the "horseshoe" map introduced by

Smale (see Guckenheimer & Holmes, pp. 230-235). It essentially defines chaos. From

the structure of the stable and unstable manifolds to be presented in §6.4, it will

be observed that certain fluid blobs undergo repeated stretching and folding. The
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horseshoe map is an idealized representation of this process. The Smale-Birkhoff test

for chaos establishes an equivalence between the behavior of the idealized map and

what happens in more complicated dynamical systems. It asserts that the behavior of

the horseshoe occurs if the stable and unstable manifolds of a hyperbolic fixed point

intersect transversely at a point other than the fixed point. A transversalintersection

requires that together the tangent spaces of the manifolds at the point of intersection

have the same dimension as the phase space. Thus two space curves cannot intersect

transversely because their tangents at the point of intersection can at most span a

plane. The Smale-Birkhoff test implies that two-dimensional steady flow cannot be

chaotic because the manifolds also being trajectories of individual particles cannot

intersect transversely. The horseshoe map serves to provide an intuitive appreciation

for how continua] stretching and folding of fluid blobs results in Lagrangian chaos.

The horseshoe map takes a unit square, stretches it vertically by a factor p and

compresses it horizontally by a factor _. The resulting rectangle is folded (it then

looks like a horseshoe from where its name derives) and placed over the original square

so that the folded region lies outside the square (see Figure 6.3).

The map models a fluid blob that after having undergone stretching and folding

intersects its shape at an earlier instant. We are interested in those partlcles, call

them A, which remain in the square for all iterations i, -_ _< i _< or. How these

particles behave under repeated applications of the map will give us a feel for one

notion of chaos. To obtain A perform k iterations of the map on the square and

ask: what points have remained in the square for the previous k iterations and will

continue to remain in the square for the next k iterations. Then take the limit as

k -'-+ _.

Suppose that the map is applied once. The intersection of the n shaped image

with the square forms two vertical strips of length _ (< 1/2) and height unity. If

we undo the folding and stretching we see that the vertical strips come from two

horizontal strips of length unity and height p-1 (< 1/2). Thus, after one iteration,

all points of the original square except those lying in the horizontal strips fall out

of the square. Next, consider applying the map again, this time to the two vertical

strips. The only points in the strips that will survive in the square will be their

intersection with the two horizontal strips. This forms four rectangles of length _ and

height p-1. The result of actually applying the map is four vertical strips of length _2

and height unity. Undoing the folding and stretching twice, one sees that these came
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from four horizontal strips of length unity and height #-2. Thus, after two iterations,

only those points lying in these strips survive in the square. So if we now consider

applying the map twice again to the four vertical strips the surviving points will be

intersection of the four horizontal and vertical strips. Carrying out the argument

inductively, we see that after k iterations the part of the original square remaining

in the square consists of 2 k horizontal strips of length unity and height #-k and its

image will be 2 s vertical strips of length Ak and height unity. The points which will

survive the next k iterationswill be their intersectionwhich is 4k rectangles with

dimensions Ah and #-t. As k _ co, this set has an infinitenumber of points with

totalarea

S^ = lira = O. (6.2.9)
k--*oo

Even though A is a set of points with zero area, the dynamics of a point z in A

influences a point y in its vicinity until y falls out of the unit square. The closer y is

to z, the longer will y participate in the dynamics of z. For more complicated systems

one thinks of several rectangles undergoing the horseshoe map. After a particle falls

out of one rectangle it may enter another. These rectangles are said to form a Markov

partition.

There axe three types of dynamics that points on A undergo. First, there are a

countably infinite number of periodic orbits. Second, A has an (uncountably) infinite

number of aperiodic orbits. These orbits are such that if one kept track of whether

the successive iterates of a point z in A ended up on the top half of the square or

the bottom using the symbols 1 and 0, the symbol sequence would be random, akin

to a coin toss. Finally,there is at leastone orbit whose history of being in the top

or bottom half of the square willbe identicalto the history of every other orbitin A

for an arbitrarilylong number of iterations.Ifa map possesses the lastproperty itis

said to be mixing a concept which differsfrom the fluidmechanical connotations of

the term. Ifone definesa distance between points on A in terms of how closelytheir

1 and 0 sequences match (i.e.thinking of the sequence as a binary number) then we

would say that there isat leastone orbit which comes arbitrarilycloseto every point

in A. Such an orbit iscalleddense on A.
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6.3. Literature Survey

Even though dynamical systems theory has been in existence since the 1890s

beginning with Poinca_, its application to the study of particle motions in fluid

mechanics has come very recently undoubtedly because of the computer. Whereas our

principal motivation is to interpret flow visualization experiments, there are a number

of secondary reasons for undertaking this line of inquiry. Dye concentration is only

one example of a scalar variable that satisfies a convection-diffusion equation without

entering into the momentum equation. For example vortical motions having time

scales long compared to the time scale of an external strain imposed by the geometry

or by stronger vortices ate approximately passive. This approximation is made in

rapid distortion theory. It is conceivable that techniques from dynamical systems

theory combined with rapid distortion theory might be useful in understanding the

behavior of weak vorticity in general fluctuating velocity fields. Other examples of

passive scalars include temperature (with small differences) and functions ](x, t) such

that f -- 0 defines an evolving material surface. Knowledge of the motion of a material

surface is required to predict a diffusion controlled reaction at an interface separating

two species. Leonard, Rom-Kedat & Wiggins (1987) show that the rate of reaction

product formed at a point on the interface is completely determined by the history

of the local stretching up until reacted la_;ers overlap.

The flows which have been studied to date have been either three-dimensional

steady flows periodic in three directions or two-dimensional flows with periodic un-

steadiness. The periodicity makes these problems amenable to study through the use

of Poincat_ maps.

In the first category is the work of Dombre et al. (1986) and the references

cited therein. They studied an exact solution of the steady three-dlmensional Euler

equations

u × w = VH, (6.3.1)

1u 2where H = p/p -{- _ , is the Bernoulli function. Where H is not constant, the

streamlines lie on the level surfaces of H. Hence, the complexity of particle trajectories

is limited by the complexity of H. On the other hand trajectories are not constrained

if H is a constant in some region of R s. One class of flows satisfying this condition

ate the so-called ABC flows in which

= An, (6.3.2)
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with )_ = constant everywhere and the flow periodic in three directions.

For two-dimensional time periodic flows, the investigations fall into three cate-

gories: (i) kinematic models, (ii) forced Stokes flow, (iii) point vortices forced by an

unsteady potential flow.

(i) Kinematic models. Aref (1984) produced a model of stirring in a cylindrical en-

closure which utilized two "blinking" point vortices together with their images. They

are placed at fixed locations and each is turned on for half a period. The particle path

equations are integrated analytically over one period. The resulting discrete map can

be iterated forward thousands of iterations with small numerical error. Khakhar, Ris-

ing & Ottino (1986) performed additional analysis and computations for the blinking

vortex model. They computed the Lyapunov exponent which is a long-time average

of local stretching of material lines. They also introduced another model system in

which a uniform strain followed by a rotation dependent on distance from the origin

is applied during one period.

(ii) Forced Stokes flow. The studies in this category underscore the purely kine-

matic nature of chaotic particle paths and the fact that mixing is possible even in

creeping flows (as is well known to anyone who has mixed paints). Chien, Rising gz

Ottino (1986) experimentally studied Stokes flow in a cavity driven by moving belts

located at the top and bottom boundaries. They found efficient mixing for the case

in which the belts are driven one at a time in opposite directions. The rate of mix-

ing was optimum at a particular ratio of forcing period to the recirculation time of

the eddy. They experimentally verified the presence of the horseshoe map. Aref &

Balachandar (1986) and independently Chaiken et al. (1987) investigated Stokes flow

between two eccentric cylinders which are alternately rotated. An analytical solution

is available for the velocity field. In the former paper, several programs for the forcing

are treated. In the latter paper, each cylinder rotates with constant angular velocity

during its motion; both co-rotating and counter-rotating cases were considered. The

essential features were captured by a simple kinematic model employing a combina-

tion of "twist" maps. The map has been extensively studied in the dynamical systems

literature. The twist map applies a radially symmetric angular displacement to each

point by an amount that is a non-linear function of the distance from the origin. The

action of each cylinder is modelled by a twist map about the center of each cylinder.

In Chaiken et al. (1986) striking comparisons of computations with dye visualization

experiments are presented.

220



(iii) Point vortices with forcing by an unsteady potential flow. In an effort to

study a solution to the Euler equations, Rom-Kedax, Leonard & Wiggins (1988, here-

after RLW) studied particle motions generated by a pair of translating point vortices

subjected to a time-periodic straining flow about their common center. This type

of perturbation approximates the effect of a channel with wavy walls through which

the vortex pair propagates. In the absence of the perturbation the pair is enclosed

by an elliptical dividing streamline which separates fluid trapped around the vortices

from that flowing past them. When the perturbation is applied fluid is exchanged

between the two regions. The Melnikov theory (see Guckenheimer & Holmes) which

is valid for small perturbations was used to calculate such quantities as the width

of the mixing zone, a band about the unperturbed dividing streamline in which the

exchange occurs, and the area of fluid entrained and detrained during each period.

The theory predicted that these quantities are optimized at a particular value of the

ratio of forcing period to the time it takes for the pair to translate an amount equal

to their separation length. Surprisingly, the theory predicted that, to linear order

in the forcing amplitude, mixing would disappear altogether at a finite value of this

parameter. The predictions of the theory were confirmed numerically by computing

the manifolds of the fixed points using the full equations. They studied the question

of how rapidly particle density decreases from some initial value in an oval region

surrounding the pair. Such questions are important in practice. For example, Win-

terfeld (1965) measured the decrease in concentration in the wake of a blunt based

cone initially seeded with smoke. Such devices are used to stabilize flames in jet

combustion chambers and afterburners. The turbulent reeirculation zone serves as a

heat source to the main flame.

In any case, RLW symbolically analyze the intersection of the stable and unstable

manifolds and reduce the problem to that of determining: given a large number of

particles entrained at period zero, how many of these remain after n periods. The

entrained fluid is a definite and relatively small region, hence, the computational task

is much simpler.

Finally, to end the literature survey we would like to mention that flows evolving

in a self-similar fashion in time, can be made steady by applying time dependent

transformations. Cantwell (1986) has been pursuing this approach and has applied

it, among other things, to a diffusing Stokes vortex ring and unsteady jets with point

sources of momentum.
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The present work differs from previous work in the following respects:

(i) We take up the suggestion of Khakhar, Rising _ Ottino (1986) that "Future

studies might focus on the dynamics of flows specified by a_ internal parameter,

perhaps the Reynolds number, in which changes in the parameter result in changes

in flow kinematics and thus the mixing." To this end we consider solutions of the

Euler equations which are inherently unsteady; no external forcing is applied. The

time scale of the unsteadiness relative to the time scale of the overall vortex motions

which governs the strength of mixing are determined internally i.e. according to the

Enler equations.

(ii) Vortex patches rather than point vortices are considered.

(iii) There are prices to be paid for these features. First, the solutions considered

are valid only in some asymptotic limit. For each case, the restrictions will be speclfled

later. Second, the expressions for the velocity field in two of the three cases are

complex and expensive to compute; in one case numerical approximation is needed.

6.4. Results

The first example is that of a single unsteady vortex ring. We consider the solution

due to Moore (1980)in which the core is an ellipse with semi-major and minor axes

lengths a and b and mean toroidal radius Lo when the major axis is aligned with the

symmetry axis. If a/Lo is small, the dynamics are locally two-dimensional and the

core rotates at the constant angular velocity of Kirchhoff's elliptic vortex (Lamb 1932,

§159). This core motion causes the translational velocity to oscillate once every half-

rotation of the major axis. These oscillations occur about an average velocity given

by Kelvin's formula (§2.7) with the core size replaced by the arithmetic average of a

and b. The radial centroid oscillates similarly. The complete equations describing the

motion of the core are (4.2.38)-(4.2.40). In §4.2.5 deviations from Moore's solution

for thick cores were considered and it was shown that strain due to curvature caused

the aspect ratio to pulsate as well as to decrease secularly. Thus, for fat cores the

results of this chapter apply for only a few periods. The velocity field due to the

elliptical core ring will approximate that due to two vortex tings in the process of

merging.

In order to track particles, one needs the velocity field. However, in Moore's study

it was necessary to know only the zeroth order streamfunction in the vicinity of the
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core and the corresponding velocities have O (1) errors. In the present calculations we

obtain the velocities everywhere numerically from the contour dynamics equations.

Thus the core dynamics follows an asymptotic result whereas the velocity field is

unapproximated.

The Poincar4 map is defined using the period of the velocity field which is half

the period of rotation of the major axis; phase zero is taken when the major axis is

parallel to the symmetry axis. Each period consisted of 25 fourth-order Runge-Kutta

steps. The unstable manifold is computed by first locating, using secant iterations,

the forward hyperbolic fixed point F of the Poincar4 map lying on the symmetry

axis. See Figure 6.5. Next, the direction of the unstable eigenvector is estimated

by forward mapping a particle near the fixed point. This defines two end-points of

a segment. Many points are placed on the segment and iterated forward to build

the manifold. The fact that the initial segment does not lie exactly on the manifold

poses no practical problems. Since neighboring points converge to the manifold from

both sides, initial errors are quickly diminished. This was checked by deliberately

introducing large errors into the initial angle of the segment and comparing with the

shape of the manifold without the errors. The stable manifold of the rear fixed point

is obtained by symmetry. If time were reversed, the vortex would rotate in a clockwise

direction and R would be the front hyperbolic point and a similar procedure would

yield its unstable manifold symmetric to the first one. With time restored to its

original course this becomes the stable manifold of R.

Figure 6.4 shows the unstable manifold for c_' =_ (a -F b)/(2Lo) - 0.20 and an

aspect ratio A -- a/b = 2. Figure 6.5 shows a limited portion of both manifolds.

The unstable manifold of F begins as non-oscillatory but meanders about the stable

manifold of R in the rear of the ring. The stable manifold of R begins as oscillatory

in the front of the ring and becomes non-oscillatory in the rear. The square symbols

mark some intersection points. Because the manifolds intersect the Smale-Birkhoff

test implies that a horseshoe type of chaos is present. A particle started on one

manifold ends up somewhere else on the same manifold after one period. Hence

intersection points get mapped to intersection points. It was checked that the first

point (nearest F) is mapped to the third, the second to the fourth, etc. Therefore

the lobe denoted as Ao is mapped to A1 and so on. All the lobes must have the same

volume and this was verified. After the sixth period, fluid in Ao is engulfed into the

oval shaped region O consisting of the non-oscillating halves of the two manifolds.
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For convenience we shallreferto a lobe such as A6 as the entrance lobe. Similarly

Bo is"detrained" afterthe fifthperiod. A lobe such as B5 shallbe referredto as the

exit lobe. Thus in every period the region O picks up fresh fluidin exchange for old

fluidover a limited portion of the boundary. Figure 6.6 plots the volume exchanged

during the time that the vortex travelsone diameter as a function of the ellipticity

ee =-- (a - b)/(a + b). The parameter ee is the amplitude of the centroid oscillations in

Moore's solution. The largest value of e¢ shown corresponds to an aspect ratio of 2.

The solid circles are for a core size to radius ratio ct' = 0.150 and the solid squares are

for ct'= 0.125. According to the linesrizedtheory due to Mdnikov (Guckenheimer

& Holmes) valid for small perturbations about the steady state,the amplitude of

the manifold oscillationsis linearin the perturbation amplitude ee. In the present

cases,the linearbehavior persistsup to quite large valuesof the eUipticity.Note that

the time that it takes to travelone diameter isindependent of ee hence the ordinate

scaling does not affectthe linearity.Also note the sensitivityof the slope to a', a

slightlythickercore processes fluidmuch more rapidly.

More intersectionsof the two manifolds give information about smailer volumes

of fluid.Figure 6.7 sketches some manifolds with as many lobes shown as the fineness

of a pen would allow in order to ill/istratethe qualitativebehavior implied by the

manifolds. Suppose we wished to know how long particlesremain with the vortex

afterthey are engulfed. By observing successivemaps of the entrance lobe one sees

that they are stretched and wound around the vortex and every map afterthe third

has a piece contained in the exit lobe which has been rejected.Consider the shaded

sub-regions of the entrance lobe. Those regions,likethe stippled and screen-dotted,

that happen to be contained in a singlelobe of the stable manifold have relatively

simple histories.The stippledregion ismapped out of O after4 periods, the screen-

dotted after 5. Following their motion backward in time one observes that their

shapes are symmetric. Note however that theirorientationchanges. The solidregion

is not inside one lobe of the stable manifold but rather very many which are not

drawn. It has a more complicated history.Following itsmotion forward, itintersects

a stable manifold lobe that is drawn after four iterations.We identify its middle

piece as the firstto be rejectedin six more iterations.Following it further in time

as it intersectsmore of the drawn stablemanifold lobes one is able to identifymore

portions to be detrained in lateriterations.Note how the solid region isdrawn out

along the unstable manifold and begins to revealitsshape.
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Figure 6.8a-bgives an example of how the horseshoe arises. It depicts iterations

(hatched) of a roughly rectangular region (screen-dotted) whose boundaries lle in the

stable and unstable sets. Note how the region is bent and after the sixth iteration

(Figure 6.8b) intersects itself in two strips. In six more iterations, this fluid will

intersect the original rectangle in four finer strips contained in the original two and

so on. Rectangles which have this property are said to form a Markov partition for

the Poincar_ map. Note again how the rectangle is drawn out along the unstable

manifold and more iterations would reveal its finer structure.

Figure 6.9 is a spark-schlieren photograph kindly provided to us by Prof. Sturte-

vant (same as Sturtevant 1979, Figure 11d). It shows a shock-tube generated ring

propagating to the left. For later purposes it is important to mention that the com-

pression chamber was 15 cm long and the ring location is z/D = 2.78, where D is the

pipe diameter. Keep in mind that in a Schlieren image the difference in illumination

at a given point from the overall illumination is proportional to the density gradient,

normal to aknife edge, integrated over the entire length of the test section normal to

the photograph. Unfortunately, the direction of the knife edge is not provided. The

walls of the tube were cooled to aid in visualization. The vortical core consists of

cooled shear layer fluid as well as warm ambient fluid sandwiched between turns of

the spiral. As temperature mixes at roughly the same rate as vorticity, the subcore

(see §2.3) acquires a smooth temperature distribution. Indeed the fine white line in

the center of the core indicates a region of uniform density. The visualization is also

aided by the reduced density in the vortical core from compressibility effects. In any

case, the vortical core is the dark region and outer undiffused turns of the spiral may

also be visible.

We are interested in the streaky pattern in the rear which is described in a later

report (Sturtevant 1981). His remarks apply to oblique views of the ring that are of

insufficient resolution to allow reproduction here, however, they refer to a realization

in which the same generation parameters and visualization technique were used as

for the photograph we have presented. We think it is not inappropriate to quote

that description in its entirety. Before quoting his description it should be noted

that "ring" refers to the entire volume of fluid, vortical and non-vortical (or weakly

vortical) carried with the ring.

"By the time the vortex has propagated 40 diameters from the vortex genera-

tor the cooled fluid ingested into the ring has mixed completely with warmer fuid
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entrained from the outside, but, before this time, a great deal of information about

the flow field can be obtained from this method of flow visualization. In the first

photograph of Figure 10 (z/D = 1.7) the boundary between the vortex ring and the

outer fluid is sharply defined. Dark circumferential rings extend around the interface

dividing the vortex from the external fluid. These lines are suggestive of a wavy,

unstable shear layer at the interface. The column of fluid seen behind the vortex ring

at this close-in station is not a wake but is fluid ejected from the shock tube which

has not been ingested into the vortex ring. In the second photograph (z/D = 3.1)

[slightly later than the photograph we have been able to provide] the circumferential

lines on the external interface have distorted and have developed a three-dimensional

irregularity. The ring now trails a thin wake."

"At z/D = 4.5 the flow inside the ring seems to be fnlly turbulent. Disturbances

on the boundary of the ring protrude into the surrounding fluid and, after being

convected along the boundary to the rear of the ring, seem to grow almost explosively

outward from the rearward surface of the ring. Apparently, this is a mechanism for

ejection of fluid into the wake of the vortex ring, because in this photograph, and in

subsequent ones, the wake thickens very rapidly. The rapid growth of disturbances

on the interface at the rear of the vortex ring appears to be the mechanism not only

for ejecting ring fluid into the wake but also for entraining external fluid into the

ring, because, after z/D = 6.0 mixing within the ring becomes so strong that the

photographs rapidly lose their contrast. By z/D = 6.0 the spatial distribution of the

inhomogeneities within the ring seems to have become relatively homogeneous and

isotropic. It is noteworthy that this state of fully developed turbulence is reached

just before the instability waves on the core of the ring reach substantial amplitude.

Though the relationship between the core instability and the turbulence in the ring is

not at all clear, it is certainly apparent from these photographs that substantial three-

dimensional random, unsteady motion (turbulence) occurs within the ring before there

are any signs of the fundamental core instability" (Sturtevant's italics).

Several comments are due. First his description of the interface is consistent with

the picture of entrainment and detrainment provided by the unstable manifolds. We

do not agree that it is due to a shear-layer instability. Second, wherever turbulence is

mentioned, it does not refer to vortical motions but rather chaotic motion of the cold

fluid carried with the ring and entrained ambient warm fluid. Third, the distortions
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of the interface are described as three-dimensional suggesting that the unsteady vor-

tical motion causing it is also three-dimensional. However this is inconsistent with

the fact that it is observed before the Widnall instability. Given that $cldieren vi-

sualization presents an integrated view of density gradient, complex axisymmetric

stirring of cold and ambient fluid cannot be distinguished from three-dimensional

motion even in a 30 ° oblique view. It is possible that even in its low amplitude stages

the Widnall instability is an efllcient stirrer. We are not inclined to this view for two

reasons. First, in the initial stages the waves are stagnant according to both exper-

iment (Maxworthy 1977) and theory. Second, even when the waves begin to rotate

(Maxworthy 1977), short waves have a short range effect on the velocity field. This

is suggested by Widnall, Bliss & Tsai (1974) who say that "for short waves, such as

are observed on vortex rings, the velocities induced at the core boundary owing to

distant perturbations on the ring are negligible; preliminary calculations of the outer

potential flow using toroidal co-ordinates indicate that these are of order 1/(NwR) 2

as N,,R --* 0¢." Here N,, is the'number of waves and R is the radius of the ring.

What form of unsteadiness produces the stirring? One possibility is the instability

of two-dimensional compressible vortices studied by Broadbent & Moore (1979). They

found that a two-dimensional circular patch of uniform vorticity and entropy was

unstable to two-dimensional wavy deformations of the boundary, the elliptic mode

being the most unstable. The instability is weak; it takes many core rotations for the

initial disturbance to undergo an e-fold amplification especially at low Mach numbers

based on maximum rotational velocity in the core. $turtevant mentions that the

maximum velocity in the core is near sonic; this allows us to find the growth rate of

the eUiptic mode from Table 1 of Broadbent & Moore (1979). Then, using Kelvin's

speed formula with a core size to radius ratio of 0.10 estimated by $turtevant we find

that in the time that the vortex propagates one ring diameter there are 0.90 e-foldings

of the initial disturbance. On the other hand, using Equation 9.2 of Widnall & Tsai

(1977), the three-dimensional instability undergoes 1.4 e-foldings but as mentioned

earlier its influence would decay more rapidly from the core. Thus one cannot a priori

discount the presence and influence of the Broadbent & Moore instability.

Figure 12 in Sturtevant (1979) is a photograph of the same case without pre-

cooling. Only the naturally occurring reduced density in the vortex core is used for

visualization. No streaks are present.
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Ms.xworthy (1974, hereafter M) studied turbulent vortex rings in water with Re

1 × 104 based on propagation velocity and toroidal radius. Figure M:3 shows a ring

marked with a blob of dye. The blob becomes puffy and its boundary corrugated

with ejections similar to those suggested by the unstable manifold. Most of the dye

is rejected to a wake and eventually remains only in a thin toriodal core with core to

toroidal radius ratio of about 0.1.

In Figure M-4 an undyed ring is pushed through a patch of dye. "The outer

region of the moving bubble was immediately filled with dyed fluid, but the core

remained clear. As time progressed, a thin skin around the core became dyed but

penetration to the centre of the core never seemed to take place, at least during our

experiments." The remarks suggest that there is little exchange between the vortical

core and surrounding fluid.

In Figure M:5 a weak salt solution was used to mark the bubble and observed

using the shadowgraph technique. "The major motions in the outer bubble are of

larger scale; they mix environmental with bubble fluid and deposit the majority into

a wake. There are, clearly, small scale streaks in the region, but are being convected

around and stretched by the large scales, and only show up because of the small

diffusion coei_cient possessed by the denser salty water."

These observations are also consistent with unsteady motion of a vortical core

inducing the entrainment and detrainment.

Unlike the situation we have treated, in the experiments of Maxworthy the vortical

core is not completely isolated from the surrounding fluid. We have not addressed slow

permanent entrainment characterized by growth of the bubble. The rate of growth of

bubble volume divided by the surface area times the propagation velocity defines an

entrainment coefficient. Maxworthy reports a value of about 0.01 independent of Re.

Weak vorticity either diffusing into the bubble or entering it via wisps torn off from

the core would become turbulent due to chaotic passive advection. Little whirls are

chaotically advected by bigger whirls. It would be very interesting to study, using

rapid distortion theory, how the spectrum of the weak vorticity evolves due to chaotic

advection. This vorticity is continually being rejected into the wake, resulting in a

slow loss of impulse.

The splitting of the manifolds is generic and may also occur in laminar wake

cavities in which after a critical Reynolds number, periodic velocity signals are mea-

sured. Plate 35 in the book edited by Goldstein (vol. 2, 1965) shows dye visualization
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behind a circular disk in such a regime and is suggestive of manifold splitting. The

book explains: "When the Reynolds number exceeds the critical value, an oscillating

disturbance of the surface of the vortex ring becomes visible, with the result that

successive portions of its substance are discharged downstream at regular intervals of

time which depend on the rate of flow and the dimensions of the disk."

"In investigating wakes behind various obstacles experimenters have noticed some

definite periodicity in the records of the velocity at points behind the obstacle, but

have been unable to observe any uniformity or periodicity in the shape of the vorticity

discharge." These conflicting observations may again be due to inadequacy of the

visualization technique.

One may wonder if, in the numerical example, despite the fluid exchange process,

some fluid is permanently carried with the vortex. Figure 6.10 shows that two such

regions exist near the core. After half a major axis rotation region 'A' is transported

to 'B' and vice-versa. The motion is quasiperiodic and periodic for some exceptional

points inside. In a cylindrical coordinate phase space in which the azimuthal direc-

tion is chosen to be angle of the ellipse, the motion of particles takes place on tori

whose cross-section has been depicted in the figure. These are called KAM tori after

the Kolmogorov-Arnold-Moser theorem for perturbed Hamiltonian systems. In the

fluid mechanical context the KAM theorem refers to the survival, under small pertur-

bations about steady flow, of such regions near the closed streamlines of the steady

flOW.

The existence of these regions of trapped fluid near the vortex core can be un-

derstood in terms of the streamline pattern of the steadily rotating Kirchhoff elliptic

vortex in two-dimensions. This is because the velocity field in the vicinity of the

core is locally the same with additional terms in the axlsymmetric case that account

for self-induction. From the KAM theorem one expects that some of the qualitative

features will remain unchanged in the presence of these additional terms. Before

presenting some representative streamline patterns we briefly describe how they were

obtained.

Lamb (1932, §159) discusses particle paths in the interior of the vortex and finds

them to be ellipses (relative to the vortex) geometrically similar to the boundary of

the vortex. The interest here is on the exterior flow. Let z = z + i_/ define fixed
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coordinates and let Z' = X' + iY' rotate with the vortex, X' being measured along

the major axis which makes an angle _ with the z axis so that

Next define elliptic coordinates

z = g'e i_'. (6.4.1)

g' = ccosh (, ( = _ + it/, c - _ - b2. (6.4.2)

Lamb provides the streamfunction and from it one can write down the complex po-

tential using the Cauchy-Riemann relations (following Saffman 1979):

The corresponding velocity field is

2_"
(6.4.3)

u iv dO iF . i- -- -- - ---e-_'e - _'. (6.4.4)
dz _'C

Figure 6.11a shows the Poincar_ section, every half rotation, of particle paths

relative to the vortex for a slightly elliptical vortex. If the vortex were circular,

particle paths would also be circular but the slight ellipticity creates mounds of fluid

on the major axis side that rotate with the vortex. Similar mounds exist for the

potential flow of a solid rotating ellipse as shown by Morton (1913). The mound

is created about the point in the circular flow where the particle rotation frequency

is the same as the vortex rotation frequency. Figure 6.11b shows larger mounds for

aspect ratio equal to two.

We are now interested in particle transport in the presence of linearized waves

on the boundary of the elliptic vortex. Love (1893) has studied the stability of the

waves and a description of how we obtain the particle path equations from his analysis

follows.

Since the vorticity distribution is unaltered, the disturbance streamfunction obeys

the Laplace equation which is separable in elliptic coordinates and a typical eigenmode

(choosing the one that decays at infinity) is

5_ -- A,n(t)coshm_oe -r_(f-¢°) cos m_7 + Bm(t)sinhm_oe-'n(_-6°)sinm_?, (6.4.5)

where _o is the value of _ on the unperturbed boundary. As for the unperturbed ellipse

it is convenient to work with complex variables. The velocity potential associated
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with (6.4.5) is obtained from the Cauchy-Riemannrelations and a complex potential

is formed:

5_(() = -e -mCe m_° (Bin( t ) sinh m_o - Jam(t) cosh m_o ). (6.4.6)

Love obtains an expression (preceding his Equation 21) for the amplitudes Am(t) and

B,n(t) after invoking continuity of flow qus.ntities snd the dynamical constraint that

the boundary is material. It has the solution:

A,_(t)= D1 sin_t + D2 cos _t,

Bin(t) = tf_--2(D2 sin_t - D1 sin_t),
V v_ (6.4.7)

1_,_:_o[(_+1) 2 1± , _-

where _o is the value of the uniform vorticity. The value of _ determines the stability

of a vortex with aspect ratio A to a given mode m. Love shows that al_l modes are

neutrally stable provided A < 3. When A > 3 the m = 3 mode is the first to become

unstable. NeutrMly stable modes serve as bifurcation points for finite amplitude

periodic solutions and they should be obtained in the future.

The constants that appear in the equation for the complex potential are

sinh m_o e ,,_o
_1,2 _ coshm_o '

and using the definition for 4o they become

1 r(_ + 1_ m ]_,2 = _ [\_--_/ _:1 . (6.4.9)

Hence considering initialconditions such that DI = 0 and D2 -- 6 the perturbation

velocityis

u-iv: dz/d¢ cs_nh_ lsin_t-i_2cos_t , (6.4.10)

which when added to (6.4.4) gives the equations used to track particles.

Finally, in order make e dimensionless and concrete we relate it to the amplitude

of the surface deflection. This is done by determining a confocal ellipse that encloses
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the perturbed vortex. Invoking the condition of continuous tangential velocity at the

interface, Love (Equation 14) obtains for our initial phase:

eh_m _,
5_ = _e '''° cos m_/,

w¢

The inequality

h2o =_ (a2 sin2rl + b2 cos_rl ) -1 (6.4.11)

Irn,_
5{ < _-----e m_° (6.4.12)

_t._ °

defines an enlarged confocal ellipse with major axis a + ga containing the perturbation

such that for small @

5a ma_ ,,_o
aa =---- = _ e-" . (6.4.13)

a (,_loa

The perturbation amplitude was specified with an.

Consider an m = 4 perturbation with a_ = 0.10. Figure 6.12 shows 20 orbits

relative to the rotating vortex for 1000 periods which were started on one side of the

vortex. Particle paths sufficiently far from the vortex as well as in the inner region

of the mounds remain non-chaotic. The outer region of the mound has chaotic orbits

which make their way to the opposite side of the vortex. Figure 6.13 is a close-up of

the inner mound region and shows two chains of islands. Particles are transported

from one island to another in each chain.

Figure 6.14 shows orbits in the mound region for m = 3 and _ = 0.10; they are

qualitatively similar to the previous case. An orbit started just outside the outermost

torus in Figure 6.14, in the transition region between regular and chaotic motion, is

shown in Figure 6.15. The first 961 iterations (dots) are neither completely chaotic

nor regular and remain confined to a region that is similar in shape to the outermost

torus. Quite rapidly, however, the particle breaks free and begins to. explore a larger

area. The next 65 iterates are shown surrounded with diamonds. The calculation

was run for 3000 iterations and eventually the particle crossed over to the other

side of the vortex. The shape of the initial part of the orbit with its linked sausage

appearance suggested an island chain with homoclinic points between the islands with

split manifolds through which the particle eventually escapes, but we were unable to

locate any tori. This behavior is also symptomatic of and may be due to the presence

of so-called cantori which act as leaky barriers to particle transport. See MacKay

et at,. (1984) for a brief history. Their existence has been proved for Hamiltonian

systems. They are invariant sets which may be thought of as being similar to the

first scenario described except that they have zero area. They act as obstructions
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to transport across them but like the spaces between island chains through which

particles cross, cantori have gaps and hence act as partial two-way barriers.

Finally, using Dyson's (1893) model, the leapfrogging of rings with core size to

radius ratio of 0.1 and an initial separation of one radius is studied. This case was

studied with contour dynamics in the last chapter. Although Dyson's model fails

to predict the acoustic signal it is still a good approximation for the velocity since

the cores remain thin and nearly circular and there is no permanent deformation;

the maximum aspect ratio was 1.14. Figure 6.16 shows unstable manifolds of the

Poincar6 map with period equal to one passage at three phases of _o = 3/21r, 27r

and 31r (modulo 2_'); the circles indicate the vortical core. The flow visualization

photographs are from Yamada & Matsni (1978). A cross-section of the flow has been

illuminated by a sheet of light. The stretching along the manifold is so rapid that

even though 4000 particles were placed on the initial segment, the visual appearance

of the manifold as a connected curve disappears after the third forward map of the

initial segment. For _o = 27r the manifold winds back and forth between the two

vortices each time passing through the "braid" region.

Even the very fine scale features of the manifold agree remarkably well with the

experimental photographs. Maxworthy (1979) has used the photographs together

with vorticity diffusion arguments to provide a plausible rendering of the underlying

vorticity. For example, the first photograph shows the first passage almost completed,

and "thereafter, the latter [the passing vortex] is distorted and wraps around the for-

mer and the two rings become one." In referring to the third photograph, Maxworthy

says that the passing vortex "has become so distorted that it is barely recognizable",

and Yamada & Matsui say that "the core of the first ring was severely deformed and

stretched, and it seemed to roll up around that of the second ring..." Maxworthy's

guess of the vorticity field underlying the third photograph is sketched as Stage 3 in

Figure 1 of his paper and shows the two rings diffused together.

On the other hand, the present result suggests that the observed pattern may be

due merely to complex motion of tracer in irrotational or weakly vortical fluid, with

vortex cores behaving in a simple, non-deforming and almost classical manner. It is

only tracer that appears to deform and roll-up around the leading vortex. We would

like to stress three points. First, this interpretation is appropriate only for this exper-

iment in which a smoke wire was stretched across the entire diameter of the orifice,

causing smoke to be introduced not only in the emitted shear layer (which would
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mark the vorticity aside from Schmidt number effects) but also into non-vortical fluid

initially transported with each vortex. This points out that one ought to be careful

to ensure that only vortical regions are marked. Second, weak vorticity around the

periphery of a core may also become susceptible to passive advection and acquire

the structure of the unstable manifold; compare it with the Klmnent calculation for a

peaked vorticity distribution shown in Figure 5.18. Third, the question of whether the

two rings diffuse together or behave in the simple manner suggested at the Reynolds

number of the experiment (1600 based on initial translation speed and orifice diame-

ter), will have to await viscous numerical computations at higher Reynolds number.

Stanaway et al. (1988a) have utilized a spectral method to simulate a passage in-

teraction with initially Gaussian vorticity distributions. Parameters were chosen to

be those of the present inviscid calculation, the core size being defined where the

maximum velocity occurs. The Reynolds number based on initial self-induced speed

and diameter was 609. They observed that the first passage is successful but, during

the second, the passing vortex strongly deforms. A measure of the extent of viscous

merging is the level of the highest vorticity contour that surrounds the vorticity peaks

of both rings. At roughly the phase of the last Yamada & Matsui photograph and

stage 3 as sketched in Maxworthy (1979, Figure 1), this level is 10% of the peak

vorticity. Hence, at the Reynolds number of the simulation, neither Maxworthy's

nor the classical picture is completely accurate. We hope that simulations at higher

Reynolds number will lead to a synthesis of inviscid descriptions and Maxworthy's

views about the role of viscous diffusion.

This chapter has presented some examples of chaotic particle motion resulting

from unsteadiness of the vorticity. Despite the simplicity of the examples from the

Eulerlan point of view, they have a very rich and complex structure which has been

shown to be relevant to what is observed in the laboratory. Thus we feel that the study

of simple inviscid models may be useful for understanding mixing, combustion and

dye visualization for more complex shear flows. After observing that certain nearby

regions tend to be drawn out along the unstable manifold, we partially understand

why smoke should tend to acquire its structure. As a second step, what needs to be

shown is that overall stretching rates are positive along (at least some portions of)

the manifold.
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FIGURE 6.1. Streamlines for separate([ viscous flow over a solid w_]l.

(a)

,wU(x--)
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R F

WU(R) WU(R), WS(F) WS(F)

FIGURE 6.2. Sketch of streamlines for steadily translating vortex rings. The hatched

region shows the vorticity containing region. (a) is for very thin cores and (b) for
thick cores.

235



,fj-_

W.

a _ _

x---_l
l

Y/

¢%
J/.
J/

ff
J/.
J/.

i/.

dB m C r

FIGURE 6.3. Smale's horseshoe map.

/
FIGURE (].4. Unstable manifold of the forward periodic point for an elliptical core

ring. A - 2, c_'----(a + b)IC2Lo)= o.15.
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FIGURE 6.5. Abridged portions of the stable and unstable manifolds corresponding
to the previous figure illustrating fluid engulfment and rejection.
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FIGURE 6.6. Volume of fluid exchanged by elliptical core vortex rings per diameter
translation a.s a function of the ellipticity. The volume is scaled using the mean
toroidal radius Lo. 0, az - (a + b)/(2Lo) = 0.150; II, a' = 0.125.

FIGURE 6.7. Motion of selected fluid regions bounded by the manifolds.
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FIGURE 6.8 Sketch of six Poincar_ maps of a "rectangle" (screen dotted) leading to

the horseshoe map. The iterates are hatched and proceed counterclockwise. (a)

shows the first five iterations and (b) the last.
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FIGURE 6.9. Schlieren visualizstlon of s shock-tube generated ring propsgating to

the left. Courtesy of B. Stu_evant.
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FIGURE 6.10. Poincar_ section of regions of fluid permanently carried by an elliptical

core ring. )_ - 2, a' -_ (a + b)/(2Lo) - 0.15.

FIGURE 6.11. Poincar_ section of particle paths for Kirchhoff's two-dimensionaJ

eRiptic vortex in a reference frame rotating with the vortex. (a) A - 1.1; (b) A = 2.
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FIGURE 6.12. Poinca_ section of particle paths for an elliptic vortex with a prop-
agating wave on the boundary, m = 4, e6 = 0.1, _ = 2, number of periods = 2000.
Twenty particles were startel on the upper side and are shown relative to a reference
fr_ne rotating with the vortex.

. "_,_ :_".":"" " -,'.... ':":':-/ __..."? . A. ' " ' ' ::" ' " ...... ", ",

FIGURE 6.13. Close-up of the upper mound region in the previous figure.
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FIGURE 6.14. Poincar_ section of particle paths for an elliptic vortex with a prop-

agating wave on the boundary, m = 3, ea = 0.1, J_ = 2, number of periods - 2000.
Twenty particles were started on the upper side and are shown relative to a reference
frame rotating with the vortex. A close-up of the mound region is shown.
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FIGURE 6.15. Same case as the previous figure. Shows one orbit started just outside
the outermost torus. Dots represent the first 961 periods and diamonds the next 65.
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FIGURE 6.18. Unstable manifold at different phases for two leapfrogging rings.

Photographs are from Yamada & Matsui (1978). Reproduced with permission. Please

turn page sideways.
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CHAPTER 7

CLOSING REMARKS

7.1. Conclusions

(1) The contour dynamics formulation, developed for two-dimensional regions of

uniform vorticity by Zabusky, Hughes & Roberts (1979), was extended to axisym-

metric vortex rings in which the azimuthal vorticity varies linearly with respect to

distance from the axis of symmetry.

(2) A model for the axisymmetric flows which retains only the elliptic degrees

of freedom in the core shape was developed. Six ODEs govern the evolution of the

position and shape of each vortex in the model. The classical model due to Dyson

(1893) assumes that cores remain circular and therefore implicitly includes only the

isotropic compression part of the strain and ignores the plane strain. The elliptic

model accounts for the latter. The results of the model were compared with contour

dynamics and found to accurately predict whether a passage of two rings would be

successful, the overall pattern of core deformation, and the acoustic signal.

(3) The vortex filament method (Leonard 1980) was implemented for axisymmet-

tic flow and tested against the contour dynamics method. It was found to be accurate

even for sensitive measures such as the acoustic signal. Inaccuracy occurred at late

times when thin sheet-like regions which could not be resolved well developed and

a Kelvin-Helmholtz-llke clumping of filaments, not present in the contour dynamics

simulations occurred.

(4) The vortex filament method enabled the study of the passage of rings with

more realistic vorticity distributions that are peaked. The vorticity distribution was

found to be less important for cases in which large strains occur. For example, for a

case of thin rings, the strain rate was small and the passage successful for a peaked

distribution, but unsuccessful for a linear distribution having the same circulation

and core size. For a case of thick rings, the strain rate to vorticity ratio was large

and the two distributions exhibited the same pattern of deformation.
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(5) MShring's (1978) theory of vortex sound was implemented for the three meth-

ods listed above. The theory solves Lighthill's (1956) exact equation (neglecting vis-

cous stresses) for isentropic pressure fluctuations in the far-field by assuming that the

vortical region is small compared to the sound wavelength and that kinetic energy is

conserved. The usefulness and novelty of MShring's theory lies in the fact that the

acoustic pressure depends on an integral of the vorticity which is easily computed.

The predictions of MShring's theory combined with contour dynamics was com-

pared against the signal measured by Kambe & Minota (1983) for colliding rings.

Except for a final peak, the agreement with the ensemble averaged signal was very

good for core size to radius ratios of 0.5 and 1.0. In particular, a negative peak not

predicted by Dyson's model and which was accounted for by Kambe & Minota using

a viscous model is reproduced, suggesting that it is due to inviseid core deformation.

The two core sizes simulated are very likely larger than in the experiment. Calcu-

lations for a thin core (a = 0.2) showed that oscillations are produced when the

signal becomes negative. Similar oscillations are present in individual realizations of

the experiment but, because they are not reproducible, averaging filters them out.

Calculations with two slightly different initial conditions showed that the oscillations

are sensitive to the precise form of the initial conditions. Small initial unsteadiness

is amplified by the continually increasing strain rate as the rings collide.

(6) Small core deformations were found to be as important to sound generation as

bulk motion. In one instance of passage, the total radiated power is 6.8 times larger

than that obtained by ignoring core oscillations (Dyson's model). These oscillations

radiate significant power at a frequency equal to about half the vorticity. Peaks in

laboratory jet noise spectra correspond to half the peak phase averaged vorticity for

the preferred and jet-column modes suggesting that axisymmetric core deformation

may be an important sound source. The oscillations were found to be sensitive to

small changes in initial conditions. If the core shapes were initially chosen to be in

equilibrium with respect to the induced strain, the radiated power was significantly

reduced.

(7) When cores rotate rapidly compared to how fast they approach, which holds

for thin rings, core shapes behave elastically in the sense that they remain near equi-

librium with respect to the instantaneous induced field of the other vortex. For in-

stance, in a head-on collision the shapes evolved through the family of two-dimensional
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steadily propagating pairs. Similarly, in a passage interaction, the aspect ratio fol-

lowed the equilibrium value, which relaxed to its initial value when the passage was

complete. The motion was therefore nearly periodic. This behavior can be likened

to that of a spring mass system; the length of the spring is like the aspect ratio and

the value of gravity is analogous to the strain rate imposed by the other vortex. If

the value of gravity changes slowly compared to the natural frequency of the system,

the extension of the spring behaves quasi-statically. This is the concept of adia-

batic invariance in the theory of differential equations with time varying Hamiltonian

(Arnol'd 1978, p. 297), and its relevance to elliptic vortices in a strain field has been

noted by Neu (1984, p. 2400). It is perhaps of interest to note that from the collision

case simulated, it appears to also hold in the infinite degree of freedom case.

(8) For thick core passages, core rotation is slow compared to how rapidly the

induced strain changes so that when the strain relaxes, the shape does not. The

variation of strain due to the curved geometry is an essential effect that distinguishes

the behavior of a pair of like-signed rings and a pair of two-dimensional corotating

patches. It accounts for a greater susceptibility to vortex tearing in the former case.

For example, one vortex ring captures part of another when the initial ratio of separa-

tion to area-effective core radius is 5, whereas in two dimensions convective merging

occurs only when this ratio is less than 3.4 (Roberts & Christiansen 1972).

(9) For the collision of thick core rings, the cores initially flatten but subsequently

a clumping phenomenon occurs whereby a "head" emerges, which has very nearly the

shape of a two-dimensional steadily propagating vortex dipole, trailing a long thin

tail. The head-tail structure agrees well with the flow visualization photographs of

Oshima (1978a).

(10) When two rings collide, the energetics of the stretching process implies core

deformation. In particular, simulations indicated that the formation of thin sheets

takes place. In turbulence, a pair of three-dimensional vortex tubes, stretching due

to their mutual induction, may generate fine scales for the same reason.

(11) The spectrum of the energy was computed in an effort to understand the

relation of wavenumber space behavior to physical space dynamics. A simple vortex

ring collision, without a hierarchy of physical scales, exhibited a rich energy spectrum.

Energy was transferred out of low and into high wavenumbers. The dipolar head-tail

structure of the core resulted in a k 2/3 range between the scales of the toroidal and
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core radius, while the energy of eachring consideredin isolation produced a k -s/3

intermediate range.

(12) Tools from dynamical systems theory were applied to study the motion of

fluid particles for two cases of unsteady time periodic vortex ring motion. In the

first case, we have isolated rings of slender elliptic cross-section evolving according to

Moore's (1980) solution. This case was intended to address tracer visualizations of

"turbulent vortex rings." Turbulent vortex rings are admittedly more complicated.

Nevertheless, many features observed in flow visualization are understood by this

simple model These include surface corrugations and fine scale streaks in the blob

of tracer, the loss of dye from an initially marked ring, the trailing of a wake and

entrainment from a patch of dye placed in the path of an unmarked ring. It therefore

appears not necessary to posit the existence a shear layer at the interface through

which the entrainment occurs. The view of a turbulent ring as consisting of a small

scale turbulence within a core and large scale turbulence in the outer region which

entrains and detrains environmental fluid is not the only one consistent with flow vi-

sualization. The alternate view is that Biot-Savart induction by the core unsteadiness

itself is sufficient.

The second case was the alternate passage of one ring through another. Dyson's

(1893) circular core model was applied to a case for which contour dynamics had

shown it to be accurate. The structure of the computed unstable manifold agreed

remarkably well the smoke photographs of Yamada & Matsui (1978) which appear to

depict the deformation of the passing vortex and its wrapping around the front vortex.

On the basis of this, a re-evaluation of previous interpretations of these photographs

was suggested. The agreement with flow visualization photographs recommends the

unstable manifold as a numerical flow visualization tool for other time periodic flows.

(13) Deviations from Moore's (1980) asymptotic solution for an isolated vortex

ring having thin elliptic cross-section were studied. The deviations consisted of two

parts. The aspect ratio oscillated with an amplitude that can be accounted for by the

self-induced strain due to curvature. In addition the aspect ratio underwent a secular

decline accompanied by growth of a non-eUiptic mode. This is thought to be clue to

a parametric excitation by the primary periodic motion in the self-induced strain.
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7.2. Recommendations for future work

(1) Studies in two-dimensional contour dynamics with ezternaI strain. The un-

derstanding of the behavior of thin core rings would benefit from added knowledge

about the behavior of two-dlmensional vortex patches subject to weak strains. This is

so because, for thin cores the dynamics is locally two-dimensional but with a strain-

like curvature correction. Two situations were encountered in this work where added

knowledge of two-dimensional dynamics would have been welcome:

a) For the elliptical core vortex ring studied in §4.2.5, a possible mechanism for

growth of the non-elliptic mode is parametric excitation. A relevant study in two-

dimensions would be the stability of an elliptic vortex undergoing periodic motion

on one of Neu's (1984) integral curves to non-elliptic perturbations. The observed

instability suggests that the m = 3 mode (three waves along the apsidal angle) would

be the most unstable one at the strain rate to vortieity ratios and aspect ratios

considered.

b) How does the Sadovskii (1971) pair respond to straining? In collisions of thin

rings, the cores have the shape of the Sadovskii pair at one instant (§5.2.1) but they

cannot maintain this or any constant shape and conserve energy. This necessitates

the deposition of vorticity in a thin trailing tail, according to a short time simulation.

As a plausible mechanism we saw that the local flow tended to flatten the pair. Just

as an initially flattened Hill's spherical vortex sheds a tail and forms again a spherical

head (Moffatt & Moore 1978, Pozrikidis 1986), the two-dimensional pair would have

a similar response when subjected to the strain due to curvature, i.e., distortions are

swept to the rear of the vortex where they accumulate. The validity of this assertion

needs to be tested.

(2) Asymmetric collisions. We need to study asymmetric collisions, both for

cases in which the two vortices bind into a couple and the case where the two vortices

separate to infinity.

a) For the ease when the rings separate to infinity how is energy and impulse

transferred between the vortices? This issue arose after a discussion with Prof. D.W.

Moore in which he raised the possibility (suggested to him by T.B. Benjamin) that

the final states would be steady. According to Benjamin's variational statement

(§2.7.3), steady solutions have maximal energy given a fixed circulation and impulse.

Benjamin's conjecture supposes that either there is no net transfer of impulse and

energy or that it is just tight to produce new maximals. This would be an intriguing
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and surprising outcome for thick cores; thin ones may remain in equilibrium. It is

more likely that each core will have its internal degrees of freedom excited. Does the

resulting vortex then tend to a steady or periodic solution after forming wisps?

b) The Poincar_ map was found useful in understanding flow visualization pho-

tographs hut unfortunately it is limited to time periodic flows. As an extension of the

idea, Jung (1986) has introduced the so-caned scattering map which is valid when a

flow has well defined initial and final states. Asymmetric collisions would be a good

arena to test its usefulness. When two vortex rings approach one another, each carries

a body of fluid. When they interact they will exchange fluid with each other and with

the surroundings.

c) For the RLW equation (Lewis & Tjon 1979) symmetric collisions of solitons

form a "resonant" condition in which small scale production is maximized. Do asym-

metric collisions lead to lower small scale production than the symmetric coLLisions

considered here?

(3) Time periodic solutions. Just as the problem of determining whether a pair

of vortices in two dimensions coalesce has been approached by first considering the

stability of steady configurations, the question of whether the passage of two vortex

rings will lead (after a certain number of cycles) to capture is naturally addressed by

considering stability of periodic solutions. The present results are spedfic to the initial

conditions used i.e. cores initially having the shape of the Norbury-Fraenkel rings.

Alternative initial conditions were hardly considered. There is no reason to believe

that the results are generic. For example, there might be isolated points in the space

of initial shapes which even for thick cores, allow a successful periodic passage without

permanent deformation. Information about the existence and stability of two-vortex

periodic solutions would provide a more global picture. Work in this direction should

first be undertaken with the elliptical model of §4.2 and then with axlsymmetric

contour dynamics. Note that in the limit of thin cores and small separations the

solutions would be the two-dimensional corotating pairs. Similarly, more families of

time periodic solutions bifurcate from other two-dimensional rotating configurations.

For the foregoing discussion, we axe indebted to S.K. Lele for pointing out the

possibility of periodic cores in lieu of merely rotating ones.

(4) Flow control. The fact that even weak strains can excite or de-excite pertur-

bations on a vortex core suggests a strategy employing a shroud with corrugated walls

to break-up or stabilize vortex rings, jet and plane shear layer vortices in order to
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control mixing and/or soundgeneration. A corrugatedboundary producesa periodic

straining on each vortex. Guidelines about the frequency and amplitude of the strain

required to produce a desired result may be obtained from the elliptic model.

(5) Untangle the manifolds for the passage interactions. In the passage inter-

action, why does the unstable manifold bear such a striking resemblance to smoke

photographs? To address this, the Lyapunov exponents of trajectories along the un-

stable manifold need to be computed to see if fluid is on average drawn out along it.

The manifold was presented without much understanding of what it said about the

motion of fluid parcels. The manifold needs to be calculated with adaptive resolu-

tion, untangled (i.e. its topology understood) and the successive mappings of fluid

volumes needs to be studied in the manner of the elliptic ring case. This is needed to

understanding the fluid engulfment process during vortex pairing in jets.

(6) Role of azisymmetric core deformation in jet noise. If the phenomena of

broadband suppression and amplification are to be understood a more thorough study,

than that provided here needs to be undertaken. Vortex spacings and core sizes

should be chosen to mimic the shear-layer and jet-column modes (J. Bridges, private

communication). The effect of initial conditions should be studied; as we have seen,

they can have a large effect.

It would be of interest to experimentally verify whether axisymmetric deformed

rings are efficient noise sources compared to azimuthal modes of small azimuthal

wavenumber, the higher wavenumber Widnall instability and the breakdown that

follows it. In the laboratory passage of one ring through another, is there a high

frequency component of large amplitude present as suggested by the results in §5.17

(7) Long time simulations. Two cases offer the possibility of realizing the scenario

of vortices grinding down to a hierarchy of physical scales, each one a coherent state.

First, a flattened Hill's vortex returns to a Hill's vortex by shedding a tail. Because

the tail is a just a more flattened version of the initial state it may form another Hill's

vortex and so on. Second, two colliding vortex rings flatten and then form a shape

that is very nearly the limiting equilibrium shape for a translating pair of uniform

vortices. We conjectured that an infinity of such states with a range of sizes may

form. Long time simulations are needed to verify this. If true, it would be a most

interesting cascade mechanism.
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