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ABSTRACT

AN OVERLAPPED GRID METHOD FOR MULTIGRID,
FINITE VOLUME/DIFFERENCE FLOW SOLVERS - MaGGiE

Computing the flow ficlds about three-dimensional complex configurations
accurately becomes a difficult task, if it is attempted to generate a single, body
fitted grid with proper clustering. The domain decomposition methods, which
divide the computational domain into less complex subdomains, are extensively
used to decrease the grid generation workload. A domain decomposition
technique also allows the use of different solution methods for different
subdomains. The objective of this work is to develop a domain decomposition
method via overlapping/embedding the component grids, which is to be used
by upwind, multigrid, finite volume solution algorithms. A computer code,
given the name MaGGiE, (Multi-Geometry Grid Embedder), is developed to meet
this objective. MaGGiE takes independently generated component grids as
input, and automatically constructs the composite mesh and interpolation data,
which can be used by the finite volume solution methods with or without
multigrid convergence acceleration. Six demonstrative examples, showing
various aspects of the overlap technique are presented and discussed. These
cases are: the grid of a blunt-nose cylinder, (BNC), embedded within a
Cartesian farfield, with finest level and multi-level grid connections, where
the flow Mach number is 1.6, and the angle of attack is 329; the grid of BNC is

overlapped within a farfiecld mesh of similar topology for the same flow



conditions as the previous case; an ogive-nose cylinder, (ONC), in the
proximity of a flat plate, where the flow Mach number is 2.86; a cylindrical
store model connected to an L-shaped sting, cmbedded within a Cartesian
farfield, where the flow Mach number is 1.65; a different cylindrical store
model with fins and a curved sting in the proximity of a cavity. These cases
are used for developingr the procedure for overlapping grids of different
topologies, and to evaluate the grid connection and interpolation data for
finite volume calculations on a composite mesh. The flow solutions are
obtained for all the cases, except the one which involves the cavity. Time
fluxes are transferred between mesh interfaces using a trilinear interpolation
procedure. Conservation losses are minimal at the interfaces using this
method. The multigrid solution algorithm, using the coarser grid connections,
improves the convergence time history as compared to the solution on

composite mesh without multigridding.
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Chapter 1
INTRODUCTION

1.1 Rationale

Computational fluid dynamics (CFD) plays a dominant role in the aerospace
field because of the realization that CFD is an effective design tool which
complements and goes beyond experimental tests. Because of the rapid
development of computational fluid dynamics in the last decade, efficient
solvers, capable of solving the partial differential equations of fluid motion by
finite-difference (FD), finite-volume (FV) and finite-element (FE) techniques,
have evolved. Validation of these codes have caused the important merging of
the computational and experimental disciplines. Coinciding with the
theoretical advancements is the continuing improvements of high speed and
large memory digital computers with vectorization and parallel processing
capabilities, The CFD community has lead the push for the state of the art
supercomputer technology and scientific workstations. With the continuing
advancements in computer hardware and software, it has become practical to
solve three dimensional complex flow domains, which were previously
thought to be beyond the reach of the computatibnal fluid dynamiic;s.

The term complex flow field can be defined as any physical domain in
which there are high flow field gradients, and a single or multiple bodies of
nonsmooth, multiple joint or disjoint geometries. A few examples of complex

flow domains are the flow around an aircraft, the flow between a wing and a



store, the flow between a store and a cavity, the flow between a wing and a
nacelle, etc.. Due to the complexities of these real bodies, it is a formidable task
to generate global, body fitted grids with, requisite smoothness and cell
clustering in high-gradient regions that are supportive to the new
sophisticated flow solvers. The body-fitted or boundary conforming
curvilinear grids are desirable, because they provide a basic advantage of
implementing the surface boundary conditions accurately. Also, a proper
surface oriented coordinate system enables coordinate-related approximations
to the equations of motions for arbitrary complex geometries. It becomes more
difficult to locally control the orthogonality, volume variations, cell aspect
ratios, and other grid measures, which affect the accuracy of the solution as
the geometric complexity increases 7[1]". To reduce the grid gengrétiqn task
about complicated geometries, several apprroaches, such as, domain
decomposition and unétructured grids, have been investigated by researchers.

The unstructured grid approach discretize the flow field by triangular
glcments, or tetrahedrons, with nodes placed at the vertices. Discretizing the
flow by such elements gives flexibilities in grid gencration about complex
geometries. The unstructured grid method is primarily used with finite-
element techniques. One disadvantage of unstructured grids is the extra
amount of storage needed for the grid structure order number. It is a rather

difficult task to generate unstructured grids in the close proximity of a solid

surface, where example, clustering is nceded for viscous solutions. Also, since
FDM and FVM are computationally more efficient when compared to FEM for
the Navier Stokes equations, unstructured grids may become less desirable.

‘However, a hybrid grid system composed of unstructured @gdws,trugtured grids

* The numbers in the braces indicate references.
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developed by Nakahashi et al. [2] offers a promising approach to complex flow
domains.

The domain decomposition techniques are of primary interest in this study
The two principle elements of the domain decomposition method, (DDM), are
the subdivision of the computational domain and the communication among
the subdomains. The DDM divides the flow region into simpler subdomains
within which grids are independently or semi-independently generated using
existing grid generation schemes. Some current grid generation methods are
the algebraic method, the conformal-mapping method, the differential-
equations method. An advantage of the DDM is that the flow regions requiring
grid clustering can be isolated into different subdomains. In addition, the
decomposition method enables the wuse of different partial differential
equations and solution methods for different subdomains. This is particularly
~ beneficial when using subdomains near and far away from a body. The Navier
Stokes equations can be used to investigate the domain near the body and the
Euler equations can be used in the farfield. This may result in a saving of
computer time. Another advantage of the DDM is the domain block-processing
scheme where only data correspon_ding to particular subdomain is required to
reside in the main memory of the computer at one particular time. Thus, the
block-processing technique ideally permits the use of unlimited global grid
sizes. The second and the most critical clement of the DDM is the
communication between grid domain. Communication, or data transference,
between domain boundaries are accomplished by some 't);p'c' of interpolation
method of either nonconservative or conservative nature,

Zonal method (or grid patching) and grid overlapping/embedding are the
two most common domain decomposition techniques used by current

researchers. Zonal method incorporates the techniques of patching grids



together along common boundaries or surfaces to create a global grid. The
main disadvantage of using grid patching is that the patched zones of
connecting grids have to lic on the same surface. This characteristic of grid
patching increases the complexitites of grid generation for each subdomain,
Another discouraging feature of grid patching is the loss of conservation
across zones of high curvature,

An al}cfgatc domain dccompositiop method is the grid overlapping. Grid
overlapping entails dividing the flow domain into regions that overlap or
share common physical and computational space. Within the overlap region,
the grids communicate through data transference by an interpolation
procedure. Grid embedding schemes allow the subdomains to be non-disjoint so
that one mesh may be embedded completely or partially within another. This
procedure permits each subdomain to be meshed independently with no
requirements of continuous grid lines across boundaries. Because each
subdomain grid is independent of another, grid generation task is greatly
reduced for complicated flow regions. Each subdomain mesh can be created
using different grid generation techniques suitable for that particular
domain. Thi§ is specially beneficial for subdomains which require high grid
densities. Again re-emphasizing, the advantage of grid overlapping/
embcdgiing; tgfngigpes is that subdomain grids gf different topologies can be
conncrctcdrripﬁmaixi\y different ways to encompass the entire flow field. This is
the driving force behind the current thesis work on the grid
overlapping/embedding method.

There are several drawbacks of using the embedding method, but most
problems can be partially or completely alleviated. The disadvantages are the
following: (i) the technique requires an overlap region between subdomains

which may not always be feasible, (ii) the accuracy of boundary data




transference depends on the interpolation procedure, whether it is
conservative or nonconservative, and (iii) the accuracy and convergence
speed of the solution indirectly depend on the degree of overlapping of the
grids relative to the size of the subdomains.
1.2 Literature Survey

In 1982, Hessenius et al. [3] developed a zoning technique for the Euler
equations within the framework of an implicit numerical scheme for one- and
two-dimensional equations. Their scheme required continuity of the mesh in
point and slope near the interfacing region. They concluded that proper flux
balancing was necessary, when zonal boundaries are present near converged
shock locations or in large gradient regions. In 1984, Rai [4] used a
conservative treatment of zonal boundaries for solving the Euler equations.
The scheme of Rai did not require continuity for mesh in point and slope at the
zonal boundaries. The capability of having grid discontinuities between zones
enhances the zonal method for complex flow domains. Howcver.i zonal
boundaries with moderate curvature were shown to lose conservation. In 1986
Hessenius et al. [5] were one of the first to develop a three dimensional
conservative boundary scheme for patched grids, applicable in generalized
coordinates, for arbitrary point distribution on a planar surface. It was shown
that the three-dimensional zonal method simplifies the grid generation about
complex configurations, by its application to the computation of flow about a
wing-canard combination, using two interfacing patched grids.

Kathong [6] studied the feasibility of the conservative Ramshaw [7] grid
patching procedure for applications to realistic three dimensional
aerodynamic configurations. The Ramshaw method has no restrictions on grid

slope or density across zonal boundaries. The results concluded that global



conservation can rbc maintained across grid interfaces for complex
configurations.

In 1989, Thomas et al. [8] developed a patched-grid algorithm for the
analysis of complex configurations using an implicit upwind-biased Navier-
Stokes solver. The patched-grid application was directed towards the F-18
aircraft at subsonic, high angle of attack conditions. A difference between
spatial-flux and time-flux conservation across zonal interfaces were compared.
It was noted that there was little difference in the results between the spatial-
fluax  and time flux cornservatior?lr approach. The time flux approach
(interpolating to the cell center of one grid, assuming a linear variation of the
flux within cells of the other grid) was considered more flexible and lends
itself to more complicated conditions, such as, overlapped and embedded grids.
Thomas et al. proposed a long term objective to develop an automatic, generic
domain decomposition method to handle zonal, overlapped, and embedded grids
with the only constraint on the grids being that the grids encompass the
entire flow domain.

Another form of grid patching is a domain hybrid method developed by
Nakahashi et al. [9]. The hybrid method divides a complex domain into regions
of structured and unstructured grids as briefly discussed previously.
Structured grids are used in the viscous flow regions, and are patched together
using unstructured grids. With thié technique both computational efficiency
of FDM or FVI\jrix}' the structured region and that of FEM in the geometrical
flexible region of ﬁnstructurcd grids can be obtained.

Earlier work in grid overlapping was done for finite difference flow
solvers, In 1981, Atta [10] developed a method for constructing a two
dimensional grid system for solving the transonic flow field about complex

configurations with multiple components. His test model was a two component




configuration that consisted of an airfoil embedded in rectangular boundaries.
The results showed that the accuracy and convergence speed of an implicit
approximate factorization scheme depended on the extent of the overlap
region and the size of each subdomain. In 1982, Atta et al. [11] extended the two
dimensional overlap scheme to three dimensions for the case of an isolated
wing and a wing/pylon/nacelle configuration. The transfer of information
between grids within the overlap regions was done by a trivariate
interpolation polynomial based on a linear Taylor series expansion. A fully
implicit, approximate factorization scheme was used for finite differenced, full
potential equations..

Benek et al. [12-14] developed a generic grid overlapping/embedding
procedure known as the "chimera scheme", for in two- and three-
dimensional, and finite difference solutions of the Euler equations. The
chimera scheme involves the automatic connection of multiple, overset grids,
and the use of different solution procedures for different subdomain grids. The
chimera scheme is one in which a major grid covers the entire flow region,
and minor grids are then overset on the major grid so as to resolve secondary
features of the configuration, such as, flaps, nacelles or stores, etc. The minor
grids are fully or partially overlapped without, requiring the mesh boundaries
to join in any special way. The minor grids create holes in the major grid,
which are excluded from the solution of the major grid. Communications
between the major and minor grids occur within the overlap regions. The
chimera method was successfully demonstrated on several geometries for
inviscid flow. In 1987, Benek et al. [15] extended the chimera grid embedding
scheme with applications to viscous flows. They developed generalization of

rules for constructing subdomains, and added thin-layer Navier-Stokes



equations to the model. These extensions to the chimera scheme were applied
to a single axisymmetric body and a three-body configuration.

In 1987, Suhs [16] used the chimera grid scheme in the computation of a
three dimensional cavity flow at subsonic and supersonic Mach numbers. The
cavity flow was calculated using an implicit, finite difference Navier-Stokes
code with thin-layer approximations. Although the thin layer approximations
are inappropriate for the unsteady cavity flow, Suhs showed the versatility of
the chimera sc;hcmc for simplifyirrligﬂ a complex flow domain inio simpler
subdomains of Cartesian grids.

In 1989, Dougherty et al. [17,18] applied the chimera grid scheme to three-
dimensional transonic store separation. Inviscid finite difference calculations
were carried out for a minor store mesh moving with respect to the major
mésh. Tﬁé results indicate that allowing one mesh to move with respect to
another does not adversely effect the time accuracy of an unsteady flow. The
results of the moving mesh scenario shows the importance of
overlapped/embedded schemes. The flow around multiple bodies moving
relative to each other cannot be solved using single, patched or unstructured
grids.

Rcccntlry,rChesshire et al. [719,20] have developed a technique for the

gene

differential equations on them. Continuity conditions through

of E)artial

recently three dimensional, grids with any number of component grids, for
finite difference and finite volume computations. The CMPGRD program can
generate a composite grid which can be used for second or higher order

spatial discretizations with appropriate higher order interpolation. However,

ration of curvilinear composite overlap grids and the numerical solution




the higher order interpolations require a greater overlap region between
subdomains and considerably more calculations. CMPGRD program is also
designed to automatically generate the sequence of coarser grids needed in a
multigrid algorithm flow solver.
1.3 Present Work

The objective of the present work is to develop an overlapping procedure
for multiple grids around complex flow configurations, which is to be used by
a multigrid, finite volume solution algorithm, and to apply this method to
several complex flow problems. The flow problems investigated are as follows:
blunt-nose cylinder embedded within two different farfield grid topologies,
with the flow at an angle of attack of 329; supersonic flo_w past an ogive-nose
cylinder in the proximity of a flat plate; supersonic flow past a cylindrical
store model connected to an L-shaped sting; and a complex configuration of a
cylindrical store model with fins and curved sting in proximity of a cavity.

This report is divided into chapters of logical sequence. Chapter 2 conveys
the governing equations of fluid motion. The bascline solution algorithm on a
single domain is given in Chap. 3. Chapter 4 describes the grid overlapping
method for solvers with and without multigridding, after a brief introduction
on grid generation for subdomain grids. Grid interface conservation and
global accuracy are also discussed in this chapter. The flow solver
methodology for multiple subdomains, including modified solution algorithm
and run procedure, are also given in Chap. 4. Chapter 5 covers the grid
overlapping applications, a summary of comparisons and comments. The
concluding remarks and appropriate suggestions for further investigations in

this area are presented in Chap. 6.



Chapter 2

GOVERNING EQUATIONS OF FLUID FLOW

The governing equations are the three-dimensional, time dependent,
complete, Reynolds-averaged, Navier-Stokes equations, written in

conservative form and generalized curvilinear coordinates, &, n, { :

ot o an dg . @.1)

Q, AF-Fv) AG-Gv) AH-Hv)_,

Written in a more compact indicial form the equation becomes

olF'-F
£+ =0

ot i ' ,
9§ @2.2)

where i =1, 2, 3 . The Q vector of conserved variables is

T

Q=[p,pu,pv,pw,pE]/J .
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Fi are the inviscid flux vectors,

pU;
pul;+ §;P
i_1] pvU+ é;p
PWUi*'{S;_P

[E+pU;+E,p
(2.4)

and F,! are the viscous flux vectors,

0
i
SxTx1
1 i
T l('ck2
1
SxTi3

(2.5)

The contravariant velocity components are defined by

U1=U=E‘,xu+§yv+§zw+§t
U2=V=nxu+nyv+nzw +1,

Us=W=C u+{ v+l w+{, 26

and the transformation Jacobian is defined by

y. gm0
dAx,y,z)
=XgYnZgt XeYeZn t XnYgZe
TREYQInXnYEZL- XL YnZE Q2.7
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A geometrical interpretation of the metric terms can be made using a
control volume approach. The ratio of a mctrgic derivative to the
transformation Jacobian for a given ccllr.r for example 7{' , is taken to be the
appropriate projected area of a cell face. The reciprocal of the Jacobian is
taken to be the cell volume. This approach ensures the geometric conservation

law to be compatible with the finite volume formulation. .

The shear stress and heat flux terms used in the above equations are given

by

m allk m 3u1 2 du
T =B & —+ & — —zaklgn :1
3 g g
m auk m 8112 2 du
Tea=H| & —+& — -;8k2§n :,
d¢ 0§ d€
mdu, .,mduz 2 m du
Tea=h| & —+§ — _;8k3§n :,
d€ d¢ d€
mgT
ae=kE, ——
98 2.8)
where k,n and m are dummy variables and §1=§x, §2=§y, §3=§,
The total energy, E, and the internal energy, e, are given by:
E=c+%{u +vi+w )
e=CT 29)
The perfect gas law,
P =pRT (2.10)
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and the Sutherland's molecular viscosity law,

3 1+¢/T,
h=T 2(T—+c/t)
2.11)

with ¢ being the Sutherland constant, and Stokes' 'hypothcsis for bulk
viscosity,

A+2W/3=0 (2.12)
completes the closure of the system of governing equations. Reynolds stresses
are modeled by the standard Baldwin-Lomax algebraic turbulence model.

Further details of this formulation are given in [21,22].
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Chapter 3

BASELINE SOLUTION ALGORITHM ON A SINGLE DOMAIN

The solution élgorithm for multiple subdomains is based on an implicit,
upwind, finite-volume algorithm for a single domain. The solution algorithm
for the multiple subdomain algorithm is discussed in Chap. 4.

3.1 Finite Volume Discretization
Finite volume differencing is formulated by integrating the conservation

cquations over a stationary control volume,

%ffvadvq JFeias=0

3.1
where the flux vector E is defined as
F=(F-Fv)i+(G-GJj+{H-HV)k (.2)
and
H= nxi+ nyj-i- an (3.3)

is the unit normal vector pointing outward from the surface S, bounding the
volume V. The direct discretization of the integral form ensures that mass,
momentum and ecnergy are conserved at discrete levels. The conserved

variables, Q, are evaluated at cell centers and the fluxes, Fi, are evaluated at
cell faces. The advantages of the finite volume formulation is that it remains

valid in the presence of discontinuities in the flow, such as shocks, and that it

14




it is tolerant to grid singularities because the flow equations are balanced over
cach cell of the grid.
3.2 Upwind Differencing

The time-dependent Euler equations form a system of hyperbolic equations,
and upwind differencing [23-26] models the characteristic nature of these
equations in that information at each grid cell is obtained from directions
dictated by characteristic theory. Upwind methods have the advantage of
being naturally dissipative, unlike central differencing methods in which
artificial dissipation terms are generally needed to overcome oscillation or
instabilities arising in regions of high gradients.

3.3 Roe Flux-Difference-Splitting

The upwind scheme used for the test cases is based on the Roe flux-
difference-splitting. Roe flux-difference splitting [27] is used to construct the
upwind differences for the convective and pressure terms. If an eigenvalue of
a flux Jacobian vanishes, the corresponding eigenvalue of the dissipation
matrix also vanishes. This leads to a one or two cell resolution of
discontinuities such as shocks. The spatial derivatives are written
conservatively as flux balances across a cell, for example,

(B_F)=(Fi+*/2'Fi—Vz)

o€ <§i+yz‘§i-y2) 3.4)

11

where the subscript 'i' refers to a cell center and i+1/2 corresponds to a cell
surface. The interface flux is determined from a state-variable interpolation
and a locally one-dimensional model of wave interactions normal to the cell
interfaces. The interface fluxes are exact solutions to an approximate Reimann

problem,

15



1
Fiog=7 A +H Q)1 Al Qr-Qu)} .y, (3.5)

where QL and QR are the state variables to the left and right of the cell

interfaces and

_OF 1 (’* } 1
A= =TAT =T{A +A |T
o

- (.69)

*_(Az|A
a7 -l l% (3.6b)
lal=T|A|T? (3.6¢)

The diagonal matrix A is the matrix of eigenvalues of A, and T, T-! are the
diagonalizing matrices. The state-variables Qp and QR are formed from
interpolations of primitivc variables, ( p,u, v, w, p ), which in effect
determines the resulting accuracy of the scheme.

The accuracy of the scheme used is second-order spatial and first order
temporal. Spatial approximate factorization and Euler backward time
integration results in the solution through 5x5 block-tridiagonal matrix

inversion in three directions. The delta form of the discretized Eq. (2.1) is

given by
2 9F a
_I_+5ga—F—5§a - 1AQ ="R(Qn)
JAt aQ
7 2 7 | *% ’
L-+6,,8—G—anac" AQ =AQ
JAt oQ aQ
2 H ¥
%‘ 5;@‘—&8 * 1AQ=AQ
t oQ 3.7
Qn+1=Qn+AQ . (3.8)
16
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In the preceding equation, R(Q®) is the discretized rcprcscntationr of t;l;c
spatial derivative terms in Eq. (2.1) evaluated at time level (n), and 8, 52 denote
upwind and central-difference operators, respectively.

Employing the approximate diagonal form of the spatial factors of Eq. (3.7),
results in the saving of computational time for the initialization of flowfields.

Each of the spatial factors is approximated with a diagonal inversion [28] as

L.;.S oF

At °aQ

* l - + +
AQ =T —+5§A +8§ A
JAt

T!'AQ"
(3.9)
Because of the repeated eigenvalues of A, only scalar diagonal inversions
rather than block inversions are used in each direction.
3.4 Multigrid Method
Because of the additional computational work for the upwind flux-
difference splitting method, it is desirable to accelerate the convergence rate,
especially when steady-state solutions are sought. Accelerating the
convergence rate becomes increasingly important as the mesh is refined,
because the logarithm of the spectral radius for single-grid methods generally
increase linearly with the mesh size, thus computating on fine grids is
expensive. To accelerate the convergence rate, multigrid method is used with
the upwind, finite volume scheme. The multigrid method damps the low-
frequency errors which cause a slow asymptotic convergence rate by using a
sequence of grids G1,...,Gy. The grid G denotes the finest grid. Successively
coarser grids can be formed by deleting every other mesh line on the next
finer mesh. The high frequency errors are easily damped out on a given grid
level while the low frequency errors remain. When transferring solution to a
coarser grid, the low frequency errors of the previous finer grid become

higher frequency errors due to the increase in cell sizes on the coarser grid.
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In turn, the high frequency errors on the coarser grid are damped out using
the same solution algorithm as on the previous finer Vgridm[729-372]._

A fixed V-cycle [23] strategy of solving from finest to coarsest then back to
finest grid levels, is used where a predetermined number of iterations is
performed at each grid lcvel. The valucs of the dcpendent conserved variables

(Q) and the resndual (R) are passed from a finer grid to a coarser grid through

( I i+1 ) S+l
volume-weighted restriction operators i and \1; ,respectively,
1+1 ) 7
Qi =(1"e 100
R (fi+l )
...={I. R.
i+1 1 1 (3.10b)
H-l '
Q=ZVWQ/XV (3.100)
Al+l
i Ri=ZR; (3.10d)

where Qi+1 and Rj4) are the next coarser level values obtained from the finest
i+1 ~l+1
level values. The equations (I i Qi) and (Ii Ri) arc found from

summations taken over all fine-grid cells that make up the coarse-grid cell,
where V is the cell volumes. The entire solution is computed and stored on
each grid level as opposed to only corrections being stored. This multigr’i&
process is referred to as the full-approximation scheme (FAS).

Denoting the discrétc analog of the operation in Eq. (2.1) by (L), and the

relative truncation error by (E), the following equations are written,
Li+1(Qi+1}=Ri+l+Ei+i 1 7(37.11)

,\1+1

1+1
E1+1_Lx+1(' Q) (311)
The solution on the coarse grid is driven by the fine grid and the relative
truncation error (E) between the coarse and fine grids. During the cycling

process, when the coarsest level is reached, computed corrections to AQ values
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at each level are prolonged to the next finer level through trilinear
interpolations. One smoothing iteration is used to smooth the errors. The result
of this multigrid strategy is that most of the work is carried out on the coarser
grids where it is computationally cheaper due to the reduction of the number
of grid points. Because of these advantages, it is worth incorporating the
multigrid scheme within the multiblock, grid overlapping, solution algorithm,
A discussion of the flow solver methodolgy for multiple subdomains using the
multigridding technique will be discussed in Chap. 4.
3.5 Initial and Boundary Conditions

The accuracy of the solution to any physical flow is dependent on the
initial and boundary conditions. The initial conditions usually correspond to
the actual nature of the flow. The initial conditions lie in a range between the
simple free stream conditions and the best guessed solution obtained from
experiments, empirical relations, approximate theories, or previous
computational results. For a steady flow, the better the initialization of the flow
field, the faster the solution converges. There are two different initialization
procedures that can be used for a composite mesh. The first method is to simply
- initialize all the flow subdomains with free stream conditions, however this
method is computationally costly. The second method is to advance the solution
on cach subdomain independent of all other subdomains, using a mesh
sequencing procedure, in order to pass the numerical transient state. Mesh
sequencing is a method of quickly developing an approximate solution at a
coarser subdomain grid level, and prolonging the solution to the next finer
grid level until the characteristics of the flow are resolved on the finest level.
Both initialization procedures are utilized in this study.

Boundary conditions are specified explicitly for this implicit, finite volume

algorithm. There are five general boundary conditions that are used in all test
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cases; solid boundary, supersonic upstream, supersonic downstream,

inflow/outflow, and inter-subdomain grid boundary.

At the solid boundaries, the conditions of no-slip and impermeability with
zero-normal-gradient for pressure and temperature are imposed. The density

at the surface is calculated by employing the state equation, -

u=0,v=0,w=0,a—T=0,—a—P—) =0

dn on 3.12)

Upstream boundary conditions a;rc dependent on the flow characteristics.
Supersonic inflow (excluding the boundary Tayer) have flow characteristics
pointing from the outside toward the inside of the computational domain.
Hence, the upstream boundary conditions can be specified by the superso'r'x'ic
free stream conditions. For the case where the upstream boundary is in the
proximity of a surface, the boundary layer profile generated from the
boundary layer equations is used.

The supersonic downstream flow has characterisrtic' signals prop'agating
from inside the computational domain to outside. Hence, the downstream
boundary conditions are determined from zeroth-order extrapolation of
interior variables,

9£=o,a_v=o,§_v."_-_-o,.al=o,£=o

R TR R Y o1

where & indicates the streamwise coordinate.

the farfield boundaries. For each farfield cell, the normal velocity to the

boundary and the speed of sound are calculated form the two-locally one-

dimensional Riemann invariants given by
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Rt=gt 22
v-1 (3.14)
The invariants are constant along the characteristic defined by
—\t
(%J =uta
(3.15)

The appropriate boundary conditions are determined after the direction and
magnitude of local Mach number at each cell is checked. For subsonic
conditions at the boundary, R-can be evaluated from free stream conditions
outside the computational domain, and R+ is evaluated locally from the
interior of the domain. The local normal velocity and speed of sound on the

boundary using Riemann invariants, are

Gb=%(R++R}
(3.162)

ab:g(RtR-) (3.16b)

The Cartesian velocities are determined on the outer boundary by decomposing
the normal and tangential velocity vectors into components.

For supersonic inflow/outflow conditions at the farfield boundaries, simple
zeroth-order extrapolations are used with the direction of the extrapolation
dependent on the sign of the local speed of sound.

The inter-subdomain boundaries of the composite mesh, which do not
coincide with the global computational domain boundaries, are required to be
updated through interpolations. Because the Roe flux-difference-splitting
scheme is an exact solution to an approximate Riemann problem, it is
redundant to check inflow/outflow conditions, using locally one-dimensional
characteristic boundary check for the boundary cells. The jump in the
solution at the cell boundary is propagated in the locally correct direction and

added to the existing value to get the solution at the next iteration. However,
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the inflow/outflow check is necessary for a flux-vector-split [31,32] or

central-differenced schemes [32,33].
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Chapter 4

GRID OVERLAPPING METHOD

4.1 Grid Generation

The current grid overlapping method allows the subdomain grids to be
gencrated independently. Hence, a subdomain grid topology depends upon
neighboring topology only to the extent, that they must overlap and that the
cell sizes in the overlap region are comparable. The reasons are explained in
Section 4.3. Two types of grid generation methods are used in this study,
namely, the algebraic fnethod and the Poisson's equations method.

The algebraic method is one, in which there is a known explicit functional
relationship between the computational and the physical domain [34]. Hence,
algebraic methods are used for simple configurations. The technique uses
stretching functions to distribute points along simple analytic coordinate
curves. They are effective in the area of mesh control at boundaries, but are
less effective in the quality of the interior mesh points, particularly for
complex domains [35]. An interactive computer program, developed by Smith
et al. [36], TBGG, and based on a two dimensional algebraic two boundary grid
generation technique is used in creating several subdomain grids . The
essence of a two boundary method is to connect a distribution of points
5etwc§ﬁ inner and outer boundaries, based on a hermite cubic interpolation

procedure.
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For more complicated configurations an elliptic partial differential
equation (PDE) approach, developed by Steger and Sorenson [37], is used to
generate grids. In particular, a computer program called GRAPE developed by
Sorenson [39] is used. The GRAPE program generates two-dimensional grids
about airfoils and other shapes by solving the Poisson's equation,

o Cwtby=P 4.1a)

Mot My =Q (4.1b)

Particular parameters, such as control of the spacing between mesh points and

control of the angles with which mesh lines intersect the rboundaries. are

incorporated into the right hand side functions P andQ ‘An iterative
procedure is used to solve these equations.

Both codes, GRAPE and TBGG, generate two dim'ensﬁo'nrél Vgrids. Three
dimensional grids are developed by simply stacking the two dimensional
planes in the third dimension. Further enhancement of cellrﬁclustering within
high viscous regions are accomplished by a parametric curve fitting
procedure. Also, farfield rectangular subdomain grids are created using simple
algcbraicr methods with exponential clustering in viscous regions.

4.2 Overlapping Algorifhm"

The grid overlapping "chimera" algorithm developed by Benck et al. [13-15]
is modified to serve for a multigrid, finite volume (as well as finite difference)
upwind solution algorithm. The modified version is given the name MaGGiE,
short for Multi-Geometry Grid Embedder. The algorithm with its modifications
for a finite volume and multigrid solver is discussed initially, and then the

topic of subdomain grid communications through interpolation procedures is

discussed. These modifications and imﬁlicirrnentaliohs are the bases of this study.
The program MaGGiE creates a three dimensional composite mesh from

individual subdomain grids, and the necessary intergrid communications. The
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subdomain grids create holes in other subdomain grids in which they are
embedded or overlapped. The holes that are created in the grids are excluded
from the solution. To obtain a logical sequence of grid communications
between overlapped grids, a form of grid hierarchy is needed. An order of
hierarchial form between the grids allows the interaction of appropriate
grids, simplifies the development of the data structure required for this
interaction, and limits the search to locate points in other grids for the
purpose of interpolation. Grids which are on level L of hierarchy are
designated G where 'i' is the grid index on level L. In general, grids on a
given level L are partially or completely embedded in grids of level L-1. Grids
on level L may overlap other grids of level L, and they may contain grids of
level L+1 parially or completely embedded in them. Fig. 4.1 shows an example
of such a hijerarchial grid arrangement.

MaGGiE's composite mesh generation consist of : (1) establishing the proper
lines of communication among the grids through appropriate data structure;
(2) constructing holes within grids; (3) identifying pdints with holes and
illegal zones (solid surfaces); (4) locating points from which outer and hole
boundary values can be interpolated; and (5) evaluating interpolation
parameters. The MaGGiE code is divided into six stages. The first three stages
are used to acquire finest level grid communication data, and the last three
stages are used to acquire multigrid level communication data. Each stage is
described in the following subsections, and an overview flow chart is given in

Fig. 4.2,
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4.2.1 Hole Boundary

The composite grid generation starts with the subdomain grids being
translated and rotated to their proper locations relative to fixed, global origin.
If cell center interpolation data between connected grids are needed, the
subdomain grids are transformed from cell vertices to cell center points. The
transformed grids are created in Stage 1 and are used throughout the six
stages. The cell center grids are created by averaging the coordinates of the
eight cell vertices (Fig. 4.3). For example, the x-coordinaté of the cell center is

calculated as

[y ' ' | |
Xix= {Xi,j,k"' Xt inpgonie+ Xigrg+ Xigage + Xijun + Xisgjun + Xi+1,j+1,k+1}
8

4.2)
Coilapscd cell centers and edge points are dcfiﬂéd on 7t71;; la;t grid planes in the
three coordinate directions. This is done to create the same number of cell
centers as there are nodes. The collapsed cell centérs are rcalcqlaiterdrby

averaging the four vertices of a cell surface. For example, the collapsed cell

center on the KMAX plane is calculated as

X Giomex = { X + Kot ionas + Xint ot somec + lem% . |

. 4.3)
The edge points are defined on the IMAX, JMAX and KMAX grid comers. For
example, the grid edge formed by the intersection of the JMAX and KMAX
planes of the grid is calculated as

o =IX.. L
X {raxkmax (x,m,‘,mﬁ Xy m,m,% ”
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After creating the cell center grids, it is important to note that the physical
space constructed by the cell centers is less than the space constructed by the
nodes. Thus, care is needed in connecting cells located at and near boundaries.

A search method is used to locate the holes created in each subdomain or
global grid caused by other overlapped subdomains. The search procedure can
be divided into six steps.

Step 1: An initial hole boundary is specified as a surface, C, in the
overlapped grid Gj,1,; (Fig. 4.4). The 'i' index of Gj,1,; will be dropped from now
on for convenience.

Step 2: Outward normal vector, N, is constructed at each hole surface cell
center using a vector cross product technique. Further details of this
technique are given in Appendix A.

Step 3: A temporary origin, Py, of the initial hole is located by averaging
the hole surface coordinates.

Step 4: A maximum search radius, RMAX, is defined as the maximum
distance from the origin of the hole to a cell on the hole boundary surface
(Fig. 4.5).

Step 5: The initial search determines whether a cell p(;int (P) from the grid
G| lies within the search radius RMAX., If the cell P lies within the search
circle then a vector dot product test is used.

Step 6: A vector dot product (N®Rp ) is computed, where Rp is the position
vector from a hole surface point to a cell point P in G, (Fig. 4.5). If NeRp>0, the
cell P lies outside the initial hole; otherwise the cell P lies inside the initial
hole and thus is defined as a hole point in grid G, .

Figure 4.6 shows a hole and its boundary in grid G; generated by the
overlapped grid Giy1. A hole point is flagged for grid G; by setting an array

IFLAG=0. A cell of G)which is not in the hole, is flagged by setting IFLAG=1. The
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~mext task is to locate the G, cells which are ip)rnlgdig}g rilgiiglszrs of the hole
cells. These are called fringe cells, and the intergrid communication of
conserved variables from Gj,q grid is performed on thesg cells. A fringe cell is
also flagged IFLAG=0. The fringe and hole cells in grid G| are shown in Fig. 4.7.
A cell in Gy,1 with the shortest distance to a fringe cell in G is located and
called a TARGET cell. The TARGET cell is the starting point in the search for the
cells ar¢ used for interpolation. The number of cells in Gi,1, surrounding the
fringe cell in G), that need to be connected depends upon the order and
accuracy of the interpolation procedure.

A trilinear interpolation procedure is used in the intergrid communication
of conserved variables. The significance, accuracy and conservative nature of
using trilinear interpolation is discussed in a following section.

Once a target cell of Gj,1 is located, a search is conducted to locate seven other
cells in Gy,1 near the target cell. The objective is to f?{mﬁw? hexahedron which
has the seven cell centers and the target cell as the vertices, such that the
hexahedron includes the fringe cell of G;. The information is transferred from

the eight cells, that define the vertices of the interpolation cell of Gj,q, to the

frmge ccll of G| usmg trilinear 1nterpolatxon A typxcal mterpolatmn cell of a

body fittcd gnd is a warped hexahedron The trllmear interpolation can only
be used on cubes. Each interpolation cell containing a fringe cell at which a
function value is to be interpolated is mappcrdr to a unit cube using
isoparamctricr mépping. Isoparametric mapping [39-41] is the process of
defining the same function that describes the geometry of the element as the
function used to interpolate spatial variations of a variable at location P within
the eclement (Fig. 4.8). The isoparametric mapping assumes that the

transformation . -
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between the natural &, m, { coordinates and the global X, Y, Z coordinates is
unique. The order of the polynomial function used to represent the field
variable within an element depends upon the number of nodal variables to
evaluate the coefficients of the polynomial. Hence, the interpolation cell has
eight nodal variables, and thus leads to the transformation/interpolation

equation of the following form,

f=a +a8+asn+ al+asEn+asfl+aml+aging @.5)
where aj, i=1,...8 are coefficients depending on the values of f;at the vertices of

the unit cube (Fig. 4.8). & n, { are coordinates of the interpolated cell, P,
relative to the target cell in the unit cube. The unit cube is mapped so that

0<&,M,{<1 For example, ai= fy is obtained when ( & 0, £) = 0, 0, 0. The other

coefficients are

32=-f1+f2

a3=-f1+f4

a4=-f1+fs

a5=f1-f2+f3-f4

36=f1‘f2'f5+f6

a7=f1-f4-f5+f8

ag=-f +fq-fa+f4+fc-f+f4-f

8 1 2713 4 5 6 7 8 4.6)

Identifying the origin of the cube in the interpolation space relative to the
coordinates in the physical space as ( 0, 0,0) = (X, Y, Z )i, j. k» the fj values

with the vertices become

fi=1;x fs=1;;ke1

fo=fii1,jx Fe=1 ir1,5.k+1
fa=1fir1,j+1.x fr=1i1,j+1.k0

£ =f . : fo=f; -

4 l,j+1.k 8 l,j*l,k'f'l (47)

Note, the interpolation stencil can be identified by the target cell ( i, j, k )

because the other seven vertices are an extension of it. This simplifies the

29



storage requirements for the interpolation data, since only the information
for the target cell is needed. The last agenda of the interpolation procedure is
to determine the values of & 1n, { from the isoparametric mapping. The
transformation data is the same as the interpolation data. The isoparametric
equations mapping the interpolation space to the physical space is given by

the following,

X=a +a8+an+asl+asEn+agfl+aml+aggnd

Y=b;+b,8+b3n+ bsL+bsEn+b&L+bml+bgEn{

Z=ctc8+can+ cul+esEn+cgEl+cml+cggng . (4.8)
Note, the equations for X, Y, Z are the same as the Eq. (4.5), where fis replaced
by X, Y, Z . The coefficients aj, bj, and ¢; are evaluated using the physical
coordinates of the eight vertices of the interpolation cube. The coordinates X,
Y, Z are the coordinates of the fringe cell, P, in grid G; Since X, Y, Z of the
fringe cell are known and the coefficients are known, the interpolation data &,
n, { are found using an inverse mapping. The values for &, n ¢ correspondihg to
the fringe cell are determined iteratively by applying the Newton's method of
locating roots of a set of algebraic equations. The systemvof algebraic equations

(Eq. 4.8) can be written in the form

)_('=a(§,11’§)=6(§) . (4;9a)
R=G(§)-X=0 (@.9)
Newton's method gives
-n+l _n -1 R
n - || —»
e =t -[mp] F%.¢) 10
for each iteration, where
oF ;
J 4.11)
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The Jacobian matrices M and M-l are given in Appendix B. For each fringe cell
in grid Gy the respective target cell in G,y and its interpolation data are stored.

In certain cases, the trilinear interpolation procedure fails for particular
boundary cells. For those boundary cells that lie within another mesh that
cannot obtain interpolation data corresponding to the three coordinate
directions with values between 0 and 1, zeroth-order interpolation is used. The
zeroth-order interpolation is performed from the TARGET cell, which is at a
minimum distance away. There are several possible causes for failure of the
trilinear interpolation or isoparametric mapping procedures. Failure can
occur if the interpolation cell, that contains the boundary cell is extremely
warped, which may cause improper transformation to the cube space, or if the
Newton's iterative method of determining &, m, { from the system of equations
fail. A loss of accuracy occurs at these cells with zeroth-order interpolation,
Because the number of zeroth-order cells is usually less than five percent of
the total number of boundary cells, this method is usually acceptable. Only two
of the six test cases (Chap. 5) contained boundary cells which use zeroth-order
interpolations. The inclusion of zeroth-order interpolation procedure in
MaGGiE increases the robustness of the grid connection algorithm for
subdomains of different topologies.

4.2.2 Outer Boundary

The procedure described in Stage 1 for fringe cells is repeated in an
opposite manner at the outer boundary cells of the overlap region where
information is transferred from the grid Gjto the grid Gi,1. Again, target cells
in Gy and interpolation data are determined for the outer boundary cells in grid

Gia1.
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4.2.3 Output Format
In Stage 3, illegal communications between subdomain grids are checked,
and grid connections with interpolation data, for the finest grid level, is
written in a vectorized form as an output. Illegal communication between
subdomains occurs, when one or more of the interpolation cell vertices is a
fringe cell or an outer boundary cell (Fig. 4.9). In Fig. 4.9, an interpolation cell
of grid Gy includes a fringe cell as one of its eight vertices. Information is
being transferred from the eight vertices to an outer boundary cell in Gj,q.
Simultaneously, the fringe cell in G is receiving its information from an
interpolation cell in Gj,{. Hence, there is a redundancy of information being
passed between the grids G; and Gy, 4, and most importantly, this causes a loss of
conservation across the boundaries. The risk of illegal communication
between fringe cells of G; and outer boundary cells of Gy, is decreased with the
increase in the width of the o?crlapped region, and the reduction of the order
of accuracy in the interpolation procedure (or reduction in the width of the
interpolation stencil). However, reducing the order of accuracy of the
interpolation reduces the accuracy of the global solution on a subdomain.,
For each mesh the following information is given:
(1) vector sets ( JI(i), KI(i), LI(i) ), which contain the indices of the
reference cell for each interpolation stencil, |
(2) the corresponding interpolation coefficients ( DXI(i), DYI(), DZI(i) ),
(3) vector sets ( JB(i), KB(i), LB(i) ), which contain the indices of cells in
mesh Gy, Gj;1, etc. that have values interpolated from other grids.
(4) a cross-index list, IBC, which is a pointer to the updated boundary values
that are retained in memory in a single-index list, QB, of the flow
solver.

(5) the IFLAG array, which defines holes cells by the value IFLAG =0
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A brief description about how the output data is used by the flow solver is
summarized in section 4.7
4.2.4 Composite Grids for Multigrid Method

The objective of Stages 4,5 and 6 is to obtain grid connection data for
coarser grid levels, so that the information can be used by a multigrid flow
solver for composite meshes. The coarser level grids, say M, are generated
from the finest level grids of each subdomain as explained in Section 4.4. One
of the criteria used in creating coarser level composite grids, is to create the
holes in such a manner, that during a restriction stage of a multigrid cycle,
the restricted functional values are not contaminated by the hole cells on ihe
finer level grids. Secondly, the hole cells of the coarser grids, G, are connected
to the cells at the coarser levels of other grids, Gi,1. This is done to avoid the
contaminated information being transferred from within a hole of the coarser
grids to non-hole cells of the next finer grids, during the prolongation stage.

The hole cells in the coarser grids are created from holes in the finest level
grids of the composite mesh. A search sequence of locating eight finer level
cells that make up a coarser level cell is accomplished, such that, if at least one
of the eight finer cells is a hole cell, which is designated IFLAGM=0, then the
coarser level cell is designated IFLAGM=0. If none of the eight finer cells are
hole cells, then the coarser level cell is an exterior cell, and it is designated
IFLAGM=1. M denotes the coarseness level of the grid. The above procedure of
defining holes in the coarser subdomains eliminates the restriction errors
caused by the holes in the finest level mesh. There are no restriction errors
because the restricted value of a coarser cell is dcterminéd by weighted values
of eight finer cells that make up the coarser cell. The above sequence is

repeated for each coarser level of the composite mesh.
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Once the hole cells in the coarser subdomain grid, G, are located, a search is
conducted for interpolation data for these cells, with IFLAGM=0, from a coarser
subdomain grid, Gj,y. This search can only fail for those cells of Gjat level M
which coincide with, for example, the body around wﬁich the grid Gj,¢ is
generated. Such a zone is designated the ILLEGAL ZONE (see Fig. 4.10), and their
cells are left with the flag IFLAGM=0, as they are effectively excluded from this
coarse level flowcalculations. The IFLAGM values of all the other cells, which
now have interpolation data, are switched from 0 to 1, and are included within
the calculations on the coarser subdomains. They are switched, because these
cells are used to prolonge their functional values to the next finer level
excluding the illegal zone.

Stage 5 of MaGGiE locates the outer boundary connection cells of the
overlapped region, where the interpolation is accomplished from the coarser
level of Gjto the coarser level Gi,q . Such outer boundary cells of Gi,q, for
which interpolation data are now available, are flagged as IFLAGM=0. Note,
that on the coarser grid levels, the definition of the overlapped region
between grids is changed. It is no longer an outer-band region around the
erirrlrbcddcd grid. Instead, the overlapped region becomes the entire hole region
d;fincd by the finest level embedded grid. The results of this change allows
pﬁrggcrliwprplongatior; to occur in the multigrid flow solution algorithm. All of
the information obtained above for the hole cells, illegal zones, and outer
boundary cells is written in a data vector form for the multigrid solver in
Stage 6 of MaGGiE.

An option is built into this algorithm, where one can choose the grid level
of G|+71. from which the intcrpola;ion is to be performed to the coarse level of

G|. The obvious choice is searching interpolation data between grids on the

same level. If the cells involved in the interpolation are of comparable sizes at
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the finest level ( as it is desirable for accuracy), they are again of comparable
sizes at the coarser levels. This option increases the success in forming the
interpolation cells, but it decreases the accuracy because interpolated values
are not properly averaged over the entire physical space that the coarser cell
occupies. Also, this option eliminates the possibility of mesh sequencing [21],
where Eq. (2.1) is solved at the same coarse level of all the subdomains until
some convergence is reached.
4.3 Overlapped Region in a Composite Mesh

The width of the overlapped region is dependent on the width of the
interpolation formula, the stencil of the spatial differencing, and the
smoothness of cells. Too much overlap between subdomains results in
unnecessary duplication of computations in these regions and too little
overlap results in illegal or lack of communications between subdomains. Five
to ten cells overlap is found to be efficient for finest level grids. The objective
is to create each subdomain grid independently in such a manner that when
one grid is overlapped/embedded within another the cell sizes of both grids
are of the same order within the overlapped region. This is not a necessary
condition, however the transference of solution from one grid to another
through interpolation becomes more accurate the closer the cell sizes are. The
accuracy improves for similar cell sizes because most interpolations functions
are weighted by physical distances and not percentage of cell volumes.

4.4 Inter-Subdomain Conservation

For subdomain grids, which in general overlap each other in an irregular
fashion, it is desirable to use conservative interface procedures. Such a
practice helps, for example, finding the correct shock location for shocks
passing through grid boundaries, and ensures artificial shocks are not

generated at grid interfaces. This section introduces some of the approaches
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currently being considered to maintain conservation at the overlapped
boundaries. It should be noted that this study wuses the nonconservative
trilinear interpolation approach for intergrid communication. The trilinear
interpolation has been discussed in Section 4.2.1.

A preliminary study was done by Berger [42] on a general procedure, for
deriving conservative intc;face conditiong that give weak solutions to the
differential equation, if they converge on one and two dimensional overlapped
grids. Let U be a weak solution to a hyperbolic system of one dimensional

conservation laws,

U, +f(U},=0 (4.12a)
U(x,t=0)=U 4(x) 12
which satisfies the integral equation
J J uo +fu)o, dxda+f Uy(x)®(x]dx=0
(4.13)

for 7any smooth test function & (x,t). 'f‘hc conéewatfve interface condri’tribrns can
be derived based on the direct numerical approximation of Eq. (4.13). If a
conservative scheme is multiplied by ®(x,t), Ax, and At and summed over all
grid points, it can shown that a discrete apprg);imért?ion to the intégra{i
converges exactly by ihc numerical scheme. A discrete approiimatioh orfwthe”
integral, ' | -
Cs=fulxt)ex
is
s=Y hu+0(n’)
1 4.15)
using the rt;'ap;zizoidal rule. The aplplr'gxirrnation is generalized Vat ‘the boundaries

of irregular grids, such as, the overlapped grids. Alternatively, the
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conservative interface condition can be derived using a finite volume

approach, and balancing the spatial flux at the interface (in two dimensions),

(1) _ (2
I!F d&dn_f f FYdE dn o

where F(1) and F(2) are the spatial fluxes of grid (1) and grid (2) in the
overlapped region, respectively. In the general two dimensional case, the
interface equation for the flux across the interface cell is a linear

combination of the neighboring fluxes,

N

with coefficients, aj, determined by the amount of overlap and the integration
rule. The steps to implement such a flux balancing is to determine the weight
of the cells in the integration rule, and determine the amount of the main
grid's flux to be apportioned to the boundary cell. Because two quadrilateral
grids can intersect in a many sided polygon, depending on the mesh ratios of
the grids, these steps can be complicated, and when extended to three
dimensional grids they can become too expensive and complicated to warrant
their usefulness.

An alternative to conserving the spatial flux across overlapped boundaries
is to conserve the time flux, Q, of the cell center at the boundaries. The
conserved variables Q refer to the time flux of mass, momentum, and energy.
In the overlapped region, the conserved time flux can be expressed in three

dimensions as
(1) _ (2)
J S fQ &amd=f [ [ Q7 didndl (4.18)

where Q(1)and Q(2)are the time fluxes of grid (1) and grid (2) respectively.

The time-flux conservation approach has been found to maintain the
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conservative properties at the boundaries within truncation errors [43,44].
The conservation of time flux is accomplished by interpolation to the cell
centers of one grid assuming a weighted variation of time flux with the cells of
the other grids. For the interpolation procedure to be conservative, the
weighted variation of the time flux should be dependent on the percentage of
volume of the cells of Gj, that overlap a cell in G,y. However, to find the cell
volume weighted variations for three dimensional grids is a geometrically
complicated procedure that usually cannot be generalized.

Another approach, which is used in this work, is to use a nonconservative
interpolation procedure that has the same properties as the conservative
procedure. In the nonconservative approach, the weighted variations are
usually dependent on the linear distances between a boundary cell and its
surrounding interpolation cells. Nonconservative interpolation assumes
continuity of the interpolant. Polynomial expansions can be wused as
interpolation functions. The number of coefficients in the polynomial should
equal the number of nodal variables available to evaluate these coefficients.
Linear variation of a variable within an element can be expressed by
functional values at the nodes. For example, a hcxahedrdﬁ element in three
dimensional grid has eight nodes or vertices; hence, an incomplete polynomial
expansion of 'éighjt terms in the linear form (ﬁq. 4.5) is wused in the
interpolation procedure. This interpolation procedure is also known as
trilinear interpolation which was discussed previously. Higher order
interpolation methods, such as, quadratic and cubic variations, require
additional installation of nodes at various points within the element. However,
interior nodes are undesirable because additional nodes lead to complications

in formulation and computations.
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4.5 Global Accuracy

An important issue in regards to the interpolation is its effect on the
overall accuracy of the solution. The degree of continuity and the amount of
conservation of the flow variables that can be maintained have been
investigated previously [19,20]. For the overall accuracy to be as good as the
discretization formula used for Eq. (2.1), it is shown that the width of the
interpolation formula should be ( 1/4 pr + 1) if the width of the overlapped
region is constant. In this formula, p denotes the order of the differential
equation being solved, and r denotes the order of accuracy of spatial
discretization. Hence, if the differential equation is of order two and spatial
discretization is of order two, then the width of the interpolation formula is
two. Two sets of fringe and outer cells are needed for second-order accurate
matching of the solution to second-order differential equations being solved
here. Having two sets of boundary cells, in effect, is transferring fluxes from
grid Gi41 to grid G.. However, using a second set of boundary cells increases the
width of the needed overlapped region to ensure correct grid connections
without illegal communications. The risk of illegal communication between
fringe cells of Gjand outer cells of Gj,1 is increased by either having two sets
of boundary cells, or a smaller overlapped region. Also, increasing the width
of the intcrpolatioh formula increases the storage memory and the run time of
the flow solver, because there are twice as many cells to _updatc.

4.6 Modified Solution Algorithm

Modifications are made to the implicit, finite volume, multigrid algorithm
(Chap. 3), in order to recognize the multiple, overlapped subdomains with
holes. The standard block or scalar tridiagonal inversions for Eq. (2.1), or its
approximate diagonalized counterpart, are altered for the case of overlapped

grids with holes. To treat the hole, fringe, and outer boundary cells, the
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following modifications are made: (1) set the off-diagonal 5x5 blocks in the
coefficient matrix to zero, (2) set the diagonal elements of the diagonal block to
unity, (3) set the residuals to zero. This results in the computed values of AQ for
these cells to be zero. Since AQ of the fringe and outer boundary cells are zero,
the specified boundary conditions for these cells are automatically preserved.
For example, let one of the spatial factors of Eq. (2.1) be written as a system of

algebraic equations in block tridiagonal form as

R (4.19)
where aj are the 5x5 blocks of coefficient tridiagonal matrix. & are the
unknown vectors, which represent AQ of Eq. (3.7). The right hand side residual

is represented by R; which are the known vectors. Then,
R i * [IFLAG i -R : (4.20a)

aij*IFLAGi—)aij , 1#_] ' (4.20b)

a1; * TFLAG )+ (1 -TFLAG ) »ay; , i=j 200

where (—*) indicates that its right hand side is to be replaced by its left hand
side (Fig. 4.11). The IFLAG is zero or one, depending on if IFLAG is a hole cell or
not. The diagonal elements of the block ajj are set to unity. If the approximate
diagonal form is used, then this process is repeated three times for each
direction. The discretization of the right-hand side of Eq. (2.1) uses a five-point
from a cell in aholc. when computing a cell neighboring a fringe point, the Q
value of the neighboridg hole cell is set to the Q value of the fringe cell.

Inthc “current domain ”de/composition method the existence of holes caused by

embedded or overlapped grids complicates the implementation of a standard

multigrid algorithm. If the standard multigrid algorithm is used for multiple

subdomains with holes, the restriction and prolongation stages would use cells
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which lie within holes, to transfer information from coarser to finer grids and
vice versa. This is an undesirable trait of multigridding for multiple
subdomains, for the obvious reason, that the hole cells do not contain correct
solution information of the subdomain.

The procedure for creating holes and illegal zones in coarser level grids
from the finer level grids described previously in Section 4.2.4 eliminates the
problems that occur in the restriction stage. Any cell in the coarser level grid,
that obtains a volume weighted restriction value made up of at least a hole cell
in the finer level grid, is labeled as a hole cell. However, these hole cells on
the coarser level grids, excluding the illegal zone cells, have interpolation data
obtained from the connected grids. Thus, they can be used in the restriction
and prolongation stages. The solution is transferred between the coarser grids,
G| and Gj,1, over a larger physical domain than the overlapped regions of the
finest level meshes. There is an increase in the physical domain where
updating occurs. However, the actual number of cells being updated in the
coarser level grids is usually less due to the decrease in the number of grid
cells. Each coarser level three dimensional grid reduces its number of cells by
a factor of 1/8 of its finer level grid cells. Also note that the standard block or
scalar tridiagonal inversions for Eq. (2.1) are executed at the coarser levels,
after the modifications are made analogous to Eq. (4.20) with IFLAG; being
replaced by IFLAGM,;.

Modification is needed in the prolongation stage to nullify the weight of
the contributions from the illegal zone cells. Note that no such modification
for the illegal zone is needed in the restriction stage, because the illegal zone
of the coarser grid is inside the hole of the finer grid. The prolongation is
performed from the coarser cells, say Cl and C2, to pseudo finer level cells, say

fl1 and f2 (f1 is closer to C1 than f2), in one direction as,
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AQf1=(A1*AQC1)+(Bl*AQc2) (4.21a)

AQf2=(A2*AQCl)+(B2*AQc2) (4.21b)

where
A1=IFLAGM ¢, [ 1 '(b * IFLAGMCZ)] (4.22a)
Bl =IFLAGM c;| 1-(a*FLAGM | (4.22b)
A2=IFLAGMc1[1-(a*IFLAGMC2)] (4.22¢)
B2 = IFLAGM cz[ 1-(b* IFLAGMCI)] (4.22d)

and a,b are the bilinear interpolation constants (0.75 and 0.25). The IFLAGM=0
flags the illegal zone cells at the coarser level. This proc4ess is repeated in the
second dircctién, using the pseudo finer level cells of the first direction.
Finally, when this process is repeated in the third direction with Eq. (4.21),
and using the finer level cells of the second direction, the corrections are
recovered for the actual finer level cells. The results of this process is a
trilinear interpolation with small bias around the illegal zone. More details of
the modified élgorithm is given by Baysal et al. [44] and Fouladi [45].
4.7 Procedure for Solution Algorithm

The steps to advance a subdomain ;élulioﬁ of a composite mesh are: (1)
update the boundary cells of a subdomain cells by using specified boundary
conditions or interpolation values; (2) solve the subdomain flow field with the
impiicit, finité-Vo]umé, upwiﬁd scheme; (3)7 ihterpolatg the conserved
variables for intergrid communications for the boundary cells of other
subdomains; (4) repeat steps 1 to 3 for each subdomain mesh of the composite

mesh in the hierarchial order. Hence, there are two functions that the flow

solver niifét’ibcrform on the interpolation data. The first function is to update

the interpolation boundaries, and the second function is to interpolate data for
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the boundaries of the subdomain grids. To accomplish both of these tasks, the
interpolation data structure is of vector form (refer to Section 4.2.3).

The flow solution on a subdomain G|, Gj41, etc. is advanced in time. The
interpolation boundary cells defined by the indices JB(i), KB(i), LB(i) are
updated from the flow solver, QB, list of interpolated values through a cross
index array IBC(i). Next, the solution of the subdomain is advanced excluding
the hole cells which are designated by IFLAG=0. From the advanced solution,
the interpolation values for other connected subdomains are solved using the
interpolation reference cells given by the indices JI(i), KI(i), and LI(i). These
interpolated values for connected grids are then loaded into the QB vector to be
used in updating boundaries of overlapped subdomains. The process is repeated
for each solution iteration on the composite grid. The number of solution
iterations on a subdomain grid at one time is case dependent. However, it is
computationally more efficient to have more than one iteration step at a time,
since the process of obtaining interpolation data, updating, and switching the
solution algorithm from one subdomain to another, are costly. The problem
with having more than one iteration performed on a subdomain, is that the
interface boundary conditions are frozen for those iterations. More than one
iteration on each domain is permissible if a converged steady state solution is
sought, but if the flow is unsteady or time dependent, then one iteration per

grid is necessary for a time accurate solution.
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Chapter 5

APPLICATIONS OF GRID OVERLAPPING

Six composite grid cases are considered in developing and demonstrating
the Multi-Geometry Grid Embedder scheme. Composite grids and connection
data (i.e. interpolation data) are obtained for all six cases, and computational
flow results are shown for five of these cases [44,45]. These cases are:

(1) Single level composite grid and connections for a blunt-nose
cylinder grid (BNC) embedded within a Cartesian farfield.

(2) Multigrid composite grids and connections for BNC embedded within
a Cartesian farfield.

(3) Composite grid and connections for BNC overlapped with an outer
grid of similar topology (C-O).r

(4) Compogije grid and connection for an ogive-nose cylinder (ONC) in
the proximity of a flat plate,

(5) Composite grid and connections for a cylindrical store model
connected to an L-shaped sting embedded within a Cartesian farfield.

(6) Composite grid and connections for a cylindrical store model with
fins and a curved sting positioned above a rectangular cavity.

The first three cases are for the same blunt-nose cylinder (BNC) geometry,
which are investigated in [44,45]. These three cases are used to validate the
finite volume grid connections procédure for single and multigrid levels and

to check the conservation across grid boundaries. The last three cases are to
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test the versatility of MaGGIiE for more complex composite mesh
configurations.

Note that the composite meshes and solution contour plots given for each
case are cell centers. The plots are based on the cell centers to eliminate the
probable errors in representing the solution near jagged hole boundaries,
caused by the normal averaging of the finite volume solution, to obtain grid
nodal values. This allows correct assessment of contour lines crossing
interface boundaries without error produced in the averaging procedure.

5.1 Case 1: Blunt-Nose Cylinder in a Cartesian Grid (Single Level)

A boundary fitted C-O grid, which is wrapped around the BNC, is embedded
completely within a Cartesian global grid (Fig. 5.1). The flow Mach number is
1.6, the Reynolds number is 2x106 per foot, and the total temperature is 585
degrees Rankine. The BNC is at 32° angle of attack. The rationale behind this
test case is threefolds. (i) A simple body-fitted grid for a body of revolution,
such as a C-O grid, is topologically very different than a Cartesian grid. (ii)
There is a computational solution available for this case which is obtained on a
C-O grid only [21], i.e. without overlapped grids (iii) There is experimental data
available for comparisons [46].

The blunt nose cylinder has a base diameter (D) of 3 inches and a length of
20 inches (Fig. 5.2). The body fitted C-O grid around the BNC is generated using
program GRAPE. It is used to generate a two dimensional C-type grid around
half of the BNC. The C-grid is rotated 360 degrees around the body centerline to
create a three dimensional C-O grid (Fig. 5.3). Clustering in the viscous region
near the body is enhanced by a simple parametric curve fitting procedure,

which uses the Bose-Einstein Function,
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S,-8,

l_c-k x-x)

(5.1)

Si=AX+B 52)

where
and x* is the intersection of lines Sy and S in a coordinate space where O<x<l
and 0<S<1. (A) and (B) are the slope and starting values of the lines Si,
respectively. (F) is the parametric curve fitting function. The Cartesian outer
grid is generated using a simple algebraic technique. Clustering is done in
three directions, in the region where the BNC is embedded, to ensure
consistent cell sizes within the overlapped regions between the two grids (Fig.
5.4). Both meshes, BNC and Cartesian, are simply generated grids, and hence
provide and excellent test case for creating a composite mesh. The BNC mesh is
positioned in the center of the Y-Z planes of the Cartesian mesh (Fig. 5.4). The
composite grid dimensions are given in Table 5.1.

The composite mesh and its interpolation data is generated by MaGGiE. A
summary of the number of hole cells and boundary cells is given in Table 5.1.
The hole boundary cells in the Cartesian mesh and the outer boundary cells in
the C-O grid are all conngc;cd using trilinear interpolation, i.e. none of the
boﬁndéry are connected using zeroth order interpolation. Shown in Fig. 5.5 is
Ih¢ 7!’1707167 bounrcrlrary” surface in the Cartesian grid created by the embedded C-O
grid. These hole boundary cells of ,thp Cartesian gridr are connected to the C-O
gl'id writhin the overlap region. The overlap region, including outer boundary
cells in the longitudinal and crossflow planes, are shown in Figs. 5.6, 5.7,
respectively. The outer boundary cells of the C-O grid are connected to the
Cartesian grid within the overlap area. All communications between the two
subdomain meshes take place within the overlap region. A ten-cell overlap
between grids is specified to ensure that no illegal communications between

hole cells and boundary cells occur (Figs. 5.6, 5.7). The ten-cell overlap is not
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necessary for proper grid connections; however, it is n‘ot the intent of this
work to determine the optimum width of the overlap region, but instead to test
the feasibility and accuracy of MaGGiE grid connection results.

Initially a mesh sequencing strategy is used on the individual subdomains
to reduce the amount of computational time required to overcome the initial
transient states ([44,45]. The logarithm of the residual history for the finest
grid level solution of the composite mesh is shown in Fig. 5.8. Convergence
rate indicated in 900 work units is approximately 0.99. Work units (WU) is

defined as the total CPU time divided by the CPU time for one global iteration,

_CPU
WU CPU iter. (5.3)

The longitudinal pressure coefficient ( Cp ) distribution on the leeside
surface of BNC is shown in Fig. 5.9. Superimposed on this figure are the results
from [21,44,45]. The results obtained on a single C-O grid are slightly better
than those on the composite grid. This is somewhat anticipated since &-
constant surfaces of C-O grid follow the flow stream surface closer than the &§-
constant surfaces of the Cartesian grid. Presented in Fig. 5.10 are the
normalized pressure contours of the longitudinal symmetry plane for the
composite mesh and the single C-O grid without embedding. It should be noted
here that when using the three dimensional data of different subdomains to
plot in two dimensions, one can not find longitudinal or lateral surfaces of
these subdomains which match in location or in curvature. This results in
some discrepancies across boundaries. Also the postprocessing of the data,
especially in curve fitting near intergrid boundaries, is restricted to the
capabilities of the plotting programs. In any event, the contour lines cross the

intergrid boundaries rather smoothly. The shock freely crosses the interface
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between subdomains with the correct angle. The contour lines of the
composite mesh match quite well with that of the single C-O grid. The crossflow
density contours at the base of the BNC are shown in Fig. 5.11a. The leeside
vortices pass freely through the intergrid boundary. Some minor distortions
may be attributed to the fact, that the Cartesian sccﬁon of the crossflow
surface in Fig. 5.11a is planar one, as opposed to that of the single C-O grid (Fig.
5.11b) which is curved. Their trends and magnitudes, however, agree very
well. Qualitatively, there is little loss of conservation across boundaries in the
streamwise as well as crossflow directions. The combination of the trilinear
interpolation at intergrid boundaries and the use of Roe flux-difference-split
scheme appears to maintain time conservation across intergrid boundaries.
5.2 Case 2: Blunt-Nose Cylinder in a Cartesian Grid (Multi-Level)
The second case involves the C-O grid of the BNC embedded completely
within the Cartesian global grid in the same manner as in Case 1. The
composite mesh flow conditions are also identical to those of case 1 (Section
5.2). This case is used to test the coarser subdomain level intergrid
communications with the multigrid, finite volume solution algorithm. The
results are compared to the computational solution on a single C-O grid, and the
experimental data, as well as the results on the composite mesh without

multigrid acceleration. Two levels of intergrid boundary interpolation data are

generated by MéGaiE. Two grid levels are considered minimum to verify the
plausibility of using a multigrid solution scheme on a composite mesh. The
first and second level grid dimensions are given in Table 5.1. Figure 5.12 shows
the coarser level composite mesh.

An illegal zone of one cell from the surface of BNC on the coarser grid level
is specified (Fig. 5.13). The illegal zone created in the Cartesian mesh on the

second level is shown in Fig. 5.14. The number of illegal zone cells is given in
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Table 5.1. All of the coarser level hole cells of the Cartesian grid and the outer
boundary cells of the C-O grid are connected using trilinear interpolation, i.e.
no cell on the coarser subdomain grids are connected using a zeroth order
interpolation,

The solution obtained [44,45] using the multigrid scheme are the same as
the single-grid scheme. Therefore, to eliminate repetition, contour plots are
not given. The same initialization of subdomains used in the single-gridding is
used as the starting solution in this multigridding case. This ensures accuracy
in comparing the two cases. The cffcctivenéss of the mul.tigrid scheme on time
history of the residual of the finest grid level of BNC is shown in Fig. 5.8.
Convergence rate obtained in 900 work units is approximately 0.98. If more
than two levels of grids were used, the savings in CPU time would be more
dramatic. This would require the interpolation information to be generated at
more than two levels of grids. The increase in the number of coarser levels do
not greatly increase the amount of storage memory for interpolation data,
because the number of hole cells needing interpolation data decreases with
each coarser grid level. Most of the increase in memory is due to the modified
multigridding algorithm for the composite mesh. The two-level multigrid
computations of the BNC case requires 25 megawords of computer memory, as
opposed to 21 megawords for single-level computations on the fine grids.

Each multigrid V-cycle consists of one time step calculation on two grid
levels of each subdomain. This cycling strategy is chosen over the more
computationally efficient alternatives (such as more time steps on each level
or more multigrid cycles on each subdomain before switching). These
alternatives seem to be more economical (computation time), but may result in
inaccuracies in the solution due to frozen interpolated values of the intergrid

boundaries.
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Overall, the multigrid inter-subdomain communications data compares well
to the single-level results, and offers a big advantage in computing (timewise)
the flow on a composite mesh.

5.3 Case 3: Blunt-Nose Cylinder With Two Overlapped, C-O Grids

Grids which overlap at a surface, similar to grid patching, is denoted here
as simple overlapping. The C-O grid of the blunt-nose cylinder is simply
overlapped with an outer C-O grid of similar topology. The purpose of this case
is twofolds:(1) to check the finite volume grid connection procedure for
simply overlapped grids, (2) to eliminate some of the problems associated with
plotting the flow solutions from multiple subdomains, in order to check the
smoothness of contour lines as they pass across these interfaces. For this case
the n-{ surfaces of the two C-O grids lic in the same plane.

Both the outer and inner C-O grids are created from the original single C-O
grid of dimensions 81x65x57 with respect to &, m, { coordinates. The inner BNC C-
6 grid is created by discafding the last 16 {-planes of the original C-O grid (Fig.
5.16), and the outer shell is created by removing the first 32 {-planes (Fig.
5.17). The outer grid is also rotated two degrees, so that the 1 constant lines do
not match rbetween the two grids. Hence, when the two subdomain grids are
combined to create a composite mesh, an overlapped region is formed with &
aﬁd € constant liﬁes- bcmg identical. The n‘-rcons;ant lines within the
overlapped region do not match, because of the outer grid rotation of two
d-cgreers.r ” |

A problem arises when the general grid overlapping/embedding
procedure is used for grids ovcrlapping along a constant boundary surface. In
the general procedure, a hole is generated in a grid by another grid.
Communication between grids occur within the overlapped region. Simply

overlapped grids do not generate holes. There are two different overlapping
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methods that can be used in this case. The first method is to simply connect the
overlapped grids at their outer boundary cells, hence there are no fringe
cells, or hole cells generated. The second method, which is used in this case, is
to define the interface boundary surface as a hole. This creates a-holc
boundary neighboring the hole in the connected mesh. For this case, the hole
is specified, such that the hole cells are on the {=1 constant surface and the
hole boundary is at the {=2 constant surface of the outer C-O grid. The outer
boundary of the inner C-O grid is specified at {=41 surface. An eight cell
overlapped region is defined between the connected inner and outer C-O grids.

Shown in Fig. 5.18 is the hole boundary surface in the outer C-O grid and
the outer boundary surface in the inner grid, where the interpolation is being
performed. The overlapped region in the longitudinal and crossflow directions
are shown in Fig. 5.19 and Fig. 5.20. The grid dimensions and the number of
hole cells and boundary cells are given in Table S5.1.

The normalized pressure contours on the longitudinal symmetry plane of
the composite mesh are presented in Fig. 5.21 [44,45] The contour lines
éompare well with that of the single C-O grid without embedding. The interface
boundary between the two grids is shown by a border line, separating the two
sets of contours. Although there are two degrees difference in the longitudinal
n -planes between the outer and inner grids, the contour lines cross the
interface in a continuous manner with no jumps unlike what is shown in Fig.
5.10 of Case 1. The longitudinal planes of these grids are closer in the physical
space than those of Case 1 involving the C-O and Cartesian grids. Because of
this, the contour lines are more continuous and represent closer to the ac;ual
values across the interface. Hence, most of the jumps in the contour lines
across the interface in Fig. 5.10, may be contributed to the inadequacies in

plotting procedures and not the interpolation method.
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The normalized crossflow density contours are presented in Fig. 5.22. The
contours at the base of the blunt-nose cylinder lie on the same E-plane for the
two grids. Hence, assessment of the contour lines crossing the interface can be
made without plotting errors. Again, the contours compare well with respect to
the solution on the single C-O grid shown in Fig. 5.10. The lines are continuous
across the hole boundary. However, in the outer grid near the interface, the
density contours slightly change angles with respect to the inner grid lines.
They correct themselves away from thc'boundary. This phenomena is not seen
in the composite grid and the single C-O grid shown in Fig. 5.11. The cause
could be related to a slight loss of conservation across the hole boundary.

5.4 Case 4: Ogive-Nose Cylinder Near a Flat Plate

The fourth case is the flow past an ogive-nose cylinder (ONC) with a sting
in the proximity of a flat plate wing. The flow is turbulent at zero angle of
attack with Mach number 2.86, Reynolds number 2x106 per foot, and the total
temperature of 610 degrees Rankine. Because there are two components of
different geometries in this configuration, employing simple grids requires
the overlapping technique. The objective of this case is to apply the
overlapping method to a more complicated flow interaction between bodies of
nonsimilar topologies. There are alternative methods to discretize the domain
of a cylinder near a flat plate without using the present method. These
methods [47,48], however, can not use simple grids such as a C-O grid and a
Cartesian grid. They require three dimensional surface grid generators.
Furthermore, the grid interfaces need to be planar or the grid lines going
across these interfaces need to be continuous.

The C-O grid of the ONC is embedded in the Cartesian grid of the flat plate
wing at a nondimensional distance of Z/D=3.5, where Z is the normal

coordinate direction and D is the diameter of the cylinder. The base diameter
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and the length of the cylinder are 1.2 in. and 21.6 in., respectively (Fig. 5.23).
Shown in Figs. 5.24, and 5.25 is the composite mesh. The ONC grid is created in a
similar fashion to the BNC grid of Case 1. A two dimensional C-type grid is
generated using the program GRAPE, and rotated 360 degrees about the
centerline axis to generate the three dimensional C-O grid (Fig. 5.26). The
Cartesian grid is generated with exponential clustering in the viscous region
near the flat plate wing. The grid dimensions and physical domain are given
in Table 5.1.

The composite mesh is created with a 7 cell overlapped region between the
Cartesian and the C-O grids. Shown in Fig. 5.27 and 5.28 is the composite mesh
with the overlapped region. The hole boundary is created in the Cartesian
grid, such that in the {-direction, 10 cells of the ONC grid lies within the hole.
Because the ONC lies near the flat plate, the outer boundary of the C-O grid
needs to be within the physical boundary of the Cartesian grid for proper ONC
outer boundary connections. Hence, the distance of the ONC above the flat
plate is a grid constraint for the ONC grid. If the ONC grid is allowed to extend
out of the Cartesian grid, below the flat plate, an irregular boundary surface is
needed, The MaGGiE code is capable of handling such a case, if the flat plate is
considered a boundary that creates a hole in the ONC grid. The part of the C-O
grid lying outside of the Cartesian grid is considered to be the hole. The hole
boundary created in th C-O grid lies within the Cartesian grid. Hence, an
irregular boundary surface is created for proper connection between the two
grids. However, this case is not done to minimize the complexities of creating a
composite mesh. The number of boundary and hole cells of the composite mesh
are given in Table 5.1.

The flow solutions presented in Figs. 5.29-32 for this case lacks

experimental data for comparison [44,45]). The Mach number contours of the
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longitudinal plane of symmetry are shown in Fig. 5.29. An enlarged view near
the grids' interface is given in Fig. 5.30. The contours cross the boundary
somewhat smoothly with small jumps due to mismatch of grid planes in the
plotting procedure. The interaction of the cylinder forebody shock, and the
boundary layer of the flat plate, is followed by the reflected recompression
waves impinging on the cylinder aftbody. The influence of the reduced
pressures in the region between the cylinder and the flat plate is observed as a
reduction of Cp values on the flat plate (Fig. 5.31). They are slightly negative
almost everywhere except in the region where the shock impinges. The
interference of the flows is further demonstrated by the Mach number
contours at the cross flow plane at the base of the nose (Fig. 5.32). The shock
imparts a significant momentum on the fluid particles in the normal and
spanwise directions.
5.5 Case S5: Store Model with L-Sting in a Cartesian Grid

Case 5 involves a more complicated composite mesh made up of three
different grids, each with a different topology. The composite mesh is created
for an ogive-nose store connected to a L-shaped sting in a Cartesian farfield
(Fig. 5.33). The flow Mach number is 1.6, Reynolds number is 2x106 per foot,
and the total temperature is 584.7 degrees Rankine. This case is used to; (1) test
the capabiiitiéé of connecting grids together where solid surfaces meet, (2)
connect half grids of symmetric bodies for finite volume interpolations, (3)
connect more than two grids with a general hierarchy format (Fig. 4.1).

Hralf body grids are used in solving flowfields which are assumed
symmetric about a particular plane. The use of half grids is a valuable tool in
reducing the computational time of complex flow fields.'However, these grids
complicate boundary connections near symmetry planes for the finite volume

interpolation method. At the symmetry plane of the composite mesh, the cell
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centers of different subdomain grids do not all lie within the same physical
plane. Because cell center grids are used, the outer and hole boundary points
near the symmetry plane need to be connected. For finite difference grids,
these boundary points at the symmetry plane are taken care of by the
symmetry boundary conditions. The general zeroth-order interpolation
method is used to connect the cell center points at the symmetry plane, which
lie outside of a connected grid. These cells reduce local order of accuracy at the
symmetry plane.

The three types of half grids generated to cover the entire flow domain are:
(i) Cartesian farfield grid; (ii) H-O grid around the store; (iii) O-H grid around
the sting. An alternative method is to use a single grid which covers the entire
flow domain. The three half grids are created separately, each using a
different grid generation technique.

The H-O grid is generated around the store grid using a three step process.
The physical dimensions and shape of the store cylinder are shown in Fig.
5.34. A two dimensional body fitted H-grid is generated around the store half
body using the program GRAPE. Clustering is done along the body at the ogive
nose cylinder and near the base of the store where the sting is connected.
Next, enhanced clustering is done in the viscous region near the body using
parametric curve fitting procedure as previously described. The last step is to
rotate the H-grid 180 degrees, thus creating a half body three-dimensional
store grid. A variable degree of rotation is used, such that in the region of the
sting the m-lines are clustered. Thisr allows higher probability of connccrtirrlg
the store and the sting grids. The store grid is shown in Fig. 5.35.

The L-shaped sting grid is generated with two constraints. These
constraints are: (1) the base of the grid needs to lie completely on the surface

of the store for proper grid connections and boundary conditions (see Fig.
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5.36); (2) the grid needs to extend out of the Cartesian farfield because the top
boundary of the sting is not defined. The physical dimensions and shape of the
sting is shown in Fig. 5.34, The O-H grid is generated in several steps using
simple grid techniques. A cross sectional two-dimensional O-grid is generated
using the TBGG program (Fig. 5.37). The third dimension of the O-H grid is
created by stacking th O-grid in the {-direction. The curvature of the {-planes
are dependent upon the height of the sting and the radius of the store. At the
sting base, the curvature of the {-plane is determined by the radius of the
store. Hence, the sting matches the store surface for proper grid connections.
The length and width of the outer boundary of the O-grid increase linearly
with the height of the sting. This is done to create a larger physical space for
the overlapped region (Fig. 5.38).

The Cartesian farfield mesh is generated wusing simple algebraic
techniques., The dimensions of each subdomain grid are given in Table 5.1.

The composite mesh is generated using the program MaGGiE (Fig. 5.39). A
general composite grid hierarchy is used in this case. The three grids are
Nc;rognccted to each other. VThe Cartesian farfield grid is the global grid, denoted
as Gp,1. The étore grid and the stingr grid are <;n the same comp;)siter grid level

éach othcrr and tor grid Gy,1. The store grid creates a hole in the Cartesian gnd
i:'rIT‘her sting grid rcrcartcsrrz; hdlc in the store and Cartcsian grids. When the sting
creates the hole in the store grid, a hole is generated on the surface of the
store body since they are connected. Hence, the boundary conditions at the
connected surface can be specified completely within the sting grid for the
flow solver. The hole boundary cells surrounding the store are shown in Fig.

5.40. The overlapped region between the store and Cartesian grids is eight cells

(Fig. 5.41). The overlappcd region between the sting and store grids is also
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eight cells (Fig. 5.42). The overlapped region between the sting and Cartesian
grid is 15 cells. The larger overlapped region is necessary because the
Cartesian grid is not clustered in the region of the sting. The Cartesian cell
sizes are larger than the cell sizes of the sting grid. From the viewpoint of the
accuracy of interpolation, this is not desirable, because the interpolation is
dependent on distance between cells and not the weighted cell volumes. The
Cartesian grid clustering is generated for the purpose of connecting to a
rectangular cavity grid for future work. The number of hole cells and
boundary cells for each mesh is given in Table 5.1.

A total of 220 cells, out of 11,029 hole and outer boundary cells, use zeroth-
order interpolation method, instead of the trilinear interpolation method for
connections. This is less than two percent of the boundary cells. These cells
are located at the symmetry plane. This is expected, because the cell center
grids do not align themselves with each other at the symmetry plane of the
composite mesh.

The flow solutions of the composite half body grids are presented in Figs.
5.43-45. The subdomain grids are initialized by the freestream conditions.
Initially, the subdomain grids of the store and sting are run separately, but
instabilities in the solution occur, because of the small physical domain sizes
of the grids. Hence, their solutions are not used to initialize the composite
mesh. Finest level calculation, without mesh sequencing and multigridding, is
used to develop the composite flow field. Shown in Fig. 5.43 are the
longitudinal density contours at the symmetry plane of the composite mesh.
The contour lines pass smoothly across the interfaces. There are no artificial
shocks created at the boundaries. At the base of the store the expansion and
compression waves pass also smoothly across the interface. A complicated flow

occurs behind the sting, where the base flow of the sting interferes with the
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base flow of the store. There are interactions of compression and expansion
waves. A top view of the longitudinal density contours around the sting is
shown in Fig. 5.44. At the interface between the sting and Cartesian grids, the
compression and expansion waves cross smoothly without distortions. A three
dimensional composite view of the density contours is shown in Fig. 5.45. This
figure represents the type of complex flowfields that can be accommodated by
the overlapping/embedding method.

5.6 Case 6: Store with Fins and a Curved Sting Near a Cavity

A composite mesh is generated for a configuration of a store with fins and a
curved sting positioned above a rectangular cavity. There are five subdomain
half body grids within the composite mesh. The five half grids are: (1) a
farfield Cartesian grid above a cavity; (2-4) three H-O zonal grids around a
store with fins and a sting; (5) a Cartesian zonal cavity grid. This case is used to
demonstrate the overlapping/embedding capabilities of MaGGiE for a
composite grid made up of more than three grids using zonal and overlapped
half body grids.

Zonal grids are grids that are patched together along a constant surface.
Across the zonal interface the grid lines can be discontinuous or continuous
depending on the conservative trcatmént at the boundary. The zonal grids

used in this example are one to one cell matching, hence the grid lines are

continuous across the interface. One to one cell matching is the best method

for conserving fluxes across boundaries.

with parametric and e¢xponential clustering. The cavity grid is connected to
the farfield grid at the first {-constant plane. There is one to one matching of
cell centers at the zonal plane (Fig. 5.46). An alternative method of connecting

the two grids is to overlap them. However, one to one matching is done at the
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interface to conserve the fluxes exactly. This is important for cavity flow,
where there is an unsteady shear layer propagating across the top of the
cavity and mass being pumped into and out of the cavity. Hence, although the
cavity is included within the composite mesh, the grid is not connected to any
other grid by the overlapping procedure.

Each of the three zonal H-O store grids with fins and extended sting is
generated using the three dimensional surface grid generation code EAGLE
(49,50]. The combination of the three grids create the half store body (Fig.
5.47). The three zones are shown in a cross sectional view of the store in Fig.
5.48. The zonal m-planes define the fin surfaces. There is a one to one matching
of cell centers across the zonal surfaces above the fins.

The composite mesh is generated using the MaGGIiE code. A simple composite
overlapped hierarchy is used in this case. The thfce store grids are connected
to the Cartesian farfield grid only. The Cartesian farfield grid is the global
grid, denoted as Gyp,;. The three store grids are on the same composite grid level
denoted by G2,1, G2,2, and G 3, respectively. The cavity grid is considered to be
on another composite grid level, G3 1. However, this grid is not being used in
the grid connection scheme. The three store grids create a hole in the
Cartesian farfield grid away from the fins (Fig. 5.49). To create such a hole
using the zonal grids, a simple modification is done.. The three grids are
combined into one grid to create the hole. Next, they are separated to obtain
proper grid connections to the hole and outer boundary cells. This
modification is needed because the specified hole boundaries around the zonal
grids cannot be defined properly to be used in the hole cells search method
described in Section 4.2.1. Shown in Fig. 5.50 is the hole boundary cells of the
Cartesian mesh that are connected to the store grids. There is a 15-cell

overlapped region between the store grids and the Cartesian mesh. The 15 cell
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overlap is needed because the Cartesian cell sizes are much larger than the
store cell sizes in this region. Figure 5.51 shows the overlapped region in the
longitudinal plane of the composite mesh. The number of hole cells and
boundary cells for each subdomain mesh is given in Table 5.1.

A total of 457 cells, out of 10,805 hole and outer boundary cells, use the
zeroth-order interpolation method for connections. These cells are located
near or at the symmetry plane of the composite mesh. This is expected because
the cell center grids' symmetry planes do not lie in the same physical plane.
This phenomena is also noted in Case 5, where half body grids are also used.

5.7 Comparisons and Comments

The first three cases, used in validating the overlapping/embedding
procedure for finite volume multigrid levels, provide valuable insight into
understanding the problems of conserving fluxes across interfaces. The
results of these cases compare well with the solution obtained on the single-
domain BNC grid. The jumps in contour lines across the interfaces is
considered mostly due to inadequacies of the plotting procedure and slightly
due to a loss of comservation. ... -~ .. = L noTononn

The last three cases provide a variety of different problems that can occur
when creating a composite mesh of cell centers for a real configuration. The
sting that is associated with each store is included as part of the configuration
to represent actual experimental tests. The stings are used to support the stores
within the wind tunnels. The problems that are dealt with are: (1) bodies in
close proximity of each other; (2) half body connections at symmetry plane;
(3) zonal grids with overlapped grids; (4) general overlapped and simple
overlapped hierarchial connections for a composite mesh.

Iterations of the overlapping/embedding method is needed for each case.

The iterations are used to define hole and outer boundaries of each subdomain
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for proper grid connections. However, these iterations can be eliminated, if
careful consideration of grid sizes and clustering within the overlapped
region are done. Overall, creating the composite meshes is straightforward.
The composite mesh connections are dependent upon the generation of the
subdomain grids to a certain degree. However, the subdomain grids are

generally of simple topology.
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Chapter 6

CONCLUSIONS

A domain decomposition method, called grid overlapping/embedding, is
used in simplifying computations on three-dimensional complex
configurations. The overlapping/embedding method divides the flowfields into
simpler subdomains. These domains are either completely embedded within
each other, or simply overlapped. The overlapping procedure is developed to
create composite meshes using cell center grids for finite volume solution
algorithms. A procedure is developed for overlapping coarser level grids in a
composite mesh for multigrid solution algorithms. The product of this
investigation is a computer code, given the name MaGGiE, (Multi-Geometry
Grid Embedder). MaGGiE is developed to take independently generated
component grids and their ovcﬂapping structure as input, and it creates a
composite mesh and interpolation data to be used by a finite volume solution
algorithm with or without multigridding.

The overlapping method is applied successively to six composite grid cases.
The conclusions are listed, which are drawn from the experiences with
these cases, may be outlined as follows:.

(1) The subdomain grids of the composite meshes are easily generated

using simple grid techniques.

(2) Finite volume grid cohné;tiéns are made for all six cases. The solutions

obtained on the composite meshes compare well with the
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(3)

(4)

(3)

6)

experimental, analytical, and single-domain calculations, where
applicable. The longitudinal pressure contours and cross flow density
contours for the Cases 1-3 compare well with the solution on the
single-domain grid. A slight loss of conservation is noticeable near
the hole boundary in the crossflow density contours for the simply
overlapped Case 3. Although there are no experimental data for the
composite grid solutions of the ONC case or for the store/L-shaped
sting case, their solutions are considered reasonable for such complex
flows.

The nonconservative trilinear interpolation method, which is wused
with the Roe flux-splitting scheme, transfers the time fluxes across
the mesh boundaries with little loss of conservation. No artificial
shocks are created at the boundaries. Compression and expansion
waves pass across the interfaces with little dispersion.

The multigrid connections are implemented for the composite grid
case of the BNC embedded within a Cartesian farfield. The coarser level
grids are easily connected. The convergence rate of two-level
multigrid computations is about 0.98 as opposed to 0.99, which is
obtained without multigridding..

An overlapped region of 5 to 15 cells is found to be adequate for proper
grid connections without redundant information being passed
between subdomains. However, a parametric study of the optimum
width of the overlapped region has not been done.

The grid connections on the coarser grid levels, excluding the illegal
zones, are independent of the overlapped regions of the finest level

meshes.
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(7)

(8)

The
(1)

(2)

(3)

(4)

Zonal grids are incorporated within the composite mesh of Case 6 with
little modification to MaGGiE.

Introducing the zeroth-order interpolation procedure increases the
robustness of the grid overlapping/embedding method for cell center
grids, specifically, at outer boundaries, such as, symmetry planes and

surface contacts.

recommendations for future work are listed below.

The dependence of the rate of convergence of the solution on the
width of the overlapped regions, should be investigated.

The conservation across the interfaces using a wider interpolation
stencil, i.e. increasing the set of hole and boundary cells to two,
should be investigated.

The MaGGiE code should be optimized in order to integrate the code
within a solution algorithm for dynamic grids.

An accurate method of plotting composite grid solutions should be
developed, for better determination of interface interactions at

nonmatching grid planes.
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Figure 5.23 Schematic of the ogive-nose cylinder (ONC)
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Figure 5.31 Pressure coefficient contours on

the surface of the flat platc
with the ONC at (3.5D) distance

Figure 5.32 Crossflow Mach number contours at the forebody-cylinder
5 . junction of composite ONC
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Figure 5.33
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Figure 5.34
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Figure 5.35

Ogive-nose store H-O grid which includes hole in the region of
the sting

90

-

ORIGINAL PAGE IS
OF POOR QUALITY

|

E
B
i

[



1

!’I[H I

Figure $.37 Cross sectional grid of the L-skaped susg at lts base

91

ORIGINAL PAGE 1
OF POOR QUALITY
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Figure 5.49 The hole generated in the farfield mesh by the three store grids

Hole Boundary Surface

Figure 5.50 The hole boundary surface created
by the three zonal store grids

in the Cartesian farfield mesh
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APPENDIX A

CALCULATIONS OF NORMAL VECTORS

—

The determination of a unit normal vector ,N, to a hole boundary cell
surface, used in locating hole cells, is explained in this appendix. The outward
normal vector at a surface cell center is computed by constructing tangent
vectors along grid lines, and performing their cross product. The procedure
itself is simple, but care is needed so that the normal vectors are always
pointing out of the surface. To obtain an outward normal vector, the hole
boundary surface is defined in a counter-clockwise direction from 'i' to J'
constant lines for a left-handed coordinate system, or clockwise for a right-
handed system. A section of a boundary surface using a left-handed coordinate
system is shown in Fig. A.l.

The arc lengths along a surface coordinate line are defined by

2 2 2
§1= \/Axi +tAy;+Az (A.1a)
2 2 2
s,=V A Xj +Ay+Az (A.1b)
and
A x;=x{i+1,j) - x{i-1,j) , (A.2a)

A x;= xfi,j+1} - xli,j-1) (A2b)
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The normalized tangents vectors ., Ti and TJ', are defined by

T.l=Txl§ +Ty 13+T‘ZIE
—T‘j=ij‘i+Tyjj+szfc\

(A.3)
The components of the tangentvectors are defined by'”! -
_ [(xli+1,3)- xfi-1,j) (xi,j+1) - x(i,j-1)
= Asy Txj= As,
_ v+ 1) yli-1) _(ylij+1)- ylij-1)/
TYi_ Asl Tyj_ ASZ
_ [ i+1,j)- 2i-1,j) _(ij+1)- Aij-1)/
TZi— Asl TZJ_ A§2
(A4)
where
Asy=s (i+1,j)- 5 (i-1,)
A sy=s, [i,j+1)- s, fij-1
2= 8 {ij+1) - s (i,j-1) ' s

The outward normal vector is then calculated by the cross product of thé

tangent vectors,

ﬁ='_['.lx'gfj
I—*I’=Nx§+Nyj+Nzﬁ
(A.6)
where )
Nx =Ty, * sz- Tz, * 'fyj
Nz = Tx; * Ty;- Ty;* Tx; _ (A7)
And, the unit normal vector is defined by
f:I'—'Ig'l % = Ve 2 2
where |N|= Nx“+Ny "+Nz" (A.8)
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Modifications in calculating the normal vectors are needed at the
boundaries and the comers of the meshes. A two point extrapolation is used at

the edges and an averaging type of extrapolation is used at the comers.

Extrapolation at the J-edge boundaries is given by
R (T eyy
RI1=1+RI
Nx = Nx (i-1) * RI1 - Nx (i-2} *RI

Ny = Ny {i-1) * RI1 - Ny (i-2) *RI
Nz = Nz (i-1) * RII - Nz (i-2) *RI

. (A9)
Extrapolation at the I-edge boundaries is given by
_(salid)-s2lig-11)/ )
RI= (s2fid-1)- 52i-2))
RJ1=1+RJ
Nx = Nx (j-1} * RJ1 - Nx (j-2} *RJ
Ny =Ny (j-1} * RJ1 - Ny (j-2} *RJ
Nz = Nz (j-1) * RJ1 - Nz (j-2) *RJ
(A.10)
Averaging extrapolation at the four corners is given by
_(Sl(id]'sl(i'ld‘l)) L o
RI= (810-1-1)- 5,(-24-1))
oy (S2lid)-sofi-tgn))/
RJ= ('s2li-13-1) - 52(i-1,-2))
RIRJ=1.0+RI+RJ
Nx = Nx(i-1,j-1} * RIRJ - Nx{i-1,j-1) * RI - Nx[i-1,j-2} *RJ
Ny = Nyf{i-1,j-1) * RIRJ - Ny{i-1,j-1) * RI - Ny{i-1,j-2) *RJ
Nz = Nzi-1,j-1) * RIRJ - N2{i-1,j-1} * RI - Nzi-1,j-2) *RJ (A1)
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APPENDIX B

JACOBIAN OF ISOPARAMETRIC TRANSFORMATION

The Jacobian matrix, M, and its inverse, M-!, of the isoparametric
transformation of a hexahedron in the physical space to a cube in the

interpolation space is given below.

(az+asﬂ+36§+asﬂ§) (Li3+35§+a7c+as€C)
M= (b2+b5n+b6§+b8n§) (b3+b5§+b7C+b3?;§)
(°2+°511+06C+°8ﬂC) (L33+Cs§+C7C+C8§C}

(a4+a6§+a-,n+a8Cn)
[ba+bet+brn+bygn)

(L?4+06§+C71'I+08CT|)J

(B.1)
M- exists as long as the mapping is one to one. Since M is a 3 by 3 matrix, its

inverse can be computed as

(M My~ My My) - (M Mg - Mis My (M Mys - My My)
M= My Mg -MzMy) (M, Mg - M My) - (My; My - Mg My)

det M
(MaMz-MpMsy) -(My My - MpMy) (My; My - My, M)
(B.2)
where
det M = '{Mn Mp Mg+ M, My M3, + Mg My, Maa)
+ (MB Mn M31 + Mu MZI M33 + Mu MB M32) ®3)
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composite mesh and interpolation data, which can be used by the finite volume
solution methods with or without mu]tigrid convergence acceleration. Six demon-
strative examples, showing various aspects of the overlap technique are presented
and discussed. These cases are used for developing the procedure for overlapping
grids of different topologies, and to evaluate the grid connection and interpola-
tion data for finite volume calculations on a composite mesh. Time fluxes are
transferred between mesh interfaces using a trilinear interpolation procedure.
Conservation losses are minimal at the interfaces using this method. The multi-
grid solution algorithm, using the coaser grid connections, improves the conver-
gence time history as compared to the solution on composite mesh without multi-
gridding.
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