Numerical Simulations of Supersonic Flow Through Oscillating Cascade Sections

Dennis L. Huff
Lewis Research Center
Cleveland, Ohio

and

T.S.R. Reddy
The University of Toledo
Toledo, Ohio

Prepared for the 15th Southeastern Conference on Theoretical and Applied Mechanics sponsored by the Georgia Institute of Technology
Atlanta, Georgia, March 22–23, 1990
NUMERICAL SIMULATIONS OF SUPERSONIC FLOW
THROUGH OSCILLATING CASCADE SECTIONS

Dennis L. Huff
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

and

T.S.R. Reddy*
The University of Toledo
Toledo, Ohio 43606

Abstract
A finite difference code has been developed for modeling inviscid, unsteady supersonic flow by solution of the compressible Euler equations. The code uses a deforming grid technique to capture the motion of the airfoils and can model oscillating cascades with any arbitrary interblade phase angle. A flat plate cascade is analyzed, and results are compared with results from a small-perturbation theory. The results show very good agreement for both the unsteady pressure distributions and the integrated force predictions. The reason for using the numerical Euler code over a small-perturbation theory is the ability to model "real" airfoils that have thickness and camber. Sample predictions are presented for a cascade of loaded airfoils and show appreciable differences in the unsteady surface pressure distributions when compared with the flat plate results.

Nomenclature

\begin{align*}
C & \quad \text{sonic velocity} \\
C_P & \quad \text{pressure coefficient, } \frac{p-p_1}{p_1 v_T^2} \\
c & \quad \text{blade chord length} \\
e & \quad \text{total energy of the fluid per unit volume} \\
g/c & \quad \text{gap-to-chord ratio} \\
\text{Im} \{ \} & \quad \text{imaginary part of} \{ \} \\
i & \quad \text{incidence angle} \\
J & \quad \text{Jacobian of transformation} \\
k & \quad \text{reduced frequency based on semichord, } \frac{\omega c}{2v_1} \\
M & \quad \text{Mach number} \\
\text{Re} & \quad \text{Reynolds number based on chord} \\
\text{Re} \{ \} & \quad \text{real part of} \{ \} \\
s & \quad \text{arc length of a grid line in the } \eta \text{-direction} \\
t & \quad \text{time normalized by } \frac{c}{v_1} \\
u, v & \quad \text{Cartesian velocities normalized by } C_1 \\
V & \quad \text{total velocity} \\
w & \quad \text{weighting function for grid deformation} \\
x', y' & \quad \text{Cartesian coordinates normalized by chord length} \\
\alpha & \quad \text{amplitude of pitching} \\
\beta & \quad \text{flow angle} \\
\gamma & \quad \text{stagger angle} \\
\Delta C_P & \quad \text{pressure difference coefficient, } C_P_2 - C_P_1 \\
\eta & \quad \text{normal direction of transformed coordinate system} \\
\xi & \quad \text{chordwise direction of transformed coordinate system} \\
\rho & \quad \text{fluid density} \\
\sigma & \quad \text{interblade phase angle} \\
\tau & \quad \text{time variable} \\
\tau' & \quad \text{thickness-to-chord ratio} \\
\omega & \quad \text{airfoil oscillation frequency} \\
\text{Subscripts:} \\
1 & \quad \text{conditions at the inlet} \\
2 & \quad \text{conditions at the exit} \\
+ , - & \quad \text{upper and lower surfaces on airfoil, respectively}
\end{align*}

*NASA Resident Research Associate.
Introduction

Many turbine engines operate with supersonic relative flow through the rotor and stator blade rows. Much research is needed to ensure stable operation of this type of design. Understanding the aerelastic behavior and identifying the flutter boundaries is critical. Fundamental methods of flutter analysis depend on the successful predictions of blade loading and blade motion. Ideally, this is an interactive process where a structural analysis determines the blade motion from the blade loading and the loading is determined by the flow analysis from the blade motion. Many of the existing structural and aerodynamic analysis methods are based on flat plate theory and introduce approximations to model thickness and camber of the blades. One alternative is to use a finite difference algorithm to predict the flow field and account for these effects.

The present research focuses on numerical solutions of two-dimensional supersonic flow through oscillating cascades. Numerical methods tend to converge faster in this flow regime compared with their subsonic counterparts. Harmonic pitching motions are prescribed for the blade sections for both zero and nonzero interblade phase angles. The code uses the deforming grid technique introduced in references 1 and 2 for convenient specification of the periodic boundary conditions from blade to blade. Several sample predictions are presented for oscillating cascades in this flow regime. The results and theory in this paper are based on the work presented in reference 3. This analysis can be applied to any fan or compressor designs with supersonic relative Mach numbers.

Governing Equations

A major portion of the present code is based on the unsteady solver developed by Sankar and Tang (ref.4) for flow past isolated airfoils. This code solves the two-dimensional, unsteady, Reynolds-averaged, compressible Navier-Stokes equations in strong conservation form on a body-fitted moving coordinate system using an ADI procedure. These equations can be written as

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0
$$

and

$$
\nabla \cdot \left(\rho \mathbf{u} \right) = \nabla \cdot \left(\rho \mathbf{u} \right) = 0
$$

where

$$
\rho = \rho \left(\rho = \rho \mathbf{u} \right)
$$

and \(\rho \) is the fluid density, \(\mathbf{u} \) and \(\mathbf{v} \) are the Cartesian components of the fluid velocity, and \(\mathbf{e} \) is the total energy per unit volume. The body-fitted \((\xi, \eta, \tau)\) coordinate system is related to the Cartesian coordinates by using the following transformation:

$$
\begin{align*}
\xi &= \xi(x, y, t) \\
\eta &= \eta(x, y, t) \\
\tau &= t
\end{align*}
$$

The Jacobian of the transformation is given by

$$
J = \left| \begin{array}{ccc}
\xi_x & \xi_y & \xi_t \\
\eta_x & \eta_y & \eta_t \\
x_t & y_t & 1
\end{array} \right|
$$

and the metrics of the transformation are given by

$$
\begin{align*}
\xi_x &= J_y y_t \\
\xi_y &= -J_x x_t \\
\xi_t &= 1 \\
\eta_x &= -J_y y_t \\
\eta_y &= J_x x_t \\
\eta_t &= 1
\end{align*}
$$

Standard central differences were used to compute \(x_t, y_t, x_n, \) and \(y_n \), which were then used to calculate the metrics.

The \(\mathbf{F} \) and \(\mathbf{C} \) terms in equation (1) are the inviscid terms in the \(\xi \) and \(\eta \) directions, respectively. The viscous terms, \(\mathbf{R} \) and \(\mathbf{S} \), are omitted to give solutions of the Euler equations. In fact, all solutions presented in this paper are inviscid. The Beam-Warming block ADI algorithm is used to solve the governing equations. A Jameson-type artificial dissipation is added in both directions of the computational plane to increase solution stability. The solution is second-order accurate in space and first- or second-order accurate in time. Further information about the algorithm for isolated airfoils can be found in reference 4.
Grid

A unique feature of the present code is the treatment of the grid for oscillating cascades. A method for deforming the grid was developed in references 1 and 2 for zero and nonzero interblade phase angles. The present study uses the same technique.

The code uses a C-grid generated from Sorenson's (ref.5) GRAPE code, which was modified by Chima (ref.6) for improved modeling in turbomachinery problems. One C-grid is generated for each blade in the cascade and undergoes a local deformation associated with the blade motion. The outer boundary of the C-grid is defined by the user in the GRAPE code. A deforming grid technique is used to locate the position of the grid as a function of time. The inner boundary moves with the blade, while the outer boundary remains fixed in space. The grid lines connecting the inner and outer boundaries are allowed to deform. The amount of deformation is a function of the distance away from the surface of the airfoil. A weighting function \(w \) is defined as

\[
w_{ij} = w(\xi, \eta) = \left| \frac{s(\xi, \eta)}{s(\xi, \eta_{max})} - 1 \right|
\]

where \(s \) is the arc length of a grid line from the airfoil surface \((\eta=1)\) to some grid point along \(\xi = \) constant, and \(\eta_{max} \) is the outer boundary grid line. The grid deformation is defined as

\[
\Delta x_{ij} = w_{ij}(\Delta x'_{ij}) \\
\Delta y_{ij} = w_{ij}(\Delta y_{ij})
\]

where \(\Delta x'_{ij} \) and \(\Delta y_{ij} \) are the spatial differences that would exist between successive time steps if the entire grid were moved as a rigid body. From equations (6) and (7), we see that nodes at the inner boundary \((s=0)\) give \(w_{ij} = 1 \), which means that the airfoil surface follows the rigid body motion of the blade. Conversely, the outer boundary nodes give \(w_{ij} = 0 \), and the node positions remain fixed at the initial specified locations. The interior nodes shear in space relative to the initial grid as \(w_{ij} \) varies between 0 and 1. The node velocities can be easily found by dividing the grid deformation by the time step value.

Multiple blade computations are made possible by stacking the C-grids for each blade and passing information between the periodic boundaries. Each C-grid is expanded by one grid line in the \(\eta \)-direction at the outer boundary to provide ghost points for the implementation of the periodic boundary conditions. This allows the periodic boundary condition to be treated implicitly. The zero interblade phase angle is the simplest case for grid generation. Periodic boundary conditions are applied across the upper and lower boundaries and require a grid for only one blade. However, for supersonic axial flow, nonzero interblade phase angles require computations around two additional blades for exact treatment of the periodic boundary conditions. This increases the computational time by a factor of three, but provides an exact boundary condition.

Figure 1 shows a deforming grid for a typical nonzero interblade phase angle computation. Multiblade solutions for oscillating cascades are done by generating grids for each blade and assembling them into a cascade. In this sample case, the interblade phase angle \(\alpha \) is 180 degrees. A 199 by 22 C-grid is generated for an airfoil section. The solver automatically generates the grids for the adjacent blades before the unsteady solution begins by deforming the mean flow grid for one blade through one cycle of oscillation and saving the two grids that occur at the desired interblade phase angle. The grids are then assembled to give the initial multiblade grid to be used for the oscillating cascade solution at \(\omega t = 0 \) (fig. 1(a)). As time progresses in the unsteady solution, the grid for each blade deforms to model the specified interblade phase angle (fig. 1(b)). Notice how the outer boundary of the grid around each blade remains fixed in space, while the inner boundary follows the motion of the airfoil. An actual run from an oscillating cascade typically has a small pitching amplitude and does not distort the grid as much as shown in figure 1.

Boundary Conditions

The present solution independently solves the flow equations for each grid around a blade and uses periodic boundary conditions along the upper and lower boundaries to model the cascade effects. Ghost points are assigned at the first interior grid line \((\eta = \eta_{max} - 1)\) and are used by the adjacent grid from the next blade. Although it is tempting to use the most current flow information as it becomes available from the integration scheme, it is important to only use flow information from the same time step across the periodic boundaries. This eliminates time inaccuracy due to the grid stacking direction of the multiple blade solutions. The metric data are also forced to be continuous along the periodic boundaries. This procedure essentially makes the blade-to-blade periodic boundaries invisible to the flow solution.

In supersonic flow, the domain of the flow field can be reduced by inspecting the shock structures through the cascade. The disturbances generated inside the Mach cone of the leading edge do not influence the flow outside the cone, which means that only three blades need to be considered in the solutions. For example, consider the cascade geometry defined in figure 2, and let the flow conditions be defined such that the bow shock off the leading edge intersects the adjacent blade surfaces. The flow above blade 2 and below blade 3 will have no influence on the surface pressures on blade 1. For this reason, the
boundary conditions on the upper and lower boundaries of the global grid (the grid containing all three C-grids) can be arbitrary. The present analysis allows the upper and lower boundaries of the global grid to be periodic, which means that only the surface pressures from the reference blade will be valid for the specified interblade phase angle.

The inlet conditions are assumed to be uniform by specifying the flow density, velocity, flow angle, and pressure. The exit flow variables are extrapolated from the interior by using a simple first-order model. These boundary conditions are valid for supersonic flow at the inlet and exit. Solid wall boundary conditions are applied along the airfoil surface, and the flow variables are averaged across the slit aft of the airfoil.

Results and Discussion

Sample predictions for an oscillating cascade in supersonic flow have been done for both a cascade of flat plates and a cascade of airfoils suitable for supersonic flow. There are no unsteady experimental data available for comparisons with the airfoil section predictions. At present, any validation of this code is limited to comparisons with a small-perturbation theory for flat plates.

Flat Plate Cascade

Before an unsteady solution can be obtained for an oscillating cascade, a good steady-state solution for the mean flow conditions should be calculated. As previously described, a C-grid is generated for one blade by using a modified GRAPE code. For the present solutions, a 199 by 22 grid in the \(\xi \) and \(\eta \) directions, respectively, is used around a flat plate with the thickness-to-chord ratio, \(\tau = 0.005 \). The leading and trailing edges were rounded to aid in C-grid generation, and therefore this is only an approximate representation of a flat plate. Three C-grids are then assembled to define the geometry for the cascade, as shown in figure 3. The present test case was selected from Kielb and Ramsey (ref. 7), who simulated the rotor design for the supersonic throughflow fan by using Lane's theory (ref. 8) to determine the unsteady pressure distributions. The stagger angle is 28 degrees and the gap-to-chord ratio \(g/c = 0.311 \). An inviscid, steady-state solution has been generated using the present code for \(M_1 = 2.61 \) and \(\beta_1 = 28 \) degrees, which gives an incidence angle \(\alpha \) of 0 degrees. The steady-state solution required about 1500 iterations with \(\Delta \tau = 0.005 \) for the maximum residual to drop four orders of magnitude, which corresponds to about 100 sec of CPU time on the CRAY-YMP. This time can be reduced by implementing a variable local time step instead of the constant time step used in the present solution. Since the focus of the present research is the solution of the unsteady Euler equations, little time has been spent on accelerating the steady-state solutions.

Solutions were done for oscillating flat plates for various interblade phase angles and were compared with the small-perturbation theory of Lane (ref. 8). The unsteady solutions were run with first-order temporal accuracy. The surface pressure time histories were recorded and found to reach a reasonably periodic solution after three cycles of cascade oscillation. A Fourier transform was done on the fourth cycle to determine the first harmonic pressure distribution relative to the airfoil motion. The pressures were normalized by the airfoil pitching amplitude and the phase was referenced to the airfoil pitching motion starting at the maximum (nose-up) blade angle. Predictions for the unsteady pressure difference distributions \(\Delta C_P \) on the flat plates are shown in figure 4 for \(\sigma = 0 \) and 180 degrees, \(k = 0.50 \), and \(\alpha = 0.10 \) degrees. The small amplitude of oscillation is used for comparisons with the small-perturbation theory. The agreement with Lane's theory is good for both the real and imaginary parts of pressure, except that the locations of the shock reflections were predicted about 10 percent forward of the Lane's predictions. The actual locations of the shocks are exact for an infinitely thin flat plate, as used by Lane's theory. The finite thickness approximation of the flat plate used in the Euler code is expected to be the greatest contributor to this error. The wiggles near the leading edge of the Euler solution are numerical and are reduced for real airfoils. It is possible to adjust the numerical dissipation coefficients to minimize these wiggles; however the shocks tend to smear, and the accuracy of the solution becomes jeopardized. The force coefficients obtained by integrating these pressures are insensitive to these wiggles.

The unsteady solutions use \(2.11 \times 10^{-5} \) sec of CPU per time step per grid point per blade and required 2047 time steps to complete 4.25 cycles of oscillation. In practice, only three cycles of oscillation are necessary to reach a periodic solution, which corresponds to 400 sec of CRAY-YMP CPU time.

Airfoil Section Cascade

The reason for using the Euler code over Lane's theory is the ability to model "real" blade sections that have thickness and camber. While Lane's theory offers the most practical analysis tool for investigating a wide range of flutter parameters, the Euler code can be used to check the effects of blade loading. The cascade of airfoils shown in figure 1 has been selected to investigate the real blade effects. The parameters for the flow and cascade geometry are similar to those used for the flat plate analysis, except that the airfoils are now loaded: \(g/c = 0.311 \), \(\gamma = 28 \) degrees, \(M_1 = 2.61 \), and \(\beta_1 = 36.0 \) degrees. The grid presented in figure 1 is used in the present investigation and has the same dimensions and parameters described for the grid used in the flat plate analysis.
Two unsteady solutions for the blades oscillating with $\sigma=0$ degrees and 180 degrees, $\kappa=0.50$, and $\alpha=0.1$ degrees are presented in figure 5. The discontinuities near 20- and 70-percent chord are evidence of the shock structures. The shock movement due to a pitching amplitude of 0.1 degrees was expectedly small. The addition of thickness and camber to the solution caused the shocks to move forward from their locations in the flat plate analysis.

Conclusions

A code has been developed that solves the nonlinear flow field for oscillating cascades in supersonic flow and can be used in flutter analysis. A finite difference code has been developed for modeling compressible, inviscid, unsteady supersonic flow by solution of the Euler equations. The code uses a deforming grid technique to capture the motion of the airfoils and can model oscillating cascades with any arbitrary interblade phase angle. A flat plate analysis is done for comparisons with a small-perturbation theory. The results show good agreement for the unsteady pressure distributions predictions. Sample predictions are presented for a loaded cascade and demonstrate how different the unsteady pressure distributions can be when including the effects of thickness and camber.

The code is a tool for modeling “real” blade sections, which can have significantly different flow characteristics than results from methods that are restricted to flat plate geometries. Obviously, further research is needed to validate the code, such as detailed experimental data for oscillating cascades. It is now possible to add a simple two-dimensional structural model to evaluate the effects of structural properties.

References

Figure 1.—Deforming grid technique with exaggerated motion.
Figure 2.—Cascade geometry.

(a) Global grid.
(b) Enlarged view of leading-edge region.

Figure 3.—Grid for flat plate cascade.
Figure 4.—First harmonic pressure difference distribution for flat plate cascade. Stagger angle, γ, 28°; gap-to-chord ratio, g/c, 0.311; inlet flow angle, β_1, 28°±0.10°; reduced frequency based on semichord, k, 0.5.

Figure 5.—First harmonic pressure difference distribution for rotor cascade. Inlet Mach number, M_1, 2.61; stagger angle, γ, 28°; gap-to-chord ratio, g/c, 0.311; inlet flow angle, β_1, 36°±0.10°; reduced frequency based on semichord, k, 0.5.
A finite difference code has been developed for modeling inviscid, unsteady supersonic flow by solution of the compressible Euler equations. The code uses a deforming grid technique to capture the motion of the airfoils and can model oscillating cascades with any arbitrary interblade phase angle. A flat plate cascade is analyzed, and results are compared with results from a small-perturbation theory. The results show very good agreement for both the unsteady pressure distributions and the integrated force predictions. The reason for using the numerical Euler code over a small-perturbation theory is the ability to model "real" airfoils that have thickness and camber. Sample predictions are presented for a cascade of loaded airfoils and show appreciable differences in the unsteady surface pressure distributions when compared with the flat plate results.