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ABSTRACT 

Two conventional nondestructive evaluation techniques were used to evalu­
ate advanced ceramic composite materials. It has been shown that neither 
ultrasonic C-scan nor radiographic imaging can individually provide sufficient 
data for an accurate nondest ructive evaluation. Both ultrasonic C-scan and 
conventional radiographic imaging are required for preliminary evaluation of 
these complex systems. The material variations that have been identified by 
these two techniques are porosity, de1aminations, bond quality between laminae, 
fiber alignment, fiber registration, fiber parallelism, and processing density 
flaws. The degree of bonding between fiber and matrix cannot be determined by 
either of these methods. An alternative ultrasonic technique, angular power 
spectrum scanning (APSS) is recommended for quantification of this interfacial 
bond. 

INTRODUCTION 

Advanced high-temperature, low-density composite materials are being 
developed for use in the next generation of aerospace systems. The High Speed 
Civil Transport (HSCT, fig. 1), an aircraft for transporting 250 passengers, at 
Mach 3.2 for 5000 n mi and the National Aerospace Plane (NASP, fig. 2) a trans­
portation system that will take off, fly at Mach 25 directly into orbit and 
land like a conventional aircraft, will require advanced composite materials 
for both propulsion and structural components. 
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Figure 1. - High Speed Civil Transport (HSCT). 
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Figure 2. - National Aero-Space Plane (NASP). 

These composite materials consist of particles, whiskers, or fibers 
embedded in ceramic or metal matrices. The fibers may be parallel and lie in 
one plane (fig. 3(a», layered to form crossplys (fig. 3(b», woven into a 
three-dimensional pattern (fig. 3(c», or wound to form cylinders. The compos­
ite matrix material may be polymeric, metallic, intermetallic, or ceramic. The 
wide range of compos ite materials under investigation for advanced aerospace 
sys t ems is shown in table I. One advantage to using composites listed in 
table I is the increased ratio of ultimate strength-to-density (fig. 4) over 
conventional engine materials, e.g., superalloys like Inconel 100 (IN-lOa). 
The rapid progress in producing metal matrix composites has allowed actual 
tes t components to be manufactured. Here the NARloy-Z main combustion chamber 
(figs. 5 and 6) lining can be replaced by a metallic composite (fig. 7) that 
has a superior rupture strength. 

TABLE I 

1. Polymer Matrix Composites (PMC) 
2. Metal Matrix Composites (MMC) 
3. Intermetall ic (FeAl, NiAl, MoSi2) Matrix Composites (IMC) 
4. Titanium Metal Matrix Composites (TiMMC) 
5. Ceramic Matrix Composites (CMC) 

The propulsion engine for the HSCT is shown in figure 8. IMC's and 
TiMMC's will be used from the inlet up to the turbines. The uncooled turbines 
and ejector nozzle will be constructed of CMC's. The NASP propulsion system is 
a hydrogen-fueled supersonic combustion ramjet (SCRAMJET). Both the engine and 
airframe will require advanced composite materials. Heavy use of ceramic com­
posites is expected because their light weight, high strength and thermal 
shiel ding properties . 

Research on monolithic ceramics (ref. 1) lead to the current developmental 
r esearch on advanced high-temperature ceramic composites (ref. 2). A variety 
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(a) Monotape composite with fibers aligned along one direction. 

(b) [0°/90°1 cross-ply, laminated composite. 
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(c) 3-D woven fabric composite. 

Figure 3. - Advanced composites. 
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Figure 6 .. SSME powerhead component arrangement. 
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ADVANCED 
EJECTOR NOZZLE 

of processing techniques are being investigated in an effort to produce high­
temperature composites with optimized thermal and mechanical properties. 
Plasma spraying, reaction bonding, slurry pressing and sintering are typical 
techniques used to produce high temperature ceramic composites. These proces­
ses often result in a composite that has a wide variability in microstructure 
that usually affects thermal and mechanical properties. 

Ultrasonic C-scans and x-ray rad iography are two techniques used for non­
destructive evaluation (NDE) of microstructural variations. These NDE methods 
reveal macroscopic internal features or flaws such as delaminations, porosity 
and cracks. These are important when considering the use of the tested mate­
rial where strength and integrity must be assured. It is challenge to the NDE 
community to assist in the development of these advanced materials. 
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BACKGROUND 

Ultrasonic imaging can be done by several techniques. The most common 
technique is that used by commercially available ultrasonic immersion C-scan 
systems. An ultrasonic wave of known amplitude Ao is transmitted through a 
sample as is shown in figure 9. The final amplitude Af is used to form an 
i mage that is a representation of the relative attenuation or energy lost by 
t he ultrasonic wave as it traverses through the sample. The amount of energy 
lost (high loss corresponds to decreased image intensity) is an indication of 
the amount of porosity, degree of bonding between fiber and matrix, and uni­
formity of the sample ( ref. 3). Advanced ultrasonic techniques (e.g., angular 
power spectrum scanning (APSS» for composites are being developed (ref. 3) 
t hat will make use of pattern recognition algorithms in order to characterize 
variations in porosity, fiber-matrix bonding, and sample uniformity. 

TRAHSWTTER 

Ao ----

/ 
~SAMPLE 

REOEVER 

Figure 9 . • Immerslon ultrasonic C-scan arrangement. 

Ultrasonic evaluation of composites may be approached from two directions. 
The complete composite can be interrogated as a whole system. The resultant 
ultrasonic signals are complicated and difficult to interpret. Since the 
actual scattering mechanisms that shape these signals has remained unknown 
their interpretation is subject to uncertainty. An alternative to this approach 
i s to explicitly determine the interaction of ultrasound with each individual 
component or phase of the composite. This information is then used for formu­
l ating theories that explain the ultrasonic signals obtained from the full com­
posite system. Recent results (ref. 3) indicate that this latter approach has 
been sucessful and can be used to determine microstructural uniformity, and 
mechanical and thermal integrity . The dominant ultrasonic scattering mechan­
i sms for SiC and Si3N4 are listed in table II (ref. 3). The information in 
t able II is used to help interp ret ultrasonic C-scan images. As the ultrasonic 
wave travels through the composite , energy is scattered out of the main beam 
at each pore and fiber boundary. The amount of scattering is an indication of 
the number, presence, and character of each of these boundaries. 

TABLE II * 

1. Symmetric diffractive scattering at individual pores (Airy (ref. 4» 
2. Symmetric diffractive scattering at fibers (Young (ref. 5» 
3. Asymmetric refractive scattering at density gradients (Snell (ref. 6» 

*Grain boundary scattering is negligible. 
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NONDE STRUCTIVE EVALUATION 

Three composite systems were i nvestigated using conventional ultrasonic 
C-scan (10 MHz, through transmis sion) and radiographic techniques. The three 
composite sys tems were SiC/Si3 N4 with SCS-6 (140-~m diam SiC fiber), SiC 
(Nica1on)/Ca1 cium A1uminosi1icate (CAS), and SiC (Nica1on)/SiC. 

The radiographic and ultrasonic C-scan of SiC/Si3N4 (SCS-6 fiber), 
[0°/90° ], laminated composite NASP cooling panel is shown in figure 10. The 
x-ray image reveals misaligned or bowed fibers. The ultrasonic image indicates 
that the re are regions (dark) between the laminae that did not bond (de1amina­
tions) . The x- ray data indicates that the specimen is uniform in density, how­
ever , the ultrasonic data indicate s that there are large variations in the 
amount of ultrasonic scattering th roughout the sample area. It is believed 
that these variations are due to bond variations between the laminae. 

\ .. MISALIGNED 
FIBERS 

X-RAY IMAGE 

r DELAMINATION 

ULTRASONIC IMAGE 

SiC/Si3N4 (SCS-6 FIBER), (O" /90<), 
LAMINATED COMPOSITE ., 

LAMINATED -----

" FIBER 
\ END 

Figure 10. - X-ray and ultrasonic C-scan images 01 SiC/Si 3N4 (SCS-6 fiber) , [oo/900 J, laminated composite NASP 
cooling panel. 

Identically produced SiC/Si3N4 (SCS-6 fiber), [0°/90°], laminated compos­
ites can yield very different nondestructive evaluation results. Figure 11 
shows the radiographic and ultra sonic data for two similarly produced samples. 
The x-ray data indicate that these two specimens have similar densities. In 
contrast, the low intensity of the ultrasonic image for specimen A indicates 
that there is relatively poor bonding between laminae. The highest intensity 
in the ultrasonic image for specimen B is a region having a good bond between 
laminae . 

When comparing the radiographi c and ultrasonic images for the SiC 
(Nicalon)/Ca lcium Aluminosilicate (CAS), [0°/90°], laminated composites 
(fig . 12), it is observed that low ultrasonic intensity (dark) corresponds to 
low density (light regions) in the x-ray image. Therefore, these dark ultra­
sonic regions are areas having low densities and not poor interlaminar bonds. 
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Figure 11 . - X-ray and ultrasonic C-scan images of similarly produced SiC/Si 3N4 (SCS-S Fiber), {Do/90°]. 
laminated composites. 

ULTRASONIC X-RAY 

Figure 12. - X-ray and ultrasonic C-scan images of SiC(SCS-S)/Calcium Aluminosilicate 
(CAS). [0°/90°] composites. 

The woven structure of SiC (Nica10n)/SiC. laminated composi tes yield very 
di storted ultrasonic images (fig. 13). For example. compare figures 12 and 13. 
Processing feat ures. high-density circular regions. can be found i n both the 
ul trasonic and x-ray data. The ultrasonic image intensity is low where the 
density is high (dark in the radiograph). The cross hatch pattern in the 
radiograph reveals the degree of registration between lamina. Registration 
ef fects can result in an erroneous determination of porosity variations. This 
occurs when nearly identical plies. with uniform fiber spacing. are laid up so 
that the fibers are slight ly off axis . This slight misalignment of fibers pro­
duces a Moi re (ref . 7) pattern (fig. 14) in the x-ray image that may be misin­
terpreted as porosity variations . The large number of fibers in ceramic 
composites resul ts in an overlap. of Moire patterns. These ov erlap ping pat­
terns are not as clearly visable as that shown in figure 14. As of this writ­
ing Moire patte rns have not been explicitly observed for ceramic composites. 
However. researc hers should be aware of their effect on determination of 
density . 

The NDE of these systems indicates that for laminated composi te structures 
both radiography and ultrasonic C-scan evaluation are required. The x-ray 
evaluation can be used to dete rmine porosity variations. fiber alignment and 
registration between layups. Ultrasonic evaluation can be used for determining 
de1aminations . bond variations between laminae and porosity vari ations. 
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However. researc hers should be aware of their effect on determination of 
density . 

The NDE of these systems indicates that for laminated composi te structures 
both radiography and ultrasonic C-scan evaluation are required. The x-ray 
evaluation can be used to dete rmine porosity variations. fiber alignment and 
registration between layups. Ultrasonic evaluation can be used for determining 
de1aminations . bond variations between laminae and porosity vari ations. 
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Figure 14. - X-ray image of W/Cu composite showing Moire pattern . 

In the above evaluations, the degree of bonding between the fiber and the 
matrix cannot be separated from effects due to porosity and variations in the 
number of fibers per unit volume. Further nondestructive analysis using the 
APSS technique will be required to obta i n this information. 

SUMMARY 

Two conventional nonde st ructive evaluation techniques we r e used to evalu­
ate advanced ceramic compos i te materials. It has been shown that neither 
ultrasonic C-scan nor radiographic imaging can individually provide sufficient 
data for an accurate nondestructive evaluation. Both ultrasonic C-scan and 
conventional radiographic imag i ng are required for preliminary evaluation of 
these complex systems. The ma t eri a l variations that have been identified by 
these two techniques are poros i t y, delaminations, bond quality between lamina, 
fiber alignment, fibe r reg istration, fiber parallelism, and processing density 
flaws. The degree of bondi ng between fiber and matrix cannot be determined by 
either of these methods. An a l ternative ultrasonic technique, angular power 
spectrum scann i ng is recommended for quantification of this interfacial bond. 
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