A Review of Gear Housing Dynamics and Acoustics Literature

Teik Chin Lim and Rajendra Singh

The Ohio State University
Columbus, Ohio

October 1989

Prepared for
Lewis Research Center
Under Grant NAG3-773
Table of Contents

Abstract .. 1
A. Introduction .. 2
B. Gear-Shaft-Bearing Dynamics 5
C. Housing Dynamics 25
D. Noise Radiation 41
E. Gearbox Mount System 52
F. Overall Gearbox Dynamics 62
G. Design Guidelines 66
 G.1. Gear Support System 66
 G.2. Gear Housing and Gearbox Mounts 70
H. Areas of Further Research 73
References ... 75
Abstract

A review of the available literature on gear housing vibration and noise radiation is presented. Analytical and experimental methodologies used for bearing dynamics, housing vibration and noise, mounts and suspensions, and the overall gear and housing system are discussed. Typical design guidelines, as outlined by various investigators, are also included. Results of this review indicate that although many attempts were made to characterize the dynamics of gearbox system components, no comprehensive set of design criteria currently exist. Moreover, the literature contains conflicting reports concerning relevant design guidelines.
A. Introduction [1-19]

The primary cause of gearbox vibration and noise can be attributed to gear tooth meshing dynamics, which is characterized by the transmission error [1-4]. The transmission error is the deviation of gear angular position from its ideal location due to tooth profile and spacing error, and elastic deformation of the gear teeth and body. Its magnitude is of the order of several microns. This action produces gear tooth dynamic forces at mesh frequency, \(f_{gm} \) (Hz) where

\[
f_{gm} = N_g f_s
\]

(1)

Here \(N_g \) is the number of gear teeth on the shaft rotating at speed \(f_s \) (Hz). Several harmonics of \(f_{gm} \) are also noted in measured data. Additionally one can get side bands at \(f_{gm} \pm n f_s \), where \(n \) is an integer and \(f_s \) can represent any shaft frequency [4-6].

These forces excite coupled torsional/axial/transverse vibratory modes of the gear shafts and produce lateral and vertical displacements at the support bearing locations. Dynamic bearing forces are then generated due to the relative motions across the bearings in the radial direction. These in turn cause housing vibration and noise radiation at all mesh frequencies. In most cases, the noise radiation from the gear housing is due to flexural or bending vibrations of the housing walls [7]. The characteristic of such a wave motion is shown in Figure 1. If the transmissibilities of the mounts and suspensions are high, they may serve as paths for the structure-borne noise and vibration from the housing to the structures attached. These structures will vibrate and/or radiate noise also. This vibration and noise generation mechanism for a typical planetary geared system is shown in Figure 2 [4,8]. The pulsating force form over a one tooth spacing cycle, generated at the gear teeth in contact for each pair of meshing gears, is also shown in this figure.
There have been numerous efforts since the 1960's to model gearbox dynamics and acoustics analytically, empirically, and experimentally. Analytical and experimental methodologies have been applied extensively to model the dynamics of geared transmission systems. Some of these models have included the dynamics of the gear housing. However, most of the gearbox noise prediction models have been semi-empirical in nature due to the complexity of the noise generation mechanism, and the fact that there have been many experimental programs undertaken to characterize the noise field. The purpose of these studies [7-19] have been to predict and control gearbox vibration and noise radiation. Ultimately, the goal is to obtain an optimal gearbox design which minimizes its vibration and noise radiation.

This review presents previous experimental and analytical methodologies used for shaft-bearing dynamics, housing dynamics and acoustics, gearbox mounts and suspensions, and the overall gear and housing system. Discussion of the various formulations and assumptions is included. Typical results and problem areas regarding the techniques used will be highlighted. Some of the typical design criteria reported by various investigators are also summarized.
Figure 2. Gearbox vibration and noise generation mechanism [4,8]
B. Gear-Shaft-Bearing Dynamics [7-37]

Gear and shaft vibrations produce bearing reaction forces. These forces are responsible for transferring the displacement excitations of the meshing gears to the housing. Knowing the nature of these forces and their transfer paths will allow better control and prediction of the gearbox vibration and noise. A detailed review of the gear dynamics models has been conducted by Ozguven and Houser [20].

Laskin, Orcutt and Shipley [9,10], in 1968, used the Holzer torsional vibration models of simple and planetary gearing systems to compute gear tooth dynamic forces. A segment of this torsional vibration system is shown in Figure 3. Based on this model, two

\[
\begin{align*}
I_n &= \text{mass moment of inertia} \\
T_n &= \text{torque} \\
Q_n &= \text{torsional compliance} \\
C_n &= \text{damping} \\
\theta &= \text{angular motion}
\end{align*}
\]

Figure 3. General portion of the Holzer torsional system. Subscript \(n\) and \(n+1\) indicate station number. [9]
relationships for the angular motion and torque between successive stations and at each station were obtained. One equation described the transfer of angular motion and torque between stations while the other described the difference between the input torque and the output torque at each station. They applied this method, in conjunction with a gear excitation model and experimental data, to study the vibration energy paths of the UH-1D helicopter transmission. Badgley and Laskin [11,12], in 1970, performed similar experimental and analytical studies on the CH-47 helicopter transmission.

Badgley and Chiang [13-15], in 1972, used a shaft-bearing system dynamics approach to obtain the lateral response of a gear support system. Using this approach bearing dynamic forces may be obtained from the previously computed gear tooth dynamic forces [9-12]. This analysis was performed upon the assumption that transverse vibration of the shafts are responsible for transferring the gear tooth dynamic loads to the housing. Moreover, the lateral resonance frequencies are within the gear mesh frequency range, that is, in the order of a kiloHertz. Finite cylindrical beam elements with rotation and lateral degrees of freedom were used to model the system. Nonisotropic linear bearings, and uncoupled torsional and lateral motions of the system were assumed. Effects of housing flexibility on the gear-shaft dynamics were not included.

An experimental evaluation was done in parallel with these analytical predictions. Qualitative results for gear mesh frequencies, vibration levels, etc. were in good agreement with the experimental data. However, these methods do not indicate the effectiveness of a gearbox design change in terms of vibration and noise reduction in the audible frequency range, as shown by Sternfeld, Schairer and Spencer [16].

Bowes et. al. [17-19], in 1977, reviewed and modified previously constructed analytical models by Badgley and Chiang to include the dynamical effects of housing mass, stiffness, and damping. The Holzer-Myklested technique was used to model the uncoupled torsional and flexural vibrations of the geared system with shafts as slender cylindrical
beams and the gears as lumped masses and inertias. A typical model is shown in Figure 4 where each shaft segment was treated as a uniform torsion-flexure element with distributed inertia. The model has N shaft segments with N+1 stations. At each station, a rigid body of mass m and mass moment of inertia I, and/or an excitation F_M may be attached. Due to the assumption that the torsional motion is uncoupled from the lateral motion, both of the related impedance matrices were obtained separately. Using the transfer matrix approach, the mechanical impedance of the total geared system was constructed such that [19]

$$
\begin{bmatrix}
F_1 \\
F_2 \\
F_3
\end{bmatrix} =
\begin{bmatrix}
[z_{11}] & [z_{12}] & [0] \\
[z_{21}] & [z_{22}] & [0] \\
[0]^T & [0]^T & [z_{33}]
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
$$

(2)

where

- $[z_{ij}] = \text{impedance submatrix relating responses in the } i \text{ direction to excitations in the } j \text{ direction}$
- $[0] = \text{null submatrix}$

Figure 4. Geared system representation [19]
with

\[x_i = \text{responses in the } i \text{ direction} \]
\[F_j = \text{excitations in the } j \text{ direction} \]
\[i, j = 1, 2, 3 \]

\[1 = \text{vertical direction} \]
\[2 = \text{horizontal direction} \]
\[3 = \text{angular torsional direction} \]

This resultant impedance matrix was then combined with the housing impedance, which will be discussed later, using the component synthesis method. The bearing models consisted of nonlinear springs in the two orthogonal directions, considering bearing geometry, torque, and shaft speed [17-19,21]. The SH-2D helicopter transmission was analyzed [17-19].

Salzer, Smith and Welbourn [22,23], in 1975 and 1977, simulated a 6 degrees of freedom lumped-mass model of an automobile gearbox's internal components, independent of the housing parameter, on an analog computer. The system and its simulation block diagram are shown in Figure 5 and 6 respectively. An analog model was used. The computed

![Diagram of idealized gearbox components](Image)

Figure 5. Idealization of the automobile gearbox internal components [22]
bearing forces were available immediately for audible output through a loudspeaker. The results were found to be very similar in character to the experimental data when seen in the frequency domain, however the magnitudes were not the same. Astridge and Salzer [24], in 1977, also used the partial lumped-mass method to model the vibrations of the Wessex Tail Rotor gearbox as illustrated in Figure 7. Thirteen lumped mass locations numbered 1 thru 13 were selected with each having 6 degrees of freedom. All the shafts and part of the housing were modeled as hollow cylindrical beams. The stiffness matrix of the complex housing section was obtained using the finite element method. Sinusoidal forced response analysis indicated very little relative displacement across the bearings, since the shafts and housing virtually moved together, and the dynamic bearing loads were about 5% of the static loads.

Recently, Neriya, Bhat and Sankar [25] used the lumped-mass model to include the coupled torsional and lateral vibrations of a simple gear-shaft system as illustrated in Figure 8. At the bearing locations, the simply supported boundary conditions were assumed.
Figure 7. Wessex Tail Rotor Gearbox model idealization and the location of lumped-masses and inertias [24]

Figure 8. Simple gear-shaft system [25]
A lumped parameter model of the dynamometer, motor, shaft stiffnesses, and gears was used to obtain a set of second order dynamic equations [9]

\[
[M] \ddot{q} + [C] \dot{q} + [K] q = \{F\}
\]

where
- \(M\) = generalized mass matrix
- \(C\) = generalized damping matrix
- \(K\) = generalized stiffness matrix
- \(q\) = generalized displacement vector
- \(F\) = generalized force vector

Using the normal mode analysis method, the dynamic tooth loads were estimated to be maximum at the torsional resonances, which concluded that coupling between the torsional and lateral vibrations did not have significant effect on this behavior.

The finite element method (FEM) was also used to model the internal components of geared transmissions. These models were usually uncoupled from the housing, like most of the previous ones, by using the assumption that the gear-shaft system is much more flexible than the housing. Hartman [26] used the finite element method to model the transverse-torsional-axial vibration of the 301 HLH/ATC helicopter geared transmission. The dynamic tooth forces computed using the approach adopted by Laskin, Orcutt, and Shipley [9] were used as inputs in the forced response analysis. He indicated that the finite element approach has the advantage of allowing coupling between adjacent shafts across the gear meshes by defining gear mesh stiffnesses. The gears were modeled as lumped masses and inertias, with linear springs between the nodes, shafts were modeled as beams, and bearings were modeled as beams and springs. Sciarra et. al. [8,27], Drago [28], and Royal, Drago and Lenski [29] used similar finite element program to model the CH-47 helicopter geared transmission as illustrated in Figure 9.
In addition, the strain energy densities at each mesh frequency were computed to identify possible design alterations. Observations of the first 20 mode shapes indicated that most of them are primarily coupled bending/torsion modes. The bearing forces computed were used to excite the NASTRAN finite element housing model. These loads were phased at each mesh frequency due to damping.

Neriya, Bhat and Sankar [30] specifically studied the effect of coupled torsional-transverse vibration of a simple gear shaft system, also shown in Figure 8, now using 41 degrees of freedom finite element model. A typical beam element with 6 degrees of freedom is shown in Figure 10. Nonisotropic bearing elements were assumed by specifying linear stiffnesses in two orthogonal directions in the plane of the support bearings. Typical stiffness is approximately 10^8 N/m. However, the basis for obtaining the equivalent damping coefficient in each mode is not clear.
Steyer [31], 1987, mentioned that a detail analysis of a geared transmission would take up a lot of time and also require some modeling experience. He then suggested an impedance analysis of a simple gear-shaft system, independent of housing parameters, for dynamic bearing forces estimation. This was done by assuming a large impedance mismatch at the support bearings. First, the excitation at the mating teeth, F_{mesh}, was given by the product of the mesh impedance, Z_{mesh}, and the relative velocity between mating teeth, $i\omega\delta$. The mesh impedance was evaluated in terms of the impedances of the shafts for the translational and rotational components, and the lateral vibration of the shaft at the bearing location was given as [31]

$$x_1 = F_{\text{mesh}} Z_{T1}^{-1} / i\omega \quad (4)$$

where

$Z_{T1}^{-1} = \text{mobility of shaft 1 (translational)}$

$\omega = \text{angular velocity}$

$i = \sqrt{-1}$
Defining a bearing stiffness, $K_b(\omega)$, the bearing force [31]

$$F_b = x_1 K_b$$

(5)

The final form of the bearing force for identical shaft 1 and 2 was shown to be [31]

$$F_b = K_b \delta \left[Z_T (i\omega K_m^{-1} + 2Z_R^{-1}) + 2 \right]^{-1}$$

(6)

where

$Z_T = \text{shaft translational impedance}$

$Z_R = \text{shaft rotational impedance}$

$Z_M = \text{tooth compliance}$

The bearing response based on this model is shown in Figure 11. The response was

![Figure 11](image)

Figure 11. Typical force transmissibility curve (exact and asymptotic) [31]
divided into 5 regions which are also tabulated in Table 1. Each region has its own controlling factor, for example, the response in region IV is proportional to the ratio of the gear torsional inertia to the sum of inertia and mass, and the response in region III is proportional to the gear torsional inertia.

Table 1. Frequency limits and approximate response for the 5 regions [31]

<table>
<thead>
<tr>
<th>Zone</th>
<th>Expression</th>
<th>Frequency Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$2F_B/K_B \delta \omega^2 (J_G + J_R)/R^2 K_T$</td>
<td>$\omega^2 = 0$</td>
</tr>
<tr>
<td>II</td>
<td>$K_T/(K_T + K_R)$</td>
<td>$\omega^2 = K_T/(J_G + J_R)$</td>
</tr>
<tr>
<td>III</td>
<td>$\omega^2 J_G/R^2 K_T$</td>
<td>$\omega^2 = K_R (J_G^{-1} + J_R^{-1})$</td>
</tr>
<tr>
<td>IV</td>
<td>$J_G/(R^2 M + J_G)$</td>
<td>$\omega^2 = 2K_M(M^{-1} + R^2 J_G^{-1})$</td>
</tr>
<tr>
<td>V</td>
<td>$K_T/(M\omega^3)$</td>
<td>$\omega^2 = \infty$</td>
</tr>
</tbody>
</table>

where M = Shaft effective mass
K_T = Shaft lateral stiffness
R = Gear pitch radius
J_G = Gear torsional inertia
K_R = Shaft torsional stiffness
J_R = Reaction torsional inertia

In the previous mathematical models, for the vibration energy transfer through the bearings, only radial forces were assumed acting through the bearings. Rajab [32] allowed radial and moment loads transmitted through the support bearings. The sketch of the ball bearing model used is shown in Figure 12. Bearing angular and radial stiffnesses were obtained by solving a set of approximate bearing-shaft load-deflection equations using the
$F_m = \text{maximum load}$

$F_r = \text{radial load}$

$M_b = \text{moment load}$

$\theta = \text{angular deflection}$

$\delta_r = \text{radial deflection}$

$r_m = \text{pitch radius}$

Figure 12. A bearing under radial and moment load [32]

Newton-Raphson iteration method. The solution for the bearing radial force F_r, and moment M_b were used to define the bearing stiffness elements as [32]

$$K_{rr} = \frac{F_r}{\delta_r} \quad \text{lbf. / in.}$$

$$K_{r\theta} = \frac{F_r}{\theta} \quad \text{lbf. / rad.}$$
These results compared well with the manufacturer data. A typical comparison is shown in Figure 13 for the radial deflections for some radial loads. In addition, a review of the mathematical models of the bearings is also presented by Rajab [32].

This model was then used in the building-block system analysis of the shaft-bearing-plate model to study the force/motion transmissibility through the support bearings. Related experimental studies were performed on a single shaft supported by a flat rectangular plate.
through a radial contact bearing. The plate was clamped at all the edges as illustrated in Figure 14.

![Shaft-bearing-plate setup for bearing transmissibility studies](image)

Taha [33] also analyzed bearing transmissibility using a set of load-deflection equations of the shaft-bearing-housing system. The deflection of the housing was taken into account when computing the radial and moment loads across the bearings. These analyses were only used to study the effect of bearing misalignment on the performances of the gearbox, such as shaft deflection and bearing life. The Wessex Tail Rotor gearbox was analyzed as an example.

The statistical energy analysis (SEA) method has been used to analyze power flow in marine geared transmissions from the gears to the housing [7,34]. This SEA approach is valid when the modal density is high. A complex system like a gearbox can be divided into many subsystems. An energy balance is then performed on the entire system by considering energy stored, energy loss to the environment and energy transfer from one subsystem to another. The response of each subsystem is computed in terms of the average
and standard deviation of the rms response in a frequency band. Lu, Rockwood and Warner [34] developed an SEA model of a marine gear-turbine system, using 79 subsystems and 148 junctions schematically shown in Figure 15, for comparison with the finite element method (FEM). The result is shown in Figure 16.

Figure 15. SEA model of a marine gear-turbine system [34]

Figure 16. Analytical method applicable range [34]
The SEA method is obviously preferred in the high frequency range because it is not affected by the increase in the number of participating modes as in the FEM. The general power flow equation based on the SEA method is given as \[34\]

\[
\begin{pmatrix}
\eta_1 + \sum_{j=2}^{N} \eta_{1j} & -\eta_{21} & \cdots & -\eta_{N1} \\
-\eta_{12} & \eta_2 + \sum_{j=3}^{N} \eta_{2j} & \cdots & -\eta_{N2} \\
\vdots & \vdots & \ddots & \vdots \\
-\eta_{1N} & \cdots & \eta_N + \sum_{j=1}^{N-1} \eta_{Nj}
\end{pmatrix}
\begin{pmatrix}
E_1 \\
E_2 \\
\vdots \\
E_N
\end{pmatrix}
= \begin{pmatrix}
\pi_{in}^1 / \omega \\
\pi_{in}^2 / \omega \\
\vdots \\
\pi_{in}^N / \omega
\end{pmatrix}
\] (11)

where \(\eta_i \) = The loss factor of subsystem \(i \) \\
\(\eta_{ij} \) = Coupling loss factor \\
\(E_i \) = Energy stored in the subsystem \\
\(\pi_{in}^i \) = Input power \\
\(\omega \) = Frequency (rad/sec)

Lyon [7] also used the SEA method to estimate the transfer functions for the energy transfer paths in a marine gearbox. He showed that the SEA prediction was better than than the lumped-mass model when compared with a 1/4 scale model. These comparison are shown in Figure 17.

In other experimental studies, Ishida, Matsuda and Fukui [35] studied the transmission of vibration energy in an automobile gearbox by examining the acceleration and noise frequency spectra at various locations on the gearbox and in its surroundings. A schematic of the vibration and noise transmitting paths is shown in Figure 18. It was also found that most (95%) of the total gearbox noise came via the structure-borne paths, where
Figure 17. Analytically and experimentally obtained transfer function (gear to housing) of a marine gearbox [7]

Figure 18. Vibration and noise transmitting paths in an automobile gearbox [35]
the fraction \(E_D = 95\% \) was computed as

\[
E_D = \frac{E_S}{E_S + E_A} \tag{12}
\]

where

- \(E_A \) = output energy density through air-borne path
- \(E_S \) = output energy density through solid-borne path

The output energy densities were computed from the mean noise reductions for the air-borne, solid-borne, and total noise. This high structure-borne noise contribution is due to the fact that most of the air-borne noise from the meshing gears was reduced by the housing. In addition, a free torsional vibration analysis using Holzer's method was also performed on this multispeed geared transmission.

Randall [36,37] suggested examining the vibration data in the cepstrum domain to extract certain information on the gearbox vibration which otherwise cannot be obtained from the frequency (spectrum) and time domains. The cepstrum is an inverse Fourier Transform of the logarithmic power spectrum, or mathematically [36]

\[
C(\tau) = \left[\mathcal{Z}^{-1} \{ \log F(f) \} \right]^2 \tag{13}
\]

where

- \(C(\tau) \) = cepstrum
- \(F(f) \) = power spectrum of the time signal
- \(\mathcal{Z}^{-1} \{ \} \) = inverse Fourier Transform

This cepstrum analysis was reported to allow one to extract periodicity in the spectrum, detect increases in sideband amplitudes and spacing, which usually implies deterioration of geared transmission, analyze spectra of very fine resolution, separate excitation from the
vibration transfer path function, etc. Randall [37] used cepstrum analysis to obtain the excitation and its transfer path functions from the measured response of a gearbox. This could be done because the cepstrum of the measured response is a sum of the excitation and its transmission path cepstra. Also, the excitation was found to concentrate at higher quefrency range as compared to the transmission path function. To show this application, consider the spectrum of the measured response [37]

\[F(f) = G(f) * H(f) \] (14)

where \(G(f) \) and \(H(f) \) are the excitation and impulse response spectra. Hence, the Fourier Transform of logarithmic measured response function in equation (14) is [37]

\[\mathcal{S}^{-1}\{\log F(f)\} = \mathcal{S}^{-1}\{\log G(f)\} + \mathcal{S}^{-1}\{\log H(f)\} \] (15)

i.e. the sum of source and impulse response cepstra is the measured response cepstrum. A typical cepstrum is shown in Figure 19. The excitation can be seen to dominate at the high

![Figure 19. Measured response cepstrum [37]](image-url)
quefrency range. Once the region of low quefrency range, where the effects of the impulse response is significant, is determined, it is possible to curve fit the response to a transfer function with a known number of poles and zeroes. This can then be subtracted from the total cepstrum leaving only the excitation cepstrum. These cepstra can then be transformed back to the frequency or time domains for diagnostics.

Lyon [7] performed mode counts on a gear and shaft to study the vibration transfer in these structures. He showed that at high frequency, part of the gear-shaft system acts as a 2 dimensional structure resulting in a higher number of participating modes. For example, Figure 20 indicates that the hub of the gear displays new circumferential modes, in addition to the 1 dimensional shear and bending modes, at frequencies above 16 kHz. On the other hand, the bending, and inplane longitudinal and shear vibrations of the rim of the gear occurs at all frequencies. This occurrence of additional modes results in a higher ability of the structure to transfer vibration energy.

Figure 20. Mode counts in third-octave bands for rim and hub of a gear [7]
C. Housing Dynamics [4,8-11,13,15-19,21,24,26,28,29,33,34,38-48]

A number of publications [8,9,11,13,16,18,21,26,35,38-45] contain experimental data on gear housing vibration due to gear excitation at the mesh frequencies and their multiples. Most of these give the transverse acceleration frequency spectra of the housing plates. Ishida, Matsuda and Fukui [35], and Lewicki and Coy [44] indicated that higher gearbox operating speed implies higher average rms vibration of the housing walls. Also, others have realized that the measurement locations significantly affect the measured vibration due to change in vibration transfer path function from one point to another. On the other hand, housing vibration was found to be quite insensitive to change in geared transmission nominal input/output torque.

Although extensive experimental studies were undertaken, attempts to correlate these test results with analytical predictions were limited. One reason may be the complexity of the housing geometry involved, for example the CH-47 and UH-1D helicopter transmission described in the previous section. To date, modeling of gear housing vibration may be grouped as lumped-mass approach, analytical modal analysis, finite element method (FEM), and statistical energy analysis (SEA), etc. Some of these methods were combined to form a hybrid model and some were aided by other secondary methods in order to achieve a simple but reliable dynamic model.

One of the early efforts to model a gear housing as a nonrigid structure, where it was not coupled to the gear-shaft system, was done in 1972 by Badgley and Chiang [13,15] in their continuous effort to predict and control helicopter gearbox vibration and noise. They applied thin shell theory to characterize the dynamics of finite cylindrical elements of variable thickness used in modeling the ring gear housing of the CH-47 and UH-1D helicopter transmissions. The choice of this element was a natural one for the shape of the
gear housings with the ring gear. The CH-47 housing model, composed of 3 cylindrical shell elements, is illustrated in Figure 21. Simply supported conditions were assumed at the two edges which allowed only rotation about the circumference. Free and forced vibration analyses were performed. In the free vibration analysis, axial and/or circumferential modes were found to dominate the behavior as expected. It was noted that although the housing is axisymmetric some modes are not axisymmetric, like the 2nd circumferential mode shape in which the amplitude repeats itself twice per revolution as shown in Figure 22. An example of the first and second axial modes are illustrated in Figure 23. Typical natural frequencies of the housing are tabulated in Table 2. Comparison of these natural frequencies with the gear mesh frequencies and its multiples indicated that the CH-47 housing would react as a forced-response vibration, i.e. no amplification due to resonances, and the UH-1D housing would react as a resonant-response vibration. The reason given was that most of the gear mesh frequencies for the CH-47 geared transmission were lower than the fundamental
Figure 22. Circumferential mode shape (n=2) [13,15]

Figure 23. First and second axial mode shape [13,15]
Table 2. Natural frequencies (Hz) of the CH-47 and UH-1D gear housing [13,15]

<table>
<thead>
<tr>
<th>Wave Number n</th>
<th>First Axial Mode</th>
<th>Second Axial Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH-47</td>
<td>UH-1D</td>
</tr>
<tr>
<td>0</td>
<td>4350</td>
<td>4380</td>
</tr>
<tr>
<td>4</td>
<td>5220</td>
<td>4020</td>
</tr>
<tr>
<td>6</td>
<td>6350</td>
<td>3960</td>
</tr>
<tr>
<td>8</td>
<td>7660</td>
<td>5800</td>
</tr>
<tr>
<td>12</td>
<td>10950</td>
<td>9450</td>
</tr>
</tbody>
</table>

natural frequency of the housing, whereas a number of the gear mesh frequencies for the UH-1D geared transmission are very close to the first axial, and second and fourth circumferential modes.

In the forced vibration analysis, the dynamic tooth loads obtained by Laskin, Orcutt and Shipley [9,10], discussed in section B, were expressed as a Fourier series and used as the input to this analysis. This exercise could be shown by considering the dynamic tooth loads of the form [9]

\[F_A(\theta, t) = F_A(\theta) \cos \omega t \]

(16)

where \(F_A(\theta) = \) circumferential distribution of radial forces
\(\omega = \) forcing frequency (rad/sec)
\(t = \) time
\(\theta = \) angular position with respect to gear A (Figure 24)

Figure 24 illustrates the coordinates of the planetary gear system. Expansion of the function representing the circumferential distribution of the radial forces, as shown in Figure 25, as
Figure 24. Schematic diagram and the coordinate system for the UH-ID lower planetary gears [9]

Figure 25. Circumferential distribution of the radial force of one planet gear [9]
a Fourier series led to [9]

\[F_A(\theta) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos m\theta \]

(17)

where \(a_0 \) and \(a_m \) are the Fourier coefficients. Equation (16) and (17) were used to characterize the forcing function due to planet gear A. The dynamic response of the gear housing for each Fourier coefficient was then computed, and the form of the response function may be written as [9]

\[w(\theta_A, z, t) = b_A(\theta_A, z) \cos \omega t \]

(18)

Finally, the responses due to planet gear B, C and D were obtained in a similar fashion. Using the method of superposition, the total response was constructed by the addition of each responses using the appropriate spatial and temporal relationships. Responses of the two transmission, shown in Figure 26 and 27, were found to support the prediction that the

![Graph](image)

Figure 26. Normal displacement of the CH-47 housing due to lower planet gear forces [9]
CH-47 ring gear housing acted as a vibration energy transfer (forced-response) while the UH-1D one acted as a noise source (resonant-response).

With respect to earlier coupled housing and gear-shaft vibration models, Astridge and Salzer [24], in 1977, used the semi lumped-mass approach (the stiffness matrix of the complex housing section was obtained using FEM) to model the Wessex Tail Rotor gearbox shown in Figure 7. Out of the 13 lumped-mass locations specified as mentioned before, each with 6 degrees of freedom, 6 of them are located at the housing structure. Although the transmission is quite complex, a simple model was chosen to incorporate the dynamics of the gear-shaft and housing into one single model.

Some experimental methods such as operating motion survey [42,45], and experimental modal analysis [32,45,46] were also used to model the vibrational characteristics of the gear housing plates and to obtain its system parameters. The advantage of using these methods as compared to the purely analytical method is that the system matrices are constructed from the response data of a real gearbox, where the
development of an analytical model requires knowledge of the housing dynamic behavior and assumptions to simplify the modeling procedure.

The operating motion survey technique involves extraction of the mode shapes and natural frequencies by examining the transfer function between 2 points on the gear housing. Since this method requires mounting of at least two acceleration measuring devices (accelerometers), these devices may alter the system characteristics. Singh, Zaremsky, and Houser [45] used this method in addition to structural modal analysis and acoustic intensity methods to correlate gear housing plate natural frequencies to their mode shapes. The comparison of the second mode shapes using these methods is shown in Figure 28a, 28b and 28c.

![Figure 28a. Normalized contours of the 2nd mode (modal analysis) [45]](image1)

![Figure 28b. Normalized contours of the 2nd mode (operating motion survey) [45]](image2)
The experimental modal analysis technique has also been widely used not only in dynamic analysis of gearbox but also in many other mechanical systems. Modal analysis may be defined as the characterization of the dynamic properties of an elastic structure through the identification of its mode shapes and natural frequencies. The general steps involve are measurements of force and response signal, determination of frequency response function using Fourier Transform, and curve fitting to obtain natural frequencies, damping, and transmissibility from one point to another. This method allows one to obtain the modes of vibration by avoiding interference from the excitation frequencies. As mentioned before, Singh, Zaremsky and Houser [45] used this method to obtain inertance transfer function of 75 locations for the housing plate shown in Figure 28. Van Haven, De Wachte and Vanhonacke [46] also used the experimental modal analysis technique to characterize a gear-motor housing reported to radiate excessive noise. They claimed that the fundamental frequency coincided with one of the gear mesh frequencies, and by ribbing the housing interior shifted the natural frequency away from the excitation frequency.

Rajab [32] also used experimental modal analysis to model a clamped plate with one support bearing on it as shown in Figure 14 of section B. This model together with the shaft and bearing models were combined using the building-block system (substructure

Figure 28c. Normalized acoustics intensity contours of the 2nd mode [45]
type) analysis where the total system dynamic matrix is constructed from the individual component dynamic matrices. This resultant system matrix equation was used for forced response analysis to optimize the bearing location for reduced transverse plate vibration.

With some recent advancements in acoustic intensity measurement techniques, Singh, Zaremsky and Houser [45] were able to use this method to perform "in-situ" measurements of acoustic intensity very close (0.5 in.) to the surface of the vibrating housing plate shown in Figure 28. The two-microphone cross-spectrum technique was actually used to obtain the housing plate vibration modes, which were found to compare well with other methods such as modal analysis and operating motion survey, as shown in Figure 28. The acoustic intensity very near the surface was estimated to be [45]

\[I_r = \langle pu_r \rangle_t \] \hspace{1cm} (19)

where

\[p = \frac{p_1 + p_2}{2} \]
\[u_r = \frac{-1}{\rho_o} \int \left(\frac{p_1 - p_2}{\Delta} \right) dt \]

with

\[p = \text{sound pressure} \]
\[u_r = \text{radial velocity} \]
\[\rho_o = \text{air density} \]
\[\Delta = \text{microphone spacing} \]
\[\langle \rangle_t = \text{time averaged} \]

and where the accuracy depended on the microphone spacing \(\Delta \), and the proximity to the radiating surface.

Bowes, et. al. [17-19], in 1977, as mentioned before in the previous section included the effects of housing mass, stiffness, and damping in the gearbox noise and vibration
analysis of the SH-2D helicopter transmission. The component synthesis method was used to connect the gear-shaft system with the gear housing system. This was done by summing the terms in the subsystem impedance matrices which corresponded to the same global position. The method used to derive the housing impedance was an incomplete modeling technique using modal data and an approximate mass matrix. The housing was suspended using a low rate stiffness to isolate it from its environment for modal testing. Initially, the housing was divided into many elemental masses with its corresponding degree of freedom. Bowes, et. al. [17-19] used 44 housing degrees of freedom on the SH-2D housing where 20 of which corresponded to the interface degrees of freedom. The diagonal mass elements were then obtained from the elemental masses while the off-diagonal elements were estimated. The new modified mass matrix was obtained from the approximate matrix by imposing the condition [19]

\[\{\phi_i\}^T [M] \{\phi_j\} = 0 \quad \text{for} \quad i \neq j \] (20)

where

\[\{\phi_i\}^T = \text{transpose of } i\text{-th normal mode} \]

\[[M] = \text{mass matrix} \]

\[\{\phi_j\} = j\text{-th normal mode} \]

In addition, the matrix containing stiffness and damping was computed using [19]

\[[K] = [M] \left(\sum_{i=1}^{N} \frac{\Omega_i^2}{m_i} \{1 + j\epsilon_i \} \phi_i \phi_i^T \right) [M] \] (21)
where \(\omega_i \) = \(i \)-th natural frequency
\(c_i \) = \(i \)-th damping coefficient
\(j = \sqrt{-1} \)

The undamped impedance matrix was then obtained from the mass and stiffness matrices [19]

\[
[z] = -\omega^2 [M] + [K]
\] (22)

which can be used with the gear-shaft system impedance matrix to analyze the gearbox dynamics.

The finite element method (FEM) was also widely used due to the existence of general purpose finite element programs such as NASTRAN, ISAP-4, SPADAS, ANSYS, etc. In most cases, the gear housing was modeled independently from the geared transmission with assumed boundary conditions and/or input dynamic bearing/gear forces at the interfaces. Kato, Takatsu and Tobe [42] used 480 plate elements on ISAP-4 to obtain the vibration modes of a simple gear housing consisting of rectangular plates. An example of a mode shape computed is shown in Figure 29.

![Figure 29. Vibration mode of a gear housing (0.4m x 0.32m x 0.28m) at 1320 Hz [42]](image-url)
Croker, Lalor and Petyt [47] used isotropic thin flat plate and isoparametric thick flat plate elements, shown in Figure 30, on SPADAS to model the vibration of an engine block.

![Isoparametric thick flat plate element](image)

Figure 30. Isoparametric thick flat plate element (8 nodes, 6 DOF/node) [47]

The substructure method involves dividing the housing into several parts, resulting in smaller mass/stiffness matrices, and assembling the global matrices with the assumption that each substructure can be adequately represented by only a few modes. Using the properties of symmetric and antisymmetric motions, the model size was reduced, but two separate analysis were done instead. For example [47], a symmetry about the y-z plane would require

\[u = \theta_{y} = \theta_{z} = 0 \]

while an antisymmetric motion about y-z plane would require [47]

\[v = w = \theta_{x} = 0 \]

where \(u, v, w \) = displacement in the x, y, z−directions
\(\theta_{x}, \theta_{y}, \theta_{z} \) = rotation about the x, y, z−axis

A typical correlation between the theoretical and experimental natural frequencies is shown in Figure 31.
In the effort to model the complex CH-47 helicopter transmission housing, Drago, et al. [4,8,28,29,48] used the NASTRAN finite element program to develop 3 complex finite element models of the CH-47 gear housing parts. The models are for the upper cover, ring gear housing, and case as shown in Figure 32. Quadrilateral and triangular homogeneous plate elements with membrane and bending capabilities were used in the model. The 3 sections were analyzed separately with simply supported boundary conditions at the interfaces to simulate restraint on the boundaries by adjacent sections. Table 3 lists some of the natural frequencies of each section which are in the vicinity of the planetary gear mesh frequencies.

Strain energy methods were also used with the above finite element models to calculate the strain energy density for each troubled vibration mode. The structural elements with the highest strain energy per unit volume were determined as the best choice for structural modification. This local alteration of the housing would require minimal weight.
change for maximum shift in the natural frequency. Areas of high strain energy for modes 3 and 4 are shown in Figure 33.

Finally, the statistical energy approach, in characterizing the dynamic behavior of the gear housing by statistical means, was used by Lu, Rockwood and Warner [34] as discussed in detail in the previous section. They summarized that this method is suitable for average response determination in the high frequency range. On the other hand, finite element method was recommended for estimating the response at the lower frequency range due to the detailed information available.
Table 3. Some of the natural frequencies near the excitation frequencies [48]

<table>
<thead>
<tr>
<th>Excitation Frequencies</th>
<th>Upper Cover</th>
<th>Gear Housing</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>1566</td>
<td>1518</td>
<td>--</td>
<td>1541</td>
</tr>
<tr>
<td></td>
<td>1568</td>
<td>2334</td>
<td>1603</td>
</tr>
<tr>
<td>3132</td>
<td>3069</td>
<td>2565</td>
<td>3103</td>
</tr>
<tr>
<td></td>
<td>3133</td>
<td>3206</td>
<td>3181</td>
</tr>
<tr>
<td>3606</td>
<td>3570</td>
<td>3206</td>
<td>3588</td>
</tr>
<tr>
<td></td>
<td>3653</td>
<td>4130</td>
<td>3664</td>
</tr>
<tr>
<td>4698</td>
<td>4577</td>
<td>4130</td>
<td>4667</td>
</tr>
<tr>
<td></td>
<td>4775</td>
<td>4770</td>
<td>4735</td>
</tr>
</tbody>
</table>

- Areas of High Strain Density Common to 3 Modes
- Areas of High Strain Density Common to 4 Modes

Figure 33. Areas of high strain energy density for modes 3 and 4 [8]
D. Noise Radiation [4,7,9-15,17-19,22,23,26,35,38,39,41,42,44,45,49-59]

Gearbox noise radiation models have been semi-empirical in nature due to the complexity of the interactions between a vibrating gearbox structure, such as a gear housing and its surrounding fluid. An exact mathematical solution to a sound radiating surface in oscillatory motion has been restricted to simple sound sources and highly idealized environment, such as a pulsating or oscillating sphere and piston radiator [7]. There were many attempts in the past to characterize and correlate gearbox noise frequency spectra with the structural vibration and/or excitations spectra using semi-empirical prediction formulas and various experimental techniques [4,11,13-15,18,19, 26,35,38, 39,42,44,45,49,50]. Most have concluded that the noise prediction is quite complicated and hence an analysis requires many assumptions.

Laskin, Orcutt and Shipley [9,10], in 1968, related the vibration energy in the gearbox to noise radiated. They derived a gearbox noise level mathematical expression by establishing a semi-empirical relationship between the acoustic energy and gear excitation energy. To show this, the total vibration energy \(E_M \) generated by the gear excitations was formulated by Laskin, et. al.[9], as

\[
E_M = \left(\frac{\delta_0 F_0}{4} \right) \left(-\cos(2\omega t + \theta) + 2\omega t \cdot \sin(\theta) \right) \tag{25}
\]

where

\(\delta_0 = \) excitation amplitude
\(F_0 = \) force amplitude
\(\theta = \) phase angle
\(\omega = 2\pi f = \) frequency of vibration (rad/sec)
The first term on the right hand side of equation (25) represents mechanical vibration energy, whereas the second term represents dissipated energy through structural damping. The acoustic energy released per cycle E_A [9],

$$E_A = \alpha \frac{\delta F_0}{4}$$

(26)

was then obtained by introducing an energy conversion factor, (acoustic efficiency) α, for the mechanical energy part. By summing all excitations which contributed to the noise level at frequency f, the sound power W_A expression becomes [9]

$$W_A = \frac{1}{2} \alpha f \sum \delta F_0$$

(27)

Equation (27) was also expressed in sound pressure L_P, dB at distance r by referencing it to a standard set of conditions (point source, free-field, atmospheric temperature=68°F and pressure=29.5 in-Hg) and introducing geometry and environment factor β. The sound pressure level L_P was given as [9]

$$L_P = 10 \log \left(\frac{\rho_o c_o \alpha \beta f \sum \delta F_0}{8 \pi r^2 p_o^2} \right)$$

(28)

where the reference pressure is $p_o = 2 \times 10^{-5}$ Pa and the acoustic impedance is $\rho_o c_o = 473$ kg / m2s. It was noted that the accuracy of this formula depends on the value of the two factors, i.e. α and β, in equation (28). Badgley and Laskin [11], in 1970, rewrote the above sound pressure level expression at third-octave band widths and at full-octave band widths by introducing a filter attenuation factor at each band width. These semi-
empirical relationships were found to predict poorly when compared to experimental data as shown in Figure 34 due to the reason mentioned previously, that is the uncertainty in the numerical values of the factors involved. However, it was noted from the same figure that the character of the noise level is similar to the measured level if the amplitude difference is ignored.

Figure 34. Comparison of empirically predicted gearbox noise and experimental data for cruise flight condition (CH-47 helicopter) [11]

Badgley and Chiang [12,14], in 1972, estimated the sound power radiated, W_A, by the CH-47 ring gear housing using a semi-empirical formula, based on a point source assumption and unity radiation efficiency, given below as [12]

$$W_A = \omega^2 w^2 A \rho_o c_o$$ \hspace{1cm} (29)
where

\[w = \text{averaged normal displacement of housing} \]
\[\omega = \text{frequency (rad/sec)} \]
\[A = \text{Area} \]
\[c_0 = \text{sound velocity} \]
\[\rho_0 = \text{density of medium} \]

The computation of the ring gear housing average displacement was obtained from a composite cylindrical shell structure model of the ring gear housing discussed in section C. A shortcoming of this formula is the omission of the housing geometry. In addition they also expressed the equivalent noise level change \(L_{eq, dB} \) as [14]

\[
L_{eq} \text{ (dB)} = 20 \log \frac{\sum F_B^N}{\sum F_B^0} \tag{30}
\]

where \(F_B^0 \) and \(F_B^N \) are the original and new bearing forces respectively. This change allowed them to evaluate modifications in the geared system design using bearing forces for reduced noise level. Similarly, Salzer, Smith and Welbourn [22,23] assumed that the housing does not change the noise character, and used the bearing force frequency spectra to represent the noise in their analysis.

Section B of this review mentioned Bowes, et. al. [17-19] who refined the Badgley and Chiang models of a geared transmission system. In the process, Bowes, et. al. [19] modeled the gear housing as a small number of simple, baffled, hemispherical acoustic sources. Each source size was estimated as [19]

\[
s_i = \sqrt{\frac{R_o^2}{n}} \tag{31}
\]
where

\[\begin{align*}
S_i &= \text{hemispherical source radius} \\
R_0 &= \text{radius of sphere enclosing transmission housing} \\
n &= \text{number of sources}
\end{align*} \]

Hence based on this assumption, the total sound power radiated (summation of all the sources) was computed using [19]

\[
W_A = \sum_{i=1}^{n} \left[\frac{s_i^4 (a_{oi})^2 \rho_0 c_k^2 \pi}{\omega^2 \left(1 + k^2 s_i^2 \right)} \right]
\]

where

\[\begin{align*}
(a_{oi})_i &= \text{absolute amplitude of acceleration at point } i \\
k &= \text{wave number} \\
c_k &= \text{speed of sound} \\
\rho_0 &= \text{medium density}
\end{align*} \]

A typical comparison between the theoretical prediction and experimental data is shown in Figure 35. Within each frequency band, the prediction closely matched the experimental data.

Ishida, Matsuda and Fukui [35], on the other hand, modeled an automobile gear housing as a circular piston in an infinite baffle to obtain a relationship between the sound pressure, \(p \), and acceleration or velocity of the surface vibration. He summarized this relationship as [35]

\[
p \propto \omega^2 x \quad \text{when } ka < 2 \quad \text{or,} \quad p \propto \omega x \quad \text{when } ka > 2
\]
where \(x \) = amplitude of surface vibration (displacement).

\(k \) = wave number

\(a \) = radius of the circular piston

\(\omega^2 x \) = acceleration of vibration

\(\omega x \) = velocity of vibration

Hence, the sound pressure level would be either proportional to the acceleration or velocity level depending on the area of the vibrating surface.

The link (radiation efficiency) between the structural vibrations and sound pressure level, assuming an ideal environment, is the most important step in predicting noise from a vibrating surface. The radiation efficiency is also very difficult to estimate due to the
complexity of the noise generating mechanisms and the fluid-structural interactions, as mentioned earlier. Except in very simple cases [51-54], the analytical expression for the radiation efficiency, defined below [52], is generally not available. The radiation efficiency σ_{rad} is

$$\sigma_{\text{rad}} = \frac{P_A}{\rho_0 c_0 S \langle v \rangle_{s.t}}$$

(34)

where P_A = sound power
S = vibrating surface area
$\langle v \rangle_{s.t}$ = mean rms surface velocity (spatially averaged)
c_0 = sound speed of the medium
ρ_0 = medium density

Richard [55], realizing the elaborate computation and difficulty that one might encounter in noise prediction, offered an expression for the A-weighted equivalent sound pressure level (db) in terms of structural response, radiation efficiency, damping, machine bulkiness etc. This expression is given in equation (35) below [55]

$$L_{A, \text{eq}}(f) = 10 \log E_{\text{escape}} + 10 \log (s. \ c.) + 10 \left(\frac{A \sigma_{\text{rad}}}{f} \right) - 10 \log \eta_s - 10 \log d + B$$

(35)

where $L_{A, \text{eq}}$ = A-weighted equivalent sound pressure level
E_{escape} = total structural energy
$s. \ c.$ = fraction of E_{escape} in the frequency band of interest
A = A-weighted correction
σ_{rad} = radiation efficiency
This formula does not give exact noise levels but does indicate the probable factors that might explain high noise levels in a particular machinery, in this case a gearbox. The contribution of each factor to L_{eq} in graphical form is shown in Figure 36.

Figure 36. Total noise level in a machinery noise application due to various factors [55]
Although gearbox noise prediction models have been mostly semi-empirical, there exists some numerical methods like the finite element method, finite difference method, and boundary element method for noise prediction. These methods are usually difficult to apply for complex geometry, and therefore have not been used in gearbox noise analysis. The finite element method requires a three dimensional acoustic finite element model to characterize the noise field exterior to the structure. In addition, there is the problem of the termination location for this model, which in reality is at infinity for free field conditions. Therefore, this method is used primarily for closed spaces and low frequency, due to the fact that the nodal points spacing must be less than a quarter wavelength. The finite difference method has similar problems. The boundary element method [56,57] has been more popular because it involves the solution to a two dimensional problem of the Helmholtz integral equation. It is most suitable for free field sound radiation computation. This method requires knowledge of the structural vibration modes which can be obtained using a finite element method or experimental modal analysis. The Helmholtz integral equation is given by [56]

\[
C(y) P(y) = \int_S \left[P(Q) G'(P, Q) + iz_0 k v(Q) G(P, Q) \right] dS(Q) \quad (36)
\]

where

\[
\begin{align*}
Q &= \text{surface point} \\
y &= \text{point exterior to the structure} \\
P &= \text{acoustic pressure} \\
C &= \begin{cases}
2\pi & \text{if } y \text{ on surface} \\
4\pi & \text{if } y \text{ exterior of surface}
\end{cases} \\
z_0 &= \text{characteristic impedance} \\
k &= \text{wave number} \\
G &= \exp(-ikR)/R \quad (\text{Green's function})
\end{align*}
\]
\(\nabla \) = normal gradient

\(\mathbf{v} \) = surface velocity

The above equation is then reduced to a set of algebraic equations by discretizing the noise radiating surface with appropriate elements. These equations will relate normally the surface acoustic pressure to the structural surface velocity.

Few experimental methods such as the acoustic intensity method \([42,45,52]\), free field measurement technique \([12,35,49-51,58,59]\), and the acoustical holography method \([42,59]\) were used widely to characterize gearbox noise levels due to the many difficulties involved in applying these methods practically. The free field measurement technique requires an anechoic environment, whereas the acoustic intensity method allows "in-situ" tests. The basis for computing the intensity using this method is given in equation (19) of section C. Singh, Zaremsky and Houser \([45]\) used the two microphone "in-situ" acoustic intensity method to obtain sound intensity very close to the surface of a gear housing plate, which is also discussed in section C of this review. Kato \([42]\) performed "in-situ" acoustic intensity measurements on gearbox noise in a poor acoustical environment. The results indicated that certain intensity components intensified by 2 dB (small error) when measurements were made near reflecting walls. The explanation given was the occurrence of sound wave diffraction. An example of the intensity distribution on the measurement surface around a simple 0.4m x 0.32m x 0.28m gear housing is shown in Figure 37. Janssen and De Wachter \([52]\) also used the intensity method to evaluate the contribution of partial surfaces of a housing to the total noise radiated. The information was used to aid in design changes by use of a blocking mass to reduce noise levels. Umezawa and Houjoh \([59]\) developed an acoustical holographic system to show locations of sound sources in machinery. The process involved hologram recording, reconstruction of recorded wavefront, and intensity distribution calculation. This method was applied to an operating
simple gearbox. The results obtained were fundamentally known such as the frequency content, noise source, etc.

Figure 37. Intensity distribution around the simple gearbox obtained using acoustic intensity method [42]
E. Gearbox Mount System [7,13,51,60-66]

The basic theory on vibration isolation of simple vibrating systems, such as the one degree of freedom mass-spring-damper system, has been rigorously treated. The reader is referred to references [51,60,61] or other equivalent texts for more information. Here, the mounts and suspension of a gearbox will be discussed. As mentioned previously, gear excitations not only cause gear housing vibration and noise radiation, but the vibrational energy may also be transmitted through the mounts and suspensions to attached structures. In addition, there will be dynamic interactions between the gearbox mounts and gear housing which cannot be ignored.

One of the earlier attempts to model the helicopter gearbox mounts and suspensions was done by Badgley and Chiang [13], in 1972. The model consisted of the gearbox mount, isolators, and the aircraft structure using a combination of mass, linear spring, and linear damper elements as shown in Figure 38. The isolators were assumed to be massless, which resulted

![Analytical model for the gearbox to airframe isolators](image)

Figure 38. Analytical model for the gearbox to airframe isolators [13]
in only a two degrees of freedom system. The vibration source was applied at the gearbox mount and was assumed to be oscillatory. Using standard methods, the equation of motion derived was [13]

\[m_1 \ddot{x}_1 + c_0 (\dot{x}_1 - \dot{x}_2) + c_1 \dot{x}_1 + k_0 (x_1 - x_2) + k_1 x_1 = F_0 \cos \omega t \]

\[m_2 \ddot{x}_2 + c_0 (\dot{x}_2 - \dot{x}_1) + c_2 \dot{x}_2 + k_0 (x_2 - x_1) + k_2 x_2 = 0 \]

where the symbols are defined in Figure 38. Then the force and motion transmissibilities, \(T_m \) and \(T_f \) respectively, were obtained as [13]

\[T_m = \left| \frac{z_0}{z_0 + z_2} \right| \]

\[T_f = \left| \frac{z_0 z_2}{z_1 z_2 + z_0 z_1 + z_0 z_2} \right| \]

where

\[z_0 = c_0 - i \frac{k_0}{\omega} \]

(ancient impedance of isolator)

\[z_1 = c_1 + i \left(m_1 \omega - \frac{k_1}{\omega} \right) \]

(ancient impedance of mount)

\[z_2 = c_2 + i \left(m_2 \omega - \frac{k_2}{\omega} \right) \]

(ancient impedance of aircraft)

Based on this simple analysis, Badgley and Chiang [13] concluded that for low motion and force transmissibility, the mechanical impedance of the isolator must be small, and the mechanical impedances of the local gearbox mount and local aircraft structures must be high. In other words, the isolator must be made as soft as possible with low damping, while the gearbox mount and aircraft structures must be massive and highly damped. The
difficulty in obtaining reliable physical values like mass, spring, and damping was also mentioned. Several methods were suggested to numerically compute these physical quantities based on geometry and material properties, and to experimentally extract the impedances.

Warner and Wright [62], and Andrews [63] investigated various marine gearbox mounts and isolator requirements for reduction in the force/motion transmissibilities. These studies have resulted in the design of a special purpose isolation system. Warner and Wright [62] identified the energy source as the transmission error at mesh frequency with the unbalance of gears and shafts contributing to the vibration transferred through the marine gearbox mounts. The addition of damping at the isolators was recommended to damp the rigid body modes, which might amplify the unbalance vibration of the gear-shaft system, even though it may reduce the effectiveness of the isolators. Based on these observations, a metallic isolation system, shown in Figure 39 was recommended.

The performance of this system was not analyzed analytically but was tested experimentally. Some of the features of this system include high stiffness, absence of
creep, which often occurs in elastomeric isolators, compact, etc. Figure 40 illustrates results of a free-free test of the vertical isolator. It can be seen to perform as a vibration isolator at a very wide frequency range. The ability of the isolator to act as a vibration

![Figure 40. Free-free test of the vertical isolator [62]](image)

![Figure 41. Structure-borne noise at 2680 rpm with various mounting conditions [62]](image)
isolator when installed is illustrated in Figure 41. Comparison has been made between the installation of the stiff steel connectors and the metallic isolation system. Reduction in the structure-borne vibration is observed for the case with the metallic isolators installed.

Andrews [63] utilized the one degree of freedom system isolation concept as a basis for the gearbox mount dynamic model. The gear housing and subbase for the entire system were assumed to be rigid. Only vertical motion was allowed in the mount model, and the journal bearing was modeled as a linear stiffness. Modal analysis of this system, using the model described, indicated that the first two modes were shaft deflection type, and the third and fourth modes were associated with the vertical motion of the mounts. This analysis led to the design of an isolation system shown on Figure 42. The two side rectangular blocks were attached to the gear housing while the middle was attached to the subbase. Two isolators, one on each side, were required to mount the marine gearbox. Application of this design led to lower gear housing vibration and equality of bearing loads.

![Isolation Mount](image)

Figure 42. Gearbox isolation system [63]

Snowdon [61] also discussed in detail characteristics of damped discrete and continuous vibration isolators such as elastomeric isolators, combination of spring-damper
system isolators, and rods-beams system isolators. The examples were not specifically for
gearbox application, but more towards general machinery application. Lunden and Kamph
[64] investigated numerically and experimentally the vibration characteristics of a
lightweight skeletal machine foundation (grillage) as a continuous system isolator. They
concluded that by applying "blocking mass" and damping (discrete and distributed) on the
system a reduction of grillage vibration over a broad frequency interval, and a lower
transmissibility through the grillage system will result. The damped second order Rayleigh-
Timoshenko beam was used in the numerical studies.

Granhall and Kihlman [65], in 1980, expressed the need for knowing structure-borne
sound sources data of a machinery in order to aid in the design of mounts and isolators and
for noise predictions. For this reason, they analyzed a one dimensional vibration isolator
system using the mechanical impedances in an analog circuit, and formulated an equation
for estimating insertion loss of an isolator from measured impedance data. The insertion
loss IL [65] is given by

\[IL = 20 \log \left(\frac{\frac{z_f}{z_i} + z_f z_m + z_m z_i}{z_i (z_f + z_m)} \right) \] (41)

where \(z_m, z_f, \) and \(z_i \) are the internal, foundation, and isolator impedances respectively. If
one assumed that the foundation is very rigid, equation (41) may then be written as [65]

\[IL = 20 \log \left[1 + \frac{z_m}{z_i} \right] \] (42)

Comparison of the insertion loss predicted by equation (42) with measured insertion loss
data, and the insertion loss of a mass-spring-damper system model is shown in Figure 43
[65]. The graphs indicate that equation (42) predicts the measured data better than the one
predicted by a spring-mass-damper model. However, these results are not found to be true at high frequencies where both models are inapplicable.

Figure 43. Insertion loss in 1/3 octave bands for a fan unit (solid lines = measured data, dashed lines = equation (42), and dotted lines = mass-spring system)[65]

Unruh [66] developed a finite element dynamic model of an aircraft engine mount to be coupled with the rigid engine model, frequency dependent stiffness model of the isolators, and an experimentally obtained fuselage and interior response model. The purpose was to study the effect of isolators and mounts on the structure-borne noise transmission. The vibration isolator, modeled as frequency dependent radial k_R and axial k_A springs in local coordinates, was given as [66]

\[k_R = k_R^*(\omega) [1 + i\eta(\omega)] \]

\[k_A = k_A^*(\omega) [1 + i\eta(\omega)] \]
where \(k_R \) = radial spring modulus amplitude

\(k_A \) = axial spring modulus amplitude

\(\eta \) = material loss factor

The finite element model of the mount system illustrated in Figure 44, consisted of 70 elastic beam elements with 201 degrees of freedom. Using the modal synthesis method, as described in the previous section, the number of degrees of freedom was reduced to 51 elastic and 6 rigid body degrees of freedom. For each of the subsystems listed above, the standard second order differential governing equation was derived. Then by proper choice of the independent degrees of freedom, each of the components were coupled together by the summation of interface forces which were then set to zero to obtain an empirical relation between the structure-borne noise at various positions in the aircraft interior and the chosen degrees of freedom.

Lyon [7] also performed a similar analysis on a marine gearbox system schematically shown in Figure 45. This method involved modeling of the gearbox mount system in detail using combinations of simple beam, spring, damper and mass elements. The input and

Figure 44. Engine mount structure with coupling degrees of freedom [66]
transfer impedances of all the elements were assembled into a complete system according to the numbered nodes while setting the total force at each junction equal to zero or to the externally applied force. The impedance of these simple elements can be derived easily.

Figure 46 illustrated the model of a reduction gearbox mount system. A set of mass
elements were used to represent the gears, and the case rail was used to model the foundation structure also shown in Figure 45. The system rested on a set of spring-damper isolator mounts. All these were then supported by a massive beam structure (subbase) which in turn sat on the hull elements modeled as sets of springs and dampers. The cross section of the case rail and subbase are shown in Figure 47. It was also noted that this technique is very similar to the finite element method except here the transfer function used to define the elements are functions of frequency.

![Cross section of the case rail and subbase](image)

Figure 47. Cross section of the case rail and subbase [7]

The purpose of the above studies on gearbox mounts and suspensions was to obtain parametric design values that will lead to lower force/motion transmissibility. In most gearbox noise and vibration analysis, the mounting system was not taken into account due to the complexity of the gearbox mounts. This is especially true in aircraft where the structures are geometrically complex and are coupled dynamically to the gearbox and fuselage. However, the inclusion of the mounting system into the dynamic model is necessary to obtain noise and vibration prediction models that truly represent the operating conditions of a gearbox.
F. Overall Gearbox Dynamics [17-19,67]

Noise and vibration prediction and control ideally requires an analytical model of the entire gearbox system, its attachments, and other connected structures (i.e. fuselage, subbase, foundation, etc. in an aircraft application). This is due to the fact that the dynamics of each of the components, which serve as vibrational energy paths, may have significant effects on the overall system dynamics. For example, the low to high discrete frequency excitation generated by the meshing gears in an aircraft are transmitted to the airframe through various structural paths such as the shafts, bearings, housing, mounts, and other attachment points. Discussions in the previous sections of this review have indicated that the dynamics of these structural paths are important to the understanding of the overall dynamics. There is nothing in the literature that offers a rigorous treatment on the overall gearbox dynamics which includes dynamic interactions between the gear-shaft system, support bearings, gear housing, gearbox mounts and suspensions system, and noise radiation. Although, there is a need for such a model, many difficulties such as allowable model size for computer implementation, complexity of the noise generation mechanism, dynamic coupling between gearbox components, etc. hinder the development of an ideal model. Hence, in most cases one or more components are modeled in detail, and the other components are modeled with only a few degrees of freedom or assumed uncoupled from the rest of the gearbox. These assumptions often limit the applicability of the analysis to a specific type of gearbox model, such as those discussed in the previous sections.

Berman [67] pointed out the difficulties involved in having a complete dynamical model of the gearbox and fuselage. Some of the problems he addressed are:

1. Cost involved with the assessment of parametric variations
2. Inadequacy of finite element models in the acoustic frequency range
3. High frequency content of the excitations which often excite many modes of the gear-shaft and gear housing system, and thus a large number of degrees of freedom are needed.

4. Complexity of gearbox geometry that is difficult to incorporate, especially in modeling techniques other than finite element methods.

5. Difficulty in modeling interface components analytically.

6. Problems associated with combining various gearbox component models to form a complete dynamical model.

In view of these problems, Berman [67] presented a methodology to be used in the complex gearbox system. It includes independent component representation, improvement and development of the analytical model using test data, coordinates reduction in the frequency domain, component coupling, and implementation on a computer. In component modeling, each of the components may be modeled separately using whatever appropriate techniques that are available, for example, finite element model for the gear housing, experimentally obtained impedance matrix to represent the fuselage dynamics, etc. By doing so, each model may be modified without changing the other components. This allows evaluation of a design modification to be done easily. These models are used with reduced degrees of freedom to synthesize the complete gearbox model in the frequency domain of the form [67]

\[
\left([K] - \omega^2 [M] - i\omega [C] \right) X(\omega) = F(\omega)
\]

(45)

where \([K], [M], [C]\), are the stiffness, mass, and damping matrices respectively, with \(F(\omega)\) as the excitation vector. The reduced component model retains only the interfaces and points of applied force degrees of freedom, which usually significantly reduces the
overall degrees of freedom. This step of reduction in the degrees of freedom can be shown by considering a component impedance matrix reordered such that the retained degrees of freedom are in the submatrix z_1 [67]

$$Z(\omega) = \begin{bmatrix} z_1 & z_2 \\ z_2^T & z_4 \end{bmatrix}$$

(46)

With some manipulation, the reduced impedance Z_R becomes [67]

$$Z_R(\omega) = z_1 - z_2 z_4^{-1} z_2^T$$

(47)

Finally, component coupling can be performed by the summation of all the relevant degrees of freedom in each of the components. For example, if an interface displacement vector, x_i, is related to the displacement vector, X, of the complete system by the expression [67]

$$x_i = T_i X$$

(48)

where T_i is the transformation matrix, then the impedance matrix, $Z(\omega)$, of the total system would be [67]

$$Z(\omega) = \sum_i T_i^T Z_i T_i$$

(49)

A summary of this method is shown in Figure 48. This method was used by Bowes et. al. [17-19], also discussed previously, to model the SH-2D helicopter transmission. The analysis was not entirely analytical, for example the gear housing impedance was derived experimentally due to the complexity of the system. Also there were many
assumptions such as the simple radiation model, which did not include environmental effects and housing geometry, and omitted the effects due to gearbox mounts and suspensions. In other gearbox analyses similar problems arise. One major difficulty is to be able to model the interface components, such as support bearings, gearbox mounts and suspensions, with models that are simple yet detailed enough to include significant dynamical effects on the entire gearbox system.

Figure 48. Procedure for dynamic analysis [67]
Badgley [14] reported that gear mesh excitations are present even in very high quality gears, which can be amplified by the resonances in the gear-shaft and gear housing systems. Hence, vibration and noise source control alone is not sufficient. In order to effectively control gearbox vibration and noise, design changes in the force/motion transfer paths, i.e. gear body, shaft, support bearing, gear housing, gearbox mount and suspension, and connected structures are inevitable. Also, it is worth mentioning that design modifications in a gearbox are very dependent on the gearbox environment and its application, such as helicopter or industrial transmissions.

Some design guidelines for noise and vibration control of gearboxes have been previously developed. Lack of comprehensive design criteria and proper evaluation techniques have resulted in a number of conflicting requirements, as suggested in the literature. This section presents some relevant design criteria for various components of a gearbox, other than the gears, for a reduction in vibration and noise.

G.1. Gear Support System

If the shafts are found to have high amplitude of vibration, stiffening parts of the shafts may reduce the amplitude especially at the support bearing locations, where the forces are transmitted to the housing [13,14,17-19,31,68]. This can be done by adding mass around the shafts without increasing the mass center offset, or using materials with high modulus of elasticity - essentially changing the natural frequencies of the gear-shaft system [29]. It is desirable to have the excitation frequencies away from any natural frequencies as it should be in any design. An example of successful implementation of shaft modification by the addition of mass is shown in Figure 49 where the amplitude of
Figure 49. CH-47 transmission shaft vibration amplitudes for nominal and modified configurations [13]

vibration is reduced significantly. Route [69] suggested that when designing a geared transmission system, the highest degree of stiffness permitted by size and weight limitations should be specified.

An alternate method to minimize the force/motion transfer to the housing is to locate the support bearings at the node points on the shafts [4,49,68], and/or support the bearings using a stiff frame [29]. Increasing the bearing stiffness with the proper choice of bearing type will increase the natural frequencies of the system which may be useful [14,29,31]. Drago [4] noted that gearbox noise levels usually decrease with increasing preloads. However, adverse effects may occur in other areas of the mechanical design. Figure 50 indicates the effect of the shaft support bearings system on the overall noise level. Sleeve bearings are recommended for use as support bearings in a gearbox. Although tests have
indicated that the bearing quality in terms of noise reduction is as shown in Figure 50, care must be taken when using such a guideline due to the fact that the performance of these bearings depended on other gearbox components also. That is, the type of bearing installed will have a different effect on the overall gearbox system dynamics by altering the natural frequencies and vibrational energy paths.

![Some bearings can reduce drive noise](image)

Figure 50. Effect of various bearings on the overall geared transmission noise [4]

Filling of hollow shafts with damping materials is also helpful in reducing the dynamic response of the gear-shaft system when resonance conditions exist [14,16,70]. Sternfeld, Schairer and Spencer [16], and Drago [4] tested the effect of damping (elastomeric material) applied to a gear body on the overall vibration and noise level. The test results indicated some vibration reduction occurs but not enough to be used alone in design. Hence, it may be used as a supplement to other design changes. Other than the use of damping to absorb vibration, use of a vibration absorber has also been suggested to attenuate vibration in a gearbox. The idea of a vibration absorber is that when the absorber is properly tuned, the attached structure stops moving at a particular excitation frequency.
This concept is illustrated in Figure 51 where mode 1 shows the in phase vibration of the absorber and structure at some frequency and mode 2 shows the out of phase vibration with respect to each other at a higher frequency. Hence, somewhere in between at the tuned frequency, the structure will stop moving. Again tests performed on the absorbers indicated that only some reduction in vibration is observed but not significantly to be used alone in design. This is due to the fact that the vibration absorber works only at a particular excitation frequency which is usually varying over a small range. Moreover, there are mesh frequency sidebands which are not attenuated since the absorber is tuned to the mesh frequency only.

![Figure 51. Concept of dynamic vibration absorber][16]
G.2. Gear Housing and Gearbox Mounts

The gear housing is the major noise radiator and also serves as a path for the bearing excitations to the gearbox mounts. Selective stiffening parts of the housing will reduce its vibration amplitude and increase system natural frequencies [4,8,29,68,69,71]. The method used in selecting probable locations for modification in stiffness and mass is discussed in the gear housing dynamics section. The basic idea is to perform a finite element analysis of the gear housing to identify its natural modes. Then for each mode, the strain energy density is computed and regions with the highest energy density will be selected for this process [4,29] as shown in Figure 33 (section C). This approach allows minimal change in mass and stiffness of the entire gearbox to achieve an increase in natural frequencies.

Over higher frequencies where the radiation efficiency is almost unity, addition of damping through viscoelastic material, and restraint on the gear housing will reduce the mean rms transverse velocity of the housing plate and hence the sound pressure level also [5,29,49,52,72,73]. The effects of various reinforcements added to a ring gear housing is illustrated in Figure 52. It shows a higher reduction in the response for center and end reinforcements applied together than when applied separately. However, this may not be always possible due to the weight penalty imposed. Addition of mass on the application point of an external force, also known as the blocking mass method, has shown to reduce the noise intensity level of a gearbox as seen from Figure 53.

Some undesirable gear housing geometries are large flat areas and gently curved surfaces because they usually vibrate freely and are good noise radiators. One way to reduce these effects are to decouple the areas by slotting the housing, adding dampers, and thickening the housing [4,5,68]. If weight is not a constraint in the design, the use of cast iron, which has good sound absorbing properties, is recommended [4]. In terms of
Figure 52. Comparison of ring gear housing vibration amplitude with various reinforcement configurations [13]
structure-borne paths, it is better to always supply rigid load paths between the support bearing locations on the housing and attachment points for the gearbox mounts, to reduce housing vibration. Isolators are used to provide resilient support for the gearbox and to reduce force/motion transmissibility through the mounts [54,72,73,74]. This is most useful in marine and industrial type application since a massive foundation can be provided. When designing a mount-isolator system for reduction in force/motion transmissibility, it is desirable to have high mount and foundation impedances, and low isolator impedance [13].

This review indicates that gearbox dynamics and acoustics pose a major problem in the development and implementation of gearbox system technology. The literature confirms this as Mark [1,3], Badgley [11-15,49], Bowes [17-19], Drago [28,29,48,68], Ishida [35], and others have concluded that gearbox noise and vibration levels in aircraft, automobile, etc. are often higher than the allowable limits with respect to human comfort, and machinery failure and life. These problems become more acute at high gearbox operating speeds which give rise to excitation frequencies in the order of several kiloHertz, as seen in aircraft gearbox applications. Although many attempts were made to characterize the dynamics of gearbox system components, no comprehensive set of design criteria currently exist. Moreover, the literature contains conflicting reports concerning relevant design guidelines. These are all mainly due to a lack of the complete understanding of the vibration and noise generating mechanisms of a gearbox system. Hence, further research on gearbox dynamics and acoustics is required.

A major portion of the gear excitation energy is transmitted through structure-borne paths. However, it is difficult to represent the force/motion transfer through the gearbox system analytically and obtain reasonable predictions of the vibration levels of the gearbox components. It would be useful to be able to characterize the transmissibilities, and to identify the paths quantitatively.

Also, in order to successfully derive the force/motion transfer model, the dynamics of each of the gearbox components must be known. The bearing subsystem is yet to be modeled with success experimentally or analytically. In addition, the bearing interface models are sometimes difficult to characterize due to their compliance, and the requirement of matching boundary conditions and continuity at the interface.
Another major area which is not well understood is the effect of mounts and suspensions on the force/motion transmissibility and gear-shaft-bearing-housing dynamics. In most gearbox applications, especially in aircraft, the gearbox is mounted resiliently onto the airframe, which is usually light and flexible. Here the vibration is found to be excessive.

The prediction of the noise radiated by the housing and other attached structures will remain a major challenge. This requires a model that can relate the structural vibrational level to the sound power radiated.

To summarize, the areas related to gearbox dynamics and acoustics which are currently not well understood are:

1. Bearing dynamics and interface modeling
2. Force/motion transmissibility study including an evaluation of the energy paths
3. Gearbox mount and suspension dynamics and their effects on the overall dynamics and acoustics
4. Noise radiation prediction from housing structure
5. Overall gearbox dynamics and acoustics models
6. Comprehensive gearbox design criteria for reduced noise and vibration
References

29. Royal, A. C., Lenski, J. W., Jr., and Drago, R. J., "An Analytical Approach and Selective Stiffening Technique for the Source Reduction of Noise Vibration in Highly

48. Drago, R. J., Lenski, J. W., Jr., and Royal, A. C., "An analytical Approach to the Source Reduction of Noise and Vibration in Highly Loaded Mechanical Power-

A review of the available literature on gear housing vibration and noise radiation is presented. Analytical and experimental methodologies used for bearing dynamics, housing vibration and noise, mounts and suspensions, and the overall gear and housing system are discussed. Typical design guidelines, as outlined by various investigators, are also included. Results of this review indicate that although many attempts were made to characterize the dynamics of gearbox system components, no comprehensive set of design criteria currently exist. Moreover, the literature contains conflicting reports concerning relevant design guidelines.

Key Words (Suggested by Author(s))
- Gears
- Gear housing
- Dynamics
- Acoustics