

v

SV TR DM w4 O S M O

NASA Conference Publication 3045

Graphics Technology
in Space Applications

o T

R

‘"‘"” B 0 N S ————

(GTSA 1989)

Sandy Griffin, Editor
Lyndon B. Johnson Space Center
Houston, Texas

Proceedings of the first annual workshop sponsored by
the National Aeronautics and Space Administration,
Washington, D.C., and hosted by the University

of Houston-Clear Lake, Houston, Texas, and held at
NASA Lyndon B. Johnson Space Center

Houston, Texas

April 12-14, 1989

NASAN

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1989

PREFACE

This document represents the proceedings of the Graphics Technology in Space Applications, which
was held at NASA Lyndon B. Johnson Space Center on April 12 - 14, 1989 in Houston, Texas.

The papers included in these proceedings were published in general as received from the authors
with minimum modification and editing. Information contained in the individual papers is not to

be construed as being officially endorsed by NASA.

iii
N

NE
PRECEDING PAGE BLANK NOT FILMED pacl_L [WTENTIONALLY BLA

MESSAGE FROM THE GENERAL CHAIR

Purpose of Graphics Technology in Space Applications (GTSA)

This conference was created to facilitate the communication between industry and government in
graphics technology in space applications. itisintended to provide a forum for information
exchange by graphics researchers and practitioners for discussion of common probiems, and for the
basic education of non-practitioners relative to the potential of this technology.

Robert H. Brown

v
PRECEDING PAGE BLANK NOT EiLMED eaGE_L Y INTENTIONALLL BLANK

ACKNOWLEDGEMENT

Acknowledgements are due to all personnel who provided the logistic support necessary to the
success of this workshop. Thanks are also due to CAE-Link Flight Simulation, the MITRE
Corporation, Barrios Technology, McDonnell-Douglas Space Systems Corporation, and Omniplan
Corporation in extending the support of their personnel.

GTSA ORGANIZING COMMITTEE

GRAPHICS TECHNOLOGY IN SPACE APPLICATIONS CONFERENCE

General Chair:

Robert H. Brown, Chief/Technology
Development and Applications Branch/Mission
Support Directorate NASA/Johnson Space Center

Technical Program Chair:

Frank S. Taylor 1V, Manager

NASA Interactive Graphics Lab

McDonnell Douglas Space Systems Company

Executive Chair:
Sandra G. Griffin
NASA/Johnson Space Center

Administrative Co-Chairs:
Carla J. Armstrong
Barrios Technology

Glenn B. Freedman, Director
SEPEC
University of Houston-Clear Lake

Members:

Carla J. Armstrong, Barrios, Facilities

Wayne Boatman, Ford Aerospace Corp., Exhibits
Katherine Moser, UH-CL, Registration

Glenn B. Freeman, UH-CL, Finance

Eric A. Lloyd, UH-CL, Publication/Publicity

Glen Van Zandt, NASA, Registration/Publicity
Bruce Wood, NASA/JSC, Facilities

vi

CONTENTS

SESSION 1: Graphics Standards

SESSION CHAIR: David Goeken, The MITRE Corp.
TAE PLUS: Transportable Applications Environment Plus Tools for Building
Graphic-Oriented Applications 15,
Render Man Design Principles e

A New Standard by Iris Graphics Library

(Paper not provided by publication date.) 13-
News
(Paper not provided by publication date.) 15
SESSION 2: Graphics Applications and Tools
SESSION CHAIR: Bradley Bell, Barrios Technology, Inc.
The Real Time Interactive Display Environment (RTIDE), a Display Building Tool
Developed by Space Shuttle Flight Controliers 17
Knowledge Representation in Space Flight Operations 255,
The Real Time Display Builder (RTDB) 33,
Binary Space Partitioning Trees and Their Uses 39
Onboard Shuttle On-Line Software Requirements System: Prototype 43:.-
Design Considerations for a Space Database 495&
Tools for 3D Scientific Visualization in Computational Aerodynamics 554,

Applications of Graphics to Support a Testbed for Autonomous Space

Vehicle Operations 65,
=5

SESSION 3: Merging of Graphics and Video Display Technology ’
SESSION CHAIR: Gunter Sabionski, NASA/Johnson Space Center

Destination Mars

(Paper not provided by publication date.) 73-

Large Screen Disptay for the Mission Control Center 75

Efficient Utilization of Graphics Technology for Space Animation 81s, >

Engineering Visualization Utilizing Advanced Animation 93

Mult-Tasking Computer Control of Video Related Equipment 103,

vii

SESSION 4: partial Task and Stand Alone Simulations

SESSION CHAIR: David Shores, Barrios Technology, Inc.
Broadening the Interface Bandwidth in Simulation Based Training 107 5.
Animation Graphic interface for the Space Shuttle Onboard Computer 15,
Operational Computer Graphics in the Flight Dynamics Environment 121
OMV Mission Simulator 12958
The Use of Graphics in the Design of the Human-Telerobot Interface 135414
Distributed Earth Model/Orbiter Simulation 14357
Prototype Part Task Trainer - A Remote Manipulator System Simulator 151}; .
SESSION 5: Space Station Freedom Graphics
SESSION CHAIR: Debbi Barela, McDonnell Douglas Space Systems
Space Station Freedom Integrated Fault Model 1552,
Graphical Programming and the Use of Simulation for
Space-based Manipulators 1654, .
Using an Instrumented Manikin for Space Station Freedom Analysis 171, .,
The Development of the Canadian Mobile Servicing System
Kinematic Simulation Facility 177;’-’,',/
Software Systems for Modeling Articulated Figures 187.5,
Human Task Animation from Performance Models and
Natural Language Input 19551,.,
&
SESSION 6: Large Scale Space Simulations
SESSION CHAIR: Keith Williams, CAE - Link Flight Simulation
SES Cupola Interactive Display Design Environment 2057
Issues in Visual Support to Real-Time Space System Simulation Solved in the
Systems Engineering Simulator 2157,
History of Visual Systems in the Systems Engineering Simulator 219, .-
Computer Image Generation: Reconfigurability as a Strategy in]
High Fidelity Space Applications 2290
Real-Time Graphics for the Space Station Freedom Cupola, Developed in the
Systems Engineering Simulator 235,

viii

The Orbital Maneuvering Vehicle Training Facility Visual System Concept 249 -
The Search for Replacement Visual Systems for the Shuttle Mission

Training Facility (SMTF)
(Paper not provided by publication date.) 255

ix

- 3

NOO- 20652

TAE PLUS: Transportable Applications Environment Plus
Tools for Building Graphic-oriented Applications

Martha R. Szczur
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771
[MSZCZUR/GSFCMAIL] TELEMAIL/USA
Marti@DSTL86.span.nasa.gov
(301)286-8609 FTS 888-8609

INTRODUCTION

The Transportable Applications Environment
Plus (TAE Plus™), developed by NASA's Goddard
Space Flight Center, is a portable User Interface
Management System (UIMS), which provides (1)
an intuitive WYSIWYG WorkBench for prototyp-
ing and designing an application's user interface,
integrated with (2) tools for efficiently implement-
ing the designed user interface and (3) effective
management of the user interface during an ap-
plication's active domain. During the develop-
ment of TAE Plus, many design and implementa-
tion decisions were based on the state-of-the-art
within graphics workstations, windowing system
and object-oriented programming languages, and
this paper shares some of the problems and issues
experienced during implementation. The paper
concludes with open issues and a description of
the next development steps planned for TAE Plus.

TAE PLUS AS A UIMS

Before presenting TAE Plus as a UIMS it is first
necessary to define what a UIMS is. The definition
by Betts et al [1] which is defined in terms of activi-
ties and purposes best describes the objectives of
TAE Plus:

"A User Interface Management System (UIMS) is
a tool (or tool set) designed to encourage interdis-
ciplinary cooperation in the rapid development,
tailoring and management (control) of the interac-
tion in an application domain across varying de-
vices, interaction techniques and user interface
styles. A UIMS tailors and manages (controls)
user interaction in an application domain to allow
for rapid and consistent development. A UIMS
can be viewed as a tool for increasing program-
mer productivity.”

TAE Plus is a tool for designing, building and tai-
loring an application's user interface (UI) and for
controlling the designed UI throughout the appli-

cation's execution. The main component of TAE
Plus is a WYSIWYG user interface designers’
"WorkBench" that allows an application developer
to interactively construct the look and feel of an ap-
plication screen by arranging and manipulating
"interaction objects" (e.g., radio buttons, menus,
icons, stretchers, rotators, etc.).

Once the application's screen has been designed,
the WorkBench saves the user interface details in
a resource file. TAE Plus includes runtime ser-
vices, Window Programming Tools (WPTs),
which are used by application programs to display
and control the user interfaces designed with the
WorkBench. Since the WPTs access the resource
file during execution, the user interface details
remain independent from the application code, al-
lowing changes to be easily made to the look and
feel of an application without recompiling or re-
linking the software. To change the user inter-
face, the designer returns to the WorkBench, dy-
namically makes the modifications, and the
resource files are automatically updated. The
next time the application is run, the modifications
will be in effect. Figure 1 illustrates the TAE Plus
structure.

TAE
WorkBench
Devaloper's
aic
Workstation
Rasource
Fite
QOperator's Application
rogram /
{\‘ WPT
Graphic

Workstation

Figure 1. TAE Plus Plus Structure

In addition to providing the WPT runtime subrou-
tines, TAE Plus also offers control of interaction
objects from the interpreted TAE Command Lan-
guage (TCL). This capability provides an extreme-
ly powerful means to quickly prototype an applica-
tion's use of TAE Plus interaction objects and add
programming logic without the requirement to
compile or link.

INTERACTION OBJECTS AS BUILDING
BLOCKS

The basic building blocks for developing an appli-
cation's user interface are a set of interaction ob-
jects. All visually distinct elements of a display
that are created and managed using TAE Plus are
considered to be interaction objects. Within TAE
Plus, interaction objects fall into three categories:
user-entry objects, information objects and data-
driven objects. User-entry objects are mecha-
nisms by which an application can acquire infor-
mation and directives from the end use, and in-
clude radio buttons, text entry fields, scrolling text
lists, pulldown menus, and push buttons. Infor-
mation objects are used by an application to in-
struct or notify the user, such as contextual on-
line help information displayed in a scrollable
static text object or brief status/error messages
displayed in a bother box. Data-driven objects are
vector-drawn graphic objects which have been
"connected” to an application data variable, and
elements of their view change as the data values
change. Examples are dials, thermometers, and
strip charts, The real-time data-driven objects
are the most recent addition to the TAE Plus inter-
action object collection and currently, the types
supported include rotators, stretchers, discretes,
text and realtime graphs. Figure 2 illustrates the
current set of TAE Plus interaction objects (which
are referred to as items in the WorkBench). For
advanced screen designs, these items can be
grouped or composed into larger interaction ob-
jects, called panels by the WorkBench.

/ Pansl

i

Pulidown __{
Menu >

display informaton 10 4§ — Tex1 Displey

user. The user can
fdecrolt theough the infor-
tion, but cannot change
Cotor
© Biack @ Navy ¢ Radio Button

© Golvemrod © Red Bank
o Green © Shy Blue

Color? E e Toxt Fiold

A latter

Scrollabie e d
Text tist

i
wor —— (R

Ths is an ednabis aes.
@f—— Papesdit
House °
Action
sien —p G G
R - ©®
Taxt Owcreies
. - 44— Data-driven
W D o~ O
Sireichers Rotators Reakime graphs

Figure 2. Current set of TAE Plus interaction objects

The use of interaction objects offers the application
designer/programmer a number of benefits with
the expected payoff of an increase in programmer
productivity. [2]

* The interaction objects work together both visu-
ally and behaviorally to provide a consistent look
and feel for the application's user interface. This
consistency translates into reduced end-user
training time, more attractive (from a graphic de-
sign point of view) screens, and an application
which is easier to use.

* Interaction objects provide a common frame-
work for diverse sets of application programs, and
serve as a base set of well-documented standards
for user interfaces in systems composed of many
separate application programs.

* The set of user entry interaction objects covers
most common data entry and manipulation
needs, allowing the application programmer to
spend more time on the content of the application
program. The data driven interaction objects pro-
vide a standard means of displaying realtime data
graphically. The object architecture also enables
quick development and addition of new interaction
objects into the TAE Plus object library.

¢ The interaction objects have been thoroughly
tested and debugged, allowing the programmer to
spend more time testing the application, and less
time verifying that the user interface behaves cor-
rectly. This is particularly important considering
the complexity of some of the objects, and the pro-
gramming effort it would take to code them
scratch.

WORKBENCH SCENARIO

The WorkBench provides an intuitive environ-
ment for defining, testing, and communicating
the look and feel of an application system. As a de-
signer tool, it provides the following key features:

* Customization and direct manipulation of
user interaction objects

* Application code generator

* Capability to dynamically define
"connections" between interaction objects

* Rehearsal capability to "try out” sequencing
of the user interface design

* Icon editor and support for raster objects

* Undo capability

¢ Help icon/button on-line support

¢ Capability to dynamically draw and define
data-driven graphic objects

Let's walk through a simple design scenario to get
a feel for how the WorkBench operates. The appli-
cation is a hardware monitoring task for a satel-
lite data handling facility and the designer is go-
ing to layout the user interaction in which the

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 3. Hand-drawn sketch of application's
user interface to be created with WorkBench

(R [v+ 71: WorkBench]| ?

Resource File: Hide i‘h

Grid MM
WorkBench Mode: Undo E‘“
@ Move/Resize/Edit New Panel E.’

O Set Default Yalues
QO Connections New item [pud-i

Current Seleclion:
-~~~ WorkBench Command Menus ----

N Gow N Goee N (0TS N

]

Panel Name (1-10 chars):
Title: fHonihr J

Heip Five: [T £dit

[sHELPLIB /menitor]

Border Size in Pixels: D
Grid Size in Pixels:

Background Color Foreground Color Fent

aquamarine aquamarine fixed
blue dlue variadle

ox [l apeLy mml ctost [l

Figure 4. WorkBench’s Main Menu
and Panel Specification Panel

.] 1tem Specification ||
It Name (1-8 chars): [cham] INTERNAL DATA TYPE
Stri
P e Qe
OReal Constraiats
Titte: []

Is Null Yalue Allowed?

Minimum Yector Count QOyes @ o

Maximum Yector Count Generates Events?

Maximum String Size 650 Qyes O

Presentation Type

Obutten Oicon Opagerdit O pulidawn @ radio
Ostatie Otext Otextdisp Otextlist Q) workspie petails

Background Celor Foreground Color Font
parent] parent]
aquamarine aquamarine fixed
blue blue variable
o [weur (B clos: (N
— —

Figure 5. Defining the interaction
objects to reside in a panel.

operator is prompted for a hardware channel
number. Once the operator selects a channel, a
new panel appears with a realtime sliding bar ob-
ject displaying the amount of data flowing
through the channel. Figure 3 shows a rough
sketch of the two panels which are to be designed
with the WorkBench in this scenario.

Functionally, the WorkBench allows an applica-
tion designer to dynamically lay out an application
screen, defining its static and dynamic areas.

The tool provides the designer with a choice of pre-
designed interaction objects and allows for tailor-
ing, combining and rearranging of the objects. To
begin the session, the designer needs to create the
base window into which interaction objects will be
specified. He/she selects New Panel from the
main WorkBench menu, which displays the panel
specification panel (Refer to Figure 4) where the
designer specifies presentation information, such
as the title, scroll option, font, color, and optional

on-line help for the panel Monitor.

The designer is now ready to define the interaction
items to reside in the panel. He/she selects New
Item from the WorkBench main menu and is pre-
sented with the item specification window. The de-
signer defines both the presentation information
and the context information. The item specifica-
tion window has an associated Constraints (i.e.,
context) window within which the labels for each
entry of a radio button bank object are specified
(refer to Figure 5). For the scenario we are follow-
ing here, the designer has created a radio button
bank for the channel numbers, a cancel and okay
button and a panel help icon. For icon support,
the WorkBench has an Icon Editor, within which
an icon can be drawn, edited and saved.

The designer also has the option of retrieving a
"palette” of items (by selecting File....Include from
the WorkBench menu). From this collection of
previously created items, the designer can select
and copy appropriate objects. The ability to reuse
items saves programming time, facilitates trying
out different combinations of items in the prototyp-
ing process, and contributes to standardization of
the application's "look and feel". If an application
system manager wanted to ensure consistency
and uniformity across an entire application's UI,
all developers could be informed to use only items
from the application's palette of common items.

The designer goes through the same process to
build the realtime display panel, DataFlow. This
simple panel is made up of a data-driven stretcher
item, selected from a pre-defined pallete of "output
objects”, and a quit button. The WorkBench pro-
vides a drawing tool [5] within which the static
background and dynamic foreground of a data-
driven object can be drawn, edited and saved.
Once the object is created, the designer identifies
presentation attributes for the object (i.e. the color

e

DRIGINA" ©r - -

R]

OF POCR Gk ity

thresholds, maximum/minimum, delta).

Most often an application's UI will be made up of
a number of related panels, sequenced in a mean-
ingful fashion. Through the WorkBench, the de-
signer defines the interface "connections”. These
links determine what happens when the user se-
lects a button or a menu entry. The designer atta-
ches "events"” to interaction items and thereby des-
ignates what panel appears and what program
executes when an event is triggered. Events are
triggered by user-controlled I/O peripherals (e.g.,
point and click devices or keyboard input). In Fig-
ure 6, the designer has specified links causing the
Dataflow panel to appear when the end user se-
lects the option marked Channel 1 and the process
Flowcompute to be executed. In turn, Flowcom-
pute is the application process containing the
data variable that drives the variations in appear-
ance of the item BarSlide .

TAE Plus also offers an optional help feature
which provides a consistent mechanism for sup-
plying application specific information about a
panel and any interaction items within the panel.
In a typical session, the designer elects to edit a
help file after all the panel items have been de-
signed. Clicking on the edit help option brings up
a text editor window in which the appropriate in-
formation can be entered. The designer can then
define any button item or icon item to be " the”
help item for the panel (in the scenario we are fol-
lowing, it would be the Help icon in the panel
Monitor). During the application operation, when
the end-user clicks on the question mark item,
the cursor changes to a "?". The end-user then
clicks on the panel itself or any item in the panel
to bring up a help panel containing the associated
help text.

Figure 6. o
Using the WorkBench to define “connections’.

Having designed the layout of panels and their at-
tendant items and having threaded the panel and
items according to their interaction scenario, the

designer must then be able to preview (i.e., to re-
hearse) the interface's operation. With this poten-
tial to "test drive" an interface, to make changes,
and to dry-run again, iterative design becomes
part of the prototyping process. When the design-
er selects the rehearse option (by selecting Utili-
ty....Rehearse from the WorkBench Menu), the
screen is cleared and the WorkBench goes
through the entire sequence as if the application
were executing. With the rehearsal feature, the
designer can evaluate and refine both the func-
tionality and the aesthetics of a proposed interface.
After the rehearsal, control is returned to
wherever the designer left off in the WorkBench
and he/she can either continue with the design
process or save the defined Ul in a resource file
(by selecting File....Save from the WorkBench
Menu).

Developing software with sophisticated user inter-
faces is a complex process, mandating the support
of varied talents, including human factors experts
and application program specialists. Once the Ul
designer (who may have limited experience with
actual code development) has finished the UI, he/
she can turn the saved UI resource file over to an
experienced programmer, As a further aid to the
application programmer, the WorkBench's
"generate” feature (Utility....Generate) produces a
fully annotated and operational body of code
which will display and manage the entire Work-
Bench designed Ul. Currently, source code gen-
eration of C, Ada and TCL are supported, with
bindings for Fortran and C++ expected in later
TAE Plus releases. The programmer can now add
additional code to this template and make a fully
functional application. Providing these code
"stubs” helps in establishing uniform program-
ming method and style across large applications
or a family of interrelated software applications.

WINDOW PROGRAMMING TOOLS (WPTs)

The Window Programming Tools (WPTs) are a
package of application program callable subrou-
tines used to control an application's user inter-
face. Using these routines, applications can de-
fine, display, receive information from, update
and/or delete TAE Plus panels and interaction ob-
jects (refer to Figure 7 for a current list of WPT).
WPTs support a modeless user interface, mean-
ing a user can interact with one of a number of in-
teraction objects within any one of a number of
displayed panels. In contrast to sequential mode-
oriented programming, modeless programming
accepts, at any instance, a number of user inputs,
orevents. Because these multiple events must be
handled by the application program, event-driven
programming can be more complex than tradi-
tional programming. TheWorkBench's auto-
generation of the WPT event loop reduces the risk
of programmer error within the UI portion of an
applications’' implementation.

ORIGINAL FECE o
OF PCOR QUALITY

Wpt_BeginWait Display Busy Indicator
Wpt_CloseItems Close Items on a Panel
Wpt_ConvertName Get the X Window Id of a Names Window
Wpt_EndWait Stop Displaying Busy Indicator
Wpt_Init Initialize the Window System
Wpt_ItemNindow Get Windowld of Window for an Item
Wpt_MissingVal Determine if Missing Parameter Values
Wpt_KawPansl Display an Interaction Panel
¥Wpt_RaxtEvent Get Next Panel-Related Event from WPT
Wpt_PanelErass Erase a panel from the screen
Wpt_PanelResat Reset Panel to Initial Values
Wpt_Panalkessage Display a Message for a WPT Panel
Wpt_PanelWindow Get an X Window Id

Wpt_PanelXrid Get the Xr Defined Panel Handle of a WPT Panel

Wpt_ParmReject Reject the Current Value of a Parameter
Wpt_ParmUpdate Update a Parameter on a Displayed Panel
Wpt_ViawUpdate Update the view of a Parameter on a Displayed Panel

Figure 7. The Window Programming Tools (WPTs)

The WPTs utilize the X Window System™ [10] as
its base windowing system. One of the strengths of
X is the concept of providing a low-level abstrac-
tion of windowing support (Xlib), which becomes
the base standard, and a high-level abstraction (X
toolkits), which has a set of interaction objects
(called "widgets" in the X world) that define ele-
ments of a UI's look and feel. The current version
of TAE Plus (V3.2) is implemented with the latest
release of X (X11.3) using the Xray toolkit, which
was distributed with earlier versions of X. We are
rewriting our WPTs to utilize the X Toolkit, which
is becoming a de facto toolkit standard. The initial
approach is to base our default set of interaction
objects on the HP widget set delivered with the ge-
neric M.L.T. delivery of X (and which is in the
public domain) while supporting an open archi-
tecture that allows adding to the widget set. A
“cookbook” explaining the steps to be taken to re-
place/add widgets and update the WorkBench is in
progress. This will enable TAE Plus to be used for
designing and managing the user interface that
adheres to whatever Ul style is defined by an ap-
plication group to be their preferred widget set.

The WPTs also provide a buffer between the appli-
cation program and the X Window System servic-
es. For instance, to display a WorkBench-
designed panel, an application makes a single call
to Wpt_NextPanel. This single call translates into
a function that consists of about 2800 lines of C
code and makes about 50 calls to X Window Sys-
tem routines. For the majority of applications, the
WPT services and objects supported by the Work-
Bench provide the necessary user interface tools
and save the programmer from having to learn
the complexities of programming directly with X.
This can be a significant advantage, especially
when considering that the full set of 17 Wpt rou-
tines consist of 5800 lines of C code and make a to-
tal of between 300-400 X calls.

PROTOTYPING IN TAE COMMAND
LANGUAGE (TCL)

To provide an easy method for displaying and ma-
nipulating the newly designed user interface, we
created a simple set of commands ("WPT" com-
mands) within the TAE Command Language
(TCL).

TCL offers a high-level set of commands used to
invoke and manage application functions. Com-
mands can be invoked dynamically during an in-
teractive session or used to build command proce-
dures.An advantage TAE Plus has over some
other UIMS is that it does not just support the
user interface component of an application, but
has a full set of integrated tools to fully support an
application, either a prototype or an operational
version. These services include parameter manip-
ulation, message logging, logon/logoff procedure,
data file I/O, operating system services, scripting
capability, session logging, procedure building
capability, on-line help, and user-site tailoring of
TAE Plus commands. Because user interface tools
are integrated with general purpose application
management services, the application need not be
tightly tied to a particular operating system or
computer.

Since TCL is an interpreted language, the com-
mands can be used to prototype an application
without having to recompile or relink every time a
change is made. Just as with WPT routines used
by application programs, the WPT commands can
be used to directly define panels and items, or they
can be used to access WorkBench-generated re-
source files that contain pre-defined panels and
items. While the intended use of these commands
is for prototyping, if the overhead performance of
executing TCL commands is acceptable, then
command procedures using WPT commands
would be appropriate for operational systems.

TAE PLUS ARCHITECTURE

The TAE Plus architecture is based on a total sep-
aration of the user interaction management from
the application-specific software. The current im-
plementation is a result of having gone through
several prototyped versions of a WorkBench and
graphic support development during the 1986-87
period, as well as building on an exisiting appli-
cation management system, the original TAE (af-
fectionately referred to as "TAE Classic"). (3] TAE
Classic architecture, which was designed in 1980,
was based on a total separation of the user interac-
tion in a much stricter sense than the TAE Plus
implementation. All user dialogue was directed
through a terminal monitor, including dialogues
initiated from within an application. This central
control of the UT easily facilitated the goal of pro-
viding a consistent look and feel across an applica-

Lo L TN S e

L2

O 7 B VRO i

tion, but was limited to an ASCII terminal.

The advent of the graphic workstation inspires
more elaborate user interfaces and a closer inter-
relationship between the application program and
the UL. The TAE architecture was enhanced to al-
low for an application to directly control the user
interactions, while still maintaining presentation
independence (i.e., an application doesn't need to
know any of the details as to how a request for data
is actually being presented to the user, only what
the data is). Figure 8 illustrates how the TAE Plus
structure maintains Ul/application independence
while providing run-time services to control and
manipulate the user interactions from within an
application.

E3IREES

Deaveloper's \ TAE /
R el N M
= -—py e

Application
pechic
Objects

Qrophic
Workstason
Operator's

X Window Application
System
WPTe

Qraphic

Workstason
Figure 8.

TAE Plus architecture maintains separation
of UI and application elements

SELECTION OF AN IMPLEMENTATION
LANGUAGE

TAE Classic is implemented in the C program-
ming language, which has proven to be an effi-
cient and standard language across different _
hardware platforms, thus allowing for the porting
of TAE source code with reasonable ease. Howev-
er, we felt a "true” object-oriented language
would provide us with the optimum environment
for implementing the TAE Plus graphical user in-
terface capabilities. (See Chapter 9 of Cox [3] for a
discussion on the suitability of object-oriented lan-
guages for graphical user interfaces.)

In early 1987, before committing to an object-
oriented language and as a means of demonstrat-
ing the utility of the X Window System in our
UIMS concept, we built a rapid prototype of TAE
Plus, using Smalltalk™ to implement the Work-
Bench. This proved to be a beneficial learning ex-
perience. The prototype demonstrated that object-
oriented programming is a productive and effec-
tive method for building user interfaces. Al-
though Smalltalk enabled us to generate a proto-
type in a timely manner, several concerns did
surface during the implementation. For instance,

at the time of the prototyping effort, Smalltalk was
not based on the X Window System, which meant
the WorkBench and the WPTs had different imple-
mentations of the interaction object functions.
Another concern with the Smalltalk implementa-
tion was that the designer had to have some un-
derstanding of Smalltalk's interface conventions --
not a desirable feature since the user interface for
applications operating in the TAE Plus environ-
ment would have a different set of conventions im-
posed by an X-based Window Manager. The issue
of distribution of TAE Plus with a Smalltalk appli-
cation was also a problem. With TAE, distribution
only involves acquiring a license from COSMIC™
(NASA's distribution center), but for a site to run
the WorkBench, they would also need a Smalltalk
license. The limited use of Smalltalk in our user
community made this undesirable. For these and
other reasons [15] we looked at other languages
for the operational implementation of the Work-
Bench .

Though the X Window System is written in C, we
did not want to constrain ourselves to a procedure-
based language, especially in light of the power of
C++ and Objective C, and the fact that interfaces
from these object-based languages exist to the X
runtime library. For the past several years, we
have closely followed the C++ versus Objective C
debate. The Objective C argument is strong -- the
language is a marriage of two powerful languages
(Smalltalk and C), and provides much of the
Smalltalk elegance without severe performance
penalties. We selected C++, however, for several
reasons [15]. For one, C++ seems to be a
“cleaner” language (i.e., it is a conceptually
strong expansion of C) and is becoming increas-
ing popular within the object -oriented program-
ming community. Another strong argument for
using C++ is the growing availability of existing
public domain X-based object class libraries. Uti-
lizing an existing object library is not only a cost
saver, but also serves as a learning tool, both for
object-oriented programming and for C++. Deliv-
ered with the X Window System is the InterViews
C++ class library and a drawing utility, idraw,
both of which were developed at Stanford Universi-
ty. [4,5] The InterViews C++ class library has
many attractive features. The class structure has
gone through several major iterations and the
current design is clean. The idraw utility is a so-
phisticated direct manipulation C++ application,
which allows the WorkBench to create, edit and
save the graphical data-driven interaction objects.

Many of the current implementations of C++ com-
pilers are pre-processors generating standard C
code, thus enabling the operational TAE Plus code
to be delivered in C code and allowing for ease in
porting. With this option and by utilizing sophisti-
cated public domain software packages (X Win-
dow System, InterViews, and idraw) we avoid re-
quiring our user community to purchase any
additional software licenses or compilers.

ORIGINAL PAGE 13
OF POOR QUALITY

Because of NASA's commitment to use Ada™ for
all Space Station software development, the ques-
tion arises "why not Ada"? We do not consider
Ada a purely object-oriented language. {3,11,12,17]
As mentioned earlier, we felt that the TAE Plus
development would be better served by a "pure" ob-
ject-oriented language -- one that supports data
encapsulation, inheritance and polymorphism.
These are the features associated with the type of
object-oriented programming supported by Small-
talk and C++. Since TAE Plus software services
can be accessed by Ada applications, we feel that
implementing the TAE Plus environment in a
pure object-oriented language is the most effective
approach at this particular time.

PORTABILITY and MAINTAINABILITY

TAE is designed to be portable. At present, TAE
Classic is successfully operating on 14 Unix-based
computers, VAX/VMS and the IBM/VM environ-
ment. TAE Plus base development is being done
on a Sun workstation under Unix. As of February
1989, it is also operational under Unix on the Apol-
lo, VaxStation II (Ultrix), HP9000, Masscomp and
the Macintosh II (A/UX). Ports are in progress
for the IBM RT and IBM PS/2 under AIX and the
VAX under VMS. TAE Classic has over 230 in-
stallations, of which 64 are NASA. The current
beta version of TAE Plus is located at over 100
world-wide beta sites, including at least 30 NASA
installations.

Every system is maintainable; how easy it is to
maintain is the issue. When a UIMS is used as a
tool to build and support an application's user in-
terface, there is a legitimate concern about the ap-
plication's dependency on a "black box". (Since an
application program's Ul control is isolated in the
UIMS, it is frequently perceived by application
programmers as a "black box".[6]) The UIMS ar-
chitecture assure developers that corrections and
upgrades to itself will have a minimal impact
within the application domain. We knew when we
began that TAE Plus was targeted for wide appli-
cation utilization and for different machines, so
ease of maintenance has always been important.
By providing the application callable WPTs and
WPT function commands, applications are isolat-
ed from the windowing system, and thus, ifin a
few years a newer, faster, fancier windowing
standard shows up, only the WPTs require updat-
ing or rewriting; the application code is not affect-
ed. In effect, this is what we're doing with the re-
write of the WPTs to use the X11 Xtoolkit
intrinsics. All applications, as well as the Work-
Bench, will get enhanced capability and perfor-
mance without making any changes to them-
selves.

User support is another facet of maintainability.
Since the first release of TAE Classic in 1981,

we have provided user support through a fully
staffed Support Office. This service has been one
of the primary reasons for the success of TAE.
Through the Support Office, users receive an-
swers to technical questions, report problems, and
make suggestions for improvements. In turn, the
Support Office keeps users up-to-date on new re-
leases, provides training sessions, and sponsors
user workshops and conferences. This exchange
of information enables the Project Office to keep
the TAE software and documentation "in working
order” and, perhaps most importantly, take ad-
vantage of user feedback to help direct our future
development.

NEXT STEPS

The current TAE Plus provides a powerful and
much needed tool for the continuum of software
engineering -- from the initial design phases of a
highly interactive prototype to the fully operational
application package. However, there is still a long
list of enhancements and new capabilities that we
will be adding to TAE Plus in future releases.
Features included on the "Wanted List" are exten-
sions to the interaction objects, particularly in the
data-driven object category; integration with the
Open Software Foundation's (OSF) User Environ-
ment Component (UEC); direct manipulation sup-
port for application programs; ports to new work-
station platforms; on-line tutorial and training
tools; introduction of hypermedia technology; inte-
gration of expert system technology to aid in mak-
ing user interface design decision; and imple-
mentation of additional user interface designer
tools, such as a WYSIWYG graph builder.

CONCLUSION

Building large scale interactive systems has been
a regular activity at NASA/Goddard Space Flight
Center (GSFC) since the transition from card
readers to interactive terminals. Although the ap-
plications vary from on-board flight instrument
command and control to scientific data analysis,
they have all required software to support the com-
munication between the human user and the ap-
plication tasks. In the early 1980's, GSFC sought
to capitalize on common requirements in human-
computer interaction by building TAE Plus Clas-
sic, a powerful tool for quickly and easily building
consistent, portable user interfaces in an interac-
tive alphanumeric terminal environment. With
the emergence of sophisticated graphic worksta-
tions and the subsequent demands for highly in-
teractive systems, the user interface becomes
more complex and includes multiple window dis-
plays, the use of color, graphical objects and icons,
and various selection techniques. Traditional Ul
paradigms give us only improvished models and

guidelines; they are inadequate for what can be
accomplished with the new technology. Prototyp-
ing of different user interface designs, thus, be-
comes an increasingly important method for sta-
bilizing concepts and requirements for an
application. At GSFC, we had the requirement to
provide a tool for prototyping a visual representa-
tion of a user interface, as well as establish an in-
tegrated development environment that allows
prototyped user interfaces to evolve into operation-
al applications. We feel TAE Plus is fulfilling this
role by providing a usable, generalized, portable
and maintainable package of development tools.
TAE Plus is an evolving system and its develop-
ment will continue to be guided by user-defined re-
quirements. To date, each phase of TAE Plus's ev-
olution has taken into account advances in virtual
operating systems, human factors research, com-
mand language design, standardization efforts
and software portability. With TAE Plus's flexibil-
ity and functionality, we believe it can contribute to
both more advances and more standardization in
user interface management system technology.

ACKNOWLEDGEMENTS

TAE Plus is a NASA software product being devel-
oped by the NASA/Goddard Space Flight Center
and by Century Computing, Inc. The work is
sponsored by the NASA Office of Space Science
and Applications and the Office of Space Opera-
tions. Special thanks to Dr. Patricia Carlson for
her quality editing and to the TAE Plus Support
Office staff for their tireless service to the TAE
Project.

TAE is a registered trademark of National Aero-
nautics and Space Administration (NASA). It is
distributed through NASA's distribution center,
COSMIC. For further information, contact the
TAE Support Office at GSFC, (301) 286-6034.

REFERENCES

1. Betts, B., Burlingame, D., Fischer, G., Foley, J.,
Green, M., Kasik, D., Kerr, S, Olsen, D., Thom-
as, J., "Goals and Objectives for User Interface
Software”, COMPUTER GRAPHICS, 21:2, 1987.

2 Bleser, Teresa, "TAE Plus Style Guide",
NASA Contractor Document, February 1989.

3. Cox, Brad J., OBJECT ORIENTED PROGRAM-
MING, AN EVOLUTIONARY APPROACH, Ad-
dison-Wesley Publishing Company, Reading,
Massachusetts, 1986.

4. Linton, Mark, Calder, Paul R., "The Design
and Implementation of InterViews", Proceedings
of the C++ Workshop, USENIX, November, 1987,
pp.256-273.

5. Linton, Mark A., Vlissides, John M., Calder,
Paul R,, "Composing User Interfaces with Inter-
views", IEEE COMPUTER, February, 1989

6. Lowgren, Jonas, "History, State and Future of
User Interface Management Systems", SIGCHI
BULLETIN, 20:2, 1988.

7. Myers, B., "Gaining General Acceptance for
UIMS", COMPUTER GRAPHICS 21:2, 1987.

8. Olsen, D., " Larger Issues in User Interface
Man agement”,COMPUTER GRAPHICS 21:2,
1987.

9. Perkins, D.C., Howell, D.R., Szczur, M.R,, "The
Transportable Applications Executive -- an inter-
active design-to-production development system”,
DIGITAL IMAGE PROCESSING IN REMOTE
SENSING, edited by J-P Muller, Taylor & Francis
Publishers, London, 1988.

10. Scheifler, Robert W., Gettys, Jim., "The X Win-
dow System”, MIT Laboratory for Computer
Science, Cambridge, MA., October 1986

11. Schmucker, Kurt J., OBJECT-ORIENTED
PROGRAMMING FOR THE MACINTOSH, Hay-
den Book Company, Hasbrouck Heights, New Jer-
sey 1986.

12, Seidewitz, Ed.,"Object-Oriented Programming
in Smalltalk and Ada", Proceedings of the Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA) Conference, October,
1987.

13. Space Station Program Office, "Space Station
Information System User Support Environment
Functional Requirements”, Final Draft, JSC
30497, April, 1987

14. Stroustrup, Bjarne, THE C++ PROGRAM-
MING LANGUAGE, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1987.

15. Szczur, Martha R., Miller, Philip,
"Transportable Applications Environment (TAE)
Plus: Experiences in "Object"ively Modernizing a
User Interface Environment", Proceedings of the
Object-Oriented Programming Systems, Languag-
es and Applications (OOPSLA) Conference, Sep-
tember 1988

16. TAE Plus V3.2 Documentation Set, Century
Computing, Inc., NASA Contractor Documenta-
tion, January 1989

17. Wegner, Peter, "Dimensions of Object-Based
Language Design", Proceedings of the Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA) Conference, October,
1987.

RenderMan Design Principles

Tony Apodaca
Pixar
3240 Kerner Blvd.
San Rafael, CA 94901

ABSTRACT

The two worlds of interactive graphics and realistic graphics
have remained separate. Fast graphics hardware runs simple
algorithms and generates simple-looking images. Photoreal-
istic image synthesis software runs slowly on large expensive
computers. The time has come for these two branches of com-
puter graphics 1o merge.

The speed and expense of graphics hardware is no longer the
barrier 1o the wide acceptance of photorealism. There is
every reason to believe that high quality image synthesis will
become a standard capability of every graphics machine, from
superworkstation to personal computer. The significant bar-
rier has been the lack of a common language, an agreed-upon
set of terms and conditions, for 3-D modeling systems 1o talk
to 3-D rendering systems for computing an accurate rendition
of that scene.

Pixar has introduced RenderMan to serve as that common
language. This paper examines RenderMan, specifically the
extensibility it offers in shading calculations.

NASA has been at the forefront of developments in computer graphics.
One area in particular has been the quest for realism in synthetic image
generation. Voyager animations done at JPL a decade ago captivated
many with the notion that the process of scientific discovery and the popu-
lar understanding of that process could both benefit from visually accurate
computer gencrated imagery.

Computers have sped up since those animations were made. Tools for
modeling and controlling the animation have also improved. Yet 1o often,
the ability to produce complex and accurate renditions is relegated to spe-
cialized labs. The challenge that we face is in bringing this technology to
the desktop, running it on every graphics platform, linked across the stan-
dard networks, fed from the common databases.

The goal is to unify the often divergent methodologies used in the
computer-aided-design of a 3-D object, the analysis of that object during
simulation, and the accurate representation of the object.

Tom Porter
Pixar
3240 Kerner Blvd.
San Rafael, CA 94901

What is RenderMan?

RenderMan is an interface between 3-D modeling systems and photoreal-
istic rendering systems. Modeling is the process of describing objects 10 a
computer. We use modeling here to refer to all aspects of describing a
scene, including its dynamics. Rendering is the process of generating an
image of the scene from a given viewpoint. RenderMan is an interface
proposal which will permit a large variety of geometric modelers to talk to
a large variety of renderers with a straightforward, common format.

The central problem in making such a proposal is to accommodate the
needs of advanced rendering in a clean way, while allowing standard CAD
databases to feed the interface. Only then can photorealistic image syn-
thesis be brought under the same wing, integrated into the same computing
environment as other aspects of CAD and simulation.

Shape and Shading

An overriding principle in the design of RenderMan used to solve this
problem is a recognition that an interface proposal must distinguish clearly
between shape and shading, between the geometry of the scene and the
visual characteristics of the geometry. The visual complexity of real world
imagery is not found in the general shape of objects, but rather in the tex-
tures and materials and lighting and dynamics. In fact, the graphics com-
munity already has sufficient CAD tools to specify the shapes of things.
We lack the tools to describe visual qualities, such as atmospheric condi-
tions, reflectivity of materials, and characteristics of light sources.

A second principle is that shading computations need to be far more gen-
eral than the Gouraud and Phong interpolation set forth in the textbooks.
The world is not all plastic. We need rendering systems that can wrap an
atmospheric texture around a spherical planet, that can compute a noise
function to simulate the bumpiness of a surface, that can handle surface
properties other than color, perhaps to compute renditions outside the visi-
ble spectrum.

The RenderMan interface is a specification for approximately 100 sub-
routines with which a modeler can completely describe all of the informa-
tion that a renderer might need to generate an image of a scene. It pro-
vides entry points for geometric information, transformation hierarchies,
color and material property information, camera parameters and output
image characteristics.

The RenderMan interface supports a rich variety of geometric primitives.
For example, convex polygons, concave polygons (with and without
holes), polyhedral models, and a large number of quadric surfaces are sup-
ported. RenderMan includes a very comprehensive bicubic patch primi-
tive, specified with an arbitrary basis matrix. RenderMan also supports
non-uniform rational B-spline surfaces (NURBS).

Support for primitives such as these guarantees that most standard CAD
packages can feed the RenderMan interface quite easily. There are two
significant capabilities of the interface in extending the common notions
about geometry:

First, RenderMan supports procedural primitives. One of the biggest
problems in modeling natural phenomena (such as mountains, plants, fire,
etc.) is that the geometric complexity is enormous. This problem is usually
solved by writing programs which generate all of the tiny detail, rather
than model it by hand. However, it can still be very expensive for the
modeler to generate a huge complex model and then pass it to the renderer,
particularly if the modeler doesn’t know how much of it the renderer really
needs. RenderMan’s procedural primitives permit the user to give the
renderer a pointer to a subroutine which will expand simple objects into
more complicated ones, such as converting a triangle into a fractal moun-
t2in or a sphere into a particle system explosion. Using procedural primi-
tives, the modeler can download a very complex model such as a fractal
into the renderer in a carefully controlled way, so that only the required
amount of detail is sent through the interface.

Secondly, RenderMan has a very general interface for specification of the
arbitrary parameters on a surface. This permits the user to specify not sim-
ply the position and color, but also the surface normals and texture map
coordinates on a per vertex basis. In addition, the vertex structure can
actually be extended by the user at run-time, to include arbitrary informa-
tion of his choosing such as temperature or stress or density or any other
values that might be interesting to his particular application. These param-
eters can then be used to control the shading calculation.

Shading Language

Most software renderers have a subroutine which determines the color of
the surface of an object. Typically, it will implement a single mathemati-
cal equation which uses a simple model of the reflection of light in order to
calculate the contributions of the light sources and texture maps upon the
surface color. The equation often has a lot of parameters (5 to 20, depend-
ing on the renderer) which the user tweaks to control the appearance of
different kinds of materials (plastic, metal, chalk, etc.).

Very often, however, you want the surface to have some characteristic
which you can’t achieve with the fixed equation, such as the use of a tex-
ture map to modify some shading parameter. If you are fortunate enough
to have the source code, you can add your function and recompile. If not,
you are out of luck.

RenderMan changes this model, by providing the facility of the shading
language, a C-like programming language which has new functions and
data types that are specifically designed for the purpose of calculating
colors based on geometric information. Programs which users write in the
shading language are typically small (10 to 20 lines), and are loaded into
the renderer at run-time when they are requested by some part of the scene
geometry. These programs then replace the built-in shading equations.
Users can use this language to customize the shading on a per-object basis.
This new freedom gives the user the power to model the appearance of
objects as carefully as he models their shape.

The shading language supports three basic data types, the float, the
point and the color. point and color are abstract data types
which are actually vectors of floating point values. The standard C arith-
metic operators (*, +, /, etc.) work on these data types. In addition,
there are some new operators for vector dot and cross product. The fami-
liar C conditional and looping constructs are available (except switch),
as are subroutine definitions and calls. There is a rich library of mathemat-
ical functions, as well as a library of functions which implement common
shading operations such as normalizing vectors, transforming points
between coordinate systems, calculating diffuse and specular lighting,
interpolating colors, splining and calculating pseudorandom numbers.

10

RenderMan actually permits the user to define up to four separate shading
language programs which provide different material characteristic infor-
mation about each object: a surface shader, which determines what color
we see when light reflects off the surface; a displacement shader, which
can move the surface small amounts to add dents or fillets which are 100
small or too complex to model geometrically; a light shader, which
describes how luminous objects emit light; and a volume shader, which
describes how light is attenuated as it passes through the interior of a
translucent object. This may seem a bit complicated, but it actually quite a
straightforward way to think about the maiterial properties of objects, par-
ticularly once you’ve seen them in action,

Shaders

The renderer calls the appropriate shading language program (shader)
every time a light intensity, surface color, etc., is required. When a shader
is called, it has available to it a large number of global variables which are
provided by the renderer. These variables include all of the geometric
information that the renderer knows about the surface being shaded, such
as the position P, the surface normal N, the color Cs and opacity Os
that the user specified, the texture coordinates s, t and others. The vari-
ables that the user applied to the vertices of his primitives are also avail-
able inside the shaders. Each type of shader accomplishes its specified
task by calculating and modifying a specific part of this global state. For
example, a surface shader is responsible for calculating and setting Ci,
the color that the eye sees. A light shader is responsible for setting C1,
the light color.

Listing 1 shows an example of a simple surface shader. This shader calcu-
lates the reflectivity of a metallic object, using a simple equation. It makes
use of the standard library functions ambient, diffuse and specu-
lar to determine the amount of light arriving on the surface from the light
sources. These functions implement three customary equations based on
the direction and strength of the incoming light. If those functions had not
been appropriate, the surface shader has access to the lights and could have
calculated whatever values it pleased from them. The shader then calcu-
lates a weighted average of the incoming light intensities and multiplies by
the color of the object. Notice also that the shading language took care of
the multiplication of float values by color vectors automatically, freeing
the user from having to write the ugly loops which would have been
present in most other languages.

The type of the shader (in this case surface) indicates its intended
function. Parameters to the shader are specified using a syntax similar to
ANSI C. This shader demonstrates another other unique feature of the
shading language, the presence of default values in the parameter list.
When a modeler requests this shader, it specifies the parameters it wishes
to override by name. Any parameter not mentioned is left with the default
value.

surface metallic (float Ka = .4,
Kd = .4, Ks = .6,
roughness = .25;)
{
N = faceforward(normalize(N}};
Ci =Cs * (Ka * ambient () +

Kd * diffuse(N) +
Ks * specular (N,

-normalize(I), roughness));

Listing 1. A simple shader which simulates the
reflection of light off of metallic objects.

Listing 2 demonstrates a displacement shader. The purpose of a displace-
ment shader is 10 move the position of the surface around a little bit to
simulate tiny fillets, dents and other minor surface perturbations. This
greatly adds to the visual interest of an object, and makes it look much
more realistic. This particular shader calculates a fractal dentedness using
several iterations of noise, a function which produces a semirandom value
which changes slowly over the surface of the object (using a purely ran-
dom value would distort the surface beyond recognition, since adjacent
points would have no relationship to each other). Getting the same effect
by trying to model the intricate surface dents would be extremely difficult.

displacement dent (float scale = 1.0;)
{
float size = 1.0, displace = 0.0;
for (i=0; i<6; i+=1.0) (

/* Calculate a simple

fractal 1/f noise function */

displace += abs (.5 - noise(P * size))

/ size;

size *= 2.0;

}

/* Displace the surface and
recalculate surface normals */

P += N * pow(displace,3.0) * scale;

N = calculatenormals(P);

Listing 2. Shader which simulates dents
by moving the surface a small amount.
This adds visual complexity which is very
difficult to model convincingly using
standard geometric modeling techniques.

Sensor Simulations

RenderMan can generate output much more general that the simple
pinhole camera/RGB images provided by current systems. RenderMan
can, for example, compute color in multichannel spectral spaces. Landsat
data can be used as input texture maps to control muluple surface parame-
ters mapped onto a planet surface. Shading language procedures can be
wrilten to use surface parameters such as temperature; in this way, mul-
tichannel sensor image acquisition can be simulated.

RenderMan allows the user to specify other parameters of the simulated
camera, in order to provide information to renderers which support
advanced rendering features. For example, the user can set the shutter
time as well as the focal length, focal distance and f-stop of the camera, to
simulate motion blur and depth-of-field. RenderMan allows the user to
specify the positions, shapes and colors of the objects at multiple times
during the shutter interval, so that sophisticated renderers that can simulate
motion blur will know how the objects are moving.

High quality rendering requires a lot of attention to the sampling and filter-
ing which is performed on the output pixels, in order to avoid aliasing.
RenderMan gives the user independent control over the number of shad-
ing samples per pixel and the number of hidden surface samples per pixel,
as well as the size and shape of the pixel filter function. In addition to the
standard display parameters of output image name and device type and
image resolution, RenderMan supports gamma correction and exposure
control. These functions compensate for a monitor’s phosphors’ tendency
to glow with exponentially increasing brightness as voltage increases
linearly. It also contains the new concept of an imager shader, another
shading language program which permits the user to implement various
color manipulations on final pixels just before they are put into the frame-
buffer or file.

1

Conclusion

The RenderMan interface is a powerful interface between 3-D modeling
systems and photorealistic rendering systems. It is designed to bring the
highest quality in image synthesis into widespread use. Modern CAD
modeling tools can feed RenderMan from their standard database of
geometry. RenderMan provides simple built-in shading language pro-
ccdures to provide for a range of standard material properties.

RenderMan provides a shading language for far-reaching extensibility in
user specification of specific visnal characteristics of the scene. The inter-
face exposes a great deal of control over the shading process; modclers are
encouraged 1o offer user-defined shading language procedures for render-
ers to execute. By partitioning the modeler/renderer interface in this way,
high-quality rendering can be made accessible 10 a vast array of modeling
systems and CAD databascs.

RenderMan is the only graphics interface proposal to deal with issues in
high-quality synthetic image generation such as antialiasing, texture map-
ping, motion-blur, shadows, spectral color models and programmable
shading languages. These advanced features are not available on most of
the rendering software and hardware that is currently available. As such,
RenderMan represents a goal for sophisticated new graphics hardware
and rendering software to shoot for.

Users of graphics workstations and personal computers will be the biggest
winners, as photorealism becomes inexpensive, commonplace and compa-
tible across a wide range of platforms.

Copies of The RenderMan Interface, Version 3.0 are available from
Pixar, 3240 Kerner Blvd., San Rafael, CA, 94901. Please enclose $15 to
defer the cost of printing and mailing.

Further Reading

Foley, James D., and Andries VanDam, Fundamentals of Interactive Com-
puter Graphics, Addison-Wesley, Reading, MA, 1982,

Hall, Roy, lllumination and Color in Computer Generated Imagery,
Springer-Verlag, New York, 1988.

Joy, Kenneth L, et al, (ed.) Image Synthesis, Computer Society Press,
Washington, DC, 1988.

Pixar, The RenderMan Interface, Version 3.0, May 1988.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-
Hill, New York, 1985.

A NEW STANDARD BY IRIS GRAPHICS LIBRARY

Bob Petty
Silicon Graphics

(Paper not provided by publication date.)

<
" RAGE_[T INTENTIONALLY BLANK

PRECEDING PAGE BLANX NOT FilLMEo

opl s

NEWS

Arnold Kaber
Sun Micro Systems

(Paper not provided by publication date.)

15 eaGE,_[] INTENTIONALLY. BLANK

PRECEDING PAGE BLAAC [1A™ 1o

SR hdke i ko e

NOO-20654

The Real Time Interactive Display Environment (RTIDE},
a Display Building Tool Developed by
Space Shuttle Flight Controllers.

Thomas A. Kalvelage

Rockwell Shuttle Operations Company
NASA Johnson Space Center
Houston, TX

ABSTRACT

NASA's Mission Control Center, located at Johnson Space Center, is
incrementally moving from a centralized architecture to a
distributed architecture. Starting with STS-29, some host-driven
console screens will be replaced with graphics terminals driven by
workstations. These workstations will be supplied realtime data
first by the Real Time Data System (RTDS), a system developed in-
house, and then months later (in parallel with RTDS) by interim and
subsequently operational versions of the Mission Control Center
Upgrade (MCCU) software package. The Real Time Interactive Display
Environment (RTIDE) was built by Space Shuttle flight controllers to
support the rapid development of multiple new displays to support
Shuttle flights. RTIDE is a display building tool that allows non-
programmers to define object-oriented, event-driven, mouseable
displays. Particular emphasis was placed on upward compatibility
between RTIDE versions, ability to acquire data from different data
sources, realtime performance, ability to modularly upgrade RTIDE,
machine portability, and a clean, powerful user interface. The paper
discusses the operational and organizational factors that drove
RTIDE to its present form, the actual design itself, simulation and
flight performance, and lessons learned in the process.

Key words: Space Shuttle, Mission Control Center, display
building tool, RTDS.

INTRODUCTION

The U.S. Space Shuttle is monitored and controlled from the Mission
Control Center (MCC) at NASAs Johnson Space Center (JSC) in Houston,
Texas. The flight controllers involved in realtime interaction with
the Shuttle work for the Systems Division of the Mission Operations
Directorate (MOD).

In the MCC, the Shuttle telemetry is fed into a large minicomputer
(the Telemetry Preprocessor Computer, or TPC). This machine
decommutates the stream and passes it to a mainframe, the Mission
Operations Computer (MOC). The MOC does simple limit checking and
drives all the displays used by the flight controllers.

17

PRECEDING PAGE BLANK NOT FILMED PAGK_[L__ __INTENTIONALLN BLANS

Workstations are used in the MCC to process offline programs. Flight
controllers and support personnel have written many general and
discipline-specific applications for these machines.

INCO Expert System Project

John Muratore, a NASA flight controller, began the INCO Expert
System Project (IESP) in 1986 (INCO is the callsign for the
Instrumentation and Communication Officer front room flight control
position). This project's goal was to develop and test realtime
rule-based expert system applications in an operational environment,
i.e., during a Shuttle mission.

Because of safety considerations, the project could not use the MOC
or TPC. To get realtime shuttle telemetry into a workstation, a
Loral ADS-100 off-the-shelf telemetry processor was used. It
decommutated the data stream and passed the data to the workstation,
where it was moved to an applications interface with custom-built
software. This entire system was called the Real Time Data System
(RTDS), and it delivered realtime data to MCC workstations years
earlier than previously planned.

RTDS and a set of hand-built application programs were used

successfully on STS-26. These applications were certified for use in
making critical flight calls during ascent.

Impact of Early Delivery of Realtime Data to Workstations.

To begin exploring the possibilities of improved displays, it was
decided to remove a few MOC-driven CRTs from consoles and replace
them with RTDS-driven graphics terminals.

The author, as a flight controller whose primary CRT was to be
replaced, and as an IESP applications programmer, volunteered to
write a few specific display applications. The original intent was
to hand-code one or two narrowly focussed applications.

The idea of replacing CRTs with workstation terminals gained favor,
and more CRTs were scheduled for replacement, including one of the
INCOs CRTs. The INCO is a primary, front-room flight controller, and
needs to monitor a large number of systems. It would be impractical
to hand-code all the displays the INCO would need, so the author
began building a tool (called the Real Time Interactive Display
Environment, or RTIDE). Originally, this tool was to be a
programmers toolkit, allowing rapid development of hardcoded
displays. An internal survey was taken to determine requirements.

OPERATIONAL DESIGN CONSIDERATIONS

In general, the displays that RTIDE produced had to satisfy the
users. To support this broad guideline, specific requirements were

18

drawn up.
The user interface had to be intuitive, consistant, and reliable.

To reduce console clutter, the mouse was chosen as the primary input
device.

To reduce the chance of flight controller confusion, all mouse
buttons had to be treated identically.

To reduce the possibility of selecting the wrong mouseable object,
RTIDE had to inform the user when the mouse cursor was over a object
(absolutely required, due to safety concerns).

RTIDE had to allow the user to interrogate the display for
additional data.

RTIDE had to provide a consistent method of passing information to
the user.

RTIDE had to show data in a variety of ways: as a digital value with
highlighting when limits are exceeded; as a symbolic message when a
value is zero or nonzero; in graphical plot form; and in bar graph
form. All these had to make maximum use of color graphics.

RTIDE had to be able to support display of dynamic schematics, with
lines and boxes driven by telemetry.

MAINTENANCE DESIGN CONSIDERATIONS

RTIDE was designed to provide a powerful user interface, but other
considerations had higher priority. RTIDE would be maintained by
flight controllers whose primary job was flight control, not
software and data file maintenance. Maintenance phase costs had to
be reduced to a minimum.

RTIDE displays had to be buildable by nonprogrammers. There were too
many displays to be done by the limited number of flight controller
programmers.

RTIDE had to be upwardly compatable with display definition files.
Having to change display definition files because of changes to
RTIDE is unacceptable.

RTIDE had to be easily expanded. Not only would this help the RTIDE
manager incrementally improve the system, but it helps other
disciplines who build graphical objects on their own.

RTIDE display definition files had to allow embedded comments. With
this, the documentation of a particular display can be included in
the display definition file. Then the file contains the entire
description of the display and no costly parallel documentation need
be maintained.

19

ORGANIZATIONAL DESIGN CONSIDERATIONS

Although RTIDE would be built and maintained by flight controllers,
the hardware RTIDE ran on and the data sources RTIDE used generally
were not. Consideration must be given to future changes to RTIDEs
environment.

Multiple Data Sources

RTIDE had to be able to access different data scurces. RTDS, an
internal MOD development system, was the original data source.
However, in 1990 the production Mission Control Center Upgrade
(MCCU) realtime data interface will become available, and will have
to be used.

In addition, a data retrieval system called Near Real Time (NRT)
already operates in the MCC workstations, and RTIDE should run off
of NRT data files. Besides providing a method of reviewing flight
events, this will assist in training flight controllers.

Hardware Independance

RTIDE had to be hardware independant. Currently the MCC is
transitioning from its five-year-old Masscomps to new models,
requiring software changes to many offline programs.

Configuration Management

Configuration management was a key factor in basic systems design of
RTIDE. Flight controllers do not have system manager authority over
the machines they use. RTIDE was designed to be as simple and robust
as possible, to increase reliability and to reduce the chance of
misconfiguration.

Time Constraint

RTIDE was started in 6/88, and had to be ready for STS-29, in 2/89.
RTIDE DESIGN
The basic structure had to be powerful enough to support any

reasonable improvement, and simple enough to be maintained by novice
programmers unfamiliar with RTIDE.

Organization

20

The emphasis was on simplicity. RTIDE is a single process, its
executable located in a single file, reducing the chance of having
file permissions changed or files deleted. It also eliminates having
to have the workstation configured a particular way for interprocess
communication. RTIDE uses a single display definition file for each
display. All the documentation for the display can be included in
the same display definition file, eliminating the lag between
documentation and implementation.

Event Driven

RTIDE is event-driven. The user (by pressing a key or mouse button,
or by moving the mouse), the data sources (by supplying new data),
or the operating system (by sending interrupts) may all trigger
events that are detected by RTIDE. Event flags are either used
directly by RTIDE or sent to the object currently selected by the
user's mouse cursor. Event types can be added as desired.

Object Oriented

In the graphics sense, RTIDE is object-oriented. The dynamic symbols
on the screen driven by data are objects. RTIDE keeps track of which
object the mouse cursor is on, and sends event flags to the object
when appropriate.

The hard code determining each objects behavior consists of five
standard functions that are located in one source file (generally
500-1500 lines long). The behavior of an instance of an object is
determined by a data structure maintained by RTIDE. Adding new
objects can be done easily by building this file and adding a
structure definition to the master include file.

User Interface

The user interface i1s designed to be highly interactive, using the
mouse, and as simple as possible. Interaction is needed to request
further data from the display (limit sets, telemetry status, value
range, description, etc).

Display Definition File

The ASCII (for ease of maintenance) display definition file
specifies the display's initial condition. Each entry is a series of
arguments, each setting some variable (e.g., object colors,
messages, data source, etc.).

Program Execution

RTIDE begins by opening the display definition file and reading in

21

the entries there one at a time. Some entrys (screen_size,

data source, etc) are used to configure RTIDE. The static graphics
entries are stored in case the screen is refreshed later. Object
entries are stored in the object list. Comments are not currently
saved. RTIDE then initializes the graphics processor, displays all
the objects, and falls into the main loop.

RTIDE moves constantly through a busy wait loop, first looking for
events, then reacting to them. Every cycle, RTIDE pauses for less
than a tenth of second, allowing the CPU to run other processes.
Because pressing a mouse button interrupts this pause, a user can
increase RTIDEs CPU usage by rapidly pressing the mouse buttons.

If new data appears at the interface (nominally, once a second),
RTIDE begins to update the screen.

To minimize flicker, RTIDE divides its screen update into two
seperate cycles, the process cycle and the display cycle. In the
process cycle, RTIDE goes through the objects one at time (using
each objects process function), using the new data to update the
object. If the object needs to be updated, a draw_me flag is set.
Then RTIDE goes through the display cycle, looking for draw_me
flags. If one is set, RTIDE redraws it using the objects draw
function.

Every cycle RTIDE polls the mouse to find its location. RTIDE
compares the location with the information in its object list to see
if it has entered or left an object. RTIDE, once the mouse cursor
enters an object, only looks to see if it has left the object. This
limitation prevents displays from using objects inside of objects.

The cycling continues until an object {usually the exit object)
forces RTIDE to exit.

FUTURE DEVELOPMENTS

RTIDE continues to be developed, with new objects being developed
for new applications. There is more emphasis being placed on
telemetry-driven schematics to increase the efficiency of displays.

Right now we are placing all the documentation into the display
definition file. That data is not retained by RTIDE. A later version
of RTIDE will save that information, so a user can click on an
object and see a complete description of what the measurement
displayed means.

SIMULATION PERFORMANCE

RTIDE was installed in the MCC console on 2/16/89. After a few weeks
to get the display definition files debugged, RTIDE provided high
quality displays for flight controllers. Flight controllers
particularly like to be able to get more information from the

22

display on request.

RTIDE will support STS-29 in March of 1989.

LESSONS LEARNED

Small Size

We found that running a display, its supporting algorithms, numerous
fault detection algorithms and several other realtime applications
does stress the machine. Keeping the display as efficient as
possible is necessary to allow the entire workstation to keep up
with the data. RTIDEs relative simplicity, originally specified for
other reasons, has kept its executable size down to 237Kb
(approximately 100Kb of which is the Masscomp graphics library).

Health and Status Messages

Experience has shown that it is vital to avoid misleading flight
controllers, and a display should do its part by telling the
controller when the data displayed is useable. The status should be
more than a simple GO/NOGO; it should give the controller enough
information to begin troubleshooting any data problem.

CONCLUSION

A user-friendly display-building tool has been developed. The
object-oriented approach allows rapid display building in realtime
command and control environments. The highly interactive user
interface allows the user to easily access additional data
describing the displays. This tool is being used in support of Space
Shuttle missions.

ACKNOWLEDGEMENTS

The author would like to thank Rich Rodrigquez of NASA, for his
patience, encouragement, and support; John Muratore, for the
opportunity to work on the INCO Expert System Project; and Mike
Guzzo and Sarah Murray, for all the good work they've done on RTIDE.

REFERENCES
1. Muratore, October 1987, Trends in Space Shuttle Telemetry

Applications, Proceedings of the International Telemetering
Conference.

23

KNOWLEDGE RIIE’I:RESENTATION
SPACE FLIGHT OPERATIONS

Carl Busse
Jet Propulsion Laboratory
California Institute of Technology

In space flight operations rapid understanding of the state of the space vehicle is essential. Representation
of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. Space
flight operations personnel must work rapidly integrating personal experience with knowledge representation
provided by real-time data driven displays. Traditional methods have presented only an incomplete summation of
limited system and subsystem information.

New avenues of graphics technology have provided a means for rapid display of complex knowledge and detailed
parametric interrelationships. The use of large high resolution displays coupled with fast display update
rates, on-screen command menu selection, as well as the inclusion of computer graphics and color oriented
knowledge representation and intelligent screen formatting have allowed a rapid transition from information
representation to human response.

The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft
operations envirorment. This has led to the development of several advanced mission systems which incorporate
enhanced graphics capabilities.

These systems include:

1 Spacecraft Health Automated Reasoning Prototype (SHARP),
2) Spacecraft Monitoring Environment (SME),

3 Electrical Power Data Monitor (EPDM),

4) Generic Payload Operations Controt Center (GPOCC), and
5) Telemetry System Monitor Prototype (TSM).

krowledge representation in these systems provides a direct representation of the intrinsic images associated
with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes
easily interpreted contextual graphic displays. These interactive video displays contain multiple display
screens with pop-up Windows and intelligent, high resolution graphics Linked through context and mouse-sensitive
icons and text.

INTRODUCTION

The Jet Propulsion Laboratory operations. Representing com-
is a lead center for NASA's plex knowledge is a difficult
planetary exploration and earth challenge because it requires
science program. In support of operations personnel to in-
this role JPL has pursued areas tegrate on-screen representa-
of technology associated with tion with past cognitive ex-
the advancement of the space- perience to often make demand-
craft operations environment. ing instantaneous decisions.
The space flight operations The Institutional Computing and
environment presents large vol- Mission Operations Division
umes of rapidly changing and (37) of the JPL provides the
complex information to flight flight control and data manage-
control personnel. Rapid com- ment teams, which have sup-
prehension of spacecraft and ported NASA space mission from
ground support systems condi- Explorer 1, to the Viking
tions are essential in flight spacecraft landing on Mars

N90-20655

25
esan d:] INTENTIONALLY. BLANK

PRECEDING PAGE BLANK NOT FILMED

and the Voyager mission to the
outer rim of the solar system
and beyond.

The Division's concentration of
on technology in the mission
operations domain has centered
on the use of enhanced graphics
in support of spacecraft and
related ground system command
and control functions. En-
hanced graphics capability in
the mission environment is sig-
nificant for three reasons.
First, carefully presented high
level knowledge representation
reduces the workload of opera-
tions personnel. Second, com-
puter-based graphics tools

[Schneiderman 1987] improve ac-
curacy of data processing and
assist space flight control
personnel in monitoring space-
craft and mission sensors where
operating data rates may great-
ly exceed the ability of in-
dividuals to monitor success-

fully. And third, as the num-
ber of missions increases, the
number of trained and ex-

perienced flight support per-
sonnel cannot keep up with the
extreme demands caused by in-
formation overload. Graphic
aids and on-screen operator
assistance allow for produc-
tivity enhancement and main-
taining the required level of

flight support. [Hansen 1988]
KNOWLEDGE REPRESENTATION

Systems knowledge can be repre-
sented be via easily visualized
contextual graphic displays
[Park 1985]. These interactive
video displays provide a direct
representation of the intrinsic
images associated with instru-
ment and satellite telemetry
and telecommunications systems.
Multiple display screens with
pop-up windows and high resolu-
tion graphics are linked

throughgh context and mouse-
sensitive icons and text.

In order to optimize JPL's mis-
sion operations environment,
the Space Flight Operations
Section (371) and the Project
Test and Operations Section
(374) have developed unique
methods of knowledge

BEB T-20 NTRIX G TELCON STATSS 3 Y]
41 ST32 16 S1-12 FOSCAEATT 44 S 830 B2 20 OF CCe- 190 B e 2 T EF (MOEF
SOXX W ME FOS0s S AME MK Ik &
RCV AGC % SB EXC % SB ANT
1 ' | 1 2% oW RX
W RECEIVER % NONCOH 2M 4 SB RNG
H 1R LIS 2] W oWR%
WS XMT 1 % S XMT 2 4 STHTA PHR
FF BRK oF NN W %
P XTHTA 1 * XTHTA 2 4 XTHTA PHR
oF 1R WoOKR% LI 3
P XB EXC 4 XB RNG 4 Uso
KRR nOHEX []
M CDU SYNC 4 SB SC F % SB DATA
WO RY [C I I X e ne
* XB MODINO 4 XB SC F SB MODIKD
39 Dr RS S 28

Figure 1 Typical Alphanumeric
Spacecraft Telecommunications
Display

Figure 2 TSM GRAPHIC REPRESE-
NTATION

ORIGINAL PAGE IS
OF POOR QUALITY

26

representation. Mission opera-
tions needs have included on-
screen display of data since
the days of Explorer I. These
original capabilities have
slowly evolved as have the
machines driving them. These
capabilities, evolved in the
present realm of graphics capa-
bility, include primarily al-
phanumerical paged displays,
such as seen in Figure 1, which
have been standardized since
the Viking Mars landing and the
launch of the Voyager spacecra-
ft. Arrows in the display in-
dicate the latest telemetry
data channels updated. These
traditional displays have met
needs of space flight oper-
ationss because of relatively
large mission operations staffs
and relatively low spacecraft
data rates. As the number of
Flight Operations personnel are
reduced and mission operations
are streamlined due to budget-
ary and other considerations,

Table I.

existing personnel and support
systems must function at peak
capacity. The Institutional
Computing and Mission Opera-
tions Division (37) is attempt-
ing to satisfy mission opera-
tions requirements of the fu-
ture by employing the latest
available graphics technology
to provide knowledge represen-
tation as an aid to flight ope-
rations. A display reflecting
increased use of visualization
techniques can be seen in Figu-
re 2. A key element in flight
operations is the need to adeg-
uately represent knowledge con-
cerning states and events. The
graphics requirements needed to
satisfy these needs consist of
unique representational goals.

Specifically included as the
primary knowledge representa-
tion goals in the design of
graphics tools shown in table
I.

data fields

1. Realtime display of large volumes of diverse information
2. Rapid presentation of complex interrelated information
3. Color categorization of interrelated and multiple related

4. Instantaneous display and detection of changes

5. Promote visualization by decomposition of data into
structures and control flows diagrams

6. Enhanced interpretation of information

7. Graphical representation of knowledge states

The Institutional Computing and
Mission Operations Division has
attempted to utilize advances
in display technology to ad-
vance the spacecraft operations
environment. This work has led
to development of innovative
mission systems which incor-
porate enhanced graphics capab-
ilities to assist in flight
operations visualization.

27

This effort has led to develop-
ment of graphics systems which
provide improved representation
of system knowledge which im-
proves the JPL spacecraft and
instrument command and control
process. Because of the large
screen space graphic represent-
ations require these systems
mix graphics with textual rep-
resentation. The flight

support system mentioned incor- flight control systems require,
porate several factors in com- as a minimum, the capabilities
mon which aid in knowledge rep- shown in table II.
resentation and effective visu-
alization of intelligence.
Knowledge representation in

Table IT.

Large high resolution displays

High level windowing capability

On-screen pull-down command menu selection

. Color oriented knowledge representation

Rapid transition from informational representation to
user response

U W N =

Five flight support systems have been developed which provide
examples of knowledge representation through data visualization
made possible by graphics technology. These systems are:

1) Spacecraft Health Automated Reasoning Prototype (SHARP),

2) Spacecraft Monitoring Environment (SME),

3) Electrical Power Data Monitor (EPDM), and

4) Generic Payload Operations Control Center (GPOCC), and
S) Telemetry System Monitor (TSM).

spacecraft Health Automated
Reasoning Prototype (SHARP)

The Spacecraft Health Automated
Reasoning Prototype incor-
porates experience of the lead
Voyager spacecraft teleconm-
munications engineer into a
usable knowledge base. The
Space Flight Operations Section
(371) has provided an indepen-
dent standalone graphics cap-
ability for the prototype.
These representational capa-
bilities will be used in sup-
port of the Voyager spacecraft-
's upcoming Neptune Encounter.
System know-ledge is represent-
ed in terms of annotated space
and ground systems context dia-
grams. Displayed objects are
icons and selectable via mouse
or keyboard.

Figure 3 GRAPHICS DISPLAY FOR
SHARP

ORIGINAL PAGE 1S
OF POCR QUALITY

28

Spacecraft Monitoring Environ-
ment (SME)

The Spacecraft Monitoring En-
vironment has been developed by
the Project Test and Operations
Section (374) and Aura Systems
to aid in the Galileo space-
craft integration and test pro-
cess. The SME provides a real
time autonomous spacecraft test
sequencing and data monitoring
of integration and test ac-
tivity. The SME provides high-
level contextual graphic dis-
plays and windowing capability.
Command success knowledge is
presented by windowing of com-
mand issued with telemetry re-
sponses

Electrical Power Data Monitor
(EPDM)

The Electrical Power Data Moni-
tor is being developed by the
Electrical Power Systems Sec-
tion (342) and Aura Systems.
The EPDM provides power system
engineers with automated con-
text diagrams representing
power system knowledge [Bahrami
1987]. The EPDM will support
the Voyager spacecraft during
the up-coming Neptune En-
counter. EPDM contextual re-
presentation power system know-
ledge is should in figure 5.

29

TATION IN AN SME TEXTUAL DIS-

PLAY

i Tme sl | | EamiueneTine
veig Ay | | Wmenng

0 et

Seacecraft Tome:

YT
Power System

ARG

ok

594

£0097
Powsy
W i
Eiiciency: | AC Powet
885 SH

PRy CCR

I

e

[,

Figure 5 EPDM CONTEXTUAL DIS-

PLAY

Generic Payload Operations Con-
trol Center (GPOCC)

The Generic Payload Operations
Control Center is a conceptual
prototype developed by the Pro-
ject Test and Operations Sec-
tion (374) and Aura Systems to
apply automation and high level
graphics capability to a mis-
sion operations environment.
The GPOCC goal is to couple
expert systems with high level
contextual graphics to display
to increase user comprehension
[D-5435 1987]. A prototype was
developed on an Apple MacIntosh
II to demonstrate user inter-
faces and functionality of the
GPOCC concept. An example of
GPOCC contextual display repre-
sentation is shown in figure 6.

Telemetry System Monitor (T8M)

The Telemetry System Monitor
(TMS) expert system, was devel-
oped by the Divisions In-
strumentation Section (375).
This system, using ART as ex-
pert system shell was developed
on a Sun workstation. The TSM
uses graphics capability to aid
in rapid visualization of the
health and display status of
the Galileo Mission Ground pro-
cessing system and display sys-
tem fault cues [Mouneimne 1989-
1. Knowledge relating the
well-being of the telemetry
system is contained in expert
systems text messages. The
graphic display pin-points
faults area. An example of TSM

ORIGINAL PAGE IS
OF POOR QUALITY

Spacecratt Teme.

Lot Tame P51 Lt Recewe Time
BN

12481823 X 120042169

AACS Stator

e
N
by PFE;

AT AT§
fp= A1 A2 fee2

m[Powskam | COSNam | AACS Kam][—;m—

Figure 6 GPOCC CONTEXT DIS-
PLAY

representation is shown in fig-
-ure 2.

Knowledge Representation in
Future Mission Operations

As spacecraft data rates in-
crease (the Earth Observing
System project 300 Mbps), and
are support by extremely large
and distributed ground data
system the need to provide in-
terpretive knowledge of systems
status and configuration in-
creases. Graphics visualiza-
tion will continue to provide
a significant means to ac-
complish knowledge represent-
nation. Future considerations
in knowledge representation are
shown in table III.

Table III.

alphanumeric

1. Visual man-machine communication to replace

communication.

2. 1Inclusion of hyper-media (including voice
synthesis in knowledge representation.

3. Highly interactive display devices

30

SUMMARY

Knowledge representation in
these systems provides a direct
representation of the intrinsic
images associated with satel-
lite and ground support tele-
communications systems. The
man-machine interface includes
easily interpreted contextual
graphic displays. These inter-
active video displays contain
multiple display screens with
pop-up windows and intelligent,
high resolution graphics linked
through context and mouse-sen-
sitive icons and text.

ACKNOWLEDGMENTS

The author gratefully acknow-
ledges the talent, advice and
suggestions from Mr. Harry
Avant, Dr. Ted Bahrami,
John Carnakis, Mr. David
Hermsen, Mr. Warren Moore, Mr.
Samih Mouneimne, and Dr. James
Willett, of JPL; Mr. Mark Brown
and Dr. Rogers Saxon, of Aura
Systems; and Mr. Bruce Elgin of
Telos Aerospace. I also wish
to thank Mrs. Roberta Gray for
editorial support.

Mr.

The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

REFERENCES

1. Bahrami, K. A., Atkins,

K.L.,

Saxon, R., and N. Kaufman,

"Automated Workstation for the Operation of Spacecraft
Engineering Subsystems," Information Systems Prototyping
and Evaluation Quarterly Report No 3., NASA Jet Propul-
sion Laboratory, Pasadena, California, October, 1987.

Hansen, E., "Lowering the Cost of Satellite Operations",
American Institute of Aeronautics and Astronautics,
AIAA-88-0549, 1988.

D-5435, Generic Payload Operations Control Center
Function Requirements Document, California Institute of
Technology, Jet Propulsion Laboratory, Pasadena, (1988).

Schneiderman, Ben, Designing the User Interface, Addison-
Wesley, Menlo Park, California, May 1987.

Graphics,
1985.

Park, Chan S., Interactive Microcomputer
Addison-Wesley, Menlo Park, California, January,

"Mission Telemetry System Monitor;
NASA Jet Propulsion Laboratory,
1989.

Mouneimne, Samih,
stration Prototype",
Pasadena, California, January,

N

Demon-

THE REAL TIM

DISPLAY BUILDER

Erick D. Kindred and Samuel A. Bailey, Jr.
DUAL & Associates, Inc.
1300 Hercules, Suite 208

Houston,

TX 77058

(713) 486-1984

ABSTRACT

The Real Time Display Builder
(RTDB) is a prototype interactive
graphics tool that builds logic-
driven displays. These displays

reflect current system status,
implement fault detection
algorithms in real time, and
incorporate the operational

knowledge of experienced flight
controllers. RTDB utilizes an
object-oriented approach that
integrates the display symbols
with the underlying operational
logic. This approach allows the
user to specify the screen layout
and the driving 1logic as the
display is being built. RTDB is
being developed under UNIX in C
utilizing the MASSCOMP graphics
environment with appropriate
functional separation to ease
portability to other graphics
environments. RTDB grew from the
need to develop customized real-
time data~driven Space Shuttle
systems displays. One display,
using initial functionality of the
tool, was operational during the
orbit phase of STS-26 Discovery.
RTDB 1is being used to produce
subsequent displays for the Real
Time Data System project currently
under development within the
Mission Operations Directorate at
NASA/JSC. This paper discusses
the features of the tool, its
current state of development, and
its applications.

INTRODUCTION

The Real Time Display Builder
(RTDB) is the result of the
effort to provide timely display
building support to the Real Time

PRECEDING PAGE BLAIX NOT FiLlME

Data System (RTDS). RTDS is a
prototype project to integrate
commercial off-the-shelf tele-
metry equipment with mini-
computer workstations to monitor
shuttle systems telemetry data in
real time. One of the initial
goals of RTDS was to develop a
display of the hydraulics system
for the Mechanical, Maintenance,
and Crew Systems (MMACS) flight
controllers for operation during
STS-26 Discovery. With three
months to define the activity,
choose the target MMACS systenm,
layout the display, create the
symbols, define and program an
operating environment, build the
databases, build the screen, and
test the system, there was a need
for time-saving tools.

To expedite development, the
display operating environment and
the drawing file format were
developed concurrently. The
drawing file format was initially
built by hand, but was designed
with a graphics oriented builder
in mind. After the initial
display was built and the MMACS
flight controllers began their
review, it was obvious that the
most time-consuming effort would
be the fine-tuning of symbol
positions, colors, and sizes. At
this point, initial functionality
of what was to become RTDB was
coded. The initial functions
addressed the high priority items
of position, color, size and
rotation. These functions
provided the capability to
quickly prepare the display for
flight monitoring.

As RTDS support of other systems

33

WE.ZJ;:..JNIENBW BLANK

(o)

expanded,
been added to

disciplines has
functionality has
accommodate the required uses.
RTDB has been used to build a
graphical representation of the
External Tank Ullage Pressure
System for the Booster flight
controllers. The display was used
to test the ullage pressure fault
detection algorithm. Also, RTDB
has been used to build two other
MMACS displays (Brakes/Tires and
Elevons), modify the Hydraulics
display, and build three new
Integrated Communications Officer
(INCO) displays operating with a
new Real Time Interactive Display
Environment (RTIDE) file format.
The RTIDE file format was
developed to provide specific
functionality for the INCO
discipline. All of these new
developments were operational
during STS-29 Discovery.

APPROACH

RTDB development was conceived as
a phased introduction of features.
Initial functionality was designed
and implemented to satisfy initial
project requirements, but were
integrated into an environment
that facilitated the introduction
of new features and the enhance-
ment of old. The developnment
required a highly structured and
modularized design with well-
defined module interfaces, yet
flexible data structures.

The data structures that described
objects had to be flexible to
accommodate the variety of
attributes that determined object
behavior. Presently, there are
over 60 MMACS and RTIDE objects
supported by RTDB. To maintain
modularity and flexibility, the
object attributes are processed
internal to the object function.
This relegates uniqueness to the
object's code and independence
from other parts of the system.

An overview of RTDB functional
modularity is presented in Figure
1. The major levels are: the

34

User Interface,
Processes, the Object Libraries,
the Translator, and the Graphics
Libraries. The structure is top-
down with higher levels deriving
functionality from lower levels.
The User Interface defines the
user's operating environment.
The primary interface to RTDB is
through a mouse and minimal
keyboard data entry. The mouse
determines functionality through
menu selection.

the Menus, the

The Menus define command
selection and execution. They act
to interpret mouse manipulations
and to provide the inputs to
command processing.

Processes direct command
execution. The appropriate code
is executed as defined by the
command string or object record
passed from the Menus. This
level acts as the link between
desired command behavior and the
active elements that perform the
command. The command behavior is
stored as the object attributes;
the active elements are executing

The

processes of object instances;
and object instances are the
definitions of object behavior.
This method of object selection,
execution, and definition

provides the separation necessary
to maintain a high degree of
modularity.

The Object Libraries consist of

the file formats, object
attributes, and process defini-
tions. These represent the

object-oriented nature of RTDB's
operation. The libraries can be
thought of as a pool of commands
and objects upon which RTDB may
call to perform various opera-
tions. This is where new
functionality will be added. The
higher levels will accommodate
any additions.

The Translator is a proposed set
of macros, functions, and
makefile strategies that will
facilitate porting RTDB to other

environments (e.g. X-
IBM PC, MacIntosh, MS-
etc.). This 1level is

the conceptual stage.
consist of macro defini-
tions and function calls that map
the various graphics primitives
into a consistent set of function
names and argument lists. The
makefile strategies will build an
appropriate run-time module for
the target system configuration.
With a proposed conversion of RTDS
to the X-Windows environment, this
level will become a necessity.

graphics
Windows,
Windows,
still in
It will

The Graphics Libraries are a
proposed set of graphics environ-
ments that will be supported.

Currently the MASSCOMP Graphics
is the only supported environment.
Conversions to other environments
will allow more people and
machines to participate in the
development process.

FUNCTIONS

RTDB is a mouse and keyboard
operated, menu-driven, interac-
tive, graphics application
development tool that builds
displays that operate under the

RTDS environment. The best way to
discuss its functionality is to
trace through the menu hierarchy.
Figure 2 depicts the menu
hierarchy. It shows current
functionality, current development
(+), and proposed development (*).

The Main Menu provides the user
access to subsequent functions.
A menu item must be selected to
transfer control to another
functional mode.

FILE allows the user to retrieve
and store drawing files. Drawing
files contain the symbol records

that define a display. A proposed
feature is to retrieve and display
scanned images. These images will
act as backdrops for displays or
become mouse sensitive with the
placement of additional mouse
sensitive regions.

COLOR allows the user to select a

particular color from a color
map, define a new color map, or
select from a pre-defined set of
color maps.

EDIT allows the user to modify
any object attribute, display

invisible objects or symbols, and
to undo a previous change.

ADD allows the user to add a new
object to a display. Available
objects are displayed in a pop-up
window. The object is selected
and placed with the mouse.
Multiple objects may be selected
and placed while in this mode.

COPY allows the user to duplicate

any visible object. After the
initial object selection,
subsequent left button clicks

will place multiple copies. This
mode must be exited and reentered
to select a new object.

DELETE allows the user to remove
an object from the display.
Multiple objects may be deleted
while in this mode.

MOVE allows the user to reposi-
tion any visible object. The
object will be repositioned with
subsequent left mouse button
clicks.

EXIT allows the user to exit the
RTDB environment. The user may
elect to exit with a save or a no
save of the current display
buffer contents.

allows the user to
object in the
The source

physically

MOVE BEHIND
reposition an
drawing file.
object's record is
placed prior to the target
object's record in the drawing
file. This results in the source
object being drawn prior to the
target object and allows the
target to be drawn on the top of
the source.

allows the user
object in the
The source

MOVE IN FRONT OF
to reposition an
drawing file.

35

record is physically
after the target object's
This

object's
placed
record in the drawing file.
results in the source object
being drawn after the target
object and allows the source to
be drawn on top of the target.

LOGIC is a proposed function that
allows the user to build dynamic
logic-driven displays from within
RTDB. The proposed method
utilizes a combination of two
existing tools: the Computation-
al Development Environment
(CODE), an RTDS Tool, and the C
Language Integrated Production
System (CLIPS), an expert system
language. Displays have already
been dynamically modified wusing
CLIPS. The remaining development
requires the integration of CODE
and CLIPS through the graphical
interface of RTDB.

OUTPUT 1is a proposed function
that allows the user to print the
display image to a laser printer.

CREATE OBJECT is a proposed
function that allows the user to
interactively build a new object.
Primitive drawing objects can be
combined with existing objects
and stored as a new object. The
object attributes will be created.
The new object definition will be
added to RTDB at the Object
Library level.

APPLICATIONS

A tool that embodies the concepts
of graphics, logic, and databases
has a wide area of applicability.
The most obvious being process
monitoring in which a system is
graphically modeled with sensing
and control points highlighted.

This tool would be applicable to
the Space Shuttle, the Space
Station, oil refineries, building

environmental control, computer
integrated manufacturing, etc.

Other uses include simulation,
system testing, and training.
Simulation follows from system

modeling and leads to system
testing. Verification of system
components and/or data sets can
be verified with the use of a
simulation. An extension of
simulations and models is their
use as training tools. What
better way to conduct training
than to let the student build the
system, component by component,
specifying component linkages and
operating parameters.
The evolution of RTDB as a
graphics application builder is
depicted in Figure 3. The RTDB
will act as a conduit through
which utilities will be in-
tegrated into a comprehensive
application. Those utilities
will be an applications developer
providing expert system knowled-
ge, RTIDE providing special
object and symbol definitions,
the RTDS Tool Set providing

system utilities, and CLIPS
providing an expert system
environment. Graphical expert
system applications developed in
this manner can provide a
consistent, controllable
applications interface to RTDS,
its data sources, and flight
controllers.

CONCLUSION

RTDB is an evolving tool, growing
to meet the graphical needs of a

complex environment. As flight
control techniques change and
incorporate more graphical

displays, the need to develop new
displays, convert old displays,
and preserve expert knowledge
will require the development and
use of new tools and techniques.
RTDB represents a step in this
new direction.

ACKNOWLEDGEMENTS

We would 1like to express our
appreciation to John Muratore and
the entire RTDS Team for
providing a fertile environment
in which new ideas can grow.

36

Also, we would like to thank the
INCO, MMACS, BOOSTER, and EECOM
flight controllers for their
invaluable inputs.

REFERENCES

1. Aldus Corporation, "Tag Image

File Format Specification
Revision 5.0," Aldus Corp.,
Seattle, Washington, and
Microsoft Corp., Redmond,
washington, August, 1988.

Cox, Brad, OBJECT-ORIENTED
PROGRAMMING: AN EVOLUTIONARY
APPROACH, Addison-Wesley,
Reading, Massachusetts, 1986.

Hertzel, William, THE COMPLETE
GUIDE TO DOFTWARE TESTING, QED
Information Sciences, Inc.,
Wellesley, Massachusetts.

Hopgood, F. R. A., Duce, D.
A., Gallop, J. R., Sutcliffe,
D. C., INTRODUCTION TO THE
GRAPHICAL KERNEL SYSTEM
(GKS), 2nd ed., No. 28,
Harcourt Brace Jovanovich,
London, England, 1986.

Jaeschke, Rex, PORTABILITY
AND THE C LANGUAGE, Hayden
Books, Indianapeolis, Indiana,
1989,

Johnson, Nelson, ADVANCED
GRAPHICS IN C: PROGRAMMING
AND TECHNIQUES, Osbourne
McGraw-Hill, Berkeley,
California, 1987.

Jones, Oliver, INTRODUCTION
TO THE X WINDOW SYSTEM,
Prentice Hall, Englewood
Cliffs, New Jersey, 1989.

Kalvelage, Thomas, Murray,
Sarah, and Guzzo, Michael,
"Real Time Interactive

Display Environment: Version
0.9 User's Guide,'" unpublished
memorandum, NASA Johnson
Space Center, Houston, Texas,
October, 1988.

Meyer, Bertrand, OBJECT-

10.

11.

12.

13.

14.

15.

16.

17.

37

ORIENTED SOFTWARE
CONSTRUCTION, Prentice Hall,
New York, New York, 1988.

"MCCU Display Builder/Manager
Level B/C Requirements," No.
JSC-12348, NASA Johnson Space
Center - Mission Support
Directorate, Houston, Texas,
September, 1988.

Miller, Edward, Howden,
William E., TUTORIAL:
SOFTWARE TESTING & VALIDATION

TECHNIQUES, 2nd ed., Computer
Society Press.
Muratore, John, et. al.,

"Real Time Expert System
Prototype for Shuttle Mission
Control," Second Annual
Workshop on Space Operations
Automation and Robotics (SOAR
'88), Dayton, Ohio, July,
1988.

Riley, Gary, Culbert, Chris,
Savely Robert, and Lopez,
Frank, "CLIPS: An Expert
System Tool for Delivery and
Training, "Third Conference
on Artificial Intelligence
for Space Applications,
Huntsville, Alabama,
November, 1987.

Robinson, Phillip, "Power to
the Process," COMPUTER

GRAPHICS WORLD, Vol. 12, No.
3, March, 1989, pp. 71-76.
Robinson, Phillip, "CIM's

Missing Link: Object-
Oriented Databases," COMPUTER

GRAPHICS WORLD, Vol. 11, No.
10, October, 1988, pp. 53-58.
Salmon, Rod, and Slater, Mel,

COMPUTER GRAPHICS SYSTEMS AND
CONCEPTS, Addison-Wesley,
Reading, Massachusetts, 1987.

Schmucker, Kurt, "Using
Objects to Package User
Interface Functionality,”
JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, Vol. 1, No. 1,
April, 1988, pp. 40-45.

User Interface ;

Cemmand Selection
with the Mouse snd Keyboard

'

Menus ; Command invecstion
[M [« Execution
Object Definition
Object Libraries : Flle formats, symbol attributes

Tranalator:

QGraphics Libraries:

Process definitiens

'

Envirenment Adjusiment
Macre flles, Maketile

'

MASSCOMP Graphics,
X-Windows, other libraries

Figure 1 - Design Philosophy

Main Menu—

| LEQEND |
+ — Current

* —Proposed

Development

Development

— File Get Drawing
E Stors Drawing
Scanned image*
— Celor Solect from Map
Ebo'lno Map *

Soloct Msap «
— Edit Modify Attributes
_—E undo :
Display Invisible
Symbaols ¢
—— Add
[—=—= Copy
—Delete
——— Move

[—— Move Behind
t———Move in Front of +
| — Create Object®

+—— Output to Laser Printer *

t———Legic *

—Enit

Figure 2 - Functions

Real Time Rest Time "C" Langunge
Applications Interactive Dats System integrated
Developer Display Tools Production
Environment Package Systam
(ATIDE) (RTDS) (cLIrs)
\‘o. Jocts ,/ Utilities
System Real Time Lotle ment
Knowledge Display
Bulider
(RYDB)
Graphica/Expert System
Application
Resl Time Data
Data Source
System
(RTDS)
Flight
Controller

Figure 3 - RTDS interface to RTDS

38

g

OF POOR QUALITY

Binary Space Partitioning Trees and Their Uses

By: Bradley N. Bell
Barrios Technology Inc.

1331 Gemini

Houston, Texas 77058

ABSTRACT

Binary Space Partitioning (BSP)
Trees have some qualities that make
them useful in solving many graphics
related problems. The purpose of
this paper is to describe what a BSP
tree is, and how it can be used to
solve the problem of hidden surface
removal, and constructive solid
geometry. The BSP tree is based on
the idea that a plane acting as a
divider subdivides space into two
parts with one being on the positive
side and the other on the negative.
A polygonal solid is then
represented as the volume defined by
the collective interior half spaces
of the solid’s bounding surfaces.
The nature of how the tree is
organized lends it self well for
sorting polygons relative to an
arbitrary point in 3 space. The
speed at which the tree can be
traversed for depth sorting is fast
enough to provide hidden surface
removal at interactive speeds. The
fact that a BSP tree actually
represents a polygonal solid as a
bounded volume also makes it quite
useful in performing the boolean
operations used in constructive
solid geometry. Do to the nature of
the BSP tree polygons can be
classified as they are subdivided.
The ability to classify polygons as
they are subdivided can enhance the
simplicity of implementing
constructive solid geometry.

INTRODUCTION

The goal of this paper is
explain what a Binary Space
Partitioning (BSP) tree is and how
it can be used to depth sort
polygons and perform boolean
operations on polyhyedra. Depth
sorting of polygons is a technique

39

that has been widely used on
personal computers to provide hidden
surface removal. With the use of a
BSP tree polygons can be sorted fast
enough to support the interactive
display of shaded polygons with
hidden surfaces removed even on a
personal computer. Also BSP trees
can be employed to solve the problem
of Constructive Solid Geometry
(CSG). CSG, which is implemented in
many model builders, provides the
capability to describe complex
objects as the intersection, wunion,
and/or difference of simpler
primitives. To understand how to
use a BSP tree it is important that
we have a clear idea of what one is.

BSP TREES

A Binary Space Partitioning
(BSP) tree is a data structure that
represents the partitioning of space
where each branching node represents
a plane that divides the space it
occupies into two parts and each
leaf represents either a polygon
(for depth sorting) or a bounded
volume (for boolean operations) .
Given any point in space polygons
can be sorted far to near or near to
far by using a simple but
mathematically determined traversal
of the tree. Boolean operations on
polyhedron can be performed by
cutting the polygonal representation
of one operand by the BSP
representation of the other.

BUILDING BSP TREE
TO DEPTH SORT POLYGONS

In order to use a BSP tree to
depth sort polygons the tree can be
constructed by using the polygons
themselves as planes that subdivide
space. This can be accomplished by

-

N90-20657

e

first determining the data structure
needed to define a node in the tree.
The following is used as an example.

typedef struct node

{
float A, B, C, D;
POLYGON *p_poly:;
struct node *p_front;
struct node *p_back;

}

NCDE:

Note: It is convenient to use
the sign of the value returned from
the plane equation when determining
if a point is in front or in back of
the plane.

Here the node contains the

polygon’s plane equation
coefficients, a pointer to the
polygon representing the sub-

dividing plane, and two pointers to
nodes that represent the space in
front and the space in back of this
polygon. Well use a box to
illustrate how the tree would be
constructed (fig. 2).

BOX WITH
SUBDIVIDING PLANES SHOWN

F
R tommlom e >
I B I
F 4B B 2F
I B |
K-mmmmmem +===3-=--+
F !
!
|
E f
BSP TREE OF BOX
FRONT<~-- -->BACK
1
/A
2
/ \
3
/ N\
4
/\
F = Front side of polygon
B = Back side of polygon
E = Example Eye point

(fig. 2)

Where the numbers are used to
identify the polygons that make wup

40

the box. We’ll start with a group
of polygons at the root of the tree.
Then selecting polygon number 1, we
will divide the remaining polygons
into two groups one representing the
pelygons in front and the other
representing the polygons in back.
In this example all of the polygons
are on the back side of the first
polygon. Next we will select a
polygon from each group which will
be used to subdivide its group in
much the same way as we did the root
of the tree, and when a group of
polygons contains only one polygon
then that branch of the tree is
completed. Once the tree has been
built a simple but mathematical
traversal of the tree can be
performed to determine which order
to display the polygons in so that
the nearest one gets drawn last.

SORTING FROM FAR TO NEAR

To begin sorting polygons from
far to near start by entering the
eye point into the plane equation of
the root node to determine which
side of the polygon the eye is on.
In (fig. 2) the eye point is shown
to Dbe on the back side of polygon
number 1. In order to sort the
polygons from back to front the half
of the tree representing the
opposite side of the polygon from
the eye must be traversed first then
the polygon in this node then the
side of the tree representing the
side of the polygon the eye is on.
So in this example we would traverse
the Front side of the tree starting
at the root before we would output
polygon number 1 after which we
would traverse the Back side of the
tree. As we traverse the tree we
perform the same eye plane test as
was done before but using the plane
equation at the node we are on in
the tree to determine which branch
of the node will be traversed first.
The tree traversal proceedure can

easily be implemented as a
recurrsive function (fig. 3 as an
example) .

SORTING FROM NEAR TO FAR

To sort polygons from near to
far the process is identical except
instead of traversing the side of
the polygon that is on the opposite
side of the dividing plane first,
you traverse the side of the polygon
that the eye is on first.

CRIGIHAL FAGE i3
OF PCCR GUALITY

FarToNear(n, x, Yy, z)
NCODE *n;
float x, y, z;
{
float p;

if{ n)
{
p =n->A * x + n->B * y
+ n->C * z + n->D;

/* ASSUMING THE NORMAL OF
THE PLANE IS POINTING
TO FRONT HALF */

if{ p < 0.0)

FarToNear (n->p_front,x,y,z};
else

FarToNear (p->p_back,X,y,z);

DrawPolygon (n->p_poly);

if(p > 0.0
FarToNear (n->p_ front,x,y,2z):;
else
FarToNear (n->p_back,x,y,z);

(fig. 3)

BOOLEAN OPERATIONS ON POLYGONAL
MCDELS

One way to perform boolean
operations on polygonal models is to
use a BSP tree. This can be
accomplished by first constructing a
BSP tree representation of each
model then wusing the tree of one
model to subdivide the polygons of
the other model into inside and
outside components. Then depending
on the operation being performed the
pieces needed are gathered together
from ‘both models to form the result.
The BSP representation however
differs slightly from the one used
to depth sort polygons.

BUILDING BSP TREE
TO PERFORM BOOLEAN OPERATIONS

The BSP tree used to perform
boolean operations is constructed in
a similar way as the one wused to
depth sort polygons with the
exception that the branches of the
tree represent the division of space
into inside and outside components
with the subdividing plane
representing a polygon which is part
of the model. In order to explain
how the tree could be constructed we
need to determine what type of data
structure to use. The following is
given as an example.

41

typedef struct node

{
float A, B, C, D;
POLYGON *p_poly:;
struct node *p_outside;
struct nocde *p inside;

NODE;

Here a node in the tree
contains a plane equation, a
reference to a polygon, a pointer to
the branch of the tree representing
the outside of the volume and a
pointer to the branch representing
the inside. To construct the BSP
representation of the model we first
select a polygon from the model that
we will use as the dividing plane at
the root of the tree. We then
proceed to divide the remaining
polygons by the dividing plane at
the root of the tree into two
groups, one to the outside of the
plane and the other to the inside.
Each group represents a branch from
the root node of the tree. Next
from each group a polygon is
selected to Dbecome the dividing
plane of its group and 1is placed
into the appropriate node. Each
group 1is then subdivided by its
associated node and placed into two
separate groups again representing
the polygons to the inside and
outside of the dividing polygonal
plane. This proceedure is performed
recurrsively until their is only one
polygon left in the group which is
then placed into its own node with
both of its branch pointers set to
0. The following is given as an
example.

DIAGRAM OF SIMPLE MODEL

INAANANY
AN T6
MM S

\

\
AN
Q\\\\\\\\\\\I4

I
I
2]
I
I
PANAAAAANNANY

1-6 Polygon identification
\ The interior of the model

TREE REPRESENTING THE ABOVE MODEL
INSIDE<—=~ —-=~- >QUTSIDE

Once the BSP tree has been
constructed for both operands of the
boolean operation the polygons of
each model can be subdivided by the
other model’ s BSP tree. To
subdivide a polygon by the BSP tree
we take the polygon and start at the
root of the tree and test to see if
the polygon is inside, outside, or
on both sides of the subdividing
plane. If the polygon is on both
sides of the subdividing plane then
it is split into two polygons with
the one representing the inside part
and the other representing the
outside part. The polygon (parts)
is (are) then tested against the
plane in the node pointed to by the
associated branch. This proceedure
is performed recurrsively until a
branch pointing to nothing is
reached at which time the polygon
(part) 1is given the «classification
of the branch. If the polygon being
tested lies in the same plane as the
subdividing plane then a more
complex procedure is required.
First we send the whole polygon down
the inside branch of the tree. Next
we make note of the classifications

given to the resulting parts. Then
we send each part down the outside
branch of the tree. If the part
comes back with the same

classification as it did going down
the inside branch of the tree then
it is correctly classified. Should
the part get subdivided while being
passed down then the subparts that
have the same <classification are
correctly classified. The the parts
that come back with a different
classification are considered as
coplaner polygons and are assigned
the classification of OPPOSITE if
the polygon’s normal points in the
opposite direction as the normal of
polygon it is coplaner to otherwise
it is given the <classification of
SAME. Once all of the polygons in
both operands have been classified
in this manner the resultant model
can be formed. The following table
describes for each boolean operator
which polygons are taken from each
operand to form the resulting model.

42

OPERATION AND | OR | =~ |
OPERANDS AB| AB | AB |
—————————— N e
INSIDE | X X | | F |
OUTSIDE | | X X | X !
OPPOSITE | | | X |
SAME | X | X | |

Do not use to form result
Use directly to form result
F = Flip normal of polygon
before using to form result

=
I

CONCLUSION

Even though Binary Space
Partitioning (BSP) trees can be used
to perform the tasks described in
this paper they are not practical
when working with models that are
highly complex. The tree tends to
grow exponentially as the model
complexity grows linearly. However
they do offer implementation
simplicity and therefore have a
useful place in software
development.

ORIGINAL PAGE IS
OF POOR QUALITY

S

N90-20658

ONBOARD SHUTTLE ON-LINE SOFTWARE
REQUIREMENTS SYSTEM: PROTOTYPE

Barbara Kolkhorst (IBM)

INTRODUCTION

Late in 1987, the Spacecraft Software Division (SSD) of the Mission
Operations Directorate of NASA’s Johnson Space Center (JSC) in
Houston asked IBM, as contractor for Onboard Shuttle Software
(OBS), to investigate the problem of storing the existing Flight Soft-
ware (FSW) requirements in an electronic form. These require-
ments define functions related to vehicle guidance, navigation and
flight control and are thus critical to Shuttle missions. These docu-
ments, consisting of integrated text and engineering drawings, exist
as many different documents residing at several NASA locations and
were developed over approximately fifteen years as the Shuttle
program evolved. The requirements should be accessible to the
NASA community on-line; ultimately, automated requirements to
code mapping should be available.

As a result, a small technical team worked in three phases to satisfy
the NASA request. In the first phase, the team leader, several soft-
ware requirements analyst’s and a system engineer familiar with
commercial product search techniques defined the problem to be
attacked; this was documented as a request for information from
NASA. In the second phase of the task, a solution for the problem
was developed and an engineer experienced in electronic publishing
systems was added to the team. Goals were developed to determine
which solution would be proposed:

1. The requirements documents should be in electronic form under
the central control of the Shuttle Avionics Software Control
Board (SASCB) of NASA JSC.

2. Editing and publishing of the requirements should be under
strict configuration control of the SASCB. On-line viewing is
controlled by system security programs and the publishing
system.

3. The solution should be a complete integrated solution which
maximized the commercial software content to minimize devel-
opment and maintenance costs of the system.

4. In addition, the eventual goal would be to provide a solution in
which ‘what is approved is published’. That is, what was
approved by the SASCB had been submitted electronically and
incorporated into the requirements data system automatically
after proper approval; no rekeying of information would be nec-

essary.

In the third phase of the project, a prototype was developed to
prove that the proposed system could indeed be used on the Shuttle
FSW requirements; several programmers were added to the team at
this time.

This three-phase task was successful and provided a solution with
very high commercial content which provided most of the function

43

Barry Ogletree (IBM)

required. A prototype solution was demonstrated in November of
1989 to the Spacecraft Software Division (SSD) and to the NSTS
Engineering Integration Office.

PROBLEM DESCRIPTION

The Shuttle FSW requirements documents constst of approximately
31,000 pages of integrated text and line drawings divided into
roughly forty-five books averaging 650 pages each. The documents
exist in several word processors and on paper at several NASA and
contractor locations. Publication is disjointed across books and
there is no consistent document architecture. Drawings are inte-
grated into the documents using manual cut-and-paste methods.
Modifications are proposed to these documents on a regular basis by
many authors and must pass through an approval process controlled
by the SASCB. Until the changes are approved, there is no hard-
copy of the requirements documents. Only approved modifications
can be added to the baseline document after a requirements writer
has certified that all changes are correct. This results in a number of
areas of concern.

First, due to the delay between submission and approval of changes
and actual publication of a hardcopy version, the software devel-
opers are often working with changes plus outdated published
requirements. Second, the requirements writer must also have
access to the latest version of the baseline document for developing
change requests. Since there is a time delay when modifications are
being submitted and ultimately approved for publication, the
requirements writer must work with outdated versions. Third, the
changes are manually integrated into the baseline document for pub-
lication and here some transcription errors may occur.

Since requirements definition is critical in the process of maintaining
space shuttle avionics software, the proposed system must address
the areas of concemn and provide ways to compensate for the evolu-
tionary environment in which the software must operate. The needs
are best satisfied by a host-based publishing system because these
software requirements documents are organized in a book format,
created by many authors, composed of information from numerous
sources, published for many users, and require centralized configura-
tion control.

Proposed Solution

The proposed solution includes initial document capture, storage,
retnieval, hardcopy publishing, electronic distribution, security,
change request disposition, and configuration management for the
requirements documents.

The initial capture of the documents will be done by either scanning
printed pages or through conversion of various electronic word
processor formats to the system format. Scanned pages will be con-
verted to text and image files by an intelligent recognition engine
and custom software. Finally, the proposed system will provide the
foundation for future interfaces to other systems for tracking Space
Shuttle components.

As a further enhancement, application bridges to other NASA
systemns can be developed to connect the requirements document
system to other Space Shuttle components and systems. It is also
highly desirable that the system be integrated into the existing
NASA computer software and hardware base.

Proposed Solution Rationale

It should be noted that altemative solutions were investigated. A
solution was considered where the requirements documents were
stored as scanned images with no modification capabilities. The
existing process for document creation and modification could be
used and a configuration control system could be built around this
manual process. Neither of these two solutions would provide
NASA with as much flexibility to manage and control the entire
document process as would a publishing solution.

A host based solution was chosen over a work-station based sol-
ution because of the volume of documents to be managed, the secu-
rity control required to protect access to and integrity of the
documents, the greater variety of printers, terminals, and storage
devices available for attachments, the ability to connect to the
existing information network as a host system, and the capability of
supporting a larger number of simultaneous end users. The pro-
posed solution Joes take advantage of the power and flexibility of
intelligent work-stations to download a section of the requirement
documents, modify or print selected sections, and submit the modifi-
cation as a Change Request. This proposed solution allows NASA
to build a strategic electronic requirements document system now
and for the future.

The hardware for the actual solution consists of a scanner capable of
intelligent character recognition and the separation of images from
text, all points addressable printers at both the workstation and host,
an intelligent workstation processor, disk storage and an IBM com-
patiblz hest on NASA's JSC Center Information Network (CIN).
The software for the proposed solution consists of two parts: a host
part (a publishing system with support for viewing and control of
documents) and a workstation part (a desktop publishing product
and some custom user interface software). In addition, there is soft-
ware to allow documents o1 the workstation to be converted and
transferred to the host, support for scanner operation, filters which
convert documents created on other word processing systems to the
host publishing system format, and software used to view the pub-
lished documents. Security and configuration control are provided
by either the publishing system or the operating system. See Figure
1 for a pictorial view of the system. Figure 2 describes the hardware
and software defined for the solution which are included in the pro-
totype system.

System Hardware

The publishing host (shown in Figure 3) consists of an IBM System
370 processor, magnetic disk storage, a tape unit, a disk controller,
all points addressable (APA) printers, and terminal and communi-
cation controllers. (In the future, optical disk storage may be added
to allow increased capacity.) It is proposed that NASA use or share
an existing host hardware system (tapes, disk, terminal and commu-
nications controllers already in place) for this application.

ELECTRIVT
LrANGE
RISLEST

USER IWTERFRLE

SPERATING S¥STEM

seL.aLTy

¢,
[
-—
-

Figure 1. Modular view of the OBS On-line Software Requirements
System

The magnetic disk storage will contain the active requirements docu-
ments and the application libraries. The application libranes will
require approximately 1 megabyte of magnetic storage. The
Onboard >huttie Flight Software requirements documents will use
10 gigabytes of magnetic storage. The 10 gigabytes of storage will
allow up to 200 active books (130,000 pages) to be maintained with
on-line access. Frozen requirements documents will be archived on
the optical storage jukebox. Sizing for the jukebox will be deter-
mined after initial implernentation.

The page printer would be used to produce camera ready hardcopy
documents. The IBM 3820 or 3800 printer is capable of printing
complex pages consisting of text, graphics, and images. (However,
any all points addressable printer capable of interfacing with the
IBM Publishing System could be used to produce cameras ready
documents.)

The recommended workstation for the Publishing Specialist, and the
SASCB Administrator is an IBM Personal System;2 (PS;2) Model
80 (machine type 8580). The PS/2 has an 80386 microprocessor
with MicroChannel architecture and 80 nanosecond memory. The
workstation configuration consists of six megabytes of memory, a
115 megabyte fixed disk, a mouse, a 1.44 megabyte diskette drive,
and a high resolution IBM 8514 display monitor.

$3LuTION COMPONENT pazroTvaE

R |MOST (16M [SMPATIRLE ON £iN) v

A [WOST ALL-PDINTS-AJDRESSABLE »A:NTiRS i

R MAGNETIC 5TORAGE M

D |SRTLlAL STIRAGE Ll

PERELELNE

o8 (18M PS/2 93T B3 8T1d DISILAY) v

Ko [WCRASTATITN (NS} ALL-PI[4TS-ADDRESSABLE FRINTFRS Y

A [STANMER {CALERA COF 9838) v

£ |NEZESSARY INTERFAIES B}

S |iBM PUBLISHING SYSTEM Al

9 |DOZMENT WIEWING S2FTMARE v

Db INTERLEAE PUBLISHING §Y8TEM !

¢ 1 {SCANKER SUPPDR® SOF TWAR ¥

T w lpATa £XPTAT PAZcRAM (12 WOST) : 4

H H i
< & 'WORDPROCESSOR Y0 “OST FCRMAT FILFERS L PaRTIAL

CNYERSLON v

BLISHING SYSTEM FORMAT CONVERSIZN »

Figure 2. Further Comparison of Solulion vs. Prototype

ORIGINAL. PAGE i3
OF POOR QUALITY

[F===""-"7 | Graphics
1 | Terminal
l 1)
\
: : Future @
| Optical 1 CIN ", oo
1 Disk | |
| Storage |
| |
{ : All Paints
| Addressable
t E/ J Printers
PS/2 Mod 80
Host
Disk Controller Controlier | -
Storage 1ou
[Ii\._r‘.r n / Page
Printer
Y nn
Ilﬁ—/
Cartridge
PSr2 ‘ q

Palanlir
Compound
Document
Processor
9000

Figure 3. OBS Online Software Requirements Hardware Overview

Some workstations will have a scanner, such as the Palantir Com-
pound Document Processor (CDP) 9000, and a workstation printer,
such as the IBM 4216 Page Printer. The Palantir CDP 9000 will
provide the capability to scan a document up to 8.5” X 14" in size at
a resolution of 300 dots per inch; additional scanners using other
resolution densities may also be attached to the Calera recognition
engine. In addition, its recognition accuracy improves as more data
is scanned. For workstations performing graphics modification, a
second monochrome display may be required.

Graphics terminals on the CIN may be used to view documents and
to wnte documentary change requests. These change requests must
eventually be keyed into the source files on the host by a publishing
specialist.

Scanners and Graphics Concepts
Scanners for graphics work can be categorized on the basis of several
characternistics:
» Type of scanning mechanism (flatbed versus page feeder)
* Resolution (low of 75 dots per inch (dpi), high of 1500 dpi)
*» Intelligent characteristics:
— Text recognition (specific fonts versus any font)

— “Tagging” (output of text to word processor formats)

45

— Graphics handling (manual versus automatic)

For graphics work (especially the handling of integrated text and
graphics), the ideal solution would be to let the scanner handle all
aspects of the conversion process: feed the document into the
scanner, separate out text and graphics, perform text recognition,
and place the putput.into text and/or graphics files automatically. In
practice, this is difficult to achieve:

« A major factor in this problem is the difficulty involved in iden-
tifying the start/end of graphics sections.

One workaround is to let the user specify the location of
graphics sections (this of course requires manual intervention).

« Inability for the computer to understand document “structure”
(what figures go where).

This might be due to the inability of most PC-based word
processors to handle graphics (this is becoming less problematic
with the advent of new word processors which support graphics
manipulation).

Another area of difficulty is in text recognition. This is a “graphics-
1o-text” conversion where the scanner looks at the pattern of dots
produced during scanning and makes a decision about the character
represented by that pattem. Some scanners are unable to support
this feature (requiring software to do the job); some scanners can
only support a limited set of fonts. The most powerful machines

perform “intelligent character recognition”, recognizing any font style
or size; perform spelling correction, marking unrecognized words for
later correction; and decipher page layout automatically, distin-
guishing between text and graphics sections.

The Calera scanner used in this prototype has the features required
to support this project. It is a sheet-feed (50 pages maximum)
scanner with adjustable resolution {maximum 300 dpi), spelling dic-
tionaries, and intelligent character recognition. In addition, it is
represented as a “compound document processor”, being able to
scan integrated text/graphics documents; however, in its stand-alone
mode it requires user intervention to designate graphics areas which
are later placed in separate files. There is a board available from the
same company which purports to handle integrated text/graphics
automatically, but it was not available at the time the prototype was
developed.

During the development of our prototype, we encountered several
problems relating to graphics/text work:

» Recognition of special characters.

Special characters (underline, super and subscripts, etc.) are diffi-
cult to scan properly.

« Registration of pages in scanner

Straight lines in the source document become “stair-step” lines
in the printed version. The workaround is to use a flat-bed
scanner (less problems, but the stair-step effect is still notice-
able). This also means production work is more difficult due to
the necessity of handling each page separately.

» Loss of image “content”

The scanning process produces raster files; the onginal image
may have been produced by a vector process. This means that
the information about object structure has been lost. There are
programs available which can re-vectorize a raster-based image,
but the robustness of the conversion is unknown.

Hardware and software to do image to vector conversions for
engineering drawings will be studied later in this project.

» Lack of consistent support for “standard” image formats.

Specifications are defined for various image formats (TIFF,
PCX, etc.) but some programs support only a subset of the
available options. If the programs being interfaced do not under-
stand the same set of image data, problems occur. A
workaround is to understand exactly what is required by avail-
able programs and select those with matching capabilities.

» Storage requirements may be prohibitive for raster format files.

Scanning an 8 1/2 by 11 inch page at 300 dpi results in about
8.5 Mbits of data (uncompressed). Certain formats (e.g. TIFF)
can support various compression schemes to reduce the require-
ment for storage space. The resulting file may still require about
1 Mbyte of storage; vectorized files require far less storage.

System Software

The proposed software will be distributed between the host and the
PS/2 Model 80 workstations. The prototype host software consists
of the VM Operating System, IBM Publishing System and the nec-
essary support services and utilities. The workstation software con-
sists of IBM’s Disk Operating System (DOS), Interleaf Publisher,
and scanner support and image editing software. Custom code in
both the host and workstation will facilitate transfer and configura-
tion management of data files.

46

The host Publishing System software executes in the IBM VM
operating system environment and is designed for corporate in-house
publishing. An MVS solution is planned for NASA JSC use; 1t
integrates the in-house publishing process from start to finish,
including typeset-quality output of documents containing text,
graphics and image. IBM'’s electronic publishing solution uses the
host computer, werkstations and printers to create, display and print
documents.

The host Publishing system is an integrated set of software products
(shown in Figure 4) and consists of:

+ Publishing Systems ProcessMaster: A set of menus that con-
trols the overall operation of the publishing system and provides
a document control library management facility.

« Publishing Systems BookMaster: A powerful document cre-
ation application based on IBM’s Generalized Markup Lan-
guage (GML) that provides the tools necessary to create
complex document formats.

« Graphical Display and Query Facility (GDQF): A package for
viewing and editing CAD/CAM and other graphics data files on
the host.

« Publishing Systems BrowseMaster: A seres of utilities (pro-
vided in GDQF) to:

— View merged text, graphics and image
—~ View and crop GDDM Graphics Data Format (GDF) files

and convert them to page segments
— Import drawings from non-1BM CAD/CAM systems

« Publishing Systems DrawMaster: A menu-driven line art
drawing package for creating graphics for use in publications.

Image Handling Facility: A program to manipulate images for
inclusion in documents.

» BookManager: An application for electronically viewing docu-
ments stored at the publishing host (SmartBook, an IBM
internal product, is used in the prototype).

The workstation publishing software will be the IBM Interleaf Pub-
lisher. This standalone product executes under DOS on an IBM
Personal System/2 model 80. The IBM Interleaf Publisher is a full-
function, integrated publishing program.

Cocurment Ma'rtgrance KasT
workstatizn{IBM #S/2 MID BB]

W™ Dperating System
13w Punlishing §ystem
BocxManager (Yiewing
Agplication}
Utitities and Support for:
Secarity
Batzn Facrlity
Screer png scftaare
deve’ spment
$ive Teansfer

Scarating System fe————
bl

SraMaster Sugpent i
hzalicat’on {ca

e i
up!ond/can«'0ad sequinces

worestation Suspart
Apclicaticn loder
Bridges tn Jther NASA
Sy
Dats transais

— o

user interface scopens
Configuratyan Management

§Pubiighing Spesialist
P oworsstation{[BM P5/2 Mad 89)
P 13M Cisk perating Systes
| Interieaf publisner L
; [8M Catm f¢part Prograw i
184 Grapnics worxstation 1
Support Prog-as }

—ea]

-

anner Suzpo-t §K +

H 3¢ Vitwing Termingl
i
1

i Mo Softusre Regquired |
[|

Applicatice Codes

Tarler Scavned Jata For nost
Data refornatie-s

wplosa/donnlaad sequence

Figure 4. OBS On line Sofiware Requirements System Software Overview

ORIGI 4. Frge §s
OF PGOR QUALITY

Workstation-Based Functions
Scanner Support

Calera provides software with their scanner that assists the user in
performing scanning chores. This software is divided into two types:
applications (PAGEBLD, EDITPRO, TOPSCAN) and utilitics
(such as PDA2TIFF, DOCBUILD, and others provided by the
scanner manufacturer to assist in custom software development).

PAGEBLD is the primary software used for scanning integrated
documents. The scanner can be completely controlled from a full-
screen (Windows-based) menu; functions to scan and read pages,
save results, and work with the document are provided. The docu-
ment 15 defined as having “zones” of information. Some zones
contain text and are processed using text recognition techniques;
other zones are graphics and are processed into CCITT-format files.
To automate the process, zones may be predefined in “Zone Format
Files”; this 1s useful when scanning must be automated, but it
requires that pages adhere to a consistent format.

After the document has been processed by PAGEBLD, the next
step is to use EDITPRO. This is a Windows-based application
which helps the user find places where PAGEBLD and the scanner
hardware had some difficulty recognizing text. Optional marks can
be placed in the processed files; if present, these marks are used to
drive the EDITPRO software. Functions are provided to move from
mark to mark and the errors found may be changed while in
EDITPRO (no need to use a separate word processor). After errors
have been removed, files are created with the corrected information.

TOPSCAN is an application that provides scanning functions which
understand most popular PC-based word processors and graphics
formats. Text recognized by the system can be placed directly into a
format understood by the user’s word processor; graphics files are
placed in TIFF format and can be used by any program under-
standing this file type.

Utilities

‘The scanner manufacturer supplies a sct of utilities which assist the
user in developing customized scanning applications. These utilities
include standalone special-purpose programs that can build docu-
ment files from text or image input, compress and decompress image
files using CCITT Group 3 or Group 4 algorithms, modify text files
to remove white space, and operate the scanner in a command-line
driven (rather than graphics menu-driven) manner.

Graphics Manipulation

Manipulation of image files can be performed on the workstation or
on the host system. For workstation-based image editing, IBM’s
ImageEdit is available. This program understands various file types
(including TIFF) and provides editing to a pixel-level as well as the
capability to draw lines, circles, and other basic shapes. It can
produce TIFF files in both uncompressed and compressed forms.

Host-Based Functions

Because of requirements specified during the prototype definition
phase, the major portion of the system resides on 1BM mainframe
computers. The environment (especially from a software and printer
viewpoint) is considerably different from the personal computer
environmeni; graphics formats are unique (GDF is used for vector
files, IMG is used for image files). Image Handling Facility (IHF)
and other programs in the IBM Publishing System are required to
convert images to the format required for printing; this format (Page

47

Segments or PSEG) is used because of the system which prints doc-
uments with imbedded images (Document Composition Facility or
DCF).

Graphics Manipulation

The primary formats utilized on the host are:
+ Vector-based
GDF, CGM
= Raster-based
IMG

Host software is available to manipulate both types of format.
DrawMaster is a product which produces vector-based files (GDF
and others); [HF is available to edit raster-based (IMG) files.

Viewing

Viewing of documentation is provided by two programs:
BookManager (for text-based document reference with graphics
support) and BrowseMaster (for publishing system specialists
required to proof documents before printing). For the prototype, an
IBM internal use 1ool called SmartBook was used to provide
BookManager functions; it was the precursor to the BookManager
software.

Book Manager is the program of choice when users must refer to
text and be able to browse figures which are present in the docu-
ment. It operates by displaying the document in text mode (which
means that users without a graphics terminal will be able to read the
document) unless the user requests that a figure be displayed; the
system then changes 1o a graphics mode and displays pictures speci-
fied by a user command. BrowseMaster is most useful to individ-
uals requiring information about the layout of the document and
who must provide error-free printing (as far as layout and appear-
ance are concerned). It is used to provide a preview of the layout (a
page image including margins and simulated text) so that those indi-
viduals responsible for printing the document can insure there are no
major errors before submitting the job to the system printer. This
method is similar to some PC-based word processors which allow
the user to look at a page before printing it, resulting in savings of
time and system resources such as paper.

Printing

Printers available on the host system range from line-based to laser-
compatible (IBM’s 3820 printer is the printer of choice). The 3820
used in the prototype is a host-connected printer capable of 240 dots
per inch and a print speed of 20 pages per minute; since its resol-
ution differs from the resolution available with the Calera scanner, a
problem with image degradation occurs. This problem can be
avoided in two ways: scan images and reduce them to the required
size using the Publishing system, or usc an alternate scanner (such as
the IBM 3118) which is capable of scanning at the same resolution
as the printer (240 dp1).

Summary

The prototype discussed in this paper was developed as proof of a
concept for a system which could support high volumes of require-
ments documents with integrated text and graphics; the solution
proposed here could be extended to other projects whose goal is to
place paper documents in an electronic system for viewing and
printing purposes. The technical problems (such as conversion of
documentation between word processors, management of a variety
of graphics file formats, and difficultics involved in scanning inte-

grated text and graphics) would be very similar for other systems of
this type. Indeed, technological advances in areas such as scanning
hardware and software and display terminals insure that some of the
problems encountered here will be solved in the near-term (less than
five years). Examples of these “solvable” problems include auto-
mated input of integrated text and graphics, errors in the recognition
process, and the loss of image information which results from the
digitization process.

The solution developed for the Online Software Requirements
System is modular and allows hardware and software components to
be upgraded or replaced as industry solutions mature. The extensive
commercial software content allows the NASA customer to apply
resources 10 solving the problem and maintaining documents, rather
than spending a large portion of the maintenance resources on
custom software.

The actual conversion of scanned text and drawing images to a form
which can be stored in a publishing system provides NASA with the
capability to transfer any paper documents to editable electronic
form for maintenance and update. As the various filters are procured
or developed, documents which exist in other word processor
formats may be added to the central files. The central repository
may consist of magnetic storage for active documents and optical
storage for documents which have been frozen in final format. This
system may be used for stoning and maintaining any documents
consisting of integrated text and drawings.

Thas electronic base of information is suitable for future applications
such as hypertext, where specific reference points in the documents
are clectronically linked to other documents, other parts of the same
documents or note information. Additional search and query capa-
bility will also provide the NASA community with the ability to
obtain information more rapidly than was ever possible with paper-
based documents.

Definition of Acronyms

CAD. Computer Aided Design

CAM. Computer Aided Manufacturing
CGM. Computer Graphics Metafile

CIN. Center Information Network

CDP. Compound Document Processor (from Calera)
DOS. Disk Operating System

DPIL. Dots Per Inch

FSW. Flight SoftWare

GDDM. Graphical Data Display Manager
GDF. Graphics Data Format

GDQF. Graphical Display and Query Facility
GML. Generalized Markup Language

IHF. Image Handling Facility

IMG. IMaGe Format

JSC. Johnson Space Center

MVS. Multiple Virtual Storage

NSTS. National Space Transportation Systemn

OBS. OnBoard Shuttle software

PC. Personal Computer

PCX. PC Paintbrush Graphics File Format

PPM. Pages Per Minute

SASCB. Software Avionics Software Control Board
SSD. Spacecraft Software Division

TIFF. Tagged Image File Format

VM. Virtual Machine

WS. WorkStation

N90-20659

DESIGN CONSIDERATIONS FOR A
SPACE DATABASE

Lance M. Moss

Evans & Sutherland Computer Corporation
600 Komas Drive
Salt Lake City, Utah 84108

Part of the information used in a real-time simulator is stored in the visual database. This information is
processed by an image generator and displayed as a real-time visual image. The database must be con-
structed in a specific format, and it should efficiently utilize the capacities of the image generator that it
was created for. A visual simulation is crucially dependent upon the success with which the database pro-
vides visual cues and recognizable scenes. For this reason, more and more attention is being paid to the art
and science of creating effective real-time visual databases. This paper investigates the database design
considerations required for a space-oriented real-time simulator. Space applications often require unique
designs that correspond closely to the particular image-generator hardware and visual-database-
management software. Specific examples from the databases constructed for NAsA and its Evans &
Sutherland CT6 image generator illustrate the various design strategies used in a space-simulation
environment. These database design considerations are essential for all who would create a space database.

1.0 INTRODUCTION

During 1987 and 1988, Evans & Sutherland designed
and developed three databases for NASA’s System
Engineering Simulator. Much of the experience
gained and many of the techniques used in the con-
struction of a terrain database were transferred to the
construction of the space databases, but many new
challenges were encountered. This paper describes
some of the challenges unique to the design of a space
database and explores the techniques and strategies
developed to meet these challenges.

2.0 VISUAL SYSTEM

A major part of a real-time vehicle simulator is the
visual-scene-generation system. The visual system’s
role is to provide the visual cues that help make the
simulation effective. In general, a visual system
comprises a computer image generator, which is the
processing hardware; displays on which the
computer-generated imagery is viewed; a visual
database, which is the information the image
generator processes to produce images; and a set of
managing software, known as the real-time system.
The image generator includes a set of processors,
among them viewpoint processors and channel
processors. The visual database is a model of the real-
world environment. The real-time system is the
interactive software package that controls and
manages the image generator’s transfer and
processing of the data in the visual database.

49

For a database to reach its utmost visual potential,
each construct within it must be used efficiently.
Therefore, no database should be designed without an
understanding of its visual system's processing capa-
bilities. Some of the necessary design information in-
cludes:

1. The configuration of the image generator
(including the number of viewpoint proces-
sors and channel processors) and the update
rate.

2. The maximum input and output of each
processor in the image generator

3. The maximum visible output for each channel

. The amount of time allotted for each processor
to accomplish its task

5. The amount of on- and off-line storage avail-
able for the database

Database engineers must analyze all the processing
requirements before a design is developed. With the
resultant knowledge, a database can be constructed
that will fully utilize the capabilities of the image
generator. However, this information must be corre-
lated with the specified database requirements.
Sometimes database requirements tax the capabilities
of the given visual system. In these cases, ingenuity in
the design can satisfy the requirements and still not
overload the image generator. Extreme cases may oc-
cur where specific database requirements have to be
modified slightly to meet the image generator’s capa-
bilities and still provide an effective simulation.

3.0 SPACE DATABASES AND TERRAIN
DATABASES

Terrain databases are usually designed at a 1:1 scale
with the terrain they model and only represent a rela-
tively small portion of the real world. A space
database, on the other hand, because of the sheer size
of the model environment, cannot possibly model all
of its objects at a 1:1 scale. For example, one of the
requirements of the NASA space databases was to cre-
ate an accurate starfield. The star nearest Earth, Alpha
Centauri, is approximately 4.4 light-years away. Hence,
some models must be created so that they appear vi-
sually correct even though they may be mathemati-
cally incorrect.

A space database has the potential of depicting its
modeled environment more realistically than a ter-
rain database can because many of the models in-
cluded in it — the Orbiter, the Space Station, the
Shuttle Remote Manipulator System (SRMS), and pay-
loads, for example — are manmade and tend to be
geometrically regular. Computer graphics is an ex-
cellent medium for rendering such regularities.
Natural objects such as Earth’s surface and the moon
can be easily and effectively modeled with photo-
derived-texture patterns.

Space databases generally include less information
than terrain databases. Most terrain databases cover
many hundreds of square nautical miles of terrain
and contain enough information to create scenes that
include bushes, trees, rocks, rivers, roads, cities, and
farms. But a space database must contain only a few
hundred accurate stars, a brilliant sun, a realistic
Earth, a life-like moon, and a few extremely high-
fidelity models to create an uncanny likeness of the
real thing. Figure 1 is a photograph taken of an actual
display that illustrates this realism.

The space databases designed for NASA contained all
these models and used only approximately one fifti-
eth of the file space required for a typical terrain
database. Although the space databases were small
with respect to their storage requirements, their vi-
sual effectiveness equalled that of any terrain database
designed to date.

4.0 ORGANIZATION OF A SPACE DATABASE

A visual database is a composite data structure in the
form of a tree that specifies the hierarchical relation-
ships among the items in the database. A space
database has the same format as any other type of vi-
sual database, but the design and organization of a
space database are quite different from those of a
terrain database.

4.1 Static and Dynamic Models

The models that compose a space database can be cate-
gorized as static (remaining fixed at a specified origin)
or dynamic (having independent motion capabilities).

50

ORICINAL pPAQE
BLACK ANU vinilL viui CGRAPH

e,

. “‘? E

Figure 1. Photograph of a Displayed Space Database

Depending on the simulator’s mission and other fac-
tors, models may switch categories. Since everything
in space is dynamic, it might initially seem easiest and
most logical to make all the models in a space
database dynamic. However, the image generator ac-
commodates only a finite number of dynamic coordi-
nate systems and may not (depending on its load) be
able to process all those systems at once. A static
model requires very little processing time for its ge-
ometry to be displayed; a dynamic model requires ad-
ditional processing time, depending upon the type of
motion specified. Therefore, the number of dynamic
models should generally be restricted as much as pos-
sible in order to limit the amount of time used to
process them.

Depending on the particular scenario’s requirements,
any or all of the models of Earth, the sun, the moon,
stars, or other items in the database could be static and
at the same time serve in an effective simulation. For
example, in a given scenario designed only to train
specialists in the use of the SRMS, if the Orbiter never
needed to move, it could remain static at the
database’s global origin. A static orbiter would have a
fixed orientation with respect to the other database
models, but this fact might not limit the effectiveness
of the images produced for the scenario in any signifi-
cant way.

The number of dynamic coordinate systems and the
corresponding amount of processing time constrain
the number of dynamic models that can appear in a
given scenario. However, useful scenarios require

that many objects (the Orbiter, the SRMS, and payloads
in the space databases, for instance) be categorized as
dynamic. Therefore, the database engineers must de-
cide which models have to be dynamic for each sce-
nario. Determining a finite list of dynamic models for
a given scenario is not difficult, but if the dynamic
models required for one scenario are different from
the ones required for others, the complexity of the
task increases significantly. When the set of scenarios
requires more dynamic models than the image gener-
ator can process, an alternative must be found. The
approach taken in designing and developing the space
databases for NASA entailed two strategies: design of
each database as a scenario-dependent database and a
technique for choosing model selects.

4.2 Scenario-dependent Database

A scenario-dependent datatabase is a database that is
broken into smaller, simpler pieces. Evans &
Sutherland CT6 linked databases contain between 1
and 60 entry-point sets. Each entry-point set is inde-
pendent of all the other sets and consists of a specific
collection of related database-tree structures. Each
entry-point set can have its own unique tree structure,
and therefore each can represent a given scenario
with an independent database design. Separate linked
databases could be used in the same manner as entry-
point sets within a database. A scenario-dependent
database provides great flexibility. Since each entry-
point set (or separate database) has its own tree struc-
ture, each can have its own attendant dynamic and
static models.

4.3 Model Selects

The databases were organized so that the viewpoint
processor makes a series of hierarchically structured
choices, or model selects, that determine the require-
ments for any given scenario. A CT6 image generator
allows 128 different model selects for each dynamic
coordinate system and has the unique capability of
performing model selects of dynamic coordinate sys-
tems in real time. This feature is often used for ani-
mation. Because the top-level structure is designed so
that there are several mutually exclusive model se-
lects, when the viewpoint processor starts its trace of
the database tree it also starts to determine the current
scenario’s requirements based on the model selects
chosen for that field by the simulator-host-computer
program. Each of the top-level model selects points to
another structure that in turn is attached to a dynamic
coordinate system with multiple model selects. The
viewpoint processor continues this tracing of nested
model selects until it incorporates all the specified
scenario requirements.

5.0 DESIGN CONSIDERATIONS

Once the organization of a space database is de-
termined, other aspects of the design can be consid-

51

ered. Some of the main issues and challenges
encountered in the design of the space databases, the
resolutions of the challenges, and the ramifications of
the decisions made concern the database’s coordinate
system, database units, the construction and
placement of models, the uses of texture, collision de-
tection, the simulation of closed-circuit-television
systems, and the overall modularity and flexibility of
the databases.

5.1 Coordinate System

NASA’s space databases were designed with an orthog-
onal Cartesian coordinate system. If the simulator-
host-computer program were to use a different
coordinate system than the image generator does (a
celestial coordinate system, for example}, all motions
controlled by the simulator host computer would
have to be transformed to map that coordinate system
into the image generator’s coordinate system.

All of the NASA models were constructed about or
relative to the origin of the image generator’s coordi-
nate system. However, the placement of the origin,
the database unit of measure, and the overall size of
the database affected the design of the individual
models.

The most likely location for the database’s global ori-
gin is the center of geometry (or center of mass) of the
main scenario model. The Orbiter’s origin was chosen
as the global origin of the database that included the
Orbiter, SRMS, and Space Telescope models. Each of

these models was easily defined relative to the origin
of the Orbiter, and every scenario maintained the
Orbiter as a static model at the global origin. However,
this origin was not appropriate for the other two
NASA databases, and therefore other origins were se-
lected.

5.2 Database Units

The size or volume of a database is limited by the
highest number the image generator allows and by
the chosen unit of measure. A CTé6 image generator
does not use an inherent unit of measure as a
database unit; it simply interprets all database values
as numbers with a maximum and minimum range.
Any unit of measure can be used to create a database
as long as the relative scale between database models
is maintained. The most common database unit for
terrain databases is the foot. The database unit chosen
for the space databases was the inch.

5.3 Models

The models used in a space simulator must be ex-
tremely accurate. They are the only visual cues in the
database because black space, unlike terrain, does not
provide much in the way of feedback. The models are
also generally viewed at a much closer range than
models in a terrain database, so they need to include

as much of the geometry of the real-world object they
represent as the image generator can process. Most
scenarios require extreme accuracy in motion, colli-
sion detection, and interaction, so the models must
provide all of the cues needed to make a given sce-
nario effective.

Each model in the space databases was constructed
with information derived mostly from detailed engi-
neering drawings, but because many of the actual ob-
jects had not yet been constructed, the models were
continually subject to reevaluation. The Orbiter was
the only item that had been constructed before devel-
opment of the databases began. Because such high fi-
delity was required of the models, the Orbiter model
geometry was created through a process that involved
automatically scanning a scaled replica, digitizing
hundreds of vertices, and defining the polygonal
boundaries. Although the process was involved, it
was very efficient and quickly accomplished, and the
end result was extremely accurate.

Since the chosen database unit and the maximum
value allowed by the image generator limited the
overall size of the database, some of the database
models could not be constructed at a 1:1 scale. Instead,
they had to be created at other scales and then posi-
tioned to appear their correct sizes and to maintain
the integrity of the simulation.

One of the requirements specified for the space
databases was an accurate starfield. The inclusion of
stars of various intensities and locations in a sea of
black greatly enhances the illusion of space. Space
without stars is about as useful as unembellished ter-
rain is for a flight simulator. Digistar, a star-projection
system developed at Evans & Sutherland for
planetariums, provided the information used to cre-
ate the starfield for the space databases.

The starfield model has more than 1600 unique stars
that appear to be in their correct locations. The model
is a sphere consisting of light points; the center of the
sphere is at the global origin of the database. The
sphere was scaled to fit within the allowable database
size and each light point was assigned an intensity
that would simulate the apparent magnitude of the
star it modeled. Because many constellations can be
recognized in this starfield model, it could easily be
used for directional information.

Two static models and dynamic-texture motion were
used to create the illusion of an orbiting satellite and a
rotating Earth. The database unit coupled with the
maximum size of the database determined that a full-
sized Earth could not be modeled. Therefore, a scaled
model of Earth was created and placed artificially close
to the orbiting vehicles. This strategy effectively cre-
ated the illusion of an accurate orbit and met the re-
quirements of the application.

To complete the illusion of Earth as seen from an or-
biting satellite, photo-derived dynamic texture was
applied to the Earth model and given a directional

52

velocity that approximates the speed at which a satel-
lite such as the Orbiter passes over a given point on
Earth’s surface. So the simulated orbit is in essence the
opposite of what happens in the real world: the orbital
vehicle is static and Earth moves by below it. This
effect was possible because the CT6 image generator
has the ability to create real-time texture motion.

Because Earth, in this case, could be built as a static
model, it was modeled as a disk rather than as a
sphere. Modeling Earth as a disk makes it difficult to
simulate its dark side, but this disadvantage is offset
by the fact that valuable dynamic coordinate systems
and viewpoint-processor time are preserved for other
uses. However, the same illusionary techniques could
be used to construct a spherical model of Earth.

Since there is no atmosphere to interfere with light in
space, colors are more vibrant than on Earth and there
is a crisp contrast between light and dark. Therefore,
color assignments, usage, and tuning are important
design factors. Since the visual-system displays cannot
reproduce the contrasts found in space exactly,
relative brightnesses must be assigned to certain
models. No model should be colored as black as the
blackness of space, for example.

5.4 Texture

2D texture can realistically enhance computer-
generated imagery and has the great advantage of gen-
erally not affecting the processing load. Because tex-
ture in a CT6 image generator is processed in parallel
with polygons, a scene consisting of the maximum
number of processable polygons can be enhanced by
the addition of texture and still not overload the
image generator.

Since the fidelity of the models was an important
criterion of the space-database requirements, texture
was often used to effect visual cues without increasing
the number of polygons. These applications of texture
significantly enhanced the Earth and Orbiter models.

The entire surface of Earth is simulated by a photo-
derived, self-repeating texture map applied to a group
of polygons. The Earth model, because of its special
texture application, maintains a slim polygon budget
and is therefore a very efficient model.

The Orbiter was also modeled with texture. The in-
signia on the outside surfaces were created with tex-
ture. The American flag, all thirteen red and white
stripes and all 50 stars on a blue background, was cre-
ated with one texture map and four polygons. Photo-
derived, self-repeating patterns adorn the inner bay
with a thermal wrap pattern and the outer skin with
tiles.

All of the additional visual cues created with texture
allow the image generator’s polygon capacity to be
spent where texture cannot be used, as for the hun-
dreds of truss polygons on the Space Station.

Simple 2D polygons with texture applied to them can
simulate complex 3D structures. The most notable of
these illusions is the texture application that simu-
lates the inside volume of the End Effector (EE) with
just one polygon. The EE is essentially a hollow cylin-
der whose inside portion is seen from many eye-
points. Since the use of polygons on an inside surface
was considered wasteful, a special texture pattern was
applied in a plane other than that of the polygon that
capped the end of the EE. The resulting parallax cre-
ated an illusion of depth that is almost indistinguish-
able from that of an actual modeled volume.
Noncoplanar texture is another robust capability of
the CTé6 image generator without which this illusion
could not have been created.

5.5 Collision Detection

One of the most important functions of a space
simulator is the detection of collisions between vari-
ous objects. The collision-detection function can be
used for purposes other than detecting when two
models collide, however. For example, the complex
simulator task of grappling a payload with the SRMS
would be virtually impossible without the aid of colli-
sion detection. An appropriate viewpoint-processor-
timing budget must include enough time for all of the
collision-detection requirements.

Collision detection is another reason for constructing
accurate models. The database must reproduce the
real world in order for the simulation to be effective.
Otherwise, collision detection might not be reliable.

5.6 Closed-circuit Television

In an actual space mission, a significant portion of the
scenes outside the Orbiter are viewed through closed-
circuit-television (CCTV) systems. These sophisticated
systems have a built-in process called automatic level
control (ALC) that adjusts the CCTV according to the
light sources it receives. Remotely similar to the light
meter and f-stop combination on a camera, ALC is an
automatic process used to improve and adjust image
quality.

One of the requirements of the space databases was to
simulate the effects of ALC. The simulation is done
through detection of light from its various sources
(sun, moon, Earth, and floodlights) and concomitant
adjustment of the scene illumination. Unique struc-
tures had to be created on each of the light-source
models. The image-generator function used these
unique structures to detect when the light-source
models came into view. The real-time system would
notify the simulator-host-computer program when
the models came into view, and the simulator-host-
computer program would then adjust the illumina-
tion of that channel. Without the characteristics of the
CCTV system and ALC, every scene would appear as
though it were an out-the-window view and the sim-
ulation would not be accurate.

53

5.7 Modularity and Flexibility

The structure of a space database must be modular
and flexible because the database will probably be used
for many applications over a wide range of projects.
Therefore, each model must be designed, organized,
and documented so that another engineer can make
modifications to it in the future. Furthermore, the
top-level structure must be clean, concise, and simple,
with adequate and descriptive documentation. This is
especially important for scenario-dependent databases
or fully compatible model-select databases. The crite-
ria of modularity and flexibility are arguments for
simple databases over extremely large, complex, all-
encompassing databases.

6.0 CONCLUSION

The design and development of a space database is a
very challenging and rewarding experience. Although
all real-time visual databases are hierarchically-
ordered groups of geometric data, the differences be-
tween familiar terrain databases and space databases
are significant. The organization of a space database is
substantially dependent upon the simulation and
should meet the requirements of specified scenarios.
Hence, the number of and the relationships among
the static and dynamic models are crucial to a success-
ful design. More dynamic models and better image-
generator performance result from a well-organized
database design. The scenario requirements and all of
the database requirements must be taken into account
when the visual system’s resources are budgeted so
that the most processing-efficient and visually-
effective database possible is designed.

Furthermore, the potential for improved scene real-
ism is generally greater for a space database because of
the ability of computer-generated imagery as a
medium to depict regular geometric items and be-
cause of the visual quality of photo-derived-texture
applications. Highly efficient and accurate models are
essential not only for visual cueing but for supporting
other visual-system functions such as collision detec-
tion. Finally, well-engineered database source code
and its accompanying documentation provide service
and support for many future project applications.

7.0 ACKNOWLEDGEMENTS

A considerable amount of research was involved in
creating the NASA space databases. The entire devel-
opment team, consisting of NASA and Evans &
Sutherland personnel, participated in these innova-
tive designs and thereby contributed greatly to the
content of this paper. Specifically, Mike Bartholomew,
David C. Christianson (NASA), Mercedes DeLugo,
Ralph Howes, Michael D. Jackson, Daniel Lunt, Janice
Poulson, and James R. Smith (NASA) deserve special
recognition for the information, guidance, and assis-
tance they provided. Curtis G. Booth rendered in-
valuable technical and professional services in the
preparation and organization of this document.

Tools for 3D Scientific Visualization in Computational Aerodynamics

Gordon Bancroft ,Todd Plessel, and Fergus Merritt (Sterling Software Inc.), Val Watson (NASA Ames)

NASA/Ames
Workstation Applications Office - Code RFW
Mail Stop 258-2, Moffett Field, California 94035
bancroft@amelia.nas.nasa.gov
(415) 694-4052

ABSTRACT

The purpose of this paper is to describe the tools and
techniques in use at the NASA Ames Research Center
for performing visualization of computational aero-
dynamics, for example visualization of flow fields
from computer simulations of fluid dynamics about
vehicles such as the Space Shuttle.

The hardware used for visualization is a high-per-
formance graphics workstation connected to a super
computer with a high speed channel. At present, the
workstation is a Silicon Graphics IRIS 3130, the su-
percomputer is a CRAY2, and the high speed channel
is a hyperchannel.

The three techniques used for visualization are post-
processing, tracking, and steering. Post-processing
analysis is done after the simulation. Tracking analy-
sis is done during a simulation but is not interactive,
whereas steering analysis involves modifying the
simulation interactively during the simulation. Using
post-processing methods, a flow simulation is exe-
cuted on a supercomputer and, after the simulation is
complete, the results of the simulation are processed
for viewing. This is by far the most commonly used
method for visualization of computational aerody-
namics. The next two methods are much more desir-
able, yet much less common given the current state of
supercomputer and workstation evolution and per-
formance. Both of these are more sophisticated
methods because they involve analysis of the flow
codes as they evolve. Tracking refers to a flow code
producing displays that give a scientist some indica-
tion how his experiment is progressing so he could,
perhaps, change some parameters and then restart it.
Steering refers to actually interacting with the flow
codes during execution by changing flow code pa-
rameters. (Steering methods have been employed for
grid generation pre-processing as well to substan-
tially reduce the time it takes to construct a grid for

PRECEDING PAGE BLAN(

W TIST FILTD

55

input to a flow solver). When the results of the simu-
lation are processed for viewing by distributing the
process between the workstation and the supercom-
puter, it is called distributed processing.

This paper describes the software in use and under
development at NASA Ames Research Center for
performing these types of tasks in computational
aerodynamics. Workstation performance issues,
benchmarking, and high-performance networks for
this purpose are also discussed as well as descriptions
of other hardware for digital video and film
recording.

A new software environment, FAST, is introduced
that is currently being developed at NASA Ames for
implementation on workstations that will be procured
in the latter half of 1989. This modular software en-
vironment will take advantage of the multiple
processor and large memory configurations and
other features as specified in the NASA RFP for these
workstations and is a natural evolution of the tech-
niques described in this paper.

1. INTRODUCTION

Using computational aerodynamics, scientists are
now able to model complex fluid mechanics problems
using supercomputers and new numerical algorithms.
To gain a better understanding of these complex flow
fields, scientists use high-performance computer
graphics workstations to view and in some cases ani-
mate these simulations. This paper describes this ap-
plication, the hardware, the software, and the tech-
niques used by the Fluid Dynamics Division of the
NASA Ames Research Center.

ead 5] ienonsus puan

2. DESCRIPTION OF THE APPLICATION

The simulations involve visualizing flow field solu-
tions generated on supercomputers. The raw data
from these simulations consists of density, momen-
tum vector, and total energy per unit volume speci-
fied at each grid point in the computational domain. A
typical computational domain may contain 1 million
grid points. This raw data must be converted to a
scene depicting the physics in a manner the scientist
can easily interpret. Color and visual cues (shading,
animation, etc.) are used to demonstrate the physics
of the particular result. PLOT3D, GAS, SURF, RIP
and a new software environment FAST (currently
under development) are visualization tools described
further in this paper.

3. VISUALIZATION REQUIREMENTS

The views of the simulation portrayed by the com-
puter graphic workstations must be 3D because visu-
alization of the inter-related flows of all three dimen-
sions simultaneously is important. The displays must
be dynamic in order for the time-variant features of
the flow fields to be understood. Although the motion
need not be real time, the motions must be rapid
enough to gain a proper understanding of the dy-
namic features of the flow. The flow fields typically
have a large range of scales; therefore, the scientist
must be able to zoom into a region of small scale fea-
tures and zoom back out to view the overall flow
field. Furthermore, the displays should be high defi-
nition to contain adequate detail at all scales. The dis-
plays should simultaneously contain solid body ob-
jects, such as an aircraft (with hidden surfaces re-
moved), and points or lines (such as lines represent-
ing the paths of tracer particles inserted into the flow
field). As the displays evolve in time illustrating the
flow dynamics (e.g., the movement of tracer parti-
cles) the viewing position must be simultaneously

changeable in real time (as the flow is evolving) in
order to maintain the best view or to get a different
perspective. Dynamic change of the viewing position
is one of the best cues for enhancing the 3D aspects of
the display. In addition, new visualization effects such
as ribbon traces, smoke, shading of function mapped
parts, anti-aliasing, variable transparency, volume
visualization and stereo are being requested by the
scientists studying the flow fields.

4. OVERALL APPROACH

At the current time, no workstations costing less than
approximately $100K have been available that can
meet the requirements described above for dynamic
viewing of complex solids embedded in flow fields.
Therefore, the approach has been to obtain worksta-
tions with the highest performance available at the
time of the procurement, and to augment these work-
stations with equipment for recording on video tape
and 16mm film to permit dynamic viewing of com-
plex scenes that could not be viewed dynamically on
the workstations.

The next generation workstation is expected to be
procured in approximately the third quarter of 1989.
The performance of the Silicon Graphics 4D/240
GTX is given in the table below, and it is the ap-
proximate expected performance of the next genera-
tion workstation. These workstations are expected to
meet most of the requirements for dynamic viewing
listed above. A more complete description of the
features expected in the next generation workstation
is given in reference 2. Phong lighting, material
maps, alpha blending, and a windowing system in a
parallel programming environment are additional
features of this next generation workstation.

Benchmark software has been developed at
NASA/Ames to test, among other things, what kind of

Table 1: Features of Current and (typical) Next Generation Workstations
Feature IRIS 3130 IRIS 4D/240 GTX
CPU
CPU performance 1 MC 68020 0.1 MFLOPS/16MHz 4 x R3000 (RISC) 16 MFLOPS/25
MHz
FPU performance 1 MC 68881 4 x R3010 (RISC)
RAM 16MB 128MB
disk storage 474 MB 9.6 GB
Computations 0.1 MFLOPS 40 MFLOPS
GRAPHICS
Resolution 1024 x 768 1280 x 1024
| Image memory 24 bitplanes 48 bitplanes (+overlay,alpha)
Z-buffer 12 bits 24 bits
Pixel rate 1,000,000 pixels/sec 8,000,000 pixels/sec
3D coordinate transformations 80 K/sec 400 K/sec
polygon transformation* 16 K/sec (flat, not z-buffered) 100 K/sec (Gouraud, lighted, and z-
buffered)

(*polygons are 400 pixel quadrilaterals)

56

graphics performance can be expected from these
next generation workstations (Note: the numbers
quoted in the table above are NOT measured with
these benchmarks, but are published numbers from
Silicon Graphics Inc.) The graphics capabilities em-
phasized by the benchmark include color, simultane-
ous vector and polygon display, double buffering
(ref. 7, p.84), hidden surface removal, smooth shaded
polygons and coordinate transformation rates. The
benchmarks also test display list operation (creating
an object in a application program and displaying it)
and frame buffer performance. This software can be
obtained through the authors from NASA/Ames Re-
search Center.

5. HARDWARE CONFIGURATION

The hardware configuration is shown in figures 1, 2,
and 3. Figure 1 shows the hardware configuration
for creating and viewing flow field solutions. Figure
2 specifies the hardware for creating video tapes, and
figure 3 specifies the hardware for creating 16mm
film.

The calculations to generate the flow field solutions
are done on the supercomputer. The conversion from
these solutions on 3D grid points to scenes depicting
the physics (e.g. particle traces about the body) can be
done in three ways. The first way is to transfer the
whole solution file (containing the solution at each
grid point) to the large disk on the workstation and
generate the scene on the workstation. The second
way is to produce graphics files on the supercomputer
(and transfer these graphics files to the workstation).
The software for creating and viewing scenes using
these two methods is described below in the soft-
ware section. The third way is to create the scene
using the supercomputer interactively while viewing

(A b >

FLUID DYNAMICS
CALCULATIONS

CRAY 2
SUPERCOMPUTER

Figure 1.

———§

the scene on the workstation. The software for this
method includes tasks that run simultaneously on both
the supercomputer and the workstation. This concept
involves separating the computationally intensive
portion of the processing on the supercomputer from
the graphics on the workstation and having the two
processes communicate over a high speed network.
One scenario involves sending pre-computed display
list (ref. 7 p 348) information to the workstation
using a remote graphics library developed for just
such a purpose (this graphics library allows a
graphics program to be implemented on a
supercomputer). Other scenarios involve more
standard networking schemes, where subroutine
and/or interprocess communication are utilized. The
bottleneck in those types of schemes can often be the
large amount of data that has to be transferred from
one computer to another. Existing software and
techniques being utilized at NASA/Ames Research
Center are described further in references 3, 5 and 6.

The key features of the workstation are its rapid 3D
transformation speed (for changing the viewing posi-
tion), its high definition display, and its rapid display
creation speed. 3D coordinates can be transformed at
a rate of 80,000 coordinates per second. The display
has high spatial resolution (1024 pixels horizontally
by 768 pixels vertically) and high color resolution
(24 color planes giving more than 16 million
simultaneous colors). (The color planes can be di-
vided into two buffers with 12 color planes each to
obtain the double buffering required for most dy-
namical displays. This reduces the number of simul-
taneous colors to 4096.) Displays with a very simple
solid object and thousands of lines or points can be
generated at a rate of more than 10 per second — a
rate that provides satisfactory motion for under-
standing dynamics. The Space Shuttle illustrated in

470 MB HardDisk

T

IRIS WORKSTATION

Hardware configuration for creating and viewing flow field solutions

the video tape represents a maximum display com-
plexity for studying dynamics directly with the
workstation, as the time to create each display (frame
for film) is approximately 1/2 second — a rate that is
marginal for viewing dynamic motion. For this dis-
play, the Space Shuttle is represented by approxi-
mately 8000 polygons (ref. 7 p. 87) and the painter's
algorithm was used for hidden surface removal.

The workstation contains a Z buffer (ref. 7, p. 560)
for hardware implementation of hidden surface re-
moval. In addition, the Gouraud shading (ref. 7,
p.498) calculations get an assist from the workstation
hardware. However, many seconds are required to
create displays of typical aerodynamic vehicles if the
Z buffer and Gouraud shading are used. Therefore,
these displays must be recorded on video tape or
16mm movie to view the dynamics satisfactorily.

The hardware used to record the displays on video
disk is shown in figure 2. The high definition display
is digitally sampled by a scan converter to a lower
resolution RS170a format that can be encoded by the
encoder into the standard single NTSC (National
Television Standards Committee) signal used by stan-
dard video recorders and players. (The loss in spatial
and color resolution during this conversion is de-
scribed later in the section "Discussion”.) A time
base corrector must be inserted into this system prior
to the 1" video recorder to generate the precision sig-
nal timing required for "broadcast” quality signals
(necessary for broadcasting over the air). The
Abekas A62 video disk recorder is controlled via a
standard RS232 interface. As each frame is displayed,
control information tells the Abekas to record. It then
stores the frame as digital NTSC. This process occurs
at standard video rates; that is the digital video system

NTSC
SYNC
3/4" VIDEO TIME BASE 1" VIDEO TIME BASE
RECORDER CORRECTOR RECORDER OCORRECTOR
T o i
SYNC s s
c c
= 4K
W ABEKAS A-52 NTSC
—¥ E'F’EE%‘T\L MONITOR
DISTRI- T S
NTSC | ¢
— 4
E
R
RS 170/NTSC NTSC
ABEKAS A-62 iy
DISK CONTROLLER
RS-232 CONTROL
PANEL
SYNC

Figure 2. Hardware configuration for digital video disk recording

58

IRIS
3030 Graphic
Workstation
with 30 hz
display option

RS232 Program control

G

SYNC

(RS-343)

\AAA

DUNN
CAMERA
16 mm

RGB

MONITOR
30 HZ

interlaced

Figure 3. Hardware configuration for 16mm film recording

has the capability to record analog NTSC at real-time
rates so the time required to record a computer
workstation frame is limited by the time it takes to
render it. The workstation then continues on with the
next frame, and repeats the process until the anima-
tion is complete. The Abekas uses Winchester disk
technology (1.3 gigabytes storing 100 seconds of
video), allowing stored video to be edited (using the
AS52 special effects) or the disks to be re-recorded.
There are no generation losses within the system due
to the digital formatting.

The hardware for recording the displays on 16mm
film is shown in figure 3. The Dunn Camera is con-
trolled from the workstation using an RS232 hard-
ware connection and the GAS software described
later in this paper.

6. SOFTWARE

The three techniques used for visualization are post-
processing, tracking, and steering. Using post-pro-
cessing methods, a flow simulation is executed on a
supercomputer and, after the simulation is complete,
the results of the simulation are processed for view-
ing. This technique is by far the most common for vi-
sualization of computational aerodynamics, given
existing computing resources. The following are ex-
amples of post-processing software packages in use at
the NASA Ames Research Center:

PLOT3D accepts as input the flow field solutions
from the supercomputer and creates as output a vari-
ety of displays that can be viewed dynamically with
the workstations (or statically from other graphical
display devices). The software makes extensive use
of color and 3D cues (such as shading and perspec-
tive: ref. 7, p. 269). A very popular display is path
lines of particles released at selected points inside the

59

flow field. An example of particle paths in the flow
field is shown in figure 4. A second example of dis-
plays from PLOT3D is color mapping on a vehicle
surface representing the magnitude of some scalar
property on the surface, such as pressure. A third
example is a shock surface within the flow field (or
some other surface of constant scalar value) repre-
sented as a partially transparent surface so the vehicle
creating the shock can be seen through the shock.
PLOT3D software can be run on the workstations,
the Cray supercomputers, and on a VAX 11/780
minicomputer.

SURF(Surface Modeller) allows scientists to input
grid and solution files and interactively build a 3D
model consisting of wireframe, shaded, and function
mapped parts. These parts can be interactively
viewed, edited, and output to ARCGRAPH files
which can then be loaded into GAS and then ani-
mated. SURF has a mouse driven interface (similar to
GAS). Gouraud shaded parts can have their color and
specular highlighting adjusted interactively. Shaded
parts are created based on user specified lightsources
(up to 20), a viewpoint, and an ambient light level.
The function mapped parts can also have their color
spectrum adjusted interactively. Legends can be cre-
ated to show the correlation of color and normalized
function values. Also, function mapped parts can be
"clipped"” so that they only show areas within a speci-
fied range of function values (e.g. normalized pres-
sure between 1 and 2). SURF computes the following
functions: pressure, density, temperature, Mach
Number, and custom (user defined) functions.

GAS(Graphical Animation System) permits the sci-
entist to interactively and dynamically view the 3D
displays created by PLOT3D (or several other
graphical packages) while simultaneously changing
the viewing position within the 3D space. In addition,

ORIGINAL PAGE IS
OF POOR QUALITY

PARTICI [TRACES

BLUNT T'IN PROTRUDING FROM 0 FLAT PLATE

2,950

B.08 PEG

2- 1018046

14
4O AP X

Figure 4. Example of figure created with PLOT3D.

Figure 5. Example of figure created with SURF.

60

ORIGINAL PLaE i
OF POOR QUALITY

Figure 6. Example of figure created with GAS.

+¢ RIP Voerwion 1.50 ++

Figure 7. Example of figure created with RIP.

61

it permits the scientist to generate an animation se-
quence with smooth 3D transitions between a series of
specified positions. Both the animation speed and the
number of "tweening" steps (automatically added to
give smooth transition between specified positions)
are under user control. Titles can be inserted, and the
resulting "movie"” can automatically be recorded by
the video equipment or the 16mm film recorder
which are under control of the GAS software. This
software is device specific and runs only on a Silicon
Graphics IRIS Workstation. It was written in the C
programming language under the UNIX operating
system.

FAST(Flow Analysis Software Toolkit) is a new
proposed standard fluid-dynamics graphics environ-
ment, The purpose of FAST is to provide the scientist
with a single software environment for handling
many graphics needs (some functionality exists in the
programs described above) in a way that is quick,
powerful, and easy to use. The programs above were
designed and built for the current Silicon Graphics
IRIS 3130 workstation, whereas the FAST environ-
ment is being designed for the capabilities of the next
generation workstation (see Table 1.). The new capa-
bilities of these machines warrant a new approach to
building graphics tools. The goal is to allow a scientist
to quickly and easily perform fluid dynamics scien-
tific visualization from this environment. Initial
software features include (1) a standardized user in-
terface, (2) data sharing, communication and mem-
ory management between modules, (3) high quality
rendering and advanced animating capabilities, (4)
new ways for viewing and interpreting fluid dynam-
ics. The five initial modules are (1) the main FAST
module to load and unload the other modules and
manage data structures, (2) The MODELLER mod-
ule to read grid and solution data and create models,
(3) The FLOW TRACER module for illustrating the
flow field in a variety of ways (tracers, ribbons,
smoke), (4) The TITLER module for titling and la-
belling, and (5) The ANIMATOR for advanced ani-
mation and recording.

RIP(Real-time Interactive Particle-Tracer) is an ex-
ample of a distributed graphics tool and actually con-
sists of two programs that communicate over a high-
speed network. One program computes the flow
traces from raw data on a supercomputer and the
other program renders these traces for interactive
viewing on a workstation. Particle tracing is then in-
teractive, where a scientist selects a trace or rake of
traces for display and the traces are computed and
then drawn in most cases almost instantaneously,
much like a smoke wand in a wind tunnel.

62

There are other codes in use at NASA Ames that em-
ploy tracking and steering methods, although these
codes are typically in more prototype use than part of
day-to-day simulation efforts. Versions of ARC2D
(Ames Research Center 2-d flow solver), a code in
use at NASA Ames, exist that "track’ the progress of a
simulation. Simple examples of 'steering’ a flow code
exist as part of the interactive grid generation pro-
gram IZ (Interactive Zoner). In this example of
'steering’, you can generate a grid and then run a flow
solver on it using the distributed graphics techniques
discussed earlier. This example is only 2-d because
workstations have not had the resources (until re-
cently) to allow 'steering’ a 3-dimensional flow
solver.

7. DISCUSSION

Of the three visualization methods discussed in this
paper (post-processing, tracking, and steering), post-
processing is by far the most common. Current su-
percomputer and workstation performance make this
the most practical method for viewing solutions of
computational aerodynamic solutions. Probably 90%
of all simulation is performed in this manner, with
the remaining 10% made up of scientists using track-
ing codes, and, to an even lesser extent, scientists us-
ing steering codes.

Post-processing techniques include (1) dynamic, in-
teractive viewing on the workstation, (2) recording
and playback on video disk and then to tape, and (3)
recording and playback on 16-mm film. These tech-
niques have greatly improved the ability of scientists
at NASA Ames to conduct fluid dynamics research,
although these techniques necessarily mean a loss of
interactivity, take a long time to record, and, for
video, mean a loss of spatial and color resolution.

With direct viewing on the workstation, the capability
to interactively manipulate the viewing position
and the animation sequence was found to be very ef-
fective in providing a quicker and more complete un-
derstanding of the flow field solutions. This capabil-
ity is lost if the displays are so complex that they must
be recorded for playback. A solution for this prob-
lem is to increase the performance of the workstation.
As mentioned earlier, the display creation speeds of
workstations are projected to increase an order of
magnitude over the next year. This will permit many
complex displays that now must be recorded for
satisfactory motion analysis to be viewed directly on
these newer workstations. Nevertheless, there will
still be displays that are too complex to view with ad-
equate rates of motion on the new workstations;

recording will still be required for these displays. (In
addition, recordings are required for group presen-
tations.) Therefore, it is important to improve the
recording techniques also.

Recording on the Abekas video disk or Dunn film
recorder with the hardware shown in figures 2 and 3
requires a much longer time than simple viewing on
the workstation — a typical recording time is 1/2 to 1
hour for every one minute of playback time (based on
30 frames per second video playback and 24 frames
per second film playback). The film medium takes
longer due to the nature of the recording process. The
Dunn film recording system requires cycling of red,
green, and blue filters for each frame (or exposure).
The Abekas system records each frame essentially in-
stantaneously, so the length of recording time is de-
termined by the time it takes to render each frame,
which is determined by the rendering techniques be-
ing used for the simulation (1 sec to 2 minutes).

Recording on video disk also causes a loss in picture
quality (a loss in picture definition and shifting in
colors). The initial spatial resolution must be cut
nearly in half (down to 512 x 512) for the conversion
to RS170a RGB format, and the further encoding to
the single composite video signal (NTSC) causes an-
other substantial reduction in quality. Analog
recorders that rewind and pre-roll also cause some
loss in quality. The digital video system mentioned
above provides a partial solution to the loss in picture
quality. There is no loss of resolution or shifting of
colors in the editing because the pictures are stored
digitally. The loss of quality during recording is also
reduced by using continuous recording rather than a
frame at a time and by using the larger 1" tape format
rather than the 3/4" tape format used in older analog
recording systems. The capability to record individ-
ual "fields" of video is also an important feature of
the digital process. Animation sequences can be
separated by fields (instead of by full frames of
video). The effect on playback is very smooth mo-
tion, as the eye cannot detect or distinguish between
these fields. This technique is borrowed from com-
mercial television computer graphics applications
where it is used often.

Recording on video disk and tape could be substan-
tially improved with the addition of real-time digital
video output from a workstation frame buffer. Cer-
tain digital video component manufacturers are al-
ready standardizing on the D2 (Sony, Ampex) com-
posite digital video format and, although many
workstation manufacturers have discussed such an
option, the authors are not aware of it being available
at the time of this writing. Not only would this option

63

eliminate the need for much of the outboard equip-
ment necessary for video recording, it could poten-
tially improve the video quality by eliminating nu-
merical sampling error going from digital to analog
and back to digital again.

Recording on film requires a long time primarily be-
cause film processing at NASA/Ames is done off-site.
This processing time could be reduced from days to
hours if a film processor were placed on-site.

The need for these recording techniques arises from
the current capacity and performance limitations
touched on earlier in this paper and summarized in
table 1.

While there will always be a demand for presentation
videos, partially reducing the dependence on these
recording techniques would require ultimate perfor-
mance in a computer graphics workstation. A spatial
resolution of 1280 x 1024 requires 100,000 poly-
gons/sec updated at 10-12 frames/sec for baseline
performance (with hidden surfaces removed, anti-
aliasing and interactive, advanced lighting mod-
els).Workstations that approach this level of perfor-
mance are discussed in this paper. Other possible
configurations NOT discussed in this paper include
fast frame buffer configurations utilizing a very high
speed network interface to a supercomputer (100
mbyte/sec) or an RGB digital video system (although
this would NOT be interactive).

As further advances are made in supercomputing,
parallel architectures, networks and workstation
graphical performance, the authors predict develop-
ment of more and more software environments
where tracking and steering techniques are employed.
At the time of this writing state-of-the-art resources
allow for only minimal examples of these types of
scientific visualization of computational aerodynam-
ics (see Table 1).

8. CONCLUSIONS

The high resolution, high performance 3D graphical
workstation combined with specially developed dis-
play and animation software has provided the scien-
tists conducting fluid flow simulations with a good
tool for analyzing flow field solutions obtained from
supercomputers. A video tape recorder or 16mm
film recorder, and the controlling animation soft-
ware, are needed in addition to the workstation for
very complex displays that cannot be created rapidly
enough with at this point in time to yield satisfactory
dynamics on the workstation alone.

REFERENCE

1. The computational and graphics facilities de-
scribed are the joint efforts of the NASA Numerical
Aerodynamics Simulation (NAS), and the Fluid Dy-
namics Division Workstation Applications Office,
both at NASA/Ames Research Center, Moffett Field,
California.

2. Lasinski, T., NASA Ames Research Center Re-
quest For Information RFI2-33166(RCB) April 9,
1987

3. Choi, D. and Levit, C., An Implementation of a
Distributed Interactive Graphics System for a Super-
computer Environment, Second International Con-
ference on Supercomputing (ICS), March 1987

4. Buning, P., and Steger, J., Graphics and Flow Vi-
sualization in Computational Fluid Dynamics, AIAA-
85-1507-CP, AIAA 7th Computational Fluid Dy-
namics Conference, July 15-17, 1985

5. Rogers, S., Buning, P., Merritt, F. Distributed
Interactive Graphics Applications in Computational
Fluid Dynamics , submitted to the International Jour-
nal of Supercomputing Applications, July 1987

6. Buning, P., Bancroft, G., Lasinski, T., Choi, D,
Rogers, S., Merritt, F. Flow Visualization of CFD
Using Graphics Workstations AIAA 87-1180, 8th
Computational Fluid Dynamics Conference, June 9-
11, 1987

7. Foley, J., Van Dam A.Fundamentals of Interactive
Computer Graphics Addison Wesley, 1982

64

NGO-20661 o

APPLICATIONS OF GRAPHICS TO SUPPORT A TESTBED
FOR AUTONOMOUS SPACE VEHICLE OPERATIONS

K. R. Schmeckpeper, J. P. Aldridge, S. Benson,
S. Horner, A. Kullman, T. Mulder, W. Parrott,
D. Roman, G. Watts
McDonnell Douglas Space Systems Company
Houston, Texas 77062

ABSTRACT

We describe our experience using graphics

tools and utilities while building an
application, AUTOPS, that uses a graphical
Macintosh (TM)-like interface for the input

and display of data, and animation graphics to
enhance the presentation of results of
autonomous space vehicle operations
simulations. AUTOPS is a test bed for
evaluating decisions for intelligent control
systems for autonomous vehicles. Decisions
made by an intelligent control system, e.g., a
revised mission plan, might be displayed to
the user in textual format or he can witness
the effects of those decisions via "out of the

window" graphics animations. Although a
textual description conveys essentials, a
graphics animation conveys the replanning
results in a more convincing way. Similarily,
iconic and menu-driven screen interfaces
provide the wuser with more meaningful
options and displays. We present our
experiences with the SunView and TAE Plus
graphics tools that we used for interface
design, and the Johnson Space Center
Interactive Graphics Laboratory animation

graphics tools that we used for generating our
"out of the window" graphics.

INTRODUCTION

For several years, much effort has gone into
the development and application of enabling
and enhancing technologies for support of
space operations. Many new technologies and
methods, such as artificial intelligence and
expert systems, have been applied to flight

65

Daniel C. Bochsler
LinCom Corporation - Houston Operations
Houston, Texas 77058

design software, user interface problems,
ground and flight crew training, ground based
mission control operations, robotic operations,
flight systems management, etc. [1] The
AUTOPS (autonomous operations) test bed
integrates many of these technologies into a
single framework to develop effective
operations management, an element of mission
success that is equal in importance to reliable
hardware and software. [2]

AUTOPS is an evolving tool that has thus far
been developed to the point of a feasibility
demonstration that makes considerable use of
animated graphics and screen interaction
graphics. The animations are used for
demonstrating proximity operations autonomy
in operation planning, mission monitoring, and
fault management. Screen graphics

additionally assist in demonstrating vehicle
monitoring and health maintenance expert
systems and rendezvous planning activities.

Because these items form uniquely
informative means to convey system behavior
to an analyst, they form an important feature
of AUTOPS.

Although the importance of good graphics is

unquestionable, their development has
previously represented a significant
commitment of time and effort. The

availability of graphics tools has significantly
changed this level of commitment. In this
paper, we discuss our recent experience with
using some of these tools.

AUTOPS CONCEPT
Figure 1 illustrates the architecture of
AUTOPS. The test bed consists of a collection

of objects dedicated to specific activities: a test
bed controller and vehicles that contain
subobjects such as intelligent vehicle control
systems, orbital and hardware simulations,
and data management capabilities. The
graphic capabilities are isolated from the
computational capabilities in the graphics and
operator interface objects controlled by the
test bed controller., This architecture permits
the reuse of code developed by others or the
use of tools developed by others to produce

the desired interfaces. Intelligent control is
accomplished through cooperating expert
systems that perform mission direction,

mission monitoring, operations planning, and
system health monitoring and fault recovery.

Currently, "vehicles” use software simulation
as the means for providing orbital motion
parameters and consistent sensor response to

the orbital environment and vehicle
subsystem operation. It is our intent to
provide the capability to integrate hardware

into the test bed to provide some of these
data. For example, if it were desirable to test
the ability of a vision sensor for use in close
proximity operations, a television picture
could be generated using the animated
graphics and fed back to the vision hardware
for the appropriate vehicle. A more
immediate example is to use a fuzzy logic
hardware chip to provide engine firings in
place of the fuzzy logic controller software
used in the feasibility demonstration.

Finally, other features of AUTOPS include the
execution of the operation in real time and
integration of currently available programs,
especially simulation software. Real-time
operation means here that the simulation
computations will occur often enough to reflect
actual behavior of an autonomous space
vehicle and that time spent by expert systems
in arriving at a decision for action will be
taken into account.

SCREEN INTERFACES

Our feasibility demonstration required three
screen interface designs: a main Operator
Interface (OI), an interface to the electrical
power system expert system (EPSYS), and an
interface to the propulsion system expert
system (PROPSYS). These interfaces were
constructed over a period of time in which we

66

were significantly increasing our graphics tool
capability. The first to be built, the EPSYS
interface, was created with SunView which is
system software for our SUN network. The Ol
and PROPSYS interfaces were created with TAE
Plus software obtained from Goddard Space
Flight Center.

EPSYS is a prototype diagnostic expert system
for monitoring the electrical power system of
an autonomous shuttle-like space vehicle. Its
function is to detect and explain anomalies and
generate plans to recover from system faults,
EPSYS supports a window- and menu-based
user interface. The user-interface is composed
of a base window that is subdivided among a
group of graphic and text subwindows (Figure
2). Each graphic subwindow represents a
control panel for a physical subsystem. The
control panels are composed of parameter
headings and a matrix of associated status
lights and trend symbols. A command button
and hierarchical menu system were designed
to allow the user to easily communicate with
the expert system. The final component of the
interface is a scrollable text subwindow. The
function of this window is to organize and
display the textual representation of the high-
level interactions and conclusions within the
expert system.

Our choices for the development of the EPSYS

interface were SunView and X. We chose
SunView largely because we had access to the

source code of a SunView-based interface
which supported many of the same functional
requirements that EPSYS possessed. Also,
SunView is well-documented. At this time,
our in-house version of X had several bugs
and lacked complete and accurate
documentation. In addition, the
documentation we possessed supplied few
examples. Also, our version of TAE Plus, an X
code generator, was an early release and did
not support many of the functions we needed
to implement. The EPSYS interface was
completed in three weeks by two
programmers, including learning the SunView
system.

The second interface we built was for the OI
for inputting orbital parameters and showing
calculational results. We elected to use TAE
Plus for this task. TAE Plus allows the user to
build a graphics interface with a Macintosh
(TM)-like feel by using a graphics workbench
tool with a mouse. It adds a layer of

programming over standard X code, such that
the developer is required to have little, if any,
X programming knowledge. Once the
developer has the interface screen or panels
designed, the workbench tool can generate
code that implements it. Currently, the
workbench will generate code in the C and
Ada languages with Fortran and C++ generators

under development.

Approximately one week was spent in
learning how to use TAE Plus and how to
integrate its generated <code into an
application. The original OI design was
completed and implemented in tour days by

one programmer. An additional week was
spent in editing the interface by "tweaking"
the placement of items in a panel. Figure 3
presents the prototype Ol master control panel
and vehicle states output panels. The graphics
workspace is the only panel that requires
direct X programming.

Figure 4 shows an overlayed Initialization
panel where the user can select one of ten
rendezvous cases and either accept default
data or modify any of the orbital elements.
This panel required the most time to complete,
as all work was performed on a SUN 3/50.
TAE Plus was designed to run on a SUN 3/60.
A twenty-four character limitation on display
text length required that the titles on the
rendezvous case selection buttons be created
in halves and dragged to their locations on the
panel.

The Propulsion Expert System (PROPSYS) is
another prototype for a fault management
system. PROPSYS will be a part of a
distributed network of cooperating expert
systems forming the System Monitor for an
autonomous vehicle. It is a rule-based system
written in CLIPS. Its user interface was
developed using TAE Plus and X. The user
interface is composed of a main control panel
which is used to generate subsystem faults
(Figure 5). The subsystem chosen brings up
other panels with menus to enter parameters
necessary for fault generation. After fault
generation is complete, display panels that are
appropriate for monitoring the subsystem
during fault analysis and recovery appear

(Figure 6). A standard X window displays text
provided by the expert system during its
operation. The text provides information on

high-level interactions and conclusions made
by the expert system.

67

The PROPSYS interface was completed in about
four weeks by two programmers. This
included learning TAE Plus and integrating its
generated code with the application code.
Access to existing TAE Plus code provided
invaluable assistance and reduced our
development time.

ANIMATION GRAPHICS EXPERIENCE

The integration of the AUTOPS Testbed
Prototype with an existing graphics package
was a simple, straight-forward procedure. In
order to connect the prototype to the graphics,
the AUTOPS Testbed Prototype software was
loaded onto a Sun workstation located in the
NASA Interactive Graphics Lab. This Sun
contained Raster Technologies' graphics boards
to provide a graphics engine and was
connected to a high-resolution color monitor.

The modification of code in order that AUTOPS
could be integrated with the graphics was also
a minor procedure that consisted of
customizing three routines and a data file. The
three routines and the data file were copied
from the graphics package into the AUTOPS
simulation code. They were then modified to
fit our requirements. This consisted of picking
the vehicle models that we were using, in this

case, models of the Shuttle Orbiter and the
Orbital Maneuvering Vehicle, choosing
information such as eye-point position,

background models for the stars and the Earth,
lighting, and size of the vehicle models. After
the modifications were completed, the
resulting code was compiled and linked into
the simulation code. The Prototype was then
executed in the same way that it was before

the graphics was integrated into it. The
procedure for integrating the AUTOPS
prototype with the graphics required two

programmers for two days.

Figure 7 shows one of the runs made with this
system. The asterisks show positions of the
orbiter at constant time intervals. Speed is
thus indicated by the separation of successive
indicators. This example illustrates the
triggering of a replan by an expert system
planner in response to an anomaly, in this
case, a loss of general purpose computer
redundancy. Flight rules specify that the
vehicle shall back straight out to a 200 foot

range in this event. The graphics emphasize
and record this behavior.

CONCLUSION

We have found that graphics tools provide a
practical solution to quickly building excellent
interfaces, that the tools are rapidly
improving, and that the time for changes is
growing sufficiently short that timely
modifications of the interfaces to accomodate
user preferences is now practical. Also,
animated graphics can be easily adapted to
enhance computational results without
extensive modification of an application that
does not support such capacity.

REFERENCES

Wang, Lui and Bochsler, Daniel, "Space
Shuttle Onboard Navigation Console
Expert/Trainer System,” p. 11, NASA
CONFERENCE PUBLICATION 2491, First
Annual Workshop on Space Operations
Automation and Robotics (SOAR 87),
Houston, TX, August 5-7, 1987.

1)

2) Beck, Harold,"Application of Technology
to Space Flight Operations,” Workshop on
Space Launch Management and

Operations,

ORBITAL SIM ORBITAL SIM ORBITAL SiM
SUBSYSTEM SIMS SUBSYSTEM SIMS SUBSYSTEM SIMS
NTELLIGENT CONTROLS INTELLIGENT CONTROLS INTELLIGENT CONTROLS
VEHICLE SENSORS VEHICLE SENSORS VEHICLE SENSORS
VEHICLE CHARACTERISTICS VEHICLE CHARACTERISTICS VEHICLE CHARACT]
VEHICLE CAPABILITIES VEHICLE CAPABILITIES VEHICLE CAPABILI]
CURRENT STATE INFO CURRENT STATE INFO CURRENT STATE M

TEST BED

MISSION DIRECTOR

"GROUND TRUTH"
TV, RADAR SENSOR DATA

PLUME IMPINGEMENT AND
TETHER CORRELATIONS

MISSION MONITOR
OPS PLANNER
SYSTEM MONITOR

Figure 1.

68

AUTOPS architecture

PRRYN $XEEHT 7

e U G TE g

Primsry Sansor High

ELECTRICAL POYER DISTRIBUTION & CONTROL
M] MNE HNC

5 B

e

ORIGINAL PAGE IS
OF POOR QUALITY

== B

Tk

i

Tk

2AES 4]
THE LR

Fc 2
FC 3 Yolts Secondary Sensor Kigh
1 Volts y Sansor Low MAIN
Amps Primery Sensor High
VOLTS Asps Primsry Sensor Low YOLTS
2MPS Amps Secondary Sensor High AMPS
Amps Secondary Senser Low
STACK d Stack Temp Primary Ssnsor High sTaTUS
EXIT TEMP Stack Temp Primary Sensor Low
DELTA P Stack Temp Secandary Sensor Wigh ESS
DELTA ¥ Stack Temp Sacandary Sensor Lew
H2 FLOW Exit Temp Sensor High yoLTS
02 FLOW Exit Tomp Sanser tow AHPS
B2 VALVE STATUS
02 VALVE p# Sensor High
pR pH Sensor Low cTL 18¢
FCOR LOAD Mixing Yalve Fallure
N2 Reactant Yalve Fallure YOLTS %
02 Reactsnt Yalve Fatilure
MHO ANPS
co N pH Dual Gas Aegulator Fallurs STATUS
Coslant Loop Leak _-_—
PONER REACTANT S7| Coolant Pump Failure I
ECU Fatlure YOLTS
n2 TX1 Crossover AMPS
s 1 STATUS
PRESSURE 0 0
MANIFOLD YOLTS
STATUS AXPS
STATUS
02
PRESSURE B Bn] Ba) por) B f) g |
KARIFOLD YOLTS
STATUS

g Y E

(TE[E EFE) JELET) | [EEE)JO0ET0) JRELE | BLEDE | EEEEE

Sim Tine DOIHH:MISS

CHRSER STATE
000K X
10000, X
i X00K X
X-Dot 000X X
T-Dot. 0000, X
Z-bot 000X X

Range-To-Target 000X, X
Range-Rate-To-Target X0000(,X
DETELTER AMBWLIES:

(talex_receiver) Marning: Can’t lockup 3
jarver (10010003}

plot2 160 169 219 10101042 160 160 219 1
C1(telox_raceiver) Can’t register server
0001)

Sin Tine DBIHK:MNISS

COMASER STATE
000X X
X000 X
X0000C.X
000X X
1000, X
30000¢, X

TARGET STRTE

fctuaifarge 000X
Actual-RangeRats 00XX.X
ACTURL ANDIWLIES:

Figure 3 AUTOPS Operator Interface

69

132880

Coromer woms) (Covenmn) (Cur)

[(EIXD)

® 1 Tyleal Orbits, Dvser 30 dog Mase Meed of Turget
D 2 Tyntosl Orhits, Dwser 100 dog Phase Mwad of Target
D 3 Tyicsl Orbtts, Cuser 0 sag Mhase Bohir Target
O 4 Typlcal Orbite, 0 veg Fhase Agis
O B Owser Narimm Ciroular #ltitude
O & Owesr Neximm Ecomtrio Oreit
O 7 Polar Oraita, Minimum Clrouler Altibuses
© ¥ Herimam inol ination Fifferential
O 2 Maximm Longitinie of Asosreing Hose DEFf. at 20,48 deg
O 1* Metrograde Oreits, Argumet of Poriges
Chaor ThacET
Aporee Mibitse (i e —
Perigee Altituse comi> LR R 1 M—
Lnelination (0-100 deg) X B 3000
Longhtoes of Msasmaing Mot (6360 sy [EEERE] ([[LERE]
Arrion of Parigee (O-360 dogd (X] Ew
True Anomaly (=360 deg> X] R
W an
Gurrent Tine CONT) B & B
MT=5 Misslon Btart Tiae (CNT) /M [
PET=0 Phese Srent Time ONT) B 6] @\
Choser Bate Thae CGHT B/] E)
Torget Stete Tine (CHT) [Z3] &)
Kaximm Phase Buration B ®] E]

QPTINIZATION PegrERDCE
® 1 Ninisire Propeliant
2

00000

3
a
s
& Nininize Flight Tine

Figure 4 AUTOPS Initialization interface

e omiven surrons |

(] =2

| & Jicoon

Q= o

[=3

Figure 5 PROPSYS Main Controt Panei

jj s£7 AvetLamiLI Ty |f

RIGHY POD
3

®]

HefPL HoP1
w2 (556] o2
Meful HeOx!
Pl 243] Py
R TREY]
Ftar 500D] oseet

ORIGINAL PAGE IS
OF POOR GUALITY

W) e
Rl TR
Wl 2] nowr
£] ey B3] mace3
R3] nefpe R3] e
Foon] runy Oxty

Fudx W RES F 2 (L

ToRCSF 20

parser iname=taTh2 (1

message Soript SubScript switch completad - deactiveling

153 I

Figure 6 PROPSYS Fault Monitoring Panel

;&

.
) ‘ [ek D 6'*‘:”'; %’*“m 4

.
l4

Figure 7 AUTOPS Animation Graphics Output

71

DESTINATION MARS

Mike Remus
Morton Thiokol, Inc.

(Paper not provided by publication date)

73
PRECEDIN 1 e
G PAGE BLAN -~ FiLrren %IENBONM BLANK

N90-20662

PR

. =

LARGE SCREEN DISPLAY FOR THE
MISSION CONTROL CENTER

Martin J. Skudlarek

Ford Aerospace Corporation, Space Information Systems Operation
MS B2E, P. 0. Box 58487, Houston, Texas 77258-0487

INTRODUCTION

The Mission Control Center (MCC), located at the
Johnson Space Center near Houston, Texas, is the
primary point of control and monitoring for National
Space Transportation System (NSTS) flight activities.
NSTS flight managers monitor and command spacecraft
from one of two Flight Control Rooms (FCR). Each
FCR is equipped with five large screen displays for
group dissemination of spacecraft system status and
vehicle position relative to Earth geography. The
primary or center screen display is ten feet in height
and twenty feet in width. The secondary or side screens
are seven and one-half feet high and ten feet wide. The
center screen projection system is exhibiting high
maintenance costs and is considered to be in wear-out
phase.

The replacement of the large center screen displays at
the MCC is complicated by the unique requirements of
the Flight Controller user. These requirements demand
a very high performance, multiple color projection
system capable of the display of high resolution text,
graphics and images produced in near real time. This
paper describes the current system to be replaced, the
replacement system requirements, the efforts necessary
to procure the major element of this system (the
projector) for the government, and how the new
capabilities are to be integrated into the existing MCC
operational configuration.

OVERVIEW OF EXISTING SYSTEM

The current center screen projection system represents
the state-of-the-practice for electro-optical systems in
the early half of the 1960's. This rear screen based
projection system is comprised of three major
subsystems; the projector, mirror and screen, and the
driving electronics.

PRECEDING PrGE Dliroc -

75

The projector

Manufactured by LTV Corporation, the projector
subsystem utilizes seven individual xenon lamp/slide
assemblies, mounted on a common structure, to form
composite images on the screen. (See figure 1.) Each
assembly performs a specific function and by way of
color filtering, each can provide a specific color. Basic
slides are constructed of glass, with a metal film coating,
a few microns thick, to provide opaqueness, and are
mounted to a metal frame.

Five of the seven projectors are equipped with carousels
to provide a supply and repository for new and used
slides respectively. Four of those five projectors, referred
to as plotters, are equipped with diamond tipped scribes
driven from X/Y servos, which scrape off the metal
coating, allowing light to pass through the slide. The
two projectors without carousels, spotters, utilize slides
prepared with artwork, whose subject (i.e., shuttle
outline) may be positioned within the frame of the image
by X/Y servos similar to the scribing mechanism. The
remaining carousel projector, background, displays a
static background from prepared artwork (i.e., map).
To prevent damage to the slides from the heat produced
by the close proximity of the xenon lamps to the slides,
compressed air must be forced onto the slide surface.
When simultaneously illuminated, color modified
through filters, and modulated by art work or scribed
slides, the light from these individual projector
assemblies is integrated on the screen to develop the
familiar "world map" image.

The Mirror and Screen

Due to a floor space constraint (see figure 2), and long
throw distance requirement of the projector, the optical
path to the center screen must be folded. This is
accomplished through the utilization of a large front
surface reflection system. This system consists of two
five by six and one half foot pieces of front surface
aluminum coating number 749 glass. Glass mounting

EARE Z 2 _INTENTIONALLY SLANK

E

-
=

N

-

B

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAFH

Figure 1.

structures allow for tilt and azimuth adjustment. The
support structure for the glass and glass mounts
elevates the entire assembly to the required height of
eleven feet, centerline.

The viewing screen is a single ten foot, one inch, by
twenty foot, one inch, by 0.375-inch sheet of coated
glass. The rear-projection coating faces the viewers.

Driving Electronics

Ford Aerospace specially designed and built the
electronics to command the projector because of the
unique nature of the projector interfacing requirement,
for example; when to change slides or color. Nine
standard equipment racks, six feet in height, house the
interface electronics and xenon lamp power supplies.
Commands are received from the mission operations
mainframe computers and translated into analog
voltages for the scribing pen or slide positioning servos.
The logic is at a five inch by five inch card level. Each
card performs a logic function, i.e., NAND gate. Physical
fatigue is reducing the reliability and availability of
this interface. Due to a sagging card cage support
structure, the logic cards become unseated from their
edge connectors and even with redundant channels,
the subsystem has a high failure rate.

76

Existing LTV/Ford Aerospace center screen projector.

NEW SYSTEM REQUIREMENTS

Despite the complexities and short comings discussed
to this point, the current system produces extremely
sharp, bright, functional displays to which the user
has become accustomed. Defining realistic and
achievable requirements for a replacement system to
match the current system's capabilities has been a
difficult task. As will be discussed in a subsequent
section, several iterations to generate requirements,
release Request for Proposals (RFP), and evaluation of
submitted proposals were necessary to finally achieve
a successful procurement. The requirements delineated
below correspond to the projector to be manufactured
under the current subcontract. In most major
procurements for the government, a committee is
usually assembled to define system requirements. This
project was not unique in that regard.

Display Characteristics

The display shall fill the entire ten by twenty foot screen
surface from a maximum throw distance of not more
than 35 feet. Provide an average illumination of 2500
lumens, flat modulated white light, 30 to 1 contrast
ratio, uniform across the entire screen within t25% as
measured from the rear of the screen with a standard
photometer.

ORIGINAL PAGE IS
OF POOR QUALITY

Right Screen

Right Center
Screen

~.
~.

FCR

Center Screen

~

/
e,

Mirror /

HHI]

up

Lamp
Exhaust
Manifoid

Compressors
j/ \lt t
Center

creen
Mirror

Olstribution

n 945 L5A Monochrome
o OF Light Vave Projector

(13 -
CAACCELET
Xenon Lamp ha

Data
Power Supplies Egmgmem F

e

-
upP

Figure 2. FCR projection room layout.

The projector shall be compatible with the analog RGB
video output of several sources, such as; non-interlaced
high resolution engineering workstations, the current
945 line scan rate repeat field monochrome video system
and standard RS-170A color video. The projector shall
have a "sense and select’ automatic scan rate lock
capability for a predetermined range of the possible
video input scan rates designated for its use. The
projector shall also be capable of accepting an extremely
high resolution input (1800x900x60) non-interlaced,
wide aspect signal for use as a center screen
replacement projector.

The projector shall exhibit geometric distortion less than
or equal to 0.5 percent of the screen height in a circle
with origin at the center of the screen, with a diameter
equal to the screen height, and less than 1 percent
outside of that circle. Primary color registration shall
be within 0.1 percent of screen height.

Commonality

To provide for economies of scale in initial procurement
and in logistical support considerations, commonality
is an important requirement. It is planned that, not
only the projector, but the workstation/graphics
processor driving the projector shall be common
elements in many other manned-mission support
disciplines. In the FCR two additional projectors are
planned to satisfy the secondary or side screen
replacement requirements. There are several new

77

manned-spaceflight control facilities in the initial stages
of development. These centers are expected to require
large screen displays:

Space Station Freedom Control Center

Orbital Maneuvering Vehicle Control

Crew Emergency Return Vehicle Control.

Additionally, space mission simulators require high
light output, extremely high resolution projectors for
simulation of ascent, on-orbit, and entry activities. The
Shuttle Mission Training Facility is currently
undergoing an upgrade and plans are being drawn up
for the Space Station Freedom Training Facility. In
all, over twenty projection systems may be required in
the next two to five year period.

PROCUREMENT OVERVIEW

The requirements committee initially defined
requirements for a projector to satisfy a center screen
replacement in 1984. It was learned, after an RFP cycle
and some fact finding, that such a projector was not
available commercially. Subsequently, the Government
determined that procurement of side screen replacement
projectors could be supported by commercially available
products. The requirements were modified to reflect
the needs of the side screen replacement systems. In
essence, these requirements are to display information
similar to that available on a FCR nineteen inch
engineering workstation CRT. The RFP was released
in late 1985 and fact finding commenced in early 1986.

Fact finding consisted of visits to various supplier's
manufacturing facilities, and demonstrations in the
FCR itself. Six qualified bidders who met the
specifications as written were selected. Ford Aerospace
recommended, however, that none of the respondents
offered a product satisfactory to the users requirements
and that the procurement effort should be terminated.

Considerable experience had been amassed in the
previous procurement attempts. An understanding of
the large screen display state-of-the-practice had been
acquired by the government and Ford Aerospace. Also,
the MCC user community was educated to the fact
that large screen display devices had significant display
restrictions over CRTs and that the best quality display
available would be expensive to acquire. Considering
all lessons learned, a specification was developed that,
if met, would satisfy a wide range of requirements (see
above). Sufficient funding had been allocated to allow
for the development of augmentations, modifications
or upgrades to commercial products, if necessary, to
satisfy the known requirements. In late 1986, an RFP
was released defining such a projector. Six respondents
submitted proposals of which two were determined to
be in a competitive range. The six respondents were
categorized as follows; two were direct laser projection
products; two were Oil-film based projectors; and, two
were based upon the polarizing light characteristics of
crystals. The demonstration and fact finding procedures
clearly identified the best proposal and candidate
projector. The candidate selected was the Hughes
Aircraft Company, Ground Systems Group/Fullerton,
HDP-6000B projector, a liquid crystal based product.

Ford Aerospace is currently engaged with Hughes in
negotiations to provide enhancements (see 6.0) to the
original HDP-6000B projector. The two projectors
currently subcontracted are scheduled to be delivered
to Ford Aerospace in July of 1990. Production of the
two HDP-6000B units will commence in February of
1989 at the Hughes Industrial Products Division in
Carlsbad, CA.

PROOF-OF-CONCEPT

Given the level of funding required to purchase two
large screen display projectors of this unique nature,
NASA development managers desired a "check point"
or Proof-of-Concept (POC) demonstration to ascertain
if the projector could perform the assigned task
adequately. Ford Aerospace included in the subcontract
to Hughes the provisions for such a demonstration at
the MCC FCR facility. Previous demonstrations, as part
of procurement fact finding, yielded comments from
the MCC user community expressing concern about
insufficient illumination and display size. The
subcontract included a clause that provides a POC
demonstration of the specified brightness and display

78

size prior to commencement of production.

Hughes modified a "brassboard” prototype projector to
satisfy the POC requirements. The standard Arc lamp
reflector was modified to produce twice the light output.
The Xenon lamp size was increased to 2500 watts from
1000 watts. The scan circuitry was modified to accept
video signals from the graphics processor selected for
use by Ford Aerospace during the POC.

Ford Aerospace acquired a Sun 3/160 workstation to
serve as the workstation host for the graphics processor
and application software necessary to provide and
control video signals to the POC projector. The
application software had been under development at
Ford Aerospace for approximately a year and consisted
of nearly twenty thousand lines of Unix based C
language code. The graphics processor, used for POC,
was a Parallax 1280 series VME board set with RS-
170A video overlay capability. The Parallax was chosen
for its RGB video output timing flexibility and TV
overlay capabilities. By using the flexible video output
timing characteristics of the Parallax the development
team was able to match the maximum possible scan

Figure 3. Proof-of-Concept Projector, lift table
and Sun 3/160 workstation.

ORIGINAL PAGe
BLACK AND WHITE PHOTOGRAPH

rate available from the POC projector, thereby,
providing the optimum quality obtainable from the POC
projector's electronics package reducing the overall cost
of the subcontract to the government. It would have
been prohibitively expensive and self defeating to
produce a full production projector for POC. A series of
four integration tests was preformed over a six month
period at Hughes to define the POC projector's
operational scan limitations and to integrate, test and
align the POC system.

Hughes personnel installed the POC projector in the
FCR projection room on a hydraulic lift table (see figue
3) provided by Ford Aerospace specifically for the POC.
The lift table allowed placement of the POC projector's
output optics at the center line of the screen. The
workstation was configured so that the user interface
hardware was on the user side of the screen and the
workstation CPU/Graphics Processor combination was
located adjacent to the projector. After an extensive
checkout, alignment and test cycle, a performance
verification test was preformed to contractually verify
POC performance. The modulated light output,
measured from the rear of the screen by a photometer,
at nine locations adjacent and perpendicular to the
screen surface, was over 2800 lumens. It was also
determined that the projector, when located an
additional two feet further from the screen, would
provide a full ten by twenty screen display. (POC size
was set at ten by eighteen feet due to the existing
system's mirror support structure placement.)

ORIGINAL PAGE

D WHITE PHOOGRAPH

The POC was considered to be successful by a majority
of the MCC user community, NASA development
managers, and the Ford Aerospace development team.
(See figure 4.) A questionnaire was distributed during
the user demonstration segment of the POC which
asked for the user's opinion of the suitability of the
demonstrated system as a replacement for the existing
system. Over eighty percent of respondents to the
questionnaire responded favorably. Consequently,
NASA has directed Ford Aerospace to continue in our
efforts to replace the center screen systems and
investigate the commonality candidates.

ENHANCEMENTS

From the user comments during POC and NASA
development manager's inputs, it was determined that
further enhancements should be incorporated into the
HDP-6000B production projectors. A brief description
of the proposed enhancements follows.

Scan Circuits to 68 KHz

This enhancement provides for a higher level of
commonality between various projector requirements,
ease of manufacture, and logistical sparing. With the
enhanced version of scan electronics, virtually any
engineering class workstation, or Advanced Television
source may be connected to the HDP-6000B inputs.
This electronics package shall also be used in another
Hughes program.

ORIGINAL PAGE [

Figure 4. POC demonstration display of the "World Map." OF PZOR QGUALDLY

79

Video Bandwidth to 110 MHz

Given a resolution requirement for the center screen of
1800x900x60 non-interlaced, it was necessary to
increase the video bandwidth (sharpen pixel rise/fall
times) in the production version of the HDP-6000B.

FUTURE PLANS

The existing subcontract shall be modified to include
the enhancements discussed in the previous paragraphs.
Hughes shall initiate production of the two HDP-6000B
projectors shortly thereafter. As the actual fabrication
of the two production HDP-6000B projectors is in
progress, Ford Aerospace shall be monitoring that effort,
in addition to developing the telemetry/trajectory data
to video signal processing and generation software and
equipment.

Workstation

The final host platform for the world map generation
application has yet to be identified. Once the projector
input requirements are set, a procurement cycle will
be initiated for the graphics processor to satisfy the
high resolution display requirements and match the
video signal timing requirements of the projector. As
the candidates for the graphics processor are identified,
analysis to identify the workstation to serve as host to
the graphics processor and application software will
commence. The processing speed of the individual
workstation's flavor of Unix, native software
development environment, internal bus structure and
local area network commonality are prime
considerations in the analysis process.

Software

As was stated previously, the application software
development task had been proceeding in parallel to
the hardware identification, procurement and
development activities. In addition to generating and
updating a world tracking map from data delivered to
the application from spacecraft telemetry, the
application must generate near real time graphical
displays that convey spacecraft parameters during
ascent and entry phases of the flight. At POC, a stable
prototype of the application was available for use in
the demonstration of the POC projector. The application
was initially developed on a Masscomp 5600 class
workstation. The Parallax, which is a VME based
product, (Masscomp 5600s are Multibus based) required
a port of the application software to the VME based
Sun 3/160. Approximately 95% of the code transported
transparently, with only the graphics specific calls in
need of a rewrite. The original application uses the
native graphics calls specific to the Masscomp
workstation graphics processor and, in the case of the

80

Sun/Parallax, uses the Parallax native graphics
instruction set.

POC provided a useful degree and quantity of feedback
from the user community that simply could not be
obtained from demonstrations of the application on a
19 inch CRT. Comments concerning character size were
the most prevalent. Ford Aerospace intends to provide
to NASA a human factors analysis on color and
character usage for the large screen displays prior to
the official final release of the application software.

Installation

Upon completion of fabrication, checkout and alignment
of the projectors will be accomplished at the Hughes
facilities prior to shipment. Upon receipt and receiving
inspection by Ford Aerospace, the projectors will then
be shipped to the Johnson Space Center, Building 30,
where they will be installed in the two FCRs. Each
installation will consist of the projector, new screen,
projector lift table, workstation/graphics processor,
application software, maintenance monitors,
maintenance documentation and the removal and
subsequent surplus of the existing system. When the
installation is complete, a final Acceptance Test will be
preformed verifying the performance of each projector
to specifications.

A trial period of non critical support may be required
to acquaint the flight control personnel with the new
system's capabilities and idiosyncrasies prior to <the
removal of the current system. This concept is facilitated
by the projector/lift table configuration which allows
the HDP-6000B to be raised/lowered, in/out of the
optical path of the existing system for use of either
system as the situation would warrant.

Ford Aerospace has included training, for the
maintenance and operations contract personnel who
operate and maintain all the flight support equipment
for the MCC, in the subcontract.

CONCLUSIONS

NASA and Ford Aerospace have selected what we
believe is the optimum large screen display projector
for our requirements. A methodology for the
continuation of the system development and integration
is in place and shall deliver the superior product NASA/
JSC is accustomed to.

ACKNOWLEDGEMENTS

The author wishes to thank NASA, Ford Aerospace,
Hughes Aircraft Company, and Lamar Flanagan of
NASA/JSC/FS73, for their support of this effort. This
project is funded through NASA contract NAS9-15014.

NOO-20663 7 -/

EFFICIENT UTILIZATION OF GRAPHICS TECHNOLOGY FOR SPACE ANTMATION

Gregory Peter Panos
Lead Engineer, REGIS Lab.
Rockwell International Corporation
Space Transportation Systems Division
Simulation and Systems Test Department
REGIS Computer Animation Laboratory
12214 Lakewood Boulevard MC DA-46
Downey, California 90241
(213) 922-0200

ABSTRACT

Efficient utilization of computer graphics technology has become a major
investment in the work of aerospace engineers and mission designers. These new
tools are having a significant impact in the development and analysis of complex
tasks and procedures which must be prepared prior to actual space flight.

Design and implementation of useful methods in applying these tools has evolved
into a complex interaction of hardware, software, network, video and various
user interfaces. Because few people can understand every aspect of this broad
nmix of technology, many specialists are required to build, train, maintain and
adapt these tools to changing user needs.

We have set out to create system where an engineering designer can easily work
to achieve their goals with a minimum of technoclogical distraction. We have
accomplished this with high-performance flight simulation visual systems and
supercomputer computational horsepower. Sophisticated but simple to use geometry
generation, translation and modification systems input designer concepts to a
motion design systems after which our visualization and scene rendering tools
are invoked. Control throughout the creative process is Jjudiciously applied
while maintaining generality and ease of use to accomodate a wide variety of
engineering needs.

INTRODUCTION

Planning of space missions has historically been a slow and tedious process.
Drawings and exact measurements were drafted on paper for the various sequences
that had to occur throughout a mission scenario. Launch preparation, mission
operations, return to earth and post-flight ops are analyzed for time-line
schedule conflicts, potential problems, and for detailed failure avoidance.

Within the last decade, CAD systems have become the predominant tools to assist
with mission data design, operational determinations and detailed analysis. 3-D
CAD systems have proved extremely valuable in the areas of 3D design data
storage, distribution, retrieval and modification. Although most mission
information can be processed by traditional CAD systems, there are major gaps in
their ability to rapidly work out "what-if" changes and to easily create video
based presentation materials.

81

Recent Developments

High-performance simulation graphics systems have ushered in a new age of
productivity with tools that allow orders of magnitude increase in performance.
These systems allow an analyst to rapidly prototype changes and evaluate

operational procedures in real-time, while providing videotape recordings of
their results.

The variety of new systems, software tools and fully interconnected networks,
allow complex planning and analysis scenarios to be automated.They also tend to
be virtually self-documenting. Distribution of video-taped presentations to high
level decision makers has rapidly become standard operating procedure for
critical projects that require rapid turn-around.

In our quest to satisfy advanced visualization needs for hardware design and
operational simulation, we have identified several key areas of concern.

3D Object Data Configuration
Data Compatibility Interfaces
Multi-System Communication

Production System Integration

Production Compatibility

3D OBJECT DATA CONFIGURATION

When working with 3D geometric representations of objects whether they be parts
of a large spacecraft or minute gears and wires, it is very important to know
their position, scale, and orientation. A designer must define an object
hierarchy relative to a global zero point and specify a rotational point for
each moving component, otherwise, no useful motion can be performed. Part colors
and shading type, levels of detail, transparency and texture choices must also
be carried along with object data geometry and topology.

We have constructed a variety of tools which allow a designer to read, status,
break up, combine, delete, add, modify, reorient or otherwise change object
geometry and / or attributes with a series of simple commands.

For example: p2p -ro 90 -45 30 -su 100 -tr 1000 10 -50 < part > newpart

This "p2p" filter will scale file "part" by 100, rotate X by 90, Y by -45 and Z
by 30 degrees, will translate the cbject to 1000, 10, -50 and create a new file
"newpart". These tools allow a designer to avoid manually searching and editing
3D object data files to make changes. Many of these tools can be easily adapted
to menu based windowing environments.

We have found that the more rcbust a 3D object database structure is, the easier
it is for designers to define important object attributes early on. This reduces
the need to manually add information later. Changes can be made easily, quickly
and effectively when a complete database structure already exists.

82

DATA COMPATIBILITY INTERFACES

Once a 3D object database incorporates all pertinent information, that data must
be made compatlble with differing 3D graphics systems and software. Many of
these systems require their own special format for object data and some regire
more than one file of information to process an image for a single object.

Compatibility can become time consuming when migrating useful information from
one system to another. To deal with this problem efficiently, a series of tools
have evolved. They are:

Filters : Strip out, add or process numerical information or
object attributes from one input object to another. Filters
usually work on data used by one type of system or software.

Translators : Reformat object data, often in a major way, for use
in different computer dlsplay system hardware and rendering
software packages which require very specific input formats.

Compressors : Strip out unused information, truncate long numbers,
optimize, encode and combine data in databases to to avoid
redundancy. Archive utilities are specialized compressors.
They are useful in reducing data storage requirements and in
minimizing data transfer time.

Switchers : Substitute one section of data for another, often
geomety, when a boundary condition is reached or some
external flag has been set. These are useful for performing
dynamic "Level Of Detail" changes on display systems. Limited
throughput often degrades performance degrades as level of
detail increases. As an object approaches the viewer, higher
fidelity versions are switched into display system memory

Pixel Encoders : Allow data-rich pixel based images to be reduced
into smaller more compressed files for better storage size.

Color Compressors : Allow images with many colors to be reduced
and averaged down for systems with less capability to process
and display that data. Also reduces file size.

Compositors : Allow a neutral user designated color to act as a
window for another image to show through. A composite image
file of both images can be saved independently.

Mappers : Allow a designer to define sections of an image to be
used as surface texture maps for wrapplng around or pastlng
bit-map images onto objects. Often images are scanned in with
a video device to create the images used in texture mapplng
appllcatlons. This technique can be useful, giving the viewer
the 1mpres51on greater apparent detail exists on an object's
surface then is contained in its geometry description alone.

Flexible data compatibility tools allow designers to free themselves of the

limitations imposed by different display hardware and / or rendering software.
Virtually any type data can be used anywhere it is needed (with a little help).

83

MULTI-SYSTEM COMMUNICATION
Data transfer and remote system control

Production environments are often complex and interconnected. This imposes many
constraints upon a designer. Passing data between unlike systems can occupy
valuable creative time. Human interaction in performing file transfers and
conversions is unneccesary and inefficient. These tasks should be handled in an
automated fashion. To this end, the following tools have been developed:

Transfer Utilities : Small, command driven tools which allow a
designer to transfer single or multiple files from one place
to another place with a minimum of headaches. These tools can
be highly intelligent. They might check specific systen
directories to determine what files are there and which of
them are current so as to retieve or send them.

For example: Getnet Regis DUAO users.panos DAT 5 /usr/greg/data

This command will Get all version 5 .DAT files from the directory users.panos on
disk DUAO on the Regis system over the network link and it will place them in
the directory /usr/greg/data on the system where the command was evoked.

Control Utilities : Allow a designer to send a series of control
commands from a system port to an external peripheral device
(such as a Videotape Recorder) to do something useful.

For example: Vtr -m 1 -1 6 -b 2000 -r 10 -S -f Regis::Renderer

This command will send a command out to a pre-designated port on the system
where the command was executed. The port is wired to a Videotape Controller and
the command is asking it to select VIR machine number 1 (-m 1) and to connect
the incoming video line number 6 to the machine's input (-1 6). The -b 2000
option places the Vtr edit in-point to frame 2000 and allows a 10 frame edit (-r
10) at that point. The -S option asks the Vtr to go to "Standby" mode after it
is done and the -f option will send a "“done flag" to the "Renderer" program
which is running back on the "Regis" system so it may begin another task.

Very often these utilities are highly system and software specific. Many of
these tools contain security passwords, system identification numbers, codes,
data-word sizes, and directory destinations and will allow privledged access
that should be carefully protected.

Production environment developers must determine the safest and most efficient
scheme for inter and intra-system communication and control. Frequent changes to
information embedded within these tools should be avoided. Insured reliability
of use for all users and the programs that serve them should be a top priority.

PRODUCTION SYSTEM INTEGRATION

Production system designers often overlook analog video signal routing problems.
Digital computer display system details and their networks are often closely
studied, while requirements for video signal distribution, propagation and

interfacing are left to last and regarded as the least important aspects of the
system.

84

Video signal needs must be attended to as a primary area of concern for the
production system designer. It is a common fallacy to believe that many desired
effects can be achieved digitally with rendering tricks and additional computer
based techniques. Although this may be true for those who posess intimate
knowledge of these tools, it is much simpler to create a desired effect with the
use of video signal mixing and compositing with multi-track recording, time-base
correction, and encoder function controls. This is the cross-over point where
designers who have concentrated on becoming very proficient programmers become
lost. Video engineers, with their knowledge of RGB, sync, key~channel, matting
and analog calibration often take over at this point. Here are a few examples of
video signal processing options:

Encoding : All Frame-buffer and display systems require signal
conversion of their RGB output into a composite video form,
usually NTSC. Encoders perform this conversion and are able
to fine tune and juxtapose certain components of the output
video. For special-effects, calibration, and interfacing to
video switchers, color-keyers and VCRs, encoders are needed.

Keying : Enables one encoded video signal to be superimposed over
a background video signal from a different source. A neutral
color acts as a window on the foreground video signal. This
is a very important feature for any advanced production
system.

Synching : All input and output video signal sources should be
locked to a synchronization clock signal to allow glitch-free
effects. Source switching, dissolving, fading, keying, etc.
all work much better when all systems are "genlocked" to
house sync.

Switching : Multiple video sources can be switched electronically
by computer or with keyboard based control functions in a
good switcher. Different video lines can be re-channeled on
the fly as production needs change and advanced effects like
bordering, split-screen, quad-screen, title insertion, fade,
dissolves, wipes, and highlights can be performed by good
video switcher component which has been properly configured.

Recording : VTR Controls that are properly interfaced to the
production system can be a major benefit to creative usage of
all possible effects. It is a disadvantage for a designer to
have to manually set up and button push a VIR's console to
get it to perform the required actions. Today, most VIRs have
controllers available to enable remote operation. Computers
may also be allowed control of a VIR with multi-tasking.

These options enable a designer to create advanced visual material with the
appropriate interconnection of video component and display system output.
Multiple passes allow for increased scene complexity when using matting and
keying techniques that a computer display alone would not be capable of. §1131p1e
effects like a wipe or page turn. tend to be very time consuming for a d}gltal
computer to perform while a video effects switcher will function in real-time to
accomplish such an effect.

With proper initial configuration of the above video components, a designer will
be able to dynamically set up each scenario by using commands and script based
execution sequences run from the host computer where they are _already. doing most
of their work. This approach can remove the need to hand wire a .VJ.deo ;_)anel,
perform manual VIR edits, or keep a video person around on a full time basis.

85

PRODUCTION COMPATIBILITY
Naming Conventions

In any production envirorment, there exist many different formats to contend
with. Digital text and binary data files can be extremely varied in their
formats. A program which requires a picture file for display on a computer
frame-buffer may want it's data in ASCII, human readable text, while a CAD
program needs a BINARY compressed geometry file representation as input.

Therefore a good plan for production compatibility becomes essential to assure
continuity and efficiency throughout the creative process. Step one is to think
out a good labeling scheme for the varity of information one needs to deal with.

Good use of terminology for different information types can be essential to
properly understand what takes place in a production script. As a production
evolves and is modified, it can be virtually impossible to keep track of files
and taped sequences for replacement and editing if sensible names are not used.
Disk and tape archiving is greatly simplified with this practice as well. Refer
to Appendix A for details regarding suggested format naming conventions.

Comment ing

When program tools modify files of data it is important to add comment lines
describing what has been changed in the data and when changes were made.

For example, here is a geometry file that was processed through our "p2p" filter
to reposition the 3D object data:

| Tue Feb 28 11:41:55 1989 polyp2p -ro 90 180 -45 -su 10 -tr 100 200 -300
surface Active FlatShaded attributes Active FlatShaded

|
v 7 (7 Vertices) | p 5 (5 Polygons)
w 256 | 0123 (255 175 0)
100 -1610 980 256 | 4560 (255 0 2585)
100 -1610 -1580 256 | 0651 (255 255 255)
1910 200 -1580 256 | 3254 (0 0 255)
1910 200 980 256 | 3460 (255 0 0)

100 2010 980 256
100 2010 -1580 256
-1710 200 -1580 256

In the above example, the "p2p" filter added the comment line to the top of the
file saying what exactly has been done. In this case the file was rotated by X =
90, Y = 180, Z = -45, scaled up by 10, and translated by 100, 200 -300.

If necessary, all the values in the comment line could be used to convert the
data back to the original unmodified form by negating the numbers and
re-filtering the modified file. This feature can save hours for a designer who
has made a mistake on or deleted by accident a critical file.

Listing

Another good practice is for a designer to build complex cbjects out of as many
smaller object component files as possible. It is easy to combine them later
with a "concatenate" command or in a script. This allows a great deal of
flexibility when making slight changes, color-coding pieces or when showing only
what is needed to aviod overloading a display generator or renderer.

Using a "Listing" file is the preferred way of specifying many different parts
to be treated as one big part at runtime.

For example, in a Space Shuttle made of 7 major component files, the "Listing"
file would be defined like this:

EYA

Space Shuttle components
#

Pathname/file Description # of polygons
#

/shuttle/fuselage.P # FUSELAGE p 170
/shuttle/blkhd.P # BULKHEAD p 60
/shuttle/cnopyfwd.P # CANOPY p 8o
/shuttle/bay.P # BAY p 50
/shuttle/vrtail.P # VERT. TAIL p 30
/shuttle/wings.P # WINGS p 80
/shuttle/rms.P # rms pieces (4 of them) p 70

When a display program is invoked we would specify the "shuttle.l" file as the
file to display. This would treat all the pieces as one singular object. They
would all move together but each would retain their own attributes such as
color, shading type, transparency level, etc.

Display tools

The "examine" program allows a designer to work with 1 to 4 objects, each with
up to 16 data files. This enables a designer to easily rotate and translate the
view, change the background color and light direction, and to manipulate each
object separately. The program also has a helpful arrow which points at the
light source and a clock hand which rotates once every second to indicate the
display system frame rate for use in overload assessment.

For example: examine -f0 shuttle.l -fl earth.p -f2 gpsl.p -f3 gps2.p

Here we control the shuttle, the earth and two gps satellite models all as
separately moving objects. Each object has independently controllable offset,
rotation, and translation, and is manipulated through separate data tracks.

"Examine" is one of our major workhorse animation programs that we use in our
production environmment. It runs on the Poly 2000e computer image generator,
however, its functionality is extensible to virtually any real-time display.
File flipping of 3D object data, where object data varies its geometry from one
frame to the next, is also possible. This feature will allow animated display of
incrementally deformed 3D objects and to rapidly flip through them while
maintaining real-time control of their position and view orientation. However,
one must always watch their polygon count when loading these large amounts of
data into a real-time system. Otherwise, performance may degrade and other
undesirable display artifacts may appear. Refer to Appendix B for the examine
program's options and argument specification.

Rapid Prototype Generation

The last Real-time animation program that I will mention is the "RPG" program or
Rapid Prototype Generator. This "CASE-like" tool was originally conceived by
many different people at different facilities simultaneously (like all great
ideas). RPG is another major tool which helps us to carry the banner for more
efficient and creative production.

The concept is to allow a non-programmer (and hopefully good designer) to
rapidly define, build and animate complex hierarchies of 3D object components.
Without the need for a great deal of complex technical display-system-specific
knowledge, a designer can use RPG to do this in record time.

First an inventory is made of the 3D objects that are to be used. Determination

of what is going to move relative to what (defining the hierarchy) and finding
offset distances and an axis of rotation for each moving part is next.

87

This is done by making a simple move to the center point (0,0,0) in any simple
display program and then reading the numbers off the dial box or screen). A text
script is then created by typing in the object hierarchy, offset values, track
assignments and display diagnostic features. This step can take from 5 minutes
to a half hour depending on how well a plan is mapped out and how fast one can
type.

The script is then run through the RPG program "update"on the host system.
Essentially a compiler, "update” generates C source code and complles it into an
an executable module. Next, a "builder" program is run on the image generator
system where the hierarchy (as described in the RPG script) is assembled and the
3D object modules are loaded into real-time display list memory.

Last, the executable module created by "update" is run on the image generator.
The designer can then use standard channel-based animation package features to
define, save and preview keyframe files.

A detailed description of the statement format and syntax for RPG scripts is
beyond the scope of this paper. We also feel it would be possible to make the
implementation we have chosen even simpler to use. A menu driven script builder
utility with a full graphical interface has been suggested and will be developed
in the near future. Generalized structures in the program will allow differing
real-time displays to utilize the same scripts and 3D object data through the
use of special device driver modules that can be linked to the RPG program.
Refer to Appendix C for an example of a simple RPG program script.

CONCLUSION

Only through years of experience have we been able to best determine what was
needed to enable efficient production of computer animation and effects. After
many hours of difficult 3D object geometry debugglng, we were able to design
flexible and easy to use tools to allow us to do in minutes what used to take
hours. After many days and weeks of writing custom non-reusable C programs for
every anlmatlon, we developed "RPG" with which we could produce our working
programs in minutes. Once we created our animation package library we could
generate and save reusable motion data files that took hours to develop by hand.
Motions can be recalled in seconds and used in virtually any animation.

Once things begin to work as efficiently as possible, the greatest burden lies
with the designer to dream up, build and produce the visuals that they desire.
And yet, after countless creative sessions, more efficient ways to facilitate
the creative process always seem to emerge.

ACKNOWLEDGEMENTS

I wish to thank Kenneth M. Stern, my associate in the REGIS Iab. for his fine
contributions and corrections to this material. I would also like to thank Ben
Thompson, STSD Advanced Engineering for additional comments and inspiration.

88

APPENDIX A

Description of suggested naming convention for different data file types.

Pixel Image

Image.BIN
Image.RLE
Image.ASC
Image.HAM
Image.IFF
Image.R8

Image.PIX

da

g

file formats:

Image file in computer readable BINARY.

Image file in "Run Length Encoded" BINARY.

Image file in ASCII, human readable TEXT.

Image file in Amiga "IFF HAM mode" BINARY.

Image file in Amiga "IFF" Low, Med or HiRes BINARY.
Image file in BINARY RLE for "Cubicomp Picturemaker”.
Image file in BINARY RLE for Cubicomp Map Mode.

3%3????

Text data file formats:

file.COM
file.LOG
file.POS
file .MAT
file.LGT
file.ENV
file.RPG
file.HDR
file WFT
file.SCN
file.MMP
file.ENV
file.CM
file.L

By

A Script file of run-time Commands in TEXT.
An output file of program run results in TEXT.
A "TRACER" hierarchical Scene data / offset file in TEXT.
A "TRACER" part Material coefficient data file in TEXT.
A "TRACER" Light source descrlptlon file in TEXT.

An "TRACER" Environment data file in TEXT.
An RPG hierarchy, offset and control data file in TEXT.
"Cubicomp Picturemaker" Header file in TEXT.
"Ccubicomp Picturemaker" Wireframe test filein TEXT.
"Cubicomp Picturemaker" Scene test file in TEXT.
"Cubicomp Picturemaker" Color Map file in BINARY.
"Cubicomp Picturemaker" Envirorment file in BINARY.
"Cubicomp Picturemaker" Command Macro file in TEXT.
List of Geometry files with various components in TEXT.

3D Object Geometry data file formats:

data.GEO
data.MOV
data.OBJ
data.TRI
data.SPH
data.DAT
data.Ws
data.P
data.p

Motion data

data.MOT :
data.CAaM :
data.PW
data.X
data.k

"Aegis Videoscape-3D" Polygon floating-point TEXT.
"MOVIE.BYU" Polygon floating-point TEXT.

"Symbolics S-GEOMetry" polygon floating-point TEXT.
"TRACER" Polygon trlangle floating-point TEXT.
"TRACER" Sphere data in floating-point TEXT.
"RI-CDAS" quartic data in floating-point BINARY.

A "Cubicomp Picturemaker" WorkSpace file in BINARY.
"Poly 2000" Polygon 16 bit integer BINARY.

"Poly 2000" Polygon 16 bit integer TEXT.

file formats:

"Aegis Videoscape-3D" Object motion floating-point TEXT.

"pAegis Videoscape-3D" Camera motion floating-point TEXT.
"Cubicomp Picturemaker" keyframe Position Word TEXT file.
"Animation Package" Multi-Channel 16 bit integer BINARY.
"Animation Package" Multi-Channel 16 bit integer TEXT.

89

APPENDIX B

Examine program options and arguement specifications.

Flag Meaning Default
-ajm <f> animate object # using
mode m once
changing every £ frames 1

modes: [a]dd - add files starting at current position
[olnce - 0 up to n.
{blJounce - 0 up to n, down to 0, ...
[clycle - Oup ton, Oup ton, ...

-b <file> filename of background objectn one
-c# # channels # present
-d debug mode false
-f# filename(s) of object # follows
-k keyframe (.K) filename follows default.K
-m light moves with view light is motionless
-r # new rotation sensivity follows 32

-s silent mode (no beeps) when switching files false
-tn # new translate W value for object n follows 256
if n not present, value used for view

-T do not clear or write to text screen write help screen
v # # # view offset is # # # (x,v,2) 000
-w # new scale W value follows 256

90

APPENDIX C

Simple RPG text script for an interlocking gear mechanism animation.

e Interlocking Gear RPG Script -

First we Define the Hierarchy

TREE

world : ChanoO
100 101 102 103 104 105
XYZ.1
box : world
0
box.1
gear0Q : box
10 11
gear0O.1l
gearl : box
20 21 22
gearl.l

Next we assign the Offset and Track assignments

MATRICES
trans(100, val{0][0], val[0][1], val[0][2])

rotx(101, val[l][0]*32)
roty(102, val[1][1]#*32)
rotz(103, val[l][2]%32)
trans(104, val[2][0], val[2][1], val[2][2])

scaleu(105, val[0][3]1 + val[1l][3] + val(2][3] + 256)

trans(0, val[3][0], val[3]([1], val[3][2])
trans(10, 0, 160, -110)

rotz(11, val[5][0] *32)

trans(20, 0, 40, 0)

roty(21, val[5][0] * (-32) + 4096)
rotx(22, 16384)

Last we Define our Display Diagnostics

leds(0,"0 KO:%6d Kl:%6d K2:%6d K3:%64",val{0]{0],val[0][1],val(0][2],val[0][3])

EOF

91

Néoléoea4f

-
4

ENGINEERING VISUALIZATION
UTILIZING ADVANCED ANIMATION

Gunter R. Sabionski
NASA Johnson Space Center/FM7
Houston, Texas 77058

INTRODUCTION

Engineering visualization is the use of comput-
er graphics to depict engineering analysis and
simulation in visual form from project planning
through documentation. Graphics displays let
engineers see data represented dynamically
which permits the quick evaluation of results.
The current state of graphics hardware and
software generally allows the creation of two
types of 3D graphics. One type features
highly-detailed, realistic images that are dis-
played in non-real-time. The other type per-
mits real-time display, but only for relatively
crude graphics. (Real-time for our purposes is
defined as the update of a display at a sufficient
rate to make the change invisible to the human
eye, typically 30 frames per second.) There are
simulators capable of producing realistic 3D
motion in real-time but their cost can be pro-
hibitive. Animation provides an alternate route
to generating realistic 3D graphics which are
recorded on video for later playback in real-
time. A fully produced video animation has the
power to provide the organization, clarity, and
attention to detail demanded for the communi-
cation of complex engineering concepts.

This paper presents the use of animated video
as an engineering visualization tool. The engi-
neering, animation, and videography aspects of
animated video production are each discussed.
Specific issues include the integration of
staffing expertise, hardware, software, and the
various production processes. A detailed ex-

PRECEDING PACT DL HET [T MITD

93

Thomas L. Robinson Jr.
Barrios Technology, Inc.
1331 Gemini Drive/BARRO1
Houston, Texas 77058

planation of the animation process reveals the
capabilities of this unique engineering visual-
ization method. Automation of animation and
video production processes are covered and fu-
ture directions are proposed.

EVOLUTION OF ANALYSIS AND
SIMULATION VISUALIZATION

Before turning to a discussion of animation and
video, it would be helpful to review the evolu-
tion of engineering visualization. Some ten to
twenty years ago, analysis and simulation re-
sults were printed out as pure data. Mountain-
ous stacks of computer paper were produced
that required hours to sift through. The engi-
neer could graph the data in two dimensions on
graph paper or perhaps have a draftsman illus-
trate it. The development of plotters eliminated
the need to produce these graphics by hand.

Later, as computers grew more sophisticated, it
became possible to represent three-dimensional
objects using complex data structures. The
plotter was immediately employed to produce
two-dimensional renderings of the objects. It
also became possible to produce static 2D dis-
plays of the 3D objects on a CRT. The natural
next step was to set the objects in motion. Do-
ing this has proved to be a most challenging
task.

A great deal of computing power and memory

is required to render a 3D object quickly
enough to provide the illusion of motion. The

eagi_ T _ INTENTIONALLY BLANK

o o P 7

complexity of the scene being rendered is a
major factor in the amount of time required.
The result is that a crude representation may
move at a satisfactory rate while a realistically
detailed image moves too slow in real-time to
be of value. Obviously the goal is to produce
realistic real-time graphics. Technology today
is on the verge of providing such graphics but
only at a relatively high cost. The speed and
realism of the specialized high-performance
simulators is astounding, but so is the price. It
is this gap between affordable high-speed sys-
tems and realistic real-time display that anima-
tion fills so well. Depending on the level of
complexity desired, animation may require a
great deal of time to generate, but when com-
pleted it provides real-time speed via videotape
playback.

DEVELOPING AN INTEGRATED
APPROACH TO VISUALIZATION

The process of engineering visualization is a
complex task. It is made even more difficult
when the demands of engineering documenta-
tion are added to it. Although engineering sim-
ulation, graphics, video, and documentation
have all been previously used as stand-alone
entities, the integration of them as a full-
fledged production tool has just begun. By
identifying the staffing expertise required, co-
ordinating that expertise, employing the appro-
priate hardware and software, and standardiz-
ing the processes involved, engineering visual-
ization can simultaneously be integrated and
simplified (Figure 1). This type of approach
was used in the development of the Mars Rover

[Engineer H Animator] [Vidcographer‘ [Hardware | [Software |

Simulation/Analysis/Animation

Project

[
Figure 1 - Project Integration Overview

94

Sample Return Mission video shown at the
1989 Graphics Technology in Space Applica-
tions conference video show.

DIVERSITY OF EXPERTISE REQUIRED

The staffing expertise required for engineering
visualization using animation consists of three
general categories: engineering, animation, and
videography (see Table I). Although the topic
is "engineering" visualization, the animation
and videography staff provide unique expertise
and talent that cannot be overlooked.

Table I -Diversity of Expertise Required

Engineering: Animation: Videography:
Aerospace Artistic Creativity (Video)
Sciences Visual Composition| Single-frame Record
Analysis Storyboarding | Editing Operations
Simulation Computers Switching
Hardware Design { Model Building | Special Effects Units
Software Dev. | Motion Hierarchy |Character Generators
Communications |{ Motion Generation LaserDiscs
User Interfaces | Kinematic Timing
Graphics Rendering (Audio)
Fractal Geometry Image Manipulation ~ Scriptwriting
Paint Systems Announcing
Digitization Recording
Editing
Music
Sound Effects
Sound Mixing
Digital Processing

Engineering expertise can be broken down into
two dissimilar disciplines. The first represents
the "line organization” engineering staff that
contributes technical direction to the effort.
The areas of expertise of this group include
those traditionally associated with aerospace
engineering: sciences, research, design, analy-
sis, and simulation. The second consists of
software engineering personnel. They provide
direct support in the form of system administra-
tion, graphics programming, and software de-
velopment.

The animation staff, besides operating the ani-
mation software, are responsible for adding the
realism and presentation value to the anima-
tion. They collaborate with both the line engi-

neer and the videography staff to produce a sto-
ryboard which summarizes the visual content
of the animation. They then contribute a vari-
ety of skills and artistic talents including visual
composition, image manipulation, kinematic
timing, model building and other components
vital to the creation of an animation.

Videography, like engineering, involves two
separate areas of expertise. One area includes
the creative skills and technical knowledge
necessary to produce the audio soundtrack.
The scriptwriter must know how to write for a
speaker. The announcer must be able to annun-
ciate the text and must be trained to avoid pop-
ping and hissing speech. Audio technicians
must understand an array of recording, editing,
and mixing equipment. Video is the other, and
more obvious area, of videography expertise
required. The hardware intensive nature of
video production requires considerable techni-
cal knowledge. Technical savvy must be com-
bined with artistic and creative talents to pro-
duce an effective video presentation. The
videography staff also works closely with the
animation staff providing both technical and
creative direction.

ELEMENTS OF ANIMATED
VIDEO PRODUCTION

The process of creating an animated video pro-
duction occurs in four major steps. Planning is
the first step. It includes the development of a
script, a storyboard, and a shot list. The script
is a written narrative for the presentation that is
carefully timed to coincide with the corre-
sponding images on the screen. The storyboard
is a series of thumbnail sketches of the images
themselves. The shot list is a description of the
images with details about length and other
technical issues. These are developed together
by the engineering, animation, and videography
staffs and provide a basic plan for the final pro-
duction. All are used to guide the other steps
of the process. The second step is the genera-
tion of the animation. The animation staff uses
the storyboard and the shot list to generate the

95

needed sequences. When the animation is
completed it is recorded on videotape or other
video media. The third step is the development
of an audio track. The script is recorded and
edited to the proper length. Music and sound
effects are then added. When the audio track is
completed, it is recorded onto the sound chan-
nel of a videotape or disc. The animation and
audio track development steps may occur si-
multaneously if planning has been thorough.
The final step is video post-production. The
animation and audio (now both recorded on
video media) must be edited together and title
and credit sequences added.

The transmission of knowledge and informa-
tion from the engineering workstation to the
video presentation is made possible by anima-
tion. What distinguishes animation from a sim-
ple recording of images from the workstation?
Single frame recording to video provides real-
time playback of both, but animation adds
valuable visual realism in a variety of ways.
This is revealed through a more detailed exami-
nation of the animation process (Figure 2).
This examination is based on the assumption

| Model Building |

i 1 l l

Engineering || Animation ||Supplemental Texture
Models Models Models Mappin,
l I]
|
’ Scene Composition J
|] l l
Motion Light In-house Special
Generation Sources Software Effects
l | | l |
‘ Rendering]

lCompositingI l Raytracing j

{ Single-frame Recording |

Figure 2 - Elements of Animation

that the planning phase has been completed and
that a storyboard, shot list, and script have thus
been developed.

Model Building

Model building is one of the first activities re-
quired in the animation process. There are
many levels of 3D modeling. The highest level
includes the models familiar to most engineers.
The precise, technically complete, 3D models
used in engineering are invaluable. The detail
of these models is demanded by the rigorous
requirements of design and analysis. At the
other end of the modeling spectrum are crude,
inaccurate representations of objects valuable
for only the most cursory evaluation of size and
motion. The advantage to these latter models is
the speed with which they can be manipulated.
Animation requires the complete redrawing of
every model on the screen thirty times to gen-
erate just one second of motion. The more de-
tail a model has, the more time is required to
draw it. The need for detail must then be
weighed against the amount of time available
to produce an animation. Animation models
are developed with an awareness of this fact.
The optimal relationship between speed and
detail is usually found by using models in
which unseen mechanical details are omitted.
Very close attention is paid to the external vi-
sual details but the unseen inner workings are
ignored. If focus on a particular mechanical
feature is desired, it can be modeled and added
at the appropriate point in the sequence. Mil-
lions of unnecessary calculations can be elimi-
nated by the use of these simpler models. At
the same time, to the viewer, the model is phys-
ically complete. The animator may develop
supplemental models to represent scenery and
other items.

Texture Mapping

Once models have been developed, their real-
ism can be enhanced by a technique called tex-
ture mapping. Texture mapping is the process
of generating a 2D image which is then

96

mapped onto the surface of a 3D model. There
are several forms of texture mapping and each
form excels in a particular situation.

The simplest type of texture mapping is where
a digitizer or paint system image is mapped di-
rectly onto the surface of a model. This is
highly effective for producing foregrounds and
backgrounds, and for adding logos, flags, and
unusual surfaces to models. In the case of a
foreground or background, the image is simply
mapped onto flat or deformed surfaces and
placed in the scene. Alternately, an image can
be wrapped around a model to simulate the ap-
pearance of metal or some other material. In
the Mars Rover video, this type of mapping
was used extensively in the Titan launch se-
quence and to create the rocky Mars surface.

A specialized type of texture mapping called
bump mapping can be used to simulate a relief
surface where none exists. The image is
mapped onto an object but no color is used. In-
stead, bump mapping uses the luminance val-
ues of the 2D image to determine how to de-
flect light falling on the object. Luminance is a
measure of the black, white, and grey values
contained in the image.

Similar to bump mapping is transparency map-
ping. Like bump mapping it uses only the lu-
minance values of the 2D image. The differ-
ence is that transparency mapping uses these
values to determine a level of transparency for
the surface onto which the image is mapped.
White will cause the surface to be opaque,
black will cause it to be transparent.

One other useful type of texture mapping is re-
flection mapping. Reflection mapping retains
the 2D image’s color and maps it onto the sur-
face of an object. What makes reflection map-
ping special is how the map image is generated.
The animation software is instructed to render a
view of the scene from the location and orien-
tation of the surface that is to show the reflec-
tion. This view is used to generate the map im-
age which may then be sized and distorted as

necessary to cover the surface.
Motion Generation

The next step in creating the animation is the
actual generation of movement. One of the
most common methods for accomplishing this
is called keyframe animation. Keyframe ani-
mation allows the animator to define frames
depicting the starting and ending positions for
objects in the scene. The number of frames
that are to occur between the starting and end-
ing frame (at a rate of 30 frames per second)
are then specified. The computer interpolates
the position of all objects for each of the inter-
mediate frames. Transformations along the ob-
jects’ X, Y, and Z axes can be used to create
non-linear paths. Translation, rotation, scaling,
and skewing are some of the many attributes
that can be specified singly or in combination
to cause transformations. If connecting parts of
an object must move relative to one another,
this may be depicted using a technique called
hierarchical motion. Hierarchical motion in-
volves the assignment of relationships between
different parts of a model. The main section of
a model may be designated as the "parent” and
its appendages as "offspring." The action of
the connecting joints may also be defined with
regard to limiting angles and rotational axes.
The result is that when the parent moves, the
offspring follow in a way defined by these rela-
tionships. This can make the simulation of re-
alistic movement much easier to accomplish.
Ultimately, the animator must use these tech-
niques to create motion which is realistic and
compositionally logical to the viewer, but also
technically accurate in the eyes of the engineer.

Lighting

Convincing motion of realistically designed
models goes a long way in creating an authen-
tic animation. There are other compositional
elements that must also be considered. The an-
imation software provides an environment
somewhat analogous to a windowless room: if
no lights are turned on, nothing can be seen.

97

The placement of light sources then becomes
an issue. In the simulation of aerospace opera-
tions, it might seem logical to have only one
light source representing the sun. In truth how-
ever, other sources of light must be considered.
Light reflected from the Earth, the Moon, or
other bodies can brighten unlit areas. Small
man-made sources of light may also need to be
simulated. Several different types of light
sources are usually available in the animation
software. Flood, spot, unidirectional, and om-
nidirectional sources are common and may be
used to create specular, diffuse, and ambient
light. Color can often be added to light sources
as well. The selection and placement of light
sources generally follows the same principles
used in photographic or motion picture light-
ing.

Special Effects

The presence of light would also imply the
presence of shadows. Shadows are not an ordi-
nary by-product of a lighted object in a com-
puter however. The location and darkness of
shadows must be computed based on the loca-
tion and characteristics of the light sources and
the shape and location of the objects in the
scene. It is a complex problem with a compu-
tationally intense solution. Implementation of
shadowing usually results in a significant in-
crease in the amount of time required to render
each frame but is justified by a dramatic in-
crease in image realism. The advent of shad-
owing options is a fairly recent development in
animation software. At the current stage of
hardware and software development, shadow-
ing is still considered a "special effect."

Other capabilities which fall under the category
of special effects include transparency and dis-
tortion of objects. While a transparency map
can be used to give an object a transparent
quality, variations in degree of transparency are
not a standard feature. Such an effect can be
used to reveal hidden structure within an ob-
ject. An example of this appears in the canister
transfer sequence of the Mars Rover Sample

Return Mission video. There is no standard
method of producing variable transparency
among those animation packages that support
it. It is achieved in one package by entering a
transparency factor for each individual frame in
which the object’s surface appears. This can be
a tedious process but the result provides a very
effective way to present technical detail.

Distortion of objects is a special effect that is
useful for depicting non-rigid objects. Plastic,
rubber, and textile objects are likely candidates
for the use of distortion effects. Distortion is
still the subject of much research and, like
variable transparency, is achieved by a number
of methods. Metamorphic distortion is
available in some animation packages. This
method allows a model’s shape to be altered
from one key frame to the next. The animation
software then interpolates between the shapes
in the same way that it interpolates an object’s
motion. Another form of distortion permits an
object to be stretched along one of its three ax-
es while it is compressed along the other two.
This is sometimes referred to as volume distor-
tion. Skew is a diagonal distortion of a model
along two of its axes. These techniques can
sometimes be used in combination with one an-
other. This can be very effective at adding nat-
uralism to the motion of flexible objects.

In-House Software Development

Most of the object manipulation methods dis-
cussed thus far are made possible by the stan-
dard or advanced features of commercially
available animation packages. Animation of
certain types of objects or effects are not cur-
rently within the capabilities of these packages
however. The use of in-house graphics pro-
gramming expertise may be helpful in such
cases.

Research was needed in several instances to de-
termine how to simulate various effects for the
Mars Rover video. The action of the lander ve-
hicle’s parachute filling with air required the
development of specialized code. Smoke for

98

the Titan IVs and the Mars ascent vehicles was
initially generated with a complex mathemati-
cal algorithm employing Fourier transforms
and digital filtering. Another method of pro-
ducing smoke was subsequently developed us-
ing an innovative combination of polygon dis-
tortion and moving bump maps. Custom soft-
ware may sometimes be required for the cre-
ation of specific types of motion as well. The
movement of the rover vehicle across the Mar-
tian surface is one example. Each of the six
rolling wheels has to maintain surface contact
with the irregular terrain yet remain in the cor-
rect orientation to the rest of the vehicle. In a
more recent project, research was required to
convincingly depict dust being stirred and set-
tling back to the ground in a low-gravity envi-
ronment. Problems like these are of particular
interest in aerospace where unusual conditions
are so frequently encountered.

Rendering

When all of the image manipulation and mo-
tion problems of the animation sequence have
been addressed, there remains one more step in
the animation process. The animation se-
quence must be rendered in solid form. Ren-
dering is the computing of the final animation
frames using all of the options and effects that
have been defined by the animator. Prior to
rendering, the animation exists only as a wire-
frame representation in the animation software.
Texture mapping, lighting, shadows, and other
effects are not yet visible. It is in this process
where time intensive operations take their toll.
A great deal of computing speed, memory, and
storage are needed to render even a few sec-
onds of animation. When a high-speed render-
ing engine is used, a complex frame full of in-
tricate objects, reflections, and shadows may
take from four to forty minutes to create. Ad-
ditional time may be required if certain special-
ized rendering methods are used. One of these
methods is called ray-tracing.

Ray-tracing results in highly realistic animated
images. It works by calculating the path of ev-

ery beam of light from each light source to
each pixel of each object on the screen and then
back to the viewer’s eye. It is especially effec-
tive when objects have glass or other highly re-
flective surfaces. Multiple levels of ray-tracing
allow an increasing amount of detail but at a
great penalty in computing time for each addi-
tional level. Ray-traced images have an almost
photographic realism.

Compositing is also part of the rendering pro-
cess and allows layering of separately generat-
ed images. This may be used to add back-
ground elements to a scene that was generated
without them. Compositing reduces the
amount of time required to render an image be-
cause static background images are rendered
only once. Only the moving objects are recal-
culated for each new frame. This would seem
to make compositing highly desirable. Actual-
ly a time trade-off takes place because com-
positing increases the amount of time required
to display the completed image. This slows
down the recording process. Whether com-
positing is desirable is determined by evaluat-
ing how computing resources may best be allo-
cated between rendering and recording opera-
tions. Another way of compositing is available
that eliminates the recording time penalty. The
use of digital video storage devices and special
effects units allows real-time compositing but
requires the purchase of more expensive hard-
ware.

Single-frame Recording

As each frame of animation is rendered, it is
stored on the computer’s mass storage unit,
usually a hard disk. It cannot be played back in
real-time from an ordinary hard disk however
because access time and reconstruction of the
display is too slow. Instead, software is used to
display each frame individually and to trigger a
video recording device to record it via special-
ized animation-control hardware. Among the
devices that may be used for single-frame
recording are videotape recorders, optical
laserdisc recorders, and digital frame storage

99

devices. Generally only the high-end, profes-
sional-format videotape recorders are capable
of recording in single-frame mode. Recording
of the frames to video completes the animation
step of the animated video production process.

Editing

Editing is the arrangement of raw audio and
video into a complete and coherent presenta-
tion (Figure 3). Audio editing is the next step
of the animated video production process. This
step technically begins when the script is writ-
ten. Scripts are written in a two column format
with the spoken text in the right column and a
description of the corresponding visual images
in the left column. The right column also con-
tains details about music and sound effects and
instructions to the audio technician. This for-
mat allows each portion of text to be carefully
timed to match the correct image. The lan-
guage of the script must have a narrative flow
that sounds natural when spoken aloud. The
script is recorded onto multi-track audio tape
using a professional announcer. (Untrained
speakers find it difficult to eliminate certain ex-
traneous sounds from their speech. These can
be very distracting in a recorded soundtrack.)

Planning
(Script/Storyboard/Shotlist)

|
|

[Analysis | [Simulation] [Animation| [Live Video|
| I

Record/Edit
Audio

Raw Video

Final
Production

Figure 3 - Video Production Overview

After the script has been recorded, it must be
edited to eliminate mistakes and to make it the
proper length. Music and sound effects are
then generated or selected from a library and
added behind the voice on another track. A
time code recorded on one track of the tape
makes very precise editing possible. The com-
pleted soundtrack is referred to as the audio
master or the soundtrack master. Because of
the timing elements involved, implementing
changes in the script after the edit session are
very difficult. Usually, re-recording and re-
editing of the entire soundtrack is necessary.

When the audio master has been completed, it
is transferred to a blank videotape or other
video media. The final step in the animated
video production process is editing of the raw
animation video onto the audio master tape.
Live video footage may also be incorporated
into the production at this point. Some animat-
ed (and live) sequences that have been generat-
ed must be slightly longer than the amount of
time they are to appear on-screen. Additional
footage at the beginning and end of each se-
quence gives the video editor a place to create
transitions between scenes. Cuts, dissolves,
and wipes are among the many types of transi-
tions available through modern video editing
equipment. The primary tools of a video pro-
duction facility include character generators,
edit controllers, video and audio switchers, spe-
cial effects units, time base correctors, and
video recording devices. These are used to as-
semble and refine the final video presentation.

Character generators allow the creation of titles
and credits. A special effects unit may be used
to overlay these onto the video footage or place
them on a colored background. Special effects
units can also provide the previously men-
tioned transitions and other manipulation of the
video images. Switchers are used to generate
dissolves, wipes, upstream and downstream
chroma and luminance keying as well as soft
and hard-edged transitions via special effects.
A video edit controller allows precise editing of
the video. A device called a time base correc-

100

tor may be used to compensate for anomalies in
the video signal. Typically, at least two video
sources are connected through time base cor-
rectors to a video switcher and an edit con-
troller for output to a recording device. Time
code is usually recorded on the video media to
provide frarme-accurate control of the editing
process. A standard for time code, developed
by the Society of Motion Picture and Televi-
sion Engineers (SMPTE), is used for most
video and audio editing.

In editing the animation video, the soundtrack
is the reference for assembling the scenes. This
is why integral development of the script, the
storyboard, and the shot list is so important in
the planning phase. Sound effects must pre-
cisely coincide with the corresponding visual
action. The narrative description must match
exactly what is depicted on the screen. The
viewer’s interest must be maintained with an
accurate, clear, and concise explanation of the
concepts being presented. With careful plan-
ning and an integrated approach to the animat-
ed video process, this can be achieved very ef-
fectively.

AUTOMATION OF THE ANIMATED
VIDEO PRODUCTION PROCESS

Engineering visualization is still a fairly new
concept. Much of its potential remains unreal-
ized because of a lack of automated processing
and standard interfaces between and within its
various disciplines (Figure 4). Some relation-
ships between engineering, animation, and
video exist already, but in each case the devel-
opment of automation and interfaces has been
an isolated process.

Engineering analysis and simulation have uti-
lized 3D computer graphics since the late-
1970s. Software and hardware interfaces are
plentiful and standards are becoming fairly
well established. An entire industry has arisen
around the development of CAD/CAE worksta-
tions. Networking of computer systems has
contributed an element of transparency to the

Analysis &
Simulation

Computer
Graphics

Animation

Video
Technology

Video
Animation

Engineering
Graphics

Computer
Animation

N ' ~ rd
AN e ~ I
rd ~ I
N 7

Automated

~
N7
Automated
Engineering Video
Analysis Production

~ e
~ e
~ e
N e

Existing

Integrated
Future

Visualization

Figure 4 - State of Visualization Technology

interfaces. The Initial Graphics Exchange Spe-
cification (IGES) and Computer Graphics
Metafile (CGM) are among the many graphics
file standards developed for use within this
field.

Television standards have been around for sev-
eral decades and in no way reflect the current
state of graphics visualization hardware. Tele-
vision standards were designed to allow use of
compatible analog signal by either black and
white or color television sets. Automation of
video production is occurring but with few of
the benefits of digital technology inherent in
the computer industry. One promising new de-
velopment is a video version of the computer
network. The Video Local Area Network (V-
LAN) permits the same degree of transportabil-
ity over video control signals that a computer
network allows over data.

The use of 3D computer graphics for animation
started in the early 1980s and interfaces and
standards for it are just beginning to be defined.
Whereas 2D animation was used almost strictly
for entertainment and commercial purposes, 3D
animation has become a valuable tool in the
scientific and engineering world. Although an-
imation is historically associated with film and
video, the use of 3D computer graphics to gen-
erate animation is requiring unprecedented

101

computer to video interfaces.

The dissimilarity of hardware is at the root of
most problems faced in automating the animat-
ed video production process. The engineer’s
workstation, the animator’s workstation, and
the videographer’s equipment typically have
different screen resolutions. In addition, the
two workstations usually output red, green, and
blue (RGB) signal values at a scan rate of 60
hertz. The videography equipment requires
separate color and luminance signals synchro-
nized and interlaced at a scan rate of 30 hertz.
Getting an image from one device to the next
often requires as much specialized equipment
as do the systems themselves. The capabilities,
limitations, and compatibility of each individu-
al component must be considered. Automation
is made possible only when all of the hardware
interfaces are resolved. If this can be accom-
plished, the next step is the development of au-
tomation software.

Rendering and single-frame recording of ani-
mation can be automated through software.
The development of the V-LAN mentioned
earlier provides the capability to control the
video production process through software and
audio editing can be automated as well. The
complexity and speed involved in automating
these processes requires fast processors, fast
programming languages, and creative and effi-
cient software design.

FUTURE DIRECTIONS

The ultimate expression of automation would
be an integrated system designed to facilitate
the engineering visualization process from be-
ginning to end. Such systems are yet to be de-
veloped but the general direction of the related
industries makes their eventual appearance in-
evitable, Many graphics terminals in use today
have the capability to support multiple screen
resolutions and to accept a video synchroniza-
tion signal from an external source. Some can
generate their own "sync" for direct output to
video. These systems are the first step towards
an integrated hardware system. The software

tools are also beginning to appear. Video edit
control software that uses the previously men-
tioned V-LAN is now commercially available.
Single-frame recording software is available
which drives videotape animation control hard-
ware. Most of the hardware and software on
the market now is in its first development
generation.

User interfaces for these emerging tools are fol-
lowing the trend towards intuitive operations.
Intuitive interfaces reduce the learning curves
associated with complex software and, if well
designed, can result in faster operations. This
will be especially important to the success of
integrated systems where different types of
users are involved. Consistency between the
interfaces for the engineer, the animator, and
the videographer will result in a smoother flow
of ideas and information and faster production
turnaround.

Engineering visualization technology is rapidly
advancing. Hardware interfaces and software
formats are now being developed which will
streamline the process of documenting the en-
gineering process through animation and video.
The merging of engineering analysis and simu-
lation, 3D animation, and video is a natural
step which will enhance the engineering envi-
ronment. The NASA Mission Support Direc-
torate’s Animation and Video Production Facil-
ity hopes that the insight it has gained over sev-
eral years of integrated efforts may represent a
worthwhile contribution to the direction of this
effort.

References:

Bentz, Tom, "Computers In Editing," Video Manager,
Torrance, CA.,Vol. XI, No. 10, October, 1988, pp. 48-
50.

Davis, Susan, "The Computer Connection," Video
Manager, Torrance, CA., Vol. XI, No. 7, July, 1988,
pp. 19-24.

Robertson, Barbara, "Graphics Leaps Into Space,”
Computer Graphics World, Westford, MA., Vol. 10,
No. 8, August, 1988, pp. 44-46, 48.

102

Robinson, Thomas L., Sabionski, Gunter R., "Visual-
ization Engineering Gives NASA A Window on the
Future," Computer Pictures, Clifton, NJ., Vol. 6, No.
3, pp. 60-64.

Schwartz, Howard, "Audio for Video," Video Sys-
tems, Overland Park, KS., Vol. 14, No. 8, August,
1988, pp. 24-25.

NOO-20665.

Multi-Tasking Computer Control Of Video Related Equipment

Rod Molina

Exchanging audio-visual information is a
daily part of human communications. The
video medium is the most popular choice
for quickly and effectively conveying
simple or complex information. However,
like other communication methods,
certain conventions must be followed in
order to prevent video from becoming a
collection of useless information.

A completed video presentation
originates from raw audio-visual
material that must be organized into a
continuous flow of information. The
physical equipment necessary for the
post-production process is usually
dedicated computer-based devices that
perform synchronization and control,
generate visual effects, and combine
audio and video signals. Most video
production studios are made up of these
separate devices independently
performing their specific tasks.

The flexibility, cost-effectiveness and
widespread availability of personal
computers now makes it possible to
completely integrate the previously
separate elements of video post-
production into a single device.
Specifically, a personal computer,
as the Commodore-Amiga, can perform
multiple and simultaneous tasks from an
individual unit. Relatively low cost,
minimal space requirements and user-
friendliness, provides the most
favorable environment for the many
phases of video post-production.

such

Computers are well known for their basic
abilities to process numbers, text and
graphics and to reliably perform
repetitive and tedious functions
efficiently. These capabilities can now
apply as either additions or
alternatives to existing video post-
production methods.

103

Bob Gilbert

A present example of computer-based
video post-production technology is the
RGB CVC (Computer & Video Creations)
Worksystem. A wide variety of integrated
functions are made possible with an
Amiga computer existing at the heart of
the system.

EDITING

Beginning with video editing functions,
the Amiga-based editing system operates
using either SMPTE Time Code or Control
Track as a reference for editing points.
With SMPTE, the preferred reference
format, a high degree of accuracy is
obtained. The CVC Worksystem has full
control of transport (rewind, fast-
forward, play, stop, still and search)
and editing functions (Insert, Assemble,
Goto, Preview, Perform and Review) while
maintaining a constant update of system
status information. The time-consuming
tasks of logging specific SMPTE Time
Code values, calculating and storing
pertinent edit information (edit points,
match-frames, running-time and preroll)
and searching through raw footage are
now built-in features. The task of
processing and managing the data
necessary for edit decision lists and

cataloging tapes can now be delegated to
specific database management software.

Custom interface hardware allows the CVC
Worksystem to communicate directly with
the transport of a single machine or up
to 32 separate transports. Normally
incompatible machine formats and brands
can now function within a unified
system. This network environment
provides a common device communications
link that gives the ability to handle
multiple applications and devices
individually or simultaneously within a
consistent operating environment.

y

x

CHARACTER GENERATION AND GRAPHICS

When incorporated properly, captions,
illustrations and backgrounds can
greatly enhance the impact of a video
production. Almost every video
production, simple or complex, requires
the use of some type of character or
graphics generator. Character generators
are usually independant, dedicated
computers that perform the sole function
of adding text and possibly graphics to
video. Choosing a specific character
generator can be difficult. They range
in price from a few thousand to a few
hundred thousand dollars. The features
of various character generators are also
widespread. However, the general
criteria that most will use in making a
selection is ease-of-use, quality, and

reasonable cost.

The CVC Work8ystem’s graphics processing
power and direct video compatibility
provides a natural ability to fit the
character generator description.
Sophisticated graphics and text are easy
to achieve at a fraction of the
traditional cost. The real significance
though, is that the graphics and
character generating process can
simultaneously occur from the same unit
that is also performing the editing
functions for a continuously flowing
editing process. It is no longer
necessary to switch between machines
(and needing to know the subtleties and
differing functions of each device in
the process). Instead, the average video
post-production project can be completed
from one location just by switching
between simultaneous applications.

ANIMATION AND EFFECTS

Besides static text and graphic images,
animation capabilities are also provided
with the CVC WorksSystem. Both 2-
dimensional and 3-dimensional animation
can be created quickly to allow greater
enhancement and effect. Imaginary and
real images can be digitally manipulated
to create the popular effects and
simulations that are common to many
present day video productions. The
quality of the animation cannot yet
replace those from dedicated high-end
systems but the compromise is offset by
the minimal effort and time necessary to
achieve results that remain pleasing and
above all, cost-effective. Once again,
the single system, single operating
environment approach provides a
tremendous amount of flexibility.

104

OTHER POSSIBILITIES

The CVC WorkSystem’s open-architecture
provides a great amount of
expandibility. The power of the system
is mainly accessed through additional
applications software; keeping the
necessity for extra hardware peripherals
to a minimum. Simply put, the limit to
the system’s capabilities is dependant
on the available software.

Because of its personal computgr nature,
other applications software exists to
perform tasks that are indirectly but

beneficially related to the video
production process: word processing,
scripting, storyboarding, database
management, desktop publishing and
accounting to name a few.

More direct applications could involve
MIDI (Musical Instrument Digital
Interface) software to help in creating
soundtracks and sound-effects for the
finished video. With the appropriate
software the video and audio aspects of
the production become a completely
synchronous process.

Quality video production should no
longer be considered an extravagance.
The techniques and processes that were
once supposedly limited to elite
organizations and people are now
accessible to all types of
professionals. The CVC WorkS8ystem can be
applied to many areas requiring the
benefits of a reasonably-priced, multi-
featured computer and video work-
station.

Marketing agencies can now afford an in-
house system to present clients with
immediate ideas and recieve instant
feedback. If necessary, full commercial
video productions can even be produced
completely on-site.

Corporate training videos can become
easier and less costly to produce with a
system that does not require specially
trained operators.

Schools and Universities can now
incorporate up-to-date video
communications training into their
curriculum. Unlike previous video
systems, the expandable design will be
well protected from obsolescence.

Scientific research institutes can also
benefit from the barrage of capabilities
that the CVC Work8ystem can help make
data presentations more widely
understood.

Of course, the CVC WorksSystem is not
proclaimed as the answer to all video
post-production needs, but it supplies
enough significant features to make a
truly integrated computer/video system a
cost-effective reality. A single
computer in a video studio can now be
integrally involved in every step of the
creative process: as a word processor

creating a script and project proposal,
as a spreadsheet creating the project
budget, as a tape synchronizer for audio
and video transports during editing, as

a database to log scenes, transcribe
dialog, and manage an edit decision
list, as an audio sequence controller
(MIDI) for electronic musical
instruments used in the soundtrack and
special effects, as a video effect
generator and character generator, and
finally as a business machine for
invoicing and accounting when the
project is finished.

105

N90-20666

Broadening the Interface Bandwidth

in

Simulation Based Training

Larry E. Somers
MICROEXPERT Systems, Inc.
24007 Ventura Blvd. Suite 210, Calabasas CA 91302

ABSTRACT

Currently most computer based simulations
rely exclusively on computer generated
graphics to create the simulation. When
training is involved, the method almost
exclusively used to display information to the
learner is text displayed on the CRT.
MICROEXPERT Systems is concentrating on
broadening the communications bandwidth
between the computer and user by employing
a novel approach to video image storage
combined with sound and voice output. An
expert system is used to combine and control
the presentation of analog videc, sound, and
voice output with computer based graphics
and text.

We are currently involved in the development
of several graphics based user interfaces for
NASA, the U.S. Army, and the U.S. Navy. This
paper will focus on the human factors
considerations, software modules, and
hardware components being used to develop
these interfaces.

INTRODUCTION

Advances in military and aerospace technology
continue to result in increasingly complex
systems requiring quick, accurate decisions
under increased cognitive Joads. The
amounts, variety, and rate of information flow
is, many times, so overwhelming that
anticipated performance benefits are not
realized (Rouse 1987).

Recent advances in both video and audio
storage technology are providing additionat
resources for communications channels
between computer and user. These tools may
well contribute to potential solutions of the
problem. This article outlines an approach we
have taken in combining these tools for the
development of user interfaces, including
inteligent human-machine interfaces for
simulation based intelligent tutoring systems
(ITS).

PRECEDING PAGE BLANK NOT FILMED

107

HUMAN FACTORS

User capacities and needs have been
described as a major consideration in
designing user interfaces (Shneiderman 1987).
The use of several media devices can help to
better meet the needs and match the
capacities of the user. Described below are
several of the more important factor we have
considered in developing a multimedia
interface.

Cognitive Load. A measure of the complexity,
or difficulty of a task is the number of
resources it requires (Moray 1977). As
descriped by Baecker (Baecker 1987) the
cognitive load of a task correlates with such
factors as:

® learning time

e fatigue

® stress

® proneness to error.

It is important that the interface help minimize
the cognitive load on the user. Thus, for
example, the design should consider the
different loads imposed in making menu
selections with a one, two, or three button
mouse, respectively. It may turn out that the
one-button mouse has the lowest load, since
there is no overhead in determining which
button to select. However, in the larger
context, it may turn out there is a greater
penalty in, for example, an increased number
of menus or menu selections that must be
provided.

Interference. Degradation in the performance
of one task can occur due to competition for
cognitive resources by another task during the
same time period. Problem solving requires
attentive behaviors that usually involve large
numbers of cognitive resources. As a result,
problem solving during an ongeing simulation
is highly susceptible to interference. For
example a tutor that provides text for coaching
during a simulation could easily interfere with
the simulation reducing, instead of improving,
the user's performance. I[n such situations an
alternate communications channel using voice

-

eack_/ 0. INTENTIONALLY BLAMK

et
o

)y
/

output or auditory cues may provide a better
approach to prompting the learner without
interfering with their performance.

In working with a simufation based intelligent
tutoring system, there are two classes of
problems that confront the user: operational
and functional. Operational problems have to
do with the means of operating the ITS itself.
Functional problems deal with learning to
perform the tasks the tutor was designed to
teach. Operational problem solving often
interferes with functional probiem solving.

One objective of the user interface is to
minimize operational problem solving. All
resources expended at this level are diverted
from the functional problem for which the
computer was adopted in the first place.
Design features such as consistency,
compatibility, icon and menu design must be
considered. For example operators of certain
types of radar learn to access radar target
information by using a joystick to position a
cursor on the target and then pressing the
joystick button. We have designed a
simulation to train radar operators that not only
simulates this operation but also provides
additional information about radar symbols and
controls using a very similar procedure. |f, for
example, the learner desires information about
a symbo! he does not recognize on the
simulated radar display, he need only position
the cursor on the symbol, using the joystick,
and press the help button on the keyboard.
This type of learning requires only slight
stimulus generalization and is therefor easily
learned by the student.

The overhead of functional problem solving
can also be reduced by careful design.
Information should be presented using
symbols, jargon, and metaphors that are, as
much a part of the users repertoire and
experience as possible. In training radar
operators we have employed two expert
systems, a scenario expert and an interface
expert. The interface expert compares the
actions of the scenario expert with the actions
of the user. When a discrepancy occurs the
interface expert provides visual or audio
coaching, during the scenario, without the
learner having to request help in any specific
way. Transcripts and recording made of radar
instructors as they trained operators were used
to design the voice output which includes
training and operation related jargon already
familiar to the trainees. The result is very
similar to the classroom training the operators
receive in which an instructor stands behind a

108

student and provides coaching as the student
operates the radar console.

Skill Acquisition. Simuiation based training
generally focuses on skill development.
Training procedures, including help systems,
are a part of the user interface. Their design
should encourage development of skills in an
isolated, non-threatening way. It is important
that voice and sound output, for example, not
be punishing to the learner, especially by
drawing attention to the learner from his peers.
The result is often an avoidance or aggression
response by the learner which will decrease
skill acquisition.

There is some evidence that skill is acquired
more rapidly in an isolated learning situation
(Schneider 1985). This may not hold for
specific cases and requires testing for final
validation. High-fidelity —simulations are
ultimately important in order for the advanced
student to learn fine discriminations. However,
for the novice it is often important to reduce the
complexity of the simulation so that the student
can more easily learn to make important
prefiminary discriminations. In training radar
operators, the complexity of the simulation
scenario is controlled by the interaction expert.
As the student becomes more successful at
solving the scenario correctly, the complexity is
increased by adding additional targets and
target types and by changing target vectors. If
a student has difficulty with a specific scenario,
the scenario is simplified so that important
stimuli are isolated and the student can more
easily focus on appropriate discriminations to
be learned.

Mental Models, Analogy, and Metaphor. The
underlying conceptual model of the software is
considered to be a more important factor in
user-friendliness then what is generally called
"look and feel" of the system (Liddie 1989).
The mental mode! which the user applies in
trying to understand and predict systems
behavior is an important consideration in the
design of the interface. Users make use of
analogy between systems components and
previously learned stimulus-response
paradigms, when operating a system. To the
extent that the user interface can be designed
using one or more carefully chosen metaphors
familiar to the user, the interface will be
perceived as user-friendly. In designing the
user interface to multimedia database, in which
the user carn access analog video images,
graphics, voice, sound, and text, we have
employed the metaphor of a Library. A
metaphor of a card catalog is used to specify

the information used for a database search.
Following the search a graphical
representation of library books on a sheff,
representing the results of the search, is
displayed on the screen. By pointing the
cursor at a book and clicking, with a mouse,
the information, be it text, sound, voice, or
image, is displayed to the user. Though still in
the prototype stage, preliminary user
acceptance has been very positive so far.

S-R Compatibility. When a systems cause-
and-effect behavior matches the user's
expectations and previous experiences, it has
good stimulus-response (S-R) compatibility.
Two main factors to be considered are spatial
congruence and custom. Having good spatial
congruence between items in a menu and the
layout of function keys provides good S-R
compatibility. The use of the color red to
indicate danger or a stop action is an example
of how custom can be used to provide good S-

=]

R compatibility. In a similar tashion the user
interface should be designed to make use of
customs specific to the individuals that will
utilize the system. Through careful knowledge
engineering it is sometimes possible to
uncover customs peculiar to the target group
of users. To the extent that these customs can
be incorporated into the interface it will be
perceived as user friendly.

INTERFACE COMPONENTS

The diagram shown in figure 1, below,
illustrates the functional modules we have used
in developing intelligent human-machine
interfaces. Each module is a unit of
replaceable code with specified inputs,
outputs, and functions to perform.
Furthermore the interface, itself, can be seen
as a module in the development of a larger
intelligent tutoring system. In this way other
groups are able to work separately on different
modules of the ITS.

i
’ KEYBOARD ;‘ MOUSE
I] N
b el ITS
DOMAIN
i KNOWLEDGE
s EVENT i
MONITOR ‘ —_——
____ATAAﬁ |
}
| | S —
USER — | INTERACTION LAWJ
MODEL AAA*F—W EXPERT !
- 1*
[: !
HEL%J{LESSONS;;COACH:
| i 1 H B
i I A i
: I
INSTRUCTION | GENERATOR :
. . - o
l I i i i
L I I R . |- L — e e e
EARCON TEXT DIGITAL | | DIGITAL ! ‘ ANALOG
GENERATOR GENERATOR SYMBOLS ' GRAPHICS ! L IMAGES
! }]]

1

TEXT Fbi
OUTPUT1

SOUND VOICE
OUTPUT OUTPUT'

VIDEO MIXER/DIGITIZER ‘

R S
! 1
‘7 AUDIO OUTPUT f 4”,‘{ VIDEO OUTPUT J
PRESENTATION GENERATOR
SIMULATION
GENERATOR
FIGURE 1

Interface Components

109

ORIGINAL FACE 1
OF POCR QLAY

Task Analysis.

While not represented as a separate interface
component, a careful task analysis is essential
to the development of the other components in
the system. Intelligent Tutoring Systems
attempt to capture and explicitly represent the
knowledge that constitutes the expertise being
taught. Our knowledge engineering efforts
have focused on a task analysis that not only
identifies the knowledge components to be
represented, but creates a curriculum structure
that associates knowledge components with
each other and with the goals of the
instruction.

HIGH-LEVEL
TASKS

Ssesesessnesessnanse

MID-LEVEL

TASKS

During the knowledge engineering phase of
development complex, high-level tasks are
identified and decomposed into mid-level and
then low-level unit tasks. For each unit task it is
important to identify a measurable behavior
associated with the task, the stimulus
conditions wupon which that behavioral
response should be made, and the heuristics
that describe the relationships between stimuli
and responses. The process is an adaption of
the goal-lattice structure described by Lesgold
(Lesgold 1988). Each high-level task serves as
the root node of a tree. Simple lessons are
designed to teach the unit tasks of each tree.
Many of the mid-level and unit tasks identified
in one task free are also common to other,
separate, task trees. Figure 2, below, shows
this architecture symbolically.

|
I

LOW-LEVEL

esesuneese [s0csosen

TASKS

m

m

i

[

1

L

el

|

1

Figure 2

i

Task Analysis

110

ORIGINAL PAGE IS
OF POOR QUALITY

The resulting task trees and interconnections
make up a curricular structure for the ITS which
is accessed in the interaction expert. Tasks
can be taught using a depth-first search, a
breadth-first search, or both. Research is
being carried out to determine, among other
things, under what condition a specific search
should be carried out.

User Input.

Prototype development has been carried out
on a Symbolics LISP machine, DEC MicroVax.
User input has been limited to a mouse
pointing device and keyboard. We are
currently developing a new type of wireless
pointing device to be implemented when
porting the interface to a PC. We are also
considering voice input devices for entering
commands on the PC.

Event Monitor.

The event monitor measures user and
simulation event actions over time. Multiple
timing functions are available to measure the
elapse time between a task stimulus event and
a specific user response (task time), between
the start of sequential tasks (intratask time), to
measure input from the keyboard and mouse,
to determine the current task to be performed,
the current position of simulation related
objects on the display, and which object the
cursor is pointing to at any given moment
Information measured by the event monitor is
then stored in the user model.

User Model.

The user model is used to store task
performance related data about the user. For
each task performed, the time required by the
user to complete the task is stored. The
sequence of user performed tasks is also
stored and used to calculate a task efficiency
and task similarity (compared to an expert)
rating. The time period between presentation
of successive task stimulus conditions is also
measured and provides an indication of the
cognitive load on the user. This provides a
user-specific fact base that is used by the
interaction expert to adapt to individual user
requirements and needs.

Also stored in the user model is data related to
the users presentation preferences. As is
described below, information can be presented
to the student in a variety of modes, textual,
graphical, voice, and sound. The user model is
designed to measure the users preference for

111

a specific mode of presentation as defined by
his performance following the presentation.

The users teaching history is also tracked in
the user model. Thus the tasks that have been
taught, the presentation modes that have been
used, the students task performance, and his
presentation preferences are stored here and
available to the interaction expert.

Interaction Expert.

The interaction expert is the interface rule base.
Rules are designed to compare the users task
performance with that of an expert. An expert
system, designed as a separate component of
the ITS (not shown), generates expert solutions
that are available to the interface expert. The
expert's solution is compared with the users
solution to determine the tasks to be taught.
By traversing the curriculum lattice the
interaction expert determines related tasks that
should be taught as well as different paths
(viewpoints) from which to teach. The user
model is then consulted to determine what
paths have not been previously attempted for
that user and what presentation mode should
be tried.

Instructional Generator.

The instructional generator is primarily a
database of instructional components
designed to teach specific tasks. Instructional
modules are designed to provide several
instructional strategies; discovery learning,
coaching, and Socratic dialog. Thus, several
instructional modules are available for each
task. Modules are also designed to differ in
their emphasis of a specific presentation
media. For example, coaching is available for
a given task by presenting text on the video
dispiay or through voice output using a text-to-
speech converter.

Presentation Generator.

The presentation generator consists of the
media devices used to present information
visually or auditorily along with software used
to control these devices and integrate
components.

Visual Channel. Both analog and digital, bit-
mapped video images are available for display
to the user. Currently different video display
terminals are used for each. We are
experimenting with both video digitizing boards
and video mixers to combine both types of
images onto one display.

Video. A unique video storage device, the
VIEWBOX 2000, is being used to capture and
display analog, RS-170, video images. The
device uses a standard 20-Mbyte hard disk
with a modified controller to store over 2400
RS-170 video images. Random access times
are approximately 200 msec and sequential
access times are under 100 msec. making a
"pseudo-animation” possible. A standard video
camera is used to capture images. Software
drivers in the presentation generator are used
to control the device over the computers RS
232 port.

Graphics. Graphic displays are highly
machine dependant. Interfaces are currently
being designed on both Symbolics and DEC
MicroVax computers, wusing monochrome
graphics, and on PC's using EGA color
graphics. Currently simulation are graphics
based and the VIEWBOX is used to display
visual information that does not lend itself well
to graphical display due to processing
requirements and capabilities. We are
experimenting with using the VIEWBOX to
provide background scenery overlayed with
graphics in the hopes of combining both in the
future.

Symbology. Icons and symbals are separate
graphical components the interface uses to

help the learner make important
discriminations during the simulation
Simulations are designed with varying

complexities. Novices are provides simulations
of very low complexity with ample use of
symbols, such as pointers. While it is generally
agreed that high-fidelity simulations are
needed, it is possible too provide to much
fidelity early in the learning process.

Text. Under the control of the instructional
generator text can be displayed in a window cn
the video display or sent to a text-to-speech
converter and presented as speech. In the
later case the presentation generator formats
the text string to control pitch, rate, and other
parameters.

Audio Channel

Producing Speech Electronically.
Generation of speech and sound (earcon)
output from a computer requires special
hardware components. Three major
techniques for production of speech have
evolved over the vyears: formant (resonant
frequency) synthesis; linear predictive coding;
and waveform sampling. Most commercial

112

text-to-speech devices use one of the first two
because they require smaller storage and
slower data rates. However with as computer
memory continues to decrease in cost,
computer systems such as the Atari and
Apple’'s MacIntosh are imbedding the
hardware and software needed to sample and
reproduce waveforms.

Synthetic Speech. The automatic conversion
of text to synthetic speech has advanced
remarkably in the last several years. A number
of commercial devices are now available,
ranging in cost from approximately $100 up to
$35000. Progress in this area has resulted from
advances in linguistic theory, acoustic-phonetic
characterization of English sound patterns,
perceptual psychology, mathematical modeling
of speech production, and computer hardware
design (Kiatt 1987). Never-the-less a number
of scientific problems remain that prevent
current systems from achieving the goal of
completely human-sounding speech.

The quality of voice output improves greatly in
devices costing over $3000 (Kaplan et al 1987).
In the $3000 - $4000 price range two text-to-
speech devices stand out. Originated by
Dennis H. Klatt, speech synthesis expert at
MIT, DECtalk by Digital Equipment Co. has a
broad range of voices including a child’s voice
and a female voice. in evaluations by
Nusbaum et al (1984) listeners understood
synthetic speech produced by DECtalk 97.7%
of the time as compared to 99.4% for human
speech. A rival system also originated by Kiatt,
the Prose 2000 by Speech Plus Inc. has similar
quality but offers only a male voice and is
slightly less expensive. Studies by Logan et al.
(1986) indicate listeners have an error rate of
6% listening to the Prose 2000 - 3.0 compared
to 1% error in understanding natural speech.
Both devices can be controlled thorough the
computers RS-232 Serial Port and require a
data rate of approximately 100 bits, based on a
typical rate of 12 phonemes per second.

We are currently using the Praose 2000 for text-
to-speech conversion in several of our
interface. A major advantage to these type of
devices is the ability to use variables to store
speech output. The major drawback of these
devices is tha: they are limited in their ability to
produce other complex sounds that would be
useful for generating auditory cues.

Voice Sampling. A second method of
producing digitized voice output is by sampling
the waveform of human speech. Waveform
sampling uses a common analog-to-digital

conversion and requires about 64000 bits per
second for uncompressed speech (8000
samples per second to capture up to 4000 Hz,
multiplied by 8 bits per sample). Thus storage
requirements would be 8K/second. Using a
dedicated microcomputer containing a 20
megabyte fixed disk approximately 2500
seconds of speech could be digitally recorded
using this method. Using data compression
techniques, this number could be doubled.
The results are a digital recording of the
speech that is almost indistinguishable from
the original source.

We are currently using an Antex Model VP
620E, PC compatible digital audio processor
(Antex Electronics, Gardena, CA) to provide
digital audio in some interfaces. While this type
of device eliminates the ability to easily store
speech components as variables, the high
quality sound makes the device ideal in many
teaching situation and where sophisticated
auditory cues are desired.

Earcons. Sound is increasingly being used to
convey information in computer interfaces.
The term Earcon (Sumikawa 1985) has been
used to define sounds that serve as the
auditory equivalent of Icons. Similar to voice
generation, earcons can be produced by
sampling specific sounds or synthesizing
sounds with a tone generator. Gaver (1986}
has classified auditory icons into three groups:
1) symbolic, such as telephone bells and
sirens, 2) nomic, in which the sound is a
physically caused by the source such as the
sound arriving mail makes in a mailbox, and 3)
metaphorical such as a change of pitch used
to represent faling or a hissing sound to
represent a snake. Symbolic sounds are,
perhaps, easiest to produce on most
computers since they do not require the ability
to sample sounds. However they generally
require the greatest amount of learning on the
part of the user. For this reason they should
be used judiciously. Symbolic sounds have
been shown to be effective when used as an
alerting cue prior to emergency messages
produced by synthesized voice (Hakkinen
1984). Anecdotal evidence from our current
research supports these finding but also
suggests that overuse of sound stimuli results
in confusion of the user. We are now
beginning to experiment with sampled sounds
to produce nomic and metaphorical earcons
which should require less learning by the user.

113

CONCLUSION

A generic intelligent multimedia interface has
been described. While research is still ongoing
in many cases we have reach so interesting
preliminary conclusions. We originally believed
that selecting different presentation modes,
e.g. voice or text, would be useful for adapting
to specific types of learners. However results
so far suggest that user performance improves
much quicker when several modes, e.g. voice
and text, are combined. This makes sense in
light of the fact that the learner then comes
under multiple stimulus controls.

A second factor, eluded to above, that became
immediately noticeable was that earcons and
auditory cues can easily be over used and
become distracting to the user. However,
when designed carefully, and used fastidiously,
they can be of significant value in gaining the
learners attention and improving his
performance.

REFERENCES
Baecker, R.M., Buxton, W.A.S., "Cognition and

Human Information Processing," READINGS IN
HUMAN-COMPUTER INTERACTION, Morgan

Kaufmann Publishers, Los Altos, CA, 1987,
pp.209.
Hakkinen, Markku T., Wiliges, Beverly H.,

"Synthesized Warning Messages: Effects of an
Alerting Cue in Single- and Multiple-Function
Voice Synthesis Systems,” HUMAN FACTORS,
Santa Monica, CA, 26, 2, April, 1984, 185-195.

Kaplan G., Lerner, E., "Realism in Synthetic
Speech,” in HUMAN-COMPUTER
INTERACTION, R.M. Baecker & W.A.S. Buxton
Eds. Morgan Kaufman, Los Altos, 1987, p. 414-
419.

Klatt, Dennis H., "Review of text-to-speech
conversion for English," J. ACOUST. SOC. AM.
83(3), 1987, pp.737-793.

Lesgold, Alan, "Toward a Theory of Curriculum
for Use in Designing Intelligent Instructiona
Systems," in LEARNING ISSUES FOR
INTELLIGENT TUTORING SYSTEMS, 1st Ed,,
Springer-Verlag, New York, NY, 1988, pp. 117-
118.

Logan, JS, Pisoni, D.B. "Preference
Judgements Comparing Different Synthetic
Voices," J. ACOUST. SOC. AM., Suppl. 1, 79,
1986, p. S24.

Liddle, D., in LaPlante, A., "Ease of Use Involve
More Than Graphical Interface," INFO WORLD,
Menlo Park, CA, 11(7), Feb. 13, 1989, p.1.

Moray, N., WORKLOAD MEASUREMENT, New
York, Plenum, 1977.

Nusbaum, H.C., Pisoni, D.B., and Schwab, E.C.
"Subjective Evaluation of Synthetic Speech:
Measuring Preference, Naturalness, and
Intelligibility," Speech Research Progress
Report 10, Indiana Univ., Bloomington, IN,
1984, pp. 391-408.

Rouse, William B. Norman, Geddes, Norman
D., & Curry, Renwick E., "An Architecture for
Intelligent Interfaces: Outline of an Approach to
Supporting Operators of Complex Systems,"
Human-Computer Interaction, Vol. 3, 1988, pp.
87-122

Schneider, W., "Training High-Performance
Skills: Fallacies and Guidelines,” HUMAN
FACTORS 27(3), 1985, pp. 285-300.

Shneiderman, Ben, "Human Factors OF
Interactive Software," DESIGNING THE USER
INTERFACE, Addison-Wesely, Menlo Park, CA,
1987, pp. 4-11.

Sumikawa, D.A., Blattner, MM, Joy, D.,
Greenberg, R.M., "Guidelines for the Syntactic
Design of Audio Cues in Computer Interfaces,"
Lawrence Livermore National Laboratory, 19th
Hawaii International Conference on System
Sciences, Oct. 3, 1985.

114

N90-20667-

Animation Graphic Interface for
the Space Shuttle Onboard Computer

Jettrey Wike
Paul Griftith
MICROEXPERT SYSTEMS INC
24007 Ventura Bivd, #210. Calabasas, CA Y1302
(818)712-9934

ABSTRACT

Graphics intertuces designed to operate on space
qualitied hardware challenge software designers
to display complex information under processing
power and physical size constraints.

Under contract to Johnson Space Center.
MICROEXPERT Systems is currenth
constructing an intelligent intertace tor the
LASER DOCKING SENSOR (LDSj thght
experiment. Part of this interface 1s an graphic
animation display for Rendezvous and Proximity
Operations. The displays hive been designed i
consultation with Shuttle astronauts. The
displays show multiple views of a satelhte relatine
to the shuttle, coupled with numeric athitude
information. The graphics are generated using
position data received by the Shuttle Puvload and
General Support Computer (PGSCY from the
Laser Docking Sensor.

Some of the design considerations include crew
member preferences in graphic data
representation, single versus multiple window
displays, mission tailoring of graphe displas,
realistic - 3D imuges versus ogeneric weon
representations of real objects, the physical
relationship of the observers to the wgraphic
display, how numeric or textual information
should interfuce with graphic data, in what franme
of reference objects should be portraved.
recognizing conditions of display imtormation-
overload, and screen format and placement
consistency.

115

INTRODUCTION

While much rescarchas being tunded to advancee
the stute-of-the-art . an realtime graphic
WOLRSTONS, these systems ate ot appropriate

tor onboard graphic displays to assist crew
members o ospace. Hardware aside, ssues
concernmg displiny content. ethaeney and

pracucality must be addressed when considerning
graphic weehnology in space MICROBEXPERT
Systems Incorpontted s conducting research in
the use of expert systems and graphical data
portraval on microcomputers o aid Orbiter
Crews i nterprenng sensor diata output in space.
The application, tunded by NASA Johnson Space
Center s o develop @ human intertace to the
LS The TS oo laser radar designed to
measure the relative position between NASA's
Oebiter (Shuttder and targer (Space Station or

satethitey dunse rendezvous and docking
operations. The project soteware, called the
Laoser Docking Sensor - Associate (LDSA),

disphins the DS duta under LDSA control. The
svstentassists the crew by monitoring the data for
tault and satere problems and provides crew
mput o the sensor. This puper outlines the
approach taiken m designing the graphic intertace
of the EDSAL and identities pecubarities typical
in designing graph interfaces tor flight quahtied
hardwire.

SYSTEM CONSTRAINTS FOR FLIGHT
QUALIFIED GRAPHICS

The new orbiter onboard conputer that allows
eraphic displavs s the Pavioad and General
Support Computer (PGSCYL The system is o
GRID CASE Model 1330 faptop computer. It is
cauipped wath o 12,5 M7 RO386 32-bit processor
with SUAST munth co-processor. The displinv s a

o)

ORIGINAL F2gr 5
OF POOR QUALITY

10 inch dingonal 640X300 pixel, backlit LCD
display. The interface to external data is via RS-
232 or RS 422 serial ports. The operating system
is GRil) MS-DOS Version 3.21D.

limits on

The PGSC imposes the tollowing
graphics applications and design:

0 The processor size severely contines the
amount ot detaited graphic animation that
can be displayed.

o The display does not support color
graphics.

o The physical display screen size limits
the detait in which the graphies can be

presented.

o Communication via serial port restricts

the amount of data available to the
system. This limits the types of graphic
applications the system can support.

Graphic portrayal of externally digitized
images for example, cannot be direetly
transterred in reasonable time.

o Input o the system s through the
keybourd only. No mouse. track bull,
voice or touch screen is available tor the
system. This limits user input 1o keyboard
only and creates a need for menus,
function keys and mnemonics.

o Because the PGSC is not currently
connected to the orbiter General Purpose
Computer (GPC), applications run on the
PGSC are restricted to those which do not
involve arbiter safety and mission data.

CHARACTERISTICS FOR ORBITER M2}
DESIGN

As a prelude to building an Man Machine
Intertace (MMI) for the LDS, MICROEXPERT
proceeded through o knowledge gathering
process to learn more about the system being
represented, the presentation preferences of
users, and representation standards.

Gathering knowledge about a system yel o be
built increases the difficulty ot gathering
definitive system information and expertise. Ina

116

large departmentalized organization it is always
time consuming to locate the "experts’ with the
proper knowledge required to impact system
display design. When o new system is being built
there s no expert and the knowledge has to be
assembled from a variety of sources.

MICROEXPERT'S knowledge engineers made
several design trips to JSC to talk to the large
varicty of groups and departments with an
interest in Shuttle displays. Personnel who
participated in the design included four
astronauts plus engineers from Proximity
Operations ard Shuttle Display Groups. We
showed them preliminary designs und elicited
comments. The final version of the display
design resulted from iterative design and user
mput. o some cases, rules of display design
vietded to astronaut expectations,

Our investigation into design preferences and
requirements fed to the Tollowing observations:

O Astronauts prefer graphical
representation o data. Three
dimensionat graphic models that depict
orientation are more meaningtul to the
astronauts than numeric data. Engineers
prefer to see numeric and tabular data,
and do not see the graphies as very
meaningful.

o Numerical data should be displayed
only to the accuracy that is relevant. Just
because data may be available to three
places atter the decimal point, if the crew
member can only atfect a change in the
datr to the nearest integer, that is the only
value necessary o display. The
nstgnificant” significant - figures only
clutter the screen.

o Although unitormity of numerical data
makes for @ symmetrically pleasing
displav. crew members prefer receiving
the exinct data as required.

o Critical data, for example range and
range rate inoour application, can he
cmphasized by displaying them in large
numbers on the graphic screen in - head-
up display tashion. Not only does this
permit the crew member to easily find
numeric data without changing the

ORIGINAL PagE ig
OF POOR QUALITY

graphic view, but allows other crew
members to monitor the vadues over the
shoulder of the prime user.

o Critical information that appears as a
demon or warning should require positive
confirmation by crew members using the
system.

o Displays should be stutfed with as much
information as possible to avoid changing
display screens. However, astronauts
should be able to declutter the screen
during certain operations of the display.

o Information displayed graphically on
the screen should be placed in multiple or

selectable frames ot reference.
Astronauts prefer that most graphic
displays be in shuttle coordinate
orientation. For proximity and docking,

all readouts should be tly-to” oriented.
This means that the goal ot the display
should be to put the target in the middie
of the crosshairs, or zero out all the
numerical data.

0 A conflict arises between generic
graphic displays, and mission specific
displays. Generic displays have the
advantage of providing ease of training.
standardization, and
software. Graphics that pertain to a single
mission requirements can provide a much
greater level of detail and specificity to the
graphics, and impart more information to
the crew member. In other words, there
are no absolutes for screen design in reat
space applications.

GRAPHICS APPLICATION: LASER
DOCKING SENSOR

The above considerations were incorporated into
the design of the graphic interface to the LDS.
The purpose of the LDS is to improve
measurement accuracy over the current docking
methods using the KU band radar, the Crew
Optical Alignment Sight (COAS) and external
telemetry. The system goal is to achieve soft
docking with a target. reduce docking tme
requirements, and conserve fuel while
maintaining safety.

reusability of

17

The [.DS measures range, azimuth, elevation,
roll. pitch, vaw and associated rates to a docking
target. To achieve accuracy over a dynamic
range. the LDS design calls for a complex
integration of several measurement
systems.including the Distance Measuring
Equipment subsystem, which is a laser radar with
multiple tones to measure the range and a
doppler to measure range rate and the Long
Ringe Bearing System (LRBS), consisting of an
illuminator and camera to capture a video image
of the target for determining bearing beyond 80
tfeet, Short Range Bearing System (SRBS) for
calculating bearing and attitude, and several optic
and microprocessor subsystems.

The EDS communicates with the PGSC via an
RS-232C link. It outputs fixed formatted data
packets at a 1HZ update rate. The PGSC can
send to the LDS the following mode commands:
STANDBY, SEARCH, BREAK TRACK, SELF
TEST, CALIBRATE, and SEND VIDEO.
Normally the LDS operates autonomously
without input from the PGSC. The LDS also
sends the data packet to the Payload Data
Intertace (PDI). The LDS connects to the aft
flight deck switch panel via panel discrete mode
selection imput.

PGSC DISPLAY DESCRIPTION

The PGSC runs MICROEXPERT's realtime
LDSA program. The LDSA has four main
functions:

o Communication with LDS

o Display of the LLDS data

o LS data analysis using expert systems
o Satellite target recognition.

The [.DSA MMI presents the 1LDS data in
graphical and tabular tform with critical data
enfarged. The relative position of the target is
presented from more than one perspective and
coordinate svstem. The menu enables user input.

The LDSA expert system checks the data for
validity, trends and dangerous situations. The
target recognition software validates the target
and caleultes its attitude.

MICROEXPERT designed two interfaces for
this system: one mission specitic, the other a
generic proximity operations display. Both

MMPI’s were designed around the knowledge
gained trom on site INterviews,
MICROEXPERT’s experience in complex
displays for tutoring, and general principals of
display and expert system design.

The mission specitic interface consists of several
full screen graphical views with scales and
numerical readouts. These windows are:

o The front view from the perspective of

the LDS (see Appendix A) displaying a
three dimensional wireframe model of the
target vehicle. The model s scaled.
transformed and oriented in roll, pitch and
yaw from the LDS measurement. The
model appears in real time as the satellite
would to a mission specialist observing it
through the COAS,

o The side view depicting the position of
the shuttle and the target vehicle from a
point on the azimuth axis.

o The readout screen, listing all the data,
sensor status and a history of the LDS
status and mode changes.

The generic interface (see Appendix A) consists
of one main display screen with six main
windows. In the graphics windows icons portray
the relative positions of the vehicles. The target
icon always includes a halo to indicate the
deadband. Scales to the side of the graphics
indicate the measurement, its rate, and direction
of change. The windows are:

o Side view indicating the Z and X
coordinates of the target in graphics and o
lineur scale.

o Top view graphing the target relative to
the shuttle in X and Y as seen trom above
the shuttle (-Z). The field of view of the
LDS is outlined by a dashed box.

0 Sensor data listing measured
parameters (range az., el., etc.) sent from
the LDS in a columnar readout. The
values are converted to the cartesin
coordinate system of the shutde and
displayed.

o P/L Relative displaying target attitude
values in columnar readouts with
corresponding rate values.

o LDS FOV plotting the target in the
LDS's field of view.

o Status and Warning indicating the mode
of the LDS and suggestions from the
expert system.

CONCLUSIONS

Designing animation graphic interfaces for space
applications creates considerations that may
impact the design of the intertace and disallow
the current state-of-the-art in color animation
graphics. In spite of this, graphic interfaces can
be applied to onboard, realtime software
applications with strongly positive results,

The 80386 processor in the PGSC is capable o
running a variety ot sophisticated programs that
could aid Orbiter crews. The terminate-and-stay-
resident display, interface software, and data
analysis — routines in the PGSC run
"simultaneously” by servicing interrupts to share
processor time. Displaying multiple 21D views, or
3D wiretrames can provide u graphical
representation, while omitting detail prohibited
on small machines.

On board graphic software for data
representation is relatively new to the Shuttle
program. Animated graphic representation o
data brings a more intuitive understanding of the
duta to crew members, and should be carried into
more onboard software systems. Integrating
crew member desires into the display design
creates an etficient. tatlored display that is will
provide graphics to better aid the crew. Because
different players have ditterent needs and display
interests, graphics standards should be created
tor the PGSC and adapted for all payload
support software. This will improve and reduce
the cost of display design, increase acceptability,
and enhance training.

ACKNOWLEDGEMENTS

Our thanks to Silvio Nunes, Jane Chang and
Dave Stevens for their programming support.

ORIGINAL PAGE IS
OF POOR QUALITY

118

ORIGINAL PAZE 72
Appendix A LDSA Display Screens OF POOR QU.&L“’Y

MET:000:00:38.5 LASER DOCKING SENSOR FRO%“I;T%IDJ

CCA Mission Specific Display

M LDPS ASSOCIATE MET 1/61:23:55
WW m P Ly

[T T N N U G U N G T S W R VOt N S Y v Ll s bt
I 350 1o 1500 2000 e=oql.- ! t
500
- +1
o
i A
A 28N
¥ -
— '.l
. E£-1
-50Q1
Rrd E
a .82 | azd -.22
.
El -.86 Eld 2.30 R36.2 Rd .3 4 TARGET APPROACHING
4
P 18.2 Pd NEG FOU ELEVATION
X 130 |[Xd 2.53 ¥-5.3 vd -.2
Y 123 |(va .s2 m.
Z 1804 (24 .98 ¢

EGA Cenerix Proximity Operations Display

119

N90-20668

OPERATIONAL COMPUTER GRAPHICS
IN THE
FLIGHT DYNAMICS ENVIRONMENT

James F. Jeletic

NASA/ Goddard Space Flight Center
Flight Dynamics Division
Code 552.2
Greenbelt, MD 20771

ABSTRACT

Over the past five years, the Flight Dynamics
Division of the National Aeronautics and Space
Administration's (NASA’s) Goddard Space Flight

Center has incorporated computer graphics tech-
nology into its operational environment. In an at-
tempt to increase the effectiveness and productivity
of the Division, computer graphics software systems
have been developed that display spacecraft track-
ing and telemetry data in 2-d and 3-d graphic for-
mats that are more comprehensible than the alpha-
numeric tables of the past. These systems vary in
functionality from real-time mission monitoring
systems, to mission planning utilities, to system de-
velopment tools. This paper discusses the capabili-
ties and architecture of these systems.

1. INTRODUCTION

Since the mid 1960s, Flight Dynamics Division per-
sonnel have been performing spacecraft orbit and
attitude determination and a variety of mission
planning, monitoring and analysis functions. These
functions have often been based on the analysis of
large volumes of numerical data. These data repre-
sent a wide variety and range of geometric values,
some as easily interpretable as the position of the
sun in a sun sensor’s field-of-view, others as ab-
stract as spacecraft attitude expressed in quater-
nions.

In the past, operators and analysts have been pre-
sented these data values via monochrome screens of
alphanumeric tables. Today these displays are now
2.d and 3-d color graphic representations of the
data. In an ongoing effort to increase the efficien-
cy and effectiveness of this working environment,
the Flight Dynamics Division has invested in an en-
deavor to utilize computer graphics technology as a
means to present flight dynamics data in a more
comprehensible format.

This paper discusses how graphics technology has
been applied to the flight dynamics environment.
Presented in detail are graphics software systems
that are currently in use in the Flight Dynamics
Operations Area. These systems have been separated
into three distinct categories. The first, real-time

PRECEDING PAGE BLANI NOT FILMED

121

mission monitoring systems, encompasses distribut-
ed processing software that receives and graphical-
ly displays real-time spacecraft telemetry data.
These systems are used for ensuring the health
and safety of a spacecraft and verifying the quality
of cxperiment data. The second category, non-real-
time planning tools, includes passive standalone
software systems that are used for various mission
planning and analysis activities. The final catego-
ry, system development tools, contains high level
subroutine packages used by Division programmers
to create frequently incorporated graphical displays
in a cost effective manner.

2. MISSION MONITORING SYSTEMS

The Flight Dynamics operations personnel are often
required to interpret tracking and telemetry data as
it is received on the ground. The interpretation of
the data is necessary to ensure the integrity of ex-
periment data, verify attitude maneuvers, and mon-
itor the health and safety of a spacecraft. Computer
graphics systems have been applied to four specific
applications to assist analysts with this interpreta-
tion process. These applications are further dis-
cussed in this section.

2.1 TCOPS WORLD MAP
2.1.1 BACKGROUND

One of the most common real-time analysis problems
faced by Flight Dynamics operation personnel is the
determination of a spacecraft’s position above the
earth and whether that location is within communi-
cation range of ground or satellite-based antenna.
To help visualize this problem, a world map display
was incorporated into the Trajectory Computations
and Orbital Products System (TCOPS), the Flight
Dynamics Division’s institutional orbit determina-
tion system.

2.1.2 CAPABILITIES
The underlying principal for the world map display
is to generate a 2-d Cartesian projection of the earth

then overlay orbit tracks of various spacecraft onto
this projection. The orbit tracks are propagated and

tas,_[L0 INIENTIONALLY. BLAN

S

=32 97/

the current location of the spacecraft is updated as
real-time position data is predicted analytically.
Communication zoncs are drawn as a set of contours
that take into account any interference that may be
due to obstacles blocking either ground or space-
based antenna. These obstacles are both tangible
{¢.g., mountains or buildings) and abstract (e.g., at-
mospheric interference). The world map display
also includes electromagnetic radiation contours, a
sunrise/sunset terminator line and sun icon. The
system also predicts shadow constraints and possible
communication obstruction due to solar
interference (see Figure 1) [4].

2.1.3 ARCHITECTURE

The TCOPS world map incorporates a distributed pro-
cessing approach (see Figure 2). Spacecraft orbit
vectors are retricved from spacecraft ephemeris
files by a FORTRAN program (WMDRYV) which is exe-
cuted on a National Advanced Systems (NAS) 8063
mainframe computer under the MVS operating
system. The orbit vectors are then transmitted over
a bisynchronous 9600 baud communications line to
an IBM PC/AT compatible workstation.

TCOPS WORLD MAP ARCHITECTURE

spacecrafl
telemetry N/iSf_Qi
‘ & TCOPS f spacecraft | PC/AT
T position ‘
v daa ol IAMA]
e Y |
. ephem :
- \‘\ M
+ \\ LWMAP ‘|
| |
WMDRV |~ T~ -
{ 1
Figure 2.

The PC is configured with a Digital Communications
Associates (DCA) IRMA communications board and
an AT! Technologies, Inc. Enhanced Graphics
Adapter (EGA) Wonder board (resolution of 640 X 350
pixels). This specific version of the EGA board is
compatible with the closed circuit television (CCTV)
system at the Goddard Space Flight Center, allowing
the image to be (ransmitted to multiple control
centers. A FORTRAN program (WMAP) on the PC, ex-
ccuted under DOS, then generates and continually
updates the world map display using an orbit propa-
gator to predict the location of the spacecraft [4].
All text and graphics are produced using the Media
Cybernetics, Inc. HALO graphics package.

2.2 3-D MON

2.2.1 BACKGROUND

In contrast to the simplicity of the world map system
and its related analytical support is the problem of
verifying, in real-time, such items as: relative posi-
tion and orientation of a spacecraft (and its append-

122

ages) Lo celestial bodies; objects and targets along an
instrument's boresight; and solar lighting
constraints.

To alleviate the time consuming and difficult task of
determining such alignments by examining num-
bers, the Flight Dynamics/Space Transportation
System 3-D Monitoring System (3-D Mon) was devel-
oped to display real-time spacecraft data with some
degree of photographic realism. 3-D Mon presents
a 3-d model representation of the Space Shuttle, its
payloads and surrounding environment using near
real-time Shuttle telemetry (received every two to
five seconds) 1o compute the orbit and attitude of the
models [8]. The system can also accept other satellite
telemetry strecams for spacecraft other than the
Shuttle.

2.2.2 CAPABILITIES

The primary capability of the 3-D Mon system is to
generate realistic 3-d images of the Shuttle, the
Remote Manipulator System (RMS), and the Shuttle’s
payloads based on Shuttle telemetry data. These
objects are shown at their relative sizes,
orientations, and positions. All of these objects can
be displayed as solid, flat shaded objects, with
shading based on light sources located at the sun
and/or viewpaoint. The viewpoint light source
prevents objects from appearing as sithouettes
when the sun and viewpoint are positioned on
opposite sides of the model. The objects also can be
depicted in a wircframe representation if system
performance needs 1o be increased or if a
transparent object provides an improved analytical
view [2]. The capability for Gouraud shading is
currently being incorporated.

The next capability of 3-D Mon is to merge these
spacecraft images with accurate representations of
the surrounding environment. The earth is
displayed in its accurately scaled size and position
and is rotated appropriately. Land masses can be
displayed as filled or outlined, with or without
day/night shading. Interference zone contours and
longitude/latitude lines also can be overlaid onto the
earth’s surface. Images of the celestial bodies (sun,
moon, Mars, etc.) and other celestial objects
(galaxies, quasars, elc.) are represented as 2-d icons
or alphanumeric characters, respectively, at their
rclative positions. Celestial body positions are based
on ephemeris files that precisely predict their
location. The sun and moon icons also are displayed
in their properly scaled size, with lunar phases (full
moon, crescent moon, etc.) displayed upon request.
Stars are rendcred as groups of pixels whose sizes
are varied proportionally to the brightness of the
star. Vectors may be added that represent the
direction of the sun, earth, targets, spacecrafl
velocity, etc. to provide a relative indication of
motion with respect to the universe [2]. Figures 3
and 4 are images generated by the 3-D Mon system
that merge both spacecraft and environmental data.

Interactive capabilities for analysts are also provid-
ed by the 3-D Mon system. An analyst can toggle
any of the aforementioned system configurations,
whether for system performance or analytical
considerations. The analyst can specify the current

ORIGINAL PAGE IS
OF POOR QUALITY

view in a variety of ways, which include predefined
views (RMS wrist camera view, rear Shuttle cockpit
window view, communications satellite view, etc.) or
a user-specified view where the user can select the
viewpoint and point of interest. Analytical infor-
mation is provided to the operator for any object
selected interactively. Playback modes are provided
for analysts to review previous scenarios in either a
slow motion or frame-by-frame (data record-by-data
record) mode [6].

2.2.3 ARCHITECTURE

To achieve the required image update rates, several
key design concepts were incorporated in both
hardware and software. The 3-D Mon system is a
distributed processing system that consists of a
FORTRAN program executed on a NAS 8063 computer
under the MVS operating system and a set of C
programs executed on a Silicon Graphics IRIS 4D/60
Turbo workstation under the UNIX System V
operating system. (See Figure 5.) The mainframe
program - the Data Acquisition and Transmission
(DAT) program - acquires the spacecraft telemetry
and environmental data and strips out or processes
key parameters necessary to generate the graphics
displays. The program then transmits these
parameters to the IRIS workstation over an
asynchronous 2400 baud line. The IRIS software
receives the data from the mainframe computer and

then generates the display using calls to IRIS
Graphics Library routines. User interaction is
conducted with either a mouse to control pop-up

menus or a dial box to facilitate zooming, panning,
rotating and trucking of the images [2].

3-D MON ARCHITECTURE

raf
f&?n?guy[NAS 8063
——

DAT

spacecraft updates,
environmental updates

IRIS 4D/60T
DRI

Coow | [w][]

Figure §.

The IRIS-resident software consists of three major
subtasks that execute as concurrent UNIX processes -
communications (COM), user interface (UI) and dis-
play generation (DG). These tasks are monitored by
a parent task (DRI) and communicate with each
other via UNIX pipes. The multitasking approach
allows data receipt and display updating to occur
simultaneously. This approach also allows the
screen to be updated while a user interactively
selects system options on a set of pop-up menus [2].

123

A simple 2-d version of 3-D Mon also exists at the
Goddard Space Flight Center and is referred to as the
2-D Graphics Monitoring System (2DGMS). Modeled
after another similar 2-d system in use at the
Johnson Space Center, 2DGMS provides three pre-
defined views along the Shuttle’s x, y and z axes.
This system has an architecture similar to the TCOPS
world map system (residing on a PC/AT) and is exe-
cuted simultaneously with 3-D Mon to provide addi-
tional visual support if needed.

2.3 PAYLOADS MM
2.3.1 BACKGROUND

Under NASA's Shuttle-Attached Payloads Program,
government organizations and educational
institutions can place scientific experiments in the
cargo bay of the Space Shuttle [10]. Associated with
these experiments are several constraints affecting
the safety of the instrument and also the integrity
of the data collected. Examples of such constraints
are: no oxygen molecules can impact an instrument
to avoid damage to its crystal lining; no data can be
collected while the earth is occulting an instru-
ment's field of view to avoid erroneous data values;
and no ultraviolet light can enter an instrument’s
field of view to avoid damage to spectrometers [9].
The problem of monitoring all of these constraints
simultaneously in real-time prompted the need for
the Attached-Shuttle Payloads Mission Monitoring
System (PAYLOADS MM).

2.3.2 CAPABILITIES

The PAYLOADS MM system generates six types of 2-d
displays that depict the instrument environment.
These displays are used to determine which objects,
either real (sun, moon, etc.) or abstract (radiation
regions, Shuttle velocity vector, etc.), are within the
field of view of the instrument or are causing
interference between an antenna and a
communications satellite. Unlike the previously
mentioned 3-D Mon system, photographic realism
does not make a significant contribution to the
analysis of such constraints, therefore 2-d rather
than 3-d images are sufficient. Figures 6 and 7
present two types of displays generated by the
PAYLOADS MM system.

Similar to the functionality of the 3-D Mon system,
orbit and attitude of the Shuttle model are derived
from near real-time Shuttle telemetry data.
Additional payload telemetry streams are also
captured and used for detailed information about the
configuration of the instrument. The telemetry data
are normally received at time intervals varying
from two to 30 seconds {9]. Environmental data are
retrieved from ephemeris files or computed by
highly accurate analytical routines on an as needed
basis.

The six types of displays can be cycled through, and
simultaneously updated on up to six graphics
devices. This capability allows all six displays to be
viewed concurrently or one display to be configured
in multiple ways. The dwell time for each display
can be modified interactively or the display can be

suppressed entirely from the cycle. Other
interactive capabilities include: the selection of an
object to obtain additional information on that ob-
ject; the selection of multiple objects for
computation of angular separation; and the ability
to zoom in on the image based on a user-defined
outline.

2.3.3 ARCHITECTURE

The first design of the PAYLOADS MM system, a
mainframe based design, encountered serious per-
formance problems due to the number of graphics
devices used and the large amount of graphics pro-
cessing needed for each device. To eliminate the
performance problems, a distributed processing
approach similar to the 3-D Mon and TCOPS systems
was used (see Figure 8). Spacecraft and payload
telemetry data are retrieved and processed by a
FORTRAN computations program (COMP) executing
on the NAS mainframe computer. Parameters
necessary to generate the displays are then
computed and written in real-time to an interface
dataset (IDS). These parameters are then accessed
by a communications program (COM) that transmits
the data to an IBM PC/AT compatible workstation
(configured with IRMA and EGA boards) using the
same communications protocol incorporated in the
TCOPS system. Up to eight sets of communications
programs with corresponding PC workstations can

be operating simultaneously (see [1]). Three
FORTRAN subsystem programs reside on the
workstations and are executed under the DOS
operating system. The three programs -
Initialization (INIT), User Interface (UI), and
Display Manager (DM) - were designed as three

separate exccutables to avoid memory limitations [7].

PAYLOADS MM ARCHITECTURE

spacecraft

N NAS 8063

i»@

COMP

oo | | oom | | oom |
ironmental dta | r c
pc/at || PesaT PC/AT
IEBINEEIED
Figure 8.

The UI subsystem is first executed to allow users to
initialize colors, image dwell times, etc. Next, the
INIT subsystem is executed to graphically generate
display skeletons that contain static textual and
graphic information such as borders, coordinate
grids and text legends. The display skeletons are

124

saved to a Random Access Memory (RAM) drive for
fast retrieval/access times. The DM subsystem is
then invoked to process the most current data
record sent from the mainframe and to control the
generation of all displays. When a display is to be
refreshed, the DM reads in the specific display
skeleton and generates all the dynamic graphics
and text onto the skeleton. The image is then
displayed via a double buffering algorithm to
provide an animation effect [7]. All graphics and
text displays are generated wusing the Media
Cybernetics, Inc. HALO graphics package. All user
interface screens are developed using the West
Chester Group Screen Generator Package.

this alternative architecture
usage of the system is now
possible. Users who do not have access to a
bisynchronous communications line directly
connected to the NAS computer can run the DCA

result of
approach, remote

As a

IRMA Remote software emulator package. This
package emulates the IRMA hardware and
communications protocol and converts the

transmission to asynchronous messages that can be
transmitted or received over a normal telephone
line via HAYES V-series Smartmodem 9600 modems.

2.4 HUD
2.4.1 BACKGROUND

The Attitude Heads-Up Display (HUD) is a near real-
time system that varies from those systems men-
tioned previously in this paper. Instead of using
spacecraft data to produce images of the spacecraft
in its surrounding environment, HUD attempts to
allow analysts to see the spacecraft and its environ-
ment from the spacecraft navigator’s perspective.
This perspective decreases the difficulty of deter-
mining how a spacecraft is moving, what objects
sensors are viewing and how the spacecraft’s hard-
ware is reacting during a maneuver. For example,
data received from a sensor that is scanning the
celestial sky are displayed in a window that corre-
sponds to that sensor’s field of view. Data received
from an actuator are displayed in a format that
indicates the level at which the actuator is
operating and how safely it is functioning.

2.4.2 CAPABILITIES

The HUD system displays one graphics image that is
updated every time a spacecraft telemetry record is
received. Depending upon the spacecraft and its
complement of sensors and actuators, the updates
can be received as often as 1/8th of a second to
every 10 seconds. The graphics image is configured
similarly to the dashboard or heads-up display
generated by aircraft flight simulators. (See Figure
9.)

Sensors that track solar system objects (sun sensors)
and stars (fixed head star trackers) are shown as
windows that display the object as it is viewed by the
spacecraft in its appropriate location. Analysts can
then see if the star trackers are locking in on a star.
Thrusters are displayed as a series of lights aligned
in the same configuration as they exist on the

spacecraft. The lights are "turned on" when the
thrusters are being fired. Sensors and actuators
whose excessive operation can be hazardous to the
spacecraft’s health are displayed as various bars and
potentiometers. The colors of the bars change as
their operation reaches or exceeds safety levels.
The color green indicates a safe level of operation;
yellow indicates a warning that the level of
operation is approaching the safety limit; and red
indicates an unsafe level of operation. An attitude
directional indicator, similar to those found in
airplanes, shows the orientation of the spacecraft
with respect to an inertially fixed coordinate system.

2.4.3 ARCHITECTURE

The HUD system is currently in a prototype phase.
Eventually a distributed processing architecture
similar to that used in the PAYLOADS MM system will
be incorporated into the HUD system. To date, only
the PC graphics program has been developed.

3. MISSION PLANNING TOOLS

Flight Dynamics Division analysts are responsible
for determining various mission constraints and
timelines as part of their premission planning ac-
tivities. Often, this planning requires the study of
environment and spacecraft parameters over a
given period of time. In the past, this information
has been generated in tabular form as records that
are time incremented and contain the data as a se-
ries of numbers and flags. Although these data are
highly accurate, the presentation format makes
quick analysis of trends and time-oriented parame-
ters difficult. To assist with these types of mission
planning activities, two computer graphics applica-
tions have been developed and are described below.

3.1 MPGT
3.1.1 BACKGROUND

Prior to the launch of a satellite or a Shuttle- at-
tached payload, the Flight Dynamics Division per-
forms several analytical studies that are used to opti-
mize the data collection time for a mission. These
studies compute numerical values that contain such
statistics as: the amount of Tracking Data and Relay
Satellite System (TDRSS) contact time per orbit; the
number of orbits per day that pass through a given
radiation region; and the percentage of time in sun-
light of a given orbit. As a utility to assist analysts
with quick analysis of such details, the Mission
Planning Graphical Tool (MPGT) was developed.
MPGT also provides analysts with a means to produce
a graphical picture of the overall spacecraft envi-
ronment. From this information alternate orbit se-
lections that may better fulfill the mission objec-
tives can be more easily chosen for further investi-
gation.

3.1.2 CAPABILITIES
MPGT produces 2-d and 3-d plots of the earth with

spacecraft and environmental data presented as
overlays. These overlays include: spacecraft orbit

125

tracks, ground station antenna masks, TDRSS com-
munication contours, interference zone contours,
earth and spacecraft sunrise/set terminator lines,
solar and lunar ephemeris, a star chart, and an
ecliptic coordinate grid. Figures 10 and 11 are imag-
es generated by the MPGT system.

All overlays are designed to be mission generic. For
instance, communication zone contours and space-
craft terminators are generated analytically depen-
dent upon the altitude of the spacecraft.
Interference zone contours are specified through
text-edited data files that can be altered to reflect
mission specific electromagnetic contamination re-
gions. Up to six separate spacecraft orbit tracks can
be specified via Keplerian or Cartesian state vectors.
Time-oriented overlays (orbit tracks, sun termina-
tors, etc.) are based on an interactively defined
Greenwich Mean Time that is of specific importance
to a given mission.

3.1.3 ARCHITECTURE

The system was designed as a standalone system for
an 1BM PC compatible workstation executing DOS.
All graphics images are produced using the HALO
device independent graphics package, eliminating
graphics adapter hardware requirements.

3.2 SATVIEW
3.2.1 BACKGROUND

One of the Division’s attitude responsibilities in-
volves the planning of attitude maneuvers to
achieve scientific instrument pointing objectives.
Some spacecraft require several attitude constrainis
to be satisfied simultaneously. These may include
instrument target availability, thermal restrictions
and power requirements. As an aid to determine if
such constraints will be satisfied, the Satellite
Viewing system (SATVIEW) was developed as both an
attitude maneuver planning aid and a quality assur-
ance tool.

3.2.2 CAPABILITIES

Many of the SATVIEW system capabilities are similar
to those found in the 3-D Mon system. Images of the
ecarth, stars, moon, sun and other targets are gener-
ated in 3-d while the orientation of the spacecraft
model is driven from attitude data that has been pre-
viously generated. The attitude and environmental
data are provided to the system in greater than real-
time. This allows a 90 minute maneuver to be viewed
in several seconds. The user views this scenario
from any of the spacecraft instrument or sensor
field of views.

A second display mode of SATVIEW allows the user to
look at the universe from outside the celestial
sphere. The celestial sky is drawn as a sphere cen-
tered around the spacecraft coordinate system axes.
The sun, moon, stars, and the earth’s outline are
drawn on the sphere while the spacecraft is repre-
sented by x, y, and z spacecraft body coordinate axes.
Sensor and instrument field of view outlines are
drawn on the sphere while attitude and environ-

ORIGINAL PAGE IS
OF POOR QUALITY

mental data are again provided in greater than real-
time. The user can interactively alter the viewpoint
to see the unfolding scenario anywhere outside the
sphere. Figure 12 is a celestial sphere image gener-
ated by SATVIEW.

An additional feature of SATVIEW is interactive mod-
ification of the spacecraft attitude. The user can ad-
just the spacecraft axes such that a particular mis-
sion constraint or set of constraints are satisfied.
The required attitude numbers are then returned to
the user.

3.2.3 ARCHITECTURE

SATVIEW is a standalone system residing on an
Silicon Graphics IRIS 4D/60T graphics workstation.
All graphics images are produced by calls to the
IRIS Graphics Library routines. Attitude data are
produced by software on a NAS 8063 computer and
downlioaded to the IRIS workstation.

4. SOFTWARE DEVELOPMENT TOOLS

Due to the variance in capabilities, data formats, and
dynamics between spacecraft, the Flight Dynamics
Division is responsible for generating dynamic
simulators, telemetry simulators, attitude ground
support systems, and various mission planning tools
that are specific to a given spacecraft. Since many
of the displays incorporated into these systems vary
from mission to mission only slightly in layout, but
not in capability, software development tools have
been created to increase programmer productivity.
These tools are discussed in this section.

4.1 VEGAS
4.1.1 BACKGROUND

Of the numerical output generated by flight dynam-
ics software systems, a large quantity is presented
as displays of interactive alphanumeric tables or in-
teractive X-Y plots. Some systems also display the
output on world map plots. To reduce the resources
required to reproduce source code that generates
such complex display capabilities for each system,
the Visual Environment for Graphics-oriented
Analysis Systems (VEGAS) was developed. VEGAS
consists of independent high level subroutine pack-
ages that produce x-y plots, text displays, and world
maps (see [S]).

4.1.2 CAPABILITIES

The VEGAS X-Y Plot package provides capabilities for
data to be displayed as scatter or line plots with
Greenwich Mean Time axis label formats. An inter-
active environment is included that permits data
modification, point flagging, curve fitting, zooming,
panning and other orientation options. Curves can
also be updated in real-time if desired [3]. These ca-
pabilities are invoked through high level FORTRAN
subroutines.

The VEGAS Text Display package allows alphanumer-
ic data to be displayed with different color and video

126

attributes. User input is verified for type compati-
bility and range constraints [{3]. Screen layouts are
defined through text-edited template files. These
files give an application programmer the ability to
change the screen format without relinking the ap-

plication.

The VEGAS World Map package was previously de-
veloped by another organization at GSFC. This pack-
age produces thirty world map continent projec-
tions and is invoked through a single FORTRAN sub-
routine. Routines are also provided for plotting con-
tours on top of the projections.

4.1.3 ARCHITECTURE

Both the X-Y plot and World Map packages are built
on top of the Template Graphics Software, Inc. ma-
chine and device independent graphics subroutine
package TEMPLATE. This design allows these pack-
ages, and application software incorporating these
packages to reside on the Division’s IBM 4341 and
DEC VAX computers. This design also allows displays
produced by these packages to be generated on IBM
5080 and Tektronix 4100 series terminals.

Since TEMPLATE does not easily provide the charac-
ter string capabilities needed for alphanumeric dis-
plays, the Text Display package was built on top of
the IBM Graphics Access Method (GAM) package for
IBM mainframe applications and on top of the DEC
Screen Management Facility for VAX applications.
The IBM version of the package supports the IBM
5080, 3250, and 3278 terminals. The DEC version sup-
ports VT series compatible terminals.

5. SUMMARY

The Flight Dynamics Division of Goddard Space
Flight Center has committed itself to the use of com-
puter graphics as an effective and efficient tool for
comprehending mission related data. This commit-
ment has only been accepted after various systems
have proven their worth in the flight dynamics en-
vironment. From this commitment numerous
graphics-oriented systems discussed in this paper
were developed and have been or are currently
being validated for operational use while more sys-
tems are being planned. And, as more graphics sys-
tems are created, more graphics development tools
will be created, similar to those discussed in this
paper, to reduce software development costs.

ACKNOWLEDGEMENTS

1 would like to thank Kelly Franks, Randy Frisch,
Greg Marr, Greg Shirah, David Weidow and other
members of the NASA Goddard Space Flight Center
and Dale Fink, Gary Hunt, Michelle Langrehr, and
Ernie Pittarelli of the Computer Sciences
Corporation for generating some of the figures used
in this paper and also providing technical support.

REFERENCES

1. Brown, C., Franks, K., Bugenhagen, J., Mucci, D.,
Shirah, G., Weidow, D., “Attached Shuttle Payloads
Broad Band X-ray Telescope Detailed Design
Document,” CSC/SD-88/6125, Computer Sciences
Corporation, Greenbelt, Maryland, October 1988.

2. Chang, K., Garrahan, J., Langrehr, M., Pittarelli,
E., and Tamkin, G., “Flight Dynamics/Space
Transportation System 3-D Monitor System Release 2
System Description,” CSC/SD-88/6066, Computer
Sciences Corporation, Greenbelt, Maryland, August
1988.

3. Green, D., Pittarelli, E., Hendrick, R., Campos, M.,
Buhler, M., Durbeck, R., Jeletic, J., Shoan, W.,
“Programmer's Guide to the VEGAS Graphics
Utilities,” CSC/$SD-87/6018, Computer Sciences
Corporation, Greenbelt, Maryland, December 1987.

4. Hardie, B., “System Description for the Trajectory
Computation and Orbital Products System (TCOPS)
User Interface,” CSC/SD-88/6070, Computer
Sciences Corporation, Greenbelt, Maryland, July
1988.

5. Jeletic, J., Shoan, W., “Flight Dynamics Graphics
for the Space Station Era.,” TEMPLATE User's
Network Conference, Arlington, Virginia, March
1987.

6. Langrehr, M., Buchanan, L., Chang, K., Garrahan,
J., Pittarelli, E., and Tamkin, G., “Flight
Dynamics/Space Transportation System 3-D Monitor
System Release 2 User’s Guide,” CSC/SD-88/6006,
Computer Sciences Corporation, Greenbelt,
Maryland, June 1988.

7. Shirah, G., “Solving a Real-Time Performance
Problem of the Attached Shuttle Payloads Mission
Monitoring System Through Prototyping,”
NASA/Goddard Space Flight Center, 552.2, Greenbelt,
Maryland, December 1988.

8. Wallace, R., and Buchanan, L., “SPIF/FDF
Interface Graphics Support System Requirements
and Specifications,” CSC/TR-85/6702, Computer
Sciences Corporation, Greenbelt, Maryland, June
1985.

9. Weidow, D., “The Shuttle-Attached Payloads
Operational Support System,” NASA/Goddard Space
Flight Center, 552.2, Greenbelt, Maryland, December
1986.

10. Wetmore, R., Anderson, C., and Coon, G.,
“Shuttle-Attached Payloads Operational System
Requirements and Functional Specifications,”
CSC/TR-85/6001, Computer Sciences Corporation,
Greenbelt, Maryland, May 1985.

BRIGRIAL PAGE 1S
OF POOR GUAL iy

127

Figure 1. A Trajectory Computations and Orbital
Products System world map plot displaying coverage
of the Earth Radiation Budget Satellite (ERBS).

Figure 3. The deployment of the Hubble Space
Telescope as displayed by the 3-D Mon system.

Figure 4. The deployment of a Tracking Data and
Relay Satellite as displayed by the 3-D Mon system.
The top right viewport displays a view from the rear
cockpit window. The earth and sun position vectors
and the Shuttle velocity vector are also displayed.

RIGINAL PAGE 1S
gF POOR QUALITY

Figure 6. The PAYLOADS MM Celestial Sphere dis-
play illustrating the view along the Shuttle’s -z axis
including the position of the earth, the earth’s at-
mosphere, celestial objects, and instrument field of
view outline [1].

L% a6 at
this tine for
o

BN e S

Figure 7. The PAYLOADS MM TDRS display illus-
trating the view along the Shuttle's -z axis includ-
ing antenna masks and past, current and future po-
sitions of a TDRS [1].

NG STTITUSK REANS UF BISFLAT
‘ Frus

TIME TAG
1212

Ll

Figure 9. The Attitude Heads-Up display config-
ured for the Gamma Ray Observatory satellite.

COT = 1896: 4: 3:11:34:38.728

Figure 10. A 2-d world map plot produced by the
Mission Planning Graphical Tool configured for
orbit studies of the Hubble Space Telescope.

~Hubble S

Figure 11. A 3-d earth plot produced by the
Mission Planning Graphical Tool configured for
clectromagnetic interference studies of the Hubble
Space Telescope.

Figure 12. An interactive celestial sphere display
produced by the SATVIEW utility.

128

| B -l
NOO-20669 52502

OMV MISSION SIMULATOR

Keith E.

TRW Defense Systems Group,

Cok
R11/2850

One Space Park
Redondo Beach, CA 90278
(213)812-2530

ABSTRACT

The Orbital Maneuvering Vehicle (OMV) will
be remotely piloted during rendezvous,
docking, or proximity operations with
target spacecraft from a ground control
console (GCC). This paper describes the
real-time mission simulator and graphics
being used to design a console pilot-
machine interface.

A real-time orbital dynamics simulator
drives the visual displays. The dynamics
simulator includes a J2 oblate earth grav-
ity model and a generalized 1962 rotating
atmospheric and drag model. The simulator
also provides a variable-length communica-
tion delay to represent use of the Track-
ing and Data Relay Satellite System
(TDRSS) and NASA Communications (NASCOM).

Input parameter files determine the graph-
ics displays. This feature allows rapid
prototyping since displays can be easily
modified from pilot recommendations. Dif-
ferent subsets of OMV telemetry data can
be shown to determine the information
necessary for pilot operations.

A series of pilot reviews are being held
to determine an effective pilot-machine
interface. Pilots fly missions with
nominal to 3-sigma dispersions in trans-
lational or rotational axes. Console
dimensions, switch type and layout, hand
controllers, and graphic interfaces are
evaluated by the pilots and the GCC simu-
lator is modified for subsequent runs.
Initial results indicate a pilot prefer-
ence for analog versus digital displays
and for two 3-degree-of-freedom hand
controllers.

INTRODUCTION

The OMV is designed as a reusable unmanned
spacecraft. Initially deployed from the
space shuttle, it is capable of staying in
orbit for months while receiving periodic
on-orbit maintenance and refueling. The

129

OMV is used to deliver, retrieve, reboost,
or maneuver satellites between the shuttle
or space station and a specific orbit.

The OMV flies autonomously to within 1000
feet of a target spacecraft. A pilot then
remotely controls the OMV in rendezvous,
docking, or proximity operations. The OMV
will be operated by NASA personnel from a
ground control console (GCC) located at
the Johnson Space Center.

The GCC sends pilot commands to the OMV
via NASA Communications (NASCOM) and two
Tracking and Data Relay Satellites (TDRS).
The OMV downlink transmissions consist of
telemetry and two video camera transmis-
sions. The communications link can trans-
mit up to 32 kilobits/second of telemetry
and 1 megabit/second of compressed video
signal. The communications link has an
approximate 3-second round-trip delay
time.

The OMV docks with the target spacecraft
using either the remote manipulator system
(RMS) grapple docking mechanism (RGDM) or
a three-point docking mechanism (TPDM) for
those spacecraft that have a flight sup-
port system (FSS) interface.

The OMV prime contractor, under NASA
Marshall Space Flight Center, is TRW.
The OMV is scheduled for deployment in
November 1993. 1Its potential first mis-
sion is in conjunction with the Waves in
Space Plasma (WISP) project.

OMV flight operations will be conducted
from either of two identical GCCs. A GCC
provides pilot control of the OMV during
all flight operation phases. Each GCC
consists of switches, hand controllers,
two terminals and keyboards, data proces-
sing equipment, and two monitors display-
ing informaticn from the on-board docking
and pan/tilt/zoom (PTZ) video cameras.
The pilot manipulates hand controllers for
OMV maneuvers and utilizes switches for
OMV or console commands.

The GCC must provide a pilot-machine
interface that gives adequate information
to avoid information overload, and mini-
mizes pilot errors. TRW was given the
task of building a prototype GCC (PGCC) to
simulate man-in-the-loop, real-time remote
OMV teleoperations. The PGCC is the tool
used to establish the console pilot-
machine interface.

SIMULATOR OVERVIEW
Simulator Models

The PGCC was developed as a representative
operational pilot station used for pre-
liminary design evaluations and crew
reviews. The OMV program concluded that
to evaluate a pilot-machine interface
fully, it was necessary to simulate a
dynamic docking environment which inte-
grates flight telemetry with hand-eye
coordination. Space environment and OMV
models are included in the simulation.

The simulator dynamically models the space
environment. The environment models
include a J2 oblate earth gravity model
and a generalized 1962 rotating atmos-
pheric density and velocity model. A drag
model is based on a cylindrical approxima-
tion for the OMV and target bodies.

Each body is characterized by 6-degree-of-
freedom (DOF) equations of motion includ-
ing effects of position, velocity, atti-
tude, translational and rotational rates,
moments of inertia, centers of mass, and
gravity gradient torques. Each target
satellite is in free drift and has no
control system. Only the OMV has thrus-
ters and a flight control system.

Mission date and time parameters position
the sun, moon, and earth in the simulator
reference frame. Other mission parameters
determine orbit position and velocities.
Positions of the OMV during the simulation
determine sun occlusion, camera sun intru-
sion, and communication zones of exclu-
sion. They also affect lighting condi-
tions and shading. Without these real-
world conditions, valid data cannot be
taken.

The simulator models several OMV subsys-
tems. These include the fuel system,
radar, and two video cameras. For exam-
ple, the pilot may select either a hydra-
zine or GNj thruster system during flight.
Each alternative has its own fuel tanks
and rates of consumption. The hydrazine
tanks are manifolded while the GNj tanks
are independent.

Each fuel system has its own set of
thrusters. Input parameter files
determine the location, force vector,
impulse moment of each thruster. A
particular thruster is rendered useless
when the fuel tank feeding that thruster

and

130

is empty. Deviation in thruster force is
modeled by varying the force vectors in a
parameter file. Simulator logic is used
to model the less efficient first few
microseconds of burn. A thruster pulse
size, initialized by an input parameter,
determines the minimum burn allowed.
Individual thrusters can be failed on or
off. If a thruster is failed off, no
force or fuel is spent. However, if a
thruster fails on, fuel will be burned and
corresponding impulse moments will occur.

Pilots maneuver the OMV by commanding
thruster burns in one or more axes. The
simulated on-board computer receives the
axis thrust commands and uses a jet select
table to compute thruster burn times. The
simulator provides two jet select tables.
The real OMV utilizes identical jet select
information which is uplinked to the
vehicle during preflight checkout.

The simulator also models the OMV radar
subsystem. A pointing vector from the
radar mount to the target is computed.
This vector takes into account the OMV
position, gimbal limits, and radar field
of view. The simulator computes the
azimuth, elevation, azimuth rate, and
elevation rate from the pointing vector.
The radar also models the radar-to-target
surface range and range rate. Radar noise
and bias are introduced into the range and
range rate data for greater realism. The
models also provide maximum and minimum
radar cutoff points at selectable
distances.

The simulator models the docking (bore-
sight) and PTZ cameras. They both produce
black and white video. The pilot operates
either a joystick or switches on the PGCC
console to tilt, pan, or zoom the PTZ
camera to a commanded position with
corresponding slew rates.

Each camera has a 30-degree half-angle
field of view. Gimbal stops limit the PTZ
camera range of motion. Each camera is
equipped with a sensor to detect sun
brightness. If sun intrusion should
occur, the shutter of the camera will
close, blinding that camera.

Contact detection and limited dynamics are
modeled in the simulator. Since modeling
full contact dynamics between all surfaces
of the OMV and its target is impractical
without additional computing power, the
simulator detects contact only between the
open or closed TPDM latches and target

trunnions. The simulator computes contact
dynamics with a method of "soft con-
straints." This technique allows solids to

penetrate each other at the point of con-
tact. The algorithm then computes the
restoring normal and tangential forces
based on the depth of penetration. Damp-
ing forces also may be added. 1In addi-
tion, sliding (Coulomb) and viscous

friction may be applied. Linear and
angular momentum is conserved upon
contact for complete 6-DOF motion.

The OMV model contains a flight control
system. The system uses the earth
centered inertial (ECI) or local-vertical
local-horizontal (LVLH) reference frames.
A three-axis linear control law fires
thrusters if either attitude or attitude
rates exceed a selectable deadband. Atti-
tude or rate hold is disabled for an axis
if a pilot commands a maneuver in that
axis. In addition, an automatic attitude
maneuver capability is built into the
simulator. The simulator rotates the OMV
by firing thrusters to the desired
attitude commanded by the pilot.

The OMV uses two high-gain antennas (HGA)
to communicate with the TDRSS spacecraft.
The simulator maintains a pointing vector
from each HGA to each TDRS. Communication
zones of exclusion are based on the orbit,
ECI satellite positions and velocities,
earth occultation, and HGA gimbal limits.

Simulator Interfaces and Architecture

The simulator provides several interfaces
in addition to the pilot-machine inter-
face. The simulator operator has a
telemetry and data display on a side
terminal. The operator can introduce
anomolies from either this terminal or
from an event file. The event file, read
in at initialization, is a list of com-
mands and events that occur at some speci-
fied time into the simulation. The opera-
tor also receives history and contact
report files for post-simulation analysis.
The history file contains all OMV and
target state vector information, switch
inputs, and environment information. The
contact report file contains time-stamped
contact information.

Nearly all simulator data is initialized
by input parameter files. These files
determine values such as fuel and thruster
characteristics, orbit position, environ-
ment data, mass properties, and size of
the OMV and target. They also initialize
such other data as the number of targets,
placement of the video camera, radar
characteristics and all simulator control
information.

Orbit characteristics determine initial
orbit placement and rates. This data can
be specified in osculating mean of 1950
(OM50), rectangular mean of 1950 (RM50),
inertial mean of launch date (IMLD), or
target relative reference frames. State
vector integration and derivatives are
computed using quaternions. Forces and
accelerations due to gravity, torques, and
thrusters are computed using the Adams-
Moulton integrator.

131

The simulator maintains its own time with
software interrupts. Each major subsec-
tion is given a constant delta time each
cycle to perform its tasks. For example,
the input subsection reads the joysticks
and switches every 50 milliseconds. The
on-board computer (OBC) subsystems are
executed every 250 milliseconds and
graphic displays are updated every 200
milliseconds. This approach simplifies
the software architecture, eliminating
separate processes and semaphores.
However, one slow subsection can degrade
the entire simulation.

The simulator hardware consists of a
MicroVAX 3600, Chromatics CX2000 with
frame grabber and a 24-bit z-buffer.
CX2000 drives two 1280 x 1024 pixel
19-inch monitors. A Q-bus Direct Memory
Access (DMA) connects the MicroVAX with
the CX2000. The simulator drives two
pilot consoles, each containing hand
controllers and up to 48 switches. The
simulator is built from approximately
17,000 lines of FORTRAN.

The

PILOT-MACHINE INTERFACE
Interface Description

The main PGCC task is to define a pilot-
machine interface: the physical console
and graphic displays. The console inter-
face consists of console dimensions, hand
controllers, and placement, function, and
choice of switches. The console ergonom-

ics are designed to accommodate the 95th
percentile man and 5th percentile woman
(Figure 1).

Figure 1.
Console

Prototype Ground Control

The selection, placement, and style of
telemetry and video data form the second
part of the pilot interface. A language
was created to express overlay character-
istics and to allow easy reconfiguration.
Input parameter files, written in this
language, define the color, placement,

style, etc. of each overlay. In this
way, per-simulation customization can take
place. 1In addition, alternate styles of
display, graphic or text, can both be
accommodated (Table I). Merely changing
the input files drastically alters the
"look and feel" of the pilot-machine
interface. Figure 2 shows a current set
of piloting overlays.

Table I. Overlay Definition File

*

* TPDM Docking Overlay
*
BEGIN_ICON NEAR_FIELD
OVERLAY 0
OFFSET 100.0 73.242
SCALE 1.0 1.0 1.0
ROT 0.0
SUB_ICON
COLOR WHITE
OFFSET 0.0 0.0
* Vertical Ranging Marks
* 10 feet out
LINE -4.736 2.0 -4.736 -2.0
LINE 4.736 2.0 4.736 -2.0
* 3 feet out
LINE -15.787 2.0 -15.787 -2.0
LINE 15.787 2.0 15.787 =-2.
* Minimum docking range
LINE -21.714 2.0 -21.714 -2.0
LINE 21.714 2.0 21.714 -2.0
END_SUB_ICON
END_ICON
*
BEGIN_ICON DOWN_THRUST
OVERLAY 1
SUB_ICON
OFFSET 3.5 1.0
ROT 270.0
SCALE 1.0 1.0 1.0
FILLED
COLOR CYAN
ARROW
ARC 90.0
END_SUB_ICON
SUB_TEXT
HEIGHT 2
EXPAND 1.0
RIGHT
STRING Rate:
END_SUB_TEXT
END_ICON

DOCKING INTERFACE

The pilot operates hand controllers and
switches to guide the OMV to a dock with
the target vehicle. The OMV is equipped
with one of two types of grappling mecha-
nisms depending on the target vehicle
interface. Two standard mechanisms
include the RGDM or the TPDM. The current
simulator configuration models the TPDM
with the Hubble Space Telescope. After
the pilot maneuvers the OMV within the
docking envelope, the three TPDM latches

can be independently closed, ensnaring the
trunnions mounted on the aft of the Space
Telescope.

The pilot uses the docking target located
on the back face of the target satellite
as a guide when docking. The target, in
relation to the docking overlay, gives the
pilot relative translation and rotation
information. When the docking target
fills the docking overlay, the target
trunnions are within the grapple capture
envelope.

Each TPDM latch mechanism is equipped with
two sensor beams. When the trunnion
breaks a sensor beam, the corresponding
grapple beam overlay changes color. Using
the overlays and video, the pilot can
accurately determine the position and
attitude of the target relative to the
OMV.

Attitude errors discernible from the Space
Telescope docking target are larger than
the TPDM will accommodate. Therefore, the
docking overlay is built to give the pilot
information on maximum attitude and trans-
lational docking allowances. With this
overlay, the pilot can back out, if neces-
sary, to realign the OMV with the target
for a safer dock. If the docking target
should exceed the overlay, the pilot can
expect the latches to contact the trun-
nions. The overlay provides the allowances
at the minimum docking range (when the
trunnion are just within the docking
envelope) and at the point when the trun-
nions are centered over the second (inside)
beam.

Astronaut comments indicate that range and
range rate information is especially
important within the radar cutoff point.
Since acceptable latch closure rates are
0.1 foot/second along any axis and 0.5
foot/second about any axis, it is important
the pilot get an accurate "feel" for the
OMV’s closing rate. Therefore, ranging
aids were built into the docking overlay.

PILOT REVIEW
Approach

The first in a series of simulator reviews
was held in August 1988. Thirteen people
from TRW, Johnson Space Center, and
Marshall Space Flight Center, including
two astronauts, were available as pilots.
The pilots ran through a sequence of
training procedures to familiarize
themselves with switch layouts, OMV
thruster sensitivity, docking procedures,
and overlays. After being "qualified,"”
each pilot ran a set of simulations
emulating various mission phases. Initial
conditions ranged from nominal to 3-sigma
cases in translational or rotational rates.
Overlays were explained prior to each
training procedure. Piloting tips were

ORIGINAL PAGE IS
OF POOR QUALITY

Upper Monitor
_—— DELTAV CAUTION/ WARNINGS)
GMT TIME: 00:00:00 [| [
START TIME : 00:00:00 | ¢;%-% 1 ‘
ELAP TIME: 00:00:00 7 00000 \ 1
PR—— i
02 o o : . B -
0.1 - n
00 T L e S T
S01 2000 150.0 100.0 50.0 00
- 02 1 - S .
-1.0 00 1.0
60, ERONT. SIDE — 1.0
45 = - ZOOM FACTOR: 1.00
30
i}
15 _;{;_
o - =~
s N
.30
-45
.60
-75
90 |
.80 -45 0 45 90 135 180 2bo 220
EL RATE: 000.00
Lower Monitor
T T 7] TTT I T 17T I T 177]
000.00
77 000.00
s Y 67! 000.00
’ o 000.00
PULSE COUNTER]
X: -5 <] —
Y: +3 1
Z: 0 -
P: 0 n
w2]
R: 3 B
000.00
LOS
o AOS
E TIMETONEXTEVENT:00:07:35

Figure 2. Pilot Overlays

133

provided and any guestions were answered
during the simulation. Pilots flew
simulations during eclipse and docked with
spinning targets. A history log was kept
of each procedure and simulation for
analysis. After each training procedure
and simulation, pilots were debriefed.
total flight time exceeded 40 hours.
Training time was limited to approximately
1 hour per pilot. The time for each run
varied between 10 and 30 minutes.

The

The first review focused on two variables:
text versus graphic displays and type of
hand controller. Although these were the
primary concerns, other feedback was also
noted.

Review results were based on observations
during flight simulations and pilot
feedback gained from questionnaires and
discussions. The evaluation focused
primarily on the reasons for the success or
failure to reach the simulation goal.

Initial Results

The review clearly showed a pilot
preference for a hybrid of primarily
graphic overlays mixed with some text.
There were varying opinions expressed on
the graphic versus text attitude direction
indicator (ADI) format. In future reviews,
pilots will select an ADI format from a
palette of four displays. Digital range
and range rate will be added to the
enlarged analog radar display. The radar
display will be enlarged to detect azimuth
and elevation rates more easily.

Some of the overlays are placed directly on
top of the video. These were difficult to
see at times due to the underlying video
color. Since the video contrast varies
during orbit, there is a need to
dynamically change the color of the
overlays during simulation. One overlay
color may be acceptable during one mission
phase but not during another.

Pilots flew with targets spinning at 1.0
degree/second. It was apparent that the
piloting techniques vary sufficiently to
warrant another type of docking overlay.
Specific aids for matching target spin
rates and tracking rotating targets will be

134

included with the standard ranging informa-
tion and docking allowance overlays.

Overall, the pilots liked the console ergo-
nomics. Most preferred an adjustable tilt
monitor. They were pleased with the
monitor size and resolution. Pilots flew
with both types of displays and hand
controllers. One console had two 3-DOF
hand controllers and the other had one
6-DOF controller with a different
assortment and arrangement of switches.
Switches varied in type, shape, color, and
mounting. Pilots indicated that switch
shape, size, or mounting did not aid in
correct switch selection. Most pilots
preferred flush-mounted switches.

Unverified piloting switch commands are
indicated by flashing switches. The switch
light changes color after the command has
been verified or executed. This scheme
worked well; most pilots did not prefer any
other method.

Most pilots were trained to fly with two
3-DOF hand controllers and preferred to
continue using them rather than the one
6-DOF controller.

CONCLUSION

It is evident that a full dynamic
simulation is prerequisite to gaining
useful data. Comments on an interface from
an unrealistic simulator would have limited
use. Likewise, trained pilots are needed
to produce valid conclusions and avoid
review comments which merely reflect
unfamiliarity with the simulator, overlays,
or piloting techniques.

The choice of pilot missions also
influences the quality of gathered
information. Carefully planned missions
which stress pilot or OMV performance are
most useful; during nominal missions,
nearly all displays either work well or are
never used.

By holding a series of pilot reviews and by
building prototype displays, agreement will
be reached on an acceptable pilot-machine
interface. It is expected that having a
community consensus on an OMV pilot-machine
interface will prevent problems during the
acceptance phase of the GCC project.

N90-20670

THE USE OF GRAPHICS IN THE DESIGN OF THE HUMAN-TELEROBOT
INTERFACE

Mark A. Stuart and Randy L. Smith

Lockheed Engineering and Sciences Company
2400 NASA Road 1
Houston, Texas 77058-3711

The Man-Systems Telerobotics Laboratory (MSTL) of NASA's
Space Center employs computer graphics toois in

evaluation of the Flight Telerobotic

interface on the Shuttle

and on the Space Station.

Johnson
their design and
human/telerobot

It has been

Servicer (FTS)

determined by the MSTL that the use of computer graphics can promote

more expedient and less costly design endeavors.
in detail several specific examples of computer

FTS user interface by the MSTL.

INTRODUCTION

Computer graphics techniques, including
software prototype development programs,
can serve as an aide in the design, evaluation,
and development of user interfaces of many
types. These systems design tools can result
in the development of ergonomically
well-designed workstations in less time with
lower costs when compared to the use of
other systems design tools.

With the system development process
becoming more complex and expensive, more
emphasis is being placed on the evaluation of
systems during early stages of the
development cycle. The design of systems
that include human operators is especially
complex because determining overall systems
performance is dependent upon the
interaction of the human operator, hardware
components and software components (ref. 1).
Adequately evaluating the performance of a
system during the design cycle is becoming
increasing more difficult when using the
static evaluation tools traditionally available
to the Human Factors Engineer, such as job

135

This paper describes
graphics applied to the

and task analyses and mockup development
(ref. 2). It is becoming more common for
systems developers to use computer graphics
as a design tool instead of hardware models
(ref. 3) and for Human Factors Engineers to
use computer graphics to enhance the use of
static design tools (ref. 4).

The Man-Systems Telerobotics Laboratory
(MSTL) of NASA Johnson Space Center (JSC)
with support from Lockheed has extensively
used computer graphics tools in their design
and evaluation of the Flight Telerobotic
Servicer (FTS) user interface. It is the goal
of the MSTL to help design, evaluate and
develop requirements for the user interface
of the FTS. Goddard Space Flight Center is
the lead center in the development of the FTS
with other NASA centers and industry playing
various roles.

The FTS will be a dual-armed teleoperated
robot used to help assemble, service, and
maintain NASA's Space Station. There will be
an FTS control panel on both the Shuitle and
the Space Station. The design of the FTS
control panel is especially challenging since

it may be physically impossible to have
identical control panels on both the Shuttle
and the Space Station due to the physical
constraints of the Shuttle. The ultimate
objective in the design of the FTS control
panel is that the human operator's
capabilities and limitations have been best
accommodated for while ensuring that overall
systems goals and requirements are met. The
use of computer graphics will enable NASA to
iteratively design a good FTS control panel on
the Space Station which does not radically

differ from the FTS control panel included on
the Shuttle. Radical departures from the

control panel used on the Shuttle will
increase the likelihood of negative
transference or reversal errors. Therefore,
design features which take advantage of
population expectancies should be a constant
feature across both control panels to ensure
maximum performance.

This paper will discuss the MSTL's use of
computer graphics tools that have been
applied to the design and evaluation of the
human-telerobot interface that will be a part
of NASA's Shuttle and Space Station. Each
example will begin with a statement of the
objectives of the task and will then detail
the approach taken by the MSTL for that
particular application. The discussion of
these applications will also include
illustrations of the computer graphics used.

PROGRAMMABLE DISPLAY PUSHBUTTONS

The first example given will be an
illustration of how computer graphics was
used by the MSTL to establish a set of
guidelines concerning the use of
programmable display pushbuttons (PDPs) on
the Space Station's FTS control panel (see
ref. 5 for a detailed discussion concerning
this study). The graphics tool used during
this evaluation was Hypercard. Hypercard is
an information management software package
which allows the user to organize text,
graphics and active "screen buttons" into

cards. The cards can then be linked together
in different user-definable stacks. The
stacks can then be arranged so that

high-fidelity control panel prototypes can be
created with relative ease.

136

This phase of the FTS workstation evaluation
covered a preliminary study of PDPs. Since
the study of PDPs is now in the early phase of
the design cycle, the focus on this evaluation
was to use computer graphics as a means of
testing the feasibility of using PDPs on the
FTS control panel. The PDP is constructed of
a matrix of directly addressable
electroluminescent (EL) pixels which can be
used to form dot-matrix characters. PDPs
can be used to display more than one message
and to control more than one function. Since
the PDPs have these features, then a single
PDP may possibly replace the use of many
single-function pushbuttons, rotary switches,
and toggle switches, thus using less panel
space. Due to space constraints on the
Orbiter and the Space Station, an overriding
objective of the design of the FTS
workstation is that it take up as little panel
space as possible. It is of interest to
determine if PDPs can be used to adequately
perform complex hierarchically structured
task sequences.

Other investigators have reported on the
feasibility of using PDPs in systems design
(refs. 6,7), but the present endeavor was
deemed necessary so that a clearly defined
set of guidelines concerning the advantages
and disadvantages of PDP use in the FTS
workstation could be established. This would
ensure that PDP use was optimized in the FTS
workstation.

The objective of this investigation was to
study the performance of subjects performing
a simulated manipulator task on PDP and
non-PDP computer prototypes so that
guidelines governing the use of programmable
display pushbuttons on the FTS workstation
could be created. The functionality of the
manipulator on the Orbiter was used as a
mode! for this evaluation since the
functionality of the FTS at the time of this
writing had not been solidified.

The graphics version of the non-PDP control
panel is depicted in Figure 1. The
distinguishing feature of this configuration
is that traditional single-function
pushbuttons are used in conjunction with a

ORIGINAL PAGE IS
OF POOR QUALITY

simulated EL panel to activate commands.
The EL panel was simulated in this evaluation
by displaying single-function commands as
they would appear on the EL panel in the upper
right-hand corner of the prototyped screen.

MODE INDICATORS

BRAKLS
FTS UNL | €O EFF] FTSLD | pavLD ~ U Joint
AUTO 1 | AUTO 2 | AUTO 3 | AUTO 4 SHOLOR-¥
oP CMD OIRECT | TEST o SHOLOR-P
€L80W-p
i) AIGHT (UNDICATORS) mist-r
P
MODE | ENTER [PROCEED] sTOP B WRIST-¥
et
SAFING | AUTO | CANCEL |MANURL m_‘ WAIST-A
END EFF OP| AUTO | OFF |MANUAL m_
PARAMETER AIGID | OFF | DE-RIG @
BARKE OFF ON m
- + lcamenn _m
(it

Figure 1 -- Non-PDP control pane! prototype.

The graphics version of the PDP control panel
is depicted in Figure 2. This control panel
utilized simulated PDPs instead of
single-function pushbuttons. In Figure 2, the
PDPs are the twelve pushbuttons located in
the lower-middie portion of the display. The
portions to the left and top of the display are
dynamic status indicators that were used to
display various functional states.

MODE INDICATORS — sraAxEs —
I N\
ODE FTS uNL | END EFF | FTI LD | PavLD
TERDY AUTO 1 | AUTO 2 | AUTO 3 | AuTO 4
(RPN OP CMO | SINGLE | DIRECT | TEST

“w
»
-
r 4
o

OFf

5 €

£

END EFF BRAKES
| (G [] (e
()
WIS UNLORDED | END EFF | LORDED | PAYLD

aeviouy
[CLUSE] AUTO SINGLE | OIRECT TEST

(OPEN]

(CRPT | SRFING [END EFF OPf PRAAM | CAMERAS

FTRD L

Figure 2 -- PDP control panel prototype.

When a PDP is selected, the name of that
function is then displayed in a small
simulated EL display located just above the
PDP cluster and the options that follow
within that functional category are then
displayed by the PDPs. For example, when
SINGLE is selected in Figure 2, the display
changes to that depicted in Figure 3. In

137

Figure 3, SINGLE is now displayed in the EL
display and the PDPs have changed to list the
options that follow under SINGLE. The small
EL display was designed to serve as a
navigational aid to help orient operators
throughout performance of the hierarchically
structured tasks. It was contended that the
use of the navigational aid in the PDP
hierarchy would be useful since a previous
evaluation (ref. 8) found that navigational
aids are helpful with hierarchical search
tasks through menu structures on a computer.

MOOL INDICATORS AKES

]
]

FYS UNL [END EFF | FTS LD | PAYLD [on]
AUTO ! [AUTO 2 | AUTO 3 | AUTO ¢ Or#
op cvo |FIEAYE| orrecT | vEsT
on
oFF
: BRAKES
NI
i @D CANCEL l
SHOLDR-Y | SHOLOR-P | ELBOW-P (Previous)
WRIST-P | WRIST-Y | WRIST-B
- . CAMERAS

Figure 3 -- PDP control panel prototype with
PDP changes and navigational aid.

After performing the task scenarios on both
of the control panel prototypes, each subject
was asked to select which of the two control
panel prototypes were preferred. Each
subject was also asked to complete a
questionnaire designed to garner subjective
impressions concerning the control panels.
Data were collected and analyzed with the
objective of determining differences in user
performance and preference between the two
different control panel configurations so
that, ultimately, guidelines concerning the
use of PDPs could be established. All numeric
data werse statistically analyzed with a
repeated measures analysis of variance.

The ultimate objective of this investigation
was to use computer prototyping to establish
a set of guidelines concerning the use of PDPs
on the FTS workstation. The data collected
during this investigation were used to create
these guidelines. It is contended that the
established set of guidelines will also be
generalizable to other workstations as wall.

For a complete list of these guidelines,
please see ref. 5. It is contended that the use
of this set of guidelines will help to ensure
that PDPs will be optimally designed and
arranged.

The use of computer graphics proved to be
invaluable during this evaluation. Graphics
allowed the experimenters to iteratively try
out many different design configurations
before testing actual, hard-wired PDPs.
Without the use of computer prototyping, it is
contended that the design process would have
taken much more time and money to perform
as efficiently. {f computer prototyping was
not used by the MSTL then it would have been
necessary to have completely assembled the
hardware components and electrical wiring of
each of the design configurations evaluated
with the computer prototyping method to
iteratively evaluate different design
possibilities so that an optimal solution
could be derived. The hardware approach
would have been much more expensive and
involved.

HAND CONTROLLERS AND RESTRAINT SYSTEMS

The second example will be a discussion of
how graphics was used to evaluate the
placement of different types of hand
controllers and different types of body
restraint systems within various conceptual
designs of the FTS workstation on the
Shuttle. The tool used during this evaluation
was the PLAID graphics package. PLAID is a
graphics development package created by the
Graphics Analysis Facility of NASA's Johnson
Space Center. PLAID enables the creation of
three-dimensional, color, graphical images
with accompanying animation. The feature of
animation enables the MSTL to evaluate
different workstation configurations with
the interaction of figures of human operators
which are anthropometrically correct,
thereby determining anthropometric reach
limits and viewing angles. PLAID also makes
it possible to evaluate how well operators of

varying physical dimensions can interact
with different workstations.
PLAID enabled the MSTL to iteratively

138

evaluate FTS workstation layouts within the
aft flight deck and the mid-deck of the

Shuttle. Figure 4 illustrates a conceptual
design of the placement of the FTS
workstation on the aft flight deck. (PLAID

drawings are produced in color, but, due to
reproduction restrictions on this document,
color prints could not be included in this
article. Therefore, the PLAID renderings
included in this paper are, out of necessity,
line drawings.) If the FTS workstation is
placed in this location, it will be in close
proximity to the Remote Manipulator System
(RMS) control panel. This particular figure
gives an indication of how two 95th
percentile male operators would work
together simultaneously. The reader should
notice that the PLAID drawing indicates that
there will be some shared work space
between the two operators. This important
finding was made available to the MSTL
without the necessity of fabricating
full-scale mockups. Different sized operators
other than the ones examined in this example
could also have easily been put into the aft
flight deck conceptualizations for evaluation.

Figure 5 illustrates how the FTS workstation
might be laid out in the mid-deck of the
Shuttle. In this figure, a 95th percentile
male operator is using the workstation
located within the bank of lockers in the
mid-deck of the Shuttle. Figure 6 is a
conceptualization of how well a 5th
percentile female would be able to reach the
controls of the mid-deck FTS workstation.
The reader should notice that in each of these
two figures a restraint system that attaches
to the torso of the operators is included for
evaluation. This particular restraint system
concept was developed by Charles Willits of
NASA-Reston.

CONTROL/DISPLAY LAYOUTS

The third example will be a discussion of the
use of computer graphics in the consideration
of the placement of the FTS control panel in
the Shuttle. At the time of this writing, it
had not been determined where the FTS
control panel would be located in the Shuttle.
As in the discussion of the use of PLAID in

Figure 4 -- PLAID conceptualization of the placement of the FTS
workstation in the aft flight deck of the Shuttle.

Figure 5 -- PLAID conceptualization of the
placement of the FTS workstation
in the mid-deck of the Shuttle with
a 95th percentile male operator.

Figure 6 -- PLAID conceptualization of the
placement of the FTS workstation
in the mid-deck of the Shuttle with
a 5th percentile female operator.

139

the previous section, two locations were
being considered: the aft flight deck and the
mid-deck. Many different design features
were considered and computer graphics
enabled the MSTL to quickly and inexpensively
evaluate the preliminary placement of these
features. Some of these features were the
size and number of monitors to use,
placement of control switches, the types of
controls to use, and whether or not a
detachable keyboard should be a part of the
control panel. The graphics package used in
this example was MacDraw. MacDraw is a
graphics development package that is
available on Apple Macintosh computer
products.

The first examples given will be design
considerations made concerning the
placement of the FTS control panel in the aft
flight deck. Figure 7 is a drawing made with
MacDraw to illustrate a possible FTS control
panel using aft flight deck pansl A6-A2.

The second location within the Orbiter where
the placement of the FTS control panel was
considered was the mid-deck. There was
more space available in the mid-deck for the
FTS control panel, so the control panel
layouts where slightly different. Figure 8 is
an illustration of a control panel layout in the
mid-deck.

The MSTL has determined that one advantage
of the use of computer graphics is that it
will allow a somewhat extensive analysis to
take place before any physical mockups have

been developed. After several design
iterations using computer graphics,
full-scale mockups with varying levels of

fidelity can then be constructed.
OTHER COMPUTER GRAPHICS APPLICATIONS

The MSTL had other proposed uses for
computer graphics at the time of this
writing. Since these applications were still
in the design stage, the drawings were not
available for this publication. None the less,
these applications also represent further
uses of computer graphics within the field of
Human Factors. For this reasons, then, these

140

projects will be briefly described here.

One project which is currently underway is
the use of Hypercard to create "pulldown" and
"popup” menu-overlays on real-time video

images that appear on cathode ray tube (CRT)
screens. The video images will be fed from
analog and digital cameras located at remote
locations from test subject viewers. The
video images will be the subjects’ only view
of remote work sites of interest. The
menu-overlays will enable the MSTL to
evaluate the utility of an operator using
various input devices to control cameras
while performing simulated FTS remote
manipulation tasks.

Another project underway at the MSTL was
the proposed use of computer-aided
measurement tools to monitor and display
various indicants of work physiology,
especially mental workload. The objective
here was to incorporate computer-aided data
collection and display technologies so that
the MSTL could evaluate the workload
tradeoffs associated with various
workstation components and configurations.

CONCLUSION

The consideration of the productivity, safety,
and comfort of the astronaut crewmember is
being incorporated into the design process of
advanced NASA telerobots through the use of
powerful computer-aided systems such as
PLAID, Hypercard and MacDraw. The above
mentioned examples serve to illustrate the
invaluable role that computer-aided design
technologies play in the design and
development of the FTS workstation by NASA
JSC's MSTL. The MSTL has determined that
the use of computer graphics packages
contributes to a more efficient and less
costly systems design cycle. Graphics
packages will continue to be used by the MSTL
and should certainly exhibit increased usage
throughout the field of Human Factors.

ACKNOWLEDGEMENTS

Support for this investigation was provided
by the National Aeronautics and Space
Administration through Contract NAS9-17900

[© O 0O 0O O

Spkr

15+ Wonitor CLLT1]

Monitor Controls I:r——l:l—_—l

Key Pad (POP'S) (@)

©: @, @ OO @

Single/Direct Arm Select Joint Select Right
Drive _Switch i Brake

Switch Brake

Joystick

Figure 7 -- FTS control pane! in aft flight deck panel AB-A2.

Indicator Lights Spesker
@ @)=
oF CoF
9" Monitor Left Right
Brake Brake
®: @
=L R
Monitor Controls Single/Dirsct Arm Select
Drive Swilch Switch
Joint Select Switch |]Emsmpl:|
12" Monitor
Voice
input
plug
Monitor Controls
Key Pad (PDP'S) O

Bracket for keyboard attaichment

Figure 8 -- FTS control pane! in mid-deck with nine-inch monitor and
twelve-inch monitor.

141

to Lockheed Engineering and Sciences
Company.

Thanks are also extended to Ervette Moore and
Terence Fleming of Lockheed and Linda Dumis
and Linda Orr of NASA for their invaluable
assistance with the computer graphics
packages described in this paper.

REFERENCES

1. Chubb, G. P., Laughery, Jr., K. R., and
Pritsher, A. A. B., "Simulating manned
systems,” in: G. Salvendy (Ed.), HANDBOOK OF
HUMAN FACTORS, John Wiley and Sons, New
York, New York, 1987, pp. 1298-1327.

2. Gee, C. W,, "Human engineering procedures
guide,” (AFAMRL-TR-81-35), Air Force
Aerospace Medical Research Laboratory,
Wright-Patterson Air Force Base, Ohio, 1981.

3. Gawron, V. J., and Polito, J., "Human
performance simulation: combining the data,”
in: J. 8. Gardenier (Ed.), SIMULATORS,
Simulation Councils, Inc., La Jolla, California,
1985, pp. 61-65.

4. Stuart, M. A. and Smith, R. L., "Simulation
of the human-telerobot interface,” in:
PROCEEDINGS OF THE SECOND ANNUAL SPACE
OPERATIONS AUTOMATION AND ROBOTICS
CONFERENCE (SOAR '88), National Aeronautics
and Space Administration: Scientific and
Technical information Branch, Dayton, Ohio,
1988, pp. 321-326.

5. Stuart, M. A, Smith, R. L. and Moore, E. P.,
"Guidelines for the use of programmable
display pushbuttons on the space station's
telerobot control panel,” in: PROCEEDINGS OF
THE HUMAN FACTORS SOCIETY 32ND ANNUAL
MEETING, Human Factors Society, Santa
Monica, California, 1988, pp. 44-48.

6. Hawkins, J. S., Reising, J. M., and Woodson,
B. K., "A study of programmable switch
symbology,"” in: PROCEEDINGS OF THE HUMAN
FACTORS SOCIETY 28TH ANNUAL MEETING,
Human Factors Society, Santa Monica,
California, 1984, pp. 118-122.

142

7. Burns, M. J., and Warren, D. L., "Applying
programmable display pushbuttons to manned
space operations,” in. PROCEEDINGS OF THE
HUMAN FACTORS SOCIETY 29TH ANNUAL
MEETING, Human Factors Society, Santa
Monica, California, 1985, pp. 839-842.

8. Gray, J., "The role of menu titles as a
navigational aid in hierarchical menus,”
SIGCHI BULLETIN, New York, New York, 17, 3,
January, 1986, pp. 33-40.

-;7Q -
N90-20671
—— —_»
DISTRIBUTED EARTH MODEL / ORBITER SIMULATION
Erik Geisler / IBM
Scott McClanahan / Ford Aerospace
Dr. Gary Smith / IBM
NASA Johnson Space Center
Workstation Prototype Lab
FS=-7
Houston, Texas 77058
ABSTRACT data representing an orbiting vehicle.
Distributed Earth Model / Orbiter Simulation 2. BODY
(DEMOS) is a network based application
developed for the UNIX environment that visu- 2.1. Architecture
ally monitors or simulates the Earth and any
number of orbiting vehicles. Its purpose is DEMOS is based on a server/client model. The
to provide Mission Control Center (MCC) model manager is the focal peint of the sys-
flight controllers with a visually accurate tem. It performs the server function, ser-
three dimensional (3D) model of the Earth, vicing requests from the client processes.
Sun, Moon, and orbiters, driven by real time The clients include one user interface task
or simulated data. The project incorporates and several simulation tasks. There is one
a graphical wuser interface, 3D modelling simulation task per orbiting vehicle, and
employing state-of-the art hardware, and several vehicles may be viewed simultane-
simulation of orbital mechanics in a ously.
networked / distributed environment. The
user interface is based on the X Window Sys- The processes that comprise DEMOS are Local
tem and the X-Ray toolbox. The 3D modelling Area Network (LAN) transparent, as a result,
utilizes the Programmer’s Hierarchical each task may run on different network nodes.
Interactive Graphics System (PHIGS) standard Communication between the tasks is accom-
and Raster Technologies hardware for render- plished by passing packets via UNIX sockets,

ing / display performance. The simulation of
orbiting vehicles uses two methods of vector
propagation implemented with standard UNIX /
C for portability. Each part is a distinct
process that can run on separate nodes of a
network, exploiting each node’s unigque
hardware capabilities. The client / server
communication architecture of the application
can be reused for a variety of distributed
applications.

1. INTRODUCTION

This paper describes a graphics project under

development by the NASA / Johnson Space
Center (JSC) Workstation Prototype Lab (WPL)
staff that provides a scene generation tool
capable of maintaining and displaying a
realistic model of the Earth and various
orbiting objects. Display output may be used
to drive a large screen projector or closed
circuit TV. The four major components of the
application will be described. The first
section covers the architecture and communi-

cation between the different tasks. The
second section describes the wuser interface
that controls the system. The third section
is the model manager, which is the center of
the application that manipulates the 3D
graphics and coordinates the simulations.
The final section discusses the simulation
task, which generates positional and attitude

143

which is compatible across multiple vendor
workstations. The sockets also work within a
single workstation, so full flexibility is
provided in defining the topology of the
application. Configuration of each task’s
node can be defined by the user at run time.

The application may be distributed over mul-
tiple workstations to off-load computations
to machines more appropriate for that type of
work. The model manager must run on the
workstation containing the target graphics
hardware. Eliminating nearly all other
processes on the model manager workstation,
allows it to run at real time priorities,
thus allowing the 3D image updates to occur
more frequently. The graphical user inter-
face is dependent on the X Server, graphics
hardware, keyboard, and mouse, but it does
not use much CPU, so a low end workstation is
acceptable. The simulation tasks are CPU
bound and profit from floating point
hardware.

configuration of
denote system
represent

Figure 1 shows the
DEMOS. Circular components
processes. Double ended arrows
communication between processes. Rectangluar
boxes represent external data files. The
"config Data" contains system initialization
information. The "Model Defs" contain exter-
nal scene descriptions and model geometry.

system

ORIGINAL PAGE IS
OF POOR QUALITY

These files are read by the model manager
order to construct a hierarchical scene.
user interface process is started first
employs the services of the X server.
successful initialization, the user interface
process starts the model manager. The model
manager in turn starts the Sun, the Moon, and
any number of orbiting vehicle simulations.
The system is shutdown in reverse order. The
model manager terminates all simulation
processes before terminating itself. The
user interface is shutdown immediately upon a
user request.

and
Upon

User
Config [1o g
Data Interface -
Model
Defs

Figure 1 - DEMOS System Configuration

send
prevents any

Each task in DEMOS uses the same packet
and receive subsystem. This
task from blocking for I/0 on socket opera-
tions. Since many packets may be sent at
once, a queue holds the packets that the UNIX
kernel cannot keep internally. The socket
"streams" protocol 1is used to guarantee
packet delivery and ordering. The queuing
system also handles sending a partial packet.
These packets can vary in size. At the
receive end, the same subsystem isolates
application from incomplete packets by build-
ing and returning only complete packets.

2.2. User Interface

The user interface task provides the single
point of <contact between a user and DEMOS.
It provides full control of DEMOS, including
the ability to initiate and shutdown the sys-
tem. The user interface does not have to be
present after initializing DEMOS. The user
can logoff the user interface and DEMOS will
continue running. The system allows only one

user interface to run at a time to ensure
system consistency. System advisories are
normally sent to the user interface, but if

it 1is not present, then they are queued by
the model manager until a user logs on.

144

There are two versions of the user interface
for DEMOS - a graphical version, "xruif", and
a command line interpreter version, "shuif".
Xruif is based on the X Window System, so it
is dependent on a graphics terminal con-
trolled by an X server. On the other hand,
shuif will run on any ASCII terminal, allow-
ing more portability. The only difference
between shuif and xruif is the user interac-
tion. The 1low level areas of the two user
interfaces share the same services.

2.2.,1. Shuif

The command line interpreter version of the
user interface 1is similar to the UNIX shell
("sh" or "csh"™). It prompts for input from
the keyboard, parses the input line for the
command, and then executes the command.

A generic command line interpreter subsystem
was created in the process of developing
shuif, The first word of the input 1line is
taken as the command name with the rest of
the line being the arguments to the command.
The command definitions, which are table
driven, include the invocation, or callback,
subroutine, as well as help information. The
command line interpreter can be recursively
nested to simulate submenus of commands.
This subsystem also uses the "select" system
call to block for I/O pending on any file
descriptor. Each file descriptor has a
corresponding callback routine which is
called to process its data. 1I/0.

"Autotype" is a feature that allows shuif to
run a complete wuser interface session in
batch mode, reading commands from a file and
echoing them to the screen as if they were
typed by the user. This is useful for hands
free demonstrations and test scripts. A
"wait" command is included in shuif that
suspends the user interface until an event
occurs, such as waiting for the 1list of
models to arrive before requesting a model to
be loaded. Autotype files use the wait com-
mand to synchronize events within the system.

"Playback" is similar to autotype in that it
allows the user working interactively with
shuif to run a sequence of commands from a
file. This is a convenience feature for
redundant commands and to modularize opera-
tions involving a series of commands. Play-
back can also be invoked from an autotype
file.

To complement the autotype and playback
features, shuif can record (to a file) every-
thing typed in by the user. Recording can be
turned on or off at any time. Recording to
an existing file appends the new commands.

Shuif provides commands for entering data for
the simulation and base date values. When a
simulation is started or the base date is
set, the user has the option of using a data
file or typing in all of the values. The
data files can be created by a separate com-
mand that prompts the user for the wvalues.
All data files are validated when they are
created and read.

2.2.2. Xruif

Xruif, the graphical user interface to DEMOS,
is based on X11 Release 2. Since X is becom-
ing a windowing standard, X clients are
source code portable across many vendors'’
workstations. Xruif uses the X-Ray toolbox
developed by Hewlett-Packard. The latest
version of X-Ray is from the Release 3 tape
of X11 from MIT. Xruif currently runs on a
Sun 3/60 with the MIT X server in either

monochrome or color.

The user interface style of xruif was not
intentionally based on any existing applica-
tion or style. It is based on the available
X-Ray editors.

Xruif is composed of a single window divided
into tiled panels. At the top is the title,
followed by the main menu, then a work area,
and an advisory panel at the bottom.

The work area is a reserved space where tran-
sient panels reside. All of the work area
panels are the same size, even though their
contents may not £ill the panel. The work
area panels are composed of a selection
lists, (such as models, viewport configura-
tions, viewport mappings and eyes, active
vehicles, and the on-line help screens), or
data entry screens for the base date and
simulation values. These panels are
activated by a main menu selection, and only
one panel can occupy the work area at a time.
When no panels are visible in the work area,
a simple panel with the "work area”™ label in
the center is left visible.

The user interface
called editors.

gadgets in X-Ray are
Many of the X-Ray editors
are used in xruif. The title bar editor con-
tains a graphically offset single line of
text with a selection box at each end. Each
panel in xruif contains a title bar with a
selection box containing a question mark for
displaying help information on that panel,
The push button editor is a matrix of oval
buttons containing a label that is selected
with the mouse. The main menu is comprised
of push buttons. The list editor is a rec-
tangle with an optional title bar at the top,
optional scroll bars on the side, and a list
of text that can be scrolled and selected
{highlighted) with the mouse. This editor is
used extensively in xruif. The text editor
is a data entry field with a prompt to one
side. It is used to enter simulation and
base date values. A message box editor pops
up a window containing an icon, some text,
and some push buttons. It is used to force
answering "Are you sure?" questions. A group
box editor is simply a rectangle with a label
at the top to surround a group of editors and
visually associate them.

raster

The title panel also uses the static

editor to display pixmaps, such as the NASA
logo, the WPL logo, and the DEMOS icon. The
DEMOS icon 1is also wused to represent the

xruif window when it is closed.

145

There are several advantages to using
separate panels. First, it modularizes each
component of the user interface. Any panel

can easily be modified and rearranged without
affecting the other panels, Second, the X
window events "entry" and "leave" are used to
determine when the pointer goes into or out
of a panel. This allows each panel to do its

own input processing instead of having to
handle all inputs in one routine. Third,
each panel can size and create its own edi-

tors. Finally, panels can be redisplayed
independently, each handling its own “expose"
events.

Xruif employs an on-line help facility for

information on each panel. The title bar of
each panel has a help icon, which, when
selected, brings up the help panel in the
work area, overlaying the previous panel.

When the help panel is terminated, the previ-
ous panel is restored. The help panel con-
tains scrollable help text, plus a help index
listing all help screens. Selection of a
help index item displays that panel’s help
screen. The help screens are loaded at ini-
tialization from ASCII text files. For
DEMOS, help screens were formatted by the
"nroff" utility and can be easily customized
by the user.

2.3. Model Manager

The model manager is responsible for servic-
ing user interface requests, loading data
models, managing simulations, and generating
accurate visual displays of a modeled scene.

Its implementation employs the PHIGS stan-

dard, as well as PHIGS+ extensions for light-
ing and shading. The Raster Technologies
PHIGS+ subsystem off-loads a number of

graphic functions including model hierarchy
management, traversal, and rendering/display.

Many functions are performed in firmware.
Using this graphics architecture, the model
manager is able to concentrate on a variety

of control functions associated with managing
multiple, asynchronous simulations. The
model manager is composed of three major ele-

ments: Scene Construction, Simulation Manage-
ment, and View Generation.

2.3.1. Scene Construction

After communications have been established
with the wuser interface task, the model
manager begins by constructing an in-memory
tree representation of a selected scene
hierarchy. A user selects a scene by choos-
ing a top-level description file. The model

manager reads this verb-based description
file in order to build an internal represen-
tation of the scene. Description files may
reference other description files. 1In this
manner, a complex external model hierarchy
may be defined. The model manager will
recursively read these files until the entire
scene tree 1is built. Using this technique,
generic scenes may be developed and processed
by a general modelling subsystem.

ORIGINAL PAGE IS
OF POOR QUALITY

Besides model hierarchy construction,
description files provide additional informa-
tion which 1is attached to the model’s
geometric definition. This separation of
model geometry and model attributes allows
models to be tailored for rendering perfor-
mance versus realism. Each file has a speci-
fied type, which determines how the remaining
commands are to be interpreted. A variety of
types are currently supported: ‘model’,
‘eye’, ’‘camera’, ‘scene’, flight’, and
‘ghost’ .

A ’'model’ description file provides the fol-
lowing information: the model units, initial
placement, display options (polygon, vector,
polyline}, shading method (flat, Gouraud),
surface properties, color model, hidden-
line/hidden-surface options and an optional
reference to a data file containing the
actual geometric model. Model attributes are
inherited from parent models. Typically, a
top level model node provides overall model
information and attributes while children
nodes reference individual submodels and
define how they are geometrically related to
their parent.

An ‘eye’ or ‘camera’ description file pro-
vides the definition of viewing parameters
for a single viewpoint. The only distinction
made between eyes and cameras is that cameras
represent physical optical devices while eyes
define a synthetic viewpoint. Both are
treated as submodels, positioned relative to
their parent node. By attaching eyes and
cameras to a geometric model, a wide variety
of views can be supported. This viewing
mechanism forms a major element within the
model manager. A majority of the model
manager’s computational effort is spent main-
taining selected views. The following infor-

mation can be defined for an eye or camera:
camera position, camera orientation, perspec-
tive reference point, view distances (front,

view, back), projection type (parallel, per-
spective), and viewing window parameters.

A ’scene’ description file defines global
scene characteristics. Specifically, it pro-
vides the following information: scene light-
ing method (ambient, diffuse, specular,
none), true or pseudo color display indica-
tor, background screen color, viewport edge
characteristics, viewport titles flag, ini-
tial viewport definition(s) and background
colors, screen aspect ratio, Normalized Pro-
jection Coordinate the (NPC) window and Dev-
ice Coordinate (DC) viewport in which NPC
window will be mapped. Many of the developed
scenes refer to a common scene node since
this information rarely changes. Changing
the scene 1lighting and the number of
viewports can drastically affect scene
display rates. The DC viewport provides the
capability to place the graphic display into
a selected portion of the screen. This
becomes important when the RGB signal is con-
verted to video via converter boxes such as
Genlock or RGB Technologies VideoLink.

. changes to the object in which they are

146

A ‘light’ description file defines a single
light source. Ambient, infinite, point, and
spot light types are supported. Depending on
the 1light type, a number of lighting charac-
teristics may be defined, such as color,
location, direction, concentration exponent,
and cone of influence. Adding additional
lights seems to have only a minimal computa-
tional effect on the overall rendering pro-
cess. DEMOS currently employs a single
infinite light source - the Sun. Additional
lights might be added to have the orbiter
always visible to the user even though it is
positioned on the dark side of the planet.

A ’‘ghost’ description file defines an obiject
which assumes and maintains a position rela-
tive to its immediate parent node. As its
name implies, a ghost object is an invisible
object which cloaks another object. Ghost
objects are semi-attached to their parent.
This is, they only receive positional
updates; attitude transformations are not
applied. These type of objects are typically
used to establish a set of viewpoints associ-
ated with an orbiting vehcile. Since these
viewpoints only accept positional updates,
and therefore move along with an object, they
are capable of viewing rotational ({(attitude)
con-
a flexible

used to support
spacecraft orienta-
rotations from a

nected. This feature
viewing mechanism and
visual verification
tion, as well as,
point in space.

provides
is
of
Earth

During description file processing and
hierarchical scene tree construction, a set
of linear lookup tables are developed 1in
order to minimize the model editing process.
Each table entry contains a unique object
name followed by a tree node pointer. The
use of this pointer eliminates wunnecessary
tree traversals by the model manager when
updating an object’s position and attitude.
In addition, the PHIGS structure ID is
obtained from the tree node, and is wused to
perform PHIGS editing. The reason in-memory
scene tree structures are edited along with
the PHIGS structures 1is to facilitate the
formation of a particular view from an eye or
camera. The PHIGS specification allows
structure inquiries to obtain this informa-
tion; however, the PHIGS implementation
currently used does not support this opera-
tion. Combining an in-memory tree structure
and the sorted 1lookup tables provides an
efficient framework for model editing. The
linear table provides efficient model search-
ing while the in-memory tree structure pro-
vides the necessary model hierarchy.

After the in-memory scene tree has been con-
structed, it is loaded into the PHIGS Central
Structure Store (CSS). The CSS provides a
central database where graphics information
is stored and edited. 1In order to construct
the PHIGS database 1in a contiquous manner,
the model manager recursively traverses the
in-memory scene tree and loads each model and

light node into the CSS. If a child node
representing a model, ghost, or 1light is
referenced within the current node, a PHIGS

structure execution command is issued to link

this child node to its parent. Eye and cam-
era nodes are ignored during this PHIGS load-
ing process and are managed separately.
2.3.2. Simulation Management

The processing architecture of the model
manager is based on a state machine approach
employing time and events. To manage multi-
ple, asynchronous simulations, the model
manager must maintain its own internal clock.
This clock is established by the user issuing
the system start time command. Once the time
is set, the model manager begins propagating
it by a discrete unit. In addition, the
model manager automatically spawns a Sun and
Moon simulation task on previously defined
workstations. The user also determines how
quickly time should propagate and the amount
of Earth rotation per display update. This
clock is used to synchronize all events
within the model manager.

Simulations are initiated upon reciept of a
user interface request. The model manager
retains the specified simulation information
within an internal state structure. These
structures hold and maintain information nec-
cessary for communications, groundtrack
requests, and position and attitude requests.
States transition from one state to another
due to an occurrence of an event. For exam-
ple, a simulation is not started until the
internal clock is equal to or greater than
the simulation starting time. Once started,
the simulation, or monitoring element, tran-
sitions from the ’wait_to_start’ state to the
'has_started’ state. Typically, simulations
enter a cyclic state where the model manager
continually requests their next position for
the current time of interest (e.g., the
internal system time). Since the model
manager makes all the requests, it controls
the rate at which simulation elements
respond. Simulation or monitoring elements
never send unsolicited information. This
greatly simplifies their control. 1In effect,
simulation management is handled via a master
/ slave approach rather than with the client

/ server relationship held with the wuser
interface. This control technique also
ensures the model manager is never inundated

with data from clients’ simulations.

The notion of a time
maintain an accurate

node was developed to
visual display of multi-
ple moving objects. When time is propagated,
a node is allocated and placed on the end of
a time list. For each time unit, a request
is generated for each active simulation ele-
ment in order to update its position, atti-
tude, or light direction. These requests are
attached to the current time node. When the
simulation element responds with appropriate
data, the corresponding model is updated to
reflect this wupdate, and the request is
removed from the appropriate time node. Once
all requests for a particular time node have
been removed, the time node is freed and the
scene 1is 1in a correct state for the next
display. If all requests for a time node
have been removed, and an earlier time node
still contains outstanding requests, then

147

2.3.3. View Generation

The model manager spends the majority of its
processing maintaining accurate visual
representations of the scene being modeled.
It supports a wide array of scene viewing
capabilities. Under user control, the graph-
ics screen may be partitioned into a number
of viewports. Each viewport is treated as an
empty slot in which an eye or camera may be
assigned. Only one view (eye or camera) may
be assigned to a particular viewport at any
one time; however, a view may be assigned to
multiple viewports. Viewports have a back-
ground color, and are outlined to indicate
their screen coverage. In addition,
viewports have the property of visibility.
The wuser may wish to temporarily turn off a
particular viewport to improve display rates
or to ignore uninteresting views. Viewports
which have an assigned eye or camera may have
a small title displayed to help identify the
particular view. These titles are extracted
from the corresponding eye or camera nodes
from within the scene tree.

During the scene tree construction phase, a
default viewport configuration file and a
default view assignment file are read to pro-
vide an initial viewing framework. This
framework is used to view the scene prior to
starting simulations. Once a scene is
loaded, the user interface requests a list of
all available viewport configurations and
their current view assignments. Given this
information, the user may freely assign views
to viewports, toggle viewport visibility, or
select another viewport configuration.

The model manager constructs a view for a
given viewport in the following manner.
First, a view is assigned to a particular
viewport by copying the specified viewing
parameters to the desired viewport data
structure. A view mapping matrix is then
computed for this viewport. The next step
involves the actual view generation, given an
arbitrary viewing position in modelling coor-
dinates. Since the eye coordinate system is
fixed, it is necessary to transform the world

coordinate system into this eye coordinate
system. The scene tree contains all informa-
tion concerning model hierarchy, and is

therefore used to compute this transformation
by traversing the scene tree backward from
the eye or camera node to the tree’s root
node. Initially, the eye’s orientation is
set to the identity matrix. This matrix is
then transformed by applying inverse
transformations while traversing up the tree.
Once the root node is reached, a final orien-
tation matrix has been formed, and it is then
associated with the corresponding viewport.

The viewing computation is then completed by
loading the newly computed viewing represen-—
these earlier time nodes are destroyed -
leaving only the latest information. By
employing time nodes and multiple requests
per time unit, the accuracy of the visual
display is ensured.

tation and allowing PHIGS to traverse the
hierarchical model contained in the CSS. 1In
order to minimize the view construction, only
the assigned, visible, viewports are com-
puted.

2.4. Simulation Components

The simulation tasks provide the model
manager with the necessary data to maintain
an accurate representation of the Sun, the
Moon, any number of orbiting vehicles, and
the orientation of the Earth within the M50

coordinate system basic JSC inertial

coordinate system).

(the

Currently, three types of simulation tasks
are supported: a Sun simulation, a Moon
simulation, and an orbiting vehicle simula-
tion. Simulation tasks are started by the
model manager via a remote procedure call.
They are typically deployed on workstations
providing floating point hardware. Once a
simulation has successfully started and has
established communication with the model
manager, it is sent a packet containing all
information required to begin processing.

A simulation component of DEMOS consists of
up to five functional elements:

1) Compute the Rotation-Nutation-
Precession (RNP) matrix. The RNP
matrix relates the M50 coordinate
system to a coordinate system fixed
to the Earth.

Generate from one to ten orbits worth
of ground tracks for the orbiting
vehicle

Determine the position over the Earth
of the orbiting vehicle.

Determine the attitude of the orbit-
ing vehicle axes relative to an
Earth-fixed coordinate system so that
the vehicle maintains a pitch, roll,
and yaw of zero degrees relative to
the UVW local orbital reference frame
(U is a unit wvector in the direction
of the radius vector, W is a unit
vector in the direction of the angu-
lar momentum vector, and V is the
unit vector which forms a right-
handed system). (Note that the body
axis system for this application has
the Xx-axis out the nose of the
orbiter, the z-axis out the top of
the orbiter, and the y-axis out the
left wing).

Determine the location
the Moon.

Computation of the RNP

2)

3)

4)

5) of the Sun and

2.4.1. Matrix [12]

The fundamental transformation matrix for the
simulation component is the RNP matrix. It
incorporates all of the precession, nutation
and rotation changes that have affected the
orientation of the Earth in inertial space
since 1950. It relates the orientation of an
axis system fixed to the Earth relative to
the M50 coordinate system. The user inter-
face task provides the base-time-of-interest
values. These include: the year, month, day,
hour, minute and second. The time difference

148

between Ephemeris Time and Universal Time
Corrected is also provided.

Once the input base time has been obtained,
the computation of the RNP matrix proceeds as
follows:

1)} Calculate the Julian Universal Date
and the Julian Ephemeris Date.

2) Compute the three precession angles.

3) Compute the precession transformation
matrix, P.

4) Compute the nutation angles.

5) Compute the nutation in longitude.

6) Compute the nutation in obliquity.

7) Compute the nutation transformation
matrix, N.

8) Compute the rotation transformation
matrix, R, which orients the X-axis
(through Greenwich) for the base time
of interest.

9) Compute the RNP matrix by multiplying
the R, N, and P matrices together.

10) Perform the z-axis rotation to rotate

the RNP matrix back to December 31, O

hours, 0 minutes, 0 seconds of the
previous year.
This fundamental RNP matrix is employed to
transform an M50 vector (for a given time)
into an Earth-fixed vector. This is
extremely important for the generation of
ground tracks or for positioning a vehicle
over the surface of the Earth.
2.4.2. Generation of Ground Tracks
The user interface task provides the number

of orbits worth of ground tracks that are to
be displayed. This number is passed to the
ground track simulation element where 180
sets of Earth-fixed latitude and longitude
points are generated for each orbit. These
points are passed to the model manager which
then displays the ground tracks on the 3D

Earth Model.

Each Earth-fixed latitude and longitude point
is computed as follows:

1) Propagate the state vector
particular time along the
track (the delta time between propa-
gation steps 1is the period of the
orbit divided by 180 points).
Calculate an updated RNP matrix using
the time of the state vector.
Transform the propagated M50 position
vector into and Earth-fixed position
vector using the RNP matrix.
Calculate the Earth-fixed latitude
and longitude from the Earth-fixed
position vector.

to the
ground

2)
3)

4)

The ground track simulation element either
uses a two-body propagation method or a modi-
fied Analytic Ephemeris Generator (AEG) pro-
pagation method to generate the state vectors
from which the latitude and longitude points
are computed. The user specifies which pro-
pagation method is desired when the initial
state vector is entered.

2.4.3. Computation of Position

The user interface provides values for the
initial simulation. The object could be the
shuttle orbiter, the Space Station, or any
other satellite of the Earth. The user
decides the choice of wunits (e.g. feet,
meters, or Earth radii) and the initial time
of the ’'state’. This ’state’ can be entered
either as M50 position and velocity vectors
or as M50 Keplerian orbital elements (semi-
major axis, eccentricity, inclination, longi-
tude of the ascending node, argument of peri-
gee and mean anomaly). Finally, the choice
of propagation method is entered. This can
be either two-body or AEG propagation. When
the simulation element is initialized, addi-
tional orbital parameters are computed which
will be utilized in the propagation of the
position and velocity. In the case of two-
body propagation [6], the additional parame-
ters include wunit vectors in the two-body
crbital plane. An AEG propagation is ini-
tialized by computing a set of ‘invariant’
elements which can be used to propagate posi-

tion and velocity including the effects of
the J2, J3, and J4 gravitational harmonics of
the Earth. The AEG propagation method is a

scaled down version of Edgar Lineberry’s Ana-
lytic Ephemeris Generator [8] which is used
in the MCC to support missions. The scaled
down version computes the effects of the
short-period terms on the orbital elements.
The version implemented for DEMOS does not
include the calculation of drag effects.

When a time is given to the position computa-
tion element, Get position, the position and

velocity are propagated to that time. This
time may be sent to Get_position either by
the ground track computation element or by

the model manager. Once the position and
velocity are propagated, a series of coordi-
nate transformation routines rotate these
vectors into an Earth-fixed coordinate sys-
tem. The Earth-fixed position vector is then
used to calculate the Earth-fixed latitude
and longitude.

2.4.4. Computation of Attitude [9]

After the position is obtained, the pitch,
roll, and yaw attitude angles of the orbiting
vehicle relative to the Earth-fixed reference
frame are computed to maintain the vehicle
attitude of its body axes relative to the UVW
local orbital reference frame. This "UVW
hold" attitude causes the shuttle to appear
on the graphics screen with its nose parallel
to the ground tracks and the plane of the
wings perpendicular to the radius vector.
This allows the payload bay doors to be visi-

ble to a viewer looking down on the shuttle
as it orbits the Earth.

2.4.5. Computation of the Sun Position
[2,3]

The model manager has the capability to pro-
vide 1lighting over the surface of the Earth,
by knowing where the Sun is relative to the
Earth-fixed coordinate system. The Sun posi-
tion computation element, Get_sun, calculates
the Earth-fixed position of the Sun by the

149

following steps:
1) Calculate the precession

the precession matrix P,
of interest.
Calculate the Mean Longitude of Peri-
gee for the Sun relative to the Mean
Equinox of Date.
Calculate the Mean Anomaly for the
Sun relative to the Mean Equinox of
Date.
Calculate the eccentricity
Earth’s orbit around the Sun.
Solve Kepler’s equation for
Eccentric Anomaly of the Sun.
Calculate the True Anomaly
Sun.
Calculate the Mean Obliquity
Ecliptic.
Calculate the longitude of the Sun in
the Ecliptic plane.
Calculate the magnitude of the radius
vector from the Earth to the Sun.
Compute the position vector of the
Sun in Ecliptic coordinates.
Apply the precession matrix, P, to
this Ecliptic vector to compute the
position vector for the Sun in M50
coordinates.
Rotate this M50 position vector using
the RNP matrix to Earth-fixed coordi-
nates and extract the Earth-fixed
latitude and longitude of the Sun.
Computation of the Moon Position

angles and
for the time

2)

3)

4) of the

5) the

6) of the

7) of the

8)
9)
10)

11)

12)

2.4.6.
[2,3]
The model manager can move one of its
viewpoints sufficiently far from the Earth-
Moon system so that both the Earth and the
Moon are visible in the same view. If the
system time is accelerated the Moon can be
seen to orbit the Earth.

The Moon position computation element,
Get_moon, calculates the Earth-fixed position
of the Moon by the following steps:
1) Compute the precession angles and the

precession matrix, P.

Calculate the nutation angles.
Calculate the Ecliptic latitude,
Ecliptic 1longitude, and parallax of
the Moon using Fourier Series Expan-
sions (sine and cosine terms} of com-
binations of the nutation angles.
Compute the magnitude of the radius
vector from the Earth to the Moon.
Compute the position vector of the
Moon in the Ecliptic plane.

Rotate the Ecliptic position vector
into the M50 coordinate frame using
the precession matrix, P.

Rotate this M50 position vector using
the RNP matrix to Earth-fixed coordi-
nates and then extract the Earth-
fixed 1latitude and longitude of the
Moon.

2)
3)

4)
3)

6)

7}

Eventually, the position, velocity and atti-
tude information for the orbiting vehicle
will be obtained over the LAN from the Mis-
sion Operations Computer (MOC) or Calibrated
Ancillary System (CAS). The internal units
for the simulation component have been kept
compatible with the Ground Based Space Sys-

tems (GBSS) internal units on the MOC to ease
this transition.

3. CONCLUSION

implementation of 3D
modelling employing accurate simulations of
the Earth, Sun, Moon, and any number of
orbiting objects. It provides a visualiza-
tion tool which has the capability to simu-
late / monitor orbiting objects and to
display a realistic scene in an acceptable
time period. A flexible viewing system
allows flight controllers to view objects
from a variety of viewpoints. Vehicle cam-
eras and synthetic eyes may be defined to
inspect spacecraft activity from arbitrary
view positions. The distributed architecture
provides the framework for future application
extensions. Application software employs the
latest workstation standards, maximizing its
lifecycle while minimizing any rehosting
costs. Simulation techniques are implemented
from proven algorithms.

DEMOS is a successful

4. ACKNOWLEDGEMENTS

The authors wish to thank Randall Barnett of
Lincom Corporation for his PHIGS assistance
and software techniques. His optimized algo-
rithms improved view generation times consid-
erably. We would like to also thank the Mis-
sion Planning and Analysis Division (MPAD)
graphics lab for their generous supply of
high fidelity graphics models of various
spacecraft, which helped assimilate realistic
scenes.

5. REFERENCES

1. Computer Science Corporation, FLIGHT
DYNAMICS / SPACE TRANSPORTATION SYSTEM
3-D MONITOR SYSTEM RELEASE 2 SYSTEM

DESCRIPTION, (CSC/SD-88/6066, Contract NAS

5-31500, Task Assignment 58 214, NASA
Goddard SFC, Greenbelt, Maryland, August
1988.

METHODS OF ASTRODYNAMICS,
Inc., New York, 1968.

2. Escobal, P. R.,
John Wiley & Sons,

3. EXPLANATORY SUPPLEMENT TO THE ASTRONOMI-
CAL EPHEMERIS AND THE AMERICAN EPHEMERIS

AND NAUTICAL ALMANAC, H. M. Stationery
Office, London, 1961.

4. Foley, J. D., Van Dam, A., FUNDAMENTALS
OF INTERACTIVE COMPUTER GRAPHICS,
Addison-Wesley Publishing Company, Phi-
lippines, 1982.

5. Gettys, Jim, Newman, Ron, Scheifler,
Robert W., XLIB - C LANGUAGE X INTERFACE,
Massachusetts Institute of Technology,
Cambridge, MA, 1987.

6. Herrick, Samuel, ASTRODYNAMICS, Volume I,

Van Nostrand Reinhold Company, London,

1971.

150

10.

11.

12.

Hewlett-Packard Company, PROGRAMMING WITH
THE XRLIB USER INTERFACE TOOLBOX, Febru-
ary 1988.

Lineberry, Edgar, INVARIANT ORBITAL ELE-

MENTS FOR USE 1IN THE DESCRIPTION OF
MOTION ABOUT AN OBLATE EARTH, JSC Inter-
nal Note No. 74-FM-84, December 4, 1974.

MATHEMATICAL STANDARDS AND GUIDELINES,
IBM GBS Programmer’s Guide, Section 6,

September 1, 1976,
Mortenson, M. E., COMPUTER GRAPHICS: AN
INTRODUCTION TO THE MATHEMATICS AND

GEOMETRY, Industrial Press Inc, New York,
NY, 1989.

O’Reilly and Associates, XLIB PROGRAM-
MING MANUAL FOR VERSION 11 RELEASE 2 OF
THE X WINDOW SYSTEM, Volume I, O’Reilly
and Associates, Newton, MA, April 1988,

Schulenberg, C. W., DESCRIPTION OF A
SELF CONTAINED SUBROUTINE WHICH ANALYTI-
CALLY GENERATES INTERPLANETARY COORDINATE
SYSTEM TRANSFORMATIONS REFERENCED TO THE
MEAN OF 1950.0 EPOCH, TRW Note 70-FMT-
853, Sept. 30, 1970.

—_ -

N9O-20672

= ;:’ e
L et

Prototype Pag Task Trainer
Remote Manipulator System Simulator

Dayvid Shores
Barrui% Technology Inc.

Gemini

Houston, Texas 77058

Abstract
The Part Task Trainer program (PTT) is a
kinematic simulation of the Remote
Manipulator System (RMS) for the orbiter.

The purpose of PTT is to supply a low cost
man-in-the-loop simulator, allowing the
student to learn operational procedures

which then can be used in the more expensive
full scale simulators. PTT will allow the
crew members to work on their arm operation
skills with out the need for other people
running the simulation. The controlling
algorithms for the arm were coded out of the

Functional Subsystem Reguirements Document
to ensure realistic operation of the
simulation. Relying on the hardware of the

workstation to provide fast refresh rates
for full shaded images allows the simulation
to be run on small low cost stand alone work
stations, removing the need to be tied into
a multi-million dollar computer for the
simulation. PTT is not intended to replace
the full scale simulators but to augment the
training process and reduce the load of the
full scale simulators, especially when the
student is learning new procedures and is
error prone. PTT will allow the student to
make errors which in the full scale mock up
simulators might cause failures or damage
hardware. On the screen the user is shown a
graphical representation of the RMS control
panel in the aft cockpit of the orbiter,
along with a main view window and up to six
trunion and guide windows. The dials drawn
on the panel maybe turned using the dials on
the dial box to select the desired mode of
operation. The inputs controlling the arm
are read from a chair with a Translational
Hand Controller (THC) and a Rotational Hand

Controller (RHC) attached to it.
INTRODUCTION

part Task Trainer (PTT) 1is a kinematic

simulator for the shuttle remote manipulator

system(RMS). This paper will discuss what

PTT does, it’s history, uses, operation,

design and the future of the program.

151

The controlling algorithms for the arm are
coded from the functional subsystem software
requirements document (FSSR) to ensure
operation as <close to the real arm as
possible. Five of the computer supported
modes and one of the non-computer supported
modes are modeled. These modes supply the
student with training in the major RMS modes
of operation.

HISTORY

PTT started out as two separate programs on
two separate machineés. The graphics were
done on an IMIS500 in wire frame and the
simulatiorn on an HP9000. When the Silicon
Graphics 4D/60 was announced it was decided
these two programs could be merged and
provide better functionality. The
controlling algorithms were coded from the
FSSR and merged with already existing
display code. This allowed us to deliver a
limited working version in two months.

USES

PTT will be used in the training
the crew members. It will
inexpensive hands on training
environment were mistakes can cause no
damage to hardware. In the full scale
simulator 1if the student makes a mistake
damage to the equipment could be costly.
But with PTT the worst damage only means
restarting the simulator not rebuilding the
hardware. PTT is not meant to replace the
large scale simulators, but to augment them.
The large scale simulators are expensive to
run (computer time, support personnel), but
PTT needs no support personnel, it is all
self contained. It will allow the crew
members more time to work with the arm and
learn the different modes of operation. It
will be wused to maintain proficiency of
operation, warm up for the integrated
simulations and flight specific training. It
is also used for engineering studies of
reach limits and space station assembly.

cycle for
provide
in an

OPERATION
PTT started out originally to be only a
single joint operation simulator. But with
the capability of the machine for floating

point operations it was decided to include
the computer supported modes. In single
joint mode the operator is working with only

one Jjoint at a time. Therefor, the
movements of the end effector will be an arc
rather than a straight 1line as in the
computer supported modes

In single joint mode the wuser selects a
joint with the Jjoint knob and inputs a
positive or negative rotaticon with a toggle
switch on the chair. There is no joint
software reach 1limit checking done since

this mode 1is wused to drive the arm out of
reach limits. In four o¢f the computer
supported modes (orbiter wunloaded, end
effector, orbiter loaded and payload) the
translational hand controller (THC) and the
rotational hand controller (RHC) are used to
control the point of resolution (POR). The
PCR is the point about which the rotations
are calculated, generally this is the tip of
the end effector or a point located inside
the paylocad. The translations translate the
POR in a straight line along the axis of the
coordinate system and the rotations are done
about the POR. If the arm 1is in orbiter
unloaded mode the coordinate system used is
the orbiter’s. In orbiter loaded mode the
coordinate system is the orbiter’s plus any
offset added by the user for the POR. In
end effector mode the coordinate system is
the tip of the end effector. In payload
mode the offset is added to the end effector
position for the final POR. The THC provides
positive and negative input on all three
axis. The RHC provides positive and
negative rotations for pitch, yaw and roll.

The last computer supported
commanded (OCAS), deals with the POR the
same way as the other four. The difference
the input for movement. In OCAS the
user enters the position and attitude
desired for the end effector. If it is a
valid position and attitude, meaning the arm
can reach”it, the software attempts to drive

mode, operator

is in

the POR to this position and attitude in a
straight line. The software does no
checking for reach limits, singularities or
interference when checking the final
position and attitude. But reach limits aqd
singularities are checked when the arm is
being driven to the new position and if one
occurs the user must deal with it.
Interference between models is left wup to

the user just like the real RMS.

152

During the simulation the wuser has the
option of practicing the grapple and release
operation. When the grapple trigger is
activated a list of possible grapple figures
is checked to determine which one should be
grappled. The grapple fixture must be
within the constraints of the real arm,
these are -4 < [x,y,z] < 4 and -15 < [pitch,
yaw, roll] < 15. If the grapple is
determined to be valid the arm is drawn to
the grapple fixture and the payload is
relinked dynamically to the arm. In other
words the software determines the new
position and attitude of the payload
relative to the arm for the drawing
hierarchy. This procedure can be reversed
when a release 1s done. The new position
and attitude relative to NULL is calculated
for the paylcad and the hierarchy is changed

to reflect this change. When the arm is
going through a grapple or release sequence
it takes approximantly the same amount of
time as the real arm does to help reduce
negative training.

These are the basic modes of operation for

the RMS. Now we will discuss the link to
the graphics interface.

DESIGN
The interface to the simulator is a

representaticn
RMS in the aft

graphic
of the control panel for the
cabin of the orbiter, an
alpha-numeric terminal, a buttons and dials
box, the mouse and a specially designed
chair with an RHC and a THC attached to it.
The lower 1left quarter of the screen
contains the panel. This 1is wused to
indicate which mode of operation is active.
The actual panel has three dials for the
mode control. These dials have been mapped
to the dials box. Movement of the dials is

reflected by the dials on the screen. The
other buttons and toggle switches on the
panel which are needed for the simulator are
mapped to the buttons box. The alpha-
numeric terminal is wused to simulate the
auxiliary display in the aft cabin. Two of
the possible screens have been modeled. The
DISP94 and SPECY96 screens. These are useed
for input for operator commanded mode and
position and attitude information display.
The buttons and dials box is used for moving
the camera around in X, Y, and 2,
manipulating the dials on the panel,
changing the active camera, and the switch
input for the panel. The mouse 1s used for
the toggling between wire frame and shaded
views, and enlarging any of the view
windows up to full screen or back. Also, in
setup mode it 1is wused to adjust models,
cameras, lights and other operational
information. The chair with the RHC and THC
is used for arm control input. The chair
communicates with the simulation over an
RS-232 line.

The top left quarter of the screen 1is the
main view window. This window contains the
view from the active camera. The active
camera can be changed to preset camera
positions with the buttons or moved around
in X, Y, and 2 with the dials. The right
side of the screen is used for special
purpose windows. These windows are views of
the trunions on the payload and the
associated guides in the payload bay. These
windows provide an unseeable view in the
real world. They assist the student when
doing single joint operations.

There are two types of models used in PTT,
Those predefined by the software, the panel,
and those built by another program and read
in, the orbiter. 98% of the models read
into PTT were created with the in house
model building package Solid Surface Modeler
(SSM) .

The predefined models are the models used to
draw the panel, These were hand designed
and placed on the screen. Only the parts of
the panel which change are updated. If the
parameter dial is turned the parameter dial
on the display will change as well as the
number readout, but nothing else is updated.
The models read into PTT are drawn in the
view window. All of the models are update
in the main view every time. Each of the
special purpose windows has a list of models
associated with them, if any of the models

in the 1list are moved then the window is
updated. Otherwise it is left unchanged.

The models read in are linked together in an

hierarchy which tells the program where to
draw each model. Each node in the hierarchy
has a flag which is set if the position and

attitude change. If so, every node that is

a child to this node must be redrawn.

One of the design goals deals with the speed
of wupdating the screen. Only drawing the
models which move allows the graphics engine
to do as little work as possible when
updating the screen. Another design goal
was to minimize negative training. Since
mistakes on orbit c¢an be <costly or even
dangerocus all training is done as close to
the actual procedure wused in flight as
possible for consistency. Some examples of
this are labeling the dials and buttons on
top instead of underneath. All the switches
and knobs in the orbiter are labeled on top.
Also the length of time 1is takes the
grapple/release sequence. Since the arm can
be moved with this operation is taking place
the time in the simulator is approximantly
the same amount used for the real arm so the
user does not get in the habit of moving the
arm to soon.

153

The justification for PTT is simple. Most
of the code was already written but used in
different programs. By using this code the
maintenance of the code is relatively easy.
It also means enhancements to the code are
just as easy. The cost of operation is
minimal. Once the student has an
introduction course there should be no more
need for instructors. Also the cost of the
machine is small to the cost of the large
simulators.

The future of PTT looks promising. It will
go into the training cycle in April. So far
everybody dealing with training who has seen

PTT has liked it and are anxious to get it
into the training cycle. As for program
enhancements another view window and

dynamics have been discussed. We are hoping
to get a Silicon Graphics 240GTX which is a
4 processor parallel machine. We feel these

enhancements would greatly improve the
ability of the simulator. We also have
several different versions of PTT. One
allows the student to work with a two arm
configuration. Another version of PTT is
being developed for the Space Station
Freedom arm.

With the ease of use, ease of modifications
and speed of the simulator PTT should be
very useful for training, maintaining
proficiency and engineering studies.

—
<

—T - b/

Né0;20673

52

SPACE STATION FREEDOM
INTEGRATED FAULT MODEL

by Fred J. Becker
Lockheed Engineering and Sciences Company
2400 NASA Road 1, C87, Houston, TX 77058-3711

ABSTRACT

This paper describes a demonstration of an integrated
fault propagation model for Space Station Freedom.
The demonstration uses a HyperCard graphical
interface to show how failures can propagate from
one component to another, both within a system and
between systems. It also shows how hardware
failures can impact certain defined functions like
reboost, atmosphere maintenance or collision
avoidance. The demonstration enables the user to
view block diagrams for the various space station
systems using an overview screen, and interactively
choose a component and see what single or dual
failure combinations can cause it to fail. It also
allows the user to directly view the fault model,
which is a collection of drawings and text listings
accessible from a guide screen.

Fault modeling provides a useful technique for
analyzing individual systems and also interactions
between systems in the presence of multiple failures
so that a complete picture of failure tolerance and
component criticality can be achieved.

1.0 INTRODUCTION

This paper illustrates a HyperCard user interface for
a failure propagation model of the Space Station
Freedom integrated systems. It uses as an example a
typical session of investigating the failure tolerance
of the integrated Space Station Freedom systems. It
also provides some background on how the failure
model and HyperCard interface was developed.

The failure propagation model was coded and solved
using Digraph Matrix Analysis, a proprietary
software toolset. The results were transferred from

155

PRECEDING PAGE BL/K [i57 Fih

o PR
Fiiuad LAEYES Frale

a VAX to a Macintosh and there provided the
required data to the HyperCard graphical
environment.

This project was performed for the Guidance,
Navigation, and Control Systems Branch of the
Avionics Systems Division of the Johnson Space
Center as a prototype for failure modeling tools
which can be used for Space Station Freedom.

2.0 ABOUT FAILURE MODELING

The failure model which is behind the HyperCard
user interface contains information about failure
propagation in Space Station Freedom systems. This
information is accessed by the HyperCard stack on
command from cues provided by the user.

The failure model is in the form of a directed graph
(digraph), which is a network model of a system
pictorially representing failure propagation
throughout the system. The digraph consists of
nodes representing system components, and arrows
representing failure propagation from one
component to the next. Inputs to a node represent all
things that component depends on for proper
functioning. Conversely, outputs from a node
represent failure propagation from that component to
other components.

AND gates are used to indicate functional
redundancy. For example, a computer might be
supplied with electrical power from two busses. This
would be drawn as two node inputs to an AND gate
feeding the computer. Both nodes must fail before
the computer fails.

Digraphs can be used to model anything from
electrical diagrams to logic diagrams, fluid diagrams,

eack (fﬂ JNTENTIONALLY BLANK

mechanical systems, procedures or end-to-end
functions. Failure tolerance can be studied, when the
system digraph is completed, by looking at the
failure propagation results to see either what failures
a given component failure can cause or what other
failures can fail a given component. The latter
method (the more difficult problem) is how this
demonstration presents the information. Single
failures or double failures which can result in the
failure of the target component are displayed on the
screen.

3.0 SPACE STATION FREEDOM FAULT
MODEL

The overall fault model used in this demonstration
contains about 600 nodes representing orbital
replacement units, data lines, piping, tankage and
other components of the Space Station Freedom
systems. The purpose of this demonstration is to
provide a relatively small model which nevertheless
illustrates the highly integrated nature of the Space
Station Freedom systems. Therefore, the models
have been kept fairly high-level. Several high level
functions, felt to be the most critical, are also
modeled by showing their dependence on the
systems. Systems and functions included in this
model are:

Data Management System (DMS)
Guidance, Navigation and Control (GN&C)
Communications and Tracking (C&T)
Thermal Control System (TCS)
Environmental Control and Life Support
System (ECLSS)

Propulsion
Electrical Power System (EPS)
Extravehicular Activity System (EVAS)
Reboost
Attitude Control
Docking
Collision Avoidance
Fire Suppression
Atmosphere Maintenance

The initial fault modeling was done by drawing the
digraphs on paper, based on the system block
diagrams. The failure propagation modeled was
based on judgements about whether a particular
functional connectivity implied any failure
propagation. The resulting drawings were then
translated into text listings for use with the Digraph
Matrix Analysis software, which computed the
failure "reachability”. Next the block diagrams were

created on HyperCard stacks, using button names
which corresponded to the digraphs. Of the total
model, 545 buttons were chosen for display. The
following section shows how the result works.

4.0 HYPERCARD DEMONSTRATION
TUTORIAL

4.1 Navigating Through the Stack

Figure 1 illustrates the opening card. This card is
the first card the user sees. It contains an illustration
of Freedom Station as a visual cue that the user is at
the top level, plus a title bar across the top, a home
button, and credits across the bottom. This card
gives the user four options--INTRODUCTION, RUN
MODEL, VIEW MODEL and FINISH. Clicking on
INTRODUCTION will take the user to a section
containing tutorial text. The RUN MODEL button
starts the demonstration. The VIEW MODEL button
allows the user to view the fault model drawings and
listings. Clicking on FINISH will exit HyperCard.

-

r

I SPACE STATION FREEDOM INTEGRATED FAULT HODE?I

m FRED BECKER, DAN DE YOS 7 LOCKHEED ENGINEERING AND SCIENCES COMPANY

156

Figure 1
OPENING CARD

Figure 2 shows the introduction card. Instructions
printed across the top tell the user what to do. This
card guides the user to four areas of tutorial
information:

PART 1
HOW TO USE THIS DEMONSTRATION

PART 2
ABOUT DIRECTED GRAPH FAULT MODELING

PART 3
WHAT HAS BEEN MODELED?

PART 4
SYSTEM FAULT MODELING IN THE
SPACE STATION FREEDOM PROGRAM

Part 1 helps the user learn to use the actual
demonstration. Part 2 explains in general how
directed graphs are used to model failure
propagation. Part 3 details how the space station
systems were modeled, and what source materials
were used. Part 4 then gives a perspective on how
fault modeling may be used in designing and

INTRODUCTION--CHODSE AMONG THE FOUR BUTTONS. RETURN LWHEN RERDY

PART 2

THE THEORY BEHIND
THIS BEMONSTRATION

PART |

HOW TO RUN
THIS BEMONSTRATION

PART 4

FAULT MODELING'S
ROLE IN THE SPACE STATION
FREEDOM PROGRAM

PART 3

HOW HAS
SPRCE STATION FREEDOM
BEEN MOOELED?

Figure 2
INTRODUCTION CARD

operating Space Station Freedom. These cards all
contain text in a scrolling field. The RETURN
button on these four cards will return the user to the
introduction card. The RETURN button on the
introduction card will then allow the user to return
to the opening card. The introduction portion of the
demonstration is optional. The user can go directly
to the demonstration if desired by clicking on RUN
MODEL on the opening card.

Figure 3 shows the result of clicking on RUN
MODEL from the opening card. It has two buttons
to allow the user to chose between two types of
demonstration. The HARDWARE button goes into a
demonstration in which individual hardware items
are chosen as the ultimate targets of other hardware
failures. The FUNCTION button takes the user into
a demonstration which shows how Freedom Station's
functions can be affected by various hardware
failures. It was felt that an entire card dedicated to
this choice would emphasize to the user the
distinction between the two types. The RETURN
button on this card allows the user to return to the
opening card if desired. This card will be referred
to as the "hardware or functions?" card.

157

HARDWARE

CHOOSE “HARDWARE" TO VIEW A HARDWARE
FAILURE TOLERANCE DEMONSTRATION.

CHOOSE "FUNCTIONS" TO YIEW A FUNCTIONAL
FAILURE TOLERANCE DEMONSTRATION.

Figure 3
"HARDWARE OR FUNCTIONS?" CARD

Figure 4 shows the systems hardware card,
identified by its title bar across the top of the screen.
The user will see this card when the HARDWARE
button is chosen from the "hardware or functions?”
card. This card has a selection of Space Station
Freedom systems from which the user will go into
the demonstration. The user can view the block
diagrams for these systems by clicking on the desired
system. The SHOW DATA button allows viewing of
singleton and doubleton data from the previous target
chosen (an advanced feature). The VIEW
DIGRAPHS button allows the user to view the entire
digraph listing, taking the user to the same card as
does the SHOW MODEL button on the opening card
(a short cut from this card to the digraph). A
message box across the bottom informs the user to
click on one of the system boxes. MENU BAR will
turn off the Macintosh menu bar, which is useful on

SPACE STATION FREEDOM SYSTEMS HARDWARE

DATA GUIDANCE, COMHUNICATIONS THERMAL
MANAGEMENT NAVIGATION & CONTROL

SYSTEM CONTROL TRACKING SYSTEM

SHOW DATA

EXTRAVERICULAR | ENVIRONMENTAL
ACTIVITY CONTROL &LIFE
SYSTEM SUPPORT SYSTEM

CHODSE A SYSTEM TO DISPLAY

UVIEW) DIGRAPHS

ELECTRICAL
POWER
SYSTEM

PROPULSION
SYSTEM

Figure 4
SYSTEMS HARDWARE CARD

Macintosh SE's or when making a presentation.
RETURN will take the user back to the opening card.

Figure 5 shows the functions card. This card will
allow the user to see how selected functions can be
affected by various hardware failures. It is reached
by clicking on the FUNCTIONS button from the
"hardware or functions” card. When one of the six

ORIGINAL PAGE |
OF POOR QUALITY

(016RAPH] [GUTDANCE, NAVIGATION & CONTROL SYSTEM] | ACAONYMS)

ARJ1 | | RCSY smtl nn| sTt | 1sa1 iesmtfl Evr | Resa
BTATS) (ETHT LILI) ; L TTHT

|—

o (=}
I"g X
o]
~ -

T, Aes2 i sm2 || re2 | s12 | isaz [ipsmz2]| euz || mess
Bine BIRIT)(BIRT ‘

1| ARg2 ACS3 ST3 || ISR3 || PSM3 RCS6

;1) Bino | Bl BIR12 BIRZ
|
BCU!? BCu2 BCU3

=
azaa

1| onsc sus

GNCSDP1|[GNCSDP2){ 6NCSDP3 TSOP1 SpP2

SPACE STATION FREEDOM FUNCTIONS DEMONSTRATION NIU1 Niu2 NIU3 Niu4 NIUS
oMs s 1§ R 1 ¥} 1 8§ 1 8 i
) 1 4 X) 0
AEBOOST COLLISION AUOIDANCE SELECY AN OBJECT TO SEE WHAT CAN AFFECT IT _
ATTITUDE CONTROL FIRE SUPPRESSION
DOCKING ATMOSPHERE CONTROL .
Figure 6

CHOOSE A FUNCTION TO SEE
SHOW DATA N \u\cy sysTEMS SUPPORT 1T R UIEW DIGRAPHS

Ill'l"!'ll
| i |

RETURN SELECT AN DBJECT TO SEE WHAT CAN RFFECT IT

Figure 5
FUNCTIONS CARD

function buttons is clicked on, the associated systems
which have hardware supporting that function will be
highlighted across the bottom of the card. The user
can then jump over to those system drawings to view
the particular hardware combinations which can
cause the loss of the chosen function. The remaining
buttons have the same function as on the systems
hardware card.

4.2 Starting the Demonstration

Figure 6 shows a typical system block diagram
card, reached by clicking on one of the systems listed
on the systems hardware card. This particular card
shows the Guidance, Navigation and Control System
block diagram. Each object in this card represents a
node in the integrated Space Station Freedom fault
model. By clicking on one of the objects, the user
will be able to view all single and double hardware
failures anywhere in the station which can propagate
and eventually cause the failure of that object. These
objects are the lowest level of detail contained in this
demonstration, and when the user clicks on one of
them the demonstration becomes active.

Other buttons on this card include an ACRONYMS
button for displaying and removing a scrolling field

158

GN&C SYSTEM BLOCK DIAGRAM

containing the full names of the objects on the screen,
a DIGRAPH button for viewing the associated
digraph drawing or listing directly, and a RETURN
button for returning to the systems hardware card.

When the user has clicked on a target object, in this
case the Star Tracker #1 (ST1), buttons for the
various systems will appear across the bottom of the
screen (DMS, GN&C, C&T, etc.) with instructions
on what to do. See Figure 7. Certain system
buttons will be highlighted. These are the systems
containing failures which can propagate to the target
object, and are therefore a guide to viewing the

UIGR’“’NI |[SUIDANCE, NAVIGATION & CONTROL SYSTEH] [ACRONYMS l'

s™1 REL S ISRt | PSM1]| EUt ACS4
; (BIA4]]

€MG1 ARJ1 RCS1
[:]] B!

tM62

L Acs2) sm2 | me2 || st2 || sz |[psm2| evz | aess

— BInz (BT (BTRS J(BIATTI(BTAT ‘
NE

CM63 :

i [anuz] | [mess 1sa3 [Psma RCS6
cM64 1) (LT BT 1]
GILPR Sy — T

omkcBUS gryr [ecoz [Bcus

GNCSDP1[|GNCSDP2|/GNCSDP3 SoP TS0P2

CMG6
Q:‘ THE BLACKENED SYSTEMS HAVE FAILURES WHICH NIUS
AFFECT THE SELECTED OBJECT-CLICK ON THEM

PROP | EUA JECLSS EHIT |PRIN

Figure 7
SYSTEMS WHICH REACH ST1

failure sources. When the user clicks on one of these
highlighted systems buttons, the card for that system
will be displayzd.

As shown in Figure 8, the user has gone ahead and
clicked on the GNC system button, which is the same
card from which the target was already selected.
Clicking on another system would have taken the
user to that card. The GNC card remains, but two
buttons, SINGLETONS and DOUBLETONS will
appear at the bottom of the card. Clicking on one of
these buttons will highlight one of the singletons or
doubletons on (or partially on) this card which can
reach the original target, STI1.

ORIGINAL PAEGE iS5
OF PCOR QUALITY

original target will be independently highlighted.
The original target remains highlighted as a
reference.

Doubletons are viewed in a similar way. Figure 10
shows how two components, BIA13 and BIA16, are
highlighted as a double-point failure which causes
loss of the target, ST1.

(016RAPH] [GUTDANCE, NAVIGATION & CONTROL SYSTER] |ACRONYMS |

Figure 8
GN&C CARD, READY TO DISPLAY
SINGLETONS AND DOUBLETONS TO ST1

In Figure 9, the user has clicked on SINGLETONS,
and the first singleton, Bus Interface Adapter #4
(BIA4), has been highlighted. A SHOW NEXT
SINGLETON button will appear at this time. This
button allows the user to cycle through all the single
point failures. The components which can fail the

cmml ARJ1 | | RSt sm;l nn| BT isa1 [psmr] evr | nesa
[016RAPK] [GUIDANCE, NAVIGATION & CONTROL SYSTER] | RCRONYMS] BIRT J(BEA13)BIAT4)(8R4 |
cme2| [=3]
ara1 | [ress sml ey |ISERR| 1sa1 |[psmi] eut || mese Res2 || sm2 l ez |[s12 |[1sn2 | psm2|f ev2 |f ness
LI LILK {Bind] (B (BTRS j(BTAS BN BIAT j
L CM53 L L L 1 1
i aos2 |l sm2 || nez || st2 || esnz||esmz2]| eu2 |[mess H ! ans2] || ress s13 || 15A3 }| Psm3 RCS6
LiLFA (BTRE|(BTATTI(E] CMG4 BIAS THG | BIAD (BIATZ BiAzY
BIAZ 7N — 1
ARJ2| || ACS3 sT3 || 15A3 | PSM3 ncssl prowe ORCEUS T acun Bcuz || scus
LILLE @ soP1 |l GNCSOP2]| 6NCSDP oP1 P2
T 1 I 1 1 6NC s0P2 3| | Ts 150
BNAC BUS 1
Bcut || ecuz || scus CM66
NIDI Nz || Nius NIUs || NIUS
eNcsoP1 [lencsop2) encsops| | Tsop1 || Tsoe2 oHs 1 I3 i |
NIUI Niuz || NiU3 Nioa || NIUS _ SHOL NEHT DOUBLETON I EIT [PRINT]
DMS I 1 X X I
|) | 1 X 1 §
SINGLETONS J DOUBLETONS Itun TPRINT] Figure 10

BIA13 AND BIA16 COMPRISE A
DOUBLETON TO ST1

However, when a double-point failure involves
components on separate cards, another button, GO
TO OTHER DOUBLET, will appear to allow the
user to view the other half of the doubleton (a
doubleton is made up of two "doublets”). As shown
in Figure 11, the user has cycled through viewing
doubletons until BIA16 is highlighted. BIA16 plus
some other component off-screen are a double-point
failure which can reach the target, STI.

[D16RAPH] [GUIDANCE, NAVIGATION & CONTROL SYSTEM] | ACRONYMS] (ni6RAPH] [GUIDANCE, NAVIGATION & CONTROL SYSTEM] | ACRONYMS]
CME1 an;l Acs1 smjl net |BCTH(1sa1 PSMI" Ul | RCS4 CME! ana1] [Rest) smr || et |IESTHR tsa1 |[esmi][eur |f resa
11, BIAT J[BIAT B LIL BIAT J(BTAT (8ind]
— 1 — L A §) 8 1 8 - — y) & i |
ceme2) = cme2| (==
@_ ncs2 | smz || ez |[stz || isnz2 [[psmz cuzrl E i ncsz|| smz || ez |[stz | 1sn2|psm2]| vz }ncss
(BTAS | [BiALTBIAE|Bn B2 |(BIA TATT)BIAT
tMG63 - I I - Guh— CMB3 I 13 — I T
H1 araz] [[ness s13 |[1583 |[Psm3 RCS6 [ana2] | [res3 s13 || 1583 |[Psm3 ACS6
t™e4| | HH LM CETAE | (BTAY) (BTATZ cme4] | H LM B1A6 | BIRS | EIATS BTAzY
TAZ7H — T BTAZIEH — T 3 ’
e GuAC BUS] GNAC BUS
Prowe scut) Bcuz | Bcus o scut || Bcuz || BCu3
i 6Ncsor1 {|6nesorz| encsoes| | Tsopt | Tsoe2 0 sNCsoP1 | encsorz||encsops] | Tsopt || Tsop2
CME6 CME6
NIt || Nz || Nius NIua || NIUS | NI || N2 || NS NIUa || NiUS
DMS il)) 0 101 I 0|) 81 omMs 1 14| 1 B 1a | 1|
1§ 1) 1) | R |)) 4 o) |) |
— snow et sineieron_ J) e raint] G o DOUBLETY] _SHOW NEHT DOUBLETON) BT
Figure 9 Figure 11

BIA4 IS A SINGLETON TO ST1

159

DISPLAY FOR AN OFF-SCREEN DOUBLET

By clicking on GO TO OTHER DOUBLET, the user
will see the Electrical Power System block diagram
with a single component highlighted, as shown in
Figure 12. In this example, the alpha joint #1
(AJ1) is the second component of the pair. Thus
BIA16 plus AJ1 failing together, will cause loss of
ST1. A little inspection will show that BIA16 causes
loss of Alpha Rotary Joint Driver #2 (ARJ2) which
in turn causes loss of Alpha Joint #2 (AJ2). So the
failure propagation path here involves loss of both

DCSU2
BAT2
[P
BATH
ocsus

GO 70 OTHER DOUBLET

Figure 12
AJ1 IS THE OTHER DOUBLET

I ELECTRICAL POWER SVSTEH'

| mesu2 ;]

>< PBCAIO

POCA1}

DCSU3

BAT3

[F e &]
% 1] §]

alpha joints and hence eventual total loss of power--
which will naturally fail ST2. More complicated
failure paths for other targets and sources might
require viewing the entire fault model, as explained
later.

There are other singletons and doubletons which
reach ST1, not all shown here. These are viewed in
the same way. At any point, the user can exit the
process and choose another target. This is
accomplished by clicking on EXIT until everything
has been progressively reset. When the user is
ready, clicking on RETURN will return him or her
to the opening card.

4.3 Viewing the Fault Model

While running the demonstration, the user might be
surprised that a particular singleton or doubleton can
reach a given target. Failure tolerance is not always
intuitively obvious. This demonstration allows the
user to investigate a particular failure scenario
further by viewing the fault model directly and
rapidly tracing a failure path back from the target to
the singleton or doubleton. Eventually, an

ACRONYMS l

ORIGINAL Facr o~
OF POOR QUALITY

understanding of the particular fault model contained
in this demonstration can be attained. The speed with
which the path can be traced demonstrates some of
the advantages of computer graphical fault modeling.

The digraph topview card used for this purpose is
shown in Figure 13. This card contains a guide to
viewing the Space Station Freedom fault model
drawings and source listings. It is reached by
clicking on the VIEW MODEL button on the
opening card, or the VIEW DIGRAPHS button on
either the systems hardware or functions cards.

DIRECTED GRAPH FRULT MODEL TOPVIEW

! HARDIVARE lL "FUNCTION;]

INTEHLHUES mm NOC| COT
| oms P

PROP | EUAS [ECLSS| EPS

Loop PROP

BLOCKING m
[cuss |

DIGRAPH

Figure 13
FAULT MODEL TOPVIEW CARD

The card contains a number of buttons which identify
portions of the digraph. By clicking on any of these
buttons, the user can view the associated portion of
the digraph. This is useful for understanding how
the fault model really works. The user can look
through the digraphs to find the target chosen on a
previous run, and trace back the failure propagation
along the directed graph.

The systems buttons are across the top of the card.
Interfaces between systems are identified in a matrix
in the center of the card. Critical functions buttons
are found across the bottom of the card. The loop
blockage digraph has a dedicated button. The
HARDWARE and FUNCTIONS buttons at the top
will return the user back to the original cards.
RETURN will take the user back to the opening card.

As an example, suppose the user wanted to trace the
failure path from the doubleton pair BIA16, AJl to
the target, ST1 as encountered in one of the examples
above (Figures 11 and 12).

Figure 14 shows one of the digraph portion
illustrations from which to start, in this case part of

160

rmpumu I[lNT[ﬂFﬂCES" LISTING H RCRONYMS H GNGC DIGRAPH

G
<D

(Foc3)

(CoRED)

DRCS1 (RCST)+ (B1A22)

)

- (BAD)« AT +(FSHZ)<(BIATT)

(2158) Az e 8178)

2ST Gias)

@) - (312)e(BIAS)

T Ceize)

Figure 14

GN&C DIRECTED GRAPH

demonstration is active).

There are several active buttons across the top of
Figure 14. The TOPVIEW button allows the user
to return to the TOPVIEW card. ACRONYMS lists
the acronyms found on this card. INTERFACES
goes to the interface digraph for the GN&C System,
and LISTING links to the digraph text listing.

Note from this figure that BIA16 fails ARJ2. On this
drawing, ARJ2 fails nothing else. To see if ARJ2
fails anything in any other systems, the user will
click on INTERFACES.

Figure 15 shows the result. In this case, all the
GN&C interfaces fit on one card.

USRI

oF PR OV
The interface digraphs such as this allow the user to
gain a visual understanding of failure propagation
paths between systems. A system button (GN&C
here) allows the user to jump back to the source
system digraph, if needed. To go to one of the
interfacing systems, the user just clicks on the desired
component belonging to that system.

e

ARJ2 can be found on the GN&C to EPS interface
digraph. Here it is seen that that ARJ2 fails AJ2. It
is also found in the GN&C to Thermal Control
System (TCS) digraph. In this case, the user first
tries the EPS digraph, and clicks on the AJ2
component to go there.

Figure 16 shows the EPS digraph. It can be seen
that AJ1--one of the doubletons--is on this card as
well as AJ2. By inspection, it can be seen that AJl

TOPUIEW]| GNOC I| ACRONYMS H GN&C FRULT INTERFACES

LISTINGS-- 1 COMMUNICATIONS O TRACKING SYSTEM
GNBC T0: o)
S0P2 (ocamp)
L (sop3) J
(THERMAL CONTROL SYSTEM | [ELECTRICAL POWER SYSTEM)
{
([PROPULSION SYSTEM)
(&) (R2) (R3)
(es O (re) (Res2)o(RS) (Res3)H»{(&e)
(®3) (R8) (R7)
(R10) (R1Y) (R12)
(rese-+(R13) (RCSSH{R14) (RCS6)H(R1D)
(R18) (R17) (R16)
Figure 15

GN&C INTERFACES DIRECTED GRAPH

161

[TOPUIEW [INTEHFRC[S Flsrma ACRONYMS €PS DIGRAPH
Fawin®
=) {ad1)- L aR e A
1 HBSU1
(POCA2)
N %
A
(0 PDCAS
FDCA4
@E PDCAS
PDCA6
(SA1)(BATD) POCA7
3D Q@) @'—'
PDCAY)
L
(PDCAL)+1q
Hesus) nnsp—
ans&nrscmxgsno BY {AJ2 Y
Figure 16

EPS DIRECTED GRAPH

and AJ2 failing will cause failure of Main Bus
Switching Units (MBSU's) 1 through 4. Loss of all
these will cause loss of power flow to all the Power
Distribution and Control Assemblies (PDCA's). By
clicking on EPS TO GN&C from the topview card,
the card shown in Figure 17 reveals that several
BIA's are failed by losses of various PDCA's.

Going back to the GN&C digraph, Figure 14, it is
seen that the target, ST1, is failed by loss of BIA4.
Then, by going back to Figure 17, it is seen that
BIA4 is indeed powered by PDCA1. Thus, the path
from AJ1, BIA16 to ST1 has been found.

A check of the TCS and TCS interfaces digraphs does
not find any such direct paths (Figures 18 and 19).

In a more developed tool, it would be useful to
provide for automated tracing of these failure

ORIGINAL PAGE IS
OF POOR QUALITY

. " 1"
I;TUPUIEI.U |[EPS][ACRONYMS " EPS TO 6NOC FRULT INTERFACES | propagatlon paths’ known co only as “cutsets.

A typical function digraph is shown in Figure 20.
The function digraphs contain small "pushbuttons”
which allow the user to go to the associated system
card containing that object. The function digraphs
are drawn in a fault tree structure. The linkage to
digraphs shows one way that hardware failure
modeling can be used in conjunction with functional
modeling.

I TOPUIEW]LUSTING ” RCRDNVMS REBOOST DIGRAPH I

(REBGDST) SMALL BUTTONS LINK TO SYSTEMS

EPS TO GNOC LISTING

Figure 17
EPS TO GN&C INTERFACES
DIRECTED GRAPH

rTOPUIElU H INTEHFHC!S" LISTING " ACRONYMS " TCS DIGRAPH —|
(RS ye—(TaD10) G — ()
(svCAC) (HAD13) (HADS) (HAB) NOT ALL DUMMY NODES SHOWN
(APAES) (Hap12) HADS [
(Z)+—(#510) GiaoE) Figure 20
(D) (RAD2)—>(RFAED) REBOOST FUNCTION DIRECTED GRAPH
CR D e—Giame) CRADT) —+{(RFALD)
0100 . . .
Figure 21 shows one of the digraph listings cards.
Vevi 5] 7] These cards contain the actual text listings of the
Qv)z)—-(ER2) Space Station Freedom fault model directed graph.
(D—() The button highlighting seen in the demonstrations is
driven by the failure propagation modeled in the
Figure 18 total set of such listings. The syntax for these listings

is of the form "A,B,C", meaning that A can reach B

TCS DIRECTED GRAPH with C. If Cis a "1, then the node A is a singleton

TOPUIEW 1[TCS ” RCRONYMS [TCS FRULT INTERFACES] | TOPVIEW REBOOST DIGRAPH lILLUSTRRTll]_N_i
LISTINGS-- N 7 - - \
IES 0 vAbIGATION o ou::::?s:oosn
o |PERUEETE Goeoen || | Shouo.cnceie.chow
‘ .
wain @@l | oS8 L
ECLSS m Emsm (o3)->(Focas) QREBI DCREW.FS
TS (has) CMPAC1,0REB2,CMPAC2
J ELECTRICAL Toc A FMPAC1,DREB3,FMPAC2
| " powen DREB2,0REB4,0REB3
onm MRNRGEMENT SYSTEM SYSTEM POCAS DREB4,CREW,HMPAC
T Croeas GNC AND CAT
m Eg;sbraggs‘. !
m FOCAT ST1,DREB6,5T2
m, e N | e
~-w, 1, JUSA2
POCAt DREB9,DREB10,1SA3
(RC13) POCA1Z) DREBS,DREB11,DREBY
(Z!D DREB11,DRE812,0REB10
(wa) HAB POCAIS) DREB12,GNC,1 g
.'E=.'[:= oCATS GNCSDP'1,DREB13,GNCSDP2
DREB13,0REB14,GNCSDPY
POCAIS DREB14,GNC,1 5]
Figure 19 Figure 21
TCS INTERFACES DIRECTED GRAPH DIRECTED GRAPH LISTING EXAMPLE

162

10 node B. The field can be scrolled up and down,
using the scroll bar on the right, to view various
portions of the listing. The ILLUSTRATION button
will display an illustration of the digraph associated
with this card, and the TOPVIEW button will return
the user to the digraph topview card.

5.0 HYPERCARD DEMONSTRATION
WORKINGS

This project had three separate phases: creating the
HyperCard block diagrams and special button scripts
to allow the demonstration to run, running the
digraphs using Digraph Matrix Analysis (DMA)
codes, and formatting the DMA results so they could
be used by the HyperCard graphics demonstration.
Reference 1 details the development of the
demonstration. Reference 2 provides more
information on DMA.

There are actually three HyperCard stacks used in the
demonstration: one for the Introduction, one for
Running the Demonstration, and one for Viewing the
Model. This conserves the active memory in use by
the Macintosh at any one time. The total memory
occupied by all three stacks is about 670 kilobytes.

There are 98 cards in total: six for navigating, four
for tutorials, 12 for system block diagrams, one for
the functions demonstration, three for utility
purposes, 14 for system digraphs, 11 for interface
digraphs, seven for function digraphs, and 40 for
digraph text listings.

The demonstration runs by accessing data stored in
separate files on the Macintosh. The 1056 singleton
and doubleton files are stored in a folder called
"STATION_DATA." This folder occupies about 2.2
MB. In the demonstration, each time the user clicks
on a target object, two of these files are copied into
the HyperCard stack for use in highlighting the
correct objects to show single and double-point
failures.

6.0 FAILURE MODELING IN THE SPACE
STATION FREEDOM PROGRAM

The distributed nature of the Space Station Freedom
Program makes the system integration problem
different from that on any previous NASA program.
There is no longer a simple division of work by
large hardware elements. Rather, work is divided

163

into both hardware elements and distributed
functional systems. The interfaces between the
functional systems are more varied and complex than
those between distinct elements.

In view of this, there is a need for new approaches to
satisfying the program failure tolerance requirements
and capturing the knowledge of how redundancy
management evolves in various systems--both during
design and operations. Failure modeling is one way
to accomplish these goals.

7.0 CONCLUSIONS

The HyperCard tool has proven valuable as a means
for prototyping various graphics concepts and for
interfacing displays to fault modeling tools. The
demonstration shows the basic methodology which
would be performed in doing more detailed and
accurate fault modeling. It contains a tutorial
section, a block diagram section from which failure
tolerance can be interactively displayed, and an
illustration section by which the large directed graph
fault model can be viewed. The Space Station
Freedom systems, as modeled here, are indeed highly
interdependent.

ACKNOWLEDGEMENTS

The fault modeling and demonstration was a joint
effort by F. J. Becker and D. M. De Vos, a
Lockheed summer-hire. D. M. De Vos's
contributions were particularly essential for
developing the software which interfaces the DMA
files to the HyperCard stack and for co-creating the
HyperCard script which drives the demonstration.

Thanks go to our NASA task monitor, J. T. Edge,
and Lockheed task manager, W. H. Geissler, for
their leadership in guiding this project.

REFERENCES

1. Becker, Fred, "Space Station Freedom Integrated
Fault Model Report,” LESC-26314, Lockheed
Engineering and Sciences Company, Houston, Texas,
December, 1988.

2. Sacks, Ivan, "Digraph Matrix Analysis,” Analytic
Information Processing, Inc., November, 1988.

‘«r.f - (’d/

N9O-20674

-

GRAPHICAL PROGRAMMING AND THE USE OF SIMULATION
FOR SPACE-BASED MANIPULATORS

Debra S. McGrath and James C. Reynolds
The MITRE Corporation
1120 NASA Road 1
Houston, TX 77058

ABSTRACT

Robotic manipulators are difficult to program even without the
special requirements of a zero-gravity environment. While
attention should be paid to investigating the usefulness of
industrial application programming methods to space
manipulators, new methods with potential application to both
environments need to be invented. These methods should
allow various levels of autonomy and human-in-the-loop
interaction and simple, rapid switching among them. For all
methods simulation must be integrated to provide reliability
and safety. Graphical programming of manipulutors is a
candidate for an effective robot programming method despite
current limitations in input devices and displays. A research
project in task-level robot programming has built an
innovative interface to a state-of-the-art commercial simulation
and robot programming platform. The prototype demonstrates
simple augmented methods for graphical programming and
simulation which may be of particular interest to those
concemed with Space Station applications; its development
has also raised important issues for the development of more
sophisticated robot programming tools. This paper discusses
both aspects of the project.

1. INTRODUCTION
1.1 Inherent Difficulty of Robot Programming

Programming robotic manipulators for safe and reliable
execution in the face of inevitably uncertain conditions is
difficult for a number of reasons [7]. Many robots today still
provide only rudimentary control instructions that are roughly
equivalent to machine language for computers. The only
space-based robotic arm, the Remote Manipulator System
(RMS), can only be programmed, as opposed to teleoperated,
by setting the joint values. Obviously, the impossibility of
envisioning the movement of the amm by mentally solving the
forward kinematic problem makes this method unsatisfactory.

More advanced industrial manipulators provide sophisticated
control languages like VAL II or Karel with point-level
instructions and modern branching constructs for structured
programming. Most often, these languages are not used
because it is difficult for programmers to reliably envision
spatial operations and exceptions even at the point level. A
"bug" introduced off-line can have much more disastrous
effects in a robot program than, for example, in a word
processor.

Consequently, most robots are programmed with a teach
pendant. This is an easy method and appropriate for simple,

PRECEDING PAGE BL/MI{ 107 FilisD

repetitive tasks. Its disadvantages are many: on the factory
floor it requires down-time; complicated tasks like assembly
are almost impossible to program; there is litile if any
branching capability, especially on complex feedback from
machine vision systems or forceftorque sensors. With regard
to its use in space-based robotics, this last disadvantage is
decisive. In addition, the experience of the RMS shows that
space-based manipulators are more likely needed for
complicated, "one-of-a-kind" tasks than for simple, repetitive
operations, and on the Space Station Freedom, NASA plans
to use the Flight Telerobotic Servicer (FTS) for assembly.

1.2 Task-level Robot Programming

1.2.1 Requirements for Task-level Robot
Programming

The difficulties and limitations of current methods of
programming robotic manipulators both on Earth and in space
have motivated considerable research in developing new
methods. One line of research beginning in 1976 [13] and
continuing with impressive momentum during recent years
has the goal of developing systems that allow manipulators to
be programmed at the "task” level. An example of a space-
oriented task command is PLACE ORU-1 IN PAYLOAD-
BIN-2. A task-level robot programming system would
translate this command into a sequence of motions and
sensing operations that would reliably and safely accomplish
the task. A necessary component of such a system is a model
of the workspace and manipulator, including geometry with
tolerances, kinematics, and dynamic attributes like mass and
required forces and torques for assembly. The key challenge
to building such a system is that any model is inaccurate to
some extent, and therefore manipulator motion occurs in the
context of uncertainty [8].

1.2.2 Programming Methods Must Allow Various
Levels of Autonomy

One advantage of a task-level programming system for space-
based robotics is that it provides the building blocks for
various levels of autonomy. This is essential for the astronaut
who uses the system to control a manipulator to gain
confidence in its reliability and safety. At a lower level of
autonomy the sequence of point-level motions and sensing
operations generated by the task-level system can be
examined, simulated, or executed one at a time under close
monitoring; at a higher level of autonomy a number of task-
level commands could be combined into a more complicated
script, Using advanced ideas of augmented control (2],
teleoperation could take over at any time.

each L LY INTENTIONALLY BLANK

1.3 The Need for Simulation

As mentioned above, it is absolutely imperative that a robot
programming system provides simulation capabilities. The
use of simulation is as vital to programming manipulators as
the use of a symbolic debugger is vital to programming large
data manipulation applications for a conventional computer
system. Despite a long-time and often world-class emphasis
on simulation for training, NASA has not baselined
simulation capabilities for the FTS. Real-time, three-
dimensional (3D) simulation of manipulators in space is
necessary for astronauts to gain confidence in any form of
autonomous control.

1.4 Graphical Programming

All of the research at Stanford, MIT, and Camegie Mellon in
task-level robot programming has assumed a keyboard-based
textual interface with the manipulator. Until recently this was
justified by the relatively low resolution and slow speed of
graphics workstations, and the resulting difficulty in
specifying robot motions and effects. The last few years have
demonstrated that high resolution, three-dimensional graphics
displayed in real-time can be a practical component of a
desktop-based robot programming system, while even more
revolutionary simulation capabilities like stereoscopic displays
and three-dimensional input devices are realizable in the near
future.

For space the need for non-keyboard devices to input
manipulator commands that can be simulated in real-time 3D
is even more critical. Keyboard input is simply too awkward
in zero gravity, and robot programming requires too much
knowledge of the workspace not to be facilitated by
contemporary interface components like menus and mice.

1.5 The Task-level Robot Programming Prototype

For the last year and a half the MITRE Corporation, with
initial funding from NASA, has been conducting research in
approaches to building a task-level robot programming system
(TLRPS). A prototype has been built that includes an
innovative interface to a state-of-the-art commercial simulation
and robot programming software platform (Deneb Robotics'
IGRIP) running on an advanced graphics workstation (Silicon
Graphics' IRIS 4D/70GT). The interface is used to control a
Microbot Alpha manipulator performing pick-and-place and
bin-filling operations in an appropriately simple plastic blocks
world. Feedback is provided by a 2D vision system capable
of recognizing circles, triangles, and squares.

The prototype demonstrates simple augmented methods for
graphical task specification and the use of simulation for
testing commands that may be of interest to those concerned
with Space Station Freedom robotic applications. In the
course of building the prototype, limitations in today's 3D
display and non-textual input devices became apparent,
suggesting new requirements for tomorrow's applications.

2. SIMULATION

2.1 Need for Simulation on board the Space Station
Freedom

Simulation of planned RMS teleoperation is conducted
rigorously prior to Shuttle missions using world-class high
fidelity simulation facilities. Experience has shown that many
uses of the RMS were not predicted and yet were critical to
mission success. On the Space Station Freedom, over much

166

longer duty cycles, this may be even more true for its
manipulators. If this is the case and control of space-based
manipulators advances from continual man-in-the-loop
teleoperation to some degree of autonomy, then simulation
capabilities on board will be a necessity.

2.2 Uses of Simulation
2.2.1 Complete Simulation before Execution

This type of simulation is used today for the off-line
programming of industrial manipulators and could be used for
ground-based programming of complicated planned
manipulator operations on the Space Station Freedom. The
programmer describes the manipulator actions desired, either
at a point-level or a task-level, and then views the complete
simulation that was specified. If there are problems like joint
limits exceeded or collisions detected, the program is altered
and simulated again. From this loop of program, simulate, re-
program, will develop a correct program that can with
confidence be downloaded and executed by the actual
manipulator. This use of simulation has been implemented in
MITRE's task-level robot programming system prototype,
building on top of IGRIP's simulation and robot-specific
translation capabilities.

2.2.2 Simulation Simultaneous with Execution

The task-level robot programming system prototype uses the
simulation capability of IGRIP simultaneously with execution
by the Microbot manipulator to implement collision detection,
reachability checks, and simple grasp planning. The
simulation is run ahead of the execution by the robot so that
any actions that result in undesirable effects are not physically
carried out. This type of operation would allow continual
supervision of the manipulator without teleoperation, and it is
believed that the strain on the astronaut in a space-based
implementation would be significantly reduced. It is important
that the world model and the graphical display be updated to
reflect changes in the workspace after manipulator actions.
Ideally, this would be in real-time; in MITRE's task-level
robot programming system prototype, updates can occur only
after the task or collection of tasks is completed, and the
Microbot retumns to home position.

3. GRAPHICAL PROGRAMMING
3.1 Commercial programs

The ability to graphically program a robot is limited by the
current state-of-the-art in input devices and displays.
Although true 3D displays and pointing devices are in
development, they are not widely available. We are therefore
constrained to showing a projection of a 3D scene on a 2D
graphics screen. The latest generation of graphics
workstations lets us show perspective views of 3D scenes and
even translate and rotate them in real time, but they are still
only 2D projections.

Trying to point to an arbitrary location in 3 dimensions on a
2D screen poses problems. It is difficult to determine the
dimension corresponding to depth into the scene, or distance
from the user (see Figure 1). Several methods are used to
help remedy this problem. The S-GEOMETRY 3D graphics
software from Symbolics attempts to alleviate the problem by
allowing optional cursors for selecting points {12]. These
cursors have extra lines drawn to help the user determine the
current 3D location. One cursor, the arm cursor (see Figure
2), has lines drawn from the cursor point to the intersection of

each of the x, y, and z planes. A second cursor, the box
cursor (see Figure 3), has lines drawn from the cursor point
to the intersection of the three planes (as in the arm cursor)
and lines drawn to the coordinate axes. Cursor motion in
combination with mouse buttons determine the 3D motion of
the point. Even with these methods, accurately specifying a
3D location requires concentration and can be difficult if the
screen is cluttered with objects.

Figure 1 - Crosshair Cursor

Figure 2 - Arm Cursor

Figure 3 - Box Cursor

Commercially available robot programming and simulation
packages typically allow the user to program the robot by
specifying a desired position and orientation for the
manipulator's toolpoint. The toolpoint is most often the tip of
the robot gripper and its position and orientation in space is
called a "pose". A pose can be specified by giving the x, y,
and z coordinates and the yaw, pitch, and roll angles or by
selecting predefined locations in the robot's workspace.
These predefined, named location are called tagpoints or
reference frames by the various robot programming packages
[3, 4, 9]. To avoid the 3D pointing problems mentioned
above, the tagpoints are defined in advance by specifying
coordinates or by aligning a new coordinate system with
components of objects in the workspace. Thus a tagpoint can
be coincident with the local origin of an object or aligned with
a vertex, for example. The robot programming package can
perform the inverse kinematics to translate a pose into a set of
joint angles, or a configuration, for the specific robot. Motion
between configurations can be constrained to be a straight line
in cartesian space or can be joint-interpolated, meaning the
joint angles will change linearly between configurations but
the resulting path of the toolpoint will be curved.

Robot programming and simulation packages generally
provide a Pascal-like language in which robot programs can
be written and simulated. Figure 4 is an example of a
program written in GSL, the programming language in IGRIP
from Deneb Robotics. These languages are robot-independent
and are therefore ideal for prototyping and simulation, where
different manipulators may be tested. If a translator is
available, the programs in these language can be translated
into the language understood by the robot controller hardware
or software. For example, the program in Figure 4 can be
converted to a form that a Microbot Alpha I robot can use, as
in Figure 5. It is obvious that programs written in the high-
level languages are much easier to write, test, and debug than
are robot-specific programs.

program moveit

VAR
round_cap_1_1, pos_1l: POSITION
begin
UNITS = ENGLISH
Smotype = JOINT
move link 6 by 50 relative nosimul
move near round cap_1l_1 by 3
move to round cap_1_1
move link 6 by -30 relative nosimul
grab round cap_1_1 at link 6
move away 3
move near pos_1l by 3
move to pos_1
release round cap_1_1
move link 6 by 30 relative nosimul
move away 3
move home
move link 1 by 60 relative nosimul

end moveit

Figure 4. GSL Program

IGRIP also has a menu-driven graphical robot programming
capability, which provides an interactive method of producing
GSL programs [4]. Menus provide the ability to set up
parameters and choose manipulator motion commands. When
a motion "move to tagpoint” type command is chosen, the
user has the option of pointing to tagpoints on the screen or
choosing the named point from a list, as well as keying in the
name. Motion commands are carried out by the simulated
robot as they are specified. An entire robot program can be
generated in this manner and then tested, translated, and
downloaded to the actual manipulator for execution.
However, because this programming is at the point level, the
use of menus can become tedious compared to simply writing
the program directly in GSL.

@STEP 199,0,0,0,0,0,1136

@STEP 199,-1345,815,503,1025, 623,503
@STEP 199,0,390,176,0,0,176

@STEP 199,0,0,0,0,0,-681

@STEP 199,0,-390,-176,0,0,-176

@STEP 199,-690,693,-408,-431,431,-408
@STEP 199,0,415,50,0,0,50

@STEP 199,0,0,0,0,0,681

@STEP 199,0,-415,-50,0,0,-50

@STEP 199,690,-1515,-98,-595,-1057, -1234
@STEP 199,1351,0,0,0,0,0

Figure 5. Microbot Alpha Program

3.2 TLRPS prototype and extensions
3.2.1 Specifying parts

An important step up from manually creating a robot program
by specifying individual points on the manipulator's path is
the ability to specify the objects to be manipulated and their
goal positions, with an appropriate path automatically
generated. This is the capability that the TLRPS adds to the
commercial programming package. For a simple pick and
place task, the object to be moved and its goal location must
be specified. In the TLRPS prototype an object to be
manipulated is chosen from a menu of all known objects in
the workspace. The object is then highlighted on the graphics
screen to allow the user to confirm the choice. A goal location
can then be chosen from a menu of predefined locations and
the tagpoint is highlighted for confirmation. Optionally, the
user can specify an x-y location, in inches from the origin, for
the goal, with z and rotations defaulted to reasonable values
for a pick-and-place operation. A tagpoint for the specified
goal is created and highlighted for confirmation.

Once an object and a goal have been chosen a sequence of
motions is automatically generated to move the object from its
original location to the goal. Checks are made along the way
to ensure that all locations are reachable by the robot and
neither the robot nor the object being moved will collide with
other objects in the workspace. The user needs only to
specify the object and the goal; the TLRPS generates the
intermediate steps needed to safely move the object.

With manual robot programming or the menu-driven
programming provided by IGRIP, a complete robot program
must be written, tested, translated, and downloaded before the
actual manipulator can be used. The TLRPS prototype allow
more interactive control of the manipulator. The user may
choose to test the task to be complete by simulation only.
However, the TLRPS provides the ability to simultaneously

168

simulate the task and execute it with the actual robot. This
was discussed in greater detail in Section 2.

3.2.2 Dragging objects

Although specifying operations by naming objects or
choosing them from a menu is certainly an advance from
point-by-point programming, a more intuitive interface would
be to allow the user to point to an object to be moved.
Pointing to an object in 3D is not a problem. An object can be
chosen by placing the cursor over any portion of the object
facing the user. The function providing selection of objects
with a mouse under program control is not available in the
simulation and robot programming package currently being
used for the TLRPS prototype, so this capability has not been
implemented. Another desirable option, which is not
implemented in the current prototype, is to allow the user to
drag an object on the screen from its original location to a new
location and have the TLRPS generate the equivalent
manipulator motions to move the object without collisions.
With this option there still is the problem of visualizing the 3D
motion on a 2D screen.

3.3 Input Devices for 3D Manipulation and New
Display Technology

Even with a more functional and open software platform to
use in building a graphical interface to the control of a
manipulator, the inherently two dimensional input and display
technology of today's workstations would be severely
limiting. There are, however, laboratory efforts and even a
few advanced commercial products that demonstrate this will
not be true in the near future. With respect to space-based
robotics and Space Station Freedom in particular, it is of
utmost importance that plans should be made now to provide
hooks and scars so that these rapidly developing technologies
can eventually be used.

Complex interaction in zero gravity with the computer control
of dynamic physical devices such as a manipulator requires a
large bandwidth of information that would be difficult if not
impossible to communicate using a keyboard. Current NASA
thinking foresees voice recognition technology as an
alternative. The use of this technology will be an important
advance, but for robotic control it will have to be implemented
together with to the interactive display concepts (menus and
highlighting) described above, or else too much workspace
knowledge (names, dimensions, dynamic attributes) will be
required of the astronaut operator.

The most natural control and programming of a
manipulator, though, can only be expressed with three-
dimensional input devices. If an object needs to be
grasped, the operator should only have to move his hand
appropriately and the effect should be displayed on the screen.
This is, in fact, possible today. There are tonﬁ)mmercial
products, a glove-like device (DataGlove =~ by VPL
Research) and an optical gesture sensing device (by Sensor
Frame Corporation) that could be used to build an interface to
a manipulator. Ames Research Center is already using the first
device in conjunction with demonstrations of their head-
mounted display technology. An alternate device for
manipulator programming that is within the realm of today's
technology, although not commercially available, is a small
manipulator replica that could provide true three-dimensional
input for graphical display.

Equally important, especially to NASA, is the development of
true three-dimensional displays. This is necessary for remote

ORIGINAL PAGE IS
OF POOR QUALITY

teleoperation as well as supervised autonomy. It has been
demonstrated that the remote control of robots in response to
ordinary video feedback is extremely difficult. True 3D
displays may be built using stereoscopic or holographic
technology; there are many laboratory efforts currently in
progress with the objective of developing these displays.

4. ISSUES
4.1 Uncertainty

Most robot programming and control systems assume a
perfect world: error-free sensors, perfect object models, and
robots that can be positioned precisely where desired. The
real world, unfortunately, falls far short of perfection. The
robot and environment can be engineered to minimize these
errors and uncertainties, but they will never be perfect. Robot
programs need to handle differences between models and
actual objects and handle errors in sensor data and
manipulator control. Practical methods for dealing with these
uncertainties need to be developed. Brooks 1], Erdmann [6],
Durrant-Whyte (5], and Volz, Xiao, and Desai [14], among
others, have published work upon which a practical system
might be based.

4.2 Path planning

The current version of the TLRPS prototype does not have
any true path planning capabilities. To move an object from
one position to another the system follows a fixed set of steps
with a few parameters for initial object location and goal. The
manipulator first opens the gripper and moves to a pose
directly above the object to be moved, then moves straight
down over the object and closes the gripper to grasp the
object. Next the manipulator moves straight up, then to a
pose directly above the object's goal location, then straight
down. Then the robot opens the gripper and moves straight
up again. This sequence of motions is sufficient to handle
any simple pick-and-place operation in two dimensions,
where the objects are all roughly the same height and can be
grasped from the top.

Some minor modifications of this same plan would enable the

system to handle a more extensive collection of objects and
limited three dimensional placement. To cover a larger set of
tasks, however, these heuristics should be replaced by
algorithmic path planning. This would add the capability,
given the initial and goal poses, to compute a path for the
manipulator through the free space or unoccupied volume of
the workspace avoiding collisions. Some of the commercial
robot programming package vendors are developing this kind
of path planning capability.

4.3 Human-in-the-loop

Any method of robot programming must allow various levels
of autonomy and human-in-the-loop interaction and simple,
rapid switching among them. While it is desirable to automate
as much as possible to free the astronaut from tedious and
time-consuming chores, we still need to allow the human to
immediately and safely assume control if it becomes
necessary. Once a crisis situation has ended, the system
should be able to resume autonomous operations with as little
input from the human as possible and preferable without
having to re-plan an entire task from scratch. Sheridan [10],
Stark, Kim, and Tendick [11], and Conway, Volz, and
Walker {2], among others, have all made some suggestions
and progress along these lines, but there is still much work to
be done.

169

5. CONCLUSIONS AND FUTURE WORK

Graphical programming of manipulators is an effective
approach despite current limitations in input devices and
displays. The prototype TLRPS described in this paper
includes an interface that takes advantage of these graphical
techniques. In the future we would like to investigate both the
use of voice recognition technology with the interactive
display methods described in this paper and true three-
dimensional input devices that promise a more natural way of
programming manipulators. We feel this is an especially
important technology area for NASA to develop and exploit.

REFERENCES

1. Brooks, Rodney, "Symbolic Error Analysis and Robot
Programming,” International Journal of Robotics Research,
Vol. 1, No. 4, Winter 1982, pp. 29-68.

2. Conway, Lynn, et al.,, "Tele-Autonomous Systems:
Methods and Architectures for Intermingling Autonomous and
Telerobotic Technology," in Proceedings 1987 IEEE
International Conference on Robotics and Automation,
Raleigh, NC, 1987, pp. 1121-1130.

3. Deneb Robotics, Inc., GSL Graphics Simulation
Language Reference Manual, Version 1.5, Deneb
Robotics, Inc., Troy, MI, July 1988.

4. Deneb Robotics, Inc., IGRIP Simulation System User
Manual, Version 1.5, Deneb Robotics, Inc., Troy, MI, July
1988.

5. Durrant-Whyte, Hugh, "Uncertain Geometry in Robotics,”
IEEE Journal of Robotics and Automation, Vol 4, No. 1,
February, 1988, pp. 23-31.

6. Erdmann, Michael, On Motion Planning with Uncertainty,
Master's Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
1984.

7. Lozano-Perez, Tomas, "Robot Programming,”
Proceedings of the IEEE, Vol. 71, No. 7, July 1983.

8. Lozano-Perez, Tomas and Brooks, Rodney, “An Approach
to Automatic Robot Programming,” A.l. Memo No. 842,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, April 1985.

9. Silma, Inc., CimStation User's Manual, Revision 3.0,
Silma, Inc., Los Altos, CA, 1986.

10. Sheridan, Thomas, "Human Supervisory Control of
Robot Systems," in Proceedings 1986 IEEE International
Conference on Robotics and Automation, San Francisco,
CA, 1986, pp. 808-812.

11. Stark, Lawrence, et al., "Cooperative Control in
Telerobotics,” in Proceedings 1988 IEEE International
Conference on Robotics and Automation, Philadelphia,
PA, 1988, pp. 593-595.

12. Symbolics, Inc., S-Geometry, Graphics Division of
Symbolics, Inc., Cambridge, MA, October 1986.

13. Taylor, Russell, "The Synthesis of Manipulator Control
Programs from Task-Level Specification,” AIM-382,
Stanford Artificial Intelligence Laboratory, Palo Alto, CA,
July 1976.

14, Volz, Richard, et al., "Contact Formations and Design
Constraints: A New Basis for the Automatic Generation of
Robot Programs,” unpublished report, the University of
Michigan and the Jet Propulsion Laboratory, 1988.

170

Using an Instrumented Manikin

N f e

P
- L e — A

. T e 7;'7' J

N90-20675

for Space Station Freedom Analysis

Linda Orr, NASA/Johnson Space Center
Richard Hill, Lockheed Engineering and Sciences Corporation

One of the most intriguing and complex areas
of current computer graphics research is
animating human figures to behave in a
realistic manner. Believable, accurate human
models are desirable for many everyday uses
including industrial and architectural design,
medical applications, and human factors
evaluations. For zero-gravity (0-g) spacecraft
design and mission planning scenarios, they
are particularly valuable since 0-g conditions
are difficult to simulate in a one-gravity Earth
environment.

At NASA/ISC, an in-house human modeling
package called PLAID is currently being used
to .produce animations for human factors
evaluations of Space Station Freedom design
issues. This paper will present an
introductory background discussion of
problems encountered in existing techniques
for animating human models and how an
instrumented manikin can help improve the
realism of these models.

BACKGROUND

The difficulty in creating realistic models of
people lies in the complexity of the human
body. There are over 200 degrees of freedom
in the body structure [6]. For purposes of
human modeling for task planning and motion
studies, the body can be graphically
represented as a series of rigid body joints
and linkages. For many movements the
human model can be adequately represented
by a subset of 30-40 degrees of freedom if it
is not necessary to model each finger, toe,
spinal disc, etc. for a study [4]. Even with
such simplification of body structure,
however, the approach to animating human

171

movement in a realistic manner remains a
complex issue. With 30-40 degrees of
freedom in a model, redundant solutions for a
desired motion are possible, some of which
may be more comfortable and intuitive for a
human to perform than others are. (Fig. 1.)

FIGURE 1

Redundant solutions for left hand reach
with fixed feet locations.

There are basically three methods of
modeling human motion for animated
graphics display output: a guiding (keyframe)
system, a program level or algorithm-based
system, and a task level system [7]. Each
method has its strengths and weaknesses.
Method 1: Guiding System

The guiding system is the traditional tool of
computer animators dealing with human
motion. Under this system, a user sets up a
series of "keyframes" explicitly describing
key actions of interest. For example, in Fig.
2a, a crewmember is modeled in an initial
position configuration at time tg. At time ty,
he/she has assumed a new position
configuration of interest (Fig. 2b). The

program is then instructed to calculate a
number of frames (n) showing the in-between
frames from tg 10 tx, usually at a rate of 30
frames per second for video output. The
program can use a simple linear interpolation
to compute the new position of link L at each
frame between to and ty, based on the
distance of travel of link L during that time
interval. Linear interpolation tends to make
the motion of the figure appear jerky and
unnatural, however. The motion can be given
a smoother appearance by using a spline
intepolation instead of a linear assumption.

(a)
FIGURE 2

Crewmember at initial time to and later time tx.

Having the computer calculate in-between
frames and check joint limits for solution
feasibility can help the user relieve some of
the tedium involved in animating human
figures. This approach can be satisfactory
when simple motion is all that is required.
Where subtle changes of motion are desired,
however, guiding systems require a lot of
manual set-up time since they require more
keyframes to define fully the action of
interest. Much iteration is usually required to
"tweak" the motion for it to look correct to a
viewer. The motion generated is therefore
highly dependent on the powers of
observation of the animator.

The guiding method is particularly time-
consuming to set up for three-dimensional
animated studies since perspective views of
the models and their work environments can
be misleading. For graphically directing
motion from one specific point to another,
some guiding system users turn perspective
off and look at 2-dimensional views for better

precision in positioning body segments. This
approach requires a view change to locate the
third dimensional coordinate, and a
decomposition of the movement into two or
three orthogonal rotations, depending on the
joint being manipulated. The view change
and mental decomposition require additional
set-up time.
Method 2: Algorithm-based System

In an algorithm-based system, physical laws
are applied to human parameters. Typically,
these systems assume rigid body mechanical
links with joints modeled as spring and
damper systems. The most commonly used
algorithms are direct/inverse kinematics and
direct/inverse dynamics algorithms borrowed
from robotics applications.

The direct kinematics approach can be
described as: given a set of joint angle
information, determine the position and
orientation of an end effector such as a hand
or foot. Once position and orientation are
determined, they can be differentiated to
obtain joint velocities and accelerations. A
simple example of a direct kinematics
algorithm is the Denavit-Hartenberg matrix
method [2]. The inverse kinematics problem
is to determine appropriate joint angles given
position and orientation of a desired end
effector, and an example of such an algorithm
is one described by Hollerback and Sahar [3].

The inverse kinematics approach is useful in
reach evaluations for human factors studies.
Given information on lengths of body
segments, such algorithms can determine if
Crewmember A at location (x,y,z) can reach
button B without requiring the system user to
predetermine (or guess) the desired joint
angles. Since human beings have joint limits
that restrict some motions, a good human
modeling program will check joint limits for
each frame of animation. Joint limit checking
improves the animation result by eliminating
solutions that are not humanly feasible to
perform. The problem with joint limit
checking is that it tells you nothing about the
"naturalness” of the motions.

For dynamics analyses, the direct dynamics
problem is described as determining the
trajectories of the end effector(s) given
appropriate initial conditions of force and

172

torque parameters. The inverse dynamics
solution is to determine the initial forces and
torques on joints required to produce known
resultant forces and torques at time tx. For
human modeling, the direct/indirect
dynamics algorithms borrow heavily from
robotics applications. The most commonly
used dynamics algorithms generally fall into
one of two categories [4]: Lagrange's
equations of motion based on kinetic and
potential energies for nonconservative
systems, and Newton-Euler formulations
based on Newton's second law for
determining the total force vector and Euler's
equation for determining the total torque
vector.

A major drawback to modeling human motion
with algorithms is that human motion is not
purely kinematics or purely dynamics: it is a
combination of both [1]. Dynamics
simulations should produce accurate motion
animations if the dynamic model is
sufficiently detailed. Often, however,
technically feasible but unnatural looking
solutions are a result of dynamic modeling
since it is difficult to come up with enough
equations of motion, constraints, etc. to
eliminate redundant solutions.

An additional problem with dynamics
modeling of humans is that spring and
damper functions, not constants, are required
to describe humans accurately with
spring/damper analogies. Determining these
functions requires collection, storage and
reduction of empirical data and such data is
generally not available. Data supplied from
cadaver studies can be of questionable value
when applied to simulations of living people.
Existing data from live subjects is usually
limited to studies of specific motions or tasks
and may not be universally applicable to all
motion situations.

For realistic-looking animations based on
algorithms, information may also be needed
on motion comfort levels and preferred
motion. For example, to retrieve an object
dropped on the floor, does someone simply
bend straight-legged from the hips or does
he/she bend the knees and stoop part way?
The result is that even with a reasonably
detailed algorithmic model, the system user is
still required to tweak the model to make its
motion appear more natural to a viewer.

Method 3: Task Level System

This method uses Artificial Intelligence (AI)
techniques to describe the performance of a
task at multiple levels. For animation
purposes, this requires applying a set of facts
to rules about task actions. For a given task,
high level Al commands, rules and
descriptions of actions are used to describe
the behavior of the human model in terms of
events and relationships. The high level Al
system transforms the behavior model into
low-level instructions such as algorithm
references or key values for parametric
keyframe creation; these low-level
instructions are then used to create an
animation of the task performance [4,7].

Successful task performance interpretation
requires knowledge of the task environment
and objects within it. This knowledge usually
involves an object oriented database that not
only contains information about an object's
geometry and mass attributes (e.g., density,
specularity, thermal properties) but also how
it is put together, how it behaves and whether
it inherits properties from related objects. An
example high level task command might be,
"Put the book on the table.” A task
performance system must contain rules
defining how the verb "put" is translated into
a human motion, object information such as
book dimensions and table height,

information regarding which person is to put
the book on the table, and the current state of
the animation environment (Must someone
first pick up the book or is he/she already
holding it? Is the person close enough to use
a simple arm reach to place the book on the
table or must he/she walk across a room to
complete the task?). A more sophisticated
system could also check an anthropometric
database for information about the individual
performing the task to determine arm length
and strength factors that might affect the task
outcome.

Sophisticated task performance systems will
take many years to develop. Rules for task
performance must be created and iterated to
perfect; knowledge-based object descriptions
must be input to a database so the system can
access the information needed for task
simulation. The lengthy development time
for perfecting task performance behavior
rules and the problems of organizing the large

173

database required for such a system are its
chief drawbacks.

DISCUSSION OF MANIKIN DEVELOPMENT

Each of the three animation methods
mentioned has strengths and weaknesses. At
present, the authors see the PLAID human
modeling effort eventually evolving into a
program with heavy emphasis on task
performance and algorithm-based methods
with a guiding system user option. However,
such a sophisticated modeling program will
take years to develop. In the meantime,
PLAID animators use a combination of guiding
and kinematic algorithm methods to evaluate
human factors issues for the Space Station
Freedom Program.

Reach algorithms and joint limit checking are
an integral part of PLAID's anthropometrics
features but still require a large amount of
user set-up time for some motion studies.
The reach algorithm works quite efficiently
when used to evaluate simple reaches to a
predefined vertex on a person or object. A
significant area of difficulty arose during
some complex reach studies for the NASA
Man-Systems Integration Standards (MSIS)
document [5], however.

The MSIS is a 4-volume set of man-systems
integration design considerations and
requirements for development of manned
spacecraft. Volume IV is specifically
dedicated to Space Station Freedom human
factors design issues. PLAID anthropometric
features were used in the MSIS to help
determine maximum reach envelopes of 5th
percentile female and 95th percentile male
astronaut candidates. For simple reaches, the
existing PLAID features were straightforward
to set up and manipulate. (Fig. 3). User set-
up of imaginary 0-g maximum side-reach
envelopes in free space with a foot restraint
presented significant complications, however.

In Figure 4, the human model is initially
positioned in a 0-g configuration with arms
reaching above the head as far as possible
and feet restrained in a foot restraint. The
model is then positioned to sweep out an
envelope in his/her lateral plane and identify
points on that envelope. This motion is quite
complex and eventually involves waist and/or

FIGURE 3

Simple forward/backward reach envelope
with foot restraint for MSIS document.

hip twist, knee flexion, ankle flexion, etc.
Since points on the envelope are in free space
and are unknown to the system user, the
reach algorithm (which requires a known
destination vertex on a person or object)
cannot be used. The user must therefore
manipulate the various degrees of freedom on
a joint by joint basis. Altering one joint
affects the links downstream from it so the
process is tediously iterative. Since the figure
was being viewed on a computer screen, an
inherently 2-dimensional display device, the
user was required to make frequent view
changes to ensure he/she understood exactly
how the human model was currently
positioned. For additional studies of complex
motion a more user-friendly set-up procedure
is obviously needed.

FIGURE 4

Complex side-reach envelope with foot
restraint for the MSIS document.

A faster, more intuitive input device for
positioning complex human movements in
free space is an instrumented manikin. Such
a device is currently being developed by the
Graphics Analysis Facility at JSC for use with
PLAID human modeling features. The
manikin is a modified crash dummy with
wirewound linear potentiometers instead of
accelerometers for its instrumentation. It is
approximately 48 inches tall and has 38
measurable degrees of freedom. To model
actual human movement capabilities more
closely, the standard crash dummy
mechanical structure was modified to provide
shoulder and thigh twist and was given a
flexible neck.

The manikin is a truly 3-dimensional input
device that can provide the computer with
multiple position and orientation inputs
simultaneously. It can be manipulated by a
user in hands-on fashion to a desired
configuration, where friction in the joints
retains their positions once the user lets go.
Alternatively, set screws can be used to lock
the joints if preferred; for example, the user
may want the legs configured in a 0-g
orientation for an entire study. Mechanical
joint limit stops equivalent to or slightly
exceeding normal human limits are built into
the structure.

The manikin is initially placed in a 1-g
standing position and calibrated. When the
user has manipulated the manikin to a new
configuration, relative displacement voltages
undergo an AC/DC conversion and signals are
sent through an RS232 interface to the
computer program. The input is converted to
degrees for segment displacement
information and then joint limits are checked
by software to ensure position validity. Since
PLAID body segment lengths are normalized,
they can be read if desired from a user
specified database of astronaut applicant data
compiled by the Johnson Space Center's
Anthropometrics and Biomechanics
Laboratory. Thus, the manikin can be used to
manipulate positions of different sized human
models without mechanical or electrical
reconfiguration.

CONCLUSION

By using the instrumented manikin, a user
has a combination of algorithm and guiding

175

methods available for setting up the desired
study parameters. The user can utilize the
power of algorithms as much as possible to
simplify set-up procedures, yet have an
effective way to tweak the human model for
creating complex, subtle motion keyframes.

As a long-term animation system goal, an Al-
based task performance system with heavy
reliance on efficient algorithms is anticipated.
While this system is being developed,
however, human modeling analysts still need
an effective tool to blend the individual
strengths of guiding and algorithm methods.
Even when the long-term system is in place,
users will probably continue to demand an
efficient way to modify the motion analysis
output if desired. The instrumented manikin
can be an effective tool for providing this
option.

REFERENCES

1. Badler, Norman I. "A representation for
natural human movement"; Department of
Computer and Information Science, University
of Pennsylvania, Philadelphia, PA, 1986.

2. Denavit, J. and Hartenberg, R.S. "A
Kinematic Notation for Lower Pair
Mechanisms Based on Matrices”, JOURNAL OF
APPLIED MECHANICS, Vol. 22, 1955.

3. Hollerbach, J M. and Sahar, G. "Wrist-
Partitioned, Inverse Kinematic Accelerations
and Manipulator Dynamics”, INTERNATIONAL
JOURNAL OF ROBOTICS RESEARCH, Vol. 2, No.
4, 1983.

4. Magnenat-Thalmann, N, and Thalmann, D.
(1988) "Course Notes on Synthetic Actors”,
SIGGRAPH '88, Atlanta, Georgia, 1988.

5. NASA-STD-3000, Man-Systems Integration
Standards.

6. Zeltzer, D. "Motor Control techniques for
figure animation”, IEEE COMPUTER GRAPHICS
APPLICATIONS, November 1982.

7. Zeltzer, D. "Toward an integrated view of
3-D computer animation”, THE VISUAL
COMPUTER: THE INTERNATIONAL JOURNAL
OF COMPUTER GRAPHICS 1,4 (1985).

/
/

THE DEVELOPMENT OF THE CANADIAN MOBILE SERVICING SYSTEM
KINEMATIC SIMULATION FACILITY

G. Beyer, B. Diebold

by:

W. Brimley, H. Kleinberg

ABSTRACT

Canada will develop a Mobile Servicing System
(MSS) as its contribution to the
U.S./International Space Station Freedom.
Components of the MSS will include a remote
manipulator (SSRMS), a Special Purpose
Dexterous Manipulator (SPDM), and a mobile
base (MRS).

In order to support requirements analysis and the
evaluation of operational concepts related to the
use of the MSS a graphics based kinematic
simulation/human-computer interface facility has
been created.

The facility consists of the following elements:

(a) A two-dimensional graphics editor
allowing the rapid development of
virtual control stations.

(b) Kinematic simulations of the space
station remote manipulators (SSRMS
and SPDM), and mobile base.

(c) A three-dimensional graphics model
of the space station, MSS, orbiter,
and payloads.

These software elements combined with state of
the art computer graphics hardware provide the
capability to prototype MSS workstations,
evaluate MSS operational capabilities, and
investigate the human-computer interface in an
interactive simulation environment.

PRECEDING PAGE BLANK NOT FILMED

177

CAE Electronics Ltd.
P.O. Box 1800,
Montreal, Que. Canada

Spar Aerospace Ltd.
1700 Ormont Dr.
Weston, Ont. Canada

This paper describes the graphics technology
involved in the development and use of this
facility.

1.0 INTRODUCTION

The Mobile Servicing System (MSS) will be
Canada’s contribution to the U.S./International
space station. The MSS will play an important
role in performing the following functions on the
space station:

O Space station construction and
assembly

[Q Transportation (External on the space
station)

[Payload Handling (Deployment,
retrieval, and berthing including the

orbiter)

) Attached payload servicing (in the
extravehicular environment)

[Space station maintenance (in the
extravehicular environment)

{J Crew extravehicular activity (EVA)
support

[O Space station safe haven support

1.1 MSS System Configuration

The space segment of the MSS comprises three
elements; the MSC (Mobile Servicing Centre),
the SPDM (Specia! Purpose Dextrous
Manipulator), and the MMD (MSS Maintenance
Depot).

The MSC comprises two sub-elements called the
MRS (Mobile Remote Servicer) and the MT
(Mobile Transporter). The MT is to be supplied
by the United States and provides the MSC with
translation, corner turning, and plane change
capability. The MRS comprises a number of
major systems. The MBS (MRS Base System)
provides the structure which interfaces with the
Mabile Transporter and accomodates payloads
and the remaining systems of the MSC. The
relocatable SSRMS (Space Station Remote
Manipulator System) is provided as a system of
the MSC.

Figure 1 illustrates some of the MSS equipment
described above.

The intent of this paper is to describe the
applications of graphics technology to the MSS
systems design process and to the creation of the
MSS Kinematic Simulation Facility.

The role of the facility within the overall systems
design and space operations process will be
described. Following this, technical details
regarding the current uses, and hardware and
sofiware configuration of the facility will be
discussed.

2.0 ROLE OF THE GRAPHICS
WORKSTATION IN MSS SYSTEMS
DESIGN AND OPERATIONS

The development of the MSS Kinematic
Simulation Facility was driven by the need to
rapidly prototype and evaluate candidate
configurations and capabilities of manipulators
and control stations in a cost-effective manner.

This facility forms an integral part of the systems
design process providing input at all stages of the
design. The following will describe the uses of
the graphics workstation in relation to this
process.

2.1 Derivation of Requirements

The ability to visualize abstract concepts allows a
systems designer to gain insight into the system
being designed. The knowledge gained thus
allows the designer to define, refine, and verify
system requirements in a more efficient manner.

The preliminary definition process consists of
performing task analyses based on operational
concepts and proposing designs or prototypes as
implementation solutions to the requirements
specified in the formal program requirements
documentation.

Rapid prototyping capabilities allow the
formulation and creation of many competing
design concepts in a cost-effective manner.

All components of the MSS must operate within
the environment imposed by the physical and
logistical infrastructure of the space station. As a
result, influences external to the MSS have a
significant impact on the design process. A
graphics workstation based simulation facility
provides the capability to simulate these external
influences and assess their impact on design
solutions.

2.2 Pilot Evaluation

A prototype control station may be evaluated
using such criteria as accuracy of control, user
preference, response time, the ability to learn
and re-learn to use the workstation, and the
ability to transfer training between operators. /
Pilot evaluation consists of allowing qualified
personnel such as astronauts and human factors
specialists to interact with the simulations and
evaluate the various prototoypes in a realistic
environment.

The results of the evaluations are quantified
through the use of questionaires designed to elicit
relevant comments and impressions from the
reviewers.

2.3 Iteration

The iteration process consists of refining the
design by integrating the best features of each
prototype identified by the pilot evaluators into a
new proposed design and re-submitting the
design for evaluation.

178

ORIG i From g
OF PCOR GUALITY

Space Station
Remote Manipulalor System
(SSAMS)

Special Purpose
Dextrous Manipulator
(SPOM)

Mobile Remote
Servicer Base System

(MBS}
Electronic
Control
Equipment "' '
5,
EVA Work Station L

S

;*“y
N A
POA Support ‘ AR \p
Assembly k‘@ Qy . v
(PSA)-1 ’\ }‘ MFR
LY wﬂ)/
-4
Tool
.
\-
Space B
Station Truss > oL
\,-- % MBS to MT interface o e \
Payload/ORU > TN N
Accomondations PN ﬁ PPt h(Ah:?;le Transporter
POA NN e -
(Poa) Flight Telerobotic it \
System Interface \ -

%
\ (FTS)/ -~
\‘.:u/"‘—'//\-.\u

Figure 1 Mobile Servicing Centre (MSC)

179

2.4 Final Design

Eventually the prototypes will converge on a
preferred configuration. The final design of the
workstation may necessarily be a tradeoff
between such factors as the capabilities of the
available technology, requirements for interface
commonality with other systems, operator
preferences, and the impact of acceptable
operational procedures.

3.0 MSS KINEMATIC SIMULATION
FACILITY OVERVIEW

The intent of this section is to describe how the
functional components of the facility are
combined to provide an integrated simulation of
MSS systems and how this capability is utilized in
the development of the MSS.

3.1 Uses

The primary use for the MSS kinematic
simulation facility is threefold:

J Operations Analysis

Operations analysis includes trajectory planning,
reach analysis, viewing analysis, and evaluating
the effectiveness/capability of the MSS to
perform in the space station environment.

The outputs of operational analyses may effect
the design of the MSS by providing critical
information regarding the length of booms, and
number, placement, and characteristics of joints.
Information may also be obtained which impacts
the space station design for operations using the
MSS. In addition, viewing analyses assist in the
preliminary definition of camera locations and
quantities.

O Human-Computer Interface
Development

Telerobotic applications rely on the ability of a
human operator to directly control or supervise
an operation. The definition, placement, size,
colour, and functionality of the controls
associated with the MSS will determine the ease
with which the MSS will be operated.
Evaluations of human-computer interface
concepts are being performed in parallel with the
systems design activities.

{J Animated video production

Animated videos have been found to be an
efficient method of conveying operational
concepts and MSS capabilities. In addition,
videos are excellent vehicles through which
public awareness of space activities can be
broadened.

3.2 Hardware Configuration

The MSS Kinematic Simulation Facility currently
consists of a Silicon Graphics IRIS 4D 70-GT
with 8 Mb of RAM, a 380 Mb hard drive,
mouse, Keyboard, 19 inch monitor with
resolution of 1280 x 1024 pixels, 96 bitplanes,
and an Ethernet card for communication with
other hosts.

The operator’s primary input devices are the
keyboard, mouse, and a 6 degree of freedom
handcontroller used for control of the
manipulator. Other input devices such as a
touch screen, trackball, discrete switches, and a
voice recognition system may be added and
evaluated serially or in parallel.

The hardware dedicated to the video recording
function consists of an optical disk recorder, sync
generator, IRIS genlock card, RGB Encoder,
VHS editing video recorder, and an NTSC
monitor,

Figure 2 depicts the current hardware
configuration of the facility along with typical
input/output device options.

3.3 Software Configuration

The facility operates in a Unix/C based
stand-alone IRIS environment. Communication
with other hosts for off-line processing is
available however the stand-alone performance
of the IRIS has been found to be sufficient for
the current operational analyses and levels of
simulation complexity. The iteration rate of the
simulation varies between 3-5 Hz. depending on
the number of simultaneous 3D windows being
displayed and the processing demands of the
kinematics.

Figure 3 depicts the current software
configuration of the facility.

180

[r—————————— e

Input
Devices

Keyboard

Other Hosts

co’:ﬁ’%;rl

Touchscreen

==

Output

Trackbail |__Ethernet] Devices
L————=——— P o———————
8% IRIS | |
| 1
Fas | Rae | RIS |
I Genlock I Cutput 1 Monitor]
| i 1
1 I

SYNC
Genersior RGB i I
b ems |
Ogfical NTSC RGB i or }
Recorder Encoder i i
i |
VHS [PSS S—_ |
[NTSC T
Recor

Figure 2 MSS Kinematic Simulation Facility Hardware Configuration

o T e e e e e e e =] P - e e e = ———— ———— o -y

| Development Interface I 1 Run Time Interface |
L—1____1______—__JL __-_____-r___________J

ASCII Graphics Display
Editor Editor Screen
Input
Devices
Window
LDB
Source Manager
o J] I L
——— l |
Graphics Graphics
LDB Graphics Page 3D Simulation
Processor LIL:r‘::ifa/n Library |nterpeater Kinematics Graphics Modeis Debugger

Local Database

Figure 3 MSS Kinematic Simulation Facllity Software Configuration

181

3.3.1 Simulation Environment

The MSS Kinematic Simulation Facility currently
consists of the following simulation components:

{J Two-dimensional virtual display and
control panels

J Kinematic mode! of the space station
remote manipulators

{Q Three-dimensional graphics animation
of the space station, MSS, orbiter, and
payloads

O Simulations of the operation of MSS
systems.

TIGERS (The Integrated Graphics Environment
for Real-Time Systems), a product of CAE
Electronics, provides the simulation environment
through which the MIKE (Manipulator
Interactive Kinematics Evaluator) kinematic
model and MIKEGRAF 3D animation software,
produced by Spar Aerospace, are integrated with
the 2D virtual display and control panels.
Models of MSS systems are easily added to the
simulation with all communication transpiring
through a local database residing on the IRIS or
a remote database residing on a remote host.

The simulation variables defined in the databases
can also be displayed and controlled by the 2D
virtual instruments created using the TIGERS
graphics editor. The graphics editor pages are
processed by a linker/librarian and then
displayed by the graphics page interpreter as
windows controlled by the TIGERS window
manager. The 3D animations are also displayed
as windows allowing the number of animation
views, their size and location on the screen to be
dynamically modified.

3.3.2 Two Dimensional Graphics Editor

Stylized panels and displays can be created using
the on-screen graphical interface of the editor.
Most inputs are made via pop-up menus and a
standard 3-button mouse. The graphics editor
provides a wide range of drawing tools, raster
and vector fonts, and multiple dynamic attributes
that can be applied to graphical elements of
displays to make them respond to changing
simulation variables. Examples of dynamic
attributes include: color, size, position, rotation
angle, and digital and alphanumeric readouts.

182

Graphical elements can be combined into objects
and stored in libraries for use on several display
panels.

3.3.3 Virtual Displays and Controls

The virtual displays and controls created using
the graphical editor provide the user interface for
the MSS Kinematic Simulation Facility. The
current interface consists of a parent screen,
primary and secondary control areas, pulidown
menus, and virtual control panels containing
virtual instruments which interact with the MSS
system simulations. Virtual instrumentation
created using the editor includes digital readouts,
icons, virtual pushbuttons, status indicators, and
data input and feedback sliders. Figures 4
through 7 illustrate some typical prototype
control panels developed for MSS applications.

3.3.4 System Simulations

Although some control over the attributes of the
workstation prototype is available from the
run-time services of the 2D graphical display
manager, additional functionality may be
achieved through the use of simulation routines
which explicitly control the 2D graphical
attributes. These routines would be required to
simulate various menuing schemes or logic
related to systems or subsystems driving the user
interface.

3.3.5 Three Dimensional Graphic Modelling

Three dimensional (3D) graphical models of the
environment may be created and rendered in
individual windows under the control of the
window manager. Typical objects used in
operational analyses include the space station,
orbiter, manipulators, payloads, and free flyers.

The 3D views are used to simulate
out-of-window views from the orbiter or space
station, views originating from various closed
circuit television (CCTV) cameras, or
synthetically generated images created from the
space station master object database.

The graphical objects are created from
combinations of the available 3D primitives which
include boxes, cylinders, cones, spheres, and
generic objects created by manipulation of

vertices and polygons. Attributes such as the
position and orientation of a 3D object can be
dynamically modified by generic simulation
routines.

Objects may be individually rendered as wire
frame, filled polygon, or Gouraud shaded
polygons. From an operational analysis
perspective, it has been found to be
advantageous to allow concurrent display of wire
frame and filled polygons as the former allows
the operator a see-through capability which may
assist in determining the relative position of
objects. Object ordering is achieved through the
use of the IRIS z-buffer which operates in
double buffered mode.

The IRIS 4D-70 allows the use of multiple light
sources to illuminate the workspace and allow
some measure of realism to the view. It cannot
however, adequately simulate the effects of
shadowing and glare which have a significant
effect on visibility in space.

Orthogonal or perspective viewpoints are
available for display in each window. Viewing
parameters including pan, tilt, roll and field of
view, may be modified from a simulation
routine which relies on inputs from the 2D
virtual control domain or from alternate input
devices such as hardware switches or buttons. In
addition, the attachment location of a viewpoint
(camera) may be tied to any object such as a
manipulator which allows an assessment of
viewing capabilities from manipulator cameras.

Graphical objects may be bound to other
graphical objects to simulate the chaining of
manipulators or the acquisition and maneuvering
of payloads.

The 3D graphical displays are under the control
of the window manager which provides the ability
to:

[simulate graphics over video by the
overlaying of 2D over 3D graphics.

{J simulate split screen operation and
resizing by manipulation of 3D
windows using window manager
services.

183

3.3.6 Kinematic Simulations

The configuration of the manipulator is
controlled by a kinematic simulation routine
which performs the inverse kinematics required
to convert from a commanded point of resolution
(POR) 1o the set of joint angles required to
achieve the configuration. The set of joint
angles along with the base position and
orientation uniquely defines the manipulator
configuration and may be used by the 3D
graphical rendering routines to draw the
manipulator.

The kinematic simulation currently implemented
on the prototype has the following characteristics:

O “N" degrees of freedom: The SSRMS
will consist of a 7 DOF manipulator.

O Bi-directional Control: The SSRMS will
have the capability to attach itself to
grapple fixtures which supply power and
data transfer to both the base and end
effectors. This feature means that the
SSRMS can relocate itself by “walking”
off of the MSC and operating from a
grapple fixture at a remote location.

[J Coordinate Re-referencing: The SSRMS
may be controlled in any desired
reference frame. Reference frames are
selectable by the operator.

{J Control Modes: Three main control
modes are associated with the SSRMS
kinematic model.

Single Joint Mode: Manipulator joints
may be controlled individually by the
operator using a suitable input device.

Automatic Mode: The manipulator
configuration may be controlled by an
automatic trajectory planner thus allowing
the execution of pre-planned trajectories.

Manual Augmented Mode: The
manipulator POR may be controlled by
a human operator using a handcontroller.

Pcworl Operations l Ops Support l Mllc.] Main Menu | Control I Monitor l Ops Monl c.m.rul Secondary Menu

Secondary Control Area

Primary Control Area

Gontrol | Monitor | Ops Mon| Cameras | secondary Menu

Secondary Control Area

C & W Messages

e

WARNING | EE Latch Fallure 10:563:12 | STATUS

\ Time & Date w Message Ares

Figure 4 Graphical Display Template

Control | Monitor l OPS Mon l Cameras [Secondary Menu

GF PB2B ENABLED

NOTE: Figire Is representative
of the information required
for display, not the

VBIU OFF implernsntation of how

function witt be displayed.
LT ON
TVC OFF
-PTU
ON

POWER SSRMS CAMERA - 4 Figure 5 MSS Camera Power

Control Panel Selection

MSS Video Subsystem Schematic

184

Control I Monitor [OPS Mon I Cameras Secondary Menu

Camera select | Adjust | Setup [MSC_EEIbow

f LIGHT
g IN
= ZOOM
=3 ouTt

=30°
@« v =
lllll]llllllllllllllljlIlllll‘llllllllllllll] L1l Illllll

Figure 6 MSS Camera Control Panel

NOTE: Figure Is representative of tha informatidn required for display,
not the implementation of how function will be displayed.

AUTO MODE
povees o ~F AUTO MAN
POR
CMD AUTO TRACK
SNARES
MANUAL O O O RIGID DERIG
END
SINGLE EFF REF CAPTURE CLOSE RIGID
s LATCHES
ACTIV DEACT
| ENTER | LMP O UMBILICAL
CONN DISC
E= posn.
HOLD
SSRMS Modes EE Payload

Figure 7 Manual End Effector Control - SSRMS Mode and
Payload End Effector Panels

185

3.3.7 Post Processing Functions

Post processing software is included in the facility
which allows analysis of simulation runs. Current
post processing capabilities include workspace
analysis and video recording and playback.

An interactive workspace analysis program allows
multiple instances of manipulator positions to be
superimposed. The investigator may then visually
determine the point of closest approach between
the manipulator and another object. The line of
closest approach may be quantified by calculating
the distance between the two points as defined
with a 3D cursor.

After the definition of a manipulator trajectory
the set of parameters relevant to the operation
may be saved to disk for off-line trajectory post
processing analyses or the creation of videos.

Animated videos may be created for engineering
presentations or public relations. The video
software will read the disk file, redraw the image,
and sent the appropriate commands to the
optical disk recorder for recording of the video
image. The images thus stored are spliced
together on a VHS editing tape recorder for
production of the final video.

4.0 FUTURE DEVELOPMENTS

The MSS Program will achieve a higher level of
simulation capability with the development and
delivery of the MDSF (Manipulator Development
and Simulation Facility). The MDSF will
provide all the functionality of the MSS
Kinematic Simulation Facility along with the
following additional features:

O Real-time dynamic simulation of
generic manipulators with multiple
operator control stations

[3D graphics editor

J Generic instructor station for operator
training

[J Record and Playback functions

{J Simulation of elastic deformation of
bodies

{1 Collision detection algorithms

186

5.0 CONCLUSION

An implementation of computer graphics
technology in the design of a complex system has
been presented, specifically related to the
development of the Canadian Mobile Servicing
System and its IVA human-computer interface,
The systems design methodology, hardware and
software configuration, and current and future
uses of the facility have been discussed.

The application of currently available graphics
technology provides systems designers and
operations analysts with the ability to visualize
and simulate the capabilities of a complex system
in a cost-effective manner. The integration of
input/output devices with the simulation facility
provides a high degree of interactiveness allowing
the testing and verification of concepts
throughout the design process in a realistic
environment.

ACKNOWLEDGEMENTS

The work presented has been performed at
SPAR Aerospace Limited, Remote Manipulator
Systems Division, by CAE and SPAR personnel,
under contract to the National Research Council
of Canada, Space Division.

The authors would like to thank the NRCC,
SPAR Aerospace Ltd, and CAE Electronics
Ltd, for permission to present and publish this
paper.

REFERENCES

I »gpace Station Information System (SSIS)
Human-Computer Interface Guide,”
Version 2.0, NASA USE-1000,

May 1988

—

1

N90-20677 "

P A T
B A

SOFTWARE SYSTEMS FOR MODELING
ARTICULATED FIGURES

Cary B. Phillips

Computer Graphics Research Laboratory

Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania 19104-6389

Abstract

Research in computer animation and simulation of
human task performance requires sophisticated geo-
metric modeling and user interface tools. The soft-
ware tools for a research environment should present
the programmer with a powerful but flexible substrate
of facilities for displaying and manipulating geometric
objects, yet insure that future tools have a consistent
and friendly user interface.

Jack is a system which provides a flexible and ex-
tensible programmer and user interface for display-
ing and manipulating complex geometric figures, par-
ticularly human figures in a 3D working environ-
ment. It is a basic software framework for high-
performance Silicon Graphics IRIS workstations for
modeling and manipulating geometric objects in a
general but powerful way. It provides a consistent
and user-friendly interface across various applications
in computer animation and simulation of human task
performance. Currently, Jack provides input and con-
trol for applications including lighting specification
and image rendering, anthropometric modeling, fig-
ure positioning, inverse kinematics, dynamic simula-
tion, and keyframe animation.

1 Introduction

The great promise of computer graphics is visual-
ization, the ability to answer difficult problems and
convey complex information through computer gen-
erated images. The problem for researchers in com-
puter graphics is how to generate images which con-
vey such useful information. Recent advances in com-
puter hardware have revolutionized the capabilities

187

of graphics simulation systems. Today’s hardware is
capable of displaying large numbers of graphics prim-
itives in real time. The task now is to take full ad-
vantage of these new graphics capabilities in software
modeling systerns.

This charge applies especially to software for model-
ing geometric objects. The importance of visualiza-
tion in geometric modeling is quite obvious, but the
application of computer graphics goes beyond simply
generating static synthetic images. A modeling sys-
tems should give it user the ability to manipulete the
models, and the models should behave in a way which
conveys information back to the user.

User interface toolkits such as X-windows provide
good tools for designing interfaces to many types of
software programs, but they do not provide adequate
tools for constructing interfaces for manipulating ge-
ometric objects. Developers of software for computer
animation and simulation need similar sorts of tools
for assisting in the higher-level task of modeling, dis-
playing, and manipulating complex geometric figures.

Jack is a system being developed at the University of
Pennsylvania to support research in human task per-
formance in the Computer Graphics Laboratory. Its
goal is to provide a consistent and easy-to-use pro-
grammer utility for modeling, displaying, and ma-
nipulating complex articulated structures, and at the
same time provide a consistent and convenient user
interface across various applications. Jack runs on
the 4D Series Silicon Graphics IRIS Workstations,
and its intended user community consists primarily
of engineers with a basic understanding of robotics
and geometric modeling concepts.

Jack is very general in its ability to model articu-
lated figures, but its primary purpose is to support

o @l

human factors analysis. 'The object modeling facili-
ties in Jack are designed to handle the special difficul-
ties of modeling and manipulating human figures in a
3D working environment. There are many sources of
support for this project, each with its own emphasis
and application:

o NASA Johnson Space Center and Lockheed En-
gineering and Management Services, Graphics
Analysis Facility of the Man/Systems Division:
primarily Space Shuttle and Space Station ap-
plications, with major interest in reach, fit, and
view analyses, with active interest in strength
models, zero-gravity dynamics simulation, and
language-based task processing.

o NASA Ames Research Center: the A3I project
to simulate all aspects of a helicopter mission
is the application, with Jack providing the pilot
model and forming the basis for workload com-
putations. The pilot’s mission and tasks are pro-
vided by an external Al-based simulator.

e Army Research Office, the Human Engineering
Laboratory at Aberdeen Proving Grounds: ap-
plication to multi-operator vehicles, with a pri-
mary interest in evaluation of reach, comfort,
strength, workload, and cooperative behavior.

e Pacific Northwest Laboratories, Battelle Memo-
rial Institute: application to control a mobile
robot mannequin used to test suit designs for
permeability to chemical and biological agents,
with a primary interest in animation control, safe
path determination, collision avoidance, and mo-
tion feasibility.

e State of Pennsylvania Benjamin Franklin Part-
nership: technology development in Artificial In-
telligence methods to aid human factors evalua-
tion.

o National Science Foundation: representations
and systems to assist in the interactive and au-
tomatic generation of natural, animated human
motion.

This project greatly benefits from its home in a Com-
puter and Information Science Department because
computational tools and techniques are essential for
such a broad spectrum of human performance prob-
lems.

This paper gives an overview of Jack. It explains
many of the features built into Jack, including its ob-
ject modeling facilities as well as its interaction mech-

188

anism for manipulating figures through direct manip-
ulation and inverse kinematics.

2 The Software Engineering
Aspect

In order for computer graphics to fulfill its great
promise, software developers must be careful to craft
their systems to be effective tools. The graphics im-
ages must be merely the means to the end and not a
burden to support.

This is especially important in a research environ-
ment, where researchers need to expertment with new
types of algorithms and techniques, yet produce soft-
ware tools which will be usable by non-programmers.
In such an environment, it is particularly important
to develop flexible and extensible software tools, since
it is not always possible to fully anticipate future de-
mands of the software. In this type of environment,
the modeling software cannot be a “black box” be-
cause it is frequently necessary to extend it or cus-
tomize it in various ways.

Jack is designed to be easily extensible. It is a com-
mand driven system: the user typically executes com-
mands by selecting items from pop-up menus, but
commands may also be entered explicitly from the
keyboard or read from command files. Jack is very
modular in that each command or group of commands
roughly corresponds to a specific utility. During de-
velopment, certain unnecessary utilities may be omit-
ted, drastically reducing the overhead of the develop-
ment process.

Jack follows a well-defined mechanism for defining
commands and controlling input from the user. This
mechanism makes it very easy to customize Jack for
specific applications. Many times such applications
evolve into sophisticated standard utilities. The sim-
plicity with which commands may be written and
added to the menus make it easy to manage the soft-
ware as it grows and encorporates new utilities.

3 The Peabody Object Repre-
sentation

The heart and soul of geometric modeling software
is the representation for geometric objects. This in-
volves much more that just the shape of the objects.
The models must represent information about how
the objects behave, how they simulate the behavior

of the real-world objects they represent. The purpose
of the graphics facilities in the software is simply to
convey information about the models. If the under-
lying model is not rich in information, the graphics
facilities will have little use.

Jack is primarily a user interface which controls the
interaction with articulated figures represented by a
system called peabody. The name peabody refers to
both the internal data structures representing the ge-
ometric objects and to the external language for de-
scribing and storing them. Peabody objects are de-
scribed in text files, and Jack can be viewed as a
graphical editor for constructing and manipulating
these objects. By analogy, this editor is to the ge-
ometric objects what a word processor is to English
prose.

Peabody represents figures composed of rigid seg-
ments connected by joints, which may also be under
the influence of certain constraints. The segment is
the basic geometric primitive. The state variables of
each segment represent its mass and moment of iner-
tia, as well as its surface geometry, which is a bound-
ary representation. Segments also represent material
properties such as reflectance parameters and light
emission values.

Joints connect segments through attachment frames
called sites. A site is a local coordinate frame speci-
fied with respect to the base coordinate frame of the
segment to which it belongs. Segments may have any
number of sites. Joints connect sites belonging to dif-
ferent segments within the same figure. Constraints
are pseudo-joints which express relationships between
arbitrary sites in the environment.

3.1 Articulated Figures

One of the most important features of the peabody
representation is its model for the articulation of the
figures. Figures may be composed of any number of
segments connected arbitrarily by joints. Since each
segment may have any number of sites, and the sites
may be located anywhere on the segment, the “skele-
ton” of the figure is easy to define even if the segment
does not have a distinct proximal and distal end.

The joints may have arbitrary degrees of freedom,
which peabody represents as zero to six rotational or
translational components. A zero degree of freedom
joint is like a bolt and is not manipulatable. Each de-
gree of freedom may have upper and lower limits on
it range of motion, and the limits are enforced dur-
ing interaction. The degrees of freedom also represent
stiffness and dampening information for dynamic sim-

189

ulation.

The user treats figures as arbitrary collections of seg-
ments connected by joints, without imposing a pre-
defined hierarchy upon them. Jack encourages the
user to think of the geometric objects as an arbitrary
graph of segments connected by joints. It computes
the global position and orientation of each segment in-
ternally by first computing a spanning tree of the en-
vironment. This tree need only be recomputed when
a new joint or segment is created or deleted, i.e. when
the topology of the environment graph is altered.

Since this tree is computed internally, the user does
not have to think of a figure as a strict hierarchy
with a predefined root. This simplifies the operation
of “rerooting” a figure, either to attach a figure to
another figure, or to change the point of attachment
of a figure to the world coordinate frame. This scheme
makes it easy to specify transformations with respect
to arbitrary reference frames.

The arbitrary figure root is important for manipulat-
ing figures which must maintain contact which certain
points in space. This is especially true of manipulat-
ing figures in a zero gravity environment, where fig-
ures may be attached through arbitrary foot or hand
restraints. When a figure is attached to a hand re-
straint in zero gravity, a bend in the elbow results
in the movement of the entire body, rather than a
movement of the hand and arm, which remains fixed
at the point of attachment.

3.2 Human Figure Models

Although Jack is primarily a tool for human factors
analysis, it makes no formal distinction between hu-
man figures and other geometric objects. All objects
are described by peabody, and the human figure mod-
els used are described by data files designed to model
the human figure in the specific ways. This model is
external to the software itself, which makes it possible
to model figures with differing degrees of complexity.
Different body models may be used in different cir-
cumstances. For example, engineers in the Graphics
Analysis Facility at JSC have developed a model for
the Extra-Vehicular Activity suit which has restricted
ranges of motion.

In addition, the actual geometry of the individual seg-
ments is defined separately from the topology of the
figure, which is defined in terms of the locations of the
joint centers. This makes it possible to use different
body geometries with the same underlying topologies.
Jack currently has three basic body geometries. Each
model consists of 31 segments with 29 joints. The

first model consists of 109 polygons and represents a
very crude, almost stick-figure, approximation to the
human body. An intermediate model consists of 408
polygons and resembles a robot-like figure. Finally,
a highly complex model has been derived from laser
scan data of human subjects. This model consists of
4571 polygons.

3.3 Anthropometry

The syntax of peabody language loosely resembles
data structure definitions in a traditional program-
ming language. The peabody language employs a
powerful mechanism for parsing arithmetic expres-
sions. These expressions may be used as part of the
definition of the figures, so that figures may be pa-
rameterized.

The ability to parameterize figures allows Jack to eas-
ily model human figures of arbitrary anthropometric
proportions. An auxiliary facility called SASS is a
spreadsheet program which allows the user to create
peabody human figure models of arbitrary anthropo-
metric sizes, based either on percentiles from specific
populations or from actual numerical values. It gen-
erates parameters for girth, joint limits, and centers
of mass. Currently, SASS uses NASA trainee popu-
lation data from the NASA Man-Systems Integration
Manual, Chapter 3 (NASA-STD-3000).

4 The Jack Window System

Jack uses the Silicon Graphics IRIS window manager,
4Sight, which run under the Unix operating system.
This window manager allows the user of the work-
station to create multiple windows and run different
graphics programs simultaneously. Jack creates win-
dows which provide views of geometric objects. These
windows may be moved and reshaped just like the
other window manager windows. This allows Jack to
be used as a “tool.” The user may easily shift back
and forth between using Jack and using the underly-
ing operating system.

Jack derives most of its input from a three-button
mouse, with a little input required from the keyboard.
It is a menu-driven system, and commands are gen-
erally executed by selecting items from the pop-up
menus. Although Jack maintains unique names for
all geometric objects, it is usually possible to refer to
objects by pointing at themn with the mouse. Most of
the keyboard input is in the form of single keystrokes
to invoke certain options. Very little typing is re-

190

quired, although it is possible to control Jack com-
pletely without the mouse if necessary. Jack avoid
being too cryptic in its keystroke bindings by dis-
playing information about the bindings whenever the
user is in a position to need them.

The execution philosophy of Jack is to select a high
level operation first, and then select the operands.
The user executes commands from a menu, such as
move figure, then he pick the appropriate object by
pointing at it with the mouse. Finally, he specifies the
value of the operation, i.e. a transformation, which is
usually manipulated interactively. Most operations
such as moving are terminated by hitting a special
key, such as the escape key.

4.1 Jack Windows

The parameters of each Jack window are easily to
tailor for specific applications and situations. By de-
fault, Jack displays the screen in a visually informa-
tive way by drawing a ground reference plane grid,
giving a perception of the orientation of the world co-
ordinate system. Jack draws orthogonal projections
of the figures in the scene on each of the coordinate
axis planes. These projections roughly resemble shad-
ows from three infinite orthogonal light sources and
serve as quick reference cues for the position and ori-
entation of the figures. The projections are drawn in
a darker color than the figures themselves, so they
do not distract from the rest of the scene. Since all
three projections are closely placed on the screen, the
user can quickly reference the orientation and relative
placement of neighboring objects in the scene. These
projections may be easily disabled, and may also be
enabled on a segment by segment basis.

Most aspects of the display are optional. The user
may choose to display the vertices;, edges, or faces
of each segment. The edges are drawn in wireframe.
The face may be shaded and z-buffered, illuminated
by multiple light sources using the lighting model
hardware of the IRIS workstation. With the IRIS
hardware, there is no significant performance penalty
involved in the shading, and the user is free select ei-
ther shaded or wireframe display. The sites associated
with each segment may also be displayed. Sites are
drawn as a labeled zyz coordinate axis frame. This
allows the display to be tailored to suit a particu-
lar application, since all forms of display may not be
appropriate for all tasks.

Figure 1: The Jack screen, with a human figure model

4.2 Viewing Facilities

It is especially important for modeling systems to pro-
vide good facilities for change the view. In the real
world, when someone is presented with an object to
observe, the natural reaction is to look at it from dif-
ferent directions, either by picking it up and moving
it around, or if it is too large to handle, by walk-
ing around it and looking at it from all sides. Soft-
ware which attempts to convey geometric information
through images should provide a similar ability.

Jack has a flexible way of manipulating the view.
The view in each Jack window is described by the
global position and orientation of a specific site on
a peabody figure. By default, a “camera” figure ac-
companies each window to represent the view. Mov-
ing the view in a window corresponds to moving the
camera figure in a special way. This is especially ben-
eficial in the Jack windowing environment, since the
user may create different windows, each with a dif-
ferent camera. The camera figures may be displayed
just like any other figure, so it is possible to see and
manipulate in one window the camera of another win-
dow.

Jack allows the user to change the view by what it
calls sweeping and panning. The sweeping operation
moves the camera in circular arcs centered at a con-
stant reference point, called the view reference point.
The view may swing horizontally or vertically, or it
may zoom in and out, all controlled by the mouse.
This is beneficial for viewing a particular point in
space from different directions. Panning is the oppo-

191

site of sweeping: the location of the camera remains
fixed while it pivots up or down. The view reference
point changes as the camera turns. This is useful for
looking side to side, but it is also an easy way to move
the view reference point around in space.

The view in each Jack window may alternatively be
“attached” to any site on any figure. This makes it
possible to attach the view to the eyes of a human
figure model and see in the window what the figure
sees. This is particularly beneficial during the ani-
mation of the motion of a figure. The figure may be
manipulated from a secondary point of view, and the
animation may be played back both from the point
of view of the figure or from a fixed point.

Another application of the viewing mechanism is po-
sitioning light sources. A special light source posi-
tioning facility temporarily attaches the view to the
light and then allows the user to adjust the view. The
user sees in the window where the light shines.

5 Object Manipulation Facili-
ties

An important characteristic of truly manipulat-
able computer models of geometric figures is quick
turnaround time between the user’s decision to posi-
tion the figure in a certain way and the time he ac-
tually accomplishes his goal. Most figure positioning
tasks in an interactive 3D environment either require
great precision, such as moving objects to tangency

or contact, or are very general, in which case rough
positions are sufficient and precision is not an issue.
Generally, the more detailed the positioning task, the
more input may be required from the user. It is im-
portant for modeling software to be able to handle
both cases well because the user should not be forced
to enter complex input for a simple positioning task.

Jack provides several facilities for moving and ma-
nipulating objects. The user may use great precision
when necessary, but may also quickly and intuitively
move objects around in the workspace without the
overhead of a complex positioning algorithm. The
direct manipulation scheme is useful for position ob-
Jjects with gross movements. The inverse kinematics
facility allows the user to position objects autornati-
cally to achieve multiple simultaneous goal positions.

5.1 Direct Manipulation

Jack uses a “view based” 3D direct manipulation
scheme. All of the rotational and translational in-
put is obtained from the mouse, but the movement
of the mouse by the user is coupled to the current
view of the object being manipulated, so that there
is a direct and intuitive relationship between the di-
rection the user moves the mouse and the direction
the object moves.

For 3D translation, the user selects an axis of transla-
tion by holding down a button on three button mouse,
but after the axis has been selected, the direction of
movement of the mouse which cause movement of the
object along that axis is determined by the line which
that axis in space makes on the screen. The user may
also translate objects in a plane by holding down two
mouse buttons simultaneously, in which the move-
ment of the object is constrained to lie in that plane
and the location of the object is determined by the
point in the plane which lies underneath the mouse
cursor in the current view. The effect is a intuitive
way of translating objects, since the object “follows”
the mouse on the screen.

Rotations in 3D are accomplished with a rotation
“wheel”, which is a graphical icon describing the axis
of rotation. The user selects the axis of rotation by
holding down a single mouse button, and the wheel
appears to demonstrate the selected axis. The ro-
tation is accomplished by moving the mouse around
the perimeter of the rotation wheel. The effect is also
fairly intuitive, since the user moves the mouse in cir-
cles around the object to cause the object to rotate.

The rotation and translation mechanisms are used
both for moving figures in the world coordinate frame

192

and for manipulating the displacements of joints.
Joints may have either rotational or prismatic com-
ponents in their degrees of freedom, and the user may
manipulate the joint using the direct manipulation fa-
cilities. If the joint has limits, the limits are obeyed
during the interaction, and the joint is not allowed to
violate the limit.

5.2 Inverse Kinematics

The direct manipulation facilities in Jack make it
easy to position entire figures and manipulate indi-
vidual joints by hand. But many positioning tasks
involve manipulating many joints simultaneously un-
til a certain condition is satisfied, such as tangency or
point-to-point contact. Jack has a sophisticated in-
verse kinematics facility which uses a gradient descent
algorithm to solve for a set of joint angles, within the
defined joint limits, which satisfy a number of ge-
ometric “goals”. The user-selectable parameters of
the “reach” are the goal site, the end effector, and
the set of joints to be manipulated during the reach.
The objective function may encorporate a weighted
combination of position and orientation. During the
solution of a multiple goal reach, each goal may have
a separate weighting factor, which specifies the rela-
tive importance of each goal if the goals are not all
simultaneously reachable.

There are several variants of the reach algorithm.
First, the active reach attempts to model the behav-
ior of a real human subject performing a reach. It at-
tempts to solve the reach with af user-specified chain
of joints, but if the goal is not reachable, joints are
added to the joint chain, working towards the body
root, until the chain includes all joints between the
end effector and the root.

Another variant of the reach algorithm is a poiniing
reach, which is useful for orienting the head and eyes
of a human figure for looking at a particular point in
space. The user input is similar to the ordinary reach,
but the algorithm manipulated the joints so that the
line of sight of the end effector is directed towards the
goal.

5.3 Keyframe Animation

Jack has a sophisticated keyframe animation subsys-
tem which allows the user to define groups and ac-
tions. Groups are sets of “things which change over
time”, typically joints and constraints. Actions are
primitive sequences of changes to the values of the
elements of a group. Keyframes are sets of values for

the elements of a group. A scene is a collection of
possibly overlapping actions.

The animation facility may be used directly for
keyframing known movements or interpolating be-
tween specific positions. It may alternatively be used
as a means of collecting, storing, and playing back
motions generated from external means, such as from
external dynamic simulation software. Typically, the
dynamic simulation produces output at specific time
slices, which may be greater or less then the desired
frame rate for playing back the motion sequence. The
features of the animation system allow this to be eas-
ily controlled.

References

[1] Badler, Norman 1., Jonathan D. Korein, James
U. Korein, Gerald Radack, Lynne S. Brotman,
“Positioning and Animating Human Figures in a
Task-Oriented Environment,” The Visuael Com-
puter 1, No. 3, 1985.

[2] Grosso, Marc, Richard R. Quach, and Norman 1.
Badler, “Anthropometry for Computer Graph-
ics Human Figures.” Technical Report, Dept.

of Computer and Information Science, Univ. of
Pennsylvania, Philadelphia, PA, 1989.

[3] Phillips, Cary B, and Norman 1. Badler, “Jack:
A Toolkit for Manipulating Articulated Figures”
Proceedings of ACM/SIGGRAPH Syposium on
User Interface Software, Banff, Alberta, Canada,
1988.

[4) Phillips, Cary, “Programming With Jack,” Tech-
nical Report, Dept. of Computer and Informa-
tion Science, Univ. of Pennsylvania, Philadel-
phia, PA, 1989.

[5] Phillips, Cary, “Using Jack,” Technical Report,
Dept. of Computer and Information Science,
Univ. of Pennsylvania, Philadelphia, PA, 1989.

[6] Zhao, Jianmin and Norman I. Badler, “Real-
time Inverse Kinematics with Joint Limits and
Spatial Constraints” Technical Report MS-CIS-
89-09, Dept. of Computer and Information Sci-
ence, Univ. of Pennsylvania, Philadelphia, PA,
1989.

193

¢/

0678
2o/

N90¥2

HUMAN TASK ANIMATION FROM PERFORMANCE
MODELS AND NATURAL LANGUAGE INPUT

Jeffrey Esakov
Norman [. Badler
Moon Jung

Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania 19104-6389

Abstract

Graphical manipulation of human figures is essen-
tial for certain types of human factors analyses such
as reach, clearance, fit, and view. In many sit-
uations, however, the animation of simulated peo-
ple performing various tasks may be based on more
complicated functions involving multiple simultane-
ous reaches, critical timing, resource availability, and
human performance capabilities. One rather effective
means for creating such a simulation is through a nat-
ural language description of the tasks to be carried
out. Given an anthropometrically-sized figure and
a geometric workplace environment, various simple
actions such as reach, turn, and view can be effec-
tively controlled from language commands or stan-
dard NASA checklist procedures. The commands
may also be generated by external simulation tools.
Task timing is determined from actual performance
models, if available, such as strength models or Fitts’
Law. The resulting action specifications are animated
on a Silicon Graphics Iris workstation in real-time.

1 Introduction

Simple computer animation is not so simple anymore.
What was once acknowledged as a “good” animation
is no longer acceptable. Animations are not neces-
sarily things which are “looked at” for aesthetic pur-
poses but are being used for practical applications
in science and engineering analyses. Human figure
animation, in particular, is receiving considerable at-
tention as new display systems and robust animation
software bring motion control and rendering capabil-
ities to a widening range of users. Animations are

PRECEDING PAGE BLANK NOT FILMED

195

created to evaluate the ability of people to fit or work
in designed environments, determine whether work
places satisfy their functional requirements, and an-
alyze human task performance in a given situation.
With the expanded role of animation and increased
viewer sophistication, the tools for developing anima-
tions for these analytic purposes have become consid-
erably more complex.

To gain control over complexity, animation tools are
becoming “task oriented.” A system which allows a
process to be described at a level best suited for the
action allows the user to specify the action in the least
restrictive, and most natural, manner [4, 23]. This
important benefit becomes crucial as the animation
tools shift out of the animation production houses and
into other industries and laboratories; human factors
engineers often lack the manual and artistic skills nec-
essary for the specification of animation.

The solution to this problem is two-fold. New users
must be educated, but also, the vocabulary recog-
nized by the tools must be modified. Certainly, the
obvious conclusion is that the tools must understand
a “task level” vocabulary. Even with that higher level
of understanding, communication would still be lim-
ited as the user not only lacks the vocabulary, but
also the language for communication.

The ideal language for communication is one with
which the user is most comfortable. Natural language
parsers, however, are complex programs [3]. Further-
more, integrating such a program into the animation
environment introduces several interfacing problems

[5].
We shall describe here a prototype system in which
task animation is driven via natural language. We

eaik /7] iNTENTIONMLY BLAN

focus on the interface between the natural language
parser and the motion generator. The paper is orga-
nized as follows. Section 2 discusses how we currently
limit the scope of the problem and describes the do-
main in which our animations are created. Section
describes relevant research. Section 4 discusses how
the parser and motion generator are integrated. Sec-
tion 5 describes the technique which is used to fill in
the timing information tacitly embedded in the nat-
ural language commands.

2 Problem Domain

Since our goal is to investigate the linkage between
language and task animation, initially the task do-
main is limited to “simple” reaches and view changes.
(Karlin [17] investigated more complex motions; these
will be added to the system vocabulary later.) A
“simple” reach is one which requires no locomotion,
only movement of the arm or upper body. A view
change is a change in the orientation of a figure’s head
(i.e. the figure’s view of the world changes). While
seemingly very easy, these tasks already demon-
strate much of the essential complexity underlying
language-based animation control.

2.1 Task Environment

The tasks to be performed and animated all center
around a control panel (i.e. a finite region of more or
less rigidly fixed manually-controllable objects). By
using a control panel, it is obvious that many ev-
eryday tasks can be simulated. Some control panels
encountered in a normal day-to-day routine are type-
writer keyboards, elevator panels, light switches, and
car dashboards. We will use as a generic example the
remote manipulator system control panel in the space
shuttle (Figure 1) as it contains a variety of controls
and indicators.

The purpose of creating the task animation is for task
performance analysis. In particular, we want to de-
termine if some person, X, can perform a task, and
if so, we want to view the task performance. How-
ever, task performance depends on who is executing
the task. If X has short arms, then he might not
able to reach the control panel. Therefore, included
in our task environment is the ability to specify the
anthropometric “sizing” of the people to be included
[16]. The size is based on a percentage of some pop-
ulation data (e.g., NASA crew member trainees [1]).
For example, a 50%-ile man represents the average

196

man in some body of data, whereas the 95%-ile man
represents a man whose size parameters are in the
95 percentile. Similar data should exist for women
over some population. Figure 2 shows 50 and 95
percentile men and women based upon available data
[21].

3 Relevant Research

Zeltzer [26] first gave names to the various “levels”
of computer animation: “guiding level,” “production
level,” and “task level.” Using his nomenclature, the
type of system we describe here is a “task level” sys-
tem. His system for controlling the walk of human
figure [25] is a specialized system for a particular task
to be performed (i.e., walking). For now, our “skills”
consist of reaching and viewing.

The Story Driven Animation System [22] accepts
modified natural language input and creates the cor-
responding animation. The emphasis in this work is
on story understanding and the ability to choose the
correct key frames. Similar high level (intelligent)
selection among existing key frames is also demon-
strated by Fishwick {11, 10]

MIRALOGIC [19] is an interesting approach (o ern-
bedding a high-level of understanding within an an-
imation system. Through the use of this expert sys-
tem, the user can specify rules for setting up an envi-
ronment and the system will identify inconsistencies
or potential problems and suggest possible solutions.

ASAS [20], and the other object-oriented systems it
exemplifies [19], can also implement task-level seman-
tics through task decomposition. A task can be de-
composed procedurally.

These systems all address a different type of prob-
lem than that which is being addressed here. The
tasks in our system are specified in natural (or any
syntactically-described artificial) language with the
purpose of examining task performance. As such, it
is easy to change the tasks as well as the anthropo-
metric parameters describing the performers.

4 Integrating Language
and Motion Generation

The primary focus of this work is to examine how
natural language task specification and animation can
be combined in an application-independent manner.
The burden of this requirement falls upon the link

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 1: Space Shuttle Remote Manipulator System Control Panel

3 8

(a) 50**% man (b) 50*% woman (c) 95"*% man (d) 95**% woman

Figure 2: Anthropomorphically Valid Articulated Figures

197

between these two environments. To illustrate the
situation, we will discuss a sample natural language
script actually used to create an animation:

J is a 50 percent man.

S is a 50 percent woman.
J, look at switch twf-1.
turn twf-1 to state 4.
look at tglJ-1.

look at twf-2.

turn tglJ-1 on.

look at twif-3.

turn twf-3 to state 1.
look at twf-3.

look at S.

look at J.

.- e W

. . -

N ouwuwnnumanm

This type of script is common in performing checklist
procedures such as those done in airplanes or space
shuttles [2]. The verb “look at” represents a view
change and the verb “turn” involves a simple reach.
(The parser accepts a larger variety of syntactic con-
structions than illustrated by this example [5].)

The two primary problems are specifying reach and
view goals, and connecting object references to their
geometric instances.

4.1 Specifying Goals

A goal for a reach task is the point which the hand
should touch. For this particular type of task, such
a goal has three positional degrees of freedom, al-
though there are situations in which rotational de-
grees of freedom may be considered as well. A view
goal is a point in space toward which one axis of an
object must be pointed.

Within an animation environment, such goals repre-
sent points in space (for position goals) or coordinate
reference frames (for position and rotation goals) ul-
timately specified numerically with respect to a coor-
dinate system. Within the natural language environ-
ment, the goals are not coordinates, but rather are
represented by objects as in, for example, the com-
mands:

J, look at switch twF-1.
S, turn switch tglJ-1 on.

The information regarding the exact locations of the
switches is basically unimportant at the language
level. Somehow, the switch name tglJ-1 must be
mapped to the appropriate switch on the panel in the
animation environment. The same process must be

198

followed for the target object toward which an object
axis must be aligned in a view change. This problem
reduces to one of object referencing.

4.2 Object Referencing

In general, all objects have names. Although the
names may be different in the animation and language
environments, providing a map between the names is
not difficult. This, of course, assumes there is a one-
to-one correspondence among the names. Such a re-
quirement, however, defeats the goal of independence
between the environments.

The problem domain specifically includes control pan-
els. From a task specification perspective, a control
panel is a very complex object consisting of many fea-
tures such as controls, indicators, etc. From a com-
puter graphics perspective, the most salient feature
of the control panel is its appearance, not necessar-
ily the detailed geometry of the individual switches.
An object such as a control panel can most efficiently
be represented as a single textured object which can
then be mapped onto a polygon. The alternative of
representing each individual switch would require a
large number of polygons and an extensive amount of
digitizing work to obtain a visually adequate repre-
sentation of the switches.

By allowing each environment to represent the panel
in a manner that is best suited for the way in which
it will be referenced, the one-to-one correspondence
among names is lost. The many objects in the task
specification environment all correspond to a single
texture mapped panel. A method is needed which will
allow the construction of a mapping of feature names
in the task specification environment to texture map
locations in the animation environment.

We used a paint program as the basis for such a tool.
Since a paint program allows one to create the texture
maps in image space, additional input was required
to specify the polygon on which the image is to be
mapped. With that information, important locations
on the texture map could be identified and given at-
tributes (e.g., switch or indicator, rotary control or
push button, etc.), and the corresponding locations
on the polygon were calculated. The output of this
tool provided input to both the semantic knowledge
base and the geometric database.

4.2.1 The Knowledge Base

The knowledge base needs to contain information
about object names and hierarchies, but need not

be concerned with actual geometry or location. Fur-
thermore, as the task specifications and object defini-
tions become more complex, the knowledge base can
contain causality relationships. For example, turning
switch tglJ-1 to on may cause some other object to
move or change state [5]. We use a frame-like knowl-
edge base called DC-RL to store semantic information
(8]

Object information must be entered into the knowl-
edge base manually, as it can differ for each con-
trol panel, but the name mapping program described
above can be used to specify the linkages into the
animation environinent.

For example, here is a section of an actual map file.

{ concept ctrlpanel from panelfig

having (
[role twF-1 with
[value = ctrlpanel.panel.twf_1]]
[role twF-2 with
[value = ctripanel.panel.twf_2 1]
[role twF-3 with
[value = ctrlpanel.panel.twf_3 1]
[role tglJ-1 with
[value = ctrlpanel.panel.tglj_1]]
[role tglJ-2 with
[value = ctrlpanel.panel.tglj_2]]
)

The names twF-1, twF-2, tglJ-1 correspond to
the names of switches manually created in the
existing knowledge base panel description called
panelfig. These names are mapped to the corre-
sponding names in the animation environment (e.g.,
ctrlpanel.panel.twf_1, etc.) and are guaranteed
to match as the actual object within the animation
environment is automatically generated.

4.2.2 The Geometric Database

The geometric database is called the Peabody Envi-
ronment Network (or just peabody). In peabody, a
figure is composed of a set of segments, each of which
may have geometry associated with it. The geom-
etry within each segment is defined within its own
local coordinate system. Joints connect segments at
attachment points called sites. A joint is actually a
transformation between sites and hence sites have an
orientation as well as a location. Segments can have
any number of sites and it is through those sites that
the different interesting points on the texture map are
identified for the animation environment.

199

The relevant part of the peabody description of the
panel figure 1s shown:

figure ctrlpanel {
segment panel {

psurf = '"panel.pss';

site base->location =
trans(0.00cm,0.00cm,0.00cm);
twf_1->location =
trans(13.25¢cm,163.02cm,80.86cm) ;
twf_2->location =
trans(64.78cm,115.87cm,95.00cm) ;
twf_3->location =
trans(52.84cm,129.09cm,91.43cn) ;
tglj_1->location =
trans(72.36cm,158.77cm,81.46cm) ;
tglj.2->location =
trans(9.15cm, 115.93¢cm,94.98cm) ;

site
site
site
site

site

This entire file is automatically generated based upon
the map file. Since the panel is a rigid object with no
movable parts, no joints are required. The location of
each site (each of which represents a different switch)
was calculated in the paint program (which created
the file) by applying the texture mapping transforma-
tions normally applied when the image is rendered.

4.3 Creating an Animation

Mapping objects from the task description environ-
ment to the animation environment provides one of
the crucial links needed for creating an animation.
The language processor provides another link. Our
Motion-Verb Parser (MVP) [5] uses both a subset of
natural language and an artificial language (NASA
checklists) for its syntax. Information obtained dur-
ing the parse is stored in the semantic knowledge base
DC-RL. The natural language task descriptions that
are included in the problem domain are such that a
single animation key frame can be developed from a
single command. Each part of speech fills in slots in
an animation command template.

Figure 3 shows the relationship between the task
specification and the animation commands. A “turn”
command specifies a reach which can be solved using
inverse kinematics; a “look at” command specifies an
orientation change which can also be solved using in-
verse kinematics [6, 14]. Frames from an animation
created using the script shown in Section 4 are shown
in Figure 4.

J look at switch twf-1.
J turn twf-1 to state 4.
S look at tgll-1.
S turn tglJ-1 on.

Ly

point_at(”ctrlpanel.panel.twf_1”,”J bottom_head.between_eyes” ,(1,0,0));
reach_site(” ctrlpanel.panel.twf_1”,”J right_hand.fingers_distal”);
point.at(”ctrlpanel.panel.twj.1”,”S.bottom_head.between _eyes” ,(1,0,0));
reach_site(” ctrlpanel.panel.twj_1” ”S left_hand fingers_distal”);

Figure 3: Natural Language Input and Animation Commands

5 Default Timing Constructs

Given that the basic key frames can be generated
based upon a natural language task description, cre-
ating the overall animation can still be somewhat dif-
ficult. Techniques for creating motion by animating
the solution algorithm such as those done by Badler,
Manoochehri and Walters [6], Witkin, Fleisher and
Barr [24], or Barzel and Barr [7] are themselves inap-
propriate for task performance analysis. Instead, the
positions created must be taken for what they are:
the desired configuration of the body at a particular
time. The exact time, however, is either unknown,
unspecified, or arbitrary.

The timing of actions could be explicitly specified in
the input, but (language-based) task descriptions do
not normally indicate time. Alternatively, defining
the time at which actions occur can be arbitrarily
decided and a reasonable task animation can be pro-
duced. In fact, much animator effort is normally re-
quired to temporally position key postures. There
are, however, more reasonable ways of formulating a
guess for possible task duration.

Several factors effect task performance timnes, for ex-
ample: level of expertise, desire to perform the task,
degree of fatigue (mental and physical), distance to
be moved, and target size. Realistically speaking, all
of these need to be considered in the model, yet some
are difficult to quantify. Obviously, the farther the
distance to be moved, the longer a task should take.
Furthermore, it is intuitively accepted that perform-
ing a task which requires precision work should take
longer than one not involving precision work: for ex-
ample, threading a needle versus putting papers on a
desk.

Fitts [12] and Fitts and Peterson [13] investigated
performance time with respect to two of the above
factors, distance to be moved and target size. It was
found that amplitude (A, distance to be moved) and
target width (W) are related to time in a simple equa-
tion:

24

Movement Time = a + blog W

200

where a and b are constants. In this formulation, an
index of movement difficulty is manipulated by the
ratio of target width to amplitude and is given by:

ID = log%

This index of difficulty shows the speed and accuracy
tradeoff in movement. Since A is constant for any
particular task, to decrease the performance time the
only other variable in the equation W must be in-
creased. That is, the faster a task is to be performed,
the larger the target area and hence the movements
are less accurate.

This equation (known as Fitts’ Law) can be embed-
ded in the animation system, since for any given reach
task, both A and W are known. The constants a and
b are linked to the other factors such training, desire,
fatigue, and body segments to be moved; they must
be determined empirically. For button tapping tasks,
Fitts [13] determined the mean time (MT) to be

MT = 741D — 70msec

Although Fitts’ Law has been found to be true for a
variety of movements including arm movements (A =
5 — 30cm) and wrist movemnents (4 = 1.3cm) [9, 186,
18], the application to 3D computer animation is only
approximate. The constants differ for each limb and
are only valid within a certain movement amplitude
n 2D space, therefore the extrapolation of the data
outside that range and into 3 dimensional space has
no validated experimental basis.

Nonetheless, Fiits’ Law provides a reasonable and
easily computed basis for approximating movement
durations. Should a more exact model be developed,
it should readily fit into a 3D computer animation
environment in which default task durations must be
computed.

ORIGINAL PAGE IS
OF POOR QUALITY

(b)

(c) (d)

(0)

Figure 4: Animation Frames Showing “Look” and “Reach”

201

6 CONCLUSIONS AND
FUTURE WORK

One of the goals of the Computer Graphics Research
Lab at the University of Pennsylvania is to develop
human task performance analysis tools specifically for
users who are engineers and not particularly likely
to be animators. Higher-level animation tools are
deemed essential to the satisfaction of this goal. We
have demonstrated the feasibility of building a com-
plete pipeline of processes beginning with natural lan-
guage input, proceeding through semantic resolution
of simple tasks, default task time durations, and ob-
ject references, and ultimately terminating in inverse
kinematic positioning and rendered graphics. The
pipeline confronts the issues of establishing appro-
priate linkages between objects, time, and actions at
the language and geometric levels without adopting
ad hoc solutions such as the selection of pre-defined
key frames or the use of fixed default timings.

Of course, the model is quite incomplete in many re-
spects, but we have work in progress in many areas,
including;:

e Lxtending the knowledge base to more com-
plex task verbs and more general object envi-
ronments.

e Extending the animation interface to include dy-
namics and constraints as well as inverse Kkine-
matics.

o Extending the task processor to a more general
task simulator which handles temporal expres-
sions, resource management, and task interrup-
tion.

e Extending the panel editor to permit on-line
changes to panel object locations and semantics.

Ultimately the user should be able to control most
of aspects of the animation (excepting the creation
of the actual geometric environment) through a
language-based interface. This will include the ability
for parameterizing (1) bodies, (2) object and object
feature locations, and (3) tasks. With this capability,
experiments can be performed without descending to
the key frame level for animation.

7 Acknowledgements

Many people helped developed the software described
in this paper: especially Jean Griffin, Cary Phillips,

202

Aamer Shahab, and Jianmin Zhao.

This research is partially supported by Lockheed En-
gineering and Management Services, Pacific North-
west Laboratories B-U0072-A-N, the Pennsylvania
Benjamin Franklin Partnership, NASA Grants NAG-
2-426 and NGT-50063, NSF CER Grant MCS-
82-19196, NSF Grants IST-86-12984 and DMC85-
16114, and ARO Grant DAAG29-84-K-0061 includ-
ing participation by the U.S. Army Human Engineer-
ing Laboratory.

References

[1] Man-system integration standards, NASA, nasa-
std-3000 edition, March 1987.

Space Shutile Flight Data File Preparation Slan-
dards, Flight Operations Directorate, Opera-
tions Division, NASA Johnson Space Center,
1981.

(2]

Allen, James, Natural Language Undersianding,
Benjamin/Cummings, 1987.

(3]

Badler, N., A representation for natural hu-
man movement, Technical Report MS-CIS-86-
23, Dept. of Computer and Information Science,
Univ. of Pennsylvania, Philadelphia, PA, 1986.

Badler, N. and Gangel, J., Natural language
input for human task description, In Proc.
ROBEXS ’86: The Second International Work-
ship on Robotics and Ezpert Systems, Instrument
Society of America, June 1986.

Badler, N., Manoochehri, K., and Walters, G.,
Articulated figure positioning by multiple con-
straints, /EEE Computer Graphics and Applica-
tions, Vol. 7, No. 7, June 1987.

(7] Barzel, R. and Barr, A., A modeling system
based on dynamic constraints, Computer Graph-
ics, Vol. 22, No. 22, 1988.

Cebula, D., The Semantic Dala Model and
Large Information Requirements, Technical Re-
port MS-CIS-87-72, Dept. of Computer and

Information Science, Univ. of Pennsylvania,
Philadelphia, PA, 1987.

Drury, C., Application of Fitts’ Law to foot-
pedal design, Human Factors, Vol. 17, No. 17,
1975.

[10)

Fishwick, P., The role of process abstraction in
simulation, [EEFE Trans. Systems, Man, and Cy-
bernetics, Vol. 18, No. 18, Jan./Feb. 1988.

Fishwick, Paul A., Hrierarchical Reasoning: Sumn-

“wlating Complez Processes over Multiple Levels

[13]

[14]

(15]

[16]

[18]

[19]

of Abstraction, PhD thesis, Dept. of Computer
and Information Science, Univ. of Pennsylvania,

Philadelphia, PA, 1986.

Fitts, P., The information capacity of the hu-
man motor system in controlling the amplitude
of movement., Journal of Experimental Psychol-
ogy, Vol. 47, No. 47, 1954.

Fitts, P. and Peterson, J., Information capacity
of discrete motor responses, Journal of Experi-
mental Psychology, Vol. 67, No. 67, 1964.

Girard, M. and Maciejewski, A., Computational
modeling for the computer animation of legged
figures, Computer Graphics (Proc. SIGGRAPH
85), Vol. 19, No. 19, 1985.

Grosso, M. and Quach, R., Anthropometry for
Computer Graphics Human Figures, Technical
Report, Dept. of Computer and Information Sci-
ence, Univ. of Pennsylvania, Philadelphia, PA,
1988.

Jagacinski, R. J. and Monk, D). L., Fitts’ Law
in two dimensions with hand and head move-
ments, Journal of Motor Behavior, Vol. 17, No.
17, 1985.

Karlin, R., SEAFACT: A semantic analysis sys-
tem for task animation of cooking operalions,
Master’s thesis, Dept. of Computer and Infor-
mation Science, Univ. of Pennsylvania, Philadel-
phia, PA, December 1987.

Langolf, G. D., Chaffin, D. B., and Foulke, J. A,
An investigation of Fitts’ Law using a wide range
of movement aplitudes, Journal of Maotor Behav-

tor, Vol. 8, No. 8, 1976.

Magnenat-Thalmann, N. and Thalmann, D,
MIRANIM: An extensible director-oriented sys-
tem for the animation of realistic images, [EELE
Compuler Graphics and Applications, Vol. 5, No.
5, October 1985.

Reynolds, C., Computer animation with scripts
and actors, Computer Graphics (Proc. SIG-
GRAPH 1982), Vol. 16, No. 16, 1982.

Reynolds, Herbert M., The inertial properties
of the body and its segments, NASA Reference

203

22]

[23]

Publication 1024: Anthropowmciric Source Book,
Vol. 1, No. 1.

Takashima, Y., Shimazu, H., and Tomono, M.,
Story driven animation, Proc. of Computer Hu-
man Interface and Graphics Interface, 1987.

Wilhelms, J., Toward automatic motion control,
IEEE Computer Graphics and Applications, Vol.
7, No. 7, April 1987.

Witkin, A., Fleisher, K., and Barr, A., Energy
constraints on parameterized models, Computer

Graphics, Vol. 21, No. 21, 1987.

Zeltzer, D., Motor control techniques for figure
animation, [EEFE Computer Graphics and Ap-
plications, Vol. 2, No. 2, September 1982.

Zeltzer, D., Towards an integrated view of 3-D
computer antmation, Proc. Graphics Interface

85, 1085.

NOO0-20679

S

- A
- L
ot ;

N
v

.

SES CUPOLA INTERACTIVE DISPLAY
DESIGN ENVIRONMENT

Bang Q. Vu & Kevin R. Kirkhoff

Lockheed Engineering & Sciences Company

INTRODUCTION

The Systems Engineering Simulator, located at the
Lyndon B. Johnson Space Ceanter in Houston, Texas, is
tasked with providing a real-time simulator for developing
displays and controls targeted for the Space Station
Freedom. These displays and controls will exist inside an
enclosed workstation located on the space station. The
simulation is currently providing the engineering analysis
environment for NASA and contractor personnel to design,
prototype, and test alternatives for graphical presentation of
data to an astronaut while he performs specified tasks. A
highly desirable aspect of this environment is to have the
capability to rapidly develop and bring on-line a number of
different displays for use in determining the best utilization
of graphics techniques in achieving maximum efficiency of
the test subject fulfilling his task.

The Systems Engineering Simulator now has
available a tool which assists in the rapid development of
displays for these graphic workstations. The Display
Builder was developed in-house to provide an environment
which allows easy construction and modification of displays
within minutes of receiving requirements for specific tests.

SOFTWARE DESIGN

Program Structure

The Display Builder is compiled to run under UNIX
AT&T System V on a Silicon Graphics' IRIS 4D/70 GT
graphics workstation. It has fourteen modules, and nearly
11,500 lines of C source codes. Four modules are dedicated
entirely to 2-Dimensional (2D) graphics; four are dedicated
to 3-Dimensional (3D) graphics, and the rest to user interface
and display list management. The executable size is roughly
400K bytes.

Data Strecture

The display list is implemented as a doubly linked
list. Each node in the list contains various house-keeping
data as well as an union (set) of all structures (records)
representing 2D and 3D primitives. The advantage of using
the union feature of C is that although the primitives have
variable length, they all fit into a node, thus greatly
simplifying the task of data management.

USER INTERFACE DESIGN

Any software, especially an interactive graphics
application system, is often judged primarily on its success
to deliver its functionalities to the users. Even if the system
is computation-intensive, what good is it if it fails to
communicate effectively with the human operator? In the
worst case the acceptability of the whole program may be

PRECEDING PAGE BLANK NOT FILMED

205

invalidated because even the experienced users shy away
from a poorly-designed User Interface (UI). The Display
Buiider employs a direct-manipulation UI popular on many
modern interactive graphics systems.

UI Desiga Strategy

The Display Builder's Ul lets the user manipulate
objects directly on the screen. This type of interface is
popular because it is easy to learn, and easy to use; however,
it is also one of the most difficult to implement. Direct-
manipulation Ul is often complex due to stringent
performance requirements (rapid actions and feedbacks),
elaborate graphics, asynchronous input devices, and various
ways to give the same command (keyboard and mouse).
Currently the most successful strategy to create a reliable Ul
is the Iterative Design method. Under this method,
prototypes of the Display Builder were iteratively tested and
modified based on users' comments to generate the final UL

Command Language
Command languages appear in all computer systems.

A command language is the set of actions a user is allowed
to have and the methods through which he can request a
particular action. In designing the Display Builder's
command language, the following issues were resolved:

Command Style: The Builder is both keyboard-
dialogue and menu driven. Dialogues are of a very simple
nature and conducted inside a dialogue box. For example,
the Builder may prompt for a string or a number, in which
case the user would proceed to type in the requested data. It
may ask for an answer, such as “yes" or "no", in which case
the choices are presented and can be selected. Most of the
time, the Builder is menu driven. Selecting either an answer
from the dialogue box or a choice from a menu can be done
by the mouse or keyboard shortcut (see FIG 1,2,3).

Command Modes: The builder has a dual mode,
2D and 3D, command language, and therefore interprets user
actions in two different ways. For instance, if the Builder is
in 2D mode and the user requests to move an object, he can
move only 2D objects. The user switches from one mode to
the other via the main menu (see FIG 2). The dual mode
method is chosen because it improves the Ul by cutting
down the size of many menus, and contributes heavily to
program maintainability by keeping modules handling 2D
and 3D graphics separate.

Command Abort & Error Haadling: These are
usually the most critical areas of any interactive system
because of the presence of an unpredictable human in the
process. The Builder allows the user to abort any single- or
multi-step command by pressing the ESC key. In case of
user error, such as opening a nonexistent file, a beep would

eack 20 4 _INTENTIONALLY BLANK

sound, the file name together with an error message appears
in the dialog box and the user can then correct the error or
abort the command. Because the Quit action irretrievably
destroys the drawing, it is implemented as a two-stage
command. If the user chooses this action, the following
warnings occur: a beep would sound, and a prompt appears
in the dialog box. Then the user can abort the command or
confirm it by clicking the mouse's right button.

Information Displays

This is one of the most subjective and therefore
troublesome areas of Ul design: how to display information
in the most "effective” manner. Screen layout and object
display are the two items of interest.

Screea Layowt: The prompts for the universal
command abort key (ESC), current file name, current
drawing color, and current builder mode (2D/3D) are
displayed in the upper left corner. The dialog box is located
in the upper right corner (see FIG {). The drawing area can
be created and moved to any place on the screen. Menus
appear on the right side of the screen only when needed.

Object Display: The Display Builder makes no
distinction between 2D and 3D objects; they coexist in the
same drawing space. The user can allocate any area of the
screen, either same or separate, to 2D and 3D objects. All
objects will automatically be clipped to fit inside its allocated
space.

Interactive Graphical Inpwt Techaiques

The user interacts with the computer through a
graphical display. He is generally not skilled in graphics,
and only interested in how fast and easy it is to accomplish
his task. Interactive techniques reduce the need for great
manual dexterity and the effort required to draw and
manipulate objects visible on the screen. Feedback,
Selecting, and Positioning are the techniques of interest.

Feedback: This is an essential component of
graphical interaction. Feedback techniques help to provide
immediate confirmation to the extent or intention of the
user's action. For instance, if the user selects multiple
objects to delete, and no feedback is provided, the user is left
to wonder whether he has made the right selections. The
uncertainty will eventually be answered when he gives the
delete command, but the efficiency of interaction is severely
hampered. The Builder uses highlighting, bounding box,
blinking color, prompts, and beeping noise to provide
feedbacks to the user.

Selecting: the need to select primitive(s) to
manipulate is one of the most basic interactive graphics

206

techniques. The Builder supports different selection
techniques depending on the mode it is in.

2D selecting: The user can select one or many 2D
primitives unambiguously by pointing to and clicking on
specific spots located on these primitives. These selection
points appear only when required in logical places such as
the center of a circle or the bottom left corner of a button (see
FIG 5). Feedback is provided by immediate highlighting of
selected selection points.

3D selecting: The user can select one or many 3D
primitives by clicking on their names in a linear display list
which appears when required. Feedback is provided by
immediate blinking of selected primitive(s).

Positioniag: The Builder supports the following
techniques to position a new 2D primitive or relocate an

existing one: grid, rubber banding, dragging, and aligning.

Grid: A grid is provided. The user has the option of
choosing a background or foreground grid or no grid at all.

Rubber Banding: Most 2D primitives are created with
rubber bands. For example, the user defines the first point of
a line. As he moves the mouse, the Builder draws a line
from the first point to the current cursor position. When the
second point is defined by the second click, the rubber band
disappears, and the permanent line is drawn. This technique
takes the guess work out of positioning a new primitive as
the user can see instantly how large and where it is on the
screen.

Dragging: This technique is used with moving or
copying 2D primitives. For example, the user starts by
selecting the primitive(s) that he wants to relocate. Then he
can “drag” their outlines to the new location. The selected
primitives are permanently moved when the user defines the
final location by clicking the mouse.

Aligning: There are four ways to align 2D primitives:
left, right, top, and bottom. All selected primitives are
automatically aligned.

3D graphics does not lend itself well to the above
techniques. Currently, the only way to position a new 3D
primitive or reposition an existing one is to enter new data
via the dialog box. After the object has been completely
defined, it will be redrawn at the new location.

FUNCTIONAL CAPABILITIES

Anything drawn inside a display is done through a
primitive, for example, a line, a number or a button. A
primitive is a packet of data used to construct a numerical or
graphical representation of information in a display. This
data is stored in the display's data file and used by the real-
time software to draw each primitive. The following terms
will be used to describe some features of the primitives:

SYSID: An index into a block of shared memory that
interfaces between the display and the simulation.

THRESHOLD: Used to denote a caution state (yellow),
and critical state (red). Thresholds are optional within each
primitive.

TRANSITION STATE: In the switch primitive, the time
between the user requesting a switch be activated, and
getting an indication from the math model that the switch
has been activated.

2D Actioas & Primitives

The user can create 2D primitives in a display with
minimal effort. For instance, he builds a circle by pointing
to a spot on the screen where it will reside, defining the
center with the first click of the mouse, rubberbanding the
circle to the desired size, terminating with another mouse
click. Data for that primitive may be edited at that time, or
teft until the entire display is created.

The following actions can be performed on 2D
primitives:

Edit change any or all data of a selected primitive.
(See FIG. 5).

Delete remove selected primitive(s).

Move move selected primitive(s).

Copy duplicate selected primitive(s).

Align top, bottom, left or right justify
selected primitive(s).

Save save selected primitive(s) to a disk file.

Read read primitive(s) from a disk file and insert them

into the display list.
2D Primitive List (see FIG 3):

Header - Contains display size, font and the length, in
bytes, of the display file.

Integer - Contains thresholding.

Single Precision Real - Contains thresholding.

Double Precision Real - Contains thresholding.
Hexidecimal - Contains thresholding.

Ascii message - Shows eight characters of variable text.
Static text - Shows eight characters of fixed ascii text.

207

Button or Switch - May be a toggle or momentary switch.
These primitives are similar in function and makeup except
that a momentary switch is activated when the mouse
button is pressed, and de-activated when released.
Keyboard input - Allows the user to enter data into the
simulation from the keyboard.

Page call - Activates new displays.

Default - Allows a user to customize a screen layout .
Indicator - Reflects the state of its related sysid.

Circular gauge - These come in two types, increasing and
decreasing, and three sizes. A needle moves between the
upper and lower limits in a forty-five degree, six o'clock to
three o'clock pattern. The actual value is displayed in the
lower right quadrant of the gauge. Contains thresholding.
Meter bars - Dynamically sized by the user, and may be
horizontal or vertical. They are rectangular with a cyan bar
and are functionally similar to the gauges. Contains
thresholding.

Dynamic position indicator - A pointer which moves,
horizontally or vertically, on a bar, proportionally between
an upper and lower limit. This pointer may be designated
as a caret, cross-hair, and filled or empty square, circle,
triangle.

Line - Explicit in primitive name.

Circle - May be filled or empty.

Rectangle - May be filled or empty.

Polygon - Can have a maximum of ten vertices and be
empty or filled.

3D Actioas & Primitives

There are many ways to construct 3D objects; for
example, one can build an image of a car by connecting
different surfaces, or an image of a house by using various
primitives such as boxes or cylinders. The Display Builder
lets a user construct a 3D object by combining 3D wireframe
primitives together using data entered through the keyboard.

The following actions can be performed on 3D
primitives:

Edit change any or all data of a selected primitive.
Delete remove selected primitive(s).

Copy duplicate selected primitive(s).

Save save selected primitive(s) to a disk file.

Read read primitive(s) from a disk file and insert them

into the display list.

3D Primitive List (see FIG 6): There are two categories
of 3D primitives: Graphic and Control.

The following graphic primitives are visible on the screen:

3D line - Must specify x,y,z coordinates.

Box - Must specify x,y,z coordinates.

Cylinder - Must specify center, diameter, length, number
of wireframe lines and angle of rotation (used for defining
partial cylinders).

Sphere - Must specify center, radius and number of
wireframe lines.

The following control primitives position and orient a 3D
object:

Header - Contains distance of the eyepoint from the origin,
near and far clipping planes, angle of perspective, and
whether or not the display will be z-buffered.

ame - Contains sysids for securing state
vector data for real-time positioning of an object.
End frame - end of object for state data application.
Ref Frame - define the coordinate system used to build a
3D object.
Rotation - Must specify the axis of movement, and degree
of movement per pass of the real-time software.
Tragslation - Must specify the axis of movement, and
distance of movement per pass of the real-time software.
Scale - Must specify the axis of movement, and
distance/degree of movement per pass of the real-time
software.

CONCLUSION

Because of the highly developmental nature of the
simulation workstation displays, it was essential that a
display builder be created that has the capability to quickly
create and modify a display, for evaluation in the simulation,
in a short amount of time. This "rapid prototyping”, along
with a conscious effort to design and write software that is
easy to maintain and add prototypes as needed, makes the
Display Builder a useful and essential tool in the generation
and modification of displays for use in the SES.

208

ACKNOWLEDGEMENTS

We would like to thank the following people who
have made significant contributions over the last two years to
the Display Builder: Judy Murphy, Mike Red, and Mike
McFarlane.

REFERENCES

1. Foley, J. D., and Van Dam, A., Fundamentals of
Interactive Computer Graphics, Addison Wesley, 1982.

2. Linton, M. A. et al., "Composing User Interfaces with
Interviews,” IEEE Computer, Vol. 22, No. 2, February
1989, pp. 8-22.

3. Mpyers, B. A, , "User-Interface Tools: Introduction and
Survey," IEEE Software, Vol. 6, No. 1, January 1989,
pp.15-23.

4. Newman, W. M., and Sproull, R. F., Principles of
Interactive Computer Graphics, McGraw-Hill, 1979.

5. Peltz, D. L., "3-D in Perspective,” MacWorld, Vol. 5,
No. 12, December 1988, pp. 108-119.

mptions with the (FFIMOHSE button or hilite letter,
tha MHOBLEMRUSE bution tu moea the draming window,

atcoog
Hent hic

trent radce

FIG.1 SCREEN LAYOUT

209

ORIGINAL PAGE IS
OF POOR QUALITY

FIG.2 DIALOG BOX WITH MAIN MENU

210

ORIGINAL PAGE IS
OF POGR QUALITY

Saluct nptions with the LEFTHBUSE button ar hilite letter.
Pl S function Ciick the MIDOLENBYUSE button to mowre the drawing window.

8 2D PRIMITIVES i

A GRUGE ENDIZﬁTUB THIS IS5 R STRING

‘ 100.00

0.00

A METER BAR

INC,
102,80

POLYLON

RECTANGLE

FIG.3 2D PRIMITIVES

211

SICEA) E s g
SIGIHAL Flhay s

GF POOR QUALITY

Selwect the desired optien with the LEFTY0USE button

e onr_bite Qedter

FIG.4 2D ACTIONS

212

Current lie

ORIGINAL PAGE IS
OF POOR QUALITY

Current mode =

FIG.5

Selact veriable to edit with the LEFTHOUSE button.

PAN/TILT

3z

2D EDITING

213

VI SYSED

3D SWITCH EDTT } ‘
[Resume | JCwGERTDATA RNEWIBATA

2w b
YRR SR
£ I T
7S SO

SWITOH §YSID
fLEFTX
(LOWERY
SRIGHT 2
{yzpER Y

" BUFBACK 0L

—

ofRmT s
s Wt
-

g

Wiy #

L RATE

Yothe desired aption with tha DEFTHIUSE bl fon
[AC ST R T I

FIG.6 3D PRIMITIVES

214

NOO-20680 ..

ISSUES IN VISUAL SUPPORT TO REAL-TIME SPACE SYSTEM SIMULATION
SOLVED IN THE SYSTEMS ENGINEERING SIMULATCR

Vincent K. Yuen

Lockheed Engineering & Sciences Company
2400 NASA Road 1

Houston, Texas 77058

Adequate visual coverage, the field of

view provided, 1is also of paramount

INTRODUCTION importance. The visual coverage not
only provides guidance for the
particular maneuvers, it also dictates
the feasibility of the maneuvers
themselves. Due to the complex
geometrical shapes of the vehicles and
their attachments, together with the
number of moving parts involved,
collisions between parts can happen
quite inadvertently. These collisions
may go unchecked if visual coverage is

In some man-in-the-loop simulations,
immediate visual feedback is essential
in providing the astronauts with the
real world representation of their
operating environment in order to
successfully complete the designed
task. This is especially true in space
station/space shuttle docking (Figure

1) and space station/space shuttle not ~ available to give immediate

payload hand-off (Figure 2) scenarios. feedback.

More importantly when a remotely ,)

piloted vehicle {s not equipped with A tblpd aspect of the prob}em is

radar sensors to provide data providing all the pertinent views to

describing relative motion the all participants in the simulation. In
!

scenarios involving the Space Shuttle
and Space Station working in concert
there may be upwards of ten window

astronaut has to rely entirely on
visual inputs to perform his functions.
Such maneuvers are impossible without
the aid of adequate visual cues.

Figure 1 - Space Station Freedgm / Space Shuttle Figure 2 - Space Station Freedom / Space Shuttle
Docking Payload Hand-Off

215

views and seven
television (CCTV)) :
the astronauts during one simulation.
Thus, the
loop simulations are : 1).

and CCTV views, 2).

visual coverage (field of view) to
adequately complete the task, 3).
providing as many views to as many
participants as possible during the

simulation.

LABORATORY BACKGROUND

The Systems Engineering Simulator (SES)
Johnson Space
has
successfully addressed these issues in
simulator
complex which provides real time man-

the
System
Space Shuttle program and the Space
SES
provides two crew stations for manned
the
Freedom

located at the Lyndon B.
Center in Houston, Texas,

the development of its
in-the-loop simulations for
National Space Transportation

Station Freedom program. The
vehicles in

Station

operation of the
simulation. A Space

workstation mockup is provided and a
replication of the Space Shuttle aft
flight deck is provided.

.

~

Figure 3 - Space Station Freedom Control Mockup

closed-circuit-
monitors in use by

issues to be addressed in
providing visual systems to man—inTthe—
providing
real warld representation for window
providing adequate

216

There are six windows and five camera
monitors in the Space Station Freedom
control mockup (Figure 3) and the Space
Shuttle aft cockpit mockup has four
windows and two camera monitors (Figqure
4) . Each window view is a virtual image
projection of a two-dimensional scene
projected by a television monitor. The
virtual image will give the window view
a three-dimensional perspective. Camera
views are provided with pan/tilt/zoom
capabilities, and the scene graphics
are projected onto television monitors.
This arrangement of different
capabilities between window eye points
and camera eye points is the design to
map the visual simulation to the real
world where out-the-window views are
three-dimensional and camera views are
two-dimensional.

The laboratory has three different
scene generators providing a total of
eleven channels of video signal. An

Evans & Sutherland CT-6 visual
generation system provides six
channels, an Evans & Sutherland CT-3
system provides two channels, and a
Redifusion Poly 2000e visual system
provides three channels of video
signal.

There are obviously more window and
camera views than the eleven channels
can support. A video distribution
system has been developed to handle the
video signal allocation and switching
in a time-sharing fashion to provide
video to windows and CCTVs as selected
by the simulation operators. The system
has two major components. A Scene

Select subsystem allows simulation
users to select which video channel is
to be displayed on which window or

CCTV. The other component is the Video
Distribution Rack (VDR) which is
responsible for routing the video

signals from the three scene systems to
the windows and CCTVs in the mockups.

[o st s |
7 emives i
RN, ..

Figure 4 - Space Shuttle Aft Cockpit Mockup

ORIGINAL PAGE IS
OF POOR QUALITY

VISUAL SUBSYSTEM

There are five major pieces of visual
scene software needed to provide the
visual simulations for the SES: Scene
Drive, CT3 Interface, Poly Interface,
cT6 Interface and the Scene Devices
Controller (Figure 5).

Scene Drive

This element provides the mathematics
between the simulation and the scene
systems. The Scene Drive takes inertial
state vectors of the vehicles, computes
the relative state vectors, and passes
them onto the scene system interfaces.

the
the

An equally important issue in
visual simulation, besides
positioning of the objects, 1is the
positioning of the eye points. Scene
Drive receives inputs that indicate
which eye points are currently selected
and whether pan/tilt/zoom has been
commanded for camera eye points.

Armed with the users’ redquests of
monitors and the availability of video
channels, the Scene Drive task
determines which scene system video
output channels should be routed to
which television monitors for display.

87-6
. VISUAL €562 &6
. fog) [og]
. SOFTWARE | ‘wf £G
: LY | | FOLY
SCENE uF ESG

e , cre) | CT6
. ¥ : ESG

SCENE
=
1
Cortrol Cartrol
Panet Panel
_______________) .
Scene Scene
Select Select |, ::;
Boes) Broes | Bardware
Dlepley Display N
Moniors Moriars [VIR N
e
AFT
COCKPTT GFOLA
Figure 5 - Visual Subsystem Block Diagram

ORIGINAL Fac
AL PAGE Ig
OF POOR quaLiTY

217

Scene Devices

The Scene Devices task is a background
task supporting the simulations. It
receives user requests for monitors
from the Scene Select hardware and
passes the requests to the Scene Drive
task. It then receives the VDR and
Scene Select commands from the Scene
Drive tasks and passes the commands to
the VDR hardware and Scene Select

hardware respectively for hardware
distribution of scene system outputs.

CT3, POLY & CTé Interfaces

receive
eye
and
the
the
the
and

These three interface tasks
relative state vectors of vehicles,
points from the Scene Drive task,
data from the other parts of

simulation to drive the objects in
visual scene. Each of the tasks is
only link between the simulation
the corresponding scene system.

COVERAGE

Visual coverage is a major concern for
SES Crew Stations. The coverage for the
simulator is determined by the field-
of-view of the real-world windovs.
Ideally, the simulator should provide
the exact field-of-view to the
astronaut as is available to him in the
actual vehicle. The Space Station
Freedom workstation creates an
interesting problem in that there is
almost a continual view across windows.
The SES has developed a rotating optics
system to fit around the Space Station
Freedom workstation to provide this
continual field of view (Figure 6). The
optics system can rotate in a vertical

manner to provide coverage overhead
when necessary. This rotating
capability allows the astronaut to
select his coverage as a function of
his interested area outside the
workstation.

SUMMARY

The Systems Engineering Simulator has
addressed the major issues in providing
visual data to its real-time main-in-

the-loop simulations. out-the-window
views and CCTV viewsare provided by
three scene systems to give the

astronauts their real-world views. To
expand the window coverage for the
Space Station Freedom workstation a
rotating optics system is wused to

provide the widest field of view
possible. To provide video signals to
as many viewpoints as possible, windows

and CCTVs, with a limited amount of
hardware, a video distribution system
has been developed to time-share the
video channels among viewpoints at the
selection of the simulation users.

These solutions have provided the
visual simulation facility for real-
time man-in-the-loop simulations for
the NASA space program.

Figure 6 - Rotating Optics System

218

20 (L0

HISTORY OF VISUAL SYSTEMS
IN THE SYSTEMS ENGINEERING SIMULATOR

pavid C.

Johnson

National RAeronautics
Houston,

ABSTRACT

The Systems Engineering Simulator (SES)
houses a variety of real-time computer
generated visual systems. The earliest
machine dates from the mid-1960‘s and is
one of the first real-time graphics
systems in the world. The latest
acquisition is the state-of-the-art
Evans and Sutherland CT6. Between the
span of time from the mid-1960’s to the
late 1980's, tremendous strides have
been made in the real-time graphics
world. These strides include advances
in both software and hardware
engineering.

The purpose of this paper is to explore
the history of the development of these
real-time computer generated image
systems from the first machine to the
present. Hardware advances as well as
software algorithm changes are
presented. This history 1is not only
quite interesting but also provides us
with a perspective with which we can
look backward and forward.

ACRONYMS AND ABBREVIATIONS

CIG —--- Computer Image Generator

CT3 --- Continuous Tone Computer Image
Generator - third generation

CT6 —--- Continuous Tone Computer Image
Generator - sixth generation

EPU --- Edge Processing Unit

ESG --- Electronic Scene Generator

JSC --- Johnson Space Center

MMU --- Manned Maneuvering Unit

NASA -- National Aeronautics and Space
Administration

OGU --- Object Generating Unit

OMV --- Orbital Maneuvering Vehicle

R520 -- Raytheon 520

SAIL -- Shuttle Avionics Integration
Laboratory

SEL --- Systems Engineering Laboratories

SES -~-- Systems Engineering Simulator

SGS --- Surface Generator Subsystem

TOU --- Timing and OQutput Unit

VCU --- Vector Calculating Unit

Christianson

Space Center .
and Space Administration
Texas 77058

INTRODUCTION

In the twenty odd years between the
first real-time computer image generator
to the present, many strides have taken
place to provide realistic, full color,
three-dimensional displays for wuse in
many areas in the simulation community.
NASA/JSC is rare in that it contains a
snap-shot of this development
approximately every ten years.

From the first of its kind to the
current, real-time computer image
generators provide the necessary visual
displays to support the increasingly
heavy demands placed on the Systems
Engineering Simulator (SES). This paper
explores the history of the scene
generators which existed and still exist
in the SES.

The hardware configuration and new
technology of each graphics system is
explained. The salient features and
innovations of each system as they were
introduced to the SES is explored.
Several advances in the theory of
database modeling have evolved
throughout the years and real-time
programming has changed from minimal to
extensive.

Due to historical carryover, the terms
Electronic Scene Generator (ESG) and
Computer Image Generator (CIG) will be
used interchangeably.

SES —— SYSTEMS ENGINEERING SIMULATOR

The Systems Engineering Simulator (SES),
formerly the Shuttle Engineering
Simulator, has been in continuous
operation since the programs conception
in 1968. The SES supports real-time
man-in-the-loop computerized engineering
simulation for the Shuttle, space
station, and other space related

programs and projects.

219

4 "‘
VR
P

operation
Generators

The two main areas of
utilizing Electronic Scene
(ESG) are entry and on-orbit.

simulation is hosted by a
The orbiter forward cockpit
High Bay

The entry
Cyber 840.
mockup is located in the East
of Building 16.

On-orbit simulation is accomplished with
the use of five SEL 32/8780 supermini
digital computers and four SEL 32/75
digital computers. Mockups include an
orbiter aft station, MMU station, and a
cupola station. The cupola 1is the
operations station for the space
station. All of these mockups reside in
Building 16. On-orbit operations which
are supported include space station
docking/berthing, payload
handling/deployment, MMU operations, and
OMV studies to mention a few.

NASA I -- THE ORIGINAL SCENE GENERATOR

"And, in the beginning, there

was texture."

NASA/JSC was instrumental in bringing to
fruition the concept of real-time
computer generated images. In the time
before the mid-1960's, the
out-the-window visual images were
generated by model boards: large,
scaled replicas of the simulation
terrain over which a closed circuit
television camera traversed. These
model boards were built specifically for
the purpose at hand and not easily
modifiable.

concept emerged in the early
Although rather idealized, the
computers could be
time to satisfy the
scenes for
In August,

A new
1960's.
scenes produced by
generated in real
requirements to provide
out-the-window displays.
1964, NASA at the Manned Space Center
installed the first such computer
device. The dawn of real-time computer
generated images began with the "visual
Contact Analog: Three-View Interim
Space-Flight Simulator” build by General
Electric.

this computer system
views. These views
consisted of an unbounded textured
planar surface for the ground. This
special purpose computer, the Surface
Generator System, calculated the
perspective transformation of a surface
texture. The optical system displayed
the resulting pictures so that the
environment appeared distant to the
observer.

As intimated above,
produced three

There were a few interesting details
be discovered about this system. Due to
the state of the digital art at that
time, several problems were solved with
analog methods. The textured surface

to

220

was computed in digital form without a
roll angle. This made the algorithm
simpler and roll was accomplished in the
circular television monitor by
electronically rolling the raster.
Precise nonlinear sweeps were generated
by the display wunit to compensate for
optical distortions. To avoid
disturbing moire patterns, fine detail
was gradually faded out of the picture
with analog circuitry.

The entire computer system consisted of
six pipelined processors built with
pre-TTL equipment: Computer Control
Corporation (3C) circuitry cards
containing discrete components.

Screaming along at 5 MHz, the displays
were generated at 30 frames a second.
This corresponds to the current American
commercial standard.

As in all computer image generators, the
first processor wunit is the unit with
the highest programmability. The first
unit of the Surface Generator System,
the Program Control Unit, contained 512
48-bit words and had a memory access
time of 5 microseconds.

This machine served the Guidance and
Control Division for several years.

NASA II -- THREE DIMENSIONAL CAPABILITY
In February, 1968, modifications were
made to the Interim Visual Space Flight
Simulator and a large complement of
equipment was added.

An innovation occurred in the field of
computer generated images.
Three-dimensional objects were added to
the textured surface. In this time
frame, the Manned Space Center was
heavily involved with moon landings.
The additional capability provided the
simulation with idealized forms of lunar
mountains and craters as well as the
traditional realistic landing fields.

The new system consisted of the
following components:

1. A Raytheon 520 (R520) general
purpose computer. Flexibility was
introduced by linking a general purpose
computer to a set of special purpose
computers. Although minimal by modern

standards, the memory capacity was 8096
24-bit words core memory and 256 24-bit
words of high speed memory. This
concept formed the basis of flexibility
in the succeeding generations of
real-time visual systems.

2. A Vector Calculating Unit (VCU).
This special purpose computer deviated
from the classical Von Neumann computer
architecture. It contained a 4096

24-bit word program memory unit and
three sets of 2048 30-bit word data
memory units corresponding to the X, Y,
and Z components of the Cartesian
coordinate system. The data memory
units can be accessed in parallel,
enabling dot and cross product

calculations to be made quickly.

3. A set to two Object Generating Units
(OGU). Each unit was capable of working
on twenty objects made up of eighty
faces and described by a maximum of 120
edges. For each edge of the
environment, one circuit board was
required.

4. A Timing Unit

and Output ({TOU) .

This unit performed three functions. It
generated the master timing signals for
the entire system. The TOU served as a
mixing and distribution point for the
video outputs from the two OGU’s and
routed data from the VCU to the OGU's,
SGS, and displays. Test patterns were
generated in the TOU for aligning and
trouble shooting the system.

The Surface Generating Subsystem (which
was the Visual Three-View Space-Flight
Simulator) was modified to allow its
operations at 20 frames a second. The

NASA II system operated at a slower rate
due to the constraints imposed on it by
the R520 and vcCuU.

Of interest here is the fact that the
objects which were generated came from a

catalog of two-dimensional polygons and
three-dimensional objects. Each OGU had
the capability of generating one
decahedron, one octahedron, two
hexahedrons, and four tetrahedrons as
well as two dodecagons, three octagons,
four hexagons, three quadrilaterals, and

two triangles. The maximum capability
of 120 edges per OGU could not be
exceeded. The combined capacity of the
two OGU’s was 240 edges.

The database designer had to create a
scene choosing objects and polygons from
a catalog of available objects and
polygons. The specification of vertices
for the objects and polygons followed
stringent rules. The concepts of
planarity and convexity were required
for each planar surface. Because object
topology was predefined, vertex
selection required a lot of
precalculation for irreqular objects.
Selection of the objects and polygons
amounted to filling specific absolute
locations in the R520 memory. Color
selection followed a similar procedure.

The designer also had the choice of one
quadrilateral shadow polygon and one
beacon. The shadow polygon emulated the
shadow created by ones ownship. It
changed configuration in response of the
vehicles attitude with respect to the

221

surface and an imaginery sun. The one

beacon was a two element by one line
pair dot. 1t had the capability of
flashing and the period was
programmable.

The real-time programming consisted
mainly of calling the subroutines which

transformed objects and polygons in the
correct order. At this point in time,
there was not a clear distinction
between database design and real-time
programming. The two concepts were
closely intertwined.

presented
of
two

The NASA II system, therefore,
an environment consisting
three-dimensional objects on a
dimensional textured surface.

NASA III -- A BETTER WAY

1971, a major innovation
into the then current
visual system. The two OGU's with its
combined capacity of 240 edges was
replaced with an Edge Processing Unit
(EPU) which increased the edge
capability to 320 edges. The theory of
a fixed set of objects and polygons was
superseded with a more general approach
of Jjust polygons. Groups of polygons
were gathered to form three-dimensional
objects.

In November,
was incorporated

also introduced.
shared between an
which did not

other. This
edge capacity
a cube has six

four edges.

A new concept was
Edges could now be
object or among objects
move relative to each
provided an addition
capability. For example,
sides and each side has
With this method, a cube could be
described as six sides with twelve
shared edges rather than six sides with
four edges each for a total of 24.

With the added flexibility that this new

system brought, a need for programs to
generate databases was required. The
first database compiler was written by

Lockheed at the NASA Manned Spacecraft

Center. Because the program was written
in an early version of Fortran, the
syntax was necessarily field sensitive.

Things had to be in the right column.

The database designer specified clusters
by grouping polygons. He specified
polygons by grouping vertices. Clusters
had to follow some rigid constraints.
NASA III used the 1idea of separating
planes. Clusters were separated from
each other by invisible, infinite planes
called nodes. Modules were groups of
clusters which did not move relative to

each other. Each polygon was given an
attribute such as color, back-face
generation, and shadow or beacon
generation. Given the capacity of the
machine, the number of edges per polygon
was completely arbitrary. One of the

on the
twenty

existed
of

test patterns which
machine has sixteen polygons
edges each.

The real-time program, which resided in
the R520 and the VCU, was written by
General Electric. It was an upgraded
version of the one which resided in the
R520 in NASA II but the new algorithm
made the program much less complex and
easier to manage.

Programming of the real-time software
was rather trivial. The program was
mainly driven by the database
environment. It required little
modification for each new environment.

The environment consisted mainly of two
independent coordinate systems which
could contain an eyepoint or modules,
one coordinate system which could
contain only an eyepoint, and the ever
present textured surface.

With the advent of
below, the
the Electronic Scene Generator
#1).

the (€T3, described
NASA III system was renamed
#1 (ESG

CT3 -- A MAJOR STEP

A major step in the evolution of
real-time computer generated image
systems was made in November, 1976. The
€T3 made by Evans and Sutherland was
introduced to the SES. This system had
many new attributes which deserve
mentioning. This system 1is currently
employed to a great extent in the SES
laboratory.

The CT3 consists of three general
purpose computers of the PDP-11 series,
a visual pipeline, and a collision

detection pipeline.

A central PDP-11/40, called the HOST, is
interfaced to the simulation laboratory.
The HOST interfaces to the visual system

and the collision detection system. The
main purpose of this machine 1is to
gather the data from the simulation,

format the data, and send the results to
the other subsystems.

The wvisual
PDP-11,/40.

subsystem is driven by a

It is connected to a visual
pipeline containing 10 programmable
special purpose processors. Two
independent channels of visual images
are produced. The total capacity of the
visual system is 900 polygons.

A separate
allowed the

collision detection

simulation to detect the
intersection of impenetrable objects.
This system consisted of a PDP-11/45 as
well as a collision detection pipeline
containing two programmable special
purpose processors.

system

The frame rate of this system was 25 Hz.

222

This corresponds to the European
commercial standard. Although ESG #1
was operating at 20 Hz, no problem was
presented. CT3 was used for on-orbit
studies and ESG #1 was not.

The wvisual system included many new
features which are described below.
Anti-aliasing and edge smoothing were
added to improve picture quality.
Spatial filtering was used as the
algorithm.

Directional illumination was introduced

to provide an illusion of sun direction,
intensity, and environmental depth.

Smooth-shaded polygons simulated round
or complex shaped objects. The Gouraud
shading algorithm was implemented in
hardware using extremely fast ECL
circuitry.

Hidden surface removal by range priority

was done in hardware as well. This
eliminated the necessity for separating
planes.

A separate modeling system was delivered

which was wused to «create and analyze
databases. This system consists of a
calligraphic display system and a
general purpose computer, PDP-11,/40.
Software packages aid the designer in
producing new databases. The databases

are viewed
system.

in wireframe on the display

This is the first time that the database
modeling was implemented on a system
other than the visual system. Due to
the extremely heavy usage of the CT3 in

the simulation laboratory, a separate
modeling station is necessary.

A new language was developed for
database modeling. The new compiler
set, MEDUSA for the visual system and
COLIDE for the collision detection
system, offers the designer a capability
and flexibility heretofore unknown. In
the process of constructing an
environment, the designer defines and
names points. Subsequently, he defines
polygons in terms of these points and
adds attributes such as color and
reflectivity. With this innovation, the
database design becomes much more 1like
programming rather than filling out

specification requirements.

Another language
system, CDS for

set, VIS for the visual
the collision detection
system, and HOST for the host machine,
was developed for the real-time
programmer. Symbolic parameter areas
are defined by the programmer and
transformation sequences are specified
to meet the simulation requirements.
Again, the real-time programmer is more
of a programmer rather than someone who

allows the data to dictate the real-time
configuration. Currently, two versions
of the HOST software exists. HSTSES
interfaces to SES and HSTSTS interfaces
to SAIL. At the present time, CT3 is in
use at least 16 hours a day supporting
on-orbit studies in the SES.

ESG #1 -- A NEW LEASE ON LIFE
Returning to ESG #1 (alias
the Raytheon 520 was more
difficult to maintain and the
even more difficult to maintain. During
the early 1980's, this author’s project
was to replace the R520 with a more
modern Systems Electronic Laboratory
(SEL) 32/55. During this project, the
SGS was removed from the system as well
as some other parts of old ESG #1. The
remaining units are the VCU, TOU, and
EPU. The display systems were reworked.
This effectively removed the texture
capability from the system.

NASA I11),
and more

SGS was

The frame update rate of ESG #1 was not

changed. To have done so would have
required major hardware modifications.
Therefore, the frame update rate was

retained at 20 Hz.

Along with the hardware changes, a new
set of software packages had to be
written. Rather than follow the
original design for database modeling
and real-time application software, it

was desirable to model the software
after CT3. 1In this effort, the database
modeling software closely approximates
that of CT3, given the different
hardware algorithms between the two
machines. In addition, the real-time
software approximates the real-time

software of CT3. The desired effect was
the capability of a database designer or
real-time programmer to move between the
two machines with very little effort.

The database modeling software, ENCOM,
was designed to emulate the database
modeling software which exists on CT3.
A complete rework was undertaken so that
a programmer on CT3 could move to ESG #1
with minimal effort. The established
procedure of defining and naming points
followed by defining polygons in terms

of these points was introduced to ESG
#1.

The real-time software followed a
similar theory and procedure. The

real-time software on CT3 was deemed a
standard and the real-time software on
ESG #1 was designed to match as closely
as possible. Currently, three versions
exist. VISUAL interfaces to the SES,
VISSTS interfaces to SAIL, and VIS is a
standalone version used for local
applications and development.

ESG #1 is
simulation.

actively
A set of

As of this writing,
supporting entry

223

13 entry scenes are available. Due to
its age, it is difficult to maintain and
some of the electronic components are
not obtainable. There 1is a project
underway to retire it and replace it
with a more modern computer image
generator.

POLY 2000 -~ A MEDIUM RESOLUTION,
COST APPROACH

LOW

A POLY 2000 built by GTI,
(GTI) was purchased 1in October, 1985.
It was planned to add three low
resolution channels to the complement
which existed in SES at that time.
However, the software and hardware
theory was radically different.

Incorporated

The digital technology had advanced so
greatly during this period in time that
the POLY 2000 could accomplish real-time

computer generated images using
micro-coded, high-speed bit slice
processors.

The POLY 2000 at that time was in its

infancy. It did not have anti-aliasing
or smooth shading. It did have diffuse
reflectivity which gave the impression

of a sun direction. Alphanumeric
characters could be overlaid on the
scene.

The POLY 2000 consisted of a general
purpose computer and a set of special
purpose bit-slice processors. The
general purpose computer, the Alcyon,
was used in database development as well

as generating load modules for the POLY
2000 proper. The first major processor
was the System Control Module (SCM).
when the system was connected to the
simulation, data was sent directly to
the sCM and the Alcyon was not wused.
This left the Alcyon free to be used in
other capacities.

Special requirements were insisted upon.
The frame update rate was set at 25 Hz
to match that of CT3. Multiple channels
were requited. The vendor produced a
system with three independent channels.

Database modeling was done on the Alcyon
and the binary object files were stored
on its disk. When needed, the object
modules were downloaded to the SCM. The
database compilers, polyi2l and polyd2D,
were not compatible with any of the
database modeling software which existed
in the SES.

The real-time programs were written in C
on the Alcyon and, also, downloaded when
required. No special language was
implemented; all special functions were
included in a library.

These concepts were radically different
than the ones established on ESG #1 and
CT3. Lockheed personnel wundertook the

effort to write a set of software
packages which would more closely
emulate the concepts of the other
graphics systems. These included the
database compiler (POLYS) and the
real-time support software packages
known as the 1linker (LOADER), and the
loader (LOAD). The syntax of the
langquage was modeled after those
commands found in the software of the
other systems.
POLY 2000e -- AN ENHANCED VERSION
Given a few years, GTI enhanced the POLY
2000 to include additional features.
Their new POLY 2000e provided the
following enhancements:

1. Smooth-shading - Gouraud

shading was added to the flat shaded and
fixed shaded polygons already in the
system.

2. Anti-aliasing - Sub-pixel
averaging was used as the algorithm for
curing the jaggies.

3. Transparency - Eight levels
of polygon transparency was incorporated
into the system.

4. Depth
dissolution to
for fog and haze.

fogging - Gradual
the background provided

Essentially, the enhanced system was an
entirely new system. New algorithms and
hardware were exchanged for the older

system. The three channels operating at
25 Hz were retained. The general
purpose computer, the Alcyon, was also
retained.

Because the hardware and software
theories were changed, the custom-made
compilers had to be changed. Extensive
effort was employed to wupgrade the
compilers to match the new system
without having to rework all the
previous database and applications
software.

The three channels of the POLY 2000e are
currently supporting on-orbit studies in
the SES.

CT6 -- A PRIDE AND JOY

As of this writing, an Evans and
Sutherland CT6 is in the process of
being integrated into the SES
laboratory. As with the advent of CT3,
major steps in computer graphics were
introduced to the SES.

The general purpose computer of the CT6

is a Gould Concept 32/67. The special
purpose computers are still arranged in
a pipeline fashion but there are fewer
major components doing much nmore. The
configuration of the pipeline allows

224

channelization to be performed early in

the processing.

The current system has
channels of high
quality images. The system

six independent
resolution, high
is capable

of processing thousands of polygons and
each channel can display up to 1500
polygons. Compared to the hundreds in
the other systens, the increased
capacity is impressive.

Not all the database need reside in
active memory. Parts of the database

which are potentially visible reside in
memory while the rest resides on disk.
When those objects not in memory become

potentially visible, they are paged in
from disk to memory. This provides a
mechanism which essentially expands the

potentially visible database many fold.

Texture returns. Not only ground
texture but polygonal texture is made
available. Any polygon regardless of
orientation can have texture. Many
texture patterns are available in the
system. Texture can be produced by
closed form equations or

photographically derived.

Database development is now necessarily
more complex. Database modeling is done
on a Microvax II. Not just one software
package is enough. Several database
modeling software packages are provided
not only to develop databases but also
to display the resulting databases on a
color calligraphic display device, the
PS330. Database development includes
object and surface production
capability. The main database compiler,
DBC, deals with objects, polygons, and
points. A separate linker, LNK, is used
to join the intermediate binary object
files. The surface feature editor, SFE,
assists in creating large terrains
principally used in landing scenarios.
Several display packages are included
such as the CT simulator, CTS, and the
graphics editor, GRE.

Complexity also manifests itself in the
real-time software. The increased
memory and speed provided by the Gould
Concept 32/67 also provides a wealth of
capabilities for the real-time system.
Because the Gould Concept 32/67 is a
dual CPU system, the real-time tasks
have been divided to optimize this
feature. The wuser interface to the
real-time process, RTS, allows the user
a wide variety of commands and
capability to control and configure the
system.

As of this writing, the CT6 is in the
last stages of integration into the SES.
The database designers are working hard
to supplement the databases already
delivered by Evans and Sutherland. The
SES 1is looking forward to the time when

the CT6 will be brought on-line and
support the simulation studies.
CONCLUSION

This paper has explored the history of
the computer image generator as they
existed and still exist in the SES.

Many advances have been made in the
hardware, taking advantage of the
current state-of-the-art circuitry
available at the time. From the
discrete components to the first
integrated circuits to the very large

scale integrated devices, the real-time
graphics industry has tried to |use
everything at its disposal to create the

best images available. The theory on
how to best utilize the hardware
advances has also changed toward
flexibility, programmability, and
manageability.

Database design has grown from data
specifications to large and complex
programs. As the complexity in

databases increased, the complexity in
the database software increased.

Real-time software has changed radically
over the duration of the real-time
computer image generator. In the early

stages, the simulation visual system was
driven mainly by the data which it
received. As more and more powerful

front-end general purpose computers were
available, the real-time programmer was
able to enjoy more and more flexibility
in the control of the visual system.

REFERENCES

1. Foley, J.D. and Van Danm, AL,
*Fundamentals of Interactive Computer
Graphics", Addison-Wesley Publishing
Co., Reading, Massachusetts, 1982.

2. Giloi, Wolfgang K.,k "Interactive
Computer Graphics", Prentice-Hall,

Englewood Cliffs, New Jersey, 1978.

3. Newman, W. M.
"Principle of

and Sproull, R. F.,
Interactive Computer

Graphics", second edition, McGraw-Hill,
New York, New York, 1979.

4. "Instruction Manual for Visual
Three-View Space-Flight Simulator",
General Electric, Ithaca, New York, no
date.

5. "Final Report: Visual Three-view
Space-Flight Simulator", General
Electric, Ithaca, New York, August,
1964.

. "Instruction Manual for
Modifications to Interim Visual
Spaceflight Simulator", General
Electric, Ithaca, New York, no date.

225

7. "Final Report: Modifications to
Interim Visual Spaceflight Simulation",

General Electric, 1Ithaca, New York,
February, 1968.

§. "Instruction Manual for Electronic
Scene Generator Expansion System",
General Electric, Ithaca, New York,
January, 1972.

9. "Final Report: Electronic Scene
Generator Expansion System", General
Electric, Ithaca, New York, Decenber,
1971.

10. Schumacher, R. A., "off-line
Software for Expanded Electronic Scene

General Ithaca,

1971.

Generator",
New York, April,

Electric,

"O0ff-line
NASA III
Lockheed
Houston,

Software
Electronic
Electronics
Texas, June,

11. Brues, C. T.,
Package for the
Scene Generator",
Company, Inc.,
1972.

12. "operations Manual for the NASA-JSC
Continuous Tone Image Generation and
Collision Detection System", Evans and
Sutherland Computer Corporation, Salt
Lake City, Utah, May, 1977.

NASA-JSC
and
and

Salt

13. "Technical Manual for the
Continuous Tone Image Generation
Collision Detection System", Evans
Sutherland Computer Corporation,

Lake City, Utah, October, 1977.
14. “Final Scene

and
Salt

Report: Improved
Generator Capability", Evans
Sutherland Computer Corporation,
Lake City, Utah, October, 1977.

15. "POLY 2000
Corporation,
January, 1984.

System Overview",
San Diego,

GTI
California,

16. "POLY 2000 Software System Manual",
GTI Corporation, San Diego, California,
December, 1984.

17. "POLY 2000 Programming Manual", GTI
Corporation, San Diego, California,

April, 1985.

18. "POLY 2000e Programming Manual",
Rediffusion Computer Graphics,
éncorporated, San Diego, California, no
ate.

R520

VCU

OGU1

TOU

0

OoGU2

SGS
—{ 2= 4]
—{=

—{ "=

FIGURE 1: BLOCK DIAGRAM OF NASA I

R520

VCuU

EPU

>

TOU

SGS
— (7
— {1

—{ =]

FIGURE 2: BLOCK DIAGRAM OF NASA I

226

PDP — 11/40
VIS

r'—{@

VIS PIPELINE

PDP—11/40
HOST

PDP —11/45
cDS

CDS PIPELINE

FIGURE 3: BLOCK DIAGRAM OF CT3

SEL 32

EPU

VvCuU

TOU

o

FIGURE 4: BLOCK DIAGRAM OF NASA IiI, UPGRADE

227

ALCYON

:

VISUAL PIPELINE CH 1

__] scMm

:

FIGURE 5: BLOCK DIAGRAM FOR POLY 2000 AND POLY 2000e

CH 0
—
CH 1
VISUAL PIPELINEO [
‘r —— CH 2
C———
CH 3

SEL 32/67

J CH 4

VISUAL PIPELINE 1 [

CH §

FIGURE 6: BLOCK DIAGRAM FOR CTé

228

N90-20682

COMPUTER IMAGE GENERATION:
RECONFIGURABILITY AS A STRATEGY IN HIGH FIDELITY SPACE
APPLICATIONS

Michacl J. Bartholomew
Evans & Sutherland Computer Corporation
600 Komas
Salt Lake City, Utah 84108

ABSTRACT

The demand for realistic, high fidelity, computer image
generation systems to support space simulation is well
established. However, as the number and diversity of space
applications increase, the complexity and cost of computer
image generation systems also increase. One strategy used
to harmonize cost with varied requirements is establishment
of a reconfigurable image generation system that can be
adapted rapidly and easily to meet new and changing
requirements.

This paper examines the reconfigurability strategy through
the life cycle of system conception, specification, design,
implementation, operation, and support for high fidelity
computer image generation systems. The discussion is
limited to those issues directly associated with
reconfigurability and adaptability of a specialized scene
generation system in a multi-faceted space applications
environment. Examples and insights gained through the
recent development and installation of the Improved Multi-
function Scene Generation System at Johnson Space Center,
Systems Engineering Simulator are reviewed and compared
with current simulator industry practices.

The results are clear; the strategy of reconfigurability applied
to space simulation requirements provides a viable path to
supporting diverse applications with an adaptable computer
image generation system.

INTRODUCTION

One of the key problems facing high fidelity visual
simulation is balancing fidelity and realism with cost and
versatility. Government and Industry Aerospace
Engineering and Training disciplines have typically required
the highest fidelity visual imagery to maximize research and
training objectives(]) @ 3. In order to achieve the greatest
measure of fidelity for the specified objectives, visual system
contractors review specifications and configure specific
systems 1o best meet the particular requirements of a given
procurement. The resultant systems are tailored for specific
engineering or training applications.

As the pace and diversity of space missions increase, and the
requirements of space station construction and deployment
come into sharper focus, the demands placed upon
engineering and training visual simulation will escalate. In
their 1987 IEEE paper® Robert H. St. John, Gerard J.

229

Moorman, and Blaine W. Brown concluded "Simulation
was important in the design and verification of the Space
Shuttle, and it will continue to be instrumental in supporting
changes and improvements to Space Shuttle hardware and
software as well as to the mission design and verification
process." Ankur R. Hajare, in a paper presented at the 10th
Interservice/Industry Training Systems Conference(d),
reviewed many of the requirements for the Space Station
Training Facility. Continuing evidence of this need is
underscored by the pending Shuttle Mission Training
Facility visual system upgrade.

One strategy for harmonizing requirements with cost, while
maintaining the highest level of visual fidelity, is to design
and construct the primary image generation system
components with versatility as a prerequisite. This
versatility, or hereafter referred to as reconfigurability,
applies to hardware, software, and data base elements, and
permits timely reconfiguration of one or more of the system
elements to meet a wide set of well defined requirements as
well as new and/or additional requirements. This paper
defines and addresses the significance of reconfigurability
within the framework of the Improved Multi-function Scene
Generation System recently installed at Johnson Space
Center, Systems Engineering Simulator.

DEFINITION OF RECONFIGURABILITY

Reconfigurability, for the purposes of this paper, is defined
as the capability to reorganize one or more components of an
image generation system, including hardware, software, and
data base components, to meet new, different, and/or
expanded requirements. The methodology applied to
identifying candidate components for reconfiguration is akin
to the life cycle and development methodologies espoused by
Dr. Roger Pressman(®). He indicates "system definition is
the first step of the planning phase and an element of the
computer system engineering process . . . attention is
focused on the system as a whole. Functions are allocated to
hardware, software, and other system elements based on a
preliminary understanding of requirements.”
Reconfigurability is a key additional requirement to be taken
into consideration during the system definition phase. By
identifying potential contributors to reconfigurability during
the system definition phase, effort can be made to
modularize and further refine these elements during the
design and development phases. This, in turn, permits a
smooth integration and implementation of these malleable
components.

FUNDAMENTAL COMPONENTS OF AN IMAGE
GENERATION SYSTEM

Before proceeding to identify specific image generation
system components, it is necessary to review the
fundamental components of an image generation system and
provide some details about the Improved Multi-function
Scene Generation System. (For a thorough review of image

generation and processing theory see references and
suggested reading(7) &),

As the block diagram in Figure 1 illustrates, the modeling
system is the initial functional component of an image
generation system. A characteristic modeling system
hardware configuration includes a graphical workstation, a
mini computer with mass storage and communication
capability, and associated peripherals. The software
components include a general purpose operating system
complete with languages, text editors, and network
capabilities, as well as the special purpose data base
modeling software.

MODELING DISPLAY
SYSTEM DEVICE
IMAGE
GENERATOR

HOST
COMPUTER
FIGURE 1
FUNDAMENTAL COMPONENTS OF AN IMAGE
GENERATION SYSTEM

The modeling system is typically used in an off-line mode
from the remainder of the image generation system. It
facilitates the mathematical definition and construction of
data base elements and organizes these elements into a visual
data base (please note for the context of this paper, visual
data base implies support of out-the-window or Closed
Circuit Television (CCTV) views. This does not necessarily
preclude other views including, but not limited to, infrared
sensors or radar. For an introduction into the issues of data
base correlation see references and suggested reading®). In
addition to maintaining the mathematical representation of
models and environment, the visual data base provides the
framework for rapid and efficient access by the image
generator.

The image generator (IG) is an highly specialized computer
system typically consisting of a general purpose mini
computer combined with multiple cabinets of custom image
generation hardware. The hardware is controlled through a
custom real time software (RTS) package that monitors IG
performance as well as managing communication with the
host computer.

The host computer maintains the mathematical model of the
simulation, monitors operator input, and transmits position,
attitude, and environmental control information to the image
generator. The image generator, in turn, traverses the data
base framework and displays the appropriate imagery on the
display device.

230

THE IMPROVED MULTI-FUNCTION SCENE
GENERATION SYSTEM

As the name implies, the Improved Multi-function Scene
Generation System (IMSGS), an Evans & Sutherland CT6
System, installed at Johnson Space Center, Systems
Engineering Simulator (SES) is dedicated to supporting
many different aspects of high fidelity, large scale space
simulations. The contract called for an image generation
system that could integrate with existing SES simulation
capabilities and augment the quality and quantity of visual
imagery. Among other tasks, SES currently supports
orbiter operational procedures development and testing,
remote manipulator operations, payload handling, flight
support and training on shuttle to proximity operations,
docking and berthing techniques development, and
conceptual development for the space station(10),

At the time of the CT6 installation, May 1988, the SES
facilities included several networked Gould 32/87 host
computer systems supporting an orbiter aft cockpit mock-up,
an orbiter forward cockpit mock-up, a space station cupola
mock-up, and a manned maneuvering unit (MMU) mock-up.
The video feeding each of these mock-ups was derived from
one of three image generation systems, each supplying one,
or at most three, channels of imagery. The imagery was
transmitted to the mock-ups through a sophisticated scene
selection and video distribution system permitting allocation
and assignment of an individual image generator channel to a
specific view.

The IMSGS, as depicted in Figure 2, incorporates an Evans
& Sutherland CT6 1G complete with a Gould 32/6781 mini
computer. It is supplemented by a Digital Equipment
Corporation MicroVAX based Modeling System complete
with an Evans & Sutherland PS330 graphical workstation.
The system also includes a maintenance and operation station
and video switching and CCTV video post processing
capabilities.

|======= A |- === | |======" =1
| ! ! NASA) | |
| NASA HOST ! L cockmTS | | NASA VIDEO !
; COMPUTER ~— DISTRIBUTION,
AND DISPLAY !
I NETWORK | | | 1 SYSTEM
' 1 t SYSTEMS 1 |
GOULD
GENERAL
MICROVAX PURPOSE VIDEO
BASED COMPUTER SWITCHING
MODELING AND POST
SYSTEM CT6 IMAGE PROCESSING
GENERATOR
ORBITAL AND WATTDANCE
EDWARDS
DATA BAGES OPERATION
FIGURE 2
IMPROVED MULTI-FUNCTION SCENE
GENERATION SYSTEM

The CT6 IG hardware supplies 6 channels of imagery. Each
channel supports full texture capability and can display a
standard capacity of 1500 polygons at 50 Hertz operation.
Five of the six channels have a normal resolution capability
of 2 half a million active pixels, while the sixth chgmnel basic
configuration supports three quarters of a million pixels.
During terrestrial operations the hardware supports two fully
independent eyepoints with up to six fields of view shared
between the two eyepoints. During orbital operations each
of the six hardware channels can function as a fully
independent, six degree of freedom, eyepoint. One of the

six channels is equipped with non-linear image mapping

(NLIM) permitting pre-distortion of an image to correct for
display distortions.

Acting as a front end for the CT6 IG, a Gould 32/6781
general purpose computer (GPC) system is networked to the
SES host computer system and the IMSGS modeling
system. With over nine hundred megabytes of disk storage,
the GPC provides a repository for the visual data bases and
sufficient storage space for operating system and application
software needs.

During active simulations the GPC communicates with the
SES host computer system at 80 millisecond intervals for
position and attitude of the dynamic models as well as
environmental data such as scene illumination level, sun
angle, field of view, CCTV camera pan and tilt angles, and
other control parameters. This information is transmitted to
the IG for real time display.

When active simulations are not in session, the GPC
supports stand alone simulations, diagnostic and
maintenance activities on the IG, and general purpose
software development. The GPC is equipped with the
Gould MPX operating system, a custom real time software
package supporting both host controlled and stand alone IG
activity, and a comprehensive diagnostics software package
to assist in fault isolation.

Assisting in both host controlled and stand alone modes, the
IMSGS maintenance and operation station provides an
interactive control console, or flybox, for monitoring 1G
activity, flying through data bases in stand alone mode, and
for running diagnostics. The station houses dedicated
monitors for each of the six image generator channels
permitting simultaneous view of all image generator activity.
There are also two dedicated CCTV monitors, one
switchable CCTV monitor, and one switchable general
purpose monitor.

The video supporting the maintenance and operation station
is supplied via a software controlled video switching system.
The video switching system controls distribution of video
from the IG to the maintenance and operator station,
cockpits, or to the video post processing hardware. The
video post processing hardware can optionally convert RGB
component video to PAL-I composite video for CCTV
display, mix two channels of imagery for split screen
CCTV, and overlay CCTV camera identification, pan angle,
tilt angle, and camera temperature characters on the video for
CCTYV display.

The IMSGS modeling system supports definition,
construction, modification, and display of CT6 visual data
bases in an off-line mode. The modeling software includes
the capability for creating new data bases, altering existing
data bases, generating texture maps, automatic terrain
generation from Defense Mapping Agency Terrain Elevation
Data, and evaluation of IG performance through the use of a

231

CT6 software simulator. The modeling system is connected
1o the GPC via an Ethernet interface, facilitating transmission
of completed data bases.

A total of four operational data bases are supplied with the
IMSGS. The first three data bases are orbital data bases
containing the following common components: an earth
model, a star field with 1,655 stars modeled with correct
relative magnitudes and locations, a sun model, a moon
model, and a highly detailed orbiter model.

In addition to the common elements, the first orbital data
base also contains a detailed model of the Tethered Satellite
Subsystem (TSS) complete with a pallet and satellite tower
resting in the orbiter payload bay, and the satellite.

The second orbital data base contains a detailed and
articulated model of the Remote Manipulator System (RMS)
as well as a detailed model of the Hubble Space Telescope,
The telescope model is visible in both stowed and deployed
orientations.

The third orbital data base contains the detailed model of the
RMS, a detailed model of the MB-9 version of the Space
Station, a generic payload, and the Mobile Service Center
(MSC) complete with a Mobile Remote Manipulator System
(MRMS).

The fourth data base, a terrestrial data base, is the southern
California region with a detailed representation of Edwards
Air Force Base. The data base is 1,244 nautical miles by
1,244 nautical miles. The 121 nautical mile by 121 nautical
mile terrain region centered about Edwards is map
correlatable. Terrain elevation information was extracted
from Defense Mapping Agency (DMA) Digital Terrain
Elevation Data (DTED). In addition to the highly detailed
Edwards AFB area, the data base is equipped with a detailed
orbiter model and two detailed T-38 models.

Each of the aforementioned data bases make extensive use of
algorithmic and photo-derived texture to augment scene
fidelity and realism.

RECONFIGURABILITY, A CASE HISTORY

By the time the IMSGS contract was awarded in late
September of 1986 the NASA Engineers who had specified
the visual system requirements had already laid a great deal
of the ground work for a reconfigurable image generation
system. The requirements made clear the goal of
reconfigurability in a number of areas, such as " the update
rate shall be software selectable to run at 25, 30, 50, or 60
Hz" or "It is desirable that each channel be capable of having
... arange of 0.25 to 1.0 megapixels . .. (1),

The team of engineers assigned to the program, working
with their NASA counterparts began the analysis, design,
and implementation of the requirements specified in the
contract. Some of the candidates for reconfigurability
surfaced immediately, such as being able to redistribute 1G
hardware components to increase or decrease pixel
resolution or polygon capacity. Other candidates have come
to light further down stream such as the multi-tiered
occultation solution. Specific examples of reconfigurable
items are detailed in the following paragraphs, divided into
three broad categories: hardware, software, and data base.

HARDWARE

There are numerous explicit requirements as well as
suggested goals in the IMSGS contract(!D for hardware
reconfigurability. Some of the more obvious items such as
being able to increase memory or disk storage in the GPC or
modeling system, or being able to attach other peripherals to
the system, are not addressed in detail in this paper. The
items deemed uncommon, or atypical, for image generation
systems are detailed below.

Addressing the requirement for variable resolution, the CT6
image generator was equipped with the capability to share
display processor components between channels. This
permits increasing or decreasing the effective pixel resolution
from 262,000 active pixels to over 1,000,000 active pixels
by simply loading a different microcode initialization file.
This also implies a variable line rate and pixel rate capability.
The video line and pixel rates are programmable in ranges of
13 to 30 KHz and 10 to 40 MHz respectively, while the IG
is equipped to run at 25, 30, 50, or 60 Hz, with display
refresh rates of 50 or 60 Hz, thus allowing the use of a wide
range of displays. The maintenance and operation station is
equipped with multi-sync monitors able to match any line or
pixel rate generated by the IG. This capability has already
been put to use in the SES lab, matching the video
characteristics of the old Conrac 62601 displays, as well as
the newer XKD 1955 and SRL 2125 displays.

Just as display processor components can be shared between
channels to focus pixel resolution, the geometric processor
components can also be shared to focus polygon resolution.
This permits an increase in polygon capacity from the basic
1250 polygons per channel at 60 Hz, to over 2,200
polygons per channel at 50 Hz operation.

As indicated earlier, the SES lab supports several cockpits
each with a different number of displays. A sophisticated,
software driven, scene selection system is in place that
allows the assignment of any given image generation system
channel to a particular display device in a particular cockpit.
The IMSGS is required to interface with that system, and
does so with the use of a software controlled video matrix
switcher and video post processing capability. This video
switcher can be controlled through local software commands
within the IMSGS environment, or from the SES host
computer system. Any one of the six CT6 channels can be
routed through the switcher to provide an out-the-window,
CCTV, or MMU view, as required, to any of the mock-ups.

One of the requirements of the contract stated that at least one
IG channel be capable of supplying pre-distorted imagery at
varying pixel resolutions for use on an unspecified display
and/or projection system. This capability, known as non-
linear image mapping, or NLIM, allows a digital
mathematical correction of image components to ensure
proper geometric relationships when displayed on a non-
linear surface such as a dome. This capability works in
harmony with the aforementioned display processor sharing
to increase or decrease pixel resolution and is activated or
deactivated through a microcode control file.

SOFTWARE

The software components identified as reconfigurable items
were not as clearly defined at the requirements phase as the
hardware elements, nor as straight forward to design or
implement. There were the typical stated goals such as
modularity and maintaining reserve capacity for future

232

growth. There were also the not-so-obvious goals of
identification and reutilization of key individual modules to
help meet future requirements, or documenting critical
portions of code to such a degree that a novice software
engineer, with little or no image generation system
background, could effectively learn and modify the software
on an as needed basis. Through striving to meet these and
other stated and unstated goals there were several software
items_that surfaced and were implemented as key
reconfigurable elements.

One of the key reconfigurable software elements is a portion
of the real time software package known as occultation
management. This software works in harmony with the data
base fixed priority relationships and existing real time object
range sorting algorithms to provide an additional tier of
object level occultation management. This is one of the areas
where the software has purposely been designed and
documented to facilitate a shopping cart approach to new
requirements. By using off-the-shelf key modules and,
where necessary, modifying modules that are similar in
nature to the additional element(s), new capabilities can be
added in a timely and consistent manner.

In like manner, the host to GPC interface communications
software is designed to allow the timely addition, or
deletion, of simulation control parameters. In typical
simulation applications a fixed number of computer words
are reserved for data communications between the host
computer system and the image generation system, where
each word, byte, and bit have a known fixed location and
format in the data buffer. Changing the fixed format to add
or delete a parameter requires modification of all software
elements on both sides of the interface accessing that data
buffer. By contrast, the reconfigurable solution packetizes
or modularizes each control parameter by parameter type.
For example, all dynamic model position and attitude data is
identical in type and format, only the model identification
bits vary from model to model. ‘Adding a new model to a
simulation is achieved by simply adding that packet of
information to the communications block. The block is fixed
length in nature, but the parameter packets can vary in any
number and sequence within the data block. When new
packet types are defined, an additional module is added to
the communications software to handle that packet type, with
no adjustments or adverse affect on other packet modules.

Similar to the concept of packetizing the control information
above, the diagnostics software is organized in a modular
fashion. Rather than writing a package of diagnostics
unique to each image generation system configuration, or
each backpanel within the image generation system, IMSGS
uses a general purpose diagnostics interpreter for fault
isolation within the IG. A diagnostic test is provided in the
interpretive language for each applicable card type in the
system. By interactively, or through a batch file, instructing
the interpreter which card, function, backpanel, channel, or
system to test, the appropriate diagnostics are executed
within the framework established by the operator. If a
particular situation demands a modification to a diagnostic,
the particular diagnostic can be edited with a normal text
editor to include the additional capability.

DATA BASE

As with the majority of hardware reconfigurable
components, most data base components were readily
identified through specific requirements in the contract. The
obvious items surfaced immediately and included such

elements as: a general purpose shuttle model with variations
supporting attachment of an RMS, articulated doors and
solar panels, and a docking tunnel; an earth model complete
with cloud cover and an atmosphere ring; dynamic moon
and sun models; a star field containing a minimum of 100
specific stars with correct relative magnitudes and locations;
two specific payloads including the Tethered Satellite
Subsystem and the Hubble Space Telescope with variations
for stowed and deployed positions; and the MB-9 version of
the space station including articulated solar arrays, a highly
detailed primary docking port, and a dynamic mobile service
center with MRMS.

Comparable with the software items there were
reconfigurable data base components that surfaced during the
design and development phases as well. For example, one
generic CCTV model was created and referenced for each of
the shuttle, RMS, and MRMS CCTYV locations; one grapple
fixture mode! was created and referenced for the two space
telescope grapple fixtures, the shuttle grapple fixture, and the
space station grapple fixture; one v-guide model was created
and referenced for each of the three locations in the payload
bay; one set of visual approach slope indicator (VAST)
lights, ball bar lights, and precision approach path indicator
(PAPI) lights were created and referenced for each applicable
runway at Edwards Air Force Base.

Each of these data base components, along with many
others, are available on the IMSGS modeling system to
allow modification of existing data bases or construct new
data bases in order to meet new or expanded requirements.
SES has already begun utilizing many of these components
to implement the Infrared Background Signature Survey
(IBSS) and Orbital Maneuvering Vehicle (OMYV) simulations
not specified in the IMSGS contract.

CONCLUSION

Throughout the project life cycle there have been several key
items identified as reconfigurable in nature. Many of these
iterns were identified as specific requirements in the contract,
some of the items were already embodied in various
combinations of hardware, software, or data base, and some
of the items surfaced while in the design or development
phase. In all cases it was evident that if a particular item had
been anticipated and identified during either the requirement
or system definition phase, it was cheaper in terms of raw
cost and schedule to implement than if it was identified later
in the life cycle. Even when items were identified late in the
contract, it was still beneficial in the long run to either
include them as part of the contract, or recommend them for
inclusion at a later date. Also, in all cases, once a given
item was implemented, the savings in exercising the feature
in terms of time, fidelity, maintainability, and development
cost was obvious. The IMSGS is providing SES with a
truly reconfigurable scene generation system that can grow
and adapt with their new and changing requirements.

In an industry where change and redefinition are the norm,
reconfigurability provides an important implementation and
budget control strategy to assist in large scale space
simulations. In order to be most effective, the
reconfigurability strategy requires significant forethought
and planning at the earliest phases of definition. Anticipation
of expanded capabilities in performance, fidelity, and
implementations can greatly enhance the systems potential.
The results are clear, the strategy of reconfigurability applied
to space simulation requirements provide a viable path to
supporting diverse applications with an adaptable computer
image generation system.

233

ACKNOWLEDGEMENTS

The author would like to thank the following persons for
their help and encouragement in producing this paper: James
R. Smith and David C. Christianson of NASA/ISC, and
Mercedes Delugo, Ralph Howes, Michael Jackson, Lance
Moss, Janice Poulson, and the remainder of the Evans &
Sutherland NASA/JSC project team.

REFERENCES AND SUGGESTED READING

(1) Bondzeit, Fred and Edwards, Robert E., "Image
Generation For Rotary Wing Applications,”
PROCEEDINGS OF THE 10TH
INTERSERVICE/INDUSTRY TRAINING
SYSTEMS CONFERENCE, December 1988.

Bruce, Robert C., "Simulation Fidelity: A Rational
Process For Its Identification And Implementation,”
PROCEEDINGS OF THE 9TH
INTERSERVICE/INDUSTRY TRAINING
SYSTEMS CONFERENCE, December 1987.

@

O'Neal, Lt. Col. Maston E. and Brown, James E., "F-
15 Limited Field Of View Visual System Training
Effectiveness Evaluation,” PROCEEDINGS OF THE
6TH INTERSERVICE/INDUSTRY TRAINING
SYSTEMS CONFERENCE, October 1984.

3)

St. John, Robert H. and Moorman, Gerard J. and
Brown, Blaine W., "Real-Time Simulation For Space
Station,” PROCEEDINGS OF THE IEEE, Vol. 75,
No. 3, March 1987.

CY)

Hajare, Ankur R., "Planning the Space Station
Training Facility,” PROCEEDINGS OF THE 10TH
INTERSERVICE/INDUSTRY TRAINING
SYSTEMS CONFERENCE, December 1988.

&)

Pressman, Roger S., "System Planning,”
SOFTWARE ENGINEERING: A PRACTITIONER'S
APPROACH, First Edition, McGraw-Hill Book
Company, New York, New York, 1982, p. 32.

(6)

Hearn, Donald and Baker, M. Pauline, COMPUTER
GRAPHICS, First Edition, Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

Q)

Newman, William E. and Sproull, Robert F.,
PRINCIPLES OF INTERACTIVE COMPUTER
GRAPHICS, Second Edition, McGraw-Hill Book
Company, New York, New York, 1979.

8

Townsend, Barbara and Stovall, Beth and Colbert,
Cheryl, "Correlation Of Sensor Data Bases In The Full
Mission Training Simulator,” PROCEEDINGS OF
THE 7TH INTERSERVICE/INDUSTRY TRAINING
SYSTEMS CONFERENCE, November 1985.

9

SYSTEMS DEVELOPMENT AND SIMULATION
DIVISION FY-87 ANNUAL SUMMARY, NASA
Johnson Space Center, Houston, Texas, January
1988.

CONTRACT NAS 9-17696, IMPROVED MULTI-
FUNCTIONAL ELECTRONIC SCENE
GENERATOR VISUAL SYSTEM, NASA Johnson
Space Center, Houston, Texas, September 1986.

(10)

an

Ay

N9O-2 0683 24506

/
REAL-TIME GRAPHICS FOR THE SPACE STATION FREEDOM CUPOLA,
DEVELOPED IN THE SYSTEMS ENGINEERING SIMULATOR
Michael T. Red
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
and
Philip W. Hess
Lockheed Engineering and Sciences Company

ABSTRACT HSDWR HSD write (processor)

IND indicator (processor)
Among the Lyndon B. Johnson Space Center’s respon- INTF interface (task)
sibilities for Space Station Freedom is the cupo- 1P input processor
la. Attached to the resource node, the cupola is IP/DU IP and DU (task)
a windowed structure that will serve as the space IRIS Integrated Raster Imaging System
station’s secondary control center. viewing. MSC mobile service center
From the cupola, operations involving the mobile OMV orbital maneuvering vehicle
service center and orbital maneuvering vehicle OTW out-the-window
will be conducted. PDP programmable display pushbutton

RISC reduced instruction set CPU
The Systems Engineering Simulator (SES), located SES Systems Engineering Simulator
in building 16, activated a real-time man-in-the- SW switch processor
loop cupola simulator in November 1987. The SES SW/IND SV and IND (task)
cupola is an engineering tool with the flexibility SYSID system identification
to evolve in both hardvare and software as the
final cupola design matures. Two workstations are
simulated with closed-circuit television monitors, INTRODUCTION
rotational and translational hand controllers,
programmable display pushbuttons, and graphics The purpose of simulation is to provide an accu-
display with trackball and keyboard. rate, economical, and most importantly safe means

of testing a product. The product may range from
The displays and controls of the SES cupola are a crewperson’s expertise in performing a particu-
driven by a Silicon Graphics Integrated Raster Im- lar procedure to the procedure itself. Real-time
aging System (IRIS) 4D/70 GT computer. Through simulation implies that if an event in the real
the use of an interactive display builder program world takes five seconds to transpire, the same
SES cupola display pages consisting of two dimen- simulated event would also take five seconds.
sional and three dimensional graphics are con- Man-in-the-loop simulation places a human in the
structed. These display pages interact with the simulation loop, reacting to the simulation com-
SES via the IRIS real-time graphics interface. puters. For example, a crewperson initiates a
This paper focuses on the real-time graphics in- command to a system. The simulation computers
terface applications software developed on the receive the command and perform the appropriate
IRIS. response. The crewperson recognizes the response

and continues with a new command, completing the

simulation loop. Real-time man-in-the-loop simu-

LIST OF ACRONYMS AND ABBREVIATIONS lation provides an individual with the means of
performing a task in real time.

3D 3 dimensional

CCTV closed-circuit television The Systems Engineering Simulator (SES) is located

CDB changed data block in building 16 of the Lyndon B. Johnson Space Cen-

CDBRD CDB read (processor) ter. The SES, depicted in Figure 1, is a real-

CDBWR CDB write (processor) time man-in-the-loop simulation facility dedicated

CPU central processing unit to providing engineering support for the Space

CRT cathode-ray tube Shuttle and Space Station Programs. SES support

CVM current value memory covers a wide spectrum ranging from engineering

DLH display list memory studies to procedures development and crew train-

DLRD downlink read (processor) ing.

DU display update (processor)

5§gc executive (task) The SES is composed of a computation facility,
high speed data scene generation computers, and four crew sta-

HSDRD ~ HSD read (processor) tions. The computation facility consists of simu-

235
J
PRECEDING PAGE ELANK [OT Fiyrrco PARLL]IWTENTIONALLY BLANK

SIDE A

MMU vICTOR VICTOA
MOCKUP GENERAL GENERAL
SIMULATION
CONTROL
STATION
(3]] KYRO
D3 SIDE A OPERATOR CONSOLE
wi B | e]
b 14874 - Yllmll
AN
Z - TAPE R
, \ [rERmNAL
TAPE
/, A GOULD or L0
’ SEL TIRMNAL
; e 178 sguio
AL 87/80 coue COCKPIT
I Iy \’ 81 12178 INTERFACE
" ORBITER™ -
AFT COCKAIT
r!l:{”ll
1 SYSTEM
Gawo CONSOLE
— — 87/80 - _l:] TERMINALS
\Q_D/ TERMINAL —
872
SPACE v
:‘TOAC'I"I(%R; TERMINAL 4D
Sa
o4 g: DATA
ELECTRONKC GOULD TeAminaL ;.'6 REDUCTION
GENERATOR orho S& | CENTER
76 Yllll:‘I‘lAL-JD
nmn -\ID
souo
GOULD
SEL "nca:um. D 7S
87/90
~ ORBITER s
FORWARD COCKPIT G1
Goulo COCKPIT
32178 INTERFACE
GOULD
SEL
/%0
TAPE
[YR] unIT
TAPE TO
Ut SIDE 8 OPERATOR CONSOLE SOFTWARE
DEVELOPMENT
CENTER
GOULD
3278 i T
wooame ([B
TEAMIMAL Ty i Tl SIDE B
Figure 1
System Engineering Simulator

lation computers, mass storage units, data record-
ing, and development facilities. Three real-time
scene generation computers provide a combination
of up to eleven out-the-window (0TW) and closed-

circuit television (CCTV) views. The four crew
stations supported by the SES are the forward
shuttle cockpit, aft shuttle cockpit, manned ma-

neuvering unit, and space station cupola.

station cupola is the only windowed
to provide direct line of sight viewing
In its final phase I con-

The space
structure
from the space station.

236

figuration the space station will have two cupolas
attached to two of the space station nodes. The
cupola will serve as the secondary command control
station where much of the latter portion of phase
I and most of phase II space station assembly will
be conducted. Operations of the space station mo-

bile service center (MSC) and orbital maneuvering
vehicle (OMV) will also be conducted from the cu-
pola.

The cupola crew station in the SES, referred to as
the SES cupola, is designed to be an engineering

tool. With the final configuration not yet estab-
lished the SES cupola is designed to evolve in
both hardware and software configuration. The
wooden mockup models half of the cupola with a
viewving area for visitors or training personnel in
the rear. The crew station portion consists of
six OTV views and two side by side crew stations.
The next phase of the SES cupola includes many
hardware wupdates driven by McDonnell Douglas, the
primary contractor for the space station cupola.
This phase III SES cupola, due to be operational
in April 1989, will not only include a new physi-
cal shell, but also a reconfigured interior and a
new OTW optics system. As the design of the space
station cupola evolves into a final state, the SES
cupola configuration will evolve to match. It is
planned that the SES cupola will eventually evolve
into a real-time man-in-the-loop simulator with
actual flight hardware.

SES CUPOLA HARDVARE

The SES cupola instrumentation and controls con-
sist of several integrated components used to sim-
ulate possible flight hardware for two crew sta-
tions (Figure 2). The heart of each crew station
is a Silicon Graphics Integrated Raster Imaging
System (IRIS) 4D/70 GT workstation class computer.
The IRIS has a reduced instruction set CPU (RISC)
architecture, and therefore processes approximate-
ly twelve million instructions per second. This
high speed provides quality graphics rendering on
top of applications software adequate for a real-
time simulation environment.

Figure 2
System Engineering Simulator Cupola

237

The 1IRIS drives and receives input commands from
four wuser interface components 1in the crew sta-
tion. First, the IRIS displays its graphics in-

formation on a 1024 raster line by 1280 pixel res-
olution 15" color monitor. The IRIS receives com-
mand input from a keyboard and three button track-
ball. Finally the IRIS drives the displays and
receives command input from three sets of four
programmable display pushbuttons (PDP). Rotation-
al and translational hand controllers are current-
ly interfaced to a separate general purpose compu-
ter supporting the SES cupola simulator rather
than to the IRIS.

A
As

total of three IRIS units are used in the SES.
stated previously, two are used for operations
inside the cupola simulator. The third IRIS is
used for development. All three IRIS units are
connected together through an ethernet interface.
One of the IRIS units inside the cupola, referred
to as the master IRIS, sends and receives data to
and from the SES simulation computers via a high
speed data (HSD) interface. The other two IRIS
units are referred to as slaves, but only because
they receive information from the SES simulation
computers via the master IRIS and ethernet. All
three IRIS units operate asynchronously from any
other computer.

CREV STATION DISPLAYS AND CONTROLS

The displays and controls in the SES cupola pro-
vide the user interface to the system a crewperson
wvishes to access. The focus here is on how infor-
mation from some probable space station based com-
puter system is displayed to the crewperson as
well as hov he can input commands to such a sys-
tem. Therefore, four devices in the crew station
will be discussed in detail: the display monitor,
three button trackball, keyboard, and PDPs.

As 1is common with many personal computers and
workstations today, the IRIS offers a window man-
agement system for flexibility and ease in dis-
playing information. Windowing systems allow the
user to display information in a specific portion
of the physical CRT screen space. The "window" of
information can then be moved from one position on
the screen to another. In fact, numerous windows
can be displayed on the screen at one time in an
overlapping fashion. A user can "pop" a window to
the foreground thus allowing all the information
in the window to be visible or "push" the window
behind all other currently visible windows. A
cursor on the screen is usually used to target a
specific window for one of the functions mentioned
above. The cursor can be moved about the screen
by a number of devices including the arrow keys on
a keyboard, a mouse unit, and a trackball.

The SES cupola crew station employs a three button
trackball instead of a mouse unit to position the
cursor on the 15" monitor. Response from astro-
nauts’ use of the crew station dictated a prefer-
ence for the trackball. Restrictions were applied
to the IRIS window management system to simplify
the operation of the crew station. For example,
windows can be popped to the foreground but cannot
be pushed to the background, and windows cannot be

specific functions were
tied to the three buttons on the trackball. The
right button only pops windows. The middle button
only moves windows. The left button is used only
to select functions on the screen such as a
switch. By limiting the complexity of the window
management system through dedicated trackball but-
tons, the crewperson interfaces with an extremely
user friendly system with little chance of error
on the user’s part.

reshaped. Furthermore,

The 1IRIS real-time applications software recog-
nizes three types of display windows: data, ban-
ner, and pop-up windows. Data windows are by far
the most common. They can be moved with the mid-
dle trackball button and popped with the right
trackball button. As the name implies data win-
dows display data, but they can also be used to
call up new windows as vell as receive inputs.
Pop-up windows cannot be moved or popped to the
foreground. They are designed to emulate pull
down menus and thus are used only to call up new
windovs. Vhen a pop-up window is called up, the
next depression of the left trackball button is
expected to be inside the pop-up window. Other-
wise, the window is deleted. The banner window is
the most unique display window. The banner window
covers the entire screen and contains simulation
status and time information as well as the ability
to call up other windows. It cannot be moved, de-
leted, or popped to the foreground. The banner
wvindow is brought up when the IRIS real-time ap-
plications software is initialized and remains
present during the entire simulation run with all
other display superimposed.

The keyboard in the current SES cupola crew sta-
tion has a very limited function. During simula-
tion operations there is a keyboard display type
available on some display windows. This display
type requires keyboard input from the crewperson
in the form of a floating point number. McDonnell
Douglas, as a future user of the SES cupola, has
requested increased use of the keyboard.

One of the thrusts behind the design of the space
station cupola is a reduction in the number of
hardvare switches due to the lack of available
space. The use of twelve PDPs per crew station in
the SES cupola is one method of reaching this de-
sign goal. As the name implies PDPs can be pro-
grammed for numerous functions at different points
in time. For example a specific PDP may be pro-
grammed to pan a CCTV camera to the right when de-
pressed. Later the same PDP may be programmed to
trigger the snares in the MSC end effector to cap-
ture a target. In this way the total number of
hardware switches in the cupola can be signifi-
cantly reduced. Currently, in the SES cupola PDPs
are used to pan, tilt, and zoom CCTV cameras, as
well as control several MSC functions including:
turning off the master alarm, turning MSC brakes
on or off, driving individual MSC joints positive
or negative, and triggering the capture or release
of a target.

SBRS CUPOLA DISPLAY AND CONTROL MONITOR

One of the primary concepts in development of the

IRIS real-time applications software for the SES
cupola was flexibility. Past experience had prov-
en that hard coded display windows were difficult
to modify and maintain. Because the SES cupola is
an engineering simulator, the ability to modify
display windows with minimal turnaround time is
very important to many potential customers. It is
not unreasonable that they may wish to try several
different display window layouts. The IRIS real-
time applications software must be flexible enough
to change the display window layout as quickly as
possible. Therefore, all display windows, regard-
less of the type (data, pop-up, or banner), are
read from display data files.

The concept of the display file (Figure 3) is very
straight-forvard. Each display file is construct-
ed with an off-line display builder program and
contains all the information needed to produce a
display window in the real-time applications soft-
ware. The information in the display file is or-
ganized into units referred to as display types.
Therefore, when a window is called up by the real-
time system, such as the banner window upon ini-
tialization, a specific display file is read, and
the display types in that file are used to draw
the window during operations.

There is a finite number of defined display types
that are recognizable to both the display builder
and the real-time applications software. Howvever,
one of the major advantages to this method of con-
structing display windows is that newv display
types can be added with minimal impact. Once a
display type is defined, construction and modifi-
cation of display files becomes almost a trivial
process due to the user friendly nature of the
display builder. Display types in general contain
the following information: an opcode to designate
the type, the number of words used to define the
display type, a system identification number
(SYSID) used for variable data related to the dis-
play type, and (x,y) coordinates to position the
display type in the display window. Beyond this
preliminary data, display type information becomes
more specific to the actual display type. A list

Header

Display ftem
31.....24 23....16 15.....8 7......0

) type | length window 1D
Display ‘em ind

Packets rzlr:\gmow rp-wp | banner | 2D/3D | font

window length
End—of— Lt X origin Y origin
Terminator
Display ltem X length Y length
Display File Header Display Type

Figure 3
Display File and Header Display Type

of currently available display types is provided
in Table I and Table II, and a more detailed de-
scription of each display type can be found in Ap-
pendix A.

Table I
2 Dimensional Display Types

Header Entry End of List Terminator

Integer Real
Long Float Hexadecimal
ASCII Message Static Text
Page Call Keyboard Input
Delete Default
Circular Gauge Meter Bar
Indicator Switch
Momentary Switch Line
Rectangle Circle
Polygon Dynamic Position
Indicator
Table II

3 Dimensional Display Types

End of List Terminator
End Coordinate Frame

Header Entry
Begin Coordinate Frame

Rotation Translation

Scale Box

Cylinder Sphere

Line
Another concern related to display windovs is
color. Programs prior to space station have im-

plemented monochrome display systems and have not
had to necessarily deal with the potential exces-
sive use of color in a display system. Astronaut
response to displays in the SES cupola has indi-
cated that a wide variety in color is distracting.
The number of available colors in the SES cupola
has been limited to sixteen, including vhite and
black. The complete list of available colors is
provided in Table III. An attempt has been made
to reduce the amount of color actually used in
display windows. For instance, swvitches in the
off position and indicators in the false state are
colored gray by convention. In general green is

used to indicate an active or true state, yellow
indicates caution, and red indicates a warning.
The other colors are used discriminatingly always
attempting to reduce the amount of color on the
display.

Most displays use only 2 dimensional display
types. However, the graphics capability of the
IRIS supports 3 dimensional (3D) graphics. While
the cupola is a structure with several windows, a

large percentage of the potential field of view is
obstructed. CCTV cameras help, but it is very
simple to lose your orientation. Radar and telem-
etry data from vehicles in the proximity of the

239

space station could be used to develop a 3D situa-
tion display. The 3D situation display simulates
this capability. It contains 3D wire frame drav-
ings of the space station with MSC and vehicles in
proximity of the space station (e.g., orbiter and
OMV) in the correct orientation and position rela-
tive to each other. The display can be rotated,
translated, or zoomed, giving the crewperson an
excellent omniscient view of vehicles in proximity
of the space station.

Table III
SES Cupola Graphics Monitor Colors

Black Bright Red
Bright Green Bright Yellow
Dark Blue Magenta

Cyan Vhite

Dark Red Dark Green
Dark Yellow Blue

Orange Purple

Gray Blinking Red

REAL-TIME SYSTEM DATABASE

The SES cupola applications software utilizes an
indexed shared memory concept that allows for
rapid modification of shared memory (Figure 4).
The allocated shared memory, called current value
memory (CVM) is divided into two sections: the
pointer section and the data section. The pointer
section is in the lower address portion of CVM.
As the name implies the pointer section contains

pointers to the higher address portion of CVM or
data section. The offset from the CVM base ad-
dress corresponds to the SYSID of the variable.

Therefore, the length of the pointer section is
defined by the largest SYSID. The data section of
shared memory contains data packets described
below.

An off-line database program is used to maintain
the SES cupola CVM. The Informix relational data-
base program is used to keep track of all SYSID
variables. Information such as the variable name
and description, where it resides in the uplink or
downlink buffer, as well as the variable type and
initial value are kept in the database.

Applications programs were written to access the
Informix database and extract information needed
to build three data files: the memory image file,
the uplink parameter file, and the downlink param-
eter file. The memory image file is a replica of
the SES cupola CVM during operations (Figure 5).
It contains all of the data packets that will re-
side in CVM. Each packet has the variable type
(ie. floating point, double precision floating
point, signed or unsigned 32-bit integer, 16-bit
integer, bit, or character string), the length in
words, the SYSID of the variable, and the current
value of the variable. The uplink and downlink
parameter files represent a mapping from CVM to
the buffer of data sent to (uplink) and from

SYSID pointers

65
locations
entries

Memo!
Inag;y
Packets

words

[]65

Figure 4
Current Value Memory Format

31.....24 23.....16 t5.ccccrinionennn 0
enfries | words type |length SYSID
h:::;ry words One or two words of data
Packets | ing on type

Memory Image File Memory Image Packet

Figure 5
Database Memory Image File

(downlink) the simulation computers by the master
IRIS via the HSD interface. The parameter file is
ordered by buffer word first and if necessary by
bit location second. Each entry in the parameter
file contains the SYSID of the variable, word lo-
cation in the buffer, and start bit.

Upon 1initialization of the real-time applications
softwvare, the executive task reads the memory
image file, extracting the size of CVM, and dynam-
ically allocates enough shared memory for CVM. As
the data packets are read from the memory image
file and placed into the data section of CVM, the
pointer in the pointer section is resolved for the
appropriate SYSID. This process continues until
the memory image file is completely read.

There are some important advantages to this con-
cept of accessing and maintaining data. First,
the database is maintained off-line, and is always
current to the real-time applications software be-
cause it is always read in each time the SES cupo-

240

la is initialized.
particular

all SYSIDs within a
have to used. In other
wvords, there can be "holes" in the database.
Third, holes in the database effect only the
pointer section of CVM; the data section is alwvays
compressed with no wasted memory. Fourth, the da-
tabase is used to generate reports that document
the uplink and downlink buffer definitions; list
SYSID variables associated with particular subsys-
tems; list SYSID variables not in use; 1list the
database sorted by variable type, name, SYSID,
subsystem, and other criteria.

Second,
range do not

SES CUPOLA REAL-TIME SYSTEM SOFTVARE

The SES cupola real-time applications software for
the IRIS was developed in-house by NASA and sup-

port contractor personnel (Figure 6). Several
guidelines were adhered to in development of the
real-time system to facilitate maintenance.

First, the real-time system would be machine inde-

pendent. Only one version of the real-time system
would exist and be run on both the master and
slave IRIS units. Second, the real-time system

would be broken down into major functions. These

major functions would reside in separate tasks so
that if changes wvere made to a specific task and
the real-time system failed, then that task would

be suspect. Third, an executive task would be
used to initiate and schedule the real-time sys-
tem. Along with the executive (EXEC) task the

real-time system is made up of the input processor
and display update (IP/DU) task, the switch pro-
cessor and indicator processor (SW/IND) task, PDP
task, HSD task, and interface (INTF) task.

The EXEC task is the heart of the real-time sys-
tem. It is responsible for allocating and ini-
tializing CVM, the changed data block (CDB) which
will be detailed later, and executive shared memo-
ry which contains variables needed by other tasks
in the real-time system. EXEC is also responsible
for initiating the other five tasks in the real-
time system as well as establishing communications
between itself and the other tasks. Finally, EXEC
is responsible for scheduling the other tasks in
the real-time system. Considerable attention was
given to the problem of homogeneous data in CVM.
The order of scheduling shown in Figure 7 insures
that by the time display related processing is
begun in the SW/IND, CVM is updated.

Each of the five subordinate tasks contain a task
executive and the processes that actually perform
the function of the task. The task executive (not
to be confused with EXEC) is essentially generic
from subordinate task to subordinate task. Its
purpose 1is to initialize the task in terms of ac-
cess to CVM, executive shared memory, and CDB if
necessary. The task executive also allows its
processes to initialize 1if necessary. Finally,
the task executive completes establishment of com-
munications with EXEC. Once the task executive
has finished initialization, it enters an infinite
run loop and is put to sleep until EXEC signals it
to go.

The IP/DU task contains two separate processors:
the input processor (IP) and the display update

Display Update
processor

SW/IND
Task
executive

Indicator
processor

Executive

Task HSD Write

processor

PDP Task

PDP
Task
executive

INTF Task Downlink Read
processor
CDB Read
processor
CDB Write
processor

INTF
Task
executive

Figure 6
SES Cupola Real time Applications Software

processor (DU). The IP/DU task executive uses in-
formation in executive shared memory to determine
wvhich process to execute when it is signaled to go
by EXEC.

The IP, as the name implies, processes input in-
formation from the keyboard and three button
trackball. Upon initialization the IP reads the

display file for the banner window and places the
display information in dynamically allocated memo-
ry, called display list memory (DLM). The IP re-
solves overlapping display windows, as well as al-
location and deletion of display windows. When a
position in a display window is selected with the
left button of the trackball, the IP determines
the cursor position and compares it to display
item positions in the currently allocated DLM.
Once the proper display item is found, the IP exe-
cutes the appropriate function based on the type
of the display item. For example, if a switch was
selected, the appropriate switch SYSID is set
true, or if a page call was selected the appropri-

241

ate display file is read and placed in DLM. When
a display window is selected with the middle
trackball button, the IP is responsible for moving
that window. Finally, vhen a display window is
selected with the right trackball button, the IP
is responsible for popping that window to the
foreground. Currently, the IP processes keyboard
input only if the keyboard display type is select-
ed with the left trackball button.

The DU is responsible

for update of all display

windows. The DU begins a trace of DLM at the ap-
propriate starting point for a particular display
window. As it encounters each display type, the

DU executes the graphics commands to draw that
display type. The DU must also perform some cal-
culations to correctly draw the display type. For
example, the gauge display type has a needle that
must be positioned correctly based on the limits
of the gauge and the current value of the gauge in
CVM. The DU must perform the appropriate calcula-
tions to correctly position the gauge needle. 1In
this manner the DU uses CVM to correctly display
gauges, meter bars, switches, indicators, and any
other display type that changes based on its asso-
ciated SYSID value in CVM.

The SW/IND task contains two separate processors:
the switch processor (SVW) and the indicator pro-
cessor (IND). The SW/IND task executive uses in-
formation in executive shared memory to determine
which process to execute when it is signaled to go
by EXEC. SW/IND is the only task in the real-time
system that must be hard coded with SES cupola
specific functions.

The SV is responsible for resolving switch selec-
tion in the SES cupola. It is through the SV that
mechanical devices such as rotary switches are du-
plicated in software. For example, a bank of
switches on a display window may have the implied
function that no two switches may be selected at
any one time (a rotary switch). The SW resolves
which switch has been selected and deselects all
of the other switches in the bank.

The IND works closely with the SW to perform hard-

ware functions in software. Like the SW, the IND
must resolve some banks of indicators where only
one indicator in the bank may be active at one
time. However, the IND also deciphers the time
data from the simulation computers to correctly
display mission elapsed time and Greenwich Mean
time.

The PDP task is responsible for processing input

from the PDPs and updating the PDP displays. Upon

initialization the PDP task reads a data file de-
signed to establish the PDP configuration. As
with the display files, it 1is the PDP data file

that defines the PDP configuration for the SES cu-

pola; the real-time PDP softvare is generic and
simply responds to the data file. The PDP data
file defines which switches are momentary (active

only when depressed) and which change state on
each depression. The data file also defines the
PDP tree structure. For example, one PDP may be
used to reconfigure an entire bank of PDPs.

The task for communications

HSD is responsible

Allocate
executive
shared memory

Build CVM

Activate
subordinate tasks

.

PDP task

HSD task

(Active only on
master |RIS)

IP/DU
task

SW/IND
task
Figure 7

Executive Task Flow

and Process Scheduling
with the HSD interface. This task is active only
on the master IRIS and has two separate proces-
sors: the HSD read processor (HSDRD) and the HSD
vrite processor (HSDWR). The HSD task executive

uses information in executive shared memory to de-
termine vwhich process to execute when it is sig-
naled to go by EXEC.

As stated previously the IRIS computers operate
asynchronously from each other and all other com-
puters. Therefore, information from the simula-
tion computers is used only when the master IRIS
asks for it. Timing data indicates that in gener-
al the master IRIS requests information more often
than the simulation computers are prepared to
offer it. The HSDRD retrieves a buffer of down-
linked information from the simulation computers
if available. If a buffer of data is received
then it is immediately broadcasted to all IRIS
units on the ethernet so that each unit may pro-
perly update CVM.

242

Upon initialization the HSDWR reads into dynami-
cally allocated memory the uplink parameter file
built from the Informix database explained earli-
er. The HSDWR uses the uplink parameter table to
map information from the master IRIS CVM into a
data buffer that the simulation computers will un-

derstand. This data buffer is then sent to the
simulation computers. It is important to note
that only the master IRIS CVM is used as the

source to build the uplink buffer. The INTF task
is responsible for making the CVM on each IRIS ma-
chine identical.

The INTF task works closely with the HSD task in
the area of communication. However, while the HSD
task is most concerned with the HSD interface, the
INTF task is involved solely with the ethernet in-
terface. The INTF task contains three separate
processors: the downlink read processor (DLRD),
the CDB write processor (CDBWR), and the CDB read
processor (CDBRD). The INTF task executive uses
information in executive shared memory to deter-
mine which process to execute when it is signaled
to go by EXEC.

Upon initialization the DLRD reads into dynamical-
ly allocated memory the downlink parameter file
built from the Informix database explained earli-
er. Vhen the HSDRD routine broadcasts the buffer
of downlinked data from the simulation computers,
the DLRD retrieves that buffer of data. The DLRD
then uses the downlink parameter table to map the
data from the downlink buffer into CVM.

The CDB is the real-time systems method of porting
changes made to one IRIS’ CVM to all other IRIS
units on the ethernet. For example, during SES
cupola operations, a crew person at one station
selects a switch. The crev person at the other
station expects his display to reflect that switch
selection. This is accomplished through the CDB.
The CDBWR transmits the CDB across the ethernet to
other IRIS units, and the CDBRD receives the CDB
from other IRIS units and updates CVM.

FUTURE SES CUPOLA CONSIDERATIONS

As stated earlier, one of the objectives of the
SES cupola is to provide to the engineering commu-
nity a tool for development of the space station

cupola. As the hardware design of the cupola
changes, the SES cupola hardware will undergo in-
cremental changes. Also a dome visual system is
planned for the SES cupola in the future adding
another dimension of realism to man-in-the-loop
simulation.

By its very nature, software is more flexible than
hardvare. As this paper has demonstrated, the SES
cupola real-time system was designed for flexibil-
ity and change. The offline software tools (disp-
lay builder and relational database) are integral
parts of the real-time systems built in flexibili-
ty.

Vith these concepts in mind the future of the SES
cupola is bright. Currently OMV simulation in the
SES is undergoing validation. The SES cupola crew
station will be used as both a ground based con-

trol station for OMV operations and a space based
control station. Likewise, the MSC is currently
being implemented in the SES. Many of the MSC op-
erations will be developed and analyzed from the
SES cupola. Beginning in April 1989, McDonnell
Douglas will utilize the SES cupola for displays
and controls development. A number of requests
concerning softvare modification have been made by
McDonnell Douglas, and those changes are currently
in work.

It is through its flexibility and ability to adapt
to the needs of the sponsor that the SES in gener-
al becomes an excellent engineering tool. The SES
has been directed to be the primary real-time man-
in-the-loop engineering simulation facility for
support of the Space Station Program. The SES cu-
pola is a precise and visible attempt to meet that
directive.

243

REFERENCES

1. St. John, Robert H.; Moorman, Gerard J.; and
Brown, Blaine W., "Real-time Simulation for Space
Stations", Proceedings of the IEEE, Vol. 75,
No. 3, March, 1987, pp. 383-398.

2. "Systems Engineering Simulator (SES) Laborato-
ry Description Document: Simulator Foundation",
Vol. 1, LEMSC0-23181, December, 1987.

3. "Systems Engineering Simulator (SES) Laborato-
ry Description Document: On-Orbit Element Simula-
tor", Vol. 3, LEMSC0-23183, April, 1988.

Appendix A

SES Cupola Display Type Descriptions

The IRIS 4D supports the SES Cupola
through display windows on the multi-
purpose applications conscle (MPAC) as
well as keyboard and trackball (or mouse)
input. The display windows respond to the
SES via a data buffer through M1l.
Variables downlinked from the SES to the
IRIS are displayed in various formats
depending on the display type used.
Likewise, inputs from the crewperson are
interpreted by the IRIS and uplinked to
the SES.

Everything shown on a display window is a
display type. All variable data as well
as static data is defined in terms of
display types. So a display type is
simply a functional unit on the display.
Variable data display types are used to
display data from the SES. These display
types tag a unique number termed a system
identification (sysid) to their variable
so that the real-time SES Cupola software
can keep track of variables passed to and
from the SES as well as internal
variables. The following is a description
of display types required for the SES
Cupola MPAC.

2D Header Entry - The header entry is at
the beginning of every display file that
describes a MPAC display window. It
contains data that describes the window as
a popup window, banner window, or data
window. A banner window is a unique
window in the real-time system that covers
the entire display screen and cannot be
popped to the foreground, moved, or
deleted. A popup window usually contains
a number of page calls (described 1later)
to bring up data windows of related data.
Data windows present data to the
crewperson. The font used to display text
is determined by the font flag. The header
entry also contains the length of the
window data display file in bytes, the X
:and Y coordinates of the window origin,
and the X and Y length of the window in
pixels.

3D Header Entry - The 3D header entry is
at the beginning of every display file
that describes a MPAC 3D display window.
All 3D display windows are data windows.
The font wused to display text is
determined by the font flag. The 3D header
entry contains the length of the window
data display file in bytes, the X and Y
coordinates of the window origin, and the
X and Y length of the window in pixels.

244

The distance of the eyepoint from the
origin, near clip plane, and far clip
plane distances are specified. Finally,
the perspective angle and z-buffer flag
are specified.

Begin Coordinate Frame - The begin
coordinate frame display type is
associated with 3D display windows. This

display type causes all subsequent 3D
objects to be drawn relative to the
relocated local origin as specified by the
six data variables. Six sysids tag data
variables for X, Y, and Z position and X,
Y, and Z rotation. A display type name is
also specified.

End Coordinate Frame - The end coordinate
frame display type is associated with 3D
display windows. This display type
cancels the coordinate frame display type
and the local origin is returned to the
previous global origin. All coordinate
frames must be terminated by an end
coordinate frame. A display type name is
specified.

Rotation The rotation display type is
associated with 3D display windows. This
display type allows the user to rotate the
eyepoint about the global origin. The X,
Y, and Z rotations are specified deltas.
A sysid tags the data variable that is
used to determine if the eyepoint is to be
rotated. A display type name is also
specified.

Translation - The translation display type
is associated with 3D display windows.
This display type allows the user to
translate the eyepoint along the X, Y, and
Z axis a specified distance. The X, Y,
and Z translations are specified deltas.
A sysid tags the data variable that is
used to determine if the eyepoint is to be
translated. A display type name is also
specified.
8cale - The scale display type is
associated with 3D display windows. This
display type allows the user to scale a
pre-defined amount about the origin along
any or all axes. The X, Y, and Z scale
factors are specified deltas. A sysid
tags the data variable that is used to
determine if the display is to be scaled.
A display type name is also specified.

End of List Terminator - The end of list
terminator is at the end of every display

file that describes a SES Cupola MPAC
display window. The sole purpose of the
end of list terminator is to flag the end
of the display list.

Integer - The integer display type is used
to display integer data on the display
window. A sysid tags the data variable.
The X and Y window coordinates of the
display type and field width are
specified. A yellow (warning) threshold
and red (critical) threshold are
available. The integer is also described
as increasing or decreasing so that the
thresholds reside at the upper or lower
end of the expected range. Normally the
data is displayed in white. If the value
crosses the warning threshold the data is
displayed in yellow. Likewise, if the
data crosses the critical threshold the
data is displayed in red. Thresholds are
optional and both thresholds do not have
to be used.

Real - The real display type is used to

display floating point data on the
display window. A sysid tags the data
variable. The X and Y window coordinates

of the display type, total field width,
and number of digits to the right of the
decimal point are specified. A yellow
(warning) threshold and red (critical)
threshold are available. The real number
is also described as increasing or
decreasing so that the thresholds reside
at the upper or lower end of the expected
range. Normally the data is displayed in
white. If the value crosses the warning
threshold the data is displayed in yellow.
Likewise, if the data crosses the critical
threshold the data is displayed in red.
Thresholds are optional and both
thresholds do not have to be used.

Long Float - The long float display type
is used to display double precision
floating point data on the display
window. A sysid tags the data variable.
The X and Y window coordinates of the
display type, total field width, and
number of digits to the right of the
decimal point are specified. A yellow
(warning) threshold and red (critical)
threshold are available. The double
precision number is also described as
increasing or decreasing so that the
thresholds reside at the upper or lower
end of the expected range. Normally the
data is displayed in white. If the value
crosses the warning threshold the data is
displayed in yellow. Likewise, if the
data crosses the critical threshold the
data is displayed in red. Thresholds are
optional and both thresholds do not have
to be used.

Hexidecimal - The hexidecimal display type
is used to display a 32-bit word in memory
on the display window in the form of a
hexidecimal number. A sysid tags the data

245

variable. The X and Y window coordinates
of the display type and color are
specified.

Ascii Message - The ascii message display
type is used to display ascii text that is
variable such as error messages on the
display window. A sysid tags the ascii

data. The X and Y coordinates of the
display type as well as color are
specified.

static Text - The static text display type
is used to display ascii text that is
static such as labels on the display

window. The X and Y coordinates of the
display type as well as color are
specified. The character string is a

maximum of 8 characters in length.

Page Call - The page call display type is
used to "call up" new display windows for

the MPAC. The display type bounds (left
X, right X, bottom ¥, top Y¥), color, and
text are specified. A filename is

specified to indicate the display file to
be read.

Keyboard Input - The keyboard display type
allows user input from the keyboard.

The display type bounds (left X, right X,
bottom Y, top Y¥), color, and text are
specified. A filename is specified to

indicate the display file to be read.

Delete The delete display type allows
the user to delete a display window in

real time. The display type bounds (left
X, right X, bottom Y, top Y} are
specified.

Default - The default display type allows
the user to save a screen configuration of
several display windows and recall that
particular configuration at some later
time. The display type bounds (left X,
right X, bottom ¥, top ¥) as well as the
middle Y position and color are specified.
Text labels for the default and save
default portions of the display type are
specified. Finally, the name of the save
file is specified.

Dynamic Position Indicator - The dynamic
position indicator is a cursor on a bar.
The position of the cursor is determined
by the associated data variable and the
specified upper and lower limits of the
indicator. A sysid tags the data
variable. Another sysid tags a visibility
flag which is used to determine if this
display type is drawn. The cursor may
take the following forms: empty square
with "X", filled square, empty circle with
cross-hair, filled circle, empty triangle,
filled triangle, caret, or cross-hair.
The bar may be vertical or horizontal.
The display type bounds (left X, right X,
bottom Y, top Y), bar color, and cursor
color are specified. The upper and lower

limits are specified.
Circular Gauge - The circular gauge
display type is used to display floating
point data in the form of a gauge on the
display window. A sysid tags the data
variable. The X and Y window coordinates
of the display type, total field width,
and number of digits to the right of the
decimal point are specified. The upper
and lower 1limits of the gauge are
specified. A yellow (warning) threshold
and red (critical) threshold are
available. The gauge is also described as
increasing or decreasing so that the
thresholds reside at the upper or lower
limits of the gauge. Normally the data is
displayed in white. If the value crosses
the warning threshold the data is
displayed in yellow. Likewise, if the
data crosses the critical threshold the
data is displayed in red. Thresholds are
optional and both thresholds do not have
to be used.

Meter Bar - The meter bar display type is
used to display floating point data in the
form of a meter bar on the display window.

A sysid tags the data variable. The
display type bounds (left X, right X,
bottom Y, top Y), total field width, and

number of digits to the right of the
decimal point are specified. The upper
and lower 1limits of the meter bar are

specified. A yellow (warning) threshold
and red (critical) threshold are
available. The meter bar is defined as

horizontal or vertical and with or without
threshold and limit labels. The meter bar
is also described as increasing or
decreasing so that the thresholds reside
at the upper or lower limits of the meter
bar. Normally the data is displayed in
white. If the value crosses the warning
threshold the data is displayed in yellow.
Likewise, if the data crosses the critical
threshold the data is displayed in red.

Thresholds are optional and both
thresholds do not have to be used.

Indicator and Rounded Indicator - The
indicator display type represents a

mechanical light indicator on the display
window. A sysid tags the data variable.
The display type bounds (left X, right X,
bottom Y, top Y) are specified. Also, the
"true" state text, text color, and
background as well as the "false" state
text, text color, and background are
specified. If the variable associated
with the indicator is 0 (False) the
"false" text, text color, and background
are displayed. Any other value is
considered true, and the "true" text, text
color, and background are displayed. The
rounded indicator display type has rounded
ends.

display type
2-way toggle

The switch
a mechanical

Switch
represents

246

switch on the display window and is drawn
to create the illusion of a 3-D push
button. An additional feature of the
switch display type is that an indicator
can be incorporated into the switch. A
sysid tags the switch data variable, and
another sysid tags the indicator data
variable. The display type bounds (left
X, right X, bottom Y, top Y) are
specified. Also, the "true" state text,
text color, and background as well as the
"false" state text, text color, and
background are specified. A transition
color is specified if the indicator option
is used. The truth table below indicates
the state of the switch based on the value
of the data variables. Note that if the
switch sysid (ss) and indicator sysid (is)
are identical the switch acts as a 2-way
toggle. If the two sysids are different
then the switch has a transition state.

switch sysid = indicator sysid

ss is position c¢olor
0 0 up false
1 1 down true

switch sysid <> indicator sysid

Sss is position color

0 0 up false

0 1 up true

1 o down transition

1 1 down true
Momentary Switch -~ The momentary switch

display type represents a mechanical 2-way
toggle momentary switch on the display
window and is drawn to create the illusion
of a 3-D push button. An additional
feature of the display type is that an
indicator can be incorporated into the
momentary switch. A sysid tags the switch
data variable, and another sysid tags the
indicator data variable. The display type
bounds (left X, right X, bottom Y, top Y)
are specified. Also, the "true" state
text, text color, and background as well
as the "false" state text, text color, and
background are specified. A transition
color is specified if the indicator option
is used. The truth table below indicates
the state of the momentary based on the
value of the data variables. Note that if
the switch sysid (ss) and indicator sysid
(is) are identical the momentary acts as a
2-way toggle, If the two sysids are
different then the momentary has a

switch sysid = indicator sysid

ss is position color
0 0 up false
1 1 down true

switch sysid <> indicator sysid

ss is position color
0 0 up false
o] 1 up true
1 0 down transition
1 1 down true

Line - The line display type draws a line
on the display window. The starting X and
Y coordinates, ending X and Y coordinates,
and color are specified.

Rectangle - The rectangle display type
draws a rectangle on the display window.
The display type bounds (left X, right X,
bottom Y, top ¥) and color are specified.
The rectangle can be filled or empty.

circle - The circle display type draws a
circle on the display window. The display
type X and Y coordinates, radius, and
color are specified. The circle can be
filled or empty.

Polygon - The polygon display type draws a
polygon on the display window. The
polygon can have up to and including 10

vertices. The number of vertices, all (X,
Y) coordinate pairs, and color are
specified. The polygon can be filled or
empty.

3D Line - The 3D line display type draws a
line in three dimensional space and is
used on 3D display windows. Starting X,
Y, 2 and ending X, Y, Z coordinates are
specified. A display type name and color
are specified also.

- The box display type draws a box on
the 3D display window. The center X, Y,
and Z coordinates; height and width on the
-X and +X ends of the box:; and length are
specified. An offset along the Y or Z
axis may be specified to shift the front
face of the box. Rotations about the
three axes may be specified to orient the
box. A display type name and color are
specified also.

Box

Cylinder - The cylinder display type draws
a cylinder on the 3D display window. The
X, ¥, and Z coordinates; diameter at the -
X and +X ends of the cylinder; and length
are specified. The number of sides and
angle of rotation (full cylinder 360,
half cylinder 180, etc.) are specified.
Rotations about the three axes may be
specified to orient the cylinder. A
display type name and color are specified

247

also.

sphere - The sphere display type draws a
sphere on the 3D display window. The X,
Y, and Z coordinates of the center,
radius, and number of sides are specified.
A display type name and color are
specified also.

N90- 20684

-

L - RS,

i o S
- . 7
= "’,/ vy /

THE ORBITAL MANEUVERING VEHICLE
TRAINING FACILITY VISUAL SYSTEM CONCEPT

KeithWilliams
CAE-Link Corporation
Link Flight Simulation Division
2222 Bay Area Blvd.
Houston, Texas 77058

ABSTRACT

The purpose of the Orbital Maneuvering Vehicle
(OMV) Training Facility (OTF) is to provide
effective training for OMV pilots. A critical part
of the training environment is the Visual
System, which will simulate the video scenes
produced by the OMV Closed-Circuit Television
(CCTV) system. The simulation will include
camera models, dynamic target models, moving
appendages, and scene degradation due to the
compression/decompression of video signal.
Video system malfunctions will also be
provided to ensure that the pilot is ready to
meet all challenges the real-world might
provide. This paper describes one possible
visual system configuration for the training
facility that will meet existing requirements.
This paper reflects work performed for NASA
by CAE-Link Corporation.

INTRODUCTION

The OTF visual system must provide the CCTV
capabilities at a cost-effective price. The scene
content update rate is only 5 times per second
with a low-resolution requirement. This enables
the use of a high-end super-graphics
workstation as the medium for the CCTV
simulation. Combining the CCTV simulation
with the full-feature OTF simulation maximizes
pilot training. To further enhance training
capabilities, stand-alone and integrated modes
will challenge the pilot with limited and full-
mission scenarios.

The stand-alone mode provides the pilot with a
partial-task, one-on-one training environment
that guides the pilot's progress in a systematic
manner. Integrated mode allows the linking of

PRECEDING PAGE BLANK NOT FILMED

the OTF with several simulators at NASA,
Johnson Space Center (JSC). Integrated mode
will challenge the pilot to apply the lessons
learned from the stand-alone sessions with new
and more difficult mission objectives. Both
modes enable the pilot to handle any situation
that could possibly occur in an actual mission.
The functional design diagram for the OTF
Visual System (figure 1) shows the relationship
of the host computer with the Image Generation
system and also depicts the two configurations
available for the integration with respect to the
Visual System.

SIMULATION DICTALVOEO
HOST oo
O WWOVERLAY
VISUAL SUPPORT S/W
NTEGRATED MODE

PARAMETERS
STATUS

g VIDEOONLY | STUDENT
PILOT
IMAGE/GRAPHIC é CONSOLE
GENERATION § 2 '
SYSTEM g
g VIDEQ W/OVERLAY
INSTRUCTOR/
OPERATOR
STATIONS

FIGURE 1 OTF Visual System Functional Design
Diagram

The OMV is a
Currently defined mission
rendezvous and docking with
Orbiter, and the Space Station. To provide
training for these missions, a simulation
environment is being developed to train the

remotely-piloted spacecraft.
scenarios include
satellites, the

pach 7 77 INTENTIONALLY BLANK

pilot to interact with the OMV. Before detailing
the OTF Visual System, an explanation of the
real-world OMV is in order. Familiarity with
the actual system is essential to understand the

training requirements and how our functional
simulation of these systems will provide
effective training for OMYV pilots. A basic

functional diagram of the OMV CCTV system is
presented in Figure 2. It provides the data flow
from the time an image is captured by the CCTV
camera, to when the image appears on the
pilot's display.

FIGURE 2 OMV CCTYV Functional Diagram

OMYV VIDEO SYSTEM

The OMV has two independent and redundant
camera systems: docking and pan/tilt/zoom.
Lighting equipment is associated with each
camera system. Four additional cameras can be
attached to OMV payloads, making a maximum
of eight cameras allowed. Camera images are
sent to the pilot at the Ground Control Console
(GCC) in the JSC Mission Control Center (MCC) via
the Tracking and Data Relay Satellite System
(TDRSS). The camera images are compressed
and placed into the OMV telemetry stream. The
bandwidth available for the video telemetry is
only 972 kbps, or 5 video frames per second.
The 972 kbps telemetry data rate can be
allocated to two cameras at 486 kbps each or
can be dedicated to a single camera. At MCC,
the GCC decompresses the telemetry and
performs error checking. The video image is
then combined with an overlay of flight-critical
data and displayed to the pilot.

250

Camera System

The pan/tilt/zoom camera is a redundant
system with a 6:1 zoom ratio and is typically
used by the pilot for initial acquisition of the
target vehicle and for the initial stages of OMYV
docking. The docking camera is also a
redundant system and is mounted on the OMV
docking axis. This permits the pilot a boresight
view of the target docking mechanism
alignment with the OMV grapple mechanism.
Two redundant docking lights are included with
each camera system for a total of four lights.

Video Compression Unit

The Video Compression Unit (VCU) compresses
the video images. The VCU utilizes a frame-
grabbing technique to acquire 5 frames of RS-
170 video data per second in normal
operational modes. Compression and Huffman
and Reed-Solomon encoding are performed on
each frame of data. In the event that a single
docking light is the only available light source,
the pilot can select an extended imaging mode
that extends the usable camera range to 200
feet. The extended imaging mode increases the
VCU video sample rate and combines multiple
frames of data into a single enhanced image.
This is analogous to increasing the exposure
time of a photograph in a camera, allowing the
film to receive multiple images that combine for
a single photograph. The VCU also provides the
capability to send memory dumps from the
OMV Command and Data Management systems
to the GCC.

Video Reconstruction Unit

The Video Reconstruction Unit (VRU)
decompresses the digitized video images.
Huffman and Reed-Solomon decoding is also

performed. The VRU has an additional unit
attached called the Bit Error Rate Monitor
(BEM), which provides verification of pixel
count, line count, and correct subframe
sequence in the video frame. The BEM replaces
sections of corrupted data with data from the
previous frame. The pilot can increase the
number of reference pixels, which lowers the
resolution of the image being transferred and
reduces the amount of corrupted data. Not only
will the granularity of the picture increase but
also the validity of the image.

ORIGINAL PAGE |5
OF POOR QUALITY

Ground Control Console

All commanding of the OMV is done via the GCC.

The pilot has a redundant station with a
keyboard, two cathode-ray tubes (CRTs), and
rotational and translational hand controllers.

Preprogrammed commands are entered via the
operator's workstation. The GCC workstation
receives OMV telemetry and displays it to the
pilot. The pilot console receives the RS-170
output from the VRU and adds the overlays that
contain flight-critical data. This output is then
displayed on the CRTs. The video image has a
resolution of 510 by 244 pixels for a single
camera image or 255 by 244 for two cameras.

OTF VISUAL SYSTEM CONCEPT

The OTF Visual System must provide two
separate modes of operation: stand-alone and
integrated. In each of these modes, the camera
system of the OMV must be simulated. From
these CCTV models and from target control data,
the Image Generation System will generate the

representative scene to be displayed for the
OMYV pilot.

Basic requirements for the Visual System
include simulation of the CCTV system,

transport of visual data to MCC, decoding of the
data, and addition of flight-critical parameters
to the display for the pilot. The OTF Visual
System will use a combination of hardware and
software on two different computer systems.
One computer will provide modeling
information while the other will transform that
information into a graphic representation. An
image generation computer will produce the
CCTV camera scenes for the pilot with a host
computer controlling the simulation models of
the vehicle camera systems. The host computer
also provides all commanding of the Image
Generation System. All database modeling will
be performed on the Image Generation System.

Training Configurations

Providing both stand-alone and integrated
simulation capabilities is required to supply
various levels of training. During initial pilot
training, the stand-alone mode allows
instructors to remain in close proximity to the
student pilot. Instruction on basic system
operation and scenarios is given. Partial
task/mission training is also possible. The OTF
Visual System will provide all nominal system

251

capabilities. In this mode, no effects caused by
telemetry degradation or
compression/decompression of the video signal
will be simulated.

The integrated mode connects the OTF with the
Shuttle Mission Simulator (SMS), Network
Simulation System (NSS), and MCC. This mode
provides full mission scenario training and
refines the pilot's proficiency and skills. The
OMV pilot is placed in situations as close as
possible to an actual flight, from prelaunch to
Orbiter retrieval. All interactions with MCC and
Shuttle personnel occur as they would in an
actual flight.

Both modes must provide image generation,
CCTV, and target control. The differences lie in
the distribution of the video image to the pilot,
the GCC, or the student pilot console.

Video Distribution

The OTF Visual System produces the raw video
image as directed by the host simulation. This
video is in RS-170 format to remain compatible
with the pilot console/student pilot console
hardware.

Integrated Mode: A VCU is used on the OMV
to convert and compress the video image into
digital telemetry. A non-flight-rated version of
the VCU is used in the integrated mode to
perform Reed-Solomon encoding and
compression of the Image Generation System

video. The VCU outputs this data to the Data
Acquisition System (DAS), which places the
video into the OMV downlink telemetry.

The rteal-world pilot console is used in

integrated training. The pilot's visual hardware
consists of a VRU, a frame grabber and graphics

generator, and two graphics CRTs. The VRU
accepts digital video from the telemetry
network and converts the digital compressed

signal to RS-170 format. The frame grabber on
the GCC acquires the image and adds the
overlay of flight-critical data. This composite
image is then displayed for the pilot.

By using the real-world VCU and VRU,
additional capabilities are available for training.
This includes command and data handling
memory dumps, BEM effects, and telemetry
degradation effects.

Stand-alone Mode: In the stand-alone mode
the output of the Image Generation System is
directly routed to the student pilot console; only

the addition of switching capabilities and signal
amplifiers 1is necessary. No telemetry
degradation and no compression/decompression
effects are simulated in the stand-alone mode.
This approach reduces the complexity and cost
of the OTF simulator.

OMYV Host Computer

The OMV host computer has several resident
math models. These models include simulation
of the OMV environment and onboard systems.

The OTF Visual System encompasses the
following areas:

+ CCTV

* Visual Real-Time Support

*+ Visual Mode and Control

* Visual Special Effects

Closed-Circuit Television

The CCTV models dynamically simulate the

CCTV camera system on the OMV. All telemetry
data is passed from the camera systems to the
central unit. The central unit then places the
data into the telemetry stream that is sent to
MCC. The central unit also passes this
information to the redundancy management
unit for wellness checks and appropriate self-
reconfiguration in event of correctable
malfunctions. The CCTV camera system consists
of the pan/tilt/zoom camera, docking camera,
docking lights, and the VCU.

Pan/Tilt/Zoom Camera Model Functions

1) Thermal effects are modeled to provide
telemetry data to the central unit.

2) The electrical system is modeled to
provide status information to the central
unit. Electrical power consumption data is
provided to the OMYV onboard systems
electrical system model. This model
provides all power-available data for the
CCTV model.

The camera gimbal control respond to
command data from the GCC. These
commands generate data that is sent to
the image generator. The mechanical and
electrical dynamics are simulated. The
net effect is the movement of the
simulated camera.

3)

252

4) Gamma, focus, and iris control from the
GCC are simulated as near to the real-
world as is possible with the image
generation hardware.

Docking Camera Model Functions

1) Thermal effects are modeled to provide
telemetry data to the central unit.

2) The electrical system is modeled to
provide status information to the central
unit. Electrical power consumption data is
provided to the OMYV onboard systems
electrical system model. This model
provides all power-available data for the

CCTV model.

3) Gamma, focus, and iris control from the
GCC are simulated as near to the real-
world as is possible with the image

generation hardware.

Docking Lights

1) The luminosity control commands for the
docking lights will be sent to the Image
Generation System.

2) Thermal effects are modeled to provide
heat transfer information to the camera
thermal models.

3) The electrical system 1is modeled to
provide status information to the central
unit. Electrical power consumption data is
provided to the OMV onboard systems
clectrical system model. This model
provides all power-available data for the
CCTV model.

Telemetry outputs deemed necessary for
training but not previously defined will be
provided.

Processing of malfunctions will be provided at
the level of detail specified in the Level B
requirements.

The host computer (Concurrent 3280) contains
mathematical models for the OMV and its
environment. These models include the CCTV
system and the control of free-flying targets.
The host computer models propagate all state
vectors for the OMV and the free-flying targets.
When the CCTV system is in view of a free-
flying object, commands are given to the Image
Generation System to place the target at the

given state vectors. All camera parameters
(field of view, focus, iris, gamma correction, and
lighting control) are sent with the state vector
data to the Image Generation System.

Camera focus is required for OMV training. For
the systems investigated, no focus or blur
commands were available in an off-the-shelf
product. A focus algorithm will be derived
using pixel pairing or filter algorithms.

Real-Time Software

Visual Support

The Visual Real-Time Support software
provides commands for the image generator.
OMV target and Earth/Moon/Sun information
and data are processed. This process includes
the conversion of all Concurrent floating point

numbers to industry standard Institute of
Electrical and Electronics Engineers (IEEE)
floating point format.
a) Earth/Moon/Sun
1) State vector IEEE conversions must be
performed for the Image Generation
System
2) The luminosity of the Sun must be set
to provide correct representation of
the day/night terminator and shading
of objects.
b) OMV Visual Model and Target Control
1) State vector IEEE conversions must be
performed for the Image Generation
System
2) Appendages are commandable with

representative visual cues
the actions.

reflecting

3) Navigation lights are represented as
polygons and do not add any shading
or luminosity effects.

Visual Mode and Control

The visual mode and control software provides
the functions necessary to maintain the
simulation modes (run, freeze, data store, and
return to data store). This software commands
the following subsystems:

a) Image Generation System - The image
generation mode and control also includes
the model selection and image generation
initialization.

253

b) Video Distribution System - The video
distribution mode and control configures
the distribution hardware with predefined
parameters for the mode selected. It also
allows system reconfiguration as needed
when the simulation is in freeze mode.
Freeze mode allows the simulator to halt
and suspend all integrations, as if time has
stopped inside the simulator.

¢) Video Compression Unit - The VCU mode
and control software initializes and modes
the VCU hardware (only in integrated
simulation mode). A representative
model of the VCU is used in the stand-
alone mode.

Visual Special Effects

All special effects (such as focus and radio
frequency interference (RFI) noise) hardware
will be controlled by the visual special effects
software. Only the use of step attenuators to
degrade the OMV telemetry stream when sent
to the GCC in MCC is planned.

Image Generation

The image generation software is required to
produce a new scene 5 times per second. With
this low scene content update rate, it is possible
to use a high-end super-graphics workstation.
We estimate that 35,000 four sided polygons
per second are required for a 5 hertz update
rate. This estimate was produced by using
existing SMS and space model databases. The
scene content must include the Sun/Earth/Moon
and the possibility of four-free flying targets.

Image Generation Software

The image generation the

following capabilities:

software provides

« Network connectivity

+ Initialization mode processing
+ Message processing

+ Sequencing

+ Screen-application processing

The workstation also provides all capabilities
for database model generation.

CONCLUSIONS
The OTF provides an effective training
environment for the OMV pilots. Training

flexibility is achieved using the stand-alone and
integrated modes. In stand-alone mode the
pilot is introduced to the basic handling
capabilities of the OMV. The pilot can then
proceed to basic procedures and scenarios and
be challenged by instructor-inserted
malfunctions. In the integrated mode, the pilot
is integrated into the NASA team and learns to
work with all other MCC ground controllers and
Shuttle personnel. Enhanced capabilities are
added to the VCU and VRU within the command
and data handling simulation. The capability to
degrade the video image proportionally to the
amount of telemetry degradation is inherent in
the system and is supported by the visual cues
the pilot receives as a result of his commands.
These reactions in combination with the
capabilities described above provide a realistic
and effective training environment for the OTF.

REFERENCES

OMV Level A Training Requirements, NASA
Lyndon B. Johnson Space Center, Houston, Texas,
April 4, 1988

OMV Preliminary Design Review Volume 4
Avionics Part 3 Communications and Data
Management, NAS8-36800, NASA, George C.
Marshall Space Flight Center, Alabama, August,
1988

System Functional Requirements for the Orbital
Maneuvering Vehicle Training Facility, JSC-
22976, NASA Lyndon B. Johnson Space Center,
Houston, Texas, December 19, 1988

254

THE SEARCH FOR REPLACEMENT VISUAL SYSTEMS FOR
THE SHUTTLE MISSION TRAINING FACILITY (SMTF)

Mark Teigler
CAE LINK FLIGHT SIMULATIONS

(Paper not provided by publication date.)

255

AN

g

AUTHOR INDEX

Aldridge, J. P. 65 Merritt, Fergus 55
Apodaca, Tony 9 Molina, Rod 103

Moss, Lance M. 49
Badler, Norman . 195 Mulder, T. 65
Bailey, A. Samuel, Jr. 33
Bancroft, Gordon 55 Ogletree, Barry 43
Bartholomew, Michael 229 Orr, Linda 171
Becker, Fred J. 155
Bell, Bradley N. 39 Panos, Gregory P. 81
Benson, S. 65 Parrott, W. 65
Beyer, G. 177 Petty, Bob 13
Bochsler, Daniel C. 65 Phillips, Cary B. 187
Brimley, W. 177 Plessel, Todd 55
Busse, Carl 25 Porter, Tom 9
Cok, Keith E. 129 Red, Michael T. 235
Christianson, David C. 219 Remus, Mike 73

Reynolds, James C. 165
Diebold, B. 177 Robinson, L. Thomas, Jr. 93

Roman, D. 65
Esakov, Jeffrey 195

Sabionski, Gunter R. 93
Geisler, Erik 143 Schmeckpepper, K. R. 65
Gilbert, Bob 103 Shores, David 151
Griffith, Paul 115 Skudlarek, Martin J. 75

Smith, Gary 143
Hess, Philip W. 235 Somers, Larry E. 107
Hill, Richard 171 Smith, Randy L. 135
Horner, S. 65 Stuart, Mark A. 135

Szczur, Martha R. 1
Jeletic, James F. 121
Jung, Moon 195 Teigler, Mark 255
Kaber, Arnold 15 Vu, Bang Q. 205
Kalvelage, Thomas A. 17
Kindred, Erick D. 33 Watson, Val 55
Kirkhoff, Kevin R. 205 Watts, G. 65
Kleinberg, H. 177 Wike, Jeffrey 115
Kolkhorst, Barbara 43 Williams, Keith 249
Kullman, A. 65

Yuen, Vincent K. 215
McClanahan, Scott 143
McGrath, DebraS. 165

257

Y~

PRECEDING PAGE BLANK NOT FILMED
eackgE_ NTENTIONALLY BLANK

NASA REPORT DOCUMENTATION PAGE

Narnonal Aeronaulics ant
Space Aaminsstration

1 Report No 2. Government Accession No 3. Recipient’'s Catalog No.
NASA CP-3045
4 Title and Subtitle 5. Report Date

Graphics Technology in Space Applications (GTSA 1989) August 1989

6. Performing Organization Code

7 Author(s)

8. Performing Organization Report No.
Sandy Griffin, Editor 9> P

S-594
9 Performing Organization Name and Address 10, Work Unmit No
Lyndon B. Johnson Space Center
Houston, Texas 77058 11. Contract or Grant No.
12 Sponsoning Agency Name and Address 13. Type of Report and Period Covered
National Aeronautics and Space Administration Conference Publication
Washington, D.C. 20546 14. Sponsoring Agency Code

University of Houston-Clear Lake

15 Supplementary Notes

16. Abstract

Papers presented at the Graphics Technology in Space Applications hosted by University of Houston- Clear Lake at
Johnson Space Center on April 12, 13, and 14, 1989 are documented herein. During the three days, approximately 35
papers were presented. Technical topics addressed included Graphics Stanriards, Graphics Applications, and Tools,
Merging of Graphics and Video Display Technology, Partial Task and Stand Alone Simulations, Space Station
Freedom Graphics and Large Scale Simulations.

17 Key Words (Suggested by Author(s)) 18. Distribution Statement
3-D Scene Description, photorealistic, display
building tool, Binary Space Partitioning, image Unclassified - Unlimited
generator, real-time simulation, computational
proceedings, AUTOPS, high-fidelity, solid modeled Subject Category: 60
images
19 Secunty Classification (of this report) 20 Security Classification (of this page) 21. No. of pages 22 Price
Undlassified Unclassified 248 All

For sale by the National Technical Information Service, Springfield, VA 22161-2171

This publication was printed at the UNICOR Print Piant,
Federal Correctional Institution, Petersburg, VA

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

Natlonal Aeronautics and

Space Administration Officlal Business
Penaity for Private Use $300

Washington, D.C. SPECIAL FOURTH CLASS MAIL
20546 BOOK

