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SUMMARY OF THE REPORT

This report presents the research results obtained from the research grant entitled
“Development of Advanced Control Schemes for Telerobot Manipulators,” funded by the
Goddard Space Flight Center (NASA) wuder a rescarch grant with Grant Number NAG
5-1124, for the period between August 1st, 1990 and February 1st, 1990

This report deals with the kinematic analysis and control of a kinematically redundant
manipulator, which is the slave arm of a telerobot system recently bwilt at Goddard Space
Flight Center (GSFC) to serve as a testbed for investigating rescarch issues in teler-
obotics. A forward kinematic transformation is developed tn its most simplified form,
suitable for real-time control applications, and the mantpulator Jacobian 1s derived using
the vector cross product method. Using the developed forward kinematic transformation
and quaternion representation of orientation matrices, we perform computer simulation
to evaluate the efficicncy of the Jacobian in converting joint vclocitics into Cartesian ve-
locities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling
times. The equivalence between Cartesian velocities and quaternion is also verified using
computer simulation. Three control schemes are proposed and discussed for controlling
the motion of the slave arm end-effector.






1 Introduction

Recently rescarch in the arca of kinematically redundant’ manipulators has been very
active [1.8] beeause they have many advantages as conipared to non-redundant manip-
ulators. A robot manipulator is classificd as Mnematically redundant iff its number of
degrees of freedom (DOF) is greater than that of task space coordinates. The extra
DOFs cnable the redundant manipulator to avoid singularities and obstacles, to keep
the joint variables within their physical limitations, to minimize kinetic energy and to
provide greater dexterity. Consequently the above advantages have motivated robot
designers to adopt redundaut muipulators for telerobots which will replicee or woenist
astronauts in performing operations in space. Goddard Space Fhght Center (GSFC) 15
developing a Flight Telerobot Servicer (FTS) to carry out a varicty of tasks including
assembly of NASA space station and platforms, inspection, servicing and maintenance
on the space station ete. An integral part of the research facilities for the FTS project is
a dual-arm telerobot system which consists mainly of a pair of mini-master controllers
and a pair of slave arms, each of which is a redundant manipulator possessing 7 DOFs.
The telerobot system serves as a testbed for investigating resecarch issues in teleroboties
such as zero-g operation, teleoperated and autonomous coutrol. dual-arm manipulators,
advanced control of redundant manipulators. hierarchical control ete. [9].

In this report. we present some mathematical developments which will be employved
in computer simulations and real-time control of the slave arm motion. In particular,
we will focus on the manipulator forward kinematies, differential motion analysis and
propose three control schemes for the slave arms. This report is organized as follows.
Next section will give an overview of the GSFC telerobot system and briefly describe the
structure of the slave armn. Then the forward kinematic transformation for the manip-
ulator is derived in its most simplified form using Denavit-Hartenberg notation. After
that, we obtain the manipulator Jacobian using the vector cross product method and
then discuss the pseudo-inverse of the Jacobian. Computer simulation is then conducted
to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian
velocities, to investigate the accuracy of the Jacobian pseudo-inverse for various sam-
pling times and to verify the equivalence between Cartesian velocities and quaternion.
Finally three control schemes are proposed and discussed for controlling the position
and/or force the slave arm end-effector performing compliant and non-compliant mo-

tion.

2 The Redundant Manipulator

GSFC recently has developed a dual-arm telerobot system which serves as a testbed
[0] for investigation of research issues in telerobotics such as robot control algorithms,
dual-arm telcoperation, dynamnic simulation techniques, collision avoidance, end-effector

UThe term “redundant” is often used instead of “kinematically redundant”
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design, and hierarchical control using high-level programming languages, ete. The main
components of the system include a pair of slave arms, cach of which is a Roboties
Research Corporation (RRC) K-1607 manipulator and a pair of 6-DOF Kraft Mini-
Master (KMM) hand controllers mannfactured by Kraft Teleroboties, Inc. Figure 1
shows the RRC K-1607 manipulator which is a kinematically redundant manipulator
possessing 7 DOFs. The slave arm motion can be controlled in a teleoperation mode
by a human operator using the master arm system or autonomously controlled by a
set of computer programs. Following the convention in [10], 8 coordinate frames are
assigned to the manipulator as illustrated in Figure 2 showing the manipulator in its
Lhome configuration with all joint angles being zero. Each ith frame {i} is characterized
by its coordinate axes X,. y,, z; and its origin 0; for 1 = 0,1,2,....7. The Denavit-
Harteuberg parameters for the assigned coordinate frames are listed in Table 1 given
below:

01 ] i I d; ] 6, I
0° | 0.000in | 0.0in | 6,
—90° | 0.000in | 0.0in | 6,
90° | 5.625in | 27.0in | 64
—90° | 4.250in | 0.0in | 6,
90° | -4.2501n | 27.01n | 6;
—90° | 3.125in | 0.0in | 6s
90° { -3.125in | 0.0in | 8-

~1c>c:v|¢>c.om__. -.

Table 1: D-H parameters of the RRC K-1607 manipulator.

3 The Manipulator Forward Kinematics

In this section, we consider the forward kinematics of the above redundant manipula-
tor. Forward kinematics is useful if one employs a Cartesian-space control scheme and
measurements of joint variables are available from joint scnsors. A forward kinematic
transformation is developed to convert the 7 joint angles 6, for 1=1,2....,7 of the manip-
ulator into the corresponding position and orientation, referred here to as configuration
of the manipulator end-effector frame, Frame {7}, with respect to the base frame, Frame
{0}. The configuration of the ith frame with respect to the (i-1)th frame is represented
by the following homogeneous transformation matrix:

i-1 i1
=l | R "'p (1)

' o 1

cos 8, —sin 6, 0 ai_y
sinf,cosa;_; cosb,cosa,_; —sina;_; —d;sina,_, (2)
T | sinf;sina;_; cosé,sina;_; cosa;_; d; cos a,_, -
0 0 0 1
2
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for i=1.2.....7 where 'R and 17'p represent the orientation and position of the ith
frame expressed in the (1-1)th frame, respectively. The transformation T consisting
of the orientation mwatrix YR and the position vector 2p expresses the contiguranion of
Frame {7} with respect to Frame {0} and is computed by

P =T ITIT T IT;TLT. (3)

Carrying out the matrix multiplications in (3) and performing intensive trigonometrie
simplifications we obtain
n, &, ap p;

o | Ty Sy Gy Py
T = n, & a. p. (4)
0O 0 0 1
where
ny, = sthy+en
sy = crhy — s7)y
a, = s¢hy+ ceg2 (9)
P, = agh +ashy + du{sifi + cyse0y)
+ asyqy + asfo+ i
ny, = stha+ g
s, = crhyg— 579,
a, = sehy + c694 (6)
Py = Gsjr+ ashy + ds(sqfs + §182Cy)
+ asgs + asfs + 8173 )
n, = 8795+ crhs )
S, = €795 — S7hs
a: = $8¢f6+ csfs (7)
p. = aghs+ asge + ds(ca0q — 82C384)
+ agfs — agsaca — aysy + dacy
i = —ccsy— sic3 )
fa = cicacz — 5153
fa = —sic283 — ey (8)
fa = sic205+ 0183 :
fs = —sacacq — €84
fe = —sicasy+ cacq )
g1 = —C15284+ caf2 )
g2 = C182¢4+ 54f2
gs = —si8984+ ¢afy (9)
gsa = 818204 + 5414 i
g5 = 52-“:'.(5‘~“5fr,
ge = sSasass+csfs )

3
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hy = ¢ fi = ssa

hy = sfi+ag
hy = esfa— saga (10)
hs = safs+ c50a
hs = ceg6 — s fe
1 = cehy — $692
J2 = Cehg— 8694 (11)
Ja = dssy + axey,
and we have used the compact notations, ¢; = cosf, and &, = «inf,. We also note
that in (5)-(11), a,-; and d; for 1=1,2,....7 are manipulator parameters listed in Table

1. Since matrix multiplications arc avoided in (5)-(11). the computation time for the
forward kinematics is greatly reduced. As a consequence, the derived forward kinematic
equations are highly suitable for real-time control implementation.

4 Differential Motion Analysis

This section is devoted to the analysis of the manipulator differential motion. In the
following, we first compute the manipulator Jacobian using the vector eross product
method and then discuss its inverse computation using the method of Moore-Penrose
pseudo-inverse. After that, we review the quaternion representation of orientation which
will be used in the computer simulation study.

4.1 The Manipulator Jacobian

To be compatible with the coordinate frame assignments according to the convention
given in [10], the vector cross product method [11] is slightly modified and is applied
to derive the manipulator Jacobian. According to [11] the manipulator Jacobian is

obtained by
I=[3 3 I3 3 Is J; | (12)

where
J = [ bi x p: ] T (13)
b;
and b;, defined as the unit vector pointing along the axis of motion of Joint i expressed
in Frame {0}, is given by
b, =RIR ... "R by, i=1,2,....7 (14)

with
by = [0 0 1)7 (15)






and p,, defined as the vector pointing from the origin of the ith-frame to the origin of
Frione {7}, expressed in Frame {0}, is obtained from

[ ‘;‘ } = (‘JT Xy — ?r]‘ X0 1221207 (]G)

with ’
xo=[000 1) (17)

and X indicates the vector cross product. A Fortran program was written to compute
the manipulator Jacohian J and because of the space constraint in thisreport, ondy the
first three columns of the Jacobian are given below:

- - r

Py 1p:
—Ps S1p:
0 ~S1Py — 1
h=| o |5 J=] 00 (18)
-8
0 €y
1] 0]

and i
s18(p: +axs; — dscy) — "2(1’y sy — (/:1-*1‘*‘2)
—c18(p: + agsy — dycg) + e pr — ageyep — dyey sy)
J. = ('1'°2(1'_u T A2810 — d;;s,sz) ~ s518(py — azoy0p — dyc18;7)
4= . (19)
18,
$182
i ¢ J

4.2 The Jacobian Inverse

The Cartesian velocity vector x(t) are related to joint angle velocity vector §(t) by the

Jacobian J as

x(t) = Jq(1). (20)

The inverse solution to (20) which minimizes the weighted quadratic form ¢’ W™1q, is
given by [14]
a(t) = Ix(t) + (1 = I 3)a (21)

where JL», the Weighted Pseudo-Inverse of the Jacobian J 1s given by
I =wiTpwin)! (22)

W, the Weighting Matriz 1s a symmetric matrix. z denotes an arbitrary joint velocity
vector and the second term of (21) belongs to the null spuce of J. Vector z can be

(4]
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sclected for optimization purposes. When W = T and z = 0, then (22) reduces to the
well-known Moore-Penrose Pseudo-Inverse of the Jacobian given by

R L LU A A (23)

which provides the minimum norm least-squares solution.

4.3 Quaternion Representation

The Quaternion consisting of a scalar  and a vector s = [3 4 €. also called Euler
Parameters of an orientation matrix R speeified by

i1 T2 T3
R=|rn 72 72 (24)

T3y T32 T33

is obtained by an operator Q defined by

(n,s) = Q{R}

—_—
SV
s ]

such that

o= Vi4rptra+t raa/2
‘»'7" = (rs - Tzrx)/47} (26)
T = (rva — 7‘31)/477
£ = (ra—ri2)/4.
On the other hand, an orientation matrix R can be computed from its quaternion
by the inverse operator defined by

R=Q '{ns) (27)

so that
R = (n? — s7s) I + 2ss” — 2s” (28)
where
0 ¢ v
s*=1| ¢ 0 -38/|. (29)
-y 8 0

Now considering two orientation matrices R and 9R which represent the orientation
of Frame {1} and {2} with respect to Frame {0}, respectively, we can write

%R =R lR. (30)
In (30), since JR is postmultiplied to R, ;R represents a rotation of Frame {1} about
Frame {1} to move Frame {1} to Frame {2}. IR can also be interpreted as the orien-

tation of Frame {2} with respect to Frame {1}. However if the rotation is performed
about Frame {0}, then we should write

‘R =!R (R (31)






where ;—I_{ represents the rotation of Frame {1} about Frame {0} to bring Frame {1} to
Frame {2} and can be computed from (31} as

- e g N
TR =9R R = IR IR’ (32)

Suppose (1.8) and (3,.8,) are the quaternions of {R and YR, respectively. Then

the quaternion of 'R can be expressed in terms of those of TR and YR as follows:
1 2 1 1 2
bn =1 T .
n=1mn,t+ 8,8 {33)

and
és = 1182 — 1128, + SlXS‘v. (3})

Now we are interested in finding how the quaternion of Zﬁ are related to differential
rotations introduced in [15]. According to [15]. if the orientation difference between
Frame {1} and Frame {2} is small then
1 =6 =4,
‘Rx| 6. 1 —& |R (35)
=&, 4 1

where 6., é,. and ¢, denote the differential rotations of Frame {1} made in any order
about the x, y, and z axes of Frame {0}, respectively to bring Frame {1} to Frame {2}.
Comparing (31) and (35), we obtain

L 1 =6 =4,
IR~ 6, 1 =6 . - (36)
-6, &, 1

From (36) the differential rotations é,, ¢, and é, can be computed from the quaternion
of JR by taking the quaternion on both sides of (36) using (26) and solving for é.. é,.
and 6, as follows:

b, ~ 2468
6, = 267 . (37)
b, =~ 26¢

Equations given in (37) provides a relatively accurate computation of the rotation

velocities if the quaternion of JR is given.

5 Computer Simulation Study

This section presents the results of the computer simulation study conducted to verify
the above mathematical developments. The study 1s composed mainly of three parts, the
first part is devoted to mvestigate the efficiency of Jacoblan in converting jomnt angle

-1






velocities to Cartesian velocitics, the second to evaluate the accuracy of the pseudo-
inverse Jacobian and the third to verify the equivalence between Cartesian velocities
and quaternion representation. Computer simulation is repeated for various sampling
times so that a maximum permitted sampling time can be established for an acceptable

(‘OI)VCI’SiOD accuracy.

51 Part 1: Joint to Cartesian Velocities

Figure 3 represents the computer simulation scheme used for Part 1 and Part 2. In
the upper loop, a sct of test joint angle trajectories arc converted to the corresponding
Cartesian trajectories using the derived forward kinematic transformation. The orien-
tation matrix IR is used to compute the differential rotations by employing (35). In the
lower loop, the joint velocities which are obtained by differentiating the test joint angle
trajectories are supplied to the Jacobian which produces the corresponding Cartesian
velocities. The Cartesian velocities obtained from the upper loop are then compared
with those from the lower loop to compute the conversion errors. Figure 4 shows the
error between the x-axis velocities pyy (from Jacobian) and p, for two different sampling
times. The maximum error is about 0.5 inch/sec for a sampling time of 10 mscc (1ndi-
cated by solid line) and about 6 inch/scc for a sampling time of 100 msec (indicated by
asterisk line). Figure 5 presents the error between the x-axis angular velocities wyy and
w, for sampling times of 10 msec (solid line) and 100 msec (dotted line). The maximum
angular velocity errors are about 0.5 minch/sec and 5 minch/sec for sampling times of
10 msec and 100 msec, respectively.

5.2 Part 2: Cartesian to Joint Velocities

In the lower loop of Figure 3, the Cartesian velocities provided by the Jacobian are
supplied to the Jacobian pseudo-inverse which is computed by Equation (23) and whose
outputs are compared with the joint velocities. Figures 6 and 7 show the joint angle
velocities 6, (from the pseudo-inverse) and 6, for sampling times of 10 msec and 100
msec, respectively. According to the obtained results, the pscudo-inverse does not pro-
vide adequate conversion of Cartesian velocities to joint velocities at a sampling time
of 100 msec. The velocity conversion is excellent at a sampling time of 10 msec.

5.3 Part 3: Quaternion Representation

Figure 8 illustrates the computer simulation scheme used to verify the equivalence be-
tween Cartesian velocities and quaternion representation. In the upper loop of Figure
8, using Equations (33)-(34), we compute the quaternion of the orientation difference
given by

AR =9R(t;) IR (timn) (38)






where SR(#;) denotes the orientation matrix evaluated a the ith sampling during the
computer simulation. In the lower loop, the quaternion can be commputed from the out-
put of the Jacobian by emploving Equation (37) and then compared with the quaternion
of the upper loop to determine the deviations, Figures 9 and 10 show the simnlation
results of the errors of 6,7 (solid hine) and &5 (asterisk line) for ssmpling tinies of 10 misee
and 100 msee, respectively. In the case of 100 msee sampling time, the maxinmm errors
for &7 and &~ are 15 minch/sec and 0.15 minch/see. respectively and are negligible in

the case of 10 msee sampling time.

6 Proposed Control Schemes

In this section, we consider the problem of controlling the compliant and non-compliant
motion of the slave arm end-effector. When the slave arm performs non-compliant
motion, i.e. without being in contact with the environment, it is sufficient to employ
pure position control schemes whose error-correcting forces are computed based only
on the position errors. However during a compliant motion mode in which the slave
arm end-effector is constantly in contact with the environment a hybrid position /foree?
control scheme which controls not only the position of the end-cffector but also the
contact forces it applies on the environment. should be applicd. T the following, we
present and discuss three control schemes which have been under study for controlling
the slave arm motion and briefly report some preliminary findings.

6.1 Joint-Space Adaptive Control Scheme

Figure 11 shows the organization of a joint-space control schieimne which has been consid-
ered for controlling the non-compliant motion of the slave arm. In the control scheme,
actual joint angles measured by 7 joint sensors are compared with desired joint angles
which are obtained from desired configuration of the slave arm end-effector through the
inverse kinematics. The joint variable errors then serve as inputs to a set of proportional-
derivative (PD)- controllers whose gains are adjusted by an adaptation law so that the
error-correcting joint forces provided by the controllers track the slave arm end-effector
along a desired path. The adaptation law was derived using the Lyapunov theory and
the coucept of model reference adaptive control (MRAC) under the assumption that
the slave arm performs slowly varying motion. From the fact that the derived adapta-
tion law does not have to evaluate the slave arm dynamics, it 1s computationally fast
and very attractive to rcal-time control. Computer simulation results reported in [G]
showed that the slave arm end-effector under the control of the above scheme can track
several test paths with minimal tracking errors under sudden change in payload. The
developed joint-space control scheme is currently implemented by GSFC for real-time
control of the slave arm motion,

“In this report. “position” implies both “position and orientation™ and “force™ both “force and targue ™.
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6.2 Cartesian-Space Adaptive Control Scheme

An adaptive control scheme in Cartesian space is presented in Figure 120 As the figare
shows, feedback information of the actual joint variables are converted wto the cor-
responding Cartesian variables by the forward kinematic transformation. The actual
Cartesian variables are then compared with the desired Cartesian variables representing,
the desired configuration of the slave arm end-effector, and the corresponding Cartesian
crrors are supplied to a set of PD-controllers whose gains are adjusted by an adaptation
law. The adaptation law is designed such that the joint forces which are ohtained by
transforming the Cartesian forces produced by the adaptive PD controllers vusine the
Jacobian transpose will track the end-effector along desired paths. Extending the devel-
opment in [6]. an adaptation law was derived and presented in [5] under the assumption
of slowly-varying motion. Computer simulation study is currently conducted to mvesti-
gate the performance of the Cartesian-space control scheme and simulation results will

be reported in [7]

6.3 Hybrid Position/Force Control Scheme

Figure 13 presents a hybrid position/force control scheme whose structure is similar to
that introduced in [12] except that the controller gains of the current control scheme
arc adjusted by an adaptation law. As Figure 13 shows, the control schenie mainly
consists of the two control loops, the upper loop for position and the lower for force
control. A (6x6) diagonal compliance selection matriz S whose main diagonal elements
s for i = 1,2,....6 assume either 1 or 0, allows the user to select which DOF to be
position-controlled and which to be force-controlled by setting the element s;; properly,
namely s;; = 1 for the ith DOF to be force-controlled and s;; = 0 for the ith DOF to
be position-controlled. In other words, the hybrid position/force control scheme allows
independent and simultancous control of position and force. The adaptation law which
adjusts the gains of the PD-controllers of the position and force control loops so that
the end-effector can follow a desired path while applying desired contact forces on the
environment despite disturbances such as varying environment stiffness, is currently
under intensive study. Results found for the adaptive hybrid position/force control will
be reported in [8].

7 Conclusion

In this report, we have considered the kinematic analysis and control of a 7 DOF manip-
ulator serving as a slave arm of a telerobot system developed at GSFC to investigate the
feasibility of telerobotic applications in space. A forward kinematic transformation for
the manipulator was derived and simplified for real-time implementation. Employing the
method of vector cross product, we obtained the manipulator Jacobian and computed
its inverse using the Moore-Penrose pseudo-inverse method. The concept of quater-
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nion was reviewed for presenting the orientation of the manipulator end-effector and
relationship between quaternion and differential rotations was developed. Computer
simulation was performed to verify the efficiency of the Jacobiau in converting joint
velocitios to Cartesian velocities and to investigate the accuracy of Jacobian pscudo-
inverse. The equivalence between differential rotations and quaternion was also verificd
through computer simulation. Simulation results showed that the maximun sampling
time which ensures the efficiency of the Jacobian, its pseudo-inverse, and the quaternion
representation was about 10 msec. Three control schemes was proposed and discussed
for controlling the motion of the slave arm. Current and future activities focus on the
implementation of the proposed control schemes.
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Top View
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Side View

Figure 1: The RRC K-1607 slave arm

Figure 2: Assignment of the coordinate frames
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Figure 5: Errors of x-axis angular velocities
sampling times: 10 msec (sold hine), 100 msec {dotlled hine)
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Figure 7: Velacities of joint angle 1 for sampling time
of 100 msec. 8,5 (dotted line), 6, (solid line)
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Figure 6: Velocities of joint angle 1 for satnpling time
of 16 meec. 8,5 (**-hmce), 8, (dotted Iinc)
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Figure 8: Computer simulation scheme for Part 3
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Figure 9: Quaternion errors for sampling tirne of 10 msee
83 (solid hine ), &~ (**-Imc}
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Figure 11: The joint-space adaptive control scheme
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Figure 10: Quaternion errors for sampling time of
100 msec, 87 (solid hine), &~ (**-line)
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Figure 12: The Cartesian-space adaptive control scheme
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Figure 13: The hybrid adaptive control scheme
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