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ABSTRACT

In the computation of discontinuous solutions of hyperbolic systems of conservation laws,

the recently developed ENO (Essentially Non-Oscillatory) schemes appear to be very useful.

However, they are computationaUy costly compared to simple central difference methods. In

this paper we develop a filtering method which uses simple central differencing of arbitrarily

high order accuracy, except when a novel local test indicates the development of spurious

oscillations. At these points, generally few in number, we use the full ENO apparatus,

maintaining the high order of accuracy, but removing spurious oscillations. Numerical results

indicate the success of the method. We obtain high order of accuracy in regions of smooth

flow without spurious oscillations for a wide range of problems and a significant speed up of

generally a factor of almost three over the full ENO method.
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1 Introduction

Recently, a new class of high order schemes related to numerical calculations of linear and

nonlinear systems of conservation laws has been developed. This new class of methods

uses an explicit TVD Runge-Kutta Multistage time discretization together with high order

Essentially Non Oscillatory (ENO) spatial discretization methods. Details of these methods

can be found in [6, 7] and in references quoted therein. These methods are applied to solve

numerically hyperbolic systems of conservation laws

u, + (f(u))_ = o, (_)

u(_,o) = uo(_), (2)

to be solved for t > 0 and x in some interval _ with appropriate boundary conditions. An

example of such a system of conservation laws is given by the Euler equations of compressible

gas dynamics for which

f(u) = vu + (0,p, vp)T (3)

and u = (p, q,p), p is density, q is momentum, v is velocity, and p is the pressure. A similar

example for two dimensional flows will be considered. The two dimensional version of the

equation (1) now has different fluxes for each space dimension. We have:

ut+ (f(u))= + (g(u)v = O, (4)

u(_,y,O) : Uo(_,y), (5)

to be solved for t > 0, (x, y) E _, some compact set, with appropriate boundary conditions.

The fluxes are f(u) = vxu +(O,p, O, vxp) T and g(u) = v_u+(0, O,p, v_q) T, respectively, where

u = (p, q_, %, e) T. In numerical experiments, we approximate the solution of equations (1)

or (4) by using point values. That is, u(xj,t '_) is approximated by u_, given a regular

triangulation of the domain _l. In this paper, only a line by line discretization will be

considered, restricting the shape of domain _ to regions which can be mapped onto squares

or rectangles.

The TVD time discretization performed is the one introduced in [6, 7]. The method is

explicit and relatively easy to program. Such algorithms can be briefly described as follows:

i-1

u "+i/'_ = Y:_[ai.s u "+k/m + _,,_AtL(u'_+k/")], (6)
k=0

where m is the number of stages to move the solution from time t to t + At. Generally,

second to sixth order methods are investigated. The coefficients al,k and fii,k are calculated



so as to improve the CFL number in order to minimize the number of time iterations. In

the class of method defined by (fi), the CFL coefficient )_ must satisfy:

Qi,k
< rain _-5" ^o,
-- i,k [_i,k l

where $0 is the maximum allowable value for the forward Euler method (see [6]). In

particular, it is possible to obtain a third order accurate TVD time discretization method

with a CFL number of 1. This is only slightly reduced (to I) for the fourth order method.

In addition, it is possible to derive a class of time discretizations that require the evaluation

of L(u =+(_-l)/k) only, so that/30, ...,fli-2 = 0. This process reduces the storage requirement

significantly. However, such procedure is possible only for methods of up to third order

accuracy. For higher order methods, several evaluations of the operator L are needed to

enforce the TVD property; see [6, 7] for more details.

For the space discretization, we use high order ENO methods to approximate L(U) using

conservation form.

-L(uj) = f(uj-,+l/2, ..., uj+,+l/a) - f(uj-,-1/2, ..., uj+,-1/2)A= (7)

For multidimensional operator, -L -- f, + gu, -f_ is performed as in (7), and -gv is

approximated analogously. For systems of equations, a field by field decomposition is used.

We calculate at each point the eigen decomposition of different fluxes, evaluating the r th

order accurate interpolating polynomial that approximates the fluxes in each field, and then

recover each vector field in the physical space by inverse decomposition. In many cases (Euler

equations for example), the decomposition in each field uses the left eigenvectors Lk, so that

fk,j+l/2 = L_.A(uj,i+I), where A is the Roe matrix for Vf(u) (see [10] for more details). The

ENO algorithm is based on a Newton interpolating polynomial using an adaptative stencil.

That is, instead of considering a polynomial interpolant using a fixed centered or a fixed

upwind stencil, we derive an interpolating polynomial minimizing the successive undivided

differences. This process limits oscillations, thus the name of the method. In the case of a

shock discontinuity, this method works quite well, leading to sharp transitions over a few

points. However, smearing of linear (e.g contact) discontinuities may occur. In this case, a

particular treatment using subcell resolution or artificial compression is available to sharply

resolve large transitions. The interested reader can find more details in [4, 7, 12], we do not

use this improvement here.

The reader has probably already realized that such methods require a considerable

amount of computational time when multidimensional systems are investigated. It would be

interesting to use high order methods derived from simple spatial discretization most of the

time, and use ENO methods only when spurious oscillations appear. Of course, it is well



known that such oscillations will generally occur for nonlinear equations even with smooth

initial conditions.

In order to deal with problems in which singularities occur but still use simple interpola-

tion techniques, hence simple finite difference methods, we introduce a postprocessing step

that detects existing singularities and spurious oscillations and corrects them if necessary.

Such a method based on a postprocessing step has been introduced in [1, 11]. It relies on a

simple type of correction by pushing points up or down up to an acceptable level so that the

global solution satisfies both total variation diminishing (TVD) and conservation properties.

By modifying this type of filter, the third author in [1] was able to prove convergence, in

[11], to the physical solution for one dimensional nonlinear conservation laws. His proof

relies on compensated compactness arguments using Young measures. Some references can

be found in [11] and in other papers quoted therein. More importantly, an extremely simple

but useful TVD algorithm which works very well in practice was developed in [1, 11].

In this paper, we define a new class of filters enforcing uniformly high order of accuracy

without allowing significant spurious oscillations. Section 2 is devoted to a detailed presen-

tation of our method . Section 3 offers several numerical examples in one and two space

dimensions for both scalars and systems of conservation laws. Section 4 will conclude this

paper and propose several different approaches for solving nonlinear problems in general

domains using finite element grids.

2 High order uniform filtering methods

We now outline our filtering method. We first only consider spatially centered differences.

This process leads to a simple scheme with low computational cost for the evaluation of

the numerical fluxes. Then, from the solution which has been evaluated from this basic

simple scheme, we perform another step that filters the numerical oscillations by using high

order accurate ENO interpolation. We then use a high order TVD-RK time scheme. The

algorithm is thus simply:

• Fori=l,mdo

1. Approximate the equation (1) or (4) using the basic scheme

v,_+q ,,, = D(un,..., u'*+(i-1)/"), (8)

where D is the numerical operator that performs the m-multistage TVD-RK

algorithm as in [6] together with centered spatial differences approximating the

operator L in (7) in conservation form.

3



2. If v"+i/m hasspuriousoscillations Then we correct it using the filter:

u "+i/" = F(u",..., u "+(_-2)/m, vn+(i-l)/m), (9)

where F is the numerical operator that uses the same time discretization algorithm

as the basic scheme together with a high uniform ENO type filter in evaluating

numerical fluxes.

• End For.

We define high order 2p th approximations as follows:

• Second Order:

• Fourth Order:

(p = 1)

fj+l/2 : f(ui+l) + f(ui)9. ' (10)

(p = 2)

fj+:/, = _2 (f(ui+l) + f(u.¢))- _-_.2(f(uj+2 + f(uj-1)), ill)

• Higher Order Vp: It is a simple matter, using Richardson's extrapolation to construct

and obtain arbitrary high order accurate centered difference methods. This has been

done in many places, e.g [5]. We will have:

P

fi+l/2 = _ /3if(ui+i),
i=-p+l

where/3_i+x = /3/fori=-p+l,...,p-1,
P

a_d _B,= 1.
i=-_+1

For the time discretization, we consider the TVD Runge-Kutta type idea introduced in

[6, 7], that is

• For second order method: (p = 1)

u"+_/_ = u" + AtL(u"), (12)

u"+' = _lu"+_/_+ _u" + A_L(u"+_/_). 03)

• For Third order method: (p = 3/2)

u "+1/3 = u '_ + AtL(u"),

U n+2/3 = _U3 n .3L _ul n+1/3. "4- =lA_n(un+l/3)'

2 n+2/3. _AtL(un+2/3).un+l
= 3 u" + _u +

(14)

(15)

(16)
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• Higher order methods of thistype are described in [6]up to sixth order.

The filterstep changes the centered differencesspatialapproximation to the more stable

ENO approximation of fluxes.As building block,we use eitherthe Roc scheme (see [10,7])

which admits expansion shocks at sonic points or the Local Lax-Friedrichs decomposition

of the fluxesat such points,see [7].Both building blocks firstdecide on the initialstencil

that respectsthe localcharacteristicdirectionand then evaluate the polynomial interpolant

using an adaptative stencil.This stencilischosen in order to minimize derivativesof the

interpolatingpolynomial. The algorithm for computing the numerical fluxesin the filtering

step is preciselythe algorithm 2.3,in [7]. Furthermore, in order to stillget a globally

conservative scheme, backward and forward correctionsarc performed. This lead to these

four possibleapproximations of u_+qm afterthe filteringstep:

= + _
• At -f_no

u_ +'/'' = ACu_',...,u_ '+('-1)/") + _( #+l/n - f_-,/2),

• At c
u_ +//" = A(u_, ..., u_. +('-')/") + _-_x(f)+l/2 - f;_/2),

• . At

u_ +'/= = A(u_,...,u_ +('-1)/") + _--_x(f_+x/2 - f;_-1/2),

for i = 1, ...,m. The operator A represents some linear combination of u n+k/'_, for k =

0,...,i - 1, given for example by the equations ( 12),(13), or ( 14),( 15),(16), and if, f,no

are the computed fluxes using centered differences or ENO interpolants, respectively. If the

,no - "+_I" where j is a multipleevaluation of fj-1/_ is needed, then a correction is performed on uj_ 1 ,

index in the case of several dimensions. Hopefully, for regular grids, backward corrections

will only occur at the first column and first row of the computational domain fL Hence, at

interior grid points, only forward corrections of the fluxes are performed. For example, in

two dimensions, an initialization step in the filtering step is done for the first column and

first row, say i = i0, and j = j0, leading to corrections of the fluxes fid+l/2 and fi+l/2,_ for

i > £0 and j > j0 only.

In the multidimensional case, this is done separately in the x and l/ directions. The

global scheme is therefore as simple as for the one dimensional case. For systems of conser-

vation laws, the centered approximation is performed for each component of the fluxes. The

ENO interpolant, when needed, must be evaluated in each characteristic field. To do this,

we follow the algorithm 4.1 in [7]. That is, we evaluate the gradient of each fluxes using

Of , Roe
Roe averages for the unknown Ai+:/2 = --au]U=U_:_/_, where _+1/2 ---- R(uj+I, uj) is the Roe

average of u s and uj+l (see [10]). Denoting the left and right eigenvectors of Aj+I/2 by
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L_+a/2, PRj+I/2, p = 1, ...,n, where n is the number of equations, we correct each character-

tCp) ,-,(p) TCp) . B,+I 2,istic flux li+ll 2 using the divided differences projected in each field t_j+l/2 = "'i+l/r , /

where the Bj+l/u are the successive divided differences of fi+l/2 needed in the evalua-

tion of the interpolating polynomial. We then reconstruct each flux in the physical space

fj+l/2 : E_=a f¢p) D(P)"j+l12""j+l12" At sonic points, we replace the Roe building block by the LLF

decomposition of the fluxes. Also, instead of natural divided differences of the fluxes, we ap-

ply the formula (2.11a) and (2.11b) of [7] in each field taking" l;"(P)-l_2-- _(fj-l/2_ -^j-_/2"j-I/2J,'(P)" (p) _

_ 1 _(p) ..(p) _ .(p) . , (p) u_p)and f(P)+ _(fj-_/2 + where - min(uj_l, ) in the c_e of convexj-a/2 - '_j-l/2"j-l/2J '_j-i/2 -

fluxes or genuinely nonlinear fields. For more details, see [7].

The most interesting and important part of this method consists in the way large tran-

sition areas are detected. For the basic idea, we use concepts related to a front capturing

method which has been introduced in [8] in the case of combustion type problems dealing

with Hamilton-Jacobi type equations and in many other applications where fronts must be

located with high accuracy. For conservation laws, we will say that from time t to time t + At

the solution has changed considerably, if the normal at this point to the solution surface at

these two different times has rotated by an angle exceeding some preset value < I 1.

In numerical computations, spatial derivatives of u; +i/'_ are evaluated using backward or

forward derivatives, so that the change of the normal is described via this formula:

_ _ (A±u_)2,/ (A+u_ +1 2)1< +cos +, Vz ) '

where the 4- tests are performed to detect fast transition locations for Ui+l/2 or ui-1/2,

respectively, and A+u_ '+x = q-(ui+l - u_) are for the forward and backward differences.

n n then theIf this inequality is satisfied with the value of the parameter -T < a < T

correction step is performed. The parameter a is introduced to restrict more general changes

of the normal to the surface from different times. In the numerical examples introduced in

next section, it has been necessary to tune this coefficient in order to obtain the smallest

possible number of corrections without introducing oscillations in the numerical solution.

If, instead, we let cos a = 0, more corrections must be performed. Basically, we also have

to correct when an extremum point already exists at time t. This test can be avoided

when larger values of the parameter cos a are used. This process has greatly reduced the

number of corrections when two dimensional Euler equations for compressible gas dynamics

with shock-turbulence interaction has been studied. However, it has been difficult to adjust

this parameter to optimize the global algorithm (computational time). Nevertheless, less

than 40% of the grid points required corrections for cos a = 0.1. Further optimization will

probably lead to even fewer corrections.



The valuecosa - 1 implies that the filtering scheme is applied everywhere, while, cos a =

-1 leads only to the simple basic centered difference scheme. The particular value of the

parameter cos a, for which the right hand side of (17) is zero, implies that a change in sign

of a partial derivative occured from time t to t + At.

We must add that no significant improvement of the solution is obtained when the value

of cos a approaches 1. This is probably due to the fact that the numerical error is very small

in regions where the physical solution is smooth for which centered differences are used.

Furthermore, as shown in the numerical examples below, there is no visible propagation of

the numerical error due to the filtering step.

To conclude this section, we write down clearly the algorithm for multidimensional sys-

tems of conservation laws:

• For i = l, ..., m Do

- For Is. = 1, ..., NS. Do, j = 1, ..., rid, nd is the spatial dimension,

_ n+d/m
* Compute ul, .....I,,,_ using the basic centered difference scheme:

-+'/- A(uL ..,Ult ,...,i,_,1 --

At c

At .ff f=
+... + A--'_, ( I, ....._,,_+ln - n .....1,,_-_n)

End For.

For Is. = 1, ..., Nj Do , j = 1, ..., nd:

• Compute the normal to the surface at time T '_+(_-l)/m and T '_+qm, and test

whether the directional change of the normals exceeds the angle a:

A%. ,,+(i-1)/,_^% n+q,_
± Ull,...,l,a L.a+ Ull,...,i,_a +

Ax_

AT-, u; 'f,L
... + Axe. d

< (-1 + cos a

I ^Zl I n+Ci-1)/m
1+(_ u_ .....i._ )_+...+(

li+(

A"_,,_ .+(i-1)/-_
4- U ll ,...,Ina

A x L, a

Aill n+d/m ,, xI,,a n+i/m

Amz_uz_ .....z,,,,)2 + "'" "A---_1_+(z-'x:t: uz_ .....z,,a)_)

2



* If these tests are satisfied Then compute the ENO interpolant in each field

and correct the solution.

- End For.

• End For.

The number of tests to be performed depends on the dimension of the system (= ns) and of

space dimension (= rid). In genera J, we will have ns *nd tests to be performed so that each

component of the fluxes in each direction can be modified. Therefore this postprocessing

may imply a high computational cost if the code is not well implemented.

3 Numerical Results

We now apply our algorithm to several test problems dealing with linear and nonlinear

hyperbolic systems of conservation laws. We will focus our attention in determining precisely

the order of accuracy of our filtering method and studying the propagation of the local error.

We will also visualize the numerical solution when linear (contact) or nonlinear (shock)

discontinuities appear and compare the computational time of the filtering method versus

the associated unfiltered ENO scheme.

3.1 Example I:

As first test problem, we want to verify that our method is uniformly high order accurate

even at extremum points. To do so, we consider the simple linear equation

ut + u= = O,

with initial condition

u(z, O) = cos 2IIz,

to be solved for t > 0 and z E [0, 1] with periodic boundary conditions at 0 and 1. Numer-

ically, we discretize the interval [0, 1] and let zi = lax, for i = 0,...,n. The exact solution

u(xi, t,_) is then approximated by pointwise values u_' for which we set u ° = u(xi, 0) from the

initial condition. The exact solution is calculated by the method of characteristics so that the

local numerical error and order of accuracy can be estimated. In the numerical experiments,

we fixed n = 40 and ran the program for one period of time, e.g t = 1. The number of cor-

rections per each time substep was never higher than 4. Moreover, these corrections occur at

extremum points. Table 1 shows the local error at points x4i = 4j.Ax. Table 2 describes the
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global order of accuracyin L 1 and L _¢ norms for the (3-2), (3-4),

(FM).

x-location (3-2)FM Local Error (3-4)FM Local Error

0. 7.15 * 10 -2 5.69 * 10 -4

0.1 2.60 * 10 -2 1.70 * 10 -4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.96 * 10 -2 1.26 * 10 -4

3.27 * 10 -2 6.91 * 10 -4

1.25.10 -2 1.05.10 -4

7.24 * 10 -2 5.59 * 10 -4

2.71 * 10 -2 1.69 * 10 -4

2.02 * 10 -2 1.24 * 10 -4

3.31 * 10 -2 7.32 * 10 -s

1.31 * 10 -2 1.10.10 -40.9

. 6.29 * 10 -2 5.58 * 10 -4

Table 1.

Scheme Ll-norm L_°-norm

(3-2)FM 2.08 1.75

(3-4)FM 4.11 3.46
Table 2.

3-6)FM 3.46 3.26

These results are indeed in agreement

is preserved even at corrected points.

and (3-6) filtering methods

(3-6)FM Local Error
1.34 • 10 -4

1.01 • 10 -4

3.36 * 10 -5

4.75 * 10 -5

1.01 • 10 -4

1.34 • 10 -4

1.01 * 10 -4

3.36 * 10 -s

4.74 • 10 -5

1.27 • 10 -4

1.32 * 10 -4

with what we should expect. Uniform high order

3.2 Example II:

We now extend Example I to two dimensions. As described in the algorithm, a dimension

by dimension approach is used to solve the linear equation

ut+ux+u_ = O,

u(z,y,O) = cos2H(z+y) and0_<x,y<_l,

and again, periodic boundary conditions in both x and y variables are assumed. We discretize

the square domain 12 = [0, 1] x [0, 1] and denote by A_,i the vertices of coordinates z_ = iAz,

and yi = jAy, for i = O, ..., n and j = O, ..., m. We choose n # m so that the problem is

really two dimensional. The exact solution of this equation can be easily calculated using

the change of variables _ = x + y leading to a one dimensional problem. Hence, the exact

solution is merely

= cos(2H( + y - t)).

Numerically, we use m = 40, and n = 30 so that Ax # Ay. The figures (2.1), (2.2),

and (2.3) visualize the local error for the (3-2), (3-4), and (3-6) FM at different sections

z = 0.2,0.4,0.6,0.8. The local error is highest at extremum points, particularly for the

second order method which is globally TVD. However, table 3 shows that the global order of
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accuracyin L 1 and L _ norms is uniform. Moreover, table 4 shows that the order of accuracy

for the filtering method does not really depend on the value of the parameter a. However,

the number of corrections increases as cos a approaches 1 for which the full ENO method is

performed.
Scheme

(3-2)FM

(3-4)FM

(3-6)FM

Ll.norm L°°.norm

2.00 1.45
Table 3.

3.81 3.35

3.06 3.11

cosa # of corrections Ll-norm L_-norm CPU time

0.1 3-4)FM 84 3.62 3.01 13.23

0.9 (3-4)FM 253 3.61 3.02 13.45

1.0 (3-4)RM 1681 3.91 3.15 36.41
Table 4.

From this table, the computational cost is reduced by a factor of almost 3 as the (3-4)FM

is used (cosa _< 0.9) versus the full ENO (3-4)RE method (cosa = 1.). Also, no significant

gain in the order of accuracy is obtained when the full (3-4)RF method is used.

3.3 Example III:

In this example, we study the behavior of the filtering method to nonlinear equations. As

simple case, we consider Burgers' equation

x

with initial condition

u(z, O) = cos 2IIx.

We again take periodic boundary conditions on the interval [0, 1]. The solution becomes

discontinuous at time t = 2A_ at the steady location x = 0.25. The domain 12 is discretized

and the grid points are denoted by xi, for i = 0,...,n, and let n = 40 in the numerical

experiments. The exact solution is approximated by using Newton's method whenever the

solution is smooth. The local error at each grid points is plotted for the (3-2), (3-4), and (3-

6)FM in the figures 3.1, 3.2, and 3.3. Due to the centered differences which are performed in

the basic scheme, the local error propagates symmetrically with respect to inflection points.

Nevertheless, the table 5 shows that the order of accuracy of the filtering method is still

uniform. These calculations were performed at time t = 0.1 with a CFL coefficient A = 1..
Scheme LLnorm L_-norm

(3-2)FM 1.95 1.40 Table 5.
(3-4)FM 3.74 3.69

(3-6)FM 3.50 3.47

i0



At time t = _ffn the shock wave appears. The shape of the solution is shown in the set

of figures 3.4, 3.5, and 3.6. No spurious oscillations can be detected from these plots. The

number of corrections was never higher than 8 whatever the number of grid points. Again

no visible change in the solution occurs when different values of a are considered. In this

numerical example, cos a = 0.1 and the extremum test was enforced.

Using Burgers' equation again, we want to test whether our method is stable. We consider

the Riemann problem with ul = +1, and ur = -1 and run our program using centered

differences only on a 40 point grid with a CFL number of 0.5 up to _ = 3. The figure (3.7.1)

visualizes the solution at this time. Large oscillations can be seen up to the boundaries.

Taking the final solution of the previous problem as initial condition and using the (3-2)FM

with the parameter cos a = 0.99, we obtain the steady solution ul = +1, ur = -1 (figure

(3.7.2). Moreover, the test for an extrema was not used. This shows that our filtering method

acts like a viscosity method in regions of smoothness even as the parameter cos a approaches

1. However, the number of corrections occured at only 10 grid points on the average.

Finally, we want to test whether our method works for nonconvex fluxes and for initial

conditions solving a Riemann problem having an expansion shock. First of all, we considered

Burgers' equation with the initial condition =z = -2 for z < 0., and ur = 2 for z > 0. The

centered differences of the basic scheme let the initial expansion shock unchanged. However,

by adding a small perturbation of amplitude ¢ = 10 -s to the initial condition, the numerical

solution does not violate the entropy condition and does tend for long time to the stationary

solution of the problem, i.e u = 0 (see the figure 3.7.3). In the other hand, we ran our

("_-1)("_-4) with the initial condition ul = 2, andprogram with a nonconvex flux f(u) = 4 ,

ur = -2 in each side of z = 0. Again, if no perturbation is added to this initial condition, the

centered differences let the solution remain unchanged. The results with a small initial noise

added to the initial condition are displayed in the figure 3.7.4. The results are in agreement

with those presented in [6].

In order to avoid the risk of developing an expansion shock, we may implement another

test that checks whether A_ < 0 < A_, where A_ 'R are the eigenvalues of Vuf in each side

of the grid point zl in the genuinely nonlinear fields (for non convex fields, we correct at all

sonic points). If this test is satisfied then we correct the numerical solution using the filter.

3.4 Example IV:

In this example, we extend example III to two space dimensions by taking the two dimen-

sional Burgers' equation

ut+ + = O,

" !1
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with the same initial condition as in example II and 1-periodic boundary conditions in both z

and y variables. The square domain is discretized as in example II with m = 40 and n = 30.
1

The shock discontinuity occurs at time t = yfi at the steady location a + y = 0.25. We study

the propagation of the local error at time t = 0.1 at different sections a = 0.2,0.4,0.6,0.8.

Again the error is symmetric with respect to inflection points, see the figures (4.1), (4.2), and

(4.3). Moreover, the error is distributed within more grid points as the order of the space

discretization increases. This is in agreement with the fact that the width of the stencil

increases with the order of accuracy. Table 6 describes the order of accuracy in L 1 and

L °° norms for the (3-2), (3-4), and (3-6) filtering methods. Table 7 discusses the order of

accuracy in these norms for different values of the parameter cos a for the (3,4)FM. We also

compare the CPU time of the (3-4)FM method versus the (3-4)LLF ENO method.
Scheme Li-norm L°°-norm

(3-2)FM 1.86 1.64 Table 6.
(3-4)FM 3.47 3.19

(3-6)FM 4.13 3.49

cosa # of corrections Li-norm L°°-norm CPU time

0.1 (3-4)FM 126 3.25 3.19 15.51

0.9 (3-4)FM 211 3.24 3.25 18.32

1.0 (3-4)LLF 1681 3.33 3.38 39.71
Table 7.

The CPU time is again reduced by a factor of almost 3 when the filtering method is

performed.

1 the shock discontinuity occurs and is visualized in the figure 4.4. A sharpAt time t = yff

transition is obtained and no spurious oscillations can be seen. Away from the shock the

local order of accuracy is preserved showing that no propagation of error starting at the

shock location pollutes the smooth part of the numerical solution. Moreover, the formal

orders of accuracy are approximately the same as those given in the table 6.

3.5 Examples V:

In these examples, we study the smearing of contact discontinuities for one and two dimen-

sional problems. To illustrate this fact and study the behavior of the filtering method in

such cases, we consider the linear equations given in examples I and II with different initial

conditions:

u(m,0) = cos (2IIz) + 0.5 If 0.25 < x or x >_ 0.75

and u(x,0) = 0 otherwise,

u(x,y,0) = cos(2II(x +y)) + 2 If 0.25 < z,y < 0.75

and u(x,y,0) = 0 otherwise,

12



for one and two dimensionalproblems,respectively. In the numerical experimentswe let

n = 40 and study the numerical solution at time _ = 1.1 with a CFL coefficient A = 0.5.

For the one dimensional problem, the transition is plotted in the set of figures (5.1.1),

(5.1.2), and (5.1.3) for the (3-2), (3-4), and (3-6) FM, respectively. In all cases, the jump

transition is localized within a few mesh points. However, as expected, the numerical solution

near the contact discontinuities is better approximated for the highest (sixth) order method.

In particular, the small oscillations that appear near the contact discontinuities for the second

and fourth order methods, are no longer there for the sixth order method. Also, the small

oscillations will disappear as Boon as the value of the parameter cos a is not less than 0.9.

Moreover, the transition from the upper to the lower parts of the numerical solution is better

resolved for high order methods (fourth and sixth order), whereas the transition tends to be

smeared for the second order method.

In the next set of plots, the two dimensional problem is investigated. The results are

shown in the figures (5.2.1), (5.3.1), (5.4.1) where the solution wave is plotted at time

t = 1.1. The transition from the zero plateau to the cosine wave is smeared within three

to four meshes in each vertical and horizontal sides and probably more at each of the four

corners, see the figures (5.2.2), (5.3.2), and (5.4.2). Moreover, the maximum error occurs at

the bottom left and the top right corners. Als% the local error is very smooth along each

sides and "discontinuous" about these two corners. This agrees with the one dimensional

results in which the smearing of the contact discontinuities happens to be more important

in the upper or lower part of the cosine wave.

3.6 Examples VI:

The last examples are devoted to extend our filtering method to systems of conservation

laws. We consider the compressible Euler equations for gas dynamics introduced during

the introduction. The Euler equations (1) and (4) are studied with these sets of initial

conditions:

• One dimensional Euler:

- We consider the initial condition given in the example 8 of [7]. That is, we take:

p = 3.857143, q = 2.629369,p = 10.3333333 when x < -4

p = l --bc sin 5x, q = O, p = l. when x __ -4

- If e = 0. we get a pure Mach 3 shock moving to the right. Following [7] in

example 8, we take e = 0.2 in the numerical experiment.

13



• Two dimensional Euler:

- We consider the initial condition given in the example 9 of [7]. That is, we

consider a Mach 8 shock located at x = -1 moving to the right into the state

with

pf "--" 1,

Pr - 1,

cr
v, = --- sin 8, cos (xk,.cosS,. + yk, sin 8,),

pr
C,.

v v : -- cos 8r cos (xkrcoaOr + yk,. sin 0r),
P,

2 and 8r n In order to have positive pressure during the calcula-where kr = _ = _.

tions, we used a parameter cos a = 0.1 _ a __ 0.9-_.

The results for the one dimensional problem are shown in the set of figures (6.1.1), (6.1.2),

and (6.1.3). The desired, physical, oscillations near the shock transition which are parts of

the exact solution are particularly visible for the sixth order method. The second order and

fourth order method give a fairly good representation of the expected solution. The number

of corrections was about 25% for 200 grid points and a CFL coefficient A = 0.8.

The results for the two dimensional shock-turbulence problem are plotted in the set of

figures (6.2.1), (6.2.2), (6.3.1), (6.3.2), in which the pressure and density field are displayed.

As comparison, similar results have been obtained in Using this value of the parameter cos a,

the number of corrections was approximatively 40% for a 80 x 60 grid with a CFL coefficient

of 0.5. In this experiment, the (3-2) and (3-4)FM have been used. 200 time iterations have

been necessary to reach the final time t = 0.2. 70% of the global computational time was

used to evaluate the ENO interpolating polynomials during the filtering step, leading to a

reduction of a factor of 2 of the computational time when the filtering method is used.

4 Final Remarks and Conclusions

The main conclusion concerns the number of corrections which has always been less than

10 to 25% for all these examples, except for the two dimensional shock-turbulence problem

in which a very complicated structure of the flow appears. Therefore, the computational

cost for these type of problems is reduced by a factor of almost 3. Moreover, this factor

is quite significant when very high order methods are implemented. In particular, the use

of sixth order method for the one dimensional Euler equations leads to a very accurate

approximate solution. An important remark is that it would be possible in the near future

14



to implement other high resolution techniques together with this type of filtering method,

e.g subcell resolution [4].

In the near future, this type of method will be implemented in for different type of prob-

lems involving Hamilton-Jacobi equations. Moreover, a similar approach for more general

domains using finite element triangulations is under investigation. So far, by appropriate

linear combination using the basis functions of all triangles around a vertex, it has been pos-

sible to construct a second order method in space and correct the oscillating points by using

a first order Godunov type filter. Higher order filtering method are also under investigation.

ENO schemes for Hamilton-Jacobi equations in Cartesian coordinates were developed in [8]

and in [9].
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Figure Captions

(2.1) (3-2)FM: x = 0.2, 0.4, 0.6, 0.8 sections, Local Error .10 -2 For 2D linear Problem

(Example If).

(2.2) (3-4)FM: x = 0.2, 0.4, 0.6, 0.8 sections, Local Error .10 -s For 2D linear Problem

(Example II).

(2.3) (3-6)FM: x = 0.2, 0.4, 0.6, 0.8 sections, Local Error .10 -5 For 2D linear Problem

(Example II).

• (3.1)(3-2)FM:

• (3.2)(3-4)FM:

• (3.3)(3-6)FM:

• (3.4)(3-2)FM:

• (3.5)(3-4)FM:

Local Error .10 -3 For Burgers' Equation (t = 0.1).

Local Error .10 -5 For Burgers' Equation (4 = 0.1).

Local Error .10 -8 For Burgers' Equation (t = 0.1).

Shock Transition for Burgers' Equation at time _ = _'_n"

Shock Transition for Burgers' Equation at time t - 1

• (3.6) (3-6)FM: Shock Transition for Burgers' Equation at time t - 1

• (3.7.1) (3-2)CD (Centered Differences): Solution Wave of Burgers' Equation at time

= 1. with +1,-1 Initial Condition.

• (3.7.2) (3-2)FM: Solution Wave of Burgers' Equation at time t = 1. with Initial Con-

dition of Figure (3.7.1).

• (3.7.3) (3-4)FM: Solution Wave of Burgers' Equation at time t = 1., 2., 3. with Initial

Condition ul = -2, ur = 2 plus ±10 -3 noise.

• (3.7.4) (3-4)FM: Solution Wave of nonconvex nonlinear Equation u: + ("2-1)("'-4) - 0
4 x

at time t = 0.2, 0.4, 0.8 with Initial Condition ut = 2, ur = -2 plus ±10 -3 noise.

• (4.1) (3-2)FM: Local Error For 2D Burgers' Equation (t = 0.1).

• (4.2) (3-4)FM: Local Error For 2D Burgers' Equation (4 = 0.1).

• (4.3) (3-6)FM: Local Error For 2D Burgers' Equation (_ - 0.1).

1
• (4.4) (3-2)FM: Shock Transition For 2D Burgers' Equation at time _ = 5"_"

• (5.1.1) (3-2)FM: Linear 1D Equation- Contact Discontinuity at time t = 1.1.
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• (5.1.2) (3-4)FM: Linear 1D Equation- Contact Discontinuity at time t = 1.1.

• (5.1.3) (3-6)FM: Linear 1D Equation- Contact Discontinuity at time t = 1.1.

• (5.2.1) (3-2)FM: Linear 2D Equation- Contact Discontinuity at time t = 1.1.

• (5.2.2) (3-2)FM: Linear 2D Equation- Error Plot and Contour- Contact Discontinuity

at time _ = 1.1.

• (5.3.1) (3-4)FM: Linear 2D Equation- Contact Discontinuity at time t = 1.1.

• (5.3.2) (3-4)FM: Linear 2D Equation- Error Plot and Contour- Contact Discontinuity

at time t = 1.1.

• (5.4.1) (3-6)FM: Linear 2D Equation- Contact Discontinuity at time t = 1.1.

• (5.4.2) (3-6)FM: Linear 2D Equation- Error Plot and Contour- Contact Discontinuity

at time t = 1.1.

• (6.1.1) (3-2)FM: 1D Euler Equations _ = 0.2.

• (6.1.2) (3-4)FM: 1D Euler Equations c = 0.2.

• (6.1.3) (3-6)FM: 1D Euler Equations c = 0.2.

• (6.2.1) (3-2)FM: 2D Euler Equations - Shock-Turbulence Interaction - Pressure field

t=0.2.

• (6.2.2) (3-2)FM: 2D Euler Equations - Shock-Turbulence Interaction - Density field

t = 0.2.

• (6.3.1) (3-4)FM: 2D Euler Equations - Shock Turbulence Interaction - Pressure field

t = 0.2.

• (6.3.2) (3-4)FM: 2D Euler Equations - Shock Turbulence Interaction - Density field

t = 0.2.
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when a novel local test indicates the development of spurious oscillations. At

these points, generally few in number, we use the full ENO apparatus, maintaining

the high order of accuracy, but removing spurious oscillations. Numerical results

indicate the success of the method. We obtain high order of accuracy in regions

of smooth flow without spurious oscillations for a wide range of problems and a

significant speed up of generally a factor of almost three over the full ENO

method.
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