The aim of the long wavelength spectrometer of the Infrared Space Observatory is to perform spectrometry in the wavelength range 45 to 200 µm using two resolution modes. The resolution will be around 200 in the medium resolution mode while it will reach 10^4 in the high resolution mode. The sensitivity of this instrument will be close to 10^{-18} W/Hz.

A schematic view of the focal plane unit is presented in figure 1. The input beam comes from the pyramidal mirror. The beam is collimated by a large mirror assembly. However, mirror 2 restricts the field of view to an opening of 1.65 arc minutes. In the medium resolution mode the beam goes directly to the diffraction grating while in the high resolution mode it passes through a Fabry-Perot interferometer mounted on a wheel in front of the grating. The diffracted radiation from the grating is collected by a spherical mirror and brought to a focus along a line matching the surface of the detector assembly. The temperature of the optics will be 3 K while the detectors will be cooled to 1.8 K.

The detectors divide the wavelength range into ten spectral channels. The spectral range and position of each detector will be as indicated in figure 2. Each detector will cover approximately a spectral band with sufficient to allow for a 50% redundancy in the case of detector failure. There are three types of detectors. SW1 is a Ge:Be photoconductor covering the 45-55 µm region. LW1, SW2, SW3, SW4, SW5 are unstressed Ge:Ga photoconductors which cover the 50 to 120 µm region. LW2, LW3, LW4, LW5 are uniaxially stressed Ge:Ga photoconductors covering the range from 100 to 200 µm. The stress applied to each detector will be adjusted in order to get the peak response in the corresponding wavelength range, and to minimize the dark current of the shorter wavelength stressed detectors. Stressed and unstressed detectors are located alternatively in order to receive the first and second
order of the diffracted beam. In the medium resolution mode
the ten detectors are used simultaneously while in the high
resolution mode only one detector is used. Response curves for
prototype stressed and unstressed Ge:Ga photoconductors are
shown in figure 3 together with the usable wavelength ranges
allowed for each type. In order to limit the spectral range of
the incident beam a bandpass filter will be used with each
detector. This will be a metal mesh filter consisting of a
combination of about five grids made by photolithographic
process. Very narrow spectral passbands can be achieved, as
illustrated by the 160µm filter profile shown in figure 4. In
addition to the bandpass filter, a blocking filter will be
used to reject the near IR radiation.

Figure 5 presents a schematic view of an unstressed
detector mounting unit. The filter assembly is placed at the
aperture of a parabolic light concentrator used to limit the
field of view of each detector. The unstressed detector glued
on a sapphire support is placed in a spherical integrating
cavity in order to increase its effective absorption
 efficiency. A set of two feedthroughs is used to connect the
detector contacts with the external wires. This reduces
dramatically the light leakage at the detector.

In figure 6 a schematic drawing of a stressed detector
mounting unit is presented. The detector is mounted between
two pieces of sapphire and stressed with a screw over a ball.
The overall stress system is 9.6 mm long and has a diameter of
3 mm. Detector mount is typically 26.2 mm long, 16.9 mm high
and 6.7 mm in width. The detectors are mounted on a bar which
is coupled strongly to the superfluid helium tank in order to
operate the detectors at a temperature of 1.85 K. The detector
assembly is shown in figure 7. To calibrate the detectors
during the flight five infrared sources are placed in front of
the detector assembly. These sources are mounted on the
sidewall of the instrument. Figure 8 shows how they are placed
with respect to the principal beam.

The currents from the detectors are collected by ten
individual integrating amplifiers (Infrared Labs model JF4)
mounted in T05 cans. They are placed in holes built into the
detector support frame behind the detector block as shown in
figure 7. The JF4 circuit is presented in figure 9. It
consists of 3 Si JFETS. The photocurrent is integrated on the
7.5 pF gate capacitance of the JFET1. The resulting voltage is
transmitted to the output by the JFET1 mounted in a follower
configuration. The input is set to zero by the "reset and
compensation process". Figure 10 shows a functional diagram of
the warm analogue processing unit for the detector subsystem.
The output voltage of the IA is amplified and AC coupled. It
is then sampled at around 100 Hz and finally converted into a
digital signal.
The integrating amplifier has been chosen to avoid the limitation by Johnson noise of the feedback resistor that is encountered in the transimpedance amplifier configuration. Moreover if the detector is noiseless the signal to noise ratio is improved at a rate \((t)^{3/2} \) faster than \((t)^{1/2} \) obtained in TIA configuration, where \(t \) is integration time. The detector dark current is a very critical feature and in the IA configuration must be reduced to a very low level. Originally, it was intended to operate the unstressed detectors at 3 K and the stressed detectors at 2 K, with TIA readout electronics. However, reducing the operating temperature of all the detectors to 1.85 K results in a dramatic reduction in the dark current. In the first base line the unstressed detectors were cooled down to 3 K and the temperature of the stressed detectors was 2 K. Reducing the temperature to 1.85 K for all of the 10 detectors permits to decrease the dark currents by one order of magnitude. This is shown in figure 11 for the unstressed prototype. The prototype is a cube of 1.4 mm base length biased with 350 mV while its breakdown voltage is around 500 mV. At 1.85 K the dark current reaches 300 e/s.

The variation of the dark current with temperature for the stressed prototype is shown in figure 12. The stressed detector is also a cube of 1.4 mm base length. The bias voltage is equal to 100 mV while the breakdown voltage is around 150 mV. At 1.85 K the dark current of the stressed prototype approaches \(10^4 \) e/s.

With the reduction of the temperature no significant difference in sensitivity for the unstressed detector has been measured. On the other hand, the signal to noise ratio of the stressed detector is improved as the temperature decreases. This is shown in figure 13 where the variation of the normalized responsivity and the normalized square root of the dark current are plotted as a function of the temperature. Assuming that the noise is limited by the dark current shot noise, it decreases more rapidly than the responsivity. In these operating conditions the performances of the Gallium doped Germanium detector prototype are as follows: the responsivities reach 3A/W for the unstressed detector and 5A/W for the stressed one. The Noise Equivalent Powers approach \(10^{-18} \) W/Hz for the unstressed detector and a few \(10^{-18} \) W/Hz for the stressed one.
Schematic of LWS

FIGURE 1
<table>
<thead>
<tr>
<th>DETECTOR</th>
<th>TYPE</th>
<th>NORMAL RANGE</th>
<th>USABLE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>Ge:Be.u</td>
<td>45 - 50 µm</td>
<td>45 - 55 µm</td>
</tr>
<tr>
<td>LW1</td>
<td>Ge:Ga.u</td>
<td>90 - 110 µm</td>
<td>80 - 120 µm</td>
</tr>
<tr>
<td>SW2</td>
<td>Ge:Ga.u</td>
<td>50 - 60 µm</td>
<td>50 - 65 µm</td>
</tr>
<tr>
<td>LW2</td>
<td>Ge:Ga.s</td>
<td>110 - 130 µm</td>
<td>100 - 140 µm</td>
</tr>
<tr>
<td>SW3</td>
<td>Ge:Ga.u</td>
<td>60 - 70 µm</td>
<td>55 - 75 µm</td>
</tr>
<tr>
<td>LW3</td>
<td>Ge:Ga.s</td>
<td>130 - 150 µm</td>
<td>120 - 160 µm</td>
</tr>
<tr>
<td>SW4</td>
<td>Ge:Ga.u</td>
<td>70 - 80 µm</td>
<td>65 - 85 µm</td>
</tr>
<tr>
<td>LW4</td>
<td>Ge:Ga.s</td>
<td>150 - 170 µm</td>
<td>140 - 180 µm</td>
</tr>
<tr>
<td>SW5</td>
<td>Ge:Ga.u</td>
<td>80 - 90 µm</td>
<td>75 - 95 µm</td>
</tr>
<tr>
<td>LW5</td>
<td>Ge:Ga.s</td>
<td>170 - 180 µm</td>
<td>160 - 200 µm</td>
</tr>
</tbody>
</table>

"U" IS UNSTRESSED AND "S" STRESSED

FIGURE 2

SPECTRAL RANGE AND POSITION OF THE DETECTORS
FIGURE 3

SPECTRAL RESPONSES OF STRESSED AND UNSTRESSED Ge:Ga PHOTOCONDUCTORS
FIGURE 4

MEASURED FILTER RESPONSE
FIGURE 5

UNSTRESSED DETECTOR MOUNTING UNIT
FIGURE 6

STRESSED DETECTOR MOUNTING UNIT
FOCUSING MIRROR

FROM GRATING

LWS SIDEWALL

CALIBRATION SOURCE DETECTOR

DETECTOR INFRARED CALIBRATION SOURCES (SCHEMATIC)
FIGURE 9

JF4 CIRCUIT
FIGURE 10

SIGNAL PROCESSING
Dark current Versus Temperature for Unstressed Prototype

$V_B = 350 \text{ mV}$

FIGURE 11

378
Dark current Versus Temperature for

1.4 mm Stressed q₀: q₀ Prototype

$V_B = 100 \text{ mV}$

FIGURE 12
Normalised Responsivity and Dark current Versus Temperature for 1.4 mm Stressed Prototype

\[
\frac{S}{S_0} ; \left(\frac{I_a}{I_{d0}} \right)^{1/2} \quad \text{Normalised to } T = 1.98K
\]

\[U_B = 100 \text{ mV}\]

FIGURE 13