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ABSTRACT

i

A case study was done at Goddard Space Flight Center, in which two dynamics

satellite simulators are developed from the same requirements, one in Aria and the oth-

er in FORTRAN. The purpose of the research was to find out how well the prescrip-

tive Ada development model worked to develop the Ada simulator. The FORTRAN

simulator development, as well as past FORTRAN developments, provided a baseline

for comparison. Since this was the first simulator developed here, the prescriptive Ada

development model had many similarities to the usual FORTRAN development model.

However, it was modified to include longer design and shorter testing phases, which is

generally expected with Ada developments.

One surprising result was that the percentage of time the Ada project spent in the

various development activities was vet T similar to the percentage of time spent in

these activities when doing a FORTRAN project. Another surprising finding was the

difficulty the Ada team had with unit testing as well as with integration. In retrospect,, _ :: -_e = _=

we realize that adding additional steps to the design phase, such as an abstract data

type analysis, and certain guidelines to the implementation phase, such as to use pri-

marily library units and nest sparingly, would have made development much easier.

These are among the recommendations made to be incorporated in a new Ada develop-

ment model next time.

\

t Research supported in part by NASA grant NSG-5123.
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CHAPTER 1

Introduction

1.1. Overview

Ada was developed in the late seventies and early eighties in order to become the stan-

dard implementation language for DoD applications. At NASA, the decision was made in

1985 to use Ada for the Space Station. With this in mind, the Flight Dynamics Division at

NASA/Goddard decided to experiment with using Ada for non-critical projects to gain

experience with Ada before its use on a critical project such as the Space Station[29].

The Flight Dynamics Division of NASA/Goddard develops ground control systems for

satellites. Many of these satellites are now launched by the space shuttle. The division also

develops telemetry simulators and dynamics satellite simulators as support projects for the

ground control systems. They help train personnel, elucidate requirements for the ground

control systems, and test software that will be used on board the satellites[29]. The product

involved in this study is a dynamics satellite simulator for the Gamma Ray Observatory

(GRO). A dynamics simulator models the control system for keeping the satellite in its

proper orbit and for keeping the satellite pointed in the right direction[29,31].

A comparative case study was planned for this satellite simulator project[29]. The

same dynamics satellite simulator was developed by two separate teams in parallel. When

the study was first conceived, the overarching goal was to characterize and compare the Ada

development process and the resulting product with the FORTRAN development process and

resulting product, in order to understand, control and improve the Ada development process.

The primary difference was that one team developed a simulator in FORTRAN, and the

other developed one in Ada. Another difference was that the FORTRAN simulator had one

subsystem which had to meet a real-time constraint[5]; th_ same subsystem in the Ada ver-
sion did not have this constraint.

For over a decade now, the University of Maryland has done software engineering

research with the Flight Dynamics Division and Computer Sciences Corporation. Together

these three groups form the Software Engineering Laboratory (SEL)[43]. The systems them-

selves, and the development and maintenance processes studied, are those of the Flight

Dynamics Division.

Past studies have led to a good understanding of the waterfall development methodol-

ogy as used here[3,28]. This understanding provides a basis from which to now study the

introduction of new technologies. Ada and object oriented methodologies are some of these

new technologies.

1.2. Environment

This division usually develops their products in FORTRAN using a form of the water-

fall development methodology[3,28]. Many of the software products are similar from mis-

sion to mission. The fact that applications are similar is important for domain expertise and

for the legacy developed in this environment for code, designs, expectations and intuitions.

The similarity between projects allows a high level of reuse of both design and code. Since



theapplicationsarebasicallyfamiliarones,andsinceolddesignandcodecanbereused,the
developmentmethodologieswhichinvolvemuchiterationdonotseemto benecessary.

A dynamicssatellitesimulatoris generallyabout40K to 50K sourcelinesof code
(SLOG).Concurrencyhasnot beenusedmuchin the past. This type of applicationis
developedonDECVAXes.A FORTRAN77preprocessor,a configurationmanagementpro-
gram,and the EDT editor areused. A debuggeris available,but not generallyused.
Softwareis developedby top-down,proceduraldecompositionand structuredanalysis.
FORTRANdevelopmenttakesplacein a matureandstableenvironment.

1.3. Objectivesof the Study
Thegeneralgoalgivenin section1.1reallyhastwoparts. Thefirst partwasdescrip-

tive. TherewastheproposedAdadevelopmentprocess,andthen the actualone,that is,
whatactuallyoccurred.It wasassumedtherewouldbedifferences.Dueto thenewnessof
Ada,wewerenotsurewhateffectsAdawouldhaveondevelopment,andhowit wouldcom-
pareto the traditionalFORTRANdevelopmentprocess.Characterizingthe development
processis intendedto givea startingpointfromwhichto formulatehypothesesto useasa
basisfor improvingdevelopmentin the future. Wealsowantto characterizetheAdapro-
ducts(documentsandcode),andcomparethemto theFORTRANproducts.

Thesecondpartof thegeneralgoalwasprescriptive.Wewant to findwaysto control
and improvethe developmentprocessand products.Techniques,methodsand processes
whichworkedwellwithFORTRANmaynotworkaswellwithanAdadrivenapproach.In
the endit ishopedthat theprocessesandproductsusedwithAdawill bebetterthanthose
that hadevolvedoveryearsof usingFORTRAN.

Welearnedtwo sortsof lessonsoverthe courseof the project:(1) affirmationsthat
eitherwhatwasdone,or howit wasdone,works,or (2) findingsthat whatwasdone,does
not workwell. Somefindingseachled to a recommendationfor a newapproachto some
particularaspectof developmentor the productthenext time. Whenthis is doneovera
seriesof developments,theprocessandresultingproductsshouldgraduallyimprove.Thisis
knownastheimprovementparadigm[12].

TheImprovementParadigmworksasfollows.Thecharacteristicsof thedevelopment
processand/orproduct,whichneedto beimproved,needto bepinpointed.Part of doing
this is to characterizethe developmentenvironmentitself. Oncethesegoalsareset,they
needto be refined.Wedo thisby askingquestions,whichcanthenbeansweredwith data
collectedduringthedevelopmentprocess.Weseeby analyzingthisdatawhereourdevelop-
mentprocessandproductmetits goals,andwhereit did not. Wethendevelophypotheses
aboutwhy thingswentthewaytheydid,andrecommendationsfor improvingthedevelop-
mentprocessnext time. Whenthenextprojectstarts,wego throughthis processagain.
Overtime,thedevelopmentprocessandproductwill graduallyimprove.(Theimprovement
paradigmis alsobrieflydescribedin section 2.2).

It is oftendifficult to determinewhat is actuallyaffectedby theintroductionof Ada
into thedevelopmentprocess,andwhatis in factdueto otherthings.Someeffectsaretran-
sitional;theyoccurduringthe processof learningAdaandits accompanyingtechnologies
(e.g.,objectorienteddesignmethods).Oneof thestart-upcostsisdueto thefact that there
is noAda codeto reuse.Reuseof FORTRANcodeis importantin this environment,and
well established.It cansometi_mesbedifficult to determine,whicheffectsaretransitional,
andwhichareintrinsic,in usingAda.

Althoughthecharacteristicsof theproductandprocess,andthelessonslearnedcome
fromonespecificenvironment,manyof therelationshipsareexpectedto begenerallyappli-
cableto otherenvironments.Of coursethemoresimilaritiesanotherenvironmenthasto the



FlightDynamicsDivisionat NASA/Goddard,themoreresultswill apply.

A goal-drivenmodel1for usingmetricsto fulfill our goalshasbeendevelopedin the
SEL[9,12,44].Using this model, which is now referred to as G/Q/rM (for goal/
question/metric),wewill stateouroverallgoalsfor theprojectas:
(1) Describethe currentAda developmentprocessand the resultingproduct. How do

thesecompareto thestandarddevelopmentprocessandproduct?
(2) Analyzetheimpactof thechangeto Ada.
(3) Providesufficientinformationto developa modelfor futureAdadevelopments.

Thesegoalsgeneratethefollowingquestionsfor study:
I. Processand ProductConformance (Characterize the development

resulting products)

(1)

(3)

methodologies, and

What was the overall process model applied during the Ada development, including the

processes applied within each phase of development?

(2) What was the process applied during the standard FORTRAN development, including

the processes applied within each phase of development?

How well did the Ada developers understand object-oriented design, and the principles
behind it?

(4) How well did the Ada developers know Ada?

(5) How well were the processes applied, which were used during the Ada and FORTRAN

developments?

(6) How was the training done for Ada?

(7) How were specifications represented for Ada and FORTRAN?

(8) How well do certain design methodologies work with Ada?

(9) How was the product documented for both Ada and FORTRAN?

(10) How were implementation and testing done in FORTRAN and Ada?

(11) How did all these processes differ for FORTRAN and Ada developments? What effect

did these processes have on Ada products such as documentation and code?

(12) How are all the activities and phases to be defined for Ada developments? How does

this compare to the activities and phases in FORTRAN developments?

II. Domain Conformance (Application domain, and developers' knowledge of it)

(1) How well did the Ada developers know the application domain? How did this compare

to the application knowledge of the FORTRAN team?

(2) What kinds of development experience do the members of the Ada and FORTRAN

teams have? How does this experience compare?

III. Effect (What happened)

(1) What effect did the FORTRAN biases in the specifications have on the Ada develop-

ment process and product?

ISeeBackgroundLiterature,Chapter2,forfullerdescriptionofthismodeland itscontext.



(2) What are the effects of Ada on the Flight Dynamics development process, and the

resulting product quality? How did Ada affect the following, and how does it compare
to FORTRAN?

(a) the way design was done,

(b) the way implementation was done,

(c) the way testing was done,

(d) the products of each phase,

(e) the amount of effort spent in each phase, and activities during that phase,

(f) the amount of effort spent on each activity,

(g) the quality of the products:

(i) How many changes and failures were there? Were there fewer

changes/failures with Ada?

(ii) Why were the changes made?

(iii) Where in the development process did the faults originate that eventually
led to failures?

(iv) What type of failures occurred?

(v) How hard (costly) were changes/failures to isolate and fix?

(3) How were the FORTRAN and Ada designs different? The same?

(4) How do we compare FORTRAN and Ada products? What measures can validly com-

pare things such as size and productivity?

(5) What effect did the various Ada features have on the resulting system?

(a) generics

(b) separate compilations for bodies and specifications

(c) library units vs. nesting

(d) tasking

(e) exceptions

(f) strong typing

(6) What was expected to happen (with either the development process or the resulting

system)? What did happen? Why the discrepancy between expectations and reality, if
there is one?

(7) Is it feasibla and cost effective to use Ada (in this kind of environment)?

(8) Switching from FORTRAN to Ada means losing the benefit of experience, institutional

knowledge (which is no where written down, but necessary to operations), and reuse of

designs and code. Do the benefits of using Ada compensate for these losses?

W. Feedback (What should be done next time)

(1) What kind of training is needed in order to develop systems well with Ada?

(2) If the effect of the FORTRAN biases in the specifications is negative, how should the

process be changed to avoid the FORTRAN bias? Would a bias toward Ada be a good

thing?

(3) How should documentation problems be dealt with? What tailoring of object oriented

methodologies is required for this environment? Which design method is appropriate

for the specific application, and can it be scaled up to the problem size?

(4) How should the existing development process be modified to best change from FOR-
TRAN to Ada?

(a) requirements analysis

(b) design

(c) implementation, code



(5)

(d) implementation, code reading

(e) implementation, unit testing, integration and integration testing

What unexpected problems have been encountered in development? What ways have
we found to deal with them?

1.4. Guide to Reading Thls Thesis

Chapter 1 describes the goals of the experiment, and briefly describes the environment,

and how the experiment is set up.

Chapter 2 gives background for the many threads tied together in this experiment.

This includes work from the SEL, background on dynamics satellite simulators, Ada, and

object oriented design. Any or all of these which the reader is familiar with may be skipped.

Chapter 3 gives the research design, and rounds out the thesis partially proposed in

chapter 1. The heart of the thesis is the prescriptive model for Ada development presented

in section 3.2. The usual model for development used with FORTRAN is presented in sec-

tion 3.1, and the questions from chapter 1 are meant to help us evaluate the prescriptive

Ada model according to various criteria.

Chapter 4 is the %tory" or what happened during development in chronological order.

This may be used as a reference section. Chapter 5 lists things learned from the develop-

ment and some recommendations, and the reader may prefer to read chapter 5, and then use

chapter 4 to find the basis for those things he is most interested in. The section numbers

and headings are identical in chapter 4 and chapter 5 to promote cross-referencing.

The chapter 6 format matches that of the questions posed in chapter 1. Thus, the

reader whose interest is piqued by a particular question may find a brief answer here, and
cross-references to where relevant information exists in this thesis.

Chapter 7 then concludes with future research.



CHAPTER 2

Background Literature

2.1. Software Engineering Laboratory

The Software Engineering Laboratory (SEL) is composed of three organizations: Flight

Dynamics Division at NASA/Goddard, Computer Sciences Corporation (CSC), and the

University of Maryland. It is now 13 years old, having been started in 1976. Valett et.

a1.[43] gives a good summary of the goals of SEL, how SEL works, and the many things that

have been learned there over the years.

The purpose of SEL is to understand how software is developed at Goddard (so we

have a baseline for experimental studies), and then to learn the effects of introducing various

new techniques and methodologies into this particular environment. A database of informa-

tion is maintained for every project done, approximately 60 projects to date. This informa-

tion includes effort needed to complete various phases of these projects, and data on the

changes made, and faults found.

Studies from SEL cover a wide variety of software engineering issues[10,11,27,30].

One of the directions in which progress has been made is in the field of meta-models. The

development of models for making models (meta-models) began to be important when it was

realized that a model developed for one organization is not portable to other organizations.

Thus each organization needs to create its own models for various processes, cost estimation,

etc. Guidelines for doing this are needed however[6]. The goal/question/metric paradigm

and improvement paradigm, which are also meta-models, were developed in the SEL.

2.2. G/Q/M and Improvement Paradigm

In the Flight Dynamics Division, data collection is embedded in the software develop-

ment life cycle. It is possible however, to collect many kinds of metrics. How does one

decide what to collect? In the SEL, a paradigm now called the G/Q/M paradigm, was

developed to aid in making this decision.

The goal/question/metric paradigm (G/Q/M) first appears as a guide for goal-directed

data collection[9]. The steps are: (1) formulate the goals, (2) for each goal, derive questions
which define the goals, and can be answered with various measures, (3) determine the metrics

that will answer the questions, (4) collect the data as part of the activities of development,

(5) validate the data, and (6) analyze the data. This paradigm was shown to work in a cor-

porate environment by using it with projects in SEL after it was proposed[44]. Since formu-

lating goals and questions is difficult, an important aspect of the G/Q/M is giving help in

arriving at appropriate goals and questions[10,14].

As time went on, the G/Q/M was conceived of in a more comprehensive

fashion[8,10,12]. The emphasis was on the decompositional direction (G --> Q --=> M) in

prior papers. Now that the paradigm is more established, the interpretation/analysis direc-

tion (M --> Q --> G) is given more weight[8,12].

The second way the outlook has become more comprehensive is in the use of the

G/Q/M paradigm inside another paradigm called the Improvement paradigm[10,12]. The

purpose of the Improvement paradigm is the improvement of the software development



methodologiesand/orsoftwareproductsin a particularenvironment,overthe life timesof
multipleprojects.A singleprojectisequivalentto onecycleof theImprovementparadigm.
Thestepsof theparadigmare: (1) characterize the environment and current practices, (2) set

up the G/Q/M, (3) choose appropriate tools, techniques, and methodologies for the current

project, (4) perform software development (with data collection embedded in the develop-

ment process), (5) analyze the data and make recommendations for improvement, and then

(6) repeat the cycle with the next project, using the feedback from the last project to revise

the current software development process.

The Improvement paradigm has been used in the SEL to improve the maintenance pro-

cess[36], and it has been introduced into an industrial setting as well[35]. One of the current

goals is to automate the Improvement paradigm in order to use it in a given development

environment[14].

2.3. Dynamics Satellite Simulators

In this case study, a dynamics satellite simulator is built during one iteration of the

Improvement paradigm. Thus, the nature of such a simulator will be explained here.

A dynamics simulator must model (1) the on-board attitude control system, (2) the

satellite hardware (actuators and sensors), and (3) the environment of the spacecraft[31].
The purposes for such a simulator are given in section 1.1 (Overview). The control system

of the satellite keeps the satellite in orbit, and pointed in the right direction. It is typical for

a FORTRAN team developing one of these simulators to have five to eight people, take 18 to

24 months, with each person averaging 1/2 to 3/4 time, and the code to have 40K - 60K

SLOC[31].

The control problem simulated is a feedback cycle. The on-board computer analyzes

sensor data to determine the current position and direction in which the satellite is pointing.

Commands are generated for the actuators to correct any errors. Then the sensors get
environmental data again, and the cycle repeats. In the simulator, the subsystem that

models the environment is called the "truth model". The other subsystems in the Ada simu-

lator have self-evident names[5].

2.4. Ada History and Other Projects in Aria

A very good summary of the history of Ada's development is given in Sammet[38].

The history of the Ada language itself, and Ada Program Support Environments (APSE) are
both traced.

It is hard to find other completed projects done in Ada. It would be nice to have these,

in order to be able to compare problems and benefits which occur when Ada is used for

development. The largest embedded system to date is the Advanced Field Artillery Tactical

Data System (AFATDS) done by Magnavox[33,45]. DoD is not the only one using Ada. The

uses are beginning to be quited varied: (1) the Bank of Finland, (2) Boeing for defense system

and commercial aircraft, (3} Lockheed for spacecraft control and telemetry (Milstar), and (4)

the European Space Agency[33]. In addition, the FAA has decided to use Ada for its

Advanced Automation System (AAS) which is the largest, most software intensive part of

the new National Airspace System in development[13]. NASA has mandated Ada for use in

the Space Station. The space station is a huge project with 750K SLOC of Ada estimated

for support environment, and 10 million SLOC of Ada estimated for the space station

itself[37]. Roy et. a1.[37] cites many projects now being done at the various NASA centers in

the country. 150 new Ada projects are planned in the next five years.



2.5. Nature of Ada and Ada Life Cycles

Strictly speaking, Ada is not an object oriented language, since it does not support
classes and inheritance. However, it does certainly support objects, and object oriented

design methodologies will clearly take full advantage of Ada.

Metrics need to be developed for Ada, where Ada is unique, that can be used in addi-

tion to older ones, to measure how well Ada is being used. Examples would be counts of

packages, generics and instantiations, and some way to measure encapsulation of data

types[21]. Ada is intended to support good software engineering practices during develop-

ment, and thus make maintenance cheaper and easier, and lead to a reliable product.

It has generally been held that Ada would increase the length of time required for

design, and decrease time required for testing and integration. Some attempts have been

made to develop new life cycle models that correctly predict costs for Ada developments.

Baskette[15] found that six models (Brooks model, GTE model, Softcost model, Price-S

model, Cocomo) did not allow enough design time and allowed too much testing time. Kane

et. a1.[26] developed a model based on the cost drivers for an Ada development, which differs
from the cost drivers for other developments, and explains why other models are poor pre-

dictors.

A more comprehensive discussion of the relationship between Ada developments and

the life cycles Ada supports is given in Rajlich[34], though no actual projects are cited as in

the two prior papers. The traditional life cycle (each phase is finished before the next one

starts), the incremental life cycle (only one language for design and implementation; thus

design and implementation are merged), and the semi-incremental life cycle are discussed.

When these life cycles are combined with either top-down or bottom-up approaches, various

paradigms for development result. Some of these are more suitable for use with Ada than
others.

2.6. Object Oriented Design

Booch's book[16] on object oriented design has had great influence in the Ada world.

However, this approach did not handle large projects well because it did not address object

decomposition, and its method for deriving the design from the specifications in only good

for small systems. (These problems are addressed in later works). Both Jalote[25] and

Seidewitz[41] found this lack of decomposition a problem in Booch's methodology. Both

sought extensions to Booch based on ideas from Rajlich[34] to overcome this problem. The

methodology developed by Seidewitz[41] has the advantage of having been tested in a pro-
duction environment.

Rajlich[34] presents two orthogonal hierarchies, important to object oriented design.

One is called the seniority hierarchy, which is layers of virtual machines. The other is the

parent-child hierarchy, which is the decomposition of a given package into other packages.



CHAPTER 3

Research Design

8.1. Standard Development Process

In order to understand the effect Ada has on the standard development process, we

must first understand how development is generally done with FORTRAN, and the charac-

teristics of this environment. Then we will look at how introducing Ada changed these

characteristics. In the next chapter, we will see how the Ada development actually went,

and the systems resulting from each development process.

Table 3.1 shows the seven phases in the standard waterfall life cycle. More than one

activity type takes place in each phase, although a given phase is named for the primary

activity occurring during that time. The life cycle is well understood for FORTRAN

developments, and explained in detail in the _Recommended Approach to Software Develop-

ment" [28]. The activities, products, methodologies and tools to use in each phase are well-

defined, as well as the percentage of time each phase will take. Experienced managers also

know how to estimate schedules, costs and staffing needs fairly accurately.

A dynamics simulator starts from the hardware specifications for the satellite being

modeled. These are only a piece of the overall project requirements. They come from the

office responsible for the total project, and are sent to a team of analysts (not the developers)

who develops the specifications for the dynamics satellite simulator from them. The develop-

ment stages are described below.

The first development phase is called Requirements Analysis. This phase begins

when the development team receives the draft functional specifications. The document con-

taining these is called a "requirements and specifications document". The development team

consists of a Small group of more senior developers at this stage. They identify places where

the specifications are not complete, analyze the feasibility of the specifications (and algo-

rithms) which are included, add specifications that are purely for software purposes (e.g.,

display and report specifications), identify all external interfaces, and identify existing code

which can be reused on the current project. At the end of this phase, a meeting is held to

review the correctness and completeness of the specifications. When the final draft of the

specifications and requirements document, and the requirements analysis summary report is

completed, a formal review known as the System Requirements Review (SRR) is held. These

two reports contain the results from the activities described above. The SRR can either

approve them, approve them with changes recommended, or reject them. In general, these

three options are available at any review held during the development process. What occurs

if the products of a particular phase have severe problems will be described at the end of this
section.

The next phase is Preliminary Design. The team is still small. After the SRR, the

subsystems are determined, and which functions (from the specifications) will go into each

subsystem. If alternative designs are to be considered, it is done here. All the interfaces are

completely designed down to the subsystem level, and the design of each subsystem is com-

pleted to two levels below the subsystem level. The specifications are checked to make sure

they are being met. A preliminary design document is kept, and at the end of this phase is a



RequirementsAnalysis
IN: draftfunctionalspecificationsand requirements document

OUT: feedback to requirements analysts (not developers)
who write the final functional specifications and

requirements document

requirements analysis summary report (developers)

software development plan (managers)

Team makes sure they understand requirements, note

where holes are, clarify requirements,

specify external interfaces, identify reusable

code from previous projects

MILESTONE: System Requirements Review

Preliminary design

IN: functional specifications and requirements document

OUT: preliminary design notebook

revised software development plan

Team defines system architecture, major

subsystems

MILESTONE: Preliminary Design Review

Detailed Design
IN:

OUT:
preliminary design

detailed design notebook
structure charts

PDL and prologs

updated software development plan

implementation plan

Team fleshes out total design; ready to code directly from it.

Data flow descriptions, all I/O, interfaces,

builds/releases are planned

MILESTONE: Critical Design Review

Implementation
IN:

OUT:

detailed design notebook

implementation plan
code

updated software development plan

system test plan

draft system description

draft user's guide
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Teamcodes,codereads,unit tests,andintegratesthedeveloping
systemaccording to the implementation plan (builds/releases)

MILESTONE: Finished code for system

Tests for each build/release passed successfully

System Testing
IN:

OUT:

system test plan

system code

updated system code

updated software development plan

system description

user's guide

system test results

Team does functional testing of the entire system

based on the system testing plan (which is based

on the specifications)

MILESTONE: All system tests successfully completed

Acceptance Testing

IN: acceptance test plan

system code

OUT: final version of system code

final system description

final user's guide

acceptance test results

Acceptance tests are done by developers under supervision

of an independent acceptance test team. Team tests that

requirements are met and make any changes needed.

MILESTONE: Operational Readiness Review

Standard Development Life Cycle Using FORTRAN

Table 3.1.

Preliminary Design Review (PDR).

Next is Detailed Design. More staff is added during this phase. After PDR, the

team continues to refine the design. Prologs, program design language (PDL), all COMMON

blocks and interfaces are totally finished. Structured diagrams are done of the total design,

and an implementation plan is completed. This phase is culminated by a Critical Design

Review (CDR).

Staff size peaks in the Implementation phase. Subsystems tend to be developed in

parallel, according to the specifications in the implementation plan. Each sub-phase of

implementation is a build. New code is created, reusable code is modified, each module is

11



unit tested,coderead,andthenput underconfigurationcontrol.Unit testingisdoneby the
samedeveloperwho developedthe particularmodule.Codereadingis doneby another
developer.A managementplan is usedto keeptrack of whichmodules(fromthe design)
havebeencoded,coderead,andtested.Thusmanagementkeepstrackof howmuchof the
implementationphaseis still left to finish. At theendof eachbuild,anintegratedcurrent
versionof thesystemis testedto assureit is meetingthespecifications.Asthesethingsare
beingdone,thesystemdescriptionand user's guide for the system are also prepared. Test

plans for the system testing phase are also drawn up.

After Implementation is essentially completed, the System Testing phase begins.

Requirement changes occur late into these projects, and therefore some implementation is

often still going on. During system testing, the team does the tests specified in the system

testing plan on the entire system, makes any corrections necessary, documents the results of

each system test, and updates the drafts of the user's guide and system description.

When the system tests have been passed, the system then enters the Acceptance

Testing phase. The acceptance tests are written by a totally different team based on the

specifications, sometime before System Testing is finished. The acceptance testing team

supervises the development team in carrying out the acceptance tests. Changes and correc-
tions are made to the code, and the system documents are finalized. The Operational Readi-

ness Review (ORR) is held to determine that the system is ready to go into operation.

Development is completed when the system enters Maintenance and Operation.

If problems come up at one of the reviews, a formal process exists to handle this. The

person identifying the problem submits a description of it to the team, including the impact

the problem will have if it is not fixed. The team then considers whether to make the

change, make no change, or compromise with the individual submitting the report. If the

person submitting the original problem report does not agree with the team's choice, a group

known as the Configuration Control Board (CCB), made up of key division personnel, will

determine the outcome. Such things occur rarely. When it does, however, no schedule

change is made, if at all possible.

3.2. Prescriptive Development Process with Ada

We will describe here the plans for development with Ada, primarily focusing on the

differences between this plan and a traditional FORTRAN development. Chapter 4 will

describe what actually happened during development, and will also include quantitative data

(e.g., size of product, staff hours, failure and change data).

The development of the GRO simulator in Ada was designed by the researchers to use

as much of the traditional FORTRAN life cycle as possible. This gave the team a good

starting point. At the same time however, they wanted to use Ada well, and plans included

experimenting with the best way to develop systems with Ada in this particular environ-

ment. It was expected that some changes and unexpected decisions would have to be made

at various points during the development. Future Ada projects would then modify the

development process based on the things learned here.

An earlier, industrial-setting study showed the importance of training, and that it

needed to include the software engineering concepts behind Ada if Ada is to be used effec-

tively[7]. In that study, a system which had previously been done in FORTRAN was redone

in Ada. Even though the members of the Ada team never saw the FORTRAN source code

for this system, the Ada system design was just like a FORTRAN design. The developers

still had their original biases, and training had concentrated on language only.

With this in mind, the training was designed so that the team could make the best

use of Ada possible. Training[32] was planned to address software engineering principles,

12



Training
IN:

OUT:

*"SoftwareEngineeringwithAda", (lst edition)
*ProcessAbstractionMethodSeminar
*Alsysvideotapes
*Trainingexercise:Electronicmailsystem
*Electronicmailsystem
*PreliminaryexperienceworkingtogetherasgroupandusingAda

RequirementsAnalysis
IN: functionMspecificationsandrequirementsdocument

*CompositeSpecificationModel
OUT: *rewrittenspecificationsandrequirementsdocument

requirementsanalysissummaryreport(developers)
softwaredevelopmentplan(managers)

Teamrewroterequirementsto eliminateFORTRANdesign
in theexistingrequirements

NoAdacodeto reviewfor reuse

Preliminarydesign
IN: *rewrittenfunctionalspecificationsandrequirementsdocument
OUT: *threepreliminarydesigns

preliminarydesignnotebook
revisedsoftwaredevelopmentplan

Teamdefinessystemarchitecture,majorsubsystemsfor eachdesign

MILESTONE: PreliminaryDesignReview

DetailedDesign
IN:
OUT:

*preliminarydesigndoneby thechosenmethodology
*detaileddesignnotebook
updatedsoftwaredevelopmentplan
implementationplan

Teamfleshesout total design;readyto codedirectlyfromit.
Dataflowdescriptions,all I/O, interfaces,
builds/releasesareplanned

MILESTONE: CriticalDesignReview

Implementation
IN:

OUT:

*detaileddesignnotebook
implementationplan
*code
updatedsoftwaredevelopmentplan
systemtestplan
draft systemdescription

13



draft user'sguide

Teamcodes,codereads,unit tests,andintegratesthe
developingsystemaccordingto the implementationplan
(builds/releases)

MILESTONE: Finishedcodefor system
Testsfor eachbuild/releasepassedsuccessfully

SystemTesting
IN:

OUT:

systemtestplan
systemcode
updatedsystemcode
updatedsoftwaredevelopmentplan
systemdescription
user'sguide
systemtestresults

Teamdoesfunctionaltestingof theentiresystem
basedon thesystemtestingplan(whichisbased
on thespecifications)

MILESTONE: All systemtestssuccessfullycompleted

AcceptanceTesting
IN: acceptancetestplan

systemcode
OUT: finalversionof systemcode

finalsystemdescription
final user'sguide
acceptancetestresults

Acceptancetestsaredoneby developersundersupervision
of anindependentacceptancetestteam. Teamteststhat
requirementsaremetandmakeanychangesneeded.

* A change from the product in the Standard Development Life Cycle.

Prescriptive Development Life Cycle Using Ada

Table 3.2.

language syntax, object oriented design methodologies, and included a team training exercise.

The development team was to be trained by a graduate student from the University of

Maryland. Also planned were classes on videotape (Alsys), and Grady Booch's book

"Softwar¢ Engineering with Ada" (first edition)[16]. George Cherry[19,20] (Language Auto-
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mationAssociates)gavehiscourseonPAMELA.l Thetrainingexercisethat theteamwould
developwasto beanelectronicmailsystemwhichwasbetweenfiveandsix thousandlinesof
code(SLOC).Theexercisewasnotrelatedto thedivision'susualproblemdomain.

After training,theAdateamwouldbereadyto startRequirementsAnalysis. How-
ever,thefunctionalspecificationsandrequirementsdocument,(i.e.,traditionalspecifications
document)whichgoesto thedevelopmentteamwhenrequirementsanalysisbegins,actually
containspreliminarydesignfrom FORTRANdynamicssimulatorsdonein the past[22].
FromtheFORTRANpointof view,this is perhapsareusebenefit,sinceit reusesdesignand
thereforecode.

Thiswasconsidereddetrimentalto theexperimentwith Ada,sincea newdesignsuit-
ablefor Adawasdesiredratherthan reuseof theFORTRANdesigns.Therefore,becauseof
thepriorexperience[7],theresearchersplannedfor theAdateamto rewritethespecifications
usingthe CompositeSpecificationModel(CSM)[2],in orderto eliminatetheseFORTRAN
biasesas muchas possible[22].CSM is especiallyorientedtoward rewriting functional
specifications.Thisis theprimarykind of specificationsfoundin thisenvironment[2].

Theotherwaytherequirementsanalysisphasewoulddiffer from theusualmethodol-
ogy is that therewasto benosearchfor old codeto reuse.Therewasnoold Ada code.
UsingFORTRANcodewouldhaveimpededthe freedomto createa totally newdesignfor
Ada,experimentwith designmethodologies,andtesttheusefulnessof variousAdafeatures.

Therewrittenspecificationswereto bepartof the input into thePreliminary Design
phasefor the team,in additionto the usualrequirementsanalysisproducts.Oneof the
objectivesof thedesignphase,in additionto designingthe dynamicssimulator,wouldbeto
experimentwith designmethodologies.

In preliminarydesign,theplanwasto examinethreedesignmethodologies:(1)Booch's
Object Oriented Design[16], (2) the Process Abstraction Method for Embedded Large Sys-

tems[19,20], and (3) the team's own methodology, General Object Oriented Design

(GOOD)J39]. The optimal ones would support both this application domain, and Ada's

features useful to this application domain. At the end of the preliminary design phase, one

of the preliminary designs and the accompanying methodology was to be chosen to continue

into Detailed Design.

The Implementation process was planned to look the same for both FORTRAN and

Ada. Both were to be organized into builds and releases. The Ada development planned to

use code reading, unit testing, and to do integration in the same way as it is done for FOR-
TRAN.

After implementation, the System Testing process would be done similarly to a

FORTRAN system test. Likewise, Acceptance Testing would be similar to a FORTRAN

acceptance test.

3.3. Study Design

The comparative case study was conducted in the SEL. One team developed the

dynamics simulator in FORTRAN in the usual manner. A second team developed the same

simulator in Ada. A research group designed the case study, and observed the two develop-

ment teams as the study progressed.

The two projects were designed to be as similar as possible. Both teams began

development with (1) the same specifications, (2) a waterfall development methodology, and

(3) worked in DEC environments.

1Booch's book and PAMELA have been updated since that time.
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However,manydifferencesexistedbetweenthe projects[18,24],whichpreventedthe
AdaandFORTRANprojectsfrombeingtruly parallel. Thesedifferencesaresummarizedin
Table3.3. The FORTRAN version was the production version, thus they had scheduling

pressures the Ada team did not have. On the other hand, the Ada project did not always

have top priority; team members occasionally were needed first on other production projects.
This was also the first time any of these team members had done an Ada project, while the

FORTRAN team was quite experienced with the use of FORTRAN. The standard develop-

ment methodology was modified for use with Ada, based upon prior experience, and assump-

tions about how an Ada development should be different from a FORTRAN development

(See section 3.2). The Ada team required training in the language and associated develop-

ment methodologies, while the FORTRAN team did things in the usual way[28]. The Ada

team also experimented with various design methodologies; this was necessary to find which

ones would work better for this development environment. The Ada development environ-

ment was in a state of flux, unlike the very stable FORTRAN environment, due to experi-

mentation with the design methodology and Ada related questions which arose throughout

the development. In switching to Ada, the legacy of reuse for design, code, intuitions and

experience are gone, and will be rebuilt slowly with the new language.

The philosophies of development were different between the two projects. The Ada

team consistently applied the ideas of data abstraction, information hiding, and the state

machine concept to their design development. The FORTRAN development used structural

decomposition and procedural abstraction.

Both the FORTRAN and Ada teams started in January, 1985. The Ada team began

with training in Ada, while the FORTRAN team began immediately with requirements

analysis. The FORTRAN team delivered its system after completing acceptance testing in

June, 1987. The Ada team finished system testing in June, 1988. Complete acceptance test-

ing was never carried out on the Ada system.

The two development teams were similar in size. During design, each team had seven

people. The maximum number on the FORTRAN team was ten, and on the Ada team was

eleven. The teams reached their maximum during implementation. The nature of each

team was different, however[22]. The Ada team had more overall experience in development

and with more languages, but the FORTRAN team had more experience with simulators,

per se.

Ada FORTRAN

Experimental version

Schedule, but no pressure

New methodologies

Object Oriented Design
Built from scratch

Fluctuating environment and underdeveloped

process for development

Production version

Schedule pressure

Usual methodologies

Structured analysis

Reused design, code,

experience
Stable environment and stable

development process

Table 3.3. Project Comparisons.
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3.4. Data Collection

Data was collected from four sources[23,24]. Standardized forms 2 collect informa-

tion which is of general interest across all projects in the SEL. These forms, with occasional

updates, have been used for many years in SEL with the FORTRAN projects, to collect

information during every development phase. This information provides a comparison of the

current Ada and FORTRAN projects to each other, and to past FORTRAN projects. Table

3.4 shows the type of data collected.

Interviews with the Ada team provided qualitative information about the project

which would have otherwise been lost. At the end of detailed design, and again at the end of

implementation, each team member was asked many open-ended questions about the phase

which was ending. Team members were also asked questions at other times in order to

either clarify issues for the observers, or to understand team views of current development

issues. Ada team members as well as FORTRAN team members answered questions regard-

ing standard FORTRAN development practices.

Observers went to team meetings during the design and implementation phases.

This allowed first-hand observation of some of the problems each developer had, and the

suggestions others had for solving each problem.

Static analysis of the code itself includes a growth history of the code, that is, size

and number of modules at various stages of development.

3.5. Lessons Learned Organization

A _lesson learned", for purposes of this presentation, is considered to be a fact esta-

blished through empirical observation. It may even be a recommendation, but not neces-

sarily. Specifically, it is a piece of information which answers questions established through

the G/Q/M.

Estimation of effort

Actual effort

Changes

Failures

Time to isolate and fix

changes/failures

To set up schedules, and assign staff

To determine cost; Develop models for

making estimates on future projects

Types of changes occurring and when;

Cost and quality comparisons across

projects

Types of faults occurring, when in

development did problem originate;

Cost and quality comparisons across

projects

Costs to project

Table 3.4. Data Collected from Forms.

2See Appendix: Data Collection Forms
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Presentingthelessonsisaproblemontwolevels.First is theproblemof organizingall

the lessons themselves; then follows the problem of how to present each individual lesson.

We have discovered that this issue can be a research topic all by itself. There are several

possible ways to organize the lessons from this case study. Some of these ways overlap with
each other.

The first general way to organize is by subject. Various subject organizations exist: (1)

by life cycle phase (i.e., chronologically), (2) by Ada feature, or (3) by the software engineer-

ing concept involved. In the latter case, we could use categories like reuse, information hid-

ing, maintenance, methodologies, and changes/faults.

Another type of organization is according to where the lesson falls on some type of

linear scale. (1) One example of this type is to categorize by the importance/risk of the les-

son to the project. Is it essential to project success? Just helpful to success? Or is it nice to

have (e.g., might lower cost), but the project is still a success without it? (2) Another

category is by specificity of the lesson learned. These would be (a) specific to flight dynamics

application, (b) specific to GRO product or process, (c} only a first Aria project effect, (d)

specific to Ada in any environment, (e) related to the waterfall development process, (f)

related to Ada use when FORTRAN was the prior language used, and (g) language indepen-

dent software engineering lessons.

Each of these classification schemes for the lessons learned, along with the lessons

themselves, have their benefits in achieving the goals stated earlier. They help us to under-
stand and characterize the current environment and process more deeply. They also help us

to understand the problems of introducing the new technologies which Ada encompasses.

The classification scheme that will be used here is chronological. Chapter 4 will give

the data in chronological order. Chapter 5 then gives the lessons in the same chronological

order; even the section headings are identical for both chapters. This is meant to make

cross-referencing lessons and the supporting evidence simple. Each lesson is derived from

one or more of the data sources discussed in section 3.4 (Data collection). When presenting a

given lesson, the lesson will be listed, and cross-references will be listed, if helpful. Chapter

6 lists the questions posed in chapter 1 again, along with the sections of this document where

the answers can be found, and brief answers.
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CHAPTER 4

Observations

4.1. Introduction

All the data we have collected during the project is reported in this chapter. The

design and particularly the implementation phases are emphasized; most of what we learned

comes from this part of development. The detailed design and implementation phases are

the ones we had the opportunity to observe. Others have written reports on the other

phases[32, 42].

Institutional intuitions, development methodologies and designs, code, and other pro-

ducts of development are either partially or totally lost during the transition from using

FORTRAN to using Ada. Loss of this legacy is a big part of the initial cost of switching

development technologies. Some of the legacy is process expectations (e.g., phase definitions,

how to do a design, how to code read, how to do unit testing, or integration). Some of the

legacy is product expectations (e.g., what a design document looks like). The key question

is, can this reuse legacy actually be improved upon by use of Ada? That is part of what we

hope to gain with the transition.

Many new questions arose when the team tried to decide how to map the current state

of the design into products that were as closely related as possible to the products expected

from a FORTRAN development. That is, they still attempted to follow the old FORTRAN

guidelines for phase definitions.

Sometimes the Ada team faced questions which would never arise in a FORTRAN

development (e.g., use of Ada features, or recompilation issues). At other times, they found
that the answers to the questions which could arise for either development language should

be answered differently for Ada (e.g., documentation, or how to view the various parts of the

Ada development life cycle).

4.2. Effort and Size Estimates

FORTRAN estimates were made, based on past experience with similar projects. It

was then assumed that the Ada project would take about three times as much effort, due to

the newness of the technology. The total number of man-months estimated for the Ada pro-

ject was 175; the total number of man-months estimated for the FORTRAN project was 58.

No prior experience existed with Ada, although the common expectation was that the design

phase would be longer, and the test phases shorter. Accordingly, the Ada project planned on

more time in design, especially since they were making a brand new one rather than reusing

an old design. Less time was planned for implementation, integration, and testing. Table

4.1 gives an overview of the estimates made at the beginning of the project.

The Ada project actually took about 23,000 manhours, and the FORTRAN project

actually took approximately 15,000. In reality, nearly every Ada phase turned out to be

longer than for the FORTRAN project. (See Phases -- Overall, section 4.9 and subsections,

for actual effort data). However, the Ada development effort overall was still less than

estimated; the FORTRAN development effort was more. The most important reason for the

difference in amount of time required for each project was that the FORTRAN project was
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truly a productionproject,while theAdaprojectwasexperimental.Thisallowedthe Ada
teamtheluxury of makingenhancementsin theirversionnot requiredbythespecifications,
whichincreasedtime spenton the project. Otherexperimentalaspects(e.g.,doingprelim-
inary designwith threedifferentmethodologies)alsomaketheAdaprojecttakelongerthan
the FORTRANproject. In addition,sincethis wasthe first Adaproject,learningadded
additionaltimein everyphase.

Calendartime is differentfrom manmonthsin that no individualswerefull time on
eitherproject. TheAda projectwasinitially plannedfor 24 monthscalendartime. The
FORTRANprojectwasinitially intendedto take16monthscalendartime[31].At some
point, theFORTRANestimatewasrevisedup to 21months,andtheAdaprojectestimate
changedto 23months. (SeeTable4.2). TheAdaprojectwasdesignedto havesomelead
time for training. Calendartime for the Ada project actuallytook muchlonger than
planned,duein part to thefact that it wasexperimental.Sincealmosteverydeveloperwas
alsopartof someotherproductionproject,theproductionprojectstendedto getpriority.

Beforethe projectsbegan,the final sizeof the Ada and FORTRANsystemswere
expectedto beaboutthe same.Table4.3showshowexpectationsregardingsizechanged
duringdevelopment.SourceLinesof Code(SLOC)aredefinedasthe numberof carriage
returns. Duringdesignthesizeof thefinishedAdasystemwasestimatedto be90K;during
coding,theAdasystemactuallyreachedthissize.Thesecountsandestimatesincludecom-
ments.Actualsizeof theFORTRANsystem,excludingblanklinesandcomments,is 25.6K
SLOC. The actualsizeof the Ada system,excludingblank linesand comments,is 59.1
SLOC. The numberof executablestatementsin eachsystemis approximatelythe same;
22,840Adastatements,and 22,300FORTRANstatements[24].Thesizeof eachsystemin
SLOC,countingeverylineof anytype,isshownin Table4.3.

4.3. Training
Thetraininglastedfor aboutsixmonths,andwasequivalentto abouttwomonthsfull

time for eachperson[22].Section4.9.3,Timespentin eachmajor activity,comparesthe
actualtime (manhours) spent by both the Ada and FORTRAN teams in each activity. Sec-

tion 4.9.4, Effort by phase, looks at actual time each team spent in each phase. A descrip-

tion of the training is given in section 3.2, where the Ada development plans are given. An

experienced Ada person was available to the team during development. This person was a
consultant, not a team member, Training experiences and lessons learned are discussed

in[32].

4.4. Requirements Analysis

The specifications were re-written using the Composite Specification Model (CSM)[2],

in order to eliminate the FORTRAN preliminary design from the specifications. CSM allows

a system to be represented by multiple views. The first benefit derived by re-writing the

specifications was that the team had a better understanding of the problem they were to

solve. This understanding was deeper than it would have been from only analyzing the

specifications. This is especially important since the Ada team had less experience with

dynamics simulators overall than the FORTRAN team had. During design the team felt

that the re-writing project had also prevented them from putting off important questions

that should be handled in design until implementation, when major design changes could

have been required. We shall see later that some important issues were missed anyway. (See

especially section 4.7.1.6, Concurrency and tasking, and section 4.7.1.10, Strong typing).

The specifications which resulted from applying the CSM were considered to be entirely

language neutral by the team, though some design was still there, nonetheless. But there

was less preliminary design than in the original specifications. There did appear to be some
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biastowardanobjectorienteddesignmethodology,thoughnooneconsideredthis kind of
biasto bea drawback.Thenewspecificationsallowedtheteamfreedomto experimentwith
threedifferentdesignmethodologiesThebenefitsanddrawbacksof eachmethodologywasto
beexplored.

4.5. Preliminary Design

The team was large from the outset of the project (seven developers from the time

training began). Usually a team is not built up to this size until implementation. This was

good for training, and for experimentation in preliminary design. It may be a bit large for

efficiency in the early phases of non-experimental projects.

Preliminary designs were done with three methodologies: Booch's Object Oriented

design methodology, Cherry's Process Abstraction Method for Embedded Large Applications

(PAMELA), and General Object Oriented Design (GOOD)[17,22]. Booch's methodology[16]

(first edition) accepts specifications written in ordinary English. Booch's notation has the

advantage of being clear and describing objects well. It shows which objects use which other

objects. Its major disadvantage is that the methodology as it existed during the time the

team did their design, could not handle large projects well. Hierarchical structure could not

really be represented, and no way existed to represent data flows. The technique for deriving

the design from the specifications is inadequate for large specification documents[22].

Another preliminary design was done with the Process Abstraction Method

(PAMELA)[19,20]. Since this object oriented methodology was developed for use particu-
larly with embedded applications, it is no surprise that it is oriented toward tasks. Since it

also is designed to handle large applications, it can represent hierarchical designs. It also

shows data flows and some control flow. PAMELA's disadvantage was that it did not deal

well with the decomposition of objects that are ultimately handled with sequential

code.[22,41]. This application had many more sequential parts to it than parallel parts, and

that is typical of applications in this environment. Like Booch's methodology, PAMELA has

also been modified since the time the team used it on this project.

During experimentation with these various methodologies, the team began development

of their own version of object oriented design, which they named General Object Oriented

Development, or GOOD[39,41]. The methodology evolved concurrently with the develop-

ment of the preliminary and detailed designs. The team felt this methodology combined the

positive aspects of the other two object oriented methodologies without the disadvantages.

The design notation uses object diagrams which pictorially describe control flow, and

show where any given object fits into the two orthogonal hierarchies which the methodology

uses. (See Figure 4.2, in section 4.6.1, Comparison of the Ada and FORTRAN designs, for

an example of an object diagram). Here the influence of Rajlich[34] also shows. One hierar-

chy is parent-child, which is a decompositional hierarchy. The other one is a seniority or

abstraction hierarchy, similar to levels of virtual machines built one on top of the other.

Object de,criptions are text-like data flow descriptions for the design. Originally, data

flows were represented in the object diagrams. Preliminary design documents with GOOD

were done this way. Object descriptions had evolved to replace the data flows in the object

diagrams by the time the team was in detailed design. This made the design's representa-

tions much clearer[41].

The objects were considered as state machines. Each part of the design notation easily

translated into Ada. Objects become packages, procedures are procedures or functions,

states are variables and data structures, actors become tasks, and control flow arrows (called

"communications") become procedure/function calls or entries into tasks[39]. The new docu-

mentation developed to accompany this methodology, object diagrams and object
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descriptions,replacethe structurecharts usually used in FORTRAN developments. The

principles this methodology is built on are two that are generally recognized as important in

software engineering for creating systems of high quality: abstraction and information hid-

ing.

4.6. Detailed Design

Structural decomposition, which is the design methodology usually used for these appli-

cations when they are done in FORTRAN, was not considered suitable for Ada development

or experimentation, because it did not encourage use of many Ada features. It only includes

a subset of the ideas inherent in the object oriented methodologies; Ada was intended to han-

dle the fuller set.

One methodology, of the three used in preliminary design, was chosen to use for the

rest of design. GOOD was the object oriented methodology chosen to continue with during

detailed design. GOOD is a synthesis of ideas from both Booch and Cherry's methodologies

along with additional adaptations in order to suit the methodology to Goddard's environ-

ment. It was the OOD methodology best adapted for a large, complex, primarily sequential

application.

Since the design phase of this project ended, GOOD has been expanded to be more

than a methodology for design only. It is intended to apply to the whole life cycle. There

were some shortcomings with the methodology however. Concurrency could not be

represented well, even though some thought had been given to this[39]. (See section 4.6.2,

Ada design documentation, and section 4.7.1.3, Effect of design on implementation).

While the team knew the importance of reuse, it was not a high priority in this partic-

ular project to design with future reuse in mind.

4.6.1. Comparison of the Ada and FORTRAN Designs

Many similarities exist between the two designs, since both systems model the same

control problem. But the resulting designs also have many important differences, due to the

different design methodologies used to produce them. Seidewitz[41] discusses the two

designs; Agresti et. al.[5] give a very complete discussion of the issue.

Figure 4.1 and Figure 4.2 illustrate the FORTRAN[41] and Ada[4,5,41] designs at a

very high level. The FORTRAN design is reused from past simulators. The Ada design, at

the highest level, Figure 4.2(a), consists of two objects that run concurrently. Figure 4.2(b)

illustrates the level just below this in the parent-child hierarchy for the "GRO Simulator"

object. That is, when "GRO Simulator" is decomposed, we get the other major subsystems

in the Ada design. These are examples of the object diagrams used with Ada. The objects

higher in a given diagram are senior to objects lower in the same diagram. This is the

manner in which the seniority hierarchy is represented in object diagrams. A senior object

can use the services of a junior object, but the reverse is never true.

The Ada system is one program, while the FORTRAN system consists of three pro-

grams; the Postprocessor subsystem and Profile subsystem are each separate. Both systems

consist of a total of five subsystems. Thus, the central FORTRAN program contains the

TM, OBC, and SCIO (Simulation Control and I/O). Figure 4.3[5] shows how the functions

which must be performed are distributed among the subsystems in the FORTRAN and Ada

systems. The On-Board Computers (OBC - there is a primary and backup computer) con-

trol the satellite orbit, and the direction in which the satellite points. The OBC contains the

same functions in both systems. The Truth model models the environment, sensors and

actuators. The Truth Model (TM) for the FORTRAN system had to meet a real time con-

straint, which is part of the reason for the design difference here. The use of the Profile
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programreducessomeof the calculationsdoneby the TM in theFORTRANsystem.The
Ada TM was designed to more closely mirror reality; it does so however with a performance

cost. In addition, the TM is junior to the OBC in the Ada system, which makes it passive.

In the FORTRAN system, the OBC and TM are of equal status[5,41].

Agresti et. al.[5] have analyzed the data flows in each system. Since the FORTRAN
system is composed of three programs, there are more external data flows in this system than

in the Ada system. The FORTRAN internal communications all use COMMON blocks.

The Ada system has more internal data flows than the FORTRAN system does. However,

the total number of data connections (internal and external) between subsystems is greater in

the Ada system. But, since variant records are often used to bundle this data, the Ada sys-

tem has fewer data items using these connections[5]. The Ground Command Database and

Parameter Database are global, encapsulated data stores for the Ada system[41].

The final difference between the two systems is in the timing of the TM and OBC.

The control loop itself is similar in both systems. However, the TM and OBC timing are

independent of each other in the Ada system and not in the FORTRAN system.

4.6.2. Ada Design Documentation

The design documentation naturally developed during the course of the project, along-

side the design methodology. Though unavoidable due to the nature of this project, this

constant change hindered the development of the design[17,22]. However, the methodology

development was part of the learning phase involved in an initial Ada project, and part of

its experimental aspect.

Keeping the design consistent is a lot of work with these detailed object diagrams and

object descriptions. This is even more of a problem, with the evolution of the notation that

was occurring during this project. Communication between team members is made more

difficult, since they need to adapt to the changing notation at the same rate the changes keep

occurring. This also hinders understanding between team members and between the team

and management.

The developers found that object diagrams worked very well as a means for represent-

ing the design for the sequential parts of the system. However, they were not adequate

without some revision, for use with tasks. (See section 4.7.1.3, Effect of design on implemen-

tation).

Changing from a well-known type of documentation (structure charts) to a new type

of documentation (object diagrams) created problems. Manager and developer understand-
ings and intuitions developed in the old environment no longer apply. Yet they used these

old understandings. However, since they are not explicit, the managers and developers do

not easily recognize that they are doing this. So when managers and developers who are

unfamiliar with the new type of documentation try to apply their old intuitions, miscom-

munication results. These miscommunications may or may not be recognized.

One indication of this loss of understanding was revealed during reviews (PDR AND

CDR). Less precision in structure charts and reviews was acceptable for FORTRAN

developments than was acceptable with the Ada development, because managers knew what

to expect. The Ada team presented the same types of information in the new documentation

as the FORTRAN team did. But managers had much more difficulty understanding the

object diagrams, and they interpreted them as if they were FORTRAN structure charts.

The design notation did not adequately show the strong degree of coupling existing

between some of the objects. (See also section 4.7.3.1, Factors complicating unit testing and

integration). Modifications to the design representation and methodology during the dura-

tion of this project improved this for the sake of subsequent projects.
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4.6.3. Timing of Reviews and Phase Boundaries

The usual guidelines for when to have a PDR or CDR applied during a FORTRAN

development, appeared very arbitrary with an Ada development. The phase boundaries
seemed much less clear in the Ada development project than in the FORTRAN project. The

FORTRAN guidelines were actually arbitrary in the FORTRAN context also, but due to

their familiarity, it did not seem so.

Requirements for PDR/CDR are what make the cut-offs between these phases for

FORTRAN developments. The requirements are described (in part) in terms of the docu-

mentation usually used with FORTRAN. For Ada the products are different, so there's no

feel for where to draw the line. Since the points are arbitrary even with FORTRAN, and

the methodologies are so different, there is no good way to convert the FORTRAN cut-offs

to Ada cut-offs. If the FORTRAN points were less dependent on the FORTRAN product

representations (e.g., structure charts) and the FORTRAN specific aspects of the process,

this translation may not have been so difficult.

In addition, phase boundaries between requirements analysis and preliminary design

seem blurred when specifications contain some of the design. Boundaries between prelim-

inary and detailed design are blurred since detailed design is just further refinement of the

preliminary design. The boundary between detailed design and coding is blurred by the abil-

ity to represent the design with Ada specifications, which are compilable, and to have corn-

pilable PDL. In other words, phase boundaries tend to be thought of as indicating an abrupt

change in the primary activity being performed in development. This is not the case any-

way, and even less so with an Ada development.

The team felt pressured to go ahead with CDR a bit sooner than they would have

liked. Some team members felt prepared for CDR, since they knew the design of the system

so well due to the rewriting of the specifications. Others felt unprepared due to the newness

of the methodologies, representations, and new questions that were always arising with Ada.

Time spent on the project peaked markedly just before CDR. How should the state of the

design be mapped into the usual things expected at PDR and CDR? The team had wanted

to use compilable PDL for CDR, but ran out of time.

The team felt the design really was not complete at CDR. Thus the first few months

of the implementation phase were considered a continuation of the design phase.

Specifications for the system were also entered at-that time, as well as utilities required (See

section 4.7.1.1, Builds).

4.7. Implementation

On the surface, the implementation process looked the same for both FORTRAN and

Ada. Implementation was top-down. Implementation plans for both systems were organ-
ized into builds and releases. Both used pseudocode PDL and prologs for documenting each

module which described the purpose and I/O for the unit.

The nature of the builds were different, however. The first build for the Ada project

was coding the specifications and the utilities. Such a build would not exist in FORTRAN.
Some of the utilities were math functions usually provided by a FORTRAN library, but not

available in Ada. Others were application specific utilities. Early definition of the

specifications, and the possibility of compilable PDL, means the interfaces must be defined

early also.

The team originally had four builds planned at CDR time. During implementation the

last two were collapsed into one. The development of release 1 and release 2 (There were

two releases, total) were then done concurrently in separate libraries. (See section 4.7.1.13,
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Librarystructure).Coding and unit testing were carried out for the second release, while

integration and integration tests were done for the first release.

The size of the team was increased from seven to eleven persons during implementa-
tion. The maximum size of the FORTRAN team was ten.

4.7.1. Coding

4.7.1.1. Builds

Build 0 consisted of the compilable specifications for the whole system plus utilities.

This Ada project did not generate any compilable specifications until implementation due to

pressure to get to CDR. Both general and application specific routines were grouped

together into one large utilities package. Build 1 consisted primarily of the User Interface.

At the highest level in the system, the User Interface and the Simulator are the two objects

running concurrently. Builds 2 and 3 are primarily for constructing the Simulator part of

the system.

The User Interface was the most difficult part of the system to code. All the tasks

(eight or nine) are here except one. The User Interface also uses many modules from the

Simulator subsystem, which was not yet built; thus many stubs were required for testing.

4.'/.1.2. Coding Issues and Standards

Coding and style standards were set at the beginning of the project. For the most

part, the Ada style guide[40], which contained these standards was helpful. The style guide

took some getting used to since the style was different than that used in Ada training books.

Several coding issues arose due to the newness of Ada in this FORTRAN environment.

Some seasoned FORTRAN programmers who were added to the project in the implementa-

tion phase were uncomfortable with the information hiding concept. There was a distrust of

what they could not %ee', and FORTRA]_ is a much more transparent language than Ada.

The team learned better ways to code things stylistically. For example, one team
member found that he should have used functions in declarations to calculate vMues used

only as constants, rather than declaring procedures to do this.

4.7.1.3. Effect of Design on Implementation

In one important way implementation was promoted by the design. Most team

members found it easy to code from the design documents. It is interesting to note that the

developers who felt this transition was the easiest were the same developers who had been on

the project from the start. Developers added during implementation who had not been

trained in OOD methodologies (though they had read about them) did not necessarily find

code writing from the design documents so easy. Some had been on an Ada project before.

The correspondence between objects and packages, or actors and tasks was very

straightforward[39]. However, the one type of unit difficult to code from the design was

tasks. This is due to the nature of tasks. They require the ability to express more in the

representations, which was lacking. The representation for the design worked well for

sequential code, and showed dependencies, but lacked the ability to represent control interac-

tions, which is required by tasks. (See section 4.6.2, Ada design documentation).

4.7.1.4. Design Additions and Changes

During implementation, more redesign was done with the Ada project than it is possi-

ble to do with a production simulator, due to time constraints. As proficiency with Ada
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grew,someof themodulesdoneearlywereredoneand improved, such as the Report Genera-
tor and Simulation Results. In these modules, the new versions took advantage of Ada's

overloading feature.

With FORTRAN projects, there are generally some design additions. In early imple-

mentation, additions to the design are more common than design changes. The Ada project

was no exception. One example of such an addition to the Ada project was the Debug Col-

lector. Normally these are built into FORTRAN projects, even though they are not

required.

Later, small design changes are common, to fix parts of the system that do not work

due to design problems. A bad design decision, where the system still works efficiently

enough, is allowed to stand.

The additions and design changes (they are both at the same time), which had the

greatest impact on the Ada project, were the tasks in the User Interface. (See section

4.7.1.6, Concurrency and tasking). Such a construct, by its very nature, would have more

impact than any constructs available in FORTRAN. The team's opinion was that the design

was not substantially changed during implementation.

4.7.1.5. Library Units vs. Nesting

The Ada dynamics simulator had library units at the top levels, then it was nested

sometimes eight to ten levels deep[24]. A library unit is the outer lexical level of a piece of
code. Nested units are inner lexical levels.

Systems have different properties, in part determined by the number of nested units

versus the number of library units used. One such property is the automatic enforcement of

information hiding due to the program's static structure. With library units, visibility in the

program structure is explicitly created by using "with" statements.

A disadvantage of nesting is increased recompilation. To decrease recompilation with

library units, the library units must be _with'd in" at the lowest level possible in the system,

and only when the context provided by the particular library unit is required. Then the

pieces of the system dependent on other other pieces of the system are smaller than is the

case with nesting. Dependencies are assumed between sibling units when nesting is used, but

must be explicitly stated when library units are used.

Another nesting disadvantage was that it was harder to read the code and to trace

problems back through nested levels than through library unit levels. The _with" clause and

dot notation for naming tells you where the source of a piece of code is. For this reason,

making changes is easier with library units than with nesting for larger systems.

Reuse is not encouraged by nesting. Some context may be required, which can be

brought along with library units, but extra, unnecessary code is not included. The Ada pro-

ject done after this one spent quite a bit of time unnesting code in order to reuse it.

Unit testing revealed another nesting disadvantage. In order to "see" inside nested

units during unit testing from the test driver, the debugger was required. (Also see section

4.7.3.2, Debugger). This would not necessarily be so with library units.

The only real disadvantage found for library units was a more complex library struc-

ture. With nesting, the complexity is put inside the program pieces rather than revealed at

the library level. (Also see section 4.7.4.4, Library units vs. nesting [during integration]).

4.7.1.6. Concurrency and Tasking

Concurrency was new to many of the team members, and there were many misunder-

standings among them as to how tasking worked. The original design called for only two
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tasks. One was in the User Interfacesubsystem, and one in the Simulator subsystem. Thus

each of these would run asynchronously. In order to control problems which arose during

implementation, eventuallysix or seven more tasks were added to the User Interfaceportion

of the system.

Lateral callsto siblingtasks were put into the design,as tasks were added to the sys-

tem. It did not seem that the developers realized at firstthat cycles were potentially

present,and thereforedeadlock could occur. The cyclewas broken by creatinga parent task

to callany of the siblings.That is,a controllertask was created to controlinformation flow

between itschildrentasks.

Perhaps the presence of cycleswas one of the consequences of the "localview" taken of

tasking during design in order to preserve information hiding. No high leveloverview of the

interactionof tasks was done; instead they were viewed locallyonly. This may have been

due to going a bit overboard with the philosophy of information hiding during design. Since

designerswould usuallybe more experiencedthan the implementors, itisbeneficialfor a pro-

ject to have the controlinteractionsand overalltask interactionsworked out during design

by the more experiencedpersonnel.

Tasks were also added by individual developers. Some functions,which looked like

good candidates for tasking from a developer'slocalpoint of view, were made into tasks.

The whole team agreed to the change, but without doing a giobal analysis. If a global

analysishad been done, the conclusionwould have been different.Unawareness of a particu-

lar task'sfunction at the globallevelmeant some tasks could not reallyoperate concurrently

as planned, but had to wait for other program parts to finishbefore they could operate.

4.7.1.7. Generics// Separate Compilations
o.

Some Ada features were easier to code than others. Generics were fairly easy to imple-
ment and they reduce the amount of code required.

Separation of specifications and bodies for compilation is quite beneficial and also easy

to implement.

4.7.1.8. Interface Development

The specificationsgive an early,high levelview of the system. The interfaces(directly

supported by the specificationconstruct and strong typing in Ada) have to be definedearly.

This could have the benefitof testingthe validityof the design earlyin development. By the

end of design,the team feltthe interfacesdeveloped were one of the more successfulaspects

of the design process. They were certainlyeasierto design than they usually are in FOR-

TRAN.

The team had problems however, because they had to keep changing the interfaces.It

isusual for requirements to continue to change throughout development, so itis hard to

have an accurate, high levelview of the interfacesearly in development. In addition,many

of the changes were due to type changes; the team had to define things sooner than they

were ready to, with the strong typing of Ada. When the type changed was a global one,

many interfaceswould be affected. Other changes were due to functionalitychanges or

parameter changes in particularunit(s).

4.7.1.9. Global Types

The project used a global types package that was "with'd in" everywhere. This is typ-

ical for a FORTRAN dynamics simulator also, and continuing this practice seemed to be a

good idea. At first this was thought to be an advantage; well into implementation however,

the team had found otherwise. One problem is recompilation. If the types change frequently
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dueto oftenchangingrequirementsor teaminexperience,thewholesystemwill haveto be
recompiledeachtimetheglobaltypespackagechanges.

4.7.1.10. Strong Typing

Strong typing was one Ada feature which made coding more difficult. Strong typing is

hard to get used to when used to weakly typed languages such as FORTRAN. While the

team had experience with many languages, some were veteran FORTRAN programmers, and

most of their production experience is FORTRAN.

Besides interface problems (see section 4.7.1.8, Interface development), other problems

resulting from strong typing were increased code size and an unwieldy number of types to

handle during coding. The tendency existed to create too many new types. During design, a

brand new type would be created with a strict range, appropriate for one part of the applica-

tion. Then another area of the application would need a similar type. A subtype could have

been used, if the original type had been more general, but the range on the original type was

found to be too restrictive. So a whole new type would be created, including a whole new

set of operations. Problems with types began to appear toward the end of design; however,

the extent of the problem was not fully realized until deep into implementation.

Despite all this, strong typing did have its helpful aspects, too. The compiler found

many mistakes early that are usually not found until execution.

4.7.1.11. PDL and Prologs

FORTRAN and Ada both used pseudocode PDL (program design language) and pro-

logs for documenting each module, which describe the purpose and I/O for the unit. No

algorithms were included in the prologs for most Ada units. This is generally included for

FORTRAN. Purposes of the unit, other units used, and other units called were included in

the Ada prologs. The function was designed at the package level during the design phase,

rather than at the procedure level as is usually done with FORTRAN.

4.7.1.12. Meetings

The Ada team required many more meetings during implementation than the FOR-

TRAN team required for several reasons. Since Ada was new, they shared things they

learned with each other. The team also felt they had a poorer understanding of the func-

tions of procedures being Used than they usually did with FORTRAN developments. The

functions were only described down to the package level in the design, rather than down to

the procedure level. They had to take extra time to discuss these functions. Sometimes

everyone assumed that conversions or initializations were done by someone else's procedure,

and coded their own units accordingly. Meetings were also required during unit testing and

integration to prevent inconveniences with unexpected recompilations, since recompilations

were very slow. They were also used during this part of development to discuss ways that

performance could be improved.

The most common topics at FORTRAN development meetings are COMMON blocks

and interface development.

4.7.1.13. Library Structure

The library structure for Ada developments is much more complex than the library

structure for FORTRAN developments[24]. There is one library for controlled source code

(CMS library). The other libraries are maintained through the Ada compiler (ACS

libraries). The ACS libraries contMn object code, source code for automatic recompiles, files
for module dependency tracking, and files for Ada's complicated library functions. These
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librariesarehierarchical.Whencompilationis donein a sublibrary,the currentlibrary is
searchedfor eachrequiredunit. If a requiredunit is not there, the parentlibrary is
searched.

The top levelAda CompilationSystem(ACS)library hasglobalcodefor thesystem
(e.g.,utility package,globaltypepackage).Thesublibrarieson thenext levelareof three
differenttypes. Oneexistsfor eachof theseveralsubsystemsof thedynamicssatellitesimu-
lator, andsomeof thesealso had sublibraries. A library also exists for each developer, and

then there are two more integration libraries. Coding and unit testing occur in the first two

types of libraries. One integration library has code for the first two builds only (Build 0 +

Build 1 _--- Release 1), and the other for all builds (Release 2). It was hoped that parallel

development of each release would make development go faster, but it did not. Instead the

problems of correctly maintaining two separate releases, which were each still changing,

slowed things down, and increased difficulties. Since the library structure was much more

complex with Ada than with FORTRAN, this caused library difficulties for the developers

(e.g., compilation errors), as well as correctness difficulties (keeping two copies of Release 1

identical).

4.7.1.14. Call-Through Units

The Ada dynamics simulator contained many %all-through" units. A %all-through"

unit is defined as one which contains only a call to another unit, and no procedural code. It

exists so that a one-to-one mapping between objects in the design and code units is main-

tained. In other words, there is a one-to-one mapping between logical objects and physical

objects. _CMl-through" units can result when the design contains objects within other

objects, perhaps several levels deep. This translates to packages inside packages. The other

purpose for using "call-through" units is to maintain information hiding. It can be imple-

mented with either library units or by nesting.

Using %Ml-throughs" on this project resulted in quite a bit of extra code. Estimates

are that there are approximately 22K extra lines of code (carriage returns) from the extra

specifications and bodies required. Thus there is that much more difficulty in code reading,

testing, and other development phases due to the extra code. A simpler code structure

would be more readable and probably more maintainable.

4.7.1.15. Use of Non-portable Features

Some non-portable features needed to be used for the sake of efficiency. For example,

the hardware dependent floating point representation had to be used, rather than the

software simulated one. In addition, the DEC screen management program was used to han-

dle the displays. The team kept the non-portable features locMized.

4.7.2. Code Reading

Code reading is done at the same time as unit testing. The developer who does the

code reading for a particular unit is not the same one who developed the code.

The team found style errors more often than any other type. Other errors code read-

ing helped to isolate were initialization errors, and incompatibilities between design and

code. Logic errors were hard to discover in this application domain using either FORTRAN
or Ada.

The types of errors found by code reading are different for FORTRAN and Ada.

FORTRAN code reading finds wrong data types, calling sequence errors, and variable errors

(declared but not used and used but not declared). For Ada, the compiler finds these. One

developer felt code reading in Ada was not as interesting, because the compiler finds all the
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interestingmistakes.
Somewaysof usingAda madecodereadingmoredifficult. Heavynestingor "call-

through"units madethe codeharderto follow. Separatecompilationstendedto do this
also. Each of these things can lead to having to look in multiple places to determine the

correctness of functions. In addition, with nesting, it may not be clear exactly where to look.

However, Ada's English-like style aided code reading.

Code reading was useful for learning to use Ada. The code from the GRO simulator

was later used to help train another team in Ada developing dynamics simulators. In addi-

tion, when looking at each other's code, the developers saw new ways to handle problems

and new algorithms for doing things. Code reading also helped to increase another

developer's understanding of a different part of the system than he worked on.

4.7.3. Unit Testing

After developing his code, the same developer then tests it, while another does code

reading. Once code passes both unit testing and code reading, the unit is put under

configuration control (entered into the GMS library). Unit testing was more difficult than

the team expected, and it was harder with Ada than with FORTRAN[18]. The methodology

used was similar to the one used in FORTRAN developments.

4.7.3.1. Factors Complicating Unit Testing and Integration

Both unit testing and integration were complicated by several factors. One of these

factors was the more complex library structure. Additionally, unit testing as well as integra-

tion was increasingly more difficult, the more levels of nesting there were present in the code.

(See section 4.7.1.5, Library units vs. nesting [during coding] and section 4.7.4.4, Library

units vs. nesting [during integration]}. Though the definition of a unit was considered to be

an object (package) for design purposes, for unit testing purposes a unit was viewed as a sub-

program. This was probably because this was the way testing was done with FORTRAN.

FORTRAN modules are isolated; the only major links between them are the global COM-

MONs. The Ada simulator had highly interconnected modules; that is, they depended on a

lot of other code, and therefore are much more interdependent. Thus the team could not

easily test most units in isolation, because each unit depended on too many others. (See sec-

tion 4.6.2, Ada design documentation).

Usually with FORTRAN, little integration occurs at all Until after unit testing. How-

ever, in this case, team members found it easiest to integrate up to the package level first,

and then unit test. Integrated units were then tested choosing a subset of the possible paths

at any one time, with the debugger.

A second difference was that no debug "write" statements were added to the code.

This would have been too time consuming to recompile. For this purpose also, the debugger

was used instead.

4.7.3.2. Debugger

The debugger was required for unit testing when nesting was used, because nested units

are out of the scope of the test driver, Since it violates the usual visibility rules of Ada, the

debugger is the only useful way to see nested units not named in the specifications. The

debugger also had the advantage of allowing testing to continue without recompiling when

problems were found (e.g., an uninitialized variable). Two other ways were tried to deal
with the nesting during unit testing without much success. One way was to change the

specifications of the outermost of the nested units so that the inner ones being tested could

be seen from the outer level. The other way was to remove the inner piece of code to be unit
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tested,andaddthenecessarycontextto it. Bothwayswereerrorproneandrequiredalot
of time and recompilation.

4.7.3.3. Strong Typing

Strong typing was also somewhat of a problem with unit testing. It was more difficult

to write test drivers, and the I/O was more complex. More operations and more code needed

to be tested, especially due to the type proliferation. (See section 4.7.1.10, Strong typing).

From the point of view of one FORTRAN programmer, different types that were still "just

numbers" looked unnecessarily complicated.

4.7.3.4. Error Detection

After a clean Ada compile, the team felt more confident about correctness of the code

than after clean FORT compile. The compiler finds many bugs like those usually found in

code reading and unit testing with FORTRAN. Because of this, there is a tendency to be

lazy with Ada. The tendency is to be overconfident in the fault detection abilities of the

compiler and run-time system. Thus faults are overlooked. Some team members noted that

the intuition for recognizing sources of failures with FORTRAN did not translate over to
Ada.

Since several team members had not done a dynamics satellite simulator before, there

was a problem determining if some of the mathematical calculations were correct. The

mathematical specifications only give the algorithm, and not a range of reasonable inputs

and outputs for the calculations. For those unfamiliar with the application, unit testing

could not be completed until I/O values were provided.

4.7.4. Integration

Integration and integration testing were more difficult than the team expected, and

more difficult than they were for the FORTRAN team. Each individual was responsible for

integration and testing of his own subsystem. Then one individual was responsible for

integrating the subsystems and integration testing for the whole release. Integration testing

is functional. Typical integration problems during integration of a FORTRAN system are

(1) performance (I/O, tasking, file allocation), (2) space, (3) interfaces, and (4) errors in flow

of control. The User Interface, where almost all the tasks were, was the most difficult part

of the Ada system to integrate.

4.7.4.1. Qualifications for Integration Tester

The team had problems which were the result of the integration tester being inexperi-

enced in this application, and in development, generally. It was the integration tester who

would identify the section of the system that was incorrect when tests were failed. The

problem would be given to the developer whose code seemed to have the problem, and the

problem might really be from somewhere else, in another developer's code. Exception han-

dling (improperly done) is one thing that could do this.

4.7.4.2. Interfaces and Strong Typing

The team expected fewer interface problems during integration of the Ada code than

they generally have during integration of FORTRAN. Early development of the interfaces

led them to think this. But, the parameters changed a lot. In some cases, procedures were

added. Some of these changes were related to the problem of developers not knowing whose

procedure actually was supposed to perform certain functions (e.g., initialization, or conver-

sions).
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Strongtypingwasalsoa factorin the interfaceproblems,andalsomadeintegration
andintegrationtestingmoredifficult. Therewasmorecodeto testdueto all theoperations
necessaryto supportall thetypescreated.

4.7.4.3. Efficiency Issues

Late implementation changes are primarily done to improve efficiency. The design was

intentionally created to simulate events as they occur in the actual hardware. The result

however, was the recalculation of values many times which could have just been stored, since

the values do not change often. Thus, the more realistic implementation was also less

efficient, and this was discovered during integration.

In addition, direct access I/O was found to use a great deal of CPU time. Buffering

was implemented to fix this problem.

Another inefficiency occurred due to the interaction of the DEC screen management

system and task scheduling by the Ada run-time system. The run-time system enters the

status of a task into a table when a task is elaborated (declared). Possible status entries are:

(1) "ready", when the task has all resources it needs except the CPU, (2) "suspended" (wait-

ing for rendezvous), (3) "waiting for I/O', (4) "terminated", and (5) "executing". These
entries are used for scheduling; "ready" tasks are scheduled for CPU (by priority), and they

execute until their time slice expires or status changes. When the DEC screen manager was

being used, it would usually be waiting for input, and the associated task should have been
marked as such; but instead, the run-time system marked it as "ready". The result was a

grossly inefficient system, since the I/O task would take up a whole time slice waiting for

I/O, every time it got the CPU. Tasks doing useful things got only a small percentage of
the CPU. This was corrected by adding another task to change the entry in the table. The

team had been advised to change the priorities of the tasks in order to fix the problem, but

it did not work.

4.7.4.4. Library Units vs. Nesting

The team had intended to use nesting conservatively. During coding most team

members thought they had done just that. But in retrospect, after integration and testing,

many team members felt differently. Nesting had made their task more difficult. Nesting

had been overdone, and library units not used enough.

For this project, library units went down about three or four levels, usually. Nesting

went below that, sometimes as many as eight to ten levels[24]. While nesting had lots of

problems associated with it, the only real disadvantage found with the use of many library

units was the complicated library structure.

The team was surprised that nesting caused as much difficulty for them as it did.

They had done a small project (5 - 6 K) to help them learn Ada when they were in training,

where nesting had worked very well. But it did not scale up well. (Also see section 4.7.1.5,

Library units vs. nesting [during coding]).

4.7.4.5. Exceptions

Errors and their sources can be obscured by using exceptions. This problem emerged

particularly in later implementation, especially with integration. A scenario to demonstrate

the problem follows. Suppose a particular procedure calls another unit, expecting some func-

tion to be performed, and certain kinds of data to be returned. If an exception is raised and

handled in the called unit, and it is non-specific for the problem raising the exception (e.g.,

"when others"), the caller gets control back without the required function being performed.

But the exception was handled and data was returned, so the call looks successful. Yet as
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soonasthecallertried to usethedatafromtheroutinewheretheexceptionwasraisedand
handled,it fails;yet anotherexceptionmay beraised. Becauseof propagation,it canbe
verydifficultto tracebackthefailureto theoriginalsourceof theproblem.

4.7.4.6. Tasking and Detecting Sources of Faults

Tasking was the most difficult feature to test, as one might expect. The type of testing

done was functional. It was difficult with traditional testing methods to show that each task

was actually invoked and worked right.

Much time during integration was spent in debugging tasks. While invaluable other-

wise, the debugger was only of limited value with tasking. The worst example was with an

array being passed by value instead of reference, causing a storage problem. Five tasks were

deadlocked, and the task having the problem could not be localized. When stymied by this

failure, the strategy finally used was to change tasks into sequential units, one by one, until

the mistake was found. Though quite time consuming, this was required, due to the lack of

diagnostics otherwise.

Isolating faults in tasks was complicated by exceptions, if they were present. They

could terminate the task without indicating that they had done so. Since exceptions are not

propagated except in the rendezvous, no tracebacks are obtained. Exceptions in tasks were

commented out when problems arose in order to get a traceback. Exceptions raised at the

rendezvous only provided tracebacks from the rendezvous on, and no previous information

was given. If a task called a package not in its static scope, there was no exception propaga-

tion from the point of the failure in that package.

4.8. System Testing

The System Testing phase officially began July, 1987. One person was responsible for

planning the system tests; this was finished during implementation. This same developer

was the primary person putting time into doing system testing as well.

When implementation officially ended, the size of the project was 90K SLOC. Yet

there were still parts of the system that had not been unit tested and put under

configuration control. This was finished by December 1987. The new code from finishing

unit testing, plus extra code to correct any failures found during system testing amounted to

about 30K SLOC. The last 7-8K of code to total 128K was the Kalman filter, added April
1988.

Two reasons for the unusually large amount of implementation still being done during

this phase are (1) other projects had higher priority for developers, and (2) a lack of analyst

support (necessary to tell correctness of a number of units). System testing and the end of
unit testing and implementation usually overlap in FORTRAN developments, but not to this

large a degree. The usual reason for the coding and unit testing in this phase is a require-

ments change.

No acceptance testing was done for this project.

4.9. Phases - Overall

4.9.1. Size of Ada and FORTRAN Systems

The final size of the Ads system is 128K SLOC (carriage returns); the final size of the

FORTRAN system is 44.6K SLOC. One third of the Ads System is specifications. More

blank lines are also in the Ada system for readability, and more comments are also in the
Ads code. One reason for more comments is that some of the constructs in Ada are more

complex than any of the FORTRAN ones. Another reason the Ada system has more lines of
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codeis that manystatementsin Adaspanmultiplelines. In FORTRANthis is muchless
common.Thestylewasregulatedby theAdaStyleGuide[40].

4.9.2. Reuse

The amount of reuse in each system is compared in Table 4.4. As with effort, esti-

mates of reuse are made when the project begins; final results are also shown when known.

The Ada project reused a well-modularized section of FORTRAN code that was poorly

documented (thus hard to build correctly from scratch), but known to work since it had been
reused on other occasions.

The fact that the FORTRAN system actually reused less code than it planned on reus-

ing is not unusual. During Requirements Analysis, code from old systems is reviewed once to

find reusable pieces. This is not done again in later phases. Some of the code chosen as pos-

sibly reusable will turn out not to be suitable in the later phases of development.

4.9.3. Time Spent in Each Major Activity

Effort data is collected during a project in two ways. Total effort each week is

recorded for each developer, manager and support person (e.g., clerical) working on the pro-

ject. (See Resource Summary form in Appendix, Data Collection Forms). In addition, each
individual records their activities, and the amount of time spent in each activity for each

component worked on. (See Component Status Report form in Appendix, Data Collection

Forms). The total effort each week gives the effort by phase, when broken down by phase

dates (i.e., milestones). (See Tables 4.7 and 4.8). The hours in each activity (from Com-

ponent Status Forms), regardless of when in the life cycle the activity was performed, gives

the effort by activity. (See Table 4.5). Thus we have two different kinds of effort data

tables (phase vs. activity) from two separate types of forms, though the names of the

categories in each table are the same. The categories themselves are based on prior studies.
The total hours of effort obtained from these two forms are close, but not the same. In the

usual FORTRAN project, the primary activity carried on during a given phase gives the

phase its name.

The Ada project took more effort than the FORTRAN project to complete, even when

training time and acceptance testing time are not included. (Each of these activities was in

only one of the projects). More time was also spent in each activity, except for requirements

analysis. The time the Ada team spent rewriting the specifications (with CSM) was charged

to training, though it might well be considered requirements analysis time. This extra time

in every activity is contrary to what was expected, particularly for the later Ada phases.

The Ada project took more effort, partly because it was the first Ada project in this

division. Learning, of course, takes extra time. It also took longer since there was essen-

tially no reuse of code, and no reuse of design, while the FORTRAN project had a high level
of reuse for both of these. Extra utilities had to be built that would be found in FORTRAN

libraries as well. Finally, more functions were included in the Ada system than in the FOR-

TRAN system; the Ada system had more functions beyond those required by the

specifications.

4.9.4. Effort by Phase

The actual completion dates of each phase are given in Table 4.6. The usual phases

are listed for the FORTRAN project. However, activities in the Ada development were dis-

tributed differently than activities in a FORTRAN development. As discussed earlier, one of

the findings with the Ada project was much more overlap between the phases, because there

was more overlap of the activities. Accordingly, two additional phases are included for Ada:
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Design/CodeOverlapand Unit Test/System Test Overlap.

In order to look at other data later (changes and failures) in terms of activity per-

formed, as well as phases, we must approximate how much of each activity is in every phase.

The phases - training, requirements analysis, design, code/unit test (implementation), and

system test - are assumed to primarily consist of the activity they are named for, as they do

with FORTRAN. The Design/ Code Overlap phase may well be considered primarily

design, as far as activity is concerned. This is the period from CDR until completion of all

parts of the design not finished before CDR, and completion of the Ada specifications and

utilities (Build 0). Note that 6505 hours (from Table 4.5, the activity table) and 6870 hours

(from Design + Design/Code Overlap, Table 4.7, the Ada phase table) are close.

Unit Test/ System Test Overlap is far more mixed, as far as activities during the

phase. Table 4.5 (activity table) shows that the system test activity took a totM of 3704

hours for the Ada project. Each overlap phase could be grouped with either the phase right

before it, or the phase right after it. (See phase tables for Ada, Table 4.7, and for FOR-

TRAIN, Table 4.8). Since Design/Code contained mostly design activity, it makes sense to

combine this with Design rather than Code/Unit Test (Implementation). This is not so sim-

ple with the Unit Test/ System Test Overlap phase. However, some approximations as to

amount of each type of activity in the overlap phase can be made. The actual number of

hours in this phase is 3319. (See Table 4:7). We can assume that the phase labeled as Sys-

tem Test is primarily system test activity. This is a reasonable enough assumption in this

environment, according to past FORTRAN project data. Then if we combine hours from

System Test with hours from Unit Test/ System Test Overlap, we get a total number of

phase hours equal to 4816. It is possible to consider this as the System Test phase. 4816 -

3704 (number of system test activity hours) = 1112, or the number of hours of implementa-

tion activity (primarily unit test) actually done during the Unit Test/System Test Overlap

phase. Thus the rest of the hours in the Unit Test/System Test Overlap phase are assumed

to be system test activity. This amounts to 2207 hours of system test.

We conclude that approximately 1/3 of the Unit Test/ System Test Overlap phase is

implementation activity, and 2/3 is system test activity. We note that the total number of

hours that it took to complete the Ada project is not identical in Table 4.5 (activity table)

and Table 4.7 (Ada phase table). However, the error is about 2/3 of one percent, and not

significant for viewing general trends.

The FORTRAN project is fairly typical of FORTRAN projects from this division,

except that the Acceptance Test phase is extra long, and more effort than usual was put into

acceptance test activities. More revisions than usual were made in the FORTRAN system.

(See Table 4.14, Reasons for changes: Acceptance Test phase).

4.9.5. Productivity

Some kind of _lines of code" measure is usually used to calculate productivity. But

even though a comparison of sizes of the FORTRAN and Ada systems by lines of code may

be of some interest, it is comparing apples and oranges for determining productivity. How

much effort does a line of Ada code take compared to a line of FORTRAN code? What

difference does kind of statement make? That is, how does effort for creating various types

of declarations, or various kinds of executable statements vary?

The best way to compare productivity in our case seems to be to assume identical sys-

tems functionally (not entirely true, as explained elsewhere), and to compare the time it took

to create the systems. The hours used will be from the Activity table in section 4.9.3 (Table

4.5). Since no acceptance test was done for the Ada project, and no training was done for

the FORTRAN project, the time for these activities will be subtracted from each project.

35



Therefore,for FORTRANwe have: 15,164- 2257----12,607hours;for Ada we have:
22,966- 2436_ 20,560hours.But wealsohaveto considerhowmuchreusedcodewasin
eachsystem.TheFORTRANsystemhad36%reuse,andtheAdaprojecthad2%. It has
beenfoundin the SELthat reusingcodecostsabout20%of the costof generatingnew
code[28].Thusweestimatethat theFORTRANsystemtook71%of thetimeit wouldtake
to createa newsystemlike it, andtheAdasystemtook98%of thetimeit wouldtaketo
createan identical system. Such a FORTRAN system would take 17,756 hours to complete

(without acceptance test), and such an Ada system would take 20,980 hours (without accep-

tance test). The difference is 3224 hours.

4.9.6. Changes

Table 4.9 shows the reasons changes were made for the Ada and FORTRAN projects.

This data is collected on Change Report Forms. l Whenever a change is made, the developer

fills one out. Any records for changes are for units already under configuration control.

In either system, the primary reason for a change is to correct an error. The second

most common reason in the FORTRAN system for a change is that a change had occurred in

the requirements. Since development of the FORTRAN system was ahead of development of

the Ada system, early requirements were more likely to have been implemented in FOR-

TRAN, by the time a change in the requirements came.

The second most common reason for a change in the Ada system is a change to

improve clarity, maintainability or documentation (e.g., readability of code, fixing com-

ments, or changes to documents). The design methodology and its associated documentation

was in a state of flux during this project. Since recording changes occurs after units have

been under configuration control, this would not be the major reason for this. The team did

put more effort into maintaining the documentation, and keeping it up to date than is usual

for a FORTRAN project, since this was an experimental project. Improvement of user ser-

vices is a close third when it comes to reasons for changes. The User Interface underwent

many changes, and a large number of the extra, unrequired functions in the Ada system are

in this subsystem.

Tables 4.10 through 4.14 show the reasons for changes that occurred in the different

phases of each project. Just as errors and changes to the requirements were the top two rea-

sons, respectively, for changes in the FORTRAN project overall, these were also the top two

reasons for changes in every phase (after design). However, in System Test and Acceptance

Test, the order for first and second position is reversed.

The most surprising thing about the changes for the Design/ Code Overlap phase was

that there were so few changes, and none were error corrections (errors would have been

discovered by failures). For the Ada system, from the Implementation phase on, error

correction is the most common reason for changes. The period after the System Test phase

is labeled Acceptance Test, even though there was no real Acceptance Test phase. During

the Implementation phase, improving clarity, maintainability or documentation is the next

most common reason for changes. In the Unit Test/System Test Overlap phase, the second

most common reason for changes shifts to requirements changes. By System Test, improving

the User Interface, due to the tasks it contains, gave a lot of problems during integration

and system testing.

We will now switch from considering change profiles by phase to considering change

profiles according to activity. Changes were classified in Table 4.15 according to the activity

iSee Appendix, Data Collection Forms.
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beingperformedwhenthechangewas made. Several assumptions were made in order to

derive activity data from the phase data. Assumption (1) is that, except for the Ada overlap

phases, the major activity of each phase is the one the phase is named after. Former FOR-

TRAN studies[28] have shown this is a reasonable assumption. Assumption (2) is related;

the non-major activities of each phase are negligible. Assumption (3) is that the Design/

Code Overlap phase is design (discussed in section 4.9.4, Effort by phase). Assumption (4) is

that the Unit Test/System Test Overlap phase's changes (and likewise the error corrections

in discussions to come) are randomly distributed throughout the phase.

Using these assumptions, the calculations for Table 4.15 were done as follows for the

Ada project. The Design/Code Overlap phase was combined with design. The Implementa-

tion phase (Code/ Unit Test phase) changes were added to 1/3 of the changes in the Unit

Test/ System Test Overlap phase to get changes due to implementation activity. (See sec-

tion 4.9.4, Effort by phase, where 1/3 of the Unit Test/System Test phase is calculated to

be implementation activity, and 2/3 is considered system test activity). The System Test

phase changes were added to 2/3 of the changes in the Unit Test/ System Test Overlap

phase to get changes due to system test activity. The post-system test phase ("Acceptance

Test") was called acceptance test activity.

Unlike the Ada project, activity for the FORTRAN project was assumed to correlate

with phase.

Table 4.15 shows that the percentage of changes during implementation (code/unit

test) were similar for both projects, and higher for the Ada project during system testing.

However, if acceptance test is ignored, which is not "normal" for either project, the FOR-

TRAN projec t has an implementation to system test ratio of 76/24. The Ada project's ratio
is 60/40. This is the opposite of what was expected, since the Ada development was

expected to have more of its changes earlier in development.

Table 4.16 gives the number of changes in a particular phase divided by the number of

hours in the phase. Even if Acceptance Test is excluded, the trend is for this normalized

value to rise for Ada and decrease for FORTRAN as each project progresses. In addition,

the FORTRAN changes/hours for any given phase is always lower than for Ada.

Another way to look at the changes is to consider how hard it was to isolate the

change (See Table 4.17). For both FORTRAN and Ada, most of the changes were easy to

isolate. On the average, an Ada change took slightly longer to isolate than a FORTRAN

change. This is probably due to the newness of Ada here.

The averages were calculated by assuming a random distribution of the changes in

each time category. Thus, for the "less than 1 hour" category, calculations were done

assuming 1/2 hour for isolating every change. For "1 hour to 1 day", 5 hours were used for

calculations. For "1 day to 3 days", 16 hours were used, and for "greater than 3 days", 32

hours were used. Unknown lengths of time for either isolating or completing changes were

excluded from the calculations for average.

Table 4.18 shows the effort needed to make the changes required in each system.

About 2/3 of the changes took less than one hour to complete for both systems. The Ada

system had more changes (percentage) that took a day or less, while the FORTRAN system

had a higher percentage of changes that took more than one day to complete. On average, a

change in the FORTRAN system took much longer to finish than a change in the Ada sys-
tem.

4.9.7. Failures

Intuitively, the Ada team thought the Ada project had about the same number of

failures as the FORTRAN project had. But the Ada project actually had more failures. It
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is impossibleto saywhethera higherpercentageof the errors actually there was discovered

by the Ada team, compared to the FORTRAN team.

Failures were classified in Table 4.19 according to the activity being performed at the

time the failure was found and corrected. The same assumptions and methods for calcula-

tion are used here as were used in section 4.9.6 (Changes), for calculating changes by the

activity being performed when the various changes were made. The totals on the failure

tables are equivalent to those listed as "error correction" on the Change tables. Data for

failures is likewise collected only after the units are under configuration control.

Table 4.19 shows that more of the FORTRAN failures (percentage) were found per-

forming implementation (code/unit test) than was true for Ada. The Ada development

found many more failures (percentage) during system test activities than the FORTRAN

development did. This difference is even more exaggerated when acceptance test activities
are excluded.

Table 4.20 shows the activity being performed when the error occurred, which led to

the failure discovered later. This judgement is made by the developer correcting the prob-

lem. The majority of the time, this is the person who developed this section of code from

design onward.

Coding errors are the largest source of failures in both systems. The percentage of cod-

ing failures is particularly high in the FORTRAN system. The Ada system had a significant

number of failures due to design errors and to previous changes. This is not surprising since

the Ada system had an entirely new design, whereas the FORTRAN system reused a

significant percentage of past designs. Also Ada was new, thus developers were more likely

to make errors when making changes, so failures from previous changes were higher.

Table 4.21 classifies failures according to type. The classifications mean what one

might expect from the names, except for those that follow. "Computational" failures are •

due to problems with mathematical expressions. "Internal interface" refers to problems in

module to module communications, and "external interface" refers to problems in communi-

cating between modules in the system, and files or devices external to the system. For both

the FORTRAN and Ada projects, data value or data structure problems and internal inter-

face problems were the most frequent types of failures. The Ada team was surprised the rate

of internal interface failures was as high as it was. However, part of the benefit of reused

design for the FORTRAN team is that these are already partly worked out. Given this con-

text, Ada came out quite well. The other major reason for failures in the Ada system was

logic or control structure problems. The language was new, and the addition of concurrency

would complicate this quite a bit.

Table 4.22 shows the effort needed to isolate failures in both systems. About 4/5 of

the failures in the FORTRAN system took less than one hour to isolate. The Ada system

had a little less than 3/5 in this category. This may be due in part to the compiler finding

some of these before the code ever went under configuration control. (No data is recorded

for a unit of code until the code is in the controlled library). The Ada system had a

significant percentage of failures, about 1/3, that took between one hour and one day to iso-

late. On average, the Ada failures took much longer to isolate. The averages here were cal-

culated the same way they were for the changes in the last section (section 4.9.6, Changes).

The effort required to correct the failures is shown in Table 4.23. The average length

of time to correct these is similar for both projects. The FORTRAN project's average is

slightly longer. The percentage of failures taking less than one hour to correct are similar

for both FORTRAN and Ada. However, the Ada system had more failures that took up to a

day to fix than the FORTRAN system did. The FORTRAN system had more failures that

took over one day to correct.
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Figures for Chapter 4

SIMCON Simulation Control

TM Truth Model

OBC On-Board Computers

Figure 4.1. Top-level FORTRAN design°
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(a) Ada design -- top level.

start
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(b) GRO Simulator design

User Interface
GRO Simulator
Simulation Control

Truth Model

On-Board Computers
Parameter Database

Ground Command Database

Figure 4.2. Top-level Ada design.
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Comparison of Subsystem Functions in Ada and FORTRAN Designs.
Figure 4.3.
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Figure 4.4.

[] sub-libraries for subsystems

[] individual developers' sublibraries

[_ release 1 sub-library

[--] release 2 sub-library

Ada Library Structure.

Tables for Chapter 4
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Requirements
Analysis

Design

Estimatefor Estimatefor
FORTRAN* Ada*

1021 (10) 4620 (15)

1531 (15) 12,320 (40)

Code/Unit

Test 4083 (40) 7700 (25)

System

Test 2552 (25) 4620 (15)

Acceptance
Test

Other 510 (5) 1540 (5)

Usual for SEL

Across Projects

(s)

(24)

(45)

(20)

(5)

TOTAL 10,208"* (95) 30,800 (100)

Percentagesaregiveninparentheses.

* Estimateswereoriginallygiveninmanmonths.

hours/month.

**Estimatesforeachphaseonlyaccountfor95_ ofhoursinTOTAL.

(100)

A manmonth is assumed to be 22 days x 8 hours/day, or 176

Table 4.1. Estimated Effort by Phase for Each Project (In Hours).
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Requirements
Analysis

Endof
Design

Endof Code/
Unit Test

SystemIntegration
Test

ProjectComplete

TOTAL

Ada

8/29/85

2/1/86

7/5/86

lO/4/88

12/6/88

FORTRAN

(8) 3/15/85 (2.50)

(7) 6/7/85 (2.75)

(5) 12/31/85 (6.75)

(3)

(2)

(23)

4/31/86 (4)

9/30/88 (5)

(21)

Table 4.2.

Estimates were made when projects began.

Number of months is in parentheses,

Estimated Project Completion Dates (by Phase).
Calendar Time.

44



When
Determined

Before
Project
Starts

Towardend
of Design

Towardend
of Code/
Unit Test

Endof
Project*

Ada

Estimate

FORTRAN

Actual Estimate Actual

45K 41K

90K

90K

135K 128K 45K 44.6K

* Near end, for estimates.

Table 4.3. Size Characteristics (Total SLOC).

Reused Design

Reused Code

Ada FORTRAN

Estimate Actual Estimate Actual

5 ? 50 ?

0 2 42 36

Table 4.4. Reuse Characteristics (Percentages).
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Ada FORTRAN

Training 2436 (10.6) 0 (0)

Requirements
Analysis 680 (3.0) 1841 (12.1)

Design 6505 (28.3) 3361 (22.2)

Code 9671 (42.0) 5443 (35.9)

System Test 3704 (16.1) 1962 (12.9)

Acceptance
Test -- 2557 (16.9)

TOTAL 22,996 (100.0) 15,164 (100.0)

Percentages are in parentheses.

Support staff hours (i.e., clerical) are not counted.

Table 4.5. Effort by Type of Activity (Staff Hours)
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StartProject

Training

Requirements
Analysis

Design

Design/Code
Overlapt

Code/Unit
Test

UnitTest/
SystemTest
Overlap

Ada

1/1/85

8/29/85

9/7/85

3/15/88

lO/12/8o

0/27/87

10/31/87

System Test/
Integration 6/1/88

Acceptance Test **

TOTAL

(o)

(2.25)

(6.25)

(7)

(8.5)

(4)

(7)

(o)

(41)

FORTRAN

1/1/85

2/10/85

0/8/85

12/28/85

5/3/80

5/31/87

(0)

(1.5)

(4)

(6.75)

(4)

(13)

(29)

Number of months in each phase is in parentheses. Effort is not full time.

* No Training.

t Compilable specifications and utilities done during this phz-se.

** No Acceptance Testing done.

Table 4.6. Actual Project Phase Completion Dates.

47



Training

Requirements
Analysis

Design

Estimate* Actual

-- 3346t (14.6)

Usualfor SEL
AcrossProjects

4620 (15) 540 (2.4) (6)

12,320 (40) 2987 (13.1) (24)

Design/
Code 3883 (17.0)

Code/Unit
Test 7700 (25) 7291 (31.9) (45)

Unit Test/
SystemTest 3319 (14.5)

System
Test 4620 (15) 1497 (6.5) (20)

Acceptance
Test _ - (5)

1540 (5) -Other

TOTAL 30,800 22,863 (100.0) (100)

Percentages are given in parentheses.

Support staff hours (i.e., clerical) are not counted.

* Estimates were originally given in manmonths. A manmonth is assumed to be 22 days x 8 hours/day, or 176

hours/month.
t Project manager estimated 1000 of these hours are actually Requirements Analysis hours.

Table 4.7. Effort by Phase for the Ada Project (In Hours).
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Requirements
Analysis

Design

Usualfor SEL
Estimate* Actual AcrossProjects

1021 (10) s49 (5.s) (8)

1531 (15) 2830 (18.7) (24)

Code/Unit

Test 4083 (40) 5397 (35.6) (45)

System

Test 2552 (25) 2315 (15.3) (20)

Acceptance
Test

Other

-- 3775 (24.9) (5)

510 (5) --

TOTAL 10,208"* 15,166 (100.1) (100)

Percentages are given in parentheses.

Support staff hours (i.e., clerical) are not counted.

* Estimates were originally given in manmonths. A manmonth is assumed to be 22 days x 8 hours/day, or 176

hours/month.

** Estimates for each phase only account for 95% of hours in TOTAL.

Table 4.8. Effort by Phase for the FORTRAN Project (In Hours).

49



Typeof
Change Ada FORTRAN

ErrorCorrection 226 (42.2) 103 (39.6)
PlannedEnhancemt 37 (6.9) 33 (12.7)

Implem. Requiremt

Change 52 (9.7) 88 (33.8)

Improve Clarity

or Documentation 88 (16.4) 15 (5.8)

Improvemt of

User Services 67 (12.5) 8 (3.1)

Insert/Delete

Debug Code 23 (4.3) 11 (4.2)

Optimz Space, Time

or Accuracy 28 (5.2) 0 (0.0)

Adaptat to Environ 9 (1.7) 1 (0.4)

Other 5 (0.9) 1 (0.4)

TOTAL 535 (99.8) 260 (100.0)

Percentages are in parentheses.

Table 4.9. Reasons for Changes, All Phases.
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N
DC

T

Type of
Change N DC T

Planned Enhancemt

Optimz Space, Time
or Accuracy

TOTAL

(50.0)

(50.0)

(10o.0)

(0.4)

(0.4)

(O.S)+

TOTAL FOR ALL PHASES

Percent Design/Code Phase
to Total, All Phases

535

(0.7) +

Number of changes.

Percentage of N using Design/Code overlap phase total.
Percentage of N using Total for all phases.

Percentages are in parentheses.

* Phase dates are: March 15, lg86 to October 12, 1986 for the Ada project.

+ These do not agree due to round-off error.

Table 4.10. Reasons for Changes: Design/ Code Overlap Phase.
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Typeof
Change Ada* FORTRANt

N I T N I T

ErrorCorrection 99 (37.6) (18.5) 65 (41.7) (25.0)
PlannedEnhancemt 28 (10.6) (5.2) 30 (19.2) (11.5)
Implem. Requiremt

Change 17 (6.5) (3.2) 39 (25.0) (15.0)

Improve Clarity
or Documentation 53 (20.2) (9.9) 7 (4.5) (2.7)

Improvemt of
User Services 30 (11.4) (5.6) 7 (4.5) (2.7)

Insert/Delete
Debug Code 14 (5.3) (2.6) 8 (5.1) (3.1)

Optimz Space, Time
or Accuracy 15 (5.7) (2.8) 0 (0.0) (0.0)

Adaptat to Environ 5 (1.9) (0.9) 0 (0.0) (0.0)
Other 2 (0.8) (0.4) 0 (0.0) (0.0)

TOTAL 263 (100.0) (49.1) + 156 (100.0) (60.0)

TOTAL FOR ALL PHASES 535 260

Percent Implem Phase
to Total, All Phases (49.2) + (60.0)

N
I

T

Number of changes.

Percentage of N using Implementation phase total.
Percentage of N using Total for all phases.

Percentages are in parentheses.

* Phase dates are: October 12, 1986 to June 27,1987 for the Ada project.

t Phase dates are: June 8, 1985 to December 28, 1985 for the FORTRAN project.

+ These do not agree due to round--off error.

Table 4.11. Reasons for Changes: Implementation Phase.
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Type of

Change N UT/ST T

Error Correction

Planned Enhancemt

Implem. Requiremt

Change

Improve Clarity
or Documentation

Improvemt of
User Services

Insert/Delete

Debug Code

Optimz Space, Time

or Accuracy

Adaptat to Environ
Other

TOTAL

66

3

28

25

18

2

10

4

3

159

(41.5)
(1.9)

(17.6)

(15.7)

(11.3)

(1.3)

(6.3)
(2.5)
(1.9)

(100.0)

(,2.3)
(o.6)

(5.2)

(4.7)

(3.4)

(0.4)

(1.9)
(0.7)
(o.6)

(_9.s)÷

TOTAL FOR ALL PHASES

Percent Unit Test/System Test

Phase to Total, All Phases

535

N Number of changes.

UT/ST Percentage of N using Unit test/System test overlap phase total.

T Percentage of N using Total for all phases.

Percentages are in parentheses.

* Phase dates are: June 27,1987 to October 31, 1987 for the Ada project.

+ These do not agree due to round-off error.

Table 4.12. Reasons for Changes: Unit Test/ System Test Overlap Phase.
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Typeof
Change

Error Correction
PlannedEnhaneemt
Implem.Requiremt

Change
ImproveClarity

or Documentation
Improvemtof

UserServices
Insert/Delete

DebugCode
OptimzSpace,Time

orAccuracy
Adaptatto Environ
Other

TOTAL

TOTALFORALLPHASES
PercentSystemTestPhase

to Total,All Phases

Ada*
N S T N

51 (53.1) (9.5) 17

3 (3.1) (0.6) 1

7 (7.3) (1.3) 24

9 (9.4) (1.7) 2

19 (19.8) (3.6) 0

6 (6.3) (1.1) 3

1 (1.0) (0.2) 0

o (o.o) (o.o) o
0 (0.0) (0.0) 1

96 (100.0) (18.0) + 48

535 260

(17.9) +

FORTRANt
S

(35.4)
(2.1)

(50.0)

(4.2)

(o.o)

(83)

(o.o)
(o.o)
(2.1)

(lOO.1)

T

(6.5)
(0.4)

(o.2)

(0.8)

(o.o)

(1.2)

(o.o)
(oo)
(0.4)

(18.5)

(18.5)

N

S

T

Number of changes.

Percentage of N using System Test phase total.

Percentage of N using Total for all phases.

Percentages are in parentheses.

* Phase dates are: October 31, 1987 to June 1, 1988 for the Ada project.

f Phase dates are: December 28,1985 to May 3, 1986 for the FORTRAN project.

+ These do not agree due to round-off error.

Table 4.13. Reasons for Changes: System Testing Phase.
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Typeof
Change Ada*

N A T N

10 (76.9) (1.9) 21

1 (7.7) (0.2) 2

0 (0.0) (0.0) 25

t (7.7) (0.2) 6

o (o.o) (o.o) t

1 (7.7) (0.2) 0

o (o.o) (o.o) o
o (o.o) (o.o) 1
o (o.o) (o.o) o

is (too.o) (2.5)+ 56

Error Correction

Planned Enhancemt

Implem. Requiremt

Change

Improve Clarity

or Documentation

Improvemt of

User Services

Insert/Delete

Debug Code

Optimz Space, Time

or Accuracy

Adaptat to Environ
Other

TOTAL

TOTAL FOR ALL PHASES

Percent Acceptance Testing

Phase to Total, All Phases

535 260

(2.4) +

N

A

T

Number of changes.

Percentage of N using Acceptance Testing phase total.

Percentage of N using Total for all phases.

FORTRANt

A T

(37.5) (8.1)

(3.6) (0.8)

(44.6) (9.6)

(10.7) (2.3)

(1.8) (0.4)

(o.o) (o.o)

(0.o) (0.0)
(1.8) (0.4)

(o.o) (o.o)

(100.0) (21.6)++

(21.5) ++

Percentagesarein parentheses.

* No true acceptance test phase ['or the Ada project. Data is for all changes after June 1, 1988.

t Phase dates are: May 3, 1986 to May 31, 1987 for the FORTRAN project.
+ These do not agree due to round-off error.

++ These do not agree due to round-off error.

Table 4.14. Reasons for Changes: Acceptance Testing Phase
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Activity Ada FORTRAN

Design 4 (0.7)

Code/Unit Test 316 (59.1) 156 (60.0)

System Test 202 (37.8) 48 (18.5)

Acceptance Test 13 (2.4) 56 (21.5)

TOTAL 535 (100.0) 26o (1oo.o)

Percentagesaregiveninparentheses.

Table 4.15. Changes by Activity.

Ada

Phase Number Norm._

Design/
Code 4 .001

Code/Unit
Test 263 .036

Unit Test/

System Test 159 .048

System Test 96 .064

Acceptance
Test 13 .085

FORTRAN

Number Norm.t

156 .029

48 .021

56 .015

TOTAL 535 .023 260 .017

f Normalization is based on number of hours in the relevant phase. Thus the units are: changes in the given phase

per hour spent in the given phase. Total hours for whole project (including phases where no changes are possible)

are used for TOTALs.

Table 4.16. Normalized Changes per Phase.
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Add FORTRAN

< 1hour 354 (66.2) 196 (75.4)

1 hour to
1 day 142 (26.5) 44 (16.9)

1 to 3 days 27 (5.0) 16 (6.2)
> 3 days 9 (1.7) 3 (1.2)

Not known 3 (0.6) 1 (0.4)

TOTAL 535 (100.0) 260 (100.1)

Ada

FORTRAN

3.0 hours/cha_ge (average)

2.6 hours/change (average)

Percentages are given in parentheses,

Table 4.17. Effort to Isolate Changes (All Phases).

Add FORTRAN

< 1 hour 348 (65.0) 167 (64.2)

1 hour to
1 day 149 (27.9) 51 (19.6)

1 to 3 days 29 (5.4) 28 (10.8)

> 3 days 6 (1.1) 12 (4.6)

Not known 3 (0.6) 2 (0.8)

TOTAL 535 (100.0) 260 (100.0)

Ada

FORTRAN

Table 4.18.

3.0 hours/change (average)

4.5 hours/change (average)

Percentages are given in parentheses.

Effort to Complete Changes (All Phases).
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Activity Ada FORTRAN

Code/Unit Test 121 (53.5) 65 (63.1}

System Test 95 (42.0) 17 (16.5)

Acceptance Test 10 (4.4) 21 (20.4)

TOTAL 226 (99.9) 103 (100.0)

Percentages are given in parentheses.

Table 4.19. Failures by Activity.

Origin of
Failure Ada

Code 131 (58.0)

Design 49 (21.7)
FunctionM

Specifications 9 (4.0)

Previous Change 32 (14.2)

Requirements 5 (2.2)

FORTRAN

TOTAL

4 (3.9)
2 (1.9)
2 (1.9)

226 (100.1) 103 (99.9)

Percentages are given in parentheses.

Sources of Failures (All Phases).

Table 4.20.
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ErrorClass Ada FORTRAN

Computational 28 (12.4) 12 (11.7)

Logic/Control
Structure 46 (20.4) 16 (15.5)

Data vMue or
Structure 65 (28.8) 24 (23.3)

Initialization 29 (12.9) 15 (14.6)

External
Interface 11 (4.9) 6 (5.8)

Internal
Interface 47 (20.8) 30 (29.1)

TOTAL 226 (100.2) 103 (100.0)

Percentages are given in parentheses.

Table 4.21. Types of Failures.

Add FORTRAN

< 1 hour 130 (57.5) 84 (81.6)

1 hour to

1 day 81 (35.8) 15 (14.6)

1 to 3 days 11 (4.9) 3 (2.9)

> s aays s (1.3) 1 (1.o)
Not known 1 (0.4) 0 (0.0)

TOTAL 226 (99.9) 103 (100.1)

Add 3.3 hours/failure (average)

FORTRAN 1.9 hours/failure (average)

Percentages are given in parentheses.

Table 4.22. Effort to Isolate Failures (All Phases).
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Add FORTRAN

< 1 hour 161 (71.2) 82 (79.6)
1 hour to

1 day 56 (24.8) 10 (9.7)

1 to 3 days 6 (2.7) 9 (8.7)

> 3 days 2 (0.9) 1 (1.0)

Not known 1 (0.4) 1 (1.0)

TOTAL 226 (I00.0) 103 (100.0)

Add

FORTRAN
2.3 hours/failure (average)

2.6 hours/failure (average)

Percentages are given in parentheses.

Table 4.23. Effort to Correct Failures (All Phases).
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CHAPTER 5

Lessons Learned

5.1. Introduction

In this chapter we give a list of the lessons we learned during the course of the study.

This chapter is organized into headings which match those in chapter 4, _Observations'.
Thus if the reader needs to refer back to the data for the context of a particular lesson, it

will be easy to do so. This project helped us learn a great deal about the use of Ada with an

application that is identical to the usual ones constructed in the Flight Dynamics Division at

NASA/Goddard. It was not possible to fully answer all the questions originally posed with

the data we were able to gather. Further case studies are needed to verify which effects are

"first project" effects (especiMly due to a learning curve), and which are due to other things.
In the final analysis, the question whether Ada or FORTRAN is better in this environment

for these projects, must still wait for an answer, l

5.2. Effort and Size Estimates

(1) The Ada project actually took fewer manhours to complete than estimated. The pro-
ject would surely still have been on schedule in this respect, even if acceptance testing

had beer_ done.

(2) The FORTRAN project took half again as many manhours as predicted. A lot of this
is due to the unusually long time in acceptance testing with this project.

(3} Both the FORTRAN and Ada projects took more calendar time than estimated. The

FORTRAN project took six months longer. The Ada project took eighteen months

longer. The effort was not full time on either project.

(4) SLOC comparisons are not too useful when comparing the size or productivit_ of pro-

jects built in different languages. The effort to produce a line of code in one language

is not comparable to the effort required in another. Moreover, within the same

language, the level of effort may be very different for different types of statements

(e.g., executable vs. non-executable statements, concurrent vs. sequential constructs,

etc.).

(See also section 4.9.3, Time spent in each major activity, section 4.9.4, Effort by

phase, and section 4.9.1, Size of Ada and FORTRAN systems}.

5°3.

(1)

Training

Training in software engineering concepts, and not just language syntax was important

to the subsequent success of the project. Success included the development of a truly

new design, and an OOD methodology tailored to the Flight Dynamics environment.

(See the sections on Preliminary design and Detailed design, 4.5, 4.6, 4.6.1, 5.5, 5.6 and

5.6.1).

1See Chapter 6, Answers to G/Q/M Questions.
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(2) It isveryusefulto haveaccessto anexperiencedAdaconsultant.
(3) Thetrainingproject(electronicmailsystemorEMS)wasusefulto helptheteamlearn

to work togetherwith thesenewconcepts,andgeta little practicalexperiencewith
Ada. However,the projectalsomisledthemasto theusefulnessandapplicabilityof
certainfeatureson thesimulator.TheEMSwasstill asmallprogram,between5 and
6K, andnotrelatedto theusualapplicationdomain.Certainfeaturesdonotscaleup
well,suchasnesting.Liberaluseof nestingworkedwellonEMS,andnot sowellon
the muchlargersimulator. Otherfeaturesaremuchharderto controlon largepro-
jectsthanonsmallones,andthesmalltrainingprojectgavenohint of a futureprob-
lem. Strongtypingwasin thiscategory.
Taskingwasneverusedon the trainingproject. Genericsweremoreusefulandless
trouble in the simulator. Thecompilerneededto maturebeforeit handledgenerics
correctly.

(4) It wasnot until afterworkingon a "real" projectthat theteamreally felt theyhad
learnedAdasufficientlywellto useit well.

(5) Ada trainingshouldincludetrainingin theAda librarystructure,dueto its complex-
ity. (Seesection4.7.1.13,Librarystructure).

(6) Trainingfor managers,andnot just developersis important. (Seealsosection4.6.2,
Adadesigndocumentation).

5.4. Requirements Analysis

(1) Ada design issues began to surface during the Requirements Analysis phase.

(2) The Composite Specification Model (CSM) succeeded in removing the preliminary
FORTRAN design embedded in the original specifications document (called

"Specifications and Requirements Document").

(3) Rewriting the specifications using the CSM helped the development team have a much

better understanding of the requirements. This was a useful way to develop greater

familiarity with the application.

5.5. Preliminary Design

(1) The Ada team found that tailoring an OOD methodology to their particular corporate
environment's needs was essential. This led the team to develop their own methodol-

ogy (GOOD).

(2) Some of the issues to consider when choosing and tailoring a design methodology

include: type of application (sequential vs. a high degree of concurrency), real-time or

not, field of application (scientific, business, others), and research vs. production
environment.

GOOD worked well for a scientific, mostly sequential, non-real time production-type

project, such as this simulator.

(3) Both graphical (object diagrams) and textual (object descriptions) ways to represent

the design fully were required. This was much clearer than using one type of design

representation only.

5.8. Detailed Design

(1) The tailored design methodology, GOOD, was chosen to continue with into detailed

design. It was the best suited to the application and needs of the environment.
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5.6.1. Comparison of the Ada and FORTRAN Designs

(1) The Ada team actually did produce a different design than the FORTRAN team had

for the same application. PartiMly, this was due to not having a real-time require-

ment on the Truth Model (TM) subsystem, as the FORTRAN team did. It was also

due to understanding software engineering principles, and principles behind OOD. For

example, the more realistic model of the satellite which was reflected in the Ada design
stems from this.

(2) The degree of coupling that resulted between modules was surprising. The units are

tied to each other in complex ways, rather than only through global COMMONs. (See

also section 5.7.3.1, Factors complicating unit testing and integration).

Ada Design Doctmaentation

The design methodology and its representations should be set before the start of a pro-

duction project. Otherwise, miscommunication will result between developers and

managers. Extra time will also be required to update the design, when representations

change. But this is also part of the cost of tailoring a design methodology to a new

environment with an initial project. The benefits from this are expected on future pro-

jects.

(2) Automated tools to aid in maintaining the design documentation would help a great

deal. A lot of work is required to develop and maintain the object diagrams and

object descriptions.

(3) The design notation should be amended to include the control interactions required by

tasks, if tasks are to continue to appear in future projects. (See section 4.7.1.6, Con-

currency and tasking).

(4) Managers need to understand the design methodology and its notation, not just

developers. This understanding is crucial for communication at reviews such as PDR

and CDR, and to allow evaluation of the progress to that point. Training managers in

OOD and software engineering principles, from a management perspective, will accom-

plish this.

(5) The design notation is not so easy to understand, if the design methodology is not

understood, and the philosophy behind it.

5.6.3. Timing of Reviews and Phase Boundaries

(1) Phases did not abruptly start and end, but rather gradually moved from one to the

next. This is true with FORTRAN phases. While each is named for their primary

activity, all activities go on to some degree in every phase. It appeared however, to the

developers to not be so, for FORTRAN, and yet to very much be true with Ada.

The reasons FORTRAN developments usually appear to have distinct phases is due to

well defined milestones appearing at the end of most phases. Where a milestone does

not exist (e.g., between Implementation and System Test), there still appears to be a

distinct dividing line. The line between Implementation and System Test comes when

all unit testing is finished (except for units generated be requirement changes), and sub-

system integration is done.

However with the Ada project, two phenomena occurred. The first is that the mile-

stones for the phases did not appear where the team subjectively felt they should. The

second is that activities actually had different definitions, and this made things seem

far less clear. For instance, the use of Ada specifications has aspects which tradition-

ally (to a FORTRAN mindset) are attributed to both design and code. Thus
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(2)

determining which phase the development of the Ada specifications belongs to, meant

becoming conscious of assumptions from the FORTRAN development legacy, and

changing them appropriately.

The CDR should be held later in development, after compilable PDL can be included,

and the types are developed. This was felt by the team not only to be a design

activity, but also it would increase confidence in the correctness of the design. It

requires early development of types and interfaces. (See also section 4.7.1.8, Interface

development, and 4.7.1.10, Strong typing).

5.7. Implementation

(1) The possibility of doing bottom-up implementation should be considered. (Design

would still be top-down). Given the way Ada dependencies work, this might prove an

easier way to unit test and integrate.

5.7.1. Coding

5.7.1.1. Builds

(1) The more general utilities and the application specific utilities should not be in the
same package. This would separate out the reusable pieces from the non-reusable

ones.

(2) Compilable PDL during design would have been a desirable feature. It has several

benefits. Type checking and interface checking done at an early stage can increase

confidence in the design. This requires more detailed planning at an earlier stage than

is usual in a FORTRAN project. The benefit is tempered somewhat when interfaces

are not localized to minimize the effect of changes.

5.7.1.2. Coding Issues and Standards

(1) Developers discovered from experience that a unit which calculates a value once, and
which acts as a constant ever after, should be coded as a function in the declaration

section of the code.

5.7.1.3. Effect of Design on Implementation

(1) All features except tasking were easily coded from the design documents, for those fam-
iliar with OOD. The team considered the transition toA_da code from the OOD design

easier than the transition to FORTRAN code from the FORTRAN design.

5.7.1.4. Design Additions and Changes

(1) The Ada and FORTRAN projects both had design additions. More changes to the

existing design were done in the Ada version, because of inexperience and the learning

curve accompanying a first project, and because the Ada project was experimental and
thus did not have the time crunch.

(2) Design "additions" involving constructs such as tasking, which are more powerful than

any in FORTRAN, may be viewed as changes, and must have the appropriate level of

consideration given to them.

5.7.1.5. Library Units vs. Nesting

(1) Nesting had the following disadvantages: (1) it increased recompilation costs, (2) read-

ing the code and tracing problems was more difficult than it was with library units,

64



and(3) it madereuseharder. It washarderto uncoupleunnecessarycodewhenit was
nestedthanwhenlibrary unitswereused. (4) Nestingalsomadeunit testingmore
difficult. Library unitsdid not haveanyof thesedisadvantages.(Seesection4.7.3,
Unit testing).

(2) Twoor threedeveloperswerebroughtontothe Adaprojectonlyfor implementation.
Thehighdegreeof nestingmadecomingonto theprojectmoredifficult,becauseit was
harder to locateparticularproceduresin the code,than it wouldhavebeenwith
library units. Despitethis, it wasfelt that it took lesstimeto bringonnewstaff on
theAdaproject,thanit doesonFORTRANprojects.

(3) Libraryunitshadtheonedisadvantageof makingthelibrary structuremorecomplex.
(4) Library units had manyadvantageswhile nestinghad few advantages, and many

disadvantages on a project of this size. For these reasons, using library units often and

nesting sparingly is recommended. (See also section 5.7.4.4, Library units vs. nesting

[during integration]).

Concurrency and Tasking

Problems in this area were due to the inherent difficulties with concurrency, and not

with Ada tasking itself. In fact, the tasking construct makes concurrency so easily

available, that it is easy to overuse this feature. More care and restraint is required on

the part of the developers therefore, to make sure they plan to use it in a manner pro-

ducing correct programs.

(2) All tasks in the system and their interactions should be planned during design. A glo-

bal analysis and overview of the system's tasks should be prepared as part of the

design documentation. This should prevent task proliferation. In this project, the two

major reasons the number of tasks grew were correction of failures (e.g., deadlock), and

incomplete consideration of the place a given task should have in the system.

(3) Functions that are being considered for tasking need to be carefully considered, to

determine whether concurrency will really provide results superior to sequential pro-

cessing.

(4) The minimum number of tasks required, and the simplest possible design for these
should be used, due tJ correctness difficulties with concurrency. The team felt in

retrospect that sparing use of tasks is very important. This type of application has lit-

tle need for concurrency anyway.

(5) Another advantage from developing tasks fully during design is that the more experi-

enced personnel will be designing them. This is appropriate for more difficult and crit-

ical parts of a system. Implementation is more likely to have junior developers.

5.7.1.7. Generics/ Separate Compilations

(1) These were easy to use and helped make code in the system more manageable.

(See also section 5.7.1.13, Library structure).

5.7.1.8. Interface Development

(1) Effects on interfaces were not localized in one respect. Changes to global types, which

occurred a lot during the project, would affect many interfaces and require interface

changes.

(2) Type changes were one of the most common reasons for interface changes. Another

common reason was parameter changes. This is related to some of the problems the
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teamhad in knowingwhosecomponentsperformedvariousfunctions(e.g.,initializa-
tion,andexplicitconversions).

Global Types

Recompilation is more of a problem when there are a lot of global types, because any

change to one of the types requires recompilation of a large part of the system.

(2) More interfaces are affected by a given change when many global types are used.

(3) Types should be placed at as low a level in the design of the system as possible, to
reduce the number of units dependent on them. The global types package should be as

small as possible.

(4) A global types package makes reuse more difficult, since it adds more context.

5.7.1.10. Strong Typing

(1) This feature caught some types of faults much earlier than they are necessarily caught

with weakly typed languages such as FORTRAN.

(2) Type proliferation became a serious problem during coding. During late design, the

team realized to some extent that a problem existed with the types, but no one realized

then that the problem would yet become a lot worse. To overcome this, a data type

analysis needs to be added to design. This would limit complexity stemming from a

large number of base types. Subtypes of these types can be used in various parts of

the application.

5.7.1.11. PDL and Prologs

(1) Algorithms are more helpful than just descriptions in the prologs.
exact.

They are more

5.7.1.12. Meetings

(1) More meetings were required initially with the new technology to help team members

educate each other about things they learned during the project.

(2) More meetings were required to deal with things incompletely specified in the design
such as which units initialized variables, or performed conversions. Less confusion

would result if the design specified functions down to the procedure level.

(3) Since recompilations of the system were very slow, meetings were important to warn

developers to plan for an upcoming recompilation.

(4) Recompilations were generally done overnight. Because of this, and since meetings did
not always succeed in warning the developers, strategies were invented to avoid being

surprised by the need to recompile the code a developer planned to work with. Rou-

tines the developer knew he would need were saved from the controlled library into his

own library before changes to the controlled library were made. Then he would have

the old _ersions of code, and he could temporarily avoid having to recompile his code,

which was dependent on the old code he copied from the controlled library. This short

term solution to avoid recompilations and save time worked fairly well.

5.7.1.13. Library Structure

(1) It took the team a little while to get accustomed to the more complex structure of an

Ada library.
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(2)

(3)

Parallel testing of Release 1 and Release 2 required maintaining two copies of Release 1

in two separate libraries. This was not worth the overhead required, and slowed things

down rather than speeding them up.

Testing required many stubs, due to the top-down nature of implementation, and the

high degree of coupling between modules. Having a library of specifications ready

when implementation starts would make development easier. These specifications can

stand in (as stubs) for the units they specify during compilations, when other pieces of

code refer to them. This is also one of the benefits of being able to separate

specifications from bodies. The system structure can be set up early.

5.7.1.14. Call-Through Units

(1) These should be used sparingly, since all the specifications required to implement them

increase the code size, and thus code reading and testing are harder. Logical and phy-

sical objects should be treated differently. Logical objects exist in the design; physical

objects exist in the code.

5.7.1.15. Use of Non-portable Features

(1) For the sake of efficiency, non-portable features were used, however they were kept
localized.

Code Reading

The emphasis should be different when code reading Ada than when code reading

FORTRAN, because different faults are found with each. The types of faults found in

code reading with FORTRAN are often the same ones as the compiler finds with Ada.

(2) The team trusted the correctness of the Ada code syntactically and semantically more

than the FORTRAN code, since the Ada compiler catches so many more faults than

the FORTRAN compiler does. This had the psychological effect of making code read-

ing seem less important with Ada. This extended somewhat to trusting the correctness

in areas the complier cannot check, such as flow of control and logic.

(3) The most common problems found by Ada code reading were style problems.

(4) Ada is not automatically more readable. This depends on several style elements. Not-

ably, nesting and "call-through" units can decrease readability.

(5) Code reading is a useful tool for teaching Ada. A second Ada team started another

simulator project sometime after this one was well underway. That team found that

reading the code from this project was very instructive.

5.7.3. Unit Testing

(1) Unit testing was harder than expected, and harder with Ada than with FORTRAN.

(2)

Factors Complicating Unit Testing and Integration

Unit testing and integration were made more difficult by the following factors. (1) As

the degree of nesting increased, the difficulty of testing increased. (2) The module-to-

module coupling was higher with the Ada system, and made testing harder. (3) Ada's
more complex library structure made testing harder also.

Tasking, strong typing, exception handling and nesting are the Ada features which

caused the most difficulty during unit testing and integration on this project. The

interaction of Ada features such as exceptions and tasking, which were new and com-

plex in their own right, caused many more difficulties for the team than they would
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havehadotherwise.Partof theproblemis thefact that exceptionsbehavedifferently
in tasksthanin otherkindsof units.

(3) Unit testingwith Adashouldbedonedifferentlythanwith FORTRAN.Alternating
integrationandunit testingworkedbest. A wholepackageorsmM1subsystemshould
beconsidereda unit in an Ada system, rather than a subprogram being considered a

unit, as it is in a FORTRAN system.

(4) Unit testing is best done without making any changes to the code, thus avoiding any

recompilations. For example, adding "write" statements is not a good idea. (See sec-

tion 5.7.3.2 also, Debugger).

5.7.3.2. Debugger

(1) A debugger is required for doing unit testing and integration testing without recompi-
lations.

(2) The necessity for a debugger increases as levels of nesting increase.

5.7.3.3. Strong Typing

(1) More code had to be tested, since there were more operations in order to deal with the
increased number of types, and the I/O for each of these. Test drivers needed I/O rou-

tines for each type. Controlling type proliferation through abstract data type analysis

should have a positive effect here, as well as in coding.

5.7.3.4. Error Detection

(1) The intuitions for finding errors did not translate over from FORTRAN to Ada. New

intuitions had to be developed.

(2) Since the compiler" and Ada run-time system catch so many faults, there was a ten-
dency to over-rely on these, and not to regard code reading as being as important for

Ada as it is for FORTRAN. (See section 5.7.2, Code reading).

{3) For individuals unfamiliar with the application, the algorithms from the mathematical
specifications were not enough to determine correctness of some of the mathematical

units. If reasonable I/O values were also provided, the developers could determine

correctness of these units independently of the analysts.

5.7.4. Integration

(1) Integration and integration testing were more difficult than the team expected, and
more difficult than with FORTRAN. _......

5.7.4.1. Qualifications for Integration Tester

(1) In order to pinpoint the section of code giving problems correctly, the integration tes-

ter needs to be a person with both development and application experience. This

experience will help the individual determine the source of problems arising during the

tests.

5.7.4.2. Interfaces and Strong Typing

(1) The team had more interface problems than they expected. Partly, this is due to hav-
ing a new design. Strong typing and parameter changes also contributed to the prob-

lem.
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5.7.4.3. Efficiency Issues

(i) Some important inefficiencies in the Ada system were due to modeling reality too

closely. This is particularly true in the simulation cycle, where calculations are done

over and over even though the values have not changed, or have changed only an

insignificant amount.

(2) The DEC screen management package and task scheduling in the run-time system

interacted inefficiently with each Other. The CPU was left idle for large amounts of
time.

5.7.4.4. Library Units vs. Nesting

(1) Although the team thought they were using nesting conservatively, after unit testing
and integration, they decided they had not.

(2) It was a surprise to find out that nesting works well on small projects, such as the

training project, but not on larger ones.

5.7.4.5. Exceptions

(1) Exceptions should be developed as an integral part of the abstractions created in

design, and not an "add on _ during implementation.

(2) Well-coded exception handlers helped a lot in locating faults, while badly coded excep-
tion handlers hindered finding faults.

(3) For every exception, the design should show (1) what exception would be raised, (2)

where it will be handled, and (3) what should happen.

5.7.4.6. T.asking and Detecting Sources of Faults

(1) Errors involving tasks were the most difficult to find and correct. Tools (e.g.,
debugger) and methods used for finding faults in sequential code were of little use.

(2) One of the major hindrances to integration was getting tasks to interact properly.

(3) Exceptions and tasks interact in some ways a novice Ada user would not expect.

5.8. System Testing

No lessons.

5.9. Phases- Overall

5.9.1. Size of Ada and FORTRAN Systems

(1) The Ada system was larger due to (1) more lines of code per construct (due partly to

the nature of Ada, and partly to the style adopted), (2) specifications (1/3 of the sys-

tem), (3) use of %all-through" units, (4) more blank lines, and (5) more comments.
Some of the additional comments were extra explanation accompanying complex con-
structs.

(2) The final size of the FORTRAN system was approximately the same as the predicted

size. The final size of the Ada system was almost three times the predicted size. How

much larger the Ada system is than the FORTRAN system depends on how you meas-

ure size (e.g., SLOG or statements).

(3) The number of executable statements in each system is approximately the same.
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(Seealsosection5.2,Effort andSizeEstimates).

5.9.2. Reuse

(1) The Ada team found that integrating FORTRAN code into the Ada system was easy
to do.

(See also section 5.7.1.9, Global types, and section 5.7.1.5, Library units vs. nesting).

(2)

Time Spent in Each Major Activity

The Ada project took longer than the FORTRAN project overall, and also took longer

in every activity except requirements analysis activities. Factors affecting this are (1)

no design reuse, (2) little code reuse, and (3) the time it takes for learning on a first

time project. These would add time to every activity except the requirements analysis

ones.

In relative percentage of time spent in each activity, the Ada and FORTRA_N proiects

were similar. It was expected for Ada to take longer in design, and less time in imple-

mentation and testing. Instead, Ada took most time in the implementation activities.

Secondly was design, and thirdly system test.

5.9.4.

(i)

(2)

Effort by Phase

(See also section 5.2, Effort and size estimates, which has some lessons related to

actual, overall effort vs. the estimates made).

The Design/Code Overlap phase is primarily design activity. The design was finished,

the Ada specifications entered into the system, and the system utilities completed dur-

ing this phase.

The Unit Test/ System Test Overlap phase is estimated to be 1/3 implementation

activity and 2/3 system test activity. There is much more overlap of these activities in

the Ada project than is usual for FORTRAN projects.

The actual phase divisions for each project is shown in Table 5.1. The overlap phases

have been adjusted. Design/ Code is combined with Design, and Unit Test/ System

Test is split between Implementation and System Test. For comparison, the usual

amounts of time FORTRAN projects spend in each phase is included.

Usual

Ada FORTRAN in SEL

Pre-designt 17 6 6

Design 30 19 24

Implementation 36 35 45

System Test 17 15 20

Acceptance Test * 25 5

t Includes training for Ada personnel.

* No Acceptance Test was done.

Table 5.1. Time per Phase (Percentage).
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5.9.5. Productivity

(1) Productivity figures based on SLOC are not meaningful, since "SLOC" has different

meanings for different languages.

(2) The FORTRAN system took about 85% of the effort that the Ada system took. This

is based On effort data only, and has nothing to do with syste m size. It assumes the

same functionality for both systems (the Ada system actually had a bit more), and the

effort data is adjusted to reflect what effort would have been, if there were no reuse.

5.9.8. Changes

(1) Error correction is the primary reason for changes in either the FORTRAN or the Ada
systems, at any time in the life cycle (after code goes under configuration control).

(2) Twice as many changes were made in the Ada system as in the FORTRAN system.

(3) There are several types of changes that appear at different frequencies for one system,

compared to the other. The FORTRAN system had a much higher percentage of

requirements changes to implement; the Ada system had a significantly higher percen-

tage of changes involving documentation and also a significantly higher percentage of

changes involving user services (this involved the User Interface).

(4) If we look at the percentage of each type of change within each phase, we see the fol-

lowing. For Ada, the percentage of changes due to error correction rose as we progress

through the phases. For FORTRAN, the percentage of changes due to error correction

decreased in each phase after the implementation phase.

(5) For both systems, the percentage of changes in the "error correction" category, com-

pared to the total number of changes made throughout the project, decreases

significantly after implementation. Most changes of any sort are made during imple-

mentation. This is true for both projects. In fact, if 1/3 of the changes from the Unit

Test/ System Test Overlap phase are included with Implementation for the Ada pro-

ject, 60% of the changes made in both systems is done during Implementation.

(6) The FORTRAN project had many requirements changes occur even through Accep-

tance Testing. The Ada project had few changes for this reason after System Test

began. The requirements were well determined by the time the Ada team reached this

point in the project.

60% of Ada's documentation changes were made during implementation; just under

50% of FORTRAN's documentation changes were made then, and nearly all the rest

were made during Acceptance Testing. Six times as many changes of this type were

made overall in the Ada system as compared to the FORTRAN system.

FORTRAN's changes to improve user services were nearly all done during implementa-

tion; Ada's changes to improve user services were well distributed throughout the life

cycle. Eight times as many changes of this type were made overall in the Ada system

as compared to the FORTRAN system.

If Acceptance Test is ignored (it is not "normal" for either system), the FORTRAN

project had about 76% of its changes done during implementation activities, and about

24% done during system testing activities. The Ada project had about 60% of its

changes done during implementation activities, and about 40% done during system

testing activities. Thus, the FORTRAN project had more changes made earlier in

development than the Ada system did. This is contrary to expectations.

(7)

(8)

(9)
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(10) Changeswereeasyto isolate in either system.

(11) Less time was spent making changes in the FORTRAN project, than was spent making
changes in the Ada project. (See Table 4.16, Normalized changes per phase).

(12) An average change in the FORTRAN system took much longer to finish than an aver-

age change in the Ada system. This does not contradict the point noted just above,

since there were many more changes made in the Ada system.

5.9.7. Failures

(1) If Acceptance Testing is ignored, the FORTRAN project had about 79_ of its failures

found during implementation activities, and about 21% found during system testing

activities. The Ada project had about 56% of its failures found during implementation

activities, and about 44% found during system testing activities. This appears, then,

to say that the FORTRAN project corrected more errors sooner. However, we must

remember that we only have data for faults found after code went under configuration

control. It may be that the Ada compiler found faults which were then removed, and

therefore are not in the data. The FORTRAN team may have found these same kinds

of problems after the code was under configuration control, and therefore they are

counted in the FORTRAN project. Given these assumptions, if the data for the Ada

and FORTRAN projects included everything and not just data after configuration con-

trol, the Ada percentages might be more like the FORTRAN percentages. These

assumptions also imply, however, that the ratio of Ada failures to FORTRAN failures

would be even higher than in the current data. But it is also true that these types of

faults are extremely easy to correct for Ada, so this does not seem important.

(2) Coding errors is the major reason given (by far) for sources of failures in both systems.

(3) In the Ada system, many more failures were due to design errors and to prior changes
to the system, than was the case in the FORTRAN system. This can be expected, due

to a brand new design, and the newness of Ada, respectively.

(4) There were a bit more than twice as many failures corrected in the Ada system, com-

pared to the FORTRAN system.

(5) The distribution of types of failures is similar for both systems.

(6) Isolating the source of failures took significantly longer for the Ada project than for the
FORTRAN project. Since the Ada compiler finds mistakes not found in FORTRAN,

some of the easiest faults may not be left to find in the Ada system.

(7) Failures took about the same length of time to correct in both systems.

72



CHAPTER 6

Answers to G/Q/M Questions

This chapter will indicate what the answers are to the questions posed in section 1.3,

and give cross-references in the text for the answers.

I. Process and Product Conformance (Characterize the development

resulting product)

methodologies, and

(1) What was the overall process model applied during the Ada development, including the

processes applied within each phase of development?

The prescriptive Ada development model was a modified version of the standard FOR-

TRAN development model. The modifications were things such as longer design and

shorter test phases, which were in accord with the usual expectations for an Ada

development. In addition, modifications allowed for various experiments with design

methodologies. (See 3.2).

(2) What was the process applied during the standard FORTRAN development, including

the processes applied within each phase of development?

The standard FORTRAN development used a form of the waterfall development

methodology (See 3.1).

(3) How well did the Ada developers understand object-oriented design, and the principles
behind it?

The Ada team applied OOD in such a way as to create a truly new design for their

dynamics satellite simulator (See 4.6.1 and 5.6.1). They were also able to develop their

own development methodology, tailored to the environment of the Flight Dynamics

Division at Goddard (See 4.5 and 5.5). This methodology is now used with other Ada
projects.

(4) How well did the Ada developers know Ada?

This was the first Ada project for everyone originally on the team (See 3.3). For
implementation, some individuals were added to the team who had worked on one

prior Ada project, but were not familiar with the design methodology used here. That

application was also very different from this one. The team felt that it took working

on a production-type project to learn Ada well enough to use it well on future projects

(See 5.3).

(5) How well were the processes applied, which were used during the Ada and FORTRAN

developments?

These were the same methods used many times before for the FORTRAN development,

however it was new to apply these to an Ada development (See 3.3). Because of new

issues with Ada, there were problems applying all the FORTRAN processes without

modification. These processes are: analyzing requirements (4.4, 5.4), design (4.5, 4.6,

5.5, 5.6), coding (4.7.1, 5.7.1, and all subsections), code reading (4.7.2, 5.7.2), unit test-

ing (4.7.3, 5.7.3, and subsections, particularly 4.7.3.4), and integration and integration

testing (4.7.4, 5.7.4, and subsections). Defining the processes themselves were some of
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theproblemswhicharosewith Ada(See5.6.3).

(6) Howwasthetrainingdonefor Ada?
It wasimportantto addresssoftwareengineeringprinciples,aswellaslanguageissues,
andOODmethodologies.TrainingincludedBooch'sOODmethodology,Cherry'sPro-
cessAbstractionMethod(PAMELA),Alsysvideotapes,andan electronic mail system

as a training exercise (See 3.2 and 4.3). Some Ada features work well on small pro-

jects, but do not scale up. In retrospect, the simulator project itself actually acted as a

training project, which was in the usual application domain, because it was a first pro-

ject of its type. In addition, training for managers, and not just developers, is impor-

tant.

(7} How were specifications represented for Ada and FORTRAN?

Specifications are functional and contain high level FORTRAN design (See 3.2). The

Composite Specification Model (CSM) was used to rewrite the requirements and elim-

inate the FORTRAN biases for Ada development (See 4.4 and 5.4).

(8) How well do certain design methodologies work with Ada?

Preliminary design was done with three OOD methodologies to discover which one

worked best in this environment (Booch's methodology, PAMELA, or GOOD). (See

4.5 and 5.5). The team's own methodology, General Object Oriented Design (GOOD),

was chosen to use for detailed design (See 4.6 and 5.6).

(9) How was the product documented for both Ada and FORTRAN?

Object diagrams and object descriptions were used to represent the Ada design (See 4.5

and 5.5). Issues related to these representations are discussed in 4.6.2. (See also 5.6.2).

Program design language (PDL) and prologs were used for both FORTRAN and Ada.
FORTRAN designs are done with structure charts as part of the structural decomposi-

tion development methodology (See 3.1 and 3.3).

(10) How were implementation and testing done in FORTRAN and Ada?

For both projects implementation was done top-down, and the implementation plan

was based on builds (See 4.7 and 4.7.1.1). Code reading had a different emphasis with

Ada (See 4.7.2 and 5.7.2). With FORTRAN, within each build, unit testing is done

first, and then integration. But this approach to unit testing did not work for Ada

(4.7.3, 5.7.3, and subsections, especially 4.7.3.1), partly due to a higher degree of cou-

pling in the Ada system (5.6.1), and the high degree of nesting (4.7.1.5). The Ada

team did integration and unit testing alternately, even within builds (5.7.3.1). Like

unit testing, integration and integration testing were more difficult for Ada than for

FORTRAN. Issues of primary concern which arose were efficiency (both), interfaces

(both), and strong typing, tasking, and exceptions (Ada). (See 4.7.4 and subsections,

and 5.7.4 and subsections).

(11) How did all these processes differ for FORTRAN and Ada developments? What effect
did these processes have on Ada products such as documentation and code?

The philosophies differed for each. The Ada team used data abstraction, information

hiding, and the state machine concept; the FORTRAN team used structural decompo-

sition and procedural abstraction (See 3.3). The design representations differed (object

diagrams vs. structure charts) along with the methodologies (See 4.5 and 4.6).

Management did not understand the GOOD notation at reviews (4.6.2), which they

interpreted as structure charts. Coding from the design documents was especially easy

with Ada, except for tasks (4.7.1.3 and 5.7.1.3). Question 10 includes the differences

between Ada and FORTRAN for code reading, unit testing, integration and integration
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(12)

testing. Psychologically, the tendency exists to trust the Ada compiler too much to

discover faults. New intuitions must also be developed for discovering faults with Ada

(See 4.7.3.4 and 5.7.3.4). FORTRAN was much more transparent to the developer

than Ada. Reuse is important in this environment, and there was much reuse of design

and code with FORTRAN; Ada had very little code reuse and no design reuse (See
4.9.2 and 5.9.2), since this was the first dynamics satellite simulator.

How are all the activities and phases to be defined for Ada developments? How does

this compare to the activities and phases in FORTRAN developments?

Much more overlap of activities occurred with the Ada project than with the FOR-

TRAN project, and Ada phase boundaries were very fuzzy (See 4.6.3 and 5.6.3). Two

extra phases were added to the Ada development where much overlap occurred (See
4.9.4 and 5.9.4). The percentage of time spent on the various activities was similar for

both projects (See 4.9.3 and 5.9.3). One change recommended is to have CDR later

(implicitly, a longer Design phase), or perhaps multiple reviews (See 4.6.3 and 5.6.3).

Besides including answers for questions 7 through 10, when formulating new descrip-

tions for Ada activities and phases, strategies need to be included for dealing with

issues that do not arise in FORTRAN developments, such as recompilation (See
4.7.1.12 and 5.7.1.12).

II. Domain Conformance (Application domain, and developers' knowledge of it)

(1) How well did the Ada developers know the application domain? How did this compare

to the application knowledge of the FORTRAN team?

The FORTRAN team had more experience with this type of application (dynamics
simulators) than the Ada team (See 3.3).

(2) What kinds of development experience do the members of the Ada and FORTRAN

teams have? How does this experience compare?

The Ada team had more overall development experience, and experience with more

languages (See 3.3).

III. Effect (What happened)

(1) What effect did the FORTRAN biases in the specifications have on the Ada develop-
ment process and product?

Since part of the mandate of the Ada team was to experiment with various design

methodologies, it certainly was detrimental to have a high level FORTRAN design in

the specifications. In addition, a design compatible with the Ada development metho-

dologies was desired, especially if it =was to be reused later on. The Composite

Specification Model (CSM) was used to remove the design bias, as part of requirements

analysis activity (See 3.3 and 4.4). Other benefits to the team included a better under-

standing of the requirements for the system.

(2) What are the effects of Ada on the Flight Dynamics development process, and the

resulting product quality? How did Ada affect the following, and how does it compare
to FORTRAN?

(a) the way design was done,

The design process and experiment with the three OOD methodologies are discussed in

4.5, 4.6, 5.5 and 5.6, and subsections. Questions 1.8 and 1.9 compare Ada and FOR-

TRAN design issues. Some redesign was done of some pieces of the system during the

implementation phase, once more experience had been gained with Ada (first project
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effect).(See4.7.1.4).
(b) thewayimplementationwasdone,

AdaandFORTRANimdolementationsweresuperficiallysimilar,with builds,coderead-
ing,unit testingandintegration(See4.7). Exceptfor tasks,it waseasyto codefrom
the designdocuments(See4.7.1.3and 5.7.1.3).Usinglibrary unitsor nestingis an
implementationissueappearingonly with Ada (See4.7.1.5and 5.7.1.5);nestinghad
manydisadvantages.Manytaskingissuesalsoarosehere. Betterplanningfor tasks
shouldhavebeendoneduringdesign(See4.7.1,6and5.7.1.6).Genericsandseparate
compilationswereeasyto useandveryuseful(See4.7.1.7and5.7.1.7).Thoughthe
interfaceswereeasierto designin Ada than theyusuallyare in FORTRAN,many
changeshadto bemadeto them. TheAdadesignwasnew,andthis waspart of the
problem.In addition,strongtypingandthe useof globaltypesmeantchangescould
havea largeimpact(See4.7.1.8,4.7.1.9,4.7.1.10,5.7.1.8,5.7.1.9,5.7.1.10).Meetings
weremorenecessaryfor theAdateamthanevenfor theFORTRANteam,in orderto
discussnewissueswithAda (e.g.,recompilation),clarifymisunderstandings(e.g.,pro-
cedurefunction:see4.7.1.11and 4.7.1.12),and exchangenew thingslearned(See
4.7.1.12and5.7.1.12).TheAdalibrary structurewasa lot morecomplexthanFOR-
TRAN(See4.7.1.13and5.7.1.13)."Call-through" units, a unit with no procedural
code that calls another unit, increases code size, causing several other problems, and

should be avoided (See 4.7.1.14 and 5.7.1.14).

(c) the way testing was done,

Unit testing in both FORTRAN and Ada was done by the same individual who

developed the code unit (See 4.7). Heavy nesting adversely affected unit testing and

integration (See 4.7.1.5, 5.7.1.5, 4.7.3.1, 5.7.3.1, 4.7.3.2, 5.7.3.2). Integration was made

more difficult by tasking (4.7.4.6 and 5.7.4.6), occasional misuse of exceptions (4.7.4.5

and 5.7.4.5), and nesting (4.7.4.4 and 5.7.4.4). Efficiency issues appear at this point for

both FORTRAN and Ada developments (See 4.7.4.3 and 5.7.4.3).

(d) the products of each phase,

Design was positively affected by the rewritten specifications (See 4.4, 5.4, 4.6.1, 5.6.1).

The design documentation for the most part, was quite helpful for representing the

design and from which to develop code, though some problems existed. Task represen-

tation was a problem, and the design documentation needs some revision. Managers

misunderstood the design documentation, although training can overcome that (see

4.6.2 and 5.6.2). Code was affected in many ways, both good and bad, by the various

Ada features. With additional planning, primarily in design, many of these problems

could be overcome (tasking - 4.7.1.6, 5.7.1.6, 4.7.4.6, 5.7.4.6; generics/separate compi-

lations - 4.7.1.7, 5.7.1.7; strong typing - 4.7.1:10, 5.7.1.10; exceptions - 4.7.4.5,

5.7.4.5). Code is also affected by the balance of library units vs. nesting (4.7.1.5,

5.7.1.5, 4.7.4.4, 5.7.4.4), use of global types (4.7.1.9 and 5.7.1.9), use of "call-through"

units (4.7.1.14 and 5.7.1.14), and use of non-portable features (4.7.1.15 and 5.7.1.15).

(e) the amount of effort spent in each phase, and activities during that phase,

The Ada project took a total of about 23,000 manhours; the FORTRAN project took

about 15,000 manhours (See 4.2). Section 4.9.4 describes the effort in each phase and

activities in each phase (See also 5.9.4).

(f) the amount of effort spent on each activity,

A different data form was used to collect activity data (rather than phase data), so

total effort recorded by activity vs. by phase for each project is similar, but does not

quite match. The percentage of time spent in each activity is similar for both the

FORTRAN and Ada projects. This is true even if training (Ada) and Acceptance Test-

ing (FORTRAN) are excluded. More time is spent in implementation in both projects
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thanin anyotheractivity(See4.9.3and5.9.3).
(g) the quality of the products:

(i) How many changes and failures were there? Were there fewer changes/failures
with Ada?

About twice as many changes were made in the Ada system as in the FORTRAN sys-

tem. A bit more than twice as many failures were found and corrected in the Ada sys-

tem compared to the FORTRAN system. Sections 4.9.6 and 4.9.7 give distributions

for the changes and failures in both systems (See also 5.9.6 and 5.9.7}.

(ii) Why were the changes made?

The majority of changes in both systems (about 2/5) were to correct faults. Section

4.9.6 gives all the reasons for changes, and the distributions for the whole project and

for each phase (See also 5.9.6). Reasons for interface changes are given in 4.7.1.8 and
5.7.1.8.

(iii) Where in the development process did the faults originate that eventually led
to failures?

Most failures originate from coding errors. For the Ada project, errors in design and

in making previous changes were also factors. (See Table 4.20 in 4.9.7, and also 5.9.7).

(iv) What type of failures occurred?

For both projects, data value or data structure problems and internal interface prob-

lems were the most frequent. Logic/control structure problems was an important rea-

son also for problems in the Ada project. (See Table 4.21 in 4.9.7, and also 5.9.7). Iso-

lating the reason for failures in tasks was particularly difficult (See 4.7.4.6 and 5.7.4.6).
(v) How hard (costly) were changes/failures to isolate and fix?

Effort to isolate changes was about the same for FORTRAN and Ada. Effort required

to make the changes was more in FORTRAN (See Tables 4.17 and 4.18 in 4.9.6, and

also 5.9.6). Effort to isolate failures was less for FORTRAN, however, effort required

to correct failures was about the same for FORTRAN and Ada (See Tables 4.22 and

4.23 in 4.9.7, and also 5.9.7). The hardest type to fix were problems masked by excep-

tions during integration (4.7.4.5 and 5.7.4.5), and task problems, particularly when

exceptions were also involved (4.7.4.6 and 5.7.4.6).

(3) How were the FORTRAN and Ada designs different? The same?

Many similarities exist between the designs, since they are solving the same problem.

However, important differences also exist. Functions are distributed differently into

various subsystems, the degree of coupling between the units is greater in the Ada sys-

tem, the nature of the data flows and timing of subsystems is different, and the Truth
Model is different since the Ada version does not have the real-time constraint the

FORTRAN version had (See 4.6.! and 5.6.1).

(4) How do we compare FORTRAN and Ada products? What measures can validly com-

pare things such as size and productivity?

The FORTRAN and Ada products are compared here by size and effort (4.2, 4.9.1,

5.9.1, 4.9.3, 4.9.4), amount of reuse (4.9.2 and 5.9.2), and productivity (4.9.5 and

5.9.5). "Source lines of code" comparisons have limited usefulness between projects in

different languages (5.2).

(5) What effect did the various Ada features have on the resulting system?

(a) generics

Generics were easy to implement, and reduced the amount of source code required (See

4.7A.7 and 5.7.1.7).

(b) separate compilations for bodies and specifications
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(6)

(7)

(8)

These are also easily implemented and beneficial (See 4.7.1.7 and 5.7.1.7). One benefit

is that a library of Ada specifications can be made during design, before implementa-

tion begins, and these specifications can be stubs during testing for the units not yet

implemented (See 5.7.1.13).

(c) library units vs. nesting

Many disadvantages were found to nesting, and many advantages to library units dur-

ing coding, unit testing, and integration (See 4.7.1.5, 5.7.1.5, 4.7.3.1, 5.7.3.1, 4.7.3.2,

5.7.3.2, 4.7.4.4, 5.7.4.4).

(d) tasking

Concurrency is difficult in its own right, and caused many problems for the team in

coding, unit testing, and integration (See 4.7.1.6, 5.7.1.6, 4.7.4.6, 5.7.4.6, 5.7.3.1).

(e) exceptions

Finding problems could be helped or hindered by use of exceptions, depending on how

it was done (See 4.7.4.5 and 5.7.4.5). They were especially difficult to use in tasks,
since there are some ways their behavior is different inside these units (See 5.7.3.1).

(f) strong typing

Strong typing had some benefit in finding faults early, but also led to problems. The

global type package (4.7.1.9 and 5.7.1.9) did not work so well with a strongly typed

language as it did with a weakly typed one. Global types are also a disadvantage due

to the time recompilation takes with changes. Interface problems and type prolifera-

tion were also problems (4.7.1.8, 5.7.1.8, 4.7.1.10, 5.7.1.10). Unit testing was also a

problem due to the need to create I/O procedures for all the types, and increased com-

plexity of test drivers (4.7.3.3 and 5,7,3.3).

What was expected to happen (with either the development process or the resulting

system)? What did happen? Why the discrepancy between expectations and reality, if
there is one?

At the top level, the prescriptive development process for Ada (3.2) and the size and

effort estimates (4.2 and 5.2) show what was expected to happen. Chapters 4 and 5

describe what did happen. In particular, we note the amount of reuse (4.9.2), product

size (4.9.1 and 5.9.1), effort by activity (4.9.3 and 5.9.3), effort by phase ( 4.9.4 and

5.9.4), and characteristics of each design (4.6.1 and 5.6.1). We note particularly as

unexpected the disadvantages of nesting (4.711.5, 5.7.1.5, 4.7.4.4, 5.7.4.4), task proli-

feration (4.7.1.6 and 5.7.1.6), type proliferation (4.7.1.10 and 5.7.1.10), disadvantages

of global types (4.7.1.9 and 5.7.1.9), the unexpected difficulties of unit testing (4.7.3,

5.7.3, and subsections), the unexpected difficulties of integration and integration testing

(4.7.4, 5.7.4, and subsections).

Is it feasible and cost effective to use Ada (in this kind of environment)?

At least some significant part of the extra time the Ada project took in every activity

is due to the newness of Ada here (See 4.9.3 and 5.9.3). The FORTRAN system took

85_ of the effort the Ada system took to develop (See 4.9.5 and 5.9.5), when we make

adjustments for the different amounts of reuse in each system. Given that the FOR-

TRAN development process is established, and the Ada development process is new,

there is plenty of room for the Ada process to improve. Reuse for subsequent Ada pro-

jects is reported to be exceeding reuse on FORTRAN projects now.

Switching from FORTRAN to Ada means losing the benefit of experience, institutional

knowledge (which is no where written down, but necessary to operations), and reuse of

designs and code. Do the benefits of using Ada compensate for these losses?
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We cannotanswer this yet, without the benefit of maintenance data, and studies of

subsequent projects, which is beyond the scope here.

W. Feedback (What should be done next time)

(1) What kind of training is needed in order to develop systems well with Ada?

Recommendations axe given in 5.3. In addition to the training given to the develop-

ment team, training managers so that they understand the notation at design reviews

would greatly help communication (See 4.6.2 and 5.6.2). Code reading Ada code is also

very useful for training (See 5.7.2).

(2) If the effect of the FORTRAN biases in the specifications is negative, how should the

process be changed to avoid the FORTRAN bias? Would a bias toward Ada be a good

thing?

Design issues began to surface in the Requirements Analysis phase. To eliminate the

FORTRAN bias, rewriting the specifications with a methodology that would yield no

bias, or an OOD bias, was required. CSM (Composite Specification Model) was used

for this purpose (See 4.4 and 5.4).

How should documentation problems be dealt with? What tailoring of object oriented

methodologies is required for this environment? Which design method is appropriate

for the specific application, and can it be scaled up to the problem size?

GOOD (General Object Oriented Design) is a methodology tailored to this environment

(See 4.5, 4.6, and 5.6). This methodology works well for a scientific, non-real time

project that primarily uses sequential code (See 5.5). Some changes were needed for

representing tasking in designs (See 4.6.2, 5.6.2, 4.7.1.6, 5.7.1.6), but overall, it was
easy to use the design documents for coding when the principles of OOD were under-

stood (See 5.6.2, 4.7.1.3, 5.7.1.3). Also, the prologs that had descriptions given and no

algorithm given were not as clear (See 4.7.1.11 and 5.7.1.11).

How should the existing development process be modified to best change from FOR-
TRAN to Ada?

(a) requirements analysis

Consider if detrimental bias exists in the incoming specifications. If so, use some

method to rewrite the specifications to remove the bias (See 5.4).

(b) design

CDR should be later, or perhaps multiple design reviews. This would allow compilable

PDL (See 4.6.3 and 5.6.3). A global analysis and overview of all tasks in the system

and how they interact should be part of the design documentation, to prevent task

proliferation (See 4.7.1.6 and 5.7.1.6). As few global types as possible should be

planned (See 4.7.1.9 and 5.7.1.9). Type proliferation can be controlled by incorporat-

ing a data type analysis into design (See 4.7.1.10 and 5.7.1.10). The design needs to

specify functions down to the procedural level and not just package level (See 5.7.1.12).

Exceptions should also be planned as part of the abstractions created in design, and

not added as an afterthought during implementation (See 4.7.4.5 and 5.7.4.5).

(c) implementation, code

Bottom-up implementation might be easier, since it correlates with the way Ada

dependencies work. This could aid unit testing and integration later (See 5.7). Having

a library of specifications ready when implementation starts would also make imple-

mentation easier (See 5.7.1.13). Since recompilation can be time consuming, it is

important to plan for it (See 4.7.1.12 and 5.7.1.12). In addition, there are many coding

practices that would promote reuse: separate general and application specific utilities

(3)

(4)
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C5)

into different packages (4.7.1.1 and 5.7.1.1), use library units liberally and nesting

sparingly (4.7.1.5 and 5.7.1.5), keep the global types package as small as possible, place

types as "low" in the hierarchy as possible (4.7.1.9 and 5.7.1.9), limit code size through

use of generics (4.7.1.7 and 5.7.1.7), do not use "call-through" units (4.7.1.14 and

5.7.1.14), and have a data type analysis (in design) (See 4.7.1.10 and 5.7.1.10).

(d) implementation, code reading

Code reading should have a different emphasis with Ada developments. Ada code is

not automatically more readable; certain styles promote readability. Code reading is

useful for teaching Ada as well as discovering faults (See 4.7.2 and 5.7.2).

(e) implementation, unit testing, integration and integration testing

Tasking, strong typing, exception handling and nesting are the Ada features that
caused the most trouble for the team during unit testing and integration (See 4.7.3.1

and 5.7.3.1). Alternating integration and unit testing is best for testing with Ada (See

4.7.3.1 and 5.7.3.1).

What unexpected problems have been encountered in development? What ways have

we found to deal with them?

The major unexpected problems were (1) the disadvantages of nesting (4.7.1.5 and

5.7.1.5), (2) task proliferation (4.7.1.6 and 5.7.1.6), (3) the disadvantage of many global

types (4.7.1.9 and 5.7.1.9), (4) type proliferation (4.7.1.10 and 5.7.1.10), (5) the prob-

lem of recompilation (time consuming - 4.7.1.12 and 5.7.1.12), and (6) the difficulty of

unit testing and integration (4.7.3, 4.7.3.1, 5.7.3, 5.7.3.1).

80



CHAPTER 7

Future Research

Further analysis of the data contained here is planned. The results in chapters four

and five can be turned into a succinct list of recommendations, and characteristics that the

Ada life cycle should have. From this a model for Ada developments can be derived.

Open questions still exist on several fronts. One problem still to be solved is finding

measures for comparing projects done in different languages. In particular, product meas-

ures such as SLOC, or even statements, are not equivalent between languages when consider-

ing effort or productivity. This is even more important in light of the need for increasing

productivity as the demand for software continues to grow.

There is also a need for more case studies of Ada developments. We need to learn how

other experiences are similar and different, and what factors affect the various process and

product characteristics. We can only hypothesize these relationships, and then test them, if
we have more data.

Another open question is a methodological one with lessons learned case studies. The

lessons learned are closely related to the %tory', that is, what happened during develop-

ment. This makes presentation very difficult. The goal is to separate out the actual data

from the conclusions. This makes it clearer for the reader which is which, and it also keeps

the reader from being lost in the data while reading the lessons. On the other hand, the

basis for the lessons needs to be easily found among the data. The data and lessons are

closely intertwined sometimes, and this is also true for some of the different subjects dis-

cussed. Thus, it is hard not to be repetitive. These are the difficulties when presenting these
kinds of results in written form.

There are more questions when presenting such data and conclusions in an automated

system. This could be part of a system where the improvement paradigm[14] has been at
least partially automated in a particular development environment. The basic problem

above stems from the linearity of written text. That is not a problem here; hypertext can be

used for the many cross references which are required to find information that is related.

However, there still are representation problems on two levels. This is mentioned in section

3.5. The first level is the individual lesson, and its supporting data. What types of informa-

tion should be there, and how should it be organized? The second problem is to choose how

these lessons should be linked to each other. Of all the possible organizations mentioned in

chapter 3, which should be used? Should the links be static or dynamic? What are the cri-

teria for determining these things? How should such a database, particularly if it is more

sophisticated, and has the capacity to make inferences, be related to other tools in a develop-

ment environment? Progress in these areas will hopefully bring us another step closer to

improving software productivity and quality.
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Appendix: Data Collection Forms

Four of the forms used to collect information for the SEL database are shown here.

These are the versions in effect when data was collected for the FORTRAN and Ada projects

discussed here; they have been revised since then. Two of the forms collect information at

the component level. For FORTRAN, a component is considered to be a subprogram or

COMMON block. A component is considered to be a task, package, subprogram, body or

specification for Ada. A package with three small procedures, for example, may be con-

sidered a component at the package level, if that is the compilable unit the programmer

used[l]. Small subprograms might be grouped into one component in a FORTRAN system

also. The definition of a component in this environment is important primarily for data col-

lection[l].

Resource Summary Form

Effort data is reported weekly, by person (developer, management, clerical), on this form.

Component Origination Form

One of these is filled out by the developer creating the particular unit in question, when it

goes under configuration control. This form is only done once.

Component Status Report

Effort data is related to activity at the component level, on this report. The first two char-

acters in the component name identify the subsystem the component is a part of. If the first

two characters are u$$,, the activity is charged to the whole project, not a subsystem.

Change Report Form

Changes, including errors/failures, are reported on this form whenever a change is required,

for units already under configuration control.
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I_G,IECT

RESOURCE SUMMARY

DATE

NAME

WEEK OF:

MANPOWER |HOURS)

i

COuPUTE_U_GS
(NO. RUN.HOuRS CHARGED)

OTHER CHARGES TO PROJECT

ue-.i) (_rse)
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COMPONENT ORIGINATION FORM

Component

Subsystem

Project

Location of source file

Library or directory Member name

Relative difficulty of component

Please indicate (your judgement} by marking an X on the llne below:

Programmer

Date

Easy Medium Hard

if the component was modified or derived from a different project, please indicate the approx-
imate amount of change and from where |t was acquiied; if it was coded new (from detailed
design} indicate NEW.

NEW

Extensively modified (more than 25% of statements changed)

Slightly modified

Old (Unchanged)

If not new, where is it from ?

Type of Component

"INCLUOE' file (e.g., COMMON)

JCL (or other control)

ALC (assembler code)

FORTRAN executable source

Pascal source

Ads source

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component. (Check
all that apply).

I/O processing

Algorithmic/computational

Data transfer

Logic/decision

Driver module

Interface to operating system

GSFC IS0-1 (3/16!

Namelists or parameter lists

Display identification (GESS)

Menu definition or help

Reference data files

BLOCK DATA file

other (describe)
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PROJECT

PROGRAMMER

COMPONENT frAlrlm iiir:f, Offlr

DATE

COMPONENT

JCL

OVERLAY

USER GUIDE

SYSTEM DESC

DESIGN

CREATE REAO REVIEW

CODE DEVELOPMENT TEST

CODE READ REVIEW ,

013trdl

A_rMI'_

TRAVEL

FORMS

l MEET1NGS

ACC TEST

TRAINING

IISANALYT

$$BLICTIM

I.ICONSUL

$11OATGEN

$$DATSET

$tOEMO

lllMPLAN

$$1NTERF

IIIIKEYPCH

ISMANUAL

$tMEMO

I_MNTHLY

IItNOTEBK

$$PAPERW

$$PLANS

MPRESNT

$_UEST5

HROSW

$tRREQ5

$$RSTOS

$$SCHEDL

$$SEMINR

$$SIM

SISTATUS

$$SYSTAP

I$SY,_I31

I.tTESTPL

$$TOOL

.WEEKLY

IIXEROX

HRS

lm.4 Qnll
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CHANGE REPORT FORM

FtlOJIECT iU, I CURRENT DATI

PROGRAMMER NAME APPtlOVED BY

SECTION A - IDENTIFICATION

DESCRIBE THE CHANGE: (Wh_, why, how|

EFFECT: _m components (or documents) are changed? (Inck_e v_skm)

EFFORT: What Iddido_ll compone_lS (or _tll m Ixlr_ilwd in dlle_in_ll *lh_ d_lr411 wi n_Vl? __

NKd for chor_le dmarmin4d on .................

Ch4hgl comi_el_l (incorporlrord into system) ........

(Month OW Ywor)

SECTION B - ALL CHANGES

TYPE OF CHANGE (Chick oriel EFFECTS OF CHANOE

[] _ ¢mn_tiom

0 Rmned mlw_enwn

[] Implem_m_ion el m_inmets ¢'mmp

0 kprm_! o! ctar_, eeinuin_ilily,
Ir d4¢ementetlon

rl Imprwwmt of mr Imtm

r-II_e_/clel_on e( dle(_ cede

17 Onm_on ef _/mco_

0 _da_ m em_ron_ cmmqw

O Othor (E,plab em,-.'k)

Yfl
I-I17 Worb,_ clinic w cemc,;en u em md

envyDeer._t?

0 r70_d yev INk _ my e_ ce_q_

0 [] O;dyou kl_l to be m of Pormor_ll_mml
Implicidy or k_pli'idy {&K. commonIdo_lu_
N or fn.. dR| c_..qed c_,_men_'

SECTION C -- FOR ERROR CORRECTIONS ONLY

IIOURCE OF ERROR CLASS OF ERROR CHARACTERISTICS
ICheck one) (Check most apldicabSe)" ICheek Y or N for -Ill

0 Fvan_,__movem

O0_p

OC_m

YN
0 0 one,, mw 1,4J,,_ =- _,_

FOR LIBRARIANS U_;I ONLY

NUMBER

DATE

IIY

CHECKED BY

OW Vmd

I I I t

ORIGINAL PAGE IS

OF POOR QUALITY
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Glossary

AAS

M
ACS
AFATDS
APSE

CCB
CDR
CMS

CSC
CSM
DEC
EMS
FAA

GOOD

G/Q/M
GRO
GROSIM
NASA

OBC
OOD
ORR

PAMELA
PDL
PDR
SCIO

SEL

SIMCON
SLOC
SRR

TAME
TM
UI

Advanced Automation System
Artificial Intelligence
Ada Compilation system

Advanced Field Artillery Tactical Data System
Ada Program Support Environment
Configuration Control Board
Critical Design Review

Configuration Management System
Computer Sciences Corporation
Composite Specification Model
Digital Equipment Corporation

Electronic Mail System
Federal Aviation Administration

General Object Oriented Design

Goal/Question/Metric Paradigm
Gamma Ray Observatory
GRO Simulator

National Aeronautics and Space Administration
On-Board Computer

Object Oriented Design
Operational Readiness Review
Process Abstraction Method for Embedded Large Applications
Program Design Language
Preliminary Design Review

Simulator Control and I/O
Software Engineering Laboratory
Simulation Control
Source Lines of Code

System Requirements Review
Tailoring A Measurement Environment
Truth Model
User Interface
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