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SUMMARY OF THE REPORT

This report presents the research results obtained from the research grant entitled

"Development of Advanced Control Schcrn.cs for Telerobot Manipulators, "funded by the

Goddard Space FligLt Ce_ter (NASA) v?_d_'r _i r_:,_'arch grater wi_h Gr_lT_! N,ml_er NAG

5-I124, for the period between August 1st, 1990 and February 1st. I990.

This report deals with the kinematic analysis and control of a kiTl.ematiealIy redundant

manipulator, which is the slave arm of a telerobot system recently built at Goddard Space

Flight Center (GSFC) to serve as a testbed for investigating red,catch issue,_ in tcler-

obotics. A forward kinematic transformation is developed in its most simplified form,

suitable for real-time control applications, and the manipulator Jacobian is derived using

the vector cro,_,q product method. Using the dcvcloped forward kincTn_ttic transformation

and quaternion representation of orientation matrices, we perform co77_puter simulation

to evaluate the c2Cficiency of the Jacobian i7_ eoT_verti?_g joiT_t veIocit, ie,, iT_to Cartesian ve-

locities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling

times. The equivalence between Cartesian velocities and quaternion is also verified using

computer simulation. Three control schemes are proposed and discussed for controlling

the motion of the slave arm end-effector.





1 Introduction

l¢_'('('I_tl'_"rc>,,:,Ichi::the aIcn (*[ki,l,',l_:,ti,'allyI'Cd:::id;mt:nm:Lilmlat(,rsha_ ]_'<'I_v:'_v

a<'tivc[1.S]I_<'(';,::_'_l,'vh;_',:'in;my adva:_tag¢'sa_ c(,:q,;,:¢'d_<_l_¢m r¢'dun<lantnm,:il,-

ulat,)rs. A :(,l>(,t nm:lit,ulat(,r is classili('d as kiz_cT,,ticolIj¢ rtd,7_dar_.t if its nu:lll,cr ()f

(l('gr,,('s of fr('('(l(,nl (DOF) is gr('ater thaIL thal of task spat(, c()(n'(linat('s. Th(' ('xtra

DOFs ('nat,l(" tl:- rc(hmda:xt nmnit,ulator t() av()id singularities and ()t>stacl(,s, _(, kc,'l)

the joint varial_h's within their physical limitations, to minimiz(" kin('tic ('n('rgy and t(,

i)r()vi(l( , _:r(,atcr (t('xtcrity. C()nse(tu(,nlly the al_()vc a(lwmtages lmv(" m()tivato(1 r:)l)()l

(l,'>i_nc:.'-t(>;_:l¢)l)lr(¢l:::,(l:_:::ma:iil>::h,*¢,r>f(,:I('i<':(,I,,>_w}_icl:will :','i,1;_¢,(,_;_:.-i_,l

astronauts in I,orf¢,r, ning (,t>('rations in space. G(,(hlard SI,;t(',' Flight C('nt('r (GSFC) is

(t(,vol(>pi::_; ;, Flight Tvh'rol,()t S('rviccr (FTS) to carry out a vari('tv ()f tasks i:wludin_;

asseml)ly of NASA sire('(' station and l>latf(nms, inspecti()l_, svrvi('in_ an(l nmint('nan('e

on the spat(" station etc. An i:ltegral part of the research facilities for the FTS project is

a (hml-arm teh'r()l)(>t system which consists mainly of a pair of mini-nmster controllers

and a pair of slav(' arms, each of wt:ich is a redundant manii)ulator l_ossessing 7 D()Fs.

The telerol>()t system serves a._ a testl)ed for investigating: research iss::(,s in t('l('r(>b(,tics

such as z('r(,-g(,l>o,'ati(,n,t,,]eol,cratedal:daut(m(m_(m:-,col_tr()l,dxutl-ar,:__,mnil,ul:t_(n's.

advanced (',,ntr:_lof r,'d:m(la::tn_a:dl>ulaIors,hier;,rchicalc(,:,tr:_]elc. [9].

h: thi:_r<'l,(,rt.,,vcl)r(,_,,_:t,.<>n:(':n;_th('l:_;:tical(l:'vvl:,l_::_<'::_swhich ',:'illl..c:_l,l(,y,,l

in computer simulations and real-time control of tile slave arnl in()tion, hi particular,

we will fl)cus on the manilmlator forward kinematics, diitk'rcntial motion an;dysis and

propose throe control schem0:_ f(,r tile slave arms. This report is organized as fl)llows.

Next section will give an overview of the GSFC telerobot system and briefly describe the

structure of the slave arm. Then the forward kinematic transformation for the manip-

ulator is derived in its most simplified form using Denavit-Hartenberg notation. After

that, we obtain the manipulator Jacobian using the vector cross product method and

then discuss the pseudo-inverse of the Jacobian. Comtmter sinmlat ion is then co:,tucted

to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian

velocities, to investigate the accuracy of the Jacol_ian ps0u(to-inverse for wtrious sam-

pling times and to veri_' the equivalence between Cartesian velocities and quaternion.

Finally three control schemes are proposed and discussed for controlling the position

and/or force the slave arm end-cffvctor perforlning compliant and non-coml_lia:lt mo-

tion.

2 The Redundant Manipulator

GSFC recently has deveh)t)e(l a dual-arm telerobot system v,hich serves as a testbed

[9] for investigation of research issues in tel('robotics such as rolmt control alg(nithms,

dual-arm teleoperat ion, dyl_a:nic simulation techniques, collision avoi(tanco, cn(l-e:fl'ect or

_']'hc tc.rm "rcdundanl" is oft,n u_od in<,'ad of "kinemat ically re,lu:_,l:mt"
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design, and hierarchical control using high-level progranmfing languages, etc. The main

comp(,nents of the syst('n_ include a pair of slave arms, each of which is a l/ol)otics

Research Corpor;iti()ll (RRC) K-16{/7 manipulator and a pair of 6-DOF Kraft Milfi-

Master (KMM) hand controllers manufactured by Kraft Tclerot)otics, Inc. Figure 1

shows the IIIIC 1,2-1607 manipulator which is a kinematically redundant manipulator

possessing 7 DOFs. The slave arm motion can be controlled in a teleoperation mode

by a human operator using the master arm system or autonomously controlled by a

set of COmlmter programs. Following the convention in [10], 8 coordinate fl'mnes are

assigned to the manitmlator as illustrated in Figure 2 showing the manipulator in its

h(,me configurati<,ii with all joint angles t,cing zero. Each ilh f,mnc {i} is charactcri/,,d

by its coordinate axes x,, y,, zi m_d its origin O, for i = 0,1,2, .... 7. The Denavit-

Hartenberg Imrameters for the assigned coordinate flames are listed in Table 1 given

below:

i [ C'ta_ 1

1 0 °

2 -90 °

3 90 °

4 -90 °

5 90 °

6 -90 °

7 90 °

ai-_ di

0.000in 0.0in

0.000in 0.0in

5.625in 27.0in

4.250in 0.0in

-4.250in 27.0in

3.125in 0.0in

-3.125in 0.0in

I 0,

01

02

04

0,_,

00

Or

Table 1: D-tl parameters of the RRC K-1607 manipulalor.

3 The Manipulator Forward Kinematics

In this section, we consider the forward kinematics of the above redundant manipula-

tor. Forward kinematics is useful if one employs a Cartesian-space control scheme and

measurements of joint variables are available from joint sensors. A forward kinematic

transformation is developed to convert the 7 joint mlgles Oi for i=1,2,... ,7 of the manip-

ulator into the corresponding position and orientation, referred here to as configuration

of the mmfipulator end-effector frame, Frame { 7}, with respect to the base frame, Frame

{0}. The configuration of the ith frame with respect to the (i-1)th flame is represented

by the following homogeneous transformation matrix:

i-1 iRi P

; T = 0T 1

cos O,

sin Oi cos (ti_ 1

sin Oisin a'i-1

0

- sin Oi 0 ai-,

cos Oi cos nq_l - sin el-1 -di sin o,_j

cos O, sin ai_l COS a'i-1 dicoso,-1

0 0 1

(1)

(2)

2
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fin i=1.2 ..... 7 .,vlwr(' ',--IR aim ,,-lp represent the orientali(ni al.t l,osili(,ll (,f tll," illl

fi'a,u<' ('×l), <,-.-,'d i,l t},(' (i-1)th fianl(', r('sl)('ctiv('ly. Tlw (ri,1_fi,r,uali<)ll _'I" c(_li_.i,-_i_

()f (h(' ()ri('alati(nJ m_lrix 211. aim tlw l)ositi()ll v('ct()r _I) ('Xl)r('.'-._<,'s lh(' c()lliit'Jl_illi,,ll <_[

Fran.' t7} with r,'_t,('c) ),, t:_au)(' {0} awl is (',>_l)ut('d 1)y

. 2T 3T 4T 'T _T. (3)(,)T = °T_T3 ._

Carrying out lhe malrix multil)licati()xls in (3)

simt)lificat ions v,,(, ol)1 ain

7_ x

l l y -=-

S v

(ly ._

py =-

",,3,'h 0 rt?

T_ 2

a Z _---.

_)z --

and l)erf()rming intensix'(" t li,_()x.)nwt ric

=

71j, "qx 03" ]).i"

)ly '_v (Iv ])._

)_z -'_z az ])z

0 0 0 1

(4)

s7hl +

C 7 h 1 --

•s652 +

c,c,jl +
+ a491

c7jl. }

sv31

c_g2

a,_,h2 + d._,(s,_.fl 4 cl,"2ca)

+ a:_.f2 + <'_i'_

('7j2

s7j2

s6h4 + c694

(/6j2 nt" ash4 + ds(s4f4 + s_s_c,_)

+ a493 + a3f4 + slj3

srgs + crhs

crgs - srhs

s6g6 + ¢_Lf6

ash5 +

-t- a4fs

l _- --CIC2"q3 -- 'qlC3

2 "_ CIC2C3 -- Sl'q3

3 "_ --SIC2'e'3 -- CIC3

f4 = 'S1C2C3 + C1";3

5 _ --S2C'3C4 -- C284

f6 = ---q1c3s4 -['- C2C4

g_ -- -c_s2s4+c2f2

92 = cls2c4 + _4f2

g_ = --s_s2s_ +c4f4

g,t = s_s2c4 + ._f_

g,,,. = s2ssss +

a596 at- d5(c2c¢ - s2c3s,l)

- a3.q2C3 -- a2s2 -{-d3c2

(5)

(G)

(7)

(S)

(9)

3
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hi = cs.fj - ss91

h2 = ssfl + csgl

t;:_ = c_,f3 - ._:,q:,

t;4 = s:,f:_ + cr,93

tl5 = C_1¢; -- s6f6

(1{I)

Jl = c_,t;2- s692 )

J2 = (_h4 -- s6g4 I (11)
j3 = das2 + a2c2,

and we have used the comp;ict notatiCms, ci - cos 0, a:ld ._, -- sii_O,. \Veals(, nc,t(.

that in (5)-(11), ai-1 and d i for i=1,2 .... ,7 are manilmlator paranwters listed in _I)ddc

1. Since matrix multiplications are avoided in (5)-(11). the comlmtation time for Ihe

forward kinemalics is greatly reduced. As a consequence, the derived forward kinematic

equations are highly suitable for real-time control implementation.

4 Differential Motion Analysis

This section is devoted to the analysis of the manipulator ditf('relllial nl()li()n. In the

following, we first COmlmte the manil,ulator Jacol)i;m using th(' v¢,('t(u cross t)ro(tuct

method and then discuss its inverse COmlmtation using the meth()d of Moore-Penrosc

pseudo-im'erse. After that, we review the quaternion representation of orientation which

will bc used in the computer simulation study.

4.1 The Manipulator Jacobian

To be compatible with the coordinate frame assignments according to the convention

given in [10], the vector cross product method [11] is slightly modified mad is applied

to derive the manipulator Jacobian. According to [11] the manilmlator Jacobian is

obtained by

J _--- [ J, J2 J3 J4 ,,]5 J6 J7 ] (12)

where

Ji=/bixpi[ i=1,2,. ,7 (13)

r "1

l _ " "

and bi, defined as the unit w'ctor pointing along the axis of inotion of Joint i expressed

in Frame {0}, is given by

bi = °R_R ...i-'Rbo, i=1,2,...,7 (14)

with

bo = [o o 1]r (15)





and p,, defined as tlw vector p<)inting from ttw origili of th(" it]_-fratl. _ 1(, t]l,' ()xi_ixt ()f

Frmx,,' {7}. ,'Xl,r('ss,'(l ix, Fx.n,(" {0}. is (,btaiw',l f,()_),

p, "1 =(:)Txt) ,_ x(), i::l o .7
0 T_ -- .._ ....

with

x0 = [0 0 0 I]_ (171

and x indicates th(" vector cross product. A Fortran I)r()gTam was v.'ritt('n t() c¢)liil),It(.

th(' manil)ulat(,r .]acol)i.n J a).l l)('caus(, of th,. sl)ac(' c<,1_straill) ill t]_i_. _,'l.)r). (,1_]v)l.'

first thr('e c(,hmms ()f th(' Jac()bian arc given l)('low:

--PI

0
Jt = 0 ; J2 =

0

1

C1pz

•_ 1 J):

--.,;l])v -- (.11)._.

--s, 1

Cl

0

(18)

_lll(t

J3 z

/ )._1,'2(t': + a2..'2 - d.jc2) - (2_1 v - a2,.lc,2 - d:,,_1.'2)

--CIS2(])z + 02,'_2 -- d3c2) q- c2(]b- - 02c1(2 - d3('1,',2)

cl.%(p.u -- a2slc2 --d3sls2) - sls2(l)z - a.2Qc2 - d:vls2)

C 1N 2

_qlN2

C2

(19)

4.2 The Jacobian Inverse

The Cartesian velocity vector x(t) are related to joint anglo velocity vect(,r (t(t) by tho

Jacobian J as

i(t) -- a_l(t). (20)

The invers(' solution to (20) which minimizes the weighted quadratic form/tTW-_/l, is

given t)y [14]

dl(t) = J_,&(/) + (17 - J_vJ)z (21)

where J_t', tho Weighted P._cudo-lnversc of the Jac()bian J is given l_,v

i

: (22)

W, tho Weigh.tin 9 Matrix is a symmetric matrix, z den()tos a)_ arl)itrary j_)in( v('locitv

v('ct()r and (ho se('()nd term of (21) })('longs t() the null spat(. ()f J. \'cc)(w z can b(,
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selected for optimization imrposes. When _Y = I and z -- O, then (22) reduces to t]w

well-known Moorc-Pc,_ro.,c I'.,r_.do-l,_vcr,,c of the" ,h.'obian giv_'n by

j] = j1(jjz)-i (23)

whic}i provides the minimlml norm ]e;ist-squarcss()]uti(m.

4.3 Quaternion Representation

The Qua_ernion consisting of a scalar '1 and a vector s = [,'_ ") _]T. also called E_h:r

Parameters of all _rit'nt at ion mat,ix R st,,'cifi,'d l_,,'

R ._

1"11 1,12 1"13

7"21 1,22 7"23

1"31 1"32 1"33

(24)

is obtained by an operator q defined by

such that

(,j, s) = Q{R} (25)

71 = vq _ r,,+ r2: + rs:J2

= (1",3- 1"_,)/4,_ (2c)

On the other hand, an orientation matrix 1R can ].)c computed flom its quaternion

by the inverse operator defined by

R = q-'{r/,s} (27)

so that

R = (r/2 - sTs) I6 + 2ss T -- 2qs x (28)

where

0 -_ -_

s_ = _ 0 -_ (29)
-_ /3 0

Now considering two orientation mat,ices OR mid OR which represent the ori('ntation

of Frame {1} and {2} with respect to Frame {0}, respectively, we can write

°R=°R _R. (30)

In (30), since _R is postmultiplied to °R, _R represents a rotation of Frame {1} about

Frame {1} to move Frame {1} to Frame {2}. _R ca,, also be interpreted as the orien-

tation of Frame {2} with respect to Frame {1}. However if the rotation is performed

about Frame {0}, then we should write

°n = _n ,°R (3_/





wh('r(' _I{ r('l,r,'s,',,ts the r(,tali,m (,f Fza,,,,' {1} u1,,,ut Frame {0} I,, t,,i]_g. F,_,,_c {1} t,,

Frmn(' {2} aI.1 (';,11 t)c conq,_tcd fr(ml (31) a_.

,it = (:_l{ c}t{-, =_ "R2 ,, °Rr. (32)

Sul)])o,_c (,/,.s_) a,,,l (,_:,s.,) ;m. th, _ (}u_,,.rni(,ns ,)f (_)R a_,l !d]{. r,'_t,('ctb,','lv.

the (tuat('rni(m ()f _R. rail 1,(' ,'xt)rcss('d i,_ terms ()f _h()s(' ()f (1'l{ a]_d "I{: as fl,lh)v,._:

"_']D'il

&/= 7/, 7/_ + s_s2 (33)

and
×

b s = 7/1s2 - 7/:sl + sl s:. (3.I)

Now we are illt(,rcsted in fin,ling how the quaterni(m of _]{ arc r('lat('d t(, diff,,r¢qitial

rotations introduced in [15]. According to [15], if the oricntati,m cliff's.fence b(,tw,,en

Fra,nc { 1 } and Frame {2} is small t}l('ll

(_a ""

1 -b: -¢S_

b: 1 -b.

-b_ _ 1

_R (35)

where 5:., 5_, and 6_ (lcnote the differential rotations of Fram(: { 1 } made in any or(h'r

about the x, y, and z axes of Frame {0}, rest)cctiv('ly to bring Frame {1} t(, F'x'anm {2}.

Comparing (31) and (35), we obt_fin

I 1 -¢5_ -5_ ]
_R _ 5_ 1 -5_ .

-_ 6_ 1

(36)

From (36) the diff('rential rotations 5_, 6_, and ,6, can be c()ml)ut('d from the (luat('rni(m

of _R by taking the quaternion on both sides of (36) using (26) and solving fl,r/_., by,

and (_ as follows:

(37)

Equations given in (37) 1)rovides a relatively accurate c(mq)utation of the r()tati(m

velocities if th(" quat('rifion of _R is given.

5 Computer Simulation Study

This section t)rescnts the r('snlts of the computer sinmlati(),, sin(Iv (on(hwl(,(t t()verify

the a})ovc nmth(,matical devcl,)pments. The study is compos,:'(l mainly ()f th,'('(" t)nrt.-. Ill('

first t)azt is dcvot('d to investigate th(: ('fficicl_cy of 3acobia_ in c()nxcrli_,.g j,)int a_,g;h'





velocities to Cartesian velocith's, the second to evaluate the accuracy of t h(" pseudo-

inverse Jacobian and the third to verify the equivalence between Cartesian vclociti_'s

and quaternion rcprcs('n_ation. Computer simulation is repeated f(,r x'aIi(nls samplhl_

times st) that a maximum p('rmitted sampling time can l)e establish(-d for an a(c¢'I)ta_)h'

conversion accuracy.

5.1 Part 1: Joint to Cartesian Velocities

Figure 3 represents the computer simulation scheme used for Part 1 and Part 2. hi

the upper loop, a set of test j,,int angle trajectori('s are convcrte(t to the c()rrest)c)nding

Cartesian trajectories using the derived forward kinematic transformation. Ttw orien-

tation matrix OR is used to compute the differential rotations by employing (35). In the

lower loop, the joint velocities which are obtained by differentiating the test joint migle

trajectories are supplied to the Jacobian which produces the corresponding Cm'tesian

velocities. The Cartesian velocities obtained from the upper loop are then compar('(t

with those from the lower loop to compute the conversion errors. Figure 4 shows the

error between the x-axis velocities/5,0, (from Jacobian) and/5_ for two different smnpling

times. The maximum error is about 0.5 inch/sec for a smnl)ling time of 10 mscc (indi-

cated by solid line) and about 6 indl/sec for a sampling time ()f 100 msec (indicated by

asterisk line). Figure 5 presents the error between the x-axis angular velocities a:_.j and

w, for sampling times of 10 msec (solid line) and 100 msec (dotted line). The maximum

angular velocity errors are about 0.5 minch/sec and 5 minch/sec for sampling times of

10 msec and 100 reset, respectively.

5.2 Part 2: Cartesian to Joint Velocities

In the lower loop of Figure 3, the Cartesian velocities provided by the Jacobian are

supplied to the Jacobian pseudo-inverse which is computed by Equation (23) and whose

outputs are compared with the joint velocities. Figures 6 and 7 show the joint angle

velocities 0_0, (from the pseudo-inverse) and 0_ for sampling times of 10 msec and 100

msec, respectively. According to the obtained results, the pseudo-inverse does not pro-

vide adequate conversion of Cartesian velocities to joint velocities at a sampling time

of 100 reset. The velocity conversion is excellent at a sampling time of 10 msec.

5.3 Part 3: Quaternion Representation

Figure 8 illustrates the computer simulation scheme used to verify the equivalence be-

tween Cartesian velocities and quaternion representation. In the upper loop of Figure

8, using Equations (33)-(34), we compute the quaternion of the orientation difference

given by

A OR = °RU, ) °Rr(t,__) (38)





where °R(¢,) (lcn,)t_.sthe oricntaticm nmtrix evaluated a th," ith sm_qdilJg (hui1_tZ it,,.

computer sinmlati()ll, hi the l(_w¢'r lo(q), the quaternion cm_ 1)_. c_nlll)_ltcd fl¢_m tt_' ¢mt-

Im_ ¢,f the ,l_lc_)tfi,_J l,y Cml)h)yin _ Equa_ i_m (37) and t lwll conllmr,.,t wit htll,' (llt_ltt'illi(,Ii

of the upper h_,,l_ t_, determine flu' (Icviati,ms. Figures 9 all,1 1(1 sh()w tll,' sil_l_tl,li,,_i

results of the err()rs ()f ,sit (s()lid li_le) a_M 09 (asterisk line) fi,r saeiq,li_g li_l,'.-. ()f 111 _l'.,',"

and 10(1 reset, restu'ctively. In the case of 100 n_scc sampling li_(', 11_,' _mxi_n ,'rr()_,..

for ,_/'/ and g'",, ar_. 15 nfincli/s('c and 0.15 mi_wl,/s('c, r_'.-t,('('lively ;,l_(1 at,' _('gligil,l(' i_l

the cas(" of 10 ms('c sampling time.

6 Proposed Control Schemes

In this section, we cimsidcr the prol)len_ of controlling the c_)_ll)limil and n(m-COml)liant

motion of the slav(' arm end-effector. When the slave arm performs non-c(mq)liant

m,)tion, i.e. without 1)cing in c_mtact with the environ_lmnt, it is sutficivl_t to _.ml)h,y

pure po._itior_ control ._chcmes whose error-correcting forces are COmlmted based only

on the position errors. However during a compliant motion mode in which the slav(,

arm end-effcctor is COl>tantlv in contact with the envirom_cnt n t_yt_rid t,osiliorz//fl, rc,'

(:o_ztrol ._cl_c,._: whi('h controls not only the position ()f the c_.l-ct]'('('t()r t,ut a]-,, ll_('

contact f,)r('cs it at)l,lics ()n the enviromnent, sh(,uld t),' .l)t)li,'d. I_ _l_(' f,,!l(,wi_, g. w,

present and discuss three control schemes which have been un(tcr study for controlli,_g

the slave arm motiol_ and briefly report some preliminary findings.

6.1 Joint-Space Adaptive Control Scheme

Figure 11 shows the organization of a joint-space control scheme which has been consid-

ered for controlling the non-compliant motion of the slave arm. In the control scheme,

actual joint angles measmed by 7 joint sensors are compared with desired j()int angh>

which are el)rained from desired configuration of the slave arm end-effector thr(mgh the

inverse kinematics. The joint variable errors then serve as input s to a set of proport ional-

derivative (PD)- controllers whose gains are adjusted by an adai)tation law so that the

error-correcting joint forces provided t)y the controllers track the slave arm end-effector

along a desired path. The adaptation law was derived using the Lyapunov theory and

the concept of model reference adat)tive control (MRAC) under the assumi)tion that

the slave arm performs .dowly varyi,_g motion. From the fact that the derived a(lal,ta-

tion law does not have to evaluate the slave arm dynamics, it is comt)utationally fast

and very attractive to real-time control. Computer simulation results rq)()rted in [6]

showed that the slave arm end-effector under the control of the al)()ve schem(' can track

several test paths with minimal tracking errors under sudden ch,'mge in Imyload. The

devclot)ed joint-space control scheme is currently imt)lemented l)y GSFC for real-tim('

control of the slave arm motion.

2In this report. "posilion'" implies |,oth "posil ion and orient al ion'" and "fore('" },,,th "f,)rcc and tc_rql_, ".
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6.2 Cartesian-Space Adaptive Control Scheme

An adal_tiv_" (',_litr_l sclwnw in Cartesian space' is pr_'s_.l_t_'d in Figlm' 12. As the' tig.ul_'

sll,_x'.'s, fl,rdl,ack informati_m of thv actual joint vari;ddcs arc c,_m'crt_',t ilJ_ ttw c_l-

rc_.l_lMil_g; (';_rt,.,,.i;,_l v,Tiald('., 1,v th," f_,rward kilwmati," tr;,Ii,.f,,H_l;tli,_iJ. "Il_' a,Ixml

('artesiml vari;d,l_'s arc ttwn compared with tlw d_'sired Cartesian v;iriat,l,'s r_'l_:,'.-.,'l_ i_it:

the desired confiKllrati,_n of the slave arm rnd-effvctor, and the' corr_'st_Min_ (';_rt,'sia_

errors me supt,li_'d to a set of PD-controllers whose gains arc adjust cd bv an ad;q_tat i_m

law. The adaptation law is designed such that the joint fi>rc,'s which at,. o],tai:l_'d 1_,,"

transf,,rminr: tli_' C;:rt,.si;m forc<'s produc_'d },v th,' adal_ti,,-,' I'D c_,_r_)ll,._s _:._i,_ tl,'

Jacobian transpose' will track tilt" end-effcctor ii](/Ilg desired I,;,ths. Ext¢.nding tlw d,'x,.l-

olmlent in [6], an adaptatio, l lax'," was deriv_'d and presented in [;5] ,ruder tlw ass:m_t,ti(,n

of slowly-varying, n_o_ion. Computer sinmlat ion study is curr,'_t ly c_mduc_ cd t o invest i-

gate the p(','formancc of t tw Cartesian-space control schen_,' ahd sinlulat ion results will

l*e reported in [7]

6.3 Hybrid Position/Force Control Scheme

Figure 13 pres('nts a hybrid t_osition/fl>rce control schcnle wl_<_s(' s_ructur(" i_ sindlar _

that intro(hwcd in [12] exc¢'t,t that tlw co::trol]('_ gai:ls of th,, cur:¢"_t co:ltr(_l s,'},,'_::('

arc adjusted by an a(tal)tation law. As Figure 13 sh()ws, t}w control s('tmm(' mainly

consists of th(' two control loops, the upper loo t) for position and the low_'r f(_r f()rc("

control. A (6x6) diagonal compliance .,election matrix S whos_' main diagonal elenwnts

s, fl>r i = 1,2,... ,6 assume either 1 or 0, allows the us(?r to select which D()F t,) b('

position-controlled and which to be force-controlled by setting the element 8ii prot)erly,

namely Sii = 1 for the ith DOF to be force-controlled mid Sii = 0 for the ith DOF to

be position-controlled. In other words, the hybrid position/force control scheme allov,,s

independent and sinmltan(,ous control of position and fl)rce. The adaptation law which

adjusts the Rains of the PD-controllers of the position and force control loops so that

the end-effector can follow a desired path while applying desired contact forc('s on the

environment despite disturbances such as varying environment stiffness, is curn.ntlv

under intensive study. Results found for the adaptive hybrid position/force control will

be reported in [8].

7 Conclusion

In this report, we have considered tile kinematic analysis and control of a 7 DOF nmnip-

ulator serving as a slave arm of a telerobot system dewqoped at GSFC to investigate the

fl.asibility of telrrobotic applications in space. A forward kinematic transformation for

the manipulator was derived and simplified for real-time imt_h'm_'ntat ion. Employing tlw

method of vector cr(,ss product, wc obtained the manilmlator Ja('_l,ian and c_mI)ut,._t

its inverse using the M:,ore-P(,nrose pseudo inverse nletho(l. Tli_'co:wcl>t (,fqu:tt_':-
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nion was reviewed for presenting the orientation of the manipulator end-effector and

relationshil_ lwtv,'ccn quaternion and differential rotations was dew'h,t_vd. ComlmtCr

sinmlati_,n was lwrf_wmod to verify the e_icicncy of the aacobian in convcrtillg j_,int

velocities to Cartesian vchwitics and to inw'stigate the accuracy of Jacobian pscu&_-

inverse. The equivalence twlween differential rotations ,'rod quatcrnion was also x'crili¢'d

through comtnxter simulation. Simulation results showed that the nl;iXilllUnl saint)ling

time which ensures the efficiency of the Jacobian, its pseudo-inverse, and the quaternion

representation was al)out 10 msec. Three control schemes was proposed and discussed

for controlling the motion of the slave arm. Current and future activities focus on the

imt_l(.mvnt at i_m of t h_' prol)osod control sclwmes.
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