Review and Statistical Analysis of the Ultrasonic Velocity Method for Estimating the Porosity Fraction in Polycrystalline Materials

D.J. Roth
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

D.B. Stang
Sverdrup Technology, Inc.
Lewis Research Center Group
Brook Park, Ohio

S.M. Swickard
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

M.R. DeGuire
Case Western Reserve University
Cleveland, Ohio

July 1990
REVIEW AND STATISTICAL ANALYSIS OF THE ULTRASONIC VELOCITY METHOD FOR
ESTIMATING THE POROSITY FRACTION IN POLYCRYSTALLINE MATERIALS

D.J. Roth
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

D.B. Stang
Sverdrup Technologies, Inc.
NASA Lewis Research Center Group
Cleveland, Ohio 44135

S.M. Swickard
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

M.R. DeGuire
Case Western Reserve University
Cleveland, Ohio 44106

SUMMARY

A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al_2O_3, CuO, MgO, porcelain-based ceramics, PZT, SiC, Si_3N_4, steel, tungsten, UO_2, (U_0.30Pu_0.70)C, and YBa_2Cu_3O_7-x. Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.

INTRODUCTION

The physical behavior of components manufactured from polycrystalline materials is in many cases directly dependent on the porosity fraction (volume fraction of pores). As examples concerning key properties of technologically-important materials, porosity fraction has been shown to affect: (1) the strength, toughness and modulus of structural and refractory materials such as steel (ref. 1), tungsten (ref. 2), SiC (ref. 3), Si_3N_4 (ref. 3), and Al_2O_3 (ref. 3), (2) the strength of nuclear fuel materials such as UO_2 (refs. 4 and 5), (3) the thermal shock behavior and strength of porcelain-based ceramics (refs. 6 and 7), (4) the dielectric and elastic properties of piezoelectric materials such as PZT (ref. 8), and (5) the critical current density, diamagnetic response, and modulus of superconducting ceramics such as YBa_2Cu_3O_7-x (refs. 9 to 11). In the latter case, reference 9 has shown that porosity...
fraction variations on the order of 1 percent in YBa$_2$Cu$_3$O$_{7-x}$ samples can result in an order of magnitude variation in critical current density. In such cases where physical properties are directly dependent on porosity fraction, the measurement of porosity fraction becomes important in the quality assurance process for the material.

Currently, various methods are available for measuring the porosity fraction of polycrystalline materials. The most common include dry-weight dimensional and liquid immersion (ref. 12). Other methods for obtaining porosity fraction include estimates from optical areal analysis measurements (ref. 13) and estimates from x-ray attenuation measurements (ref. 14). The choice of method is dependent on experimental conditions including sample geometry and whether additional investigation is required with the sample. For example, the dry-weight dimensional method can only be used for regularly-shaped samples with uniform dimensions such as cubes and rods, while liquid immersion is potentially destructive due to liquid infusion into the sample. Because of the lack of a truly universal porosity fraction measurement method, it seems worthwhile to consider additional measurement/estimation methods that may be useful and convenient in certain laboratory and industrial situations. In this study, we consider the ultrasonic velocity measurement method for estimating porosity fraction.

Ultrasonic velocity is a relatively simple measurement that requires the material specimen to have one pair of sides flat and parallel (ref. 15). The advantages of this method are that it is nondestructive and measurements can be made on different regions of a single specimen. Smith (ref. 2) and Nagarajan (ref. 16) were two of the first researchers to establish empirical correlations between porosity fraction and ultrasonic velocity for polycrystalline materials. The correlations appeared relatively linear over the porosity fraction ranges investigated. Smith's work concerned metallic samples while Nagarajan's work concerned ceramic samples. Other researchers began to investigate similar correlations with different materials. Here, we review and statistically analyze these empirical correlations between ultrasonic velocity and porosity fraction for polycrystalline materials. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, scatter plots of velocity versus percent porosity data are shown for Al$_2$O$_3$, CuO, MgO, porcelain-based ceramics, PZT, SiC, Si$_3$N$_4$, steel, tungsten, UO$_2$, (U$_{0.30}$Pu$_{0.70}$)C, and YBa$_2$Cu$_3$O$_{7-x}$. Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Additionally, velocity values predicted from regression for fully-dense materials are compared with those calculated from elastic properties.

SEMI-EMPIRICAL MODEL

When there are no boundary effects present, the velocity of a longitudinal ultrasonic wave traveling in a solid is related to the elastic properties and density of the solid by (ref. 17):

$$ V = \sqrt{\frac{E (1 - \nu)}{\rho (1 + \nu) (1 - 2\nu)}} $$

where V, E, ρ, and ν are the velocity, elastic modulus, bulk density, and Poisson's ratio, respectively, of the material. The velocity of a shear ultrasonic wave traveling in a solid is related to the elastic properties and density of the solid by:

$$ V = \sqrt{\frac{E}{2\rho (1 + \nu)}} $$

An "apparent" modulus (ref. 3) for porous materials can be considered which depends on the porosity fraction.
Several early empirical investigations provided evidence that the modulus increases exponentially with decreasing porosity fraction according to (refs. 18 and 19):

\[E = E_0 \exp(-bP') \]
\[\text{(2)} \]

where \(E_0 \) is the elastic modulus of a fully-dense (nonporous) material, \(b \) is an empirically-determined constant related to pore shape, pore distribution, and the ratio of open-to-closed pores, and \(P' \) is the porosity fraction. The use of equation (2) to evaluate \(E_0 \) by extrapolation from fitted experimental data has sometimes resulted in large discrepancies between the extrapolated and observed values (ref. 20). An alternative to equation (2) has been suggested to describe the relationship between elastic modulus and porosity fraction (ref. 21):

\[E = E_0(1 - P')^{2n+1} \]
\[\text{(3)} \]

where \(n \), like \(b \), is an empirically-determined constant that depends on pore distribution and pore geometry factors.\(^1\)

Porosity fraction, \(P' \), can be expressed as:

\[P' = (1 - (p/p_0)) \]
\[\text{(4)} \]

where \(p_0 \) is the theoretical (nonporous material) density. Rearranging equation (4) allows us to express bulk density as a function of porosity fraction:

Substituting equations (3) and (5) into equation (1) allows velocity to be expressed as:

\[V = V_0(1 - P')^n \]
\[\text{(6)} \]

where \(V_0 \) is a constant for a given material equal to:

\[V_0 = \left[\frac{E_0(1 - \nu)}{[p_0(1 + \nu)(1 - 2\nu)]} \right]^{1/2} \]
\[\text{(7)} \]

\(V_0 \) is the velocity in a fully-dense (nonporous) material, i.e., the "theoretical" velocity. (For shear waves:

\[V_0 = \frac{E_0}{2p_0(1 + \nu)} \]
\[\text{(7(a))} \]

The general case for all \(n \) can be shown by expanding the right-hand side of equation (6) using the binomial theorem (ref. 22) so that:

\[V = V_0[1 + \left[n(-P') \right] + \left[n(n - 1) \right] \times (-P')^2/2! + \ldots + [n(n - 1) \times \ldots \times (n - k + 1)(-P')^k/k!] + \ldots] \]
\[\text{(8)} \]

From the ratio test, equation (8) is absolutely convergent for \(|P'| < 1\).

Setting \(n = 1 \) in equations (3) and (8) results in good agreement for a number of materials over a wide porosity fraction range (0.1 < \(P' \) < 0.7) (ref. 21). In this case, the right-hand side of equation (8) is reduced such that:

\[V = V_0(1 - P') \]
\[\text{(9)} \]

Equation (9) shows a linear relationship between velocity and porosity fraction and is the basis for selecting linear regression to analyze the empirical correlations reported in this study.
It is sometimes convenient to discuss the relationship between velocity and percent porosity, $\%P$, where:

$$\%P = (P')100$$ \hspace{1cm} (10)

Solving equation (10) for P' and substituting into equation (9) gives:

$$V = m(\%P) + V_o$$ \hspace{1cm} (11)

where

$$m = -V_o/100$$ \hspace{1cm} (12)

Equation (11) shows a linear relationship between V and $\%P$ where m and V_o are the slope and intercept, respectively.

We can also define a "percent theoretical velocity," $\%TV$, where:

$$\%TV = (V/V_o)100$$ \hspace{1cm} (13)

Solving equation (13) for V and substituting into equation (11) gives:

$$\%TV = m'(\%P) + 100$$ \hspace{1cm} (14)

where

$$m' = (m)100/V_o$$ \hspace{1cm} (15)

Equation (14) shows a linear relationship between $\%TV$ and $\%P$ where m' and 100 are the slope and intercept, respectively. Presenting the velocity versus porosity fraction relationship in terms of equation (14) is essentially a normalization procedure in that the theoretical velocity of a material and the type of wave (longitudinal or shear) used in the velocity measurement are "removed" as variables. From the derivative of equation (14), the following quantity can be defined:

$$\frac{1}{m'} = \frac{\Delta \%P}{\Delta \%TV}$$ \hspace{1cm} (16)

where Δ is "change in."

DATA EXTRACTION PROCEDURE

Almost all of the data presented in this study were obtained from previously-published studies. The policy employed was that all of the available data should be tabulated and analyzed. In most cases, the reference provided V versus ρ data, either in the form of a table or plot. In some cases, the reference provided percent theoretical density ($\%\rho_o$) or P' values instead of ρ values. Where necessary, ρ and $\%\rho_o$ values were converted to $\%P$ values with the aid of equations (4) and (10).^2

STATISTICAL ANALYSIS METHOD

Linear regression analysis and its associated statistics utilized in this study are briefly described in the next several paragraphs. The authors felt that a comprehensive set of statistics was necessary for this analysis because of the variation among data sets in the number of velocity measurements and the porosity fraction range over which those measurements were made.

Linear regression analysis is concerned with the problem of predicting or estimating the value of a (dependent) variable (V and $\%TV$ in equations (11) and (14), respectively) on the basis of another (independent) variable ($\%P$ in equations (11) and (14)). For the sake of simplicity, we have applied the classical regression model (ref. 23) which involves the following assumptions. V (and $\%TV$) has been assumed to contain all the error while $\%P$ has been assumed to contain no

^2In most cases, the references provided V and ρ data to 3 or 4 significant figures. For the sake of uniformity, all data and subsequent calculations including statistical values are presented in this report to at most 3 significant figures.
The variance in V (and $\%TV$) has been assumed to be constant for all values of $\%P$, and the distribution about V has been assumed to be normal with mean values lying exactly on the regression line. It also has been assumed that only one V value was measured at a particular $\%P$.

Linear regression analysis results in predicted slope (m and m' in eqs. (11) and (14), respectively) and intercept (V_0 in eq. (11)) values that describe the relationship between V (and $\%TV$) and $\%P$. The Pearson product-moment correlation coefficient and level of significance statistics describe the quality of the regression. The correlation coefficient measures the strength of the linear relationship for the sample data. The level of significance, determined by the number of data points and the value of the correlation coefficient, determines an acceptance or confidence region for the regression. A level of significance of 0.025 corresponds to a 95 percent confidence region. The smaller (better) the level of significance, the lower the probability that the value of the correlation coefficient can be attributed to chance.

Confidence intervals for the predicted slope, intercept, and mean velocity values (the mean of further velocity measurements obtained at some $\%P$ value) are also presented. The 95 percent symmetric confidence interval was chosen for the analysis. In practical terms, the 95 percent confidence interval means that in 95 percent of the cases, the true value of the parameter will fall within the calculated interval.

REVIEW AND ANALYSIS

The review and statistical analysis are presented in Table I and figures 1 to 61. Most of the figures show scatter plots of V versus $\%P$ data for Al_2O_3 (refs. 16, 24 to 27), CuO (ref. 28) MgO (ref. 29), porcelain-based ceramics (refs. 7, 30 and 31), PZT (ref. 8), SiC (refs. 26, 32 to 35), Si_3N_4 (refs. 36 to 38), steel (ref. 39), tungsten (ref. 2), UO_2 (ref. 40), ($\text{Uo}_{0.30}\text{Pu}_{0.70}$)C (ref. 41), and $\text{YBa}_2\text{Cu}_3\text{O}_7-x$ (refs. 11, 42 to 45). The table presents the linear regression statistics corresponding to the scatter plots. The 95 percent confidence interval for the predicted slope and intercept values are presented in table I while the 95 percent confidence interval for mean predicted velocity values is shown by

3An analysis assuming errors in both variables is significantly more complicated. For some data sets, the uncertainty in $\%P$ may in fact be comparable to that of V. The total uncertainties in each of $\%P$ and V including experimental uncertainties, uncertainties in extracting data from plots, and different assumed values of p_0 are estimated to be less than 5 percent in all cases.

4The choice of a particular size confidence interval is "economic" rather than mathematical. It depends directly on the cost of an error, and hence on the frequency with which one can afford to be wrong. High confidence intervals lead to wide limits, and if these limits are too wide to be useful, the gap between them must be reduced either by accepting less confidence or by increasing the amount of data (ref. 23).
dashed lines on the scatter plots. The quantity (Δ%P/Δ%TV) is provided for all plot lines in the corresponding table entries. (Note that this quantity also has a confidence interval associated with it, the width of which is similar to that for m).

Pertinent information concerning the reference's study including ultrasonic technique, measurement uncertainties, microstructural anisotropy, material processing techniques, and velocity variation within specimens is also included in the table. A blank table entry indicates that the information was unavailable. The "comments" in the table give the number of data points for that particular reference and in some cases point out a major conclusion determined by the reference concerning the V versus %P data.

The figures are organized as follows. Figures 1 to 4, 6 to 9, 12 to 15, 17 to 23, 25, 26, 28, 29, 33 to 36, 38, 40 to 42, 44, 45, 48 to 50, 52 to 54, 57 to 59, show scatter plots of V (and %TV) versus %P for a single reference's data. Results of multiple investigations for a specific material were also combined and analyzed as one data set in figures 5, 10, 37, 43, 46, 55, and 60. Additionally, plots comparing predicted (in most cases) regression lines obtained for a specific material from different investigations are given in figures 11, 16, 24, 27, 30 to 32, 39, 47, 51, 56, and 61. Where applicable for a material, scatter plots of longitudinal wave velocity data are presented before plots of shear wave velocity data. For most scatter plots, the solid line drawn is the linear regression line determined from the least-squares technique. For the plots with only two data points, a line is drawn through the points. In this case, the correlation coefficient, level of significance, and confidence interval statistics are not applicable.

Because the range of %P values for which velocity measurements were obtained varied from reference to reference, the ranges shown on the horizontal and vertical axes of the plots differ from one to the next, i.e., the plots are not standardized. In some cases, the plot axes had to be adjusted to allow the presentation of the 95 percent confidence interval for mean predicted velocity values.
DISCUSSION

General Observations

Correlation coefficients with magnitudes greater than 0.95 were obtained in 31 out of 42 cases. Levels of significance with magnitudes less than 0.025 were obtained in 36 out of 42 cases. For longitudinal wave velocity, predicted intercepts (V_o) ranged from 0.443 cm/µs for unpoled PZT4 and unpoled PZT5 of reference 8 to 1.23 cm/µs for SIC of reference 33. For shear wave velocity, predicted intercepts (V_o) ranged from 0.313 cm/µs for YBa$_2$Cu$_{3-x}$O$_y$ to 0.786 cm/µs for SIC of reference 26. The quantity ($\Delta%P/\Delta%TV$) ranged from -0.52 for porcelain of reference 7 and poled PZT4 of reference 8 to -8.26 for porcelain T2 of reference 31. It is understandable that these quantities vary from one material to the next since each material has different elastic properties and density (eq. (1)). Predicted intercepts (V_o) for a specific material from different investigations agree fairly well (see the plots and tabular entries for Al$_2$O$_3$, SiC, and Si$_3$N$_4$). Predicted slopes for a specific material from different investigations agree fairly well in most cases. However, significant slope disparity is evident for Al$_2$O$_3$; this may be due to the limited porosity range for the data of references 26 and 27 and the inclusion of green and prefired sample data in the cases of references 24 and 25. For reference 26, the limited porosity range over which data was obtained is manifested in extremely wide 95 percent confidence limits for predicted slope, intercept and mean velocity values. In fact, one of the bounds for the confidence limits for predicted slope is a positive value.

Table II compares V_o predicted from regression analysis with that calculated from equations (7) (longitudinal wave velocity) and (7a) (shear wave velocity) for several materials. Values of elastic modulus, Poisson's ratio, and density for fully-dense (single crystal and/or polycrystalline) materials used in the calculation are presented. The values of V_o predicted from regression and those obtained from calculation agree within approximately 17 percent in 16 out of 16 cases, and within approximately 6 percent in 11 out of 16 cases.

Other Microstructural Variables Affecting Velocity

Although porosity fraction seems to be a significant and perhaps the major microstructural feature affecting ultrasonic velocity, several references point to other microstructural variables having an impact on velocity. These include slight compositional variations (ref. 31), preferred domain orientation (ref. 8), particle contact anisotropy (ref. 39), pore size distribution and geometry (ref. 2), and type of agglomeration (ref. 25). These variables may result in differences in predicted intercept (V_o) and slope for what is believed to be the same material from different investigations. Thus, the authors feel that the most accurate and precise application of the ultrasonic velocity method for estimating porosity fraction first requires the development of accurate velocity versus porosity fraction relationships/calibrations for the specific material of interest.

Ramifications

The estimation of batch-to-batch, sample-to-sample and within-sample %P variations for a material can be accomplished if the quantity ($\Delta%P/\Delta%TV$) is known with reasonable confidence for that material. The nondestructive mapping of spatial porosity fraction variations within a sample by means of an ultrasonic scanning technique has been reported recently (refs. 50 and
This approach may also be useful in the analysis of the uniformity of composite materials (ref. 34).

CONCLUSION

A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. First, a semi-empirical model was developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data were shown for \(\text{Al}_2\text{O}_3 \), CuO, MgO, porcelain-based ceramics, PZT, SiC, Si\(_3\)N\(_4\), steel, tungsten, \(\text{UO}_2 \), (Uo.3oPuo.70)C, and YBa\(_2\)Cu\(_3\)O\(_x\). Linear regression analysis produced slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties. The estimation of batch-to-batch, sample-to-sample, and within-sample variations in porosity fraction for a material can be accomplished with ultrasonic velocity measurements if reasonable confidence exists in the velocity versus percent porosity linear relationship.

REFERENCES

30. Prof. Dr. inż. Leszek Filipczynski; Dr. inż Zozislaw Pawlowski; and Dr. inż Jerry Wehr, Ultrasonic Methods of Testing Materials. 2nd Edition, Translation, Butterworths, 1966, p. 255.

49. Engineering Property Data On Selected Ceramics. Vol. II., Carbides. Metals and Ceramics Information Center, Battelle's Columbus Laboratories, Columbus, OH, 1979, pp. 5.2.3-10.

LIST OF SYMBOLS AND ABBREVIATIONS FOR TABLE 1.

V = Velocity (cm/μsec)
SV = Shear wave velocity (cm/μsec)
LV = Longitudinal wave velocity (cm/μsec)
%TV = Percent theoretical velocity
%P = Percent porosity
Wt. = Weight
β₀ = Predicted value of intercept (Theoretical velocity)
β'₀ = Predicted value of intercept (Percent theoretical velocity)
β₁ = Predicted value of slope (Velocity/percent porosity)
β'₁ = Predicted value of slope (Percent theoretical velocity/percent porosity)
N/A = Not applicable
RBSN = Reaction-bonded silicon nitride
Δ = Change in

(A blank appearing in a table entry indicates that the author did not mention the subject or the information was otherwise unavailable.)
<table>
<thead>
<tr>
<th>Material</th>
<th>Reference</th>
<th>Processing Notes/Chemical Additives</th>
<th>Microstructural Anisotropy</th>
<th>Velocity Measurement Technique</th>
<th>Velocity Measurement Uncertainty (%)</th>
<th>Density Measurement Technique</th>
<th>Density Measurement Uncertainty (%)</th>
<th>Theoretical Density f (Used to Calculate % Porosity p/cc)</th>
<th>Predicted Line Equation (V = f1 + f2P + f3P^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>24</td>
<td>1.5 mol % Sintering aids</td>
<td>Insignificant</td>
<td>Longitudinal waves, 10 MHz</td>
<td>≤ 0.1</td>
<td>Dry-wt dimensional</td>
<td>≤ 1</td>
<td>3.98</td>
<td>LV = -0.018 × fP + 1.03</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>25</td>
<td>Sintering aid, Binder, Plasticizer, Water</td>
<td>Thru-transmission and pulse-echo overlap, Longitudinal waves, Dry and wet coupling, 5 MHz</td>
<td>≤ 0.8</td>
<td>Dry-wt dimensional and liquid-immersion</td>
<td>≤ 2</td>
<td>3.98</td>
<td>LV = -0.019 × fP + 1.07</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16</td>
<td>Starting powders of various mean particle size, Binder</td>
<td>Pulse-echo transit time, Longitudinal waves, 10 MHz</td>
<td>≤ 1</td>
<td>Dry-wt dimensional</td>
<td>< 0.5</td>
<td>3.98</td>
<td>LV = -0.007 × fP + 1.01</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>26</td>
<td>Lubricants, Plasticizer, Water</td>
<td>Insignificant</td>
<td>Pulse-echo/cross-correlation, Longitudinal waves, 50 MHz</td>
<td>≤ 0.2</td>
<td>Liquid-immersion</td>
<td>≤ 2</td>
<td>3.98</td>
<td>LV = -0.004 × fP + 1.02</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16, 24-26</td>
<td></td>
<td>Longitudinal waves</td>
<td></td>
<td></td>
<td></td>
<td>3.98</td>
<td>LV = -0.016 × fP + 1.0</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>27</td>
<td>Insignificant</td>
<td>Pulse-echo overlap, Shear waves, 5 MHz</td>
<td>≤ 1</td>
<td>Dry-wt dimensional</td>
<td>≤ 1</td>
<td>3.98</td>
<td>SV = -0.003 × fP + 0.60</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>24</td>
<td>1.5 mol % Sintering aids</td>
<td>Insignificant</td>
<td>Shear waves, 5 MHz</td>
<td>≤ 0.2</td>
<td>Dry-wt dimensional</td>
<td>≤ 1</td>
<td>3.98</td>
<td>SV = -0.012 × fP + 0.62</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>25</td>
<td>Sintering aid, Binder, Plasticizer, Water</td>
<td>Thru-transmission and pulse-echo overlap, Shear waves, Dry and wet coupling, 1-5 MHz</td>
<td>≤ 1.8</td>
<td>Dry-wt dimensional and liquid-immersion</td>
<td>≤ 2</td>
<td>3.98</td>
<td>SV = -0.010 × fP + 0.67</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16</td>
<td>Starting powders of various mean particle size, Binder</td>
<td>Pulse-echo transit time, Shear waves, 10 MHz</td>
<td>≤ 1</td>
<td>Dry-wt dimensional</td>
<td>< 0.5</td>
<td>3.98</td>
<td>SV = -0.004 × fP + 0.62</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16, 24, 27</td>
<td></td>
<td>Shear waves</td>
<td></td>
<td></td>
<td></td>
<td>3.98</td>
<td>SV = -0.009 × fP + 0.69</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16, 24-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.98</td>
<td>SV = -0.016 × fP + 1.0</td>
<td></td>
</tr>
<tr>
<td>CuO</td>
<td>28</td>
<td>Starting powders different for each of 2 disks</td>
<td>Pulse-echo/cross-correlation, Longitudinal waves, Dry coupling, 5 MHz</td>
<td>≤ 0.4</td>
<td>Dry-wt dimensional</td>
<td>≤ 1</td>
<td>6.40</td>
<td>LV = -0.006 × fP + 0.47</td>
<td></td>
</tr>
<tr>
<td>Green- MgO</td>
<td>29</td>
<td>20 wt % Binder</td>
<td>Pulse-echo overlap, Longitudinal waves, 2.25 MHz</td>
<td>≤ 0.5</td>
<td>Dry-wt dimensional</td>
<td>≤ 1</td>
<td>2.70</td>
<td>LV = -0.014 × fP + 0.81</td>
<td></td>
</tr>
</tbody>
</table>
Percent Porosity: Review and Statistical Analysis

<table>
<thead>
<tr>
<th>#</th>
<th>Predicted Line Equation ($%TV = \beta_0 + %P + \beta_1$)</th>
<th>Correlation Coefficient</th>
<th>95% Confidence Intervals for Predicted Intercept (β_0) and Slope (β_1)</th>
<th>95% Confidence Intervals for Predicted Intercept (β_0') and Slope (β_1')</th>
<th>$\Delta% TV$</th>
<th>Largest Velocity Variation Across One Surface of Specimen (%$</th>
<th>Comments</th>
<th>Corresponding Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 09</td>
<td>$%TV = -1.65 + %P + 100$</td>
<td>-0.999</td>
<td>0.0001</td>
<td>$1.07 \leq \beta_0 \leq 1.12$</td>
<td>$97.7 \leq \beta_0' \leq 102$</td>
<td>-0.61</td>
<td>15</td>
<td>5 data points lumped together in low % porosity region separated widely from 1 data point in high % porosity region (Partially-fired specimen)</td>
</tr>
<tr>
<td>1 13</td>
<td>$%TV = -1.64 + %P + 100$</td>
<td>-0.992</td>
<td>0.0001</td>
<td>$0.994 \leq \beta_0 \leq 1.27$</td>
<td>$87.8 \leq \beta_0' \leq 112$</td>
<td>-0.51</td>
<td>1</td>
<td>Velocity may be very slightly sensitive to the type of agglomerates found in ceramic samples, which may depend on whether sample is calcined or not. 2 data points in low % porosity region widely separated from other 4 data points in high % porosity region (Green samples)</td>
</tr>
<tr>
<td>1 00</td>
<td>$%TV = -0.736 + %P + 100$</td>
<td>-0.928</td>
<td>0.0001</td>
<td>$0.987 \leq \beta_0 \leq 1.02$</td>
<td>$98.3 \leq \beta_0' \leq 102$</td>
<td>-1.36</td>
<td>16 data points</td>
<td>3</td>
</tr>
<tr>
<td>1 01</td>
<td>$%TV = -0.377 + %P + 100$</td>
<td>-0.698</td>
<td>0.302</td>
<td>$0.923 \leq \beta_0 \leq 1.09$</td>
<td>$92.2 \leq \beta_0' \leq 108$</td>
<td>-2.65</td>
<td>1</td>
<td>Limited data region, 4 data points</td>
</tr>
<tr>
<td>1 10</td>
<td>$%TV = -1.43 + %P + 100$</td>
<td>-0.949</td>
<td>0.0001</td>
<td>$0.96 \leq \beta_0 \leq 1.15$</td>
<td>$95.7 \leq \beta_0' \leq 104$</td>
<td>-0.699</td>
<td>32 data points, all longitudinal wave data</td>
<td>5</td>
</tr>
<tr>
<td>1 669</td>
<td>$%TV = -0.477 + %P + 100$</td>
<td>-0.94</td>
<td>0.006</td>
<td>$0.56 \leq \beta_0 \leq 0.692$</td>
<td>$96.7 \leq \beta_0' \leq 103$</td>
<td>-2.10</td>
<td>2</td>
<td>6 data points</td>
</tr>
<tr>
<td>1 655</td>
<td>$%TV = -1.87 + %P + 100$</td>
<td>-1.0</td>
<td>0.0001</td>
<td>$0.548 \leq \beta_0 \leq 0.663$</td>
<td>$98.9 \leq \beta_0' \leq 101$</td>
<td>-0.53</td>
<td>15</td>
<td>5 data points lumped together in low % porosity region separated widely from 1 data point in high % porosity region (Partially-fired specimen)</td>
</tr>
<tr>
<td>1 666</td>
<td>$%TV = -1.55 + %P + 100$</td>
<td>-0.987</td>
<td>0.0003</td>
<td>$0.571 \leq \beta_0 \leq 0.762$</td>
<td>$85.7 \leq \beta_0' \leq 114$</td>
<td>-0.65</td>
<td>1</td>
<td>Velocity may be very slightly sensitive to the type of agglomerates found in ceramic samples, which may depend on whether sample is calcined or not. 2 data points in low % porosity region widely separated from other 4 data points in high % porosity region (Green samples)</td>
</tr>
<tr>
<td>628</td>
<td>$%TV = -0.90 + %P + 100$</td>
<td>-0.999</td>
<td>0.0001</td>
<td>$0.62 \leq \beta_0 \leq 0.635$</td>
<td>$99.0 \leq \beta_0' \leq 101$</td>
<td>-1.51</td>
<td>17 data points</td>
<td>9</td>
</tr>
<tr>
<td>693</td>
<td>$%TV = -1.35 + %P + 100$</td>
<td>-0.910</td>
<td>0.0001</td>
<td>$0.666 \leq \beta_0 \leq 0.79$</td>
<td>$94.8 \leq \beta_0' \leq 105$</td>
<td>-0.741</td>
<td>35 data points, all shear wave data</td>
<td>10</td>
</tr>
<tr>
<td>474</td>
<td>$%TV = -1.34 + %P + 100$</td>
<td>-0.990</td>
<td>0.0100</td>
<td>$0.40 \leq \beta_0 \leq 0.549$</td>
<td>$84.3 \leq \beta_0' \leq 118$</td>
<td>-0.746</td>
<td>4 data points, 4 specimens cut from 2 disks. CuO phase confirmed from x-ray diffraction</td>
<td>12</td>
</tr>
<tr>
<td>817</td>
<td>N/A</td>
<td>-1.0</td>
<td>0.012</td>
<td>$0.673 \leq \beta_0 \leq 0.961$</td>
<td>N/A</td>
<td>-0.60</td>
<td>2</td>
<td>3 data points, material is unburned, green compact</td>
</tr>
</tbody>
</table>
| Material | Reference | Processing Notes/ Chemical Additives | Microstructural Anisotropy | Velocity Measurement Technique | Velocity Measurement Uncertainty (%) | Density Measurement Technique | Density Measurement Uncertainty (%) | Theoretical Density, \(\rho_s \) Used to Calculate % Porosity (g/cc) | Predicted Line Equation
\(\left(V = \delta_1 + \% P \cdot \delta_2 \right) \) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcelain</td>
<td>7</td>
<td>Preferred granular orientation</td>
<td>Pulse-echo overlap. Longitudinal waves, 2 MHz</td>
<td>(\leq 0.1)</td>
<td>Dry-wt dimensional</td>
<td>(\leq 1)</td>
<td>2 6</td>
<td>(LV = -0.013 \times % P + 0.728)</td>
<td>%TV</td>
</tr>
<tr>
<td>Porcelain</td>
<td>7</td>
<td>Preferred granular orientation</td>
<td>Pulse-echo overlap. Longitudinal waves, 2 MHz</td>
<td>(\leq 0.1)</td>
<td>Dry-wt dimensional</td>
<td>(\leq 1)</td>
<td>2 6</td>
<td>(SV = -0.005 \times % P + 0.448)</td>
<td>%TV</td>
</tr>
<tr>
<td>Porcelain</td>
<td>7</td>
<td>Preferred granular orientation</td>
<td>Longitudinal waves, 1.5-3 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcelain P1</td>
<td>31</td>
<td>(See ref.)</td>
<td>Longitudinal waves, 15 MHz</td>
<td>(\leq 1)</td>
<td>Dry-wt dimensional</td>
<td>(\leq 1)</td>
<td>2 5 1</td>
<td>(LV = -0.002 \times % P + 0.611)</td>
<td>%TV</td>
</tr>
<tr>
<td>Porcelain P2</td>
<td>31</td>
<td>(See ref.)</td>
<td>Longitudinal waves, 15 MHz</td>
<td>(\leq 1)</td>
<td>Dry-wt dimensional</td>
<td>(\leq 1)</td>
<td>2 5 6</td>
<td>(LV = -0.005 \times % P + 0.615)</td>
<td>%TV</td>
</tr>
<tr>
<td>Porcelain T1</td>
<td>31</td>
<td>(See ref.)</td>
<td>Longitudinal waves, 15 MHz</td>
<td>(\leq 1)</td>
<td>Dry-wt dimensional</td>
<td>(\leq 1)</td>
<td>2 5 8</td>
<td>(LV = -0.001 \times % P + 0.623)</td>
<td>%TV</td>
</tr>
<tr>
<td>Porcelain T2</td>
<td>31</td>
<td>(See ref.)</td>
<td>Longitudinal waves, 15 MHz</td>
<td>(\leq 1)</td>
<td>Dry-wt dimensional</td>
<td>(\leq 1)</td>
<td>2 5 8</td>
<td>(LV = -0.0008 \times % P + 0.626)</td>
<td>%TV</td>
</tr>
<tr>
<td>Unpoled PZT4</td>
<td>8</td>
<td>Insignificant</td>
<td>Pulse-echo overlap. Longitudinal waves, 50 MHz</td>
<td>(\leq 0.1)</td>
<td>Liquid-immersion</td>
<td>(\leq 2)</td>
<td>8 0</td>
<td>(LV = -0.007 \times % P + 0.443)</td>
<td>%TV</td>
</tr>
<tr>
<td>Poled PZT4</td>
<td>8</td>
<td>Preferred electrical domain orientation</td>
<td>Pulse-echo overlap. Longitudinal waves, 50 MHz</td>
<td>(\leq 0.1)</td>
<td>Liquid-immersion</td>
<td>(\leq 2)</td>
<td>8 0</td>
<td>(LV = -0.009 \times % P + 0.483)</td>
<td>%TV</td>
</tr>
<tr>
<td>PZT4</td>
<td>8</td>
<td>Insignificant</td>
<td>Liquid-immersion</td>
<td>(\leq 2)</td>
<td>8 0</td>
<td>(LV = -0.009 \times % P + 0.483)</td>
<td>%TV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpoled PZT5</td>
<td>8</td>
<td>Insignificant</td>
<td>Pulse-echo overlap. Longitudinal waves, 50 MHz</td>
<td>(\leq 0.1)</td>
<td>Liquid-immersion</td>
<td>(\leq 2)</td>
<td>8 0</td>
<td>(LV = -0.008 \times % P + 0.443)</td>
<td>%TV</td>
</tr>
<tr>
<td>Poled PZT5</td>
<td>8</td>
<td>Preferred electrical domain orientation</td>
<td>Pulse-echo overlap. Longitudinal waves, 50 MHz</td>
<td>(\leq 0.1)</td>
<td>Liquid-immersion</td>
<td>(\leq 2)</td>
<td>8 0</td>
<td>(LV = -0.010 \times % P + 0.486)</td>
<td>%TV</td>
</tr>
<tr>
<td>PZT5</td>
<td>8</td>
<td>Insignificant</td>
<td>Pulse-echo overlap. Longitudinal waves, 50 MHz</td>
<td>(\leq 0.1)</td>
<td>Liquid-immersion</td>
<td>(\leq 2)</td>
<td>8 0</td>
<td>(LV = -0.010 \times % P + 0.486)</td>
<td>%TV</td>
</tr>
<tr>
<td>Predicted Line Equation</td>
<td>Correlation Coefficient</td>
<td>95% Confidence Intervals for Predicted Intercept (β_0) and Slope (β_1)</td>
<td>95% Confidence Intervals for Predicted Intercept (β_0') and Slope (β_1')</td>
<td>Δ% V</td>
<td>Largest Velocity Variation Across One Surface of Specimen (%)</td>
<td>Comments</td>
<td>Corresponding Figure Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>---------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -1.78 + %P + 100$</td>
<td>-0.992 0.0001</td>
<td>0.713 $\leq \beta_0 \leq 0.743$ 0.0014 $\leq \beta_1 \leq -0.0012$</td>
<td>97.9 $\leq \beta_0' \leq 102$ -1.87 $\leq \beta_1' \leq -1.70$</td>
<td>-0.56</td>
<td>27 data points, multiphase ceramic, sample composition and thus theoretical density vary slightly with firing temperature, measurements made along extrusion axis</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -1.93 + %P + 100$</td>
<td>-0.998 0.0001</td>
<td>0.442 $\leq \beta_0 \leq 0.454$ 0.009 $\leq \beta_1 \leq -0.008$</td>
<td>98.7 $\leq \beta_0' \leq 101$ -1.98 $\leq \beta_1' \leq -1.86$</td>
<td>-0.52</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -0.935 + %P + 100$</td>
<td>-0.987 0.0001</td>
<td>0.806 $\leq \beta_0 \leq 0.830$ 0.007 $\leq \beta_1 \leq -0.005$</td>
<td>98.1 $\leq \beta_0' \leq 102$ -1.11 $\leq \beta_1' \leq -0.760$</td>
<td>-1.07</td>
<td>7 data points, multiphase ceramic, sample composition and thus theoretical density vary slightly with firing temp</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -0.312 + %P + 100$</td>
<td>-0.586 0.414</td>
<td>0.553 $\leq \beta_0 \leq 0.668$ 0.010 $\leq \beta_1 \leq 0.006$</td>
<td>90.5 $\leq \beta_0' \leq 109$ -1.34 $\leq \beta_1' \leq -1.28$</td>
<td>-3.21</td>
<td>4 data points, multiphase ceramic, sample composition and thus theoretical density vary slightly with firing temp</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -0.740 + %P + 100$</td>
<td>-0.983 0.017</td>
<td>0.598 $\leq \beta_0 \leq 0.631$ 0.007 $\leq \beta_1 \leq -0.002$</td>
<td>97.3 $\leq \beta_0' \leq 102$ -1.04 $\leq \beta_1' \leq -0.436$</td>
<td>-1.35</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -0.167 + %P + 100$</td>
<td>-0.894 0.106</td>
<td>0.612 $\leq \beta_0 \leq 0.632$ 0.003 $\leq \beta_1 \leq 0.005$</td>
<td>98.6 $\leq \beta_0' \leq 101$ -0.422 $\leq \beta_1' \leq 0.088$</td>
<td>-5.99</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -0.121 + %P + 100$</td>
<td>-0.947 0.053</td>
<td>0.621 $\leq \beta_0 \leq 0.631$ 0.002 $\leq \beta_1 \leq 0.003$</td>
<td>99.2 $\leq \beta_0' \leq 101$ -0.246 $\leq \beta_1' \leq 0.004$</td>
<td>-8.26</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -1.68 + %P + 100$</td>
<td>N/A N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.60</td>
<td>2 data points for each set, PZT4, PZT5, and PZT7 are each different solid solution combinations of PbZrO_3 and PbTiO_3 but theoretical density is ~8 g/cc for each, poled orients electric domains; velocity measured along polarized direction for poled specimens. no correlation coefficient is given since only 2 data points for each set, all poled sets have higher theoretical velocity than corresponding unpoled set</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -1.93 + %P + 100$</td>
<td>N/A N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.52</td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -1.85 + %P + 100$</td>
<td>N/A N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.54</td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$%TV = -2.12 + %P + 100$</td>
<td>N/A N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.47</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOLDOUT FRAME 2
<table>
<thead>
<tr>
<th>Material</th>
<th>Reference</th>
<th>Processing Notes/ Chemical Additives</th>
<th>Microstructural Anisotropy</th>
<th>Velocity Measurement Technique</th>
<th>Velocity Measurement Uncertainty (%)</th>
<th>Density Measurement Technique</th>
<th>Density Measurement Uncertainty (%)</th>
<th>Theoretical Density (g/cc)</th>
<th>Predicted Line Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpoled PZT7</td>
<td>8</td>
<td></td>
<td>Insignificant</td>
<td>Pulse-echo overlap, Longitudinal waves, 50 MHz</td>
<td>≤ 0.1</td>
<td>Liquid immersion</td>
<td>≤ 2</td>
<td>8.0</td>
<td>LV = -0.004 + 4%P</td>
</tr>
<tr>
<td>Poled PZT7</td>
<td>8</td>
<td></td>
<td>Preferred electrical domain orientation</td>
<td>Pulse-echo overlap, Longitudinal waves, 50 MHz</td>
<td>≤ 0.1</td>
<td>Liquid immersion</td>
<td>≤ 2</td>
<td>8.0</td>
<td>LV = -0.005 + 4%P</td>
</tr>
<tr>
<td>PZT7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpoled PZT8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poled PZT8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Green" α-SC</td>
<td>32</td>
<td>Binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SC</td>
<td>33</td>
<td>Boron and carbonaceous resin binders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SC</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SC</td>
<td>35</td>
<td>Insignificant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SC, 33-35</td>
<td>32</td>
<td>Boron and carbonaceous resin binders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SC</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3Ni3</td>
<td>36</td>
<td>Hot-pressed silicon nitride has 1% MgO sintering aid and 0.5-1% impurities. RBSN has < 1% impurities and various amounts of unreacted silicon</td>
<td>Insignificant</td>
<td>Pulse-echo overlap, Longitudinal waves, 25-45 MHz</td>
<td>≤ 0.1</td>
<td>Liquid immersion</td>
<td>≤ 2</td>
<td>3.30</td>
<td>LV = -0.015 + 4%P + 1.11</td>
</tr>
<tr>
<td>#</td>
<td>Predicted Line Equation (TV = \beta_1 %P + \beta_2 %TV)</td>
<td>Correlation Coefficient Level of Significance</td>
<td>95% Confidence Intervals for Predicted Intercept ((\beta_1)) and Slope ((\beta_2))</td>
<td>95% Confidence Intervals for Predicted Intercept ((\beta_1)) and Slope ((\beta_2))</td>
<td>(\pm %P) (\pm %TV)</td>
<td>Largest Velocity Variation Across One Surface of Specimen (%)</td>
<td>Comments</td>
<td>Corresponding Figure Number</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(TV = -0.760 %P + 100)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-1.32</td>
<td>2 data points for each set. PZT4, PZT5, and PZT7 are each different solid solution combinations of PbZrO (_3) and Pb TiO (_2) but theoretical density is (-80) g/cm(^3) for each. Poled orients electric domains, velocity measured along polarized direction for poled specimens. No correlation coefficient is given since only 2 data points for each set. All poled sets have higher theoretical velocity than corresponding unpoled set.</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(TV = -0.952 %P + 100)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-1.05</td>
<td>N/A</td>
<td>Comparison</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(TV = -1.16 %P + 100)</td>
<td>-0.974</td>
<td>0.0001</td>
<td>0.397 (\leq \alpha_0 \leq 0.535)</td>
<td>N/A</td>
<td>N/A</td>
<td>8 data points. Material is unsintered green compact; large velocity variation even though small density variation within specimen. Quality of contact between individual powder particles may affect velocity.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(TV = -1.16 %P + 100)</td>
<td>-0.993</td>
<td>0.0001</td>
<td>1.22 (\leq \beta_0 \leq 1.24)</td>
<td>99.4 (\leq \beta_1 \leq 1.01)</td>
<td>-0.862</td>
<td>(\leq 0.1)</td>
<td>8 data points; each data point is for a particular batch and is the average of (-24) measurements on (-8) specimens. Velocity not greatly sensitive to mean pore size, mean pore orientation, and mean grain size.</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>(TV = -0.916 %P + 100)</td>
<td>-0.999</td>
<td>0.0001</td>
<td>1.21 (\leq \beta_0 \leq 1.22)</td>
<td>99.8 (\leq \beta_1 \leq 1.00)</td>
<td>-1.09</td>
<td>(\leq 5)</td>
<td>6 data points</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>(TV = -0.883 %P + 100)</td>
<td>-0.957</td>
<td>0.0001</td>
<td>1.22 (\leq \beta_0 \leq 1.22)</td>
<td>99.9 (\leq \beta_1 \leq 1.00)</td>
<td>-1.13</td>
<td>(\leq 1)</td>
<td>194 data points</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>(TV = -0.912 %P + 100)</td>
<td>-0.964</td>
<td>0.0001</td>
<td>1.216 (\leq \beta_0 \leq 1.220)</td>
<td>99.9 (\leq \beta_1 \leq 1.00)</td>
<td>-1.10</td>
<td></td>
<td>208 data points; all longitudinal wave data</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>(TV = -1.16 %P + 100)</td>
<td>-0.991</td>
<td>0.0001</td>
<td>0.711 (\leq \beta_0 \leq 0.859)</td>
<td>99.0 (\leq \beta_1 \leq 1.01)</td>
<td>-0.96</td>
<td>(\leq 0.1)</td>
<td>8 data points; most specimens from same batches used by Baaklini.</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>(TV = -1.34 %P + 100)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.75</td>
<td>N/A</td>
<td>No correlation coefficient is given since only 2 data points; but each point is average of measurement on 25 specimens. Data point in low % porosity region is for hot-pressed (Si_3N_4) while data point in high % porosity is for reaction-bonded (Si_3N_4).</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Reference</td>
<td>Processing Notes/ Chemical Additives</td>
<td>Microstructural Anisotropy</td>
<td>Velocity Measurement Technique</td>
<td>Velocity Measurement Uncertainty (%)</td>
<td>Density Measurement Technique</td>
<td>Density Measurement Uncertainty (%)</td>
<td>Theoretical Density, (\rho_{th}) (Used in Calculating % Porosity (g/cc))</td>
<td>Predicted Line Equation ((V = \beta_1 + % \rho P + \beta_2))</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>37</td>
<td>Injection molded, slip-cast, and hot-pressed specimens</td>
<td>Insignificant</td>
<td>Thru-transmission, transit time. Longitudinal waves. 5 MHz</td>
<td>≤ 0.1</td>
<td>Dry-wt dimensional</td>
<td>≤ 0.1</td>
<td>3.30</td>
<td>(LV = -0.016 \times % \rho P + 1)</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>38</td>
<td>RBSN has < 1% impurities and various amounts of unreacted silicon</td>
<td>Insignificant</td>
<td>Pulse-echo overlap. Longitudinal waves. 15 MHz</td>
<td>≤ 0.1</td>
<td>Dry-wt dimensional</td>
<td>≤ 0.1</td>
<td>3.30</td>
<td>(LV = -0.013 \times % \rho P + 1)</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>36-38</td>
<td>Injection-molded, slip-cast, and hot-pressed specimens</td>
<td></td>
<td>Longitudinal waves</td>
<td></td>
<td></td>
<td></td>
<td>3.30</td>
<td>(SV = -0.008 \times % \rho P + 0.6)</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>37</td>
<td>Injection molded, slip-cast, and hot-pressed specimens</td>
<td></td>
<td>Thru-transmission, transit time. Shear waves. 5 MHz</td>
<td></td>
<td></td>
<td></td>
<td>3.30</td>
<td>(SV = -0.007 \times % \rho P + 0.6)</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>38</td>
<td>RBSN has < 1% impurities and various amounts of unreacted silicon</td>
<td>Insignificant</td>
<td>Pulse-echo overlap. Shear waves. 15 MHz</td>
<td>≤ 0.1</td>
<td>Dry-wt dimensional</td>
<td>≤ 0.1</td>
<td>3.30</td>
<td>(SV = -0.007 \times % \rho P + 0.6)</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>37 38</td>
<td></td>
<td></td>
<td>Shear waves</td>
<td></td>
<td></td>
<td></td>
<td>3.30</td>
<td>(SV = -0.007 \times % \rho P + 0.6)</td>
</tr>
<tr>
<td>Si₃N₄</td>
<td>36-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.30</td>
<td>(SV = -0.007 \times % \rho P + 0.6)</td>
</tr>
<tr>
<td>Steel A-direction (See ref.)</td>
<td>39</td>
<td>Possibly particle contact anisotropy (≤ 5%) based on pressing direction</td>
<td></td>
<td>Thru-transmission, pulse-echo overlap. Dry coupling. Longitudinal waves. 1.5-2.5 MHz</td>
<td>≤ 0.01</td>
<td>ASTM B-328-60</td>
<td>Undetermined probably ≤ 2%</td>
<td>7.85</td>
<td>(LV = -0.007 \times % \rho P + 0.5)</td>
</tr>
<tr>
<td>Steel B-direction (See ref.)</td>
<td>39</td>
<td></td>
<td></td>
<td>Thru-transmission, pulse-echo overlap. Dry coupling. Longitudinal waves. 1.5-2.5 MHz</td>
<td>≤ 0.01</td>
<td>ASTM B-328-60</td>
<td>Undetermined, probably ≤ 2%</td>
<td>7.85</td>
<td>(LV = -0.009 \times % \rho P + 0.58)</td>
</tr>
<tr>
<td>Steel C-direction (See ref.)</td>
<td>39</td>
<td></td>
<td></td>
<td>Thru-transmission, pulse-echo overlap. Dry coupling. Longitudinal waves. 1.5-2.5 MHz</td>
<td>≤ 0.01</td>
<td>ASTM B-328-60</td>
<td>Undetermined, probably ≤ 2%</td>
<td>7.85</td>
<td>(LV = -0.009 \times % \rho P + 0.59)</td>
</tr>
<tr>
<td>Steel</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.—ULTRASONIC VELOCITY VERSUS PERCENT:
<table>
<thead>
<tr>
<th>Predicted Line Equation ($%TV = \beta_0 + %P \cdot \beta_1$)</th>
<th>Correlation Coefficient Level of Significance</th>
<th>95% Confidence Intervals for Predicted Intercept (β_0) and Slope (β_1)</th>
<th>95% Confidence Intervals for Predicted Intercept (β'_0) and Slope (β'_1)</th>
<th>(\Delta %TV)</th>
<th>Largest Velocity Variation Across One Surface of Specimen (%)</th>
<th>Comments</th>
<th>Corresponding Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14 $%TV = -1.41 %P + 100$</td>
<td>-0.997 0.0001</td>
<td>1.12 $\leq \beta_0 \leq 1.16$ $-0.017 \leq \beta_1 \leq -0.015$</td>
<td>98.6 $\leq \beta'_0 \leq 101$ $-1.48 \leq \beta'_1 \leq -1.34$</td>
<td>-0.71</td>
<td>13 data points</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>1.12 $%TV = -1.15 %P + 100$</td>
<td>-0.991 0.001</td>
<td>0.928 $\leq \beta_0 \leq 1.25$ $-0.016 \leq \beta_1 \leq -0.010$</td>
<td>88.0 $\leq \beta'_0 \leq 111$ $-1.44 \leq \beta'_1 \leq -0.864$</td>
<td>-0.87</td>
<td>5 data points</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>1.12 $%TV = -1.27 %P + 100$</td>
<td>-0.991 0.0001</td>
<td>1.08 $\leq \beta_0 \leq 1.15$ $-0.016 \leq \beta_1 \leq -0.013$</td>
<td>97.1 $\leq \beta'_0 \leq 103$ $-1.40 \leq \beta'_1 \leq -1.15$</td>
<td>-0.787</td>
<td>20 data points. all longitudinal wave data</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>1.652 $%TV = -1.18 %P + 100$</td>
<td>-0.991 0.0001</td>
<td>0.636 $\leq \beta_0 \leq 0.667$ $-0.008 \leq \beta_1 \leq -0.007$</td>
<td>97.6 $\leq \beta'_0 \leq 102$ $-1.30 \leq \beta'_1 \leq -1.06$</td>
<td>-0.85</td>
<td>11 data points</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>0.675 $%TV = -1.10 %P + 100$</td>
<td>-0.984 0.002</td>
<td>0.574 $\leq \beta_0 \leq 0.776$ $-0.011 \leq \beta_1 \leq -0.004$</td>
<td>85.0 $\leq \beta'_0 \leq 115$ $-1.62 \leq \beta'_1 \leq -0.580$</td>
<td>-0.91</td>
<td>5 data points</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>0.645 $%TV = -1.07 %P + 100$</td>
<td>-0.973 0.0001</td>
<td>0.624 $\leq \beta_0 \leq 0.666$ $-0.008 \leq \beta_1 \leq -0.006$</td>
<td>96.6 $\leq \beta'_0 \leq 103$ $-1.22 \leq \beta'_1 \leq -0.928$</td>
<td>-0.935</td>
<td>16 data points. all shear wave data</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparison</td>
<td>47</td>
</tr>
<tr>
<td>0.563 $%TV = -1.19 %P + 100$</td>
<td>-0.972 0.0001</td>
<td>0.551 $\leq \beta_0 \leq 0.574$ $-0.007 \leq \beta_1 \leq -0.006$</td>
<td>98.0 $\leq \beta'_0 \leq 102$ $-1.32 \leq \beta'_1 \leq -1.06$</td>
<td>-0.84</td>
<td>Measurements made in 3 directions (A, B, C) with respect to pressing direction for sintered steel rectangles. some residual particle contact anisotropy may be responsible for small directional dependence of velocity. Velocity also may be path-length dependent</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>0.568 $%TV = -1.53 %P + 100$</td>
<td>-0.965 0.0001</td>
<td>0.573 $\leq \beta_0 \leq 0.602$ $-0.010 \leq \beta_1 \leq -0.008$</td>
<td>97.6 $\leq \beta'_0 \leq 102$ $1.68 \leq \beta'_1 \leq -1.37$</td>
<td>-0.65</td>
<td>16 data points for B-direction 18 data points for C-direction</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>0.590 $%TV = -1.48 %P + 100$</td>
<td>-0.996 0.0001</td>
<td>0.583 $\leq \beta_0 \leq 0.597$ $-0.009 \leq \beta_1 \leq -0.008$</td>
<td>98.8 $\leq \beta'_0 \leq 101$ $-1.54 \leq \beta'_1 \leq -1.41$</td>
<td>-0.68</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparison</td>
<td>51</td>
</tr>
<tr>
<td>Material</td>
<td>Reference</td>
<td>Processing Notes/ Chemical Additives</td>
<td>Microstructural Anisotropy</td>
<td>Velocity Measurement Technique</td>
<td>Velocity Measurement Uncertainty (%)</td>
<td>Density Measurement Technique</td>
<td>Density Uncertainty (%)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Tungsten</td>
<td>2</td>
<td>Kennametal nominal 4 micron starting powder size</td>
<td></td>
<td>Thru-transmission pulse-echo overlap, Longitudinal waves, 1 MHz</td>
<td>≤ 0.5</td>
<td>ASTM C20-46 Liquid-immersion</td>
<td>≤ 2</td>
</tr>
<tr>
<td>Tungsten</td>
<td>2</td>
<td>G.E. nominal 4 micron starting powder size</td>
<td></td>
<td>Thru-transmission pulse-echo overlap, Longitudinal waves, 1 MHz</td>
<td>≤ 0.5</td>
<td>ASTM C20-46 Liquid-immersion</td>
<td>≤ 2</td>
</tr>
<tr>
<td>Tungsten</td>
<td>2</td>
<td>G.E. nominal 18 micron starting powder size</td>
<td></td>
<td>Thru-transmission pulse-echo overlap, Longitudinal waves, 1 MHz</td>
<td>≤ 0.5</td>
<td>ASTM C20-46 Liquid-immersion</td>
<td>≤ 2</td>
</tr>
<tr>
<td>Tungsten</td>
<td>2</td>
<td></td>
<td></td>
<td>Longitudinal waves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{U}_3\text{O}_7)</td>
<td>40</td>
<td></td>
<td></td>
<td>Thickness-cum-velocity meter, Longitudinal waves, 10 MHz</td>
<td>≤ 1</td>
<td>ASTM C-753-88</td>
<td>≤ 2</td>
</tr>
<tr>
<td>(\text{U}_3\text{Pu}2\text{O}{17})</td>
<td>41</td>
<td></td>
<td></td>
<td>Thickness-cum-velocity meter, Longitudinal waves, 15 MHz</td>
<td>≤ 1</td>
<td>ASTM C-753-88</td>
<td>≤ 2</td>
</tr>
<tr>
<td>(\text{YBa}_2\text{Cu}_3\text{O}_7)</td>
<td>43</td>
<td>Different starting powders</td>
<td></td>
<td>Pulse-echo/cross-correlation, Longitudinal waves, Dry and wet coupling, 5-20 MHz</td>
<td>≤ 0.4</td>
<td>Dry-wt dimensional</td>
<td>≤ 1</td>
</tr>
<tr>
<td>Predicted Line Equation</td>
<td>Correlation Coefficient</td>
<td>95% Confidence Intervals for Predicted Intercept (b0)</td>
<td>95% Confidence Intervals for Predicted Slope (b1)</td>
<td>(\Delta P)</td>
<td>Largest Velocity Variation Across One Surface of Specimen (%)</td>
<td>Comments</td>
<td>Corresponding Figure Number</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
<td>--</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| %TV = -0.939 + 4%P + 100 | -0.960 | 0.010 | \(0.465 \leq b_0 \leq 0.575 \) | \(-0.007 \leq b_1 \leq -0.003 \) | -1.06 | -1.38 \(\leq b_1 \) \(\leq -0.501 \) | Velocity shown to be sensitive to pore size distribution/mean pore size and grain size distribution/mean grain size which is a function of starting powder size distribution. These results show different theoretical velocity for tungsten depending on the starting powder size.
5 data points for Kenna 4 \(\mu \)m powder.
5 data points for GE 4 \(\mu \)m powder.
4 data points for GE 18 \(\mu \)m powder.
Each data point is average of 17 measurements across sample. | 52 |
| %TV = -1.13 + 4%P + 100 | -0.916 | 0.026 | \(0.387 \leq b_0 \leq 0.729 \) | \(-0.007 \leq b_1 \leq -0.006 \) | -0.88 | -0.89 \(\leq b_1 \) \(\leq -0.751 \) | | 53 |
| %TV = -1.38 + 4%P + 100 | -0.992 | 0.008 | \(0.471 \leq b_0 \leq 0.637 \) | \(-0.011 \leq b_1 \leq -0.005 \) | -0.72 | -0.92 \(\leq b_1 \) \(\leq -0.832 \) | | 54 |
| %TV = -1.11 + 4%P + 100 | -0.916 | 0.001 | \(0.482 \leq b_0 \leq 0.583 \) | \(-0.008 \leq b_1 \leq -0.004 \) | -0.901 | -1.41 \(\leq b_1 \) \(\leq -0.802 \) | 14 data points, all longitudinal wave data | 55 |
| %TV = -1.49 + 4%P + 100 | -0.997 | 0.001 | \(0.547 \leq b_0 \leq 0.552 \) | \(-0.009 \leq b_1 \leq -0.008 \) | -0.67 | 99.5 \(\leq b_0 \) \(\leq 100 \) | | 56 |
| %TV = -0.958 + 4%P + 100 | -0.949 | 0.051 | \(0.427 \leq b_0 \leq 0.496 \) | \(-0.009 \leq b_1 \leq -0.0003 \) | -1.04 | 92.0 \(\leq b_0 \) \(\leq 108 \) | | 57 |
| %TV = -1.28 + 4%P + 100 | -0.991 | 0.001 | \(0.554 \leq b_0 \leq 0.576 \) | \(-0.008 \leq b_1 \leq -0.007 \) | -0.781 | 98.0 \(\leq b_0 \) \(\leq 102 \) | | 58 |

[Comments] Corresponding Figure Number
52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
| Material | Reference | Processing Notes/Chemical Additives | Microstructural Anisotropy | Velocity Measurement Technique | Velocity Measurement Uncertainty (%) | Density Measurement Technique | Density Measurement Uncertainty (%) | Theoretical Density, \(\rho_t \) Used to Calculate \% Porosity (\(\rho/\rho_t \)) | Predicted Line Equation
\(V = \beta_1 \cdot \% P + \beta_2 \) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(YBa_2Cu_3O_7-x) Superconductor</td>
<td>43</td>
<td>Insignificant</td>
<td>Pulse-echo/cross-correlation, Shear waves, 10 MHz</td>
<td>(\leq 0.4)</td>
<td>Dry wt dimensional</td>
<td>(\leq 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td></td>
<td>Phase comparison method, Shear waves, 50 MHz</td>
<td>(\leq 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td>Pulse-echo overlap, Shear waves, 3-10 MHz</td>
<td>(\leq 1)</td>
<td>Dry wt dimensional</td>
<td>(\leq 1)</td>
<td></td>
<td></td>
<td>(SV = -0.002 \cdot % P + 0.31)</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td></td>
<td>Pulse-echo match up, Shear waves, 3-4 MHz</td>
<td>(\leq 1)</td>
<td>Dry wt dimensional</td>
<td>(\leq 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
<td>Thru-transmission pulse-echo overlap, Shear waves, 5 MHz</td>
<td>(\leq 3)</td>
<td>Liquid immersion</td>
<td>(\leq 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(YBa_2Cu_3O_7-x) Superconductor</td>
<td>11, 42-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Porosity: Review and Statistical Analysis—Concluded

<table>
<thead>
<tr>
<th>Predicted Line Equation (%TV = (\beta_0 + \beta_1 %P))</th>
<th>Correlation Coefficient Level of Significance</th>
<th>95% Confidence Intervals for Predicted Intercept ((\beta_0)) and Slope ((\beta_1))</th>
<th>95% Confidence Intervals for Predicted Intercept ((\beta_0')) and Slope ((\beta_1'))</th>
<th>(\frac{\Delta % P}{\Delta % TV})</th>
<th>Largest Velocity Variation Across One Surface of Specimen (%)</th>
<th>Comments</th>
<th>Corresponding Figure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%TV = -0.768 \times %P + 100)</td>
<td>-0.814 ((0.0486))</td>
<td>(0.252 \leq \beta_0 \leq 0.373) ((81.6 \leq \beta_0' \leq 119))</td>
<td>(-0.005 \leq \beta_1 \leq -0.00002) ((-1.53 \leq \beta_1' \leq -0.007))</td>
<td>-1.30</td>
<td>1 data point; sample was single-phase, untextured, and free of nonuniform stress</td>
<td>1 data point</td>
<td>60</td>
</tr>
</tbody>
</table>

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison

1 data point

2 data points; samples are not compositionally homogeneous

1 data point

Comparison
Table II: Comparison of V_p Predicted from Regression Analysis with That Calculated from Equations 7 (Longitudinal Velocity) and 7a (Shear Wave Velocity)

<table>
<thead>
<tr>
<th>Material</th>
<th>Single crystal (S) or poly-crystalline (P)</th>
<th>Average V_p from regression (V_{pR}) [cm/sec]</th>
<th>Calculated V_p from eq. (7) (V_{pC}) [cm/sec]</th>
<th>% Variation V_{pC} and V_{pR} = 100 $V_{pC} - V_{pR} / V_{pC}$</th>
<th>Average V_s from regression (V_{sR}) [cm/sec]</th>
<th>Calculated V_s from eq. (7a) (V_{sC}) [cm/sec]</th>
<th>% Variation V_{sC} and V_{sR} = 100 $V_{sC} - V_{sR} / V_{sC}$</th>
<th>Fully-dense elastic modulus, E_o (x 10-6) psi (ref.)</th>
<th>Poisson's ratio, v (ref.)</th>
<th>Theoretical density, ρ_o (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>S</td>
<td>1.10</td>
<td>0.643</td>
<td>2.2</td>
<td>0.857</td>
<td>0.659</td>
<td>0.30</td>
<td>58.4(Ref 3)</td>
<td>0.25(Ref 48)</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.06</td>
<td>0.623</td>
<td>2.3</td>
<td>0.857</td>
<td>0.659</td>
<td>0.30</td>
<td>58.1(Ref 3)</td>
<td>0.25(Ref 48)</td>
<td>3.98</td>
</tr>
<tr>
<td>SiC</td>
<td>S</td>
<td>1.16</td>
<td>0.730</td>
<td>7.7</td>
<td>0.786</td>
<td>0.769</td>
<td>2.2</td>
<td>60.0(Ref 3)</td>
<td>0.17(Ref 49)</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1.22</td>
<td>0.769</td>
<td>2.2</td>
<td>0.786</td>
<td>0.769</td>
<td>2.2</td>
<td>60.6(Ref 3)</td>
<td>0.17(Ref 49)</td>
<td>3.22</td>
</tr>
<tr>
<td>Si$_3$N$_4$</td>
<td>P</td>
<td>1.12</td>
<td>0.977</td>
<td>15.4</td>
<td>0.657</td>
<td>0.585</td>
<td>12.3</td>
<td>40.0(Ref 3)</td>
<td>0.22(Ref 3)</td>
<td>3.30</td>
</tr>
<tr>
<td>UO$_2$</td>
<td>S</td>
<td>0.558</td>
<td>0.313</td>
<td>16.3</td>
<td>0.374</td>
<td>0.374</td>
<td>16.3</td>
<td>32.0(Ref 3)</td>
<td>0.33(Ref 3)</td>
<td>10.99</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.550</td>
<td>0.313</td>
<td>16.3</td>
<td>0.374</td>
<td>0.374</td>
<td>16.3</td>
<td>32.0(Ref 3)</td>
<td>0.33(Ref 3)</td>
<td>10.99</td>
</tr>
<tr>
<td>YBa$_2$Cu$_3$O$_7$</td>
<td>P</td>
<td>0.565</td>
<td>0.313</td>
<td>16.3</td>
<td>0.374</td>
<td>0.374</td>
<td>16.3</td>
<td>32.0(Ref 3)</td>
<td>0.27(Ref 11)</td>
<td>6.38</td>
</tr>
<tr>
<td>Steel</td>
<td>P</td>
<td>0.580</td>
<td>0.374</td>
<td>16.3</td>
<td>0.374</td>
<td>0.374</td>
<td>16.3</td>
<td>29.0(Ref 47)</td>
<td>0.33(Ref 47)</td>
<td>7.85</td>
</tr>
<tr>
<td>Tungsten</td>
<td>P</td>
<td>0.541</td>
<td>0.309</td>
<td>6.1</td>
<td>0.374</td>
<td>0.374</td>
<td>16.3</td>
<td>58.0(Ref 47)</td>
<td>0.27(Ref 47)</td>
<td>19.3</td>
</tr>
</tbody>
</table>
Figure 1. - Longitudinal velocity versus percent porosity for Al₂O₃ (ref. 24).
Velocity = -0.018 x percent porosity + 1.09.
Percent theoretical velocity = -1.85 x percent porosity + 100.
Correlation coefficient = -0.999.

Figure 2. - Longitudinal velocity versus percent porosity for Al₂O₃ (ref. 25).
Velocity = -0.019 x percent porosity + 1.13.
Percent theoretical velocity = -1.54 x percent porosity + 100.
Correlation coefficient = -0.992.

Figure 3. - Longitudinal velocity versus percent porosity for Al₂O₃ (ref. 16).
Velocity = -0.007 x percent porosity + 1.00.
Percent theoretical velocity = -0.736 x percent porosity + 100.
Correlation coefficient = -0.982.
Figure 4. - Longitudinal velocity versus percent porosity for Al$_2$O$_3$ (ref. 26).
Velocity = 0.004 x percent porosity + 1.01.
Percent theoretical velocity = 0.377 x percent porosity + 100.
Correlation coefficient = -0.696.

Figure 5. - Longitudinal velocity versus percent porosity for Al$_2$O$_3$ (refs. 16, 24 to 26).
Velocity = 0.016 x percent porosity + 1.10.
Percent theoretical velocity = 1.43 x percent porosity + 100.
Correlation coefficient = -0.949.

Figure 6. - Shear velocity versus percent porosity for Al$_2$O$_3$ (ref. 27).
Velocity = 0.003 x percent porosity + 0.869.
Percent theoretical velocity = 0.477 x percent porosity + 100.
Correlation coefficient = -0.936.
Figure 7. - Shear velocity versus percent porosity for Al₂O₃ (ref. 24).

Velocity = -0.012 x percent porosity + 0.655.
Percent theoretical velocity = -1.87 x percent porosity + 100.
Correlation coefficient = -1.00.

Figure 8. - Shear velocity versus percent porosity for Al₂O₃ (ref. 25).

Velocity = -0.010 x percent porosity + 0.666.
Percent theoretical velocity = -1.55 x percent porosity + 100.
Correlation coefficient = -0.987.

Figure 9. - Shear velocity versus percent porosity for Al₂O₃ (ref. 16).

Velocity = -0.004 x percent porosity + 0.828.
Percent theoretical velocity = -0.652 x percent porosity + 100.
Correlation coefficient = -0.990.
Figure 10. - Shear velocity versus percent porosity for Al₂O₃ (refs. 16, 24, 25, 27). Velocity = -0.009 x percent porosity + 0.693. Percent theoretical velocity = -1.35 x percent porosity + 100. Correlation coefficient = -0.910.

Figure 11. - Ultrasonic velocity versus percent porosity for Al₂O₃ (refs. 16, 24 to 27).

Figure 12. - Longitudinal velocity versus percent porosity for CuO (ref. 28). Velocity = -0.006 x percent porosity + 0.474. Percent theoretical velocity = -1.34 x percent porosity + 100. Correlation coefficient = -0.990.
Figure 13. Longitudinal velocity versus percent porosity for "green" MgO (ref. 29).
Velocity = $-0.018 \times$ percent porosity + 0.817.
Correlation coefficient = -1.00.

Figure 14. Longitudinal velocity versus percent porosity for porcelain (ref. 7).
Velocity = $-0.013 \times$ percent porosity + 0.728.
Percent theoretical velocity = $-1.78 \times$ percent porosity + 100.
Correlation coefficient = -0.994.

Figure 15. Shear velocity versus percent porosity for porcelain (ref. 7).
Velocity = $-0.009 \times$ percent porosity + 0.448.
Percent theoretical velocity = $-1.93 \times$ percent porosity + 100.
Correlation coefficient = -0.996.
Figure 16. - Ultrasonic velocity versus percent porosity for porcelain (ref. 7).

Figure 17. - Longitudinal velocity versus percent porosity for porcelain (ref. 30).
Velocity = -0.006 x percent porosity + 0.618.
Percent theoretical velocity = -0.935 x percent porosity + 100.
Correlation coefficient = -0.987.

Figure 18. - Longitudinal velocity versus percent porosity for porcelain P1 (ref. 31).
Velocity = -0.002 x percent porosity + 0.611.
Percent theoretical velocity = -0.312 x percent porosity + 100.
Correlation coefficient = -0.586.
Figure 19. - Longitudinal velocity versus percent porosity for porcelain P2 (ref. 31).
Velocity = -0.005 x percent porosity + 0.615.
Percent theoretical velocity = -0.740 x percent porosity + 100.
Correlation coefficient = -0.983.

Figure 20. - Longitudinal velocity versus percent porosity for porcelain T1 (ref. 3).
Velocity = -0.001 x percent porosity + 0.623.
Percent theoretical velocity = -0.167 x percent porosity + 100.
Correlation coefficient = -0.894.

Figure 21. - Longitudinal velocity versus percent porosity for porcelain T2 (ref. 31).
Velocity = -0.001 x percent porosity + 0.626.
Percent theoretical velocity = -0.121 x percent porosity + 100.
Correlation coefficient = -0.947.
Figure 22. - Longitudinal velocity versus percent porosity for unpoled PZT4 (ref. 8).
Velocity = -0.007 x percent porosity + 0.443.
Percent theoretical velocity = -1.58 x percent porosity + 100.

Figure 23. - Longitudinal velocity versus percent porosity for poled PZT4 (ref. 8).
Velocity = -0.009 x percent porosity + 0.483.
Percent theoretical velocity = -1.93 x percent porosity + 100.

Figure 24. - Ultrasonic velocity versus percent porosity for PZT4 (ref. 8).
Figure 25. - Longitudinal velocity versus percent porosity for unpoled PZT5 (ref. 8).
Velocity = -0.008 x percent porosity + 0.443.
Percent theoretical velocity = -1.85 x percent porosity + 100.

Figure 26. - Longitudinal velocity versus percent porosity for poled PZT5 (ref. 8).
Velocity = -0.010 x percent porosity + 0.486.
Percent theoretical velocity = -2.12 x percent porosity + 100.

Figure 27. - Ultrasonic velocity versus percent porosity for PZT5 (ref. 8).
Figure 28. - Longitudinal velocity versus percent porosity for unpoled PZT7 (ref. 8).
Velocity = -0.004 x percent porosity + 0.464.
Percent theoretical velocity = -0.760 x percent porosity + 100.

Figure 29. - Longitudinal velocity versus percent porosity for poled PZT7 (ref. 8).
Velocity = -0.005 x percent porosity + 0.494.
Percent theoretical velocity = -0.952 x percent porosity + 100.

Figure 30. - Ultrasonic velocity versus percent porosity for PZT7 (ref. 8).
Figure 31. - Ultrasonic velocity versus percent porosity for unpoled PZT (ref. 8).

Figure 32. - Ultrasonic velocity versus percent porosity for poled PZT (ref. 8).

Figure 33. - Longitudinal velocity versus percent porosity for green SiC (ref. 32).
Velocity = -0.007 x percent porosity + 0.464.
Correlation coefficient = -0.974.
Figure 34. - Longitudinal velocity versus percent porosity for SiC (ref. 33).
Velocity = \(-0.014 \times \text{percent porosity} + 1.23\).
Percent theoretical velocity = \(-1.16 \times \text{percent porosity} + 100\).
Correlation coefficient = -0.993.

Figure 35. - Longitudinal velocity versus percent porosity for SiC (ref. 34).
Velocity = \(-0.011 \times \text{percent porosity} + 1.21\).
Percent theoretical velocity = \(-0.916 \times \text{percent porosity} + 100\).
Correlation coefficient = -0.999.

Figure 36. - Longitudinal velocity versus percent porosity for SiC (ref. 35).
Velocity = \(-0.011 \times \text{percent porosity} + 1.22\).
Percent theoretical velocity = \(-0.883 \times \text{percent porosity} + 100\).
Correlation coefficient = -0.957.
Figure 37. - Longitudinal velocity versus percent porosity for SiC (refs. 33 to 35).
Velocity = \(-0.011 \times \text{percent porosity} + 1.22\).
Percent theoretical velocity = \(-0.912 \times \text{percent porosity} + 100\).
Correlation coefficient = \(-0.964\).

Figure 38. - Shear velocity versus percent porosity for SiC (ref. 26).
Velocity = \(-0.009 \times \text{percent porosity} + 0.786\).
Percent theoretical velocity = \(-1.16 \times \text{percent porosity} + 100\).
Correlation coefficient = \(-0.991\).

Figure 39. - Ultrasonic velocity versus percent porosity for SiC (refs. 26, 33 to 35).

\[\text{Velocity} = a \times \text{Percent Porosity} + b \]
Figure 40. - Longitudinal velocity versus percent porosity for Si₃N₄ (ref. 36).
Velocity = -0.015 x percent porosity + 1.11.
Percent theoretical velocity = -1.34 x percent porosity + 100.

Figure 41. - Longitudinal velocity versus percent porosity for Si₃N₄ (ref. 37).
Velocity = -0.016 x percent porosity + 1.14.
Percent theoretical velocity = -1.41 x percent porosity + 100
Correlation coefficient = -0.997.

Figure 42. - Longitudinal velocity versus percent porosity for Si₃N₄ (ref. 38).
Velocity = -0.013 x percent porosity + 1.12.
Percent theoretical velocity = -1.15 x percent porosity + 100
Correlation coefficient = -0.991.
Figure 43. - Longitudinal velocity versus percent porosity for Si$_3$N$_4$ (refs. 36 to 38).
Velocity = $-0.014 \times$ percent porosity + 1.12.
Percent theoretical velocity = $-1.27 \times$ percent porosity + 100
Correlation coefficient = -0.981.

Figure 44. - Shear velocity versus percent porosity for Si$_3$N$_4$ (ref. 37).
Velocity = $-0.008 \times$ percent porosity + 0.652.
Percent theoretical velocity = $-1.18 \times$ percent porosity + 100
Correlation coefficient = -0.991.

Figure 45. - Shear velocity versus percent porosity for Si$_3$N$_4$ (ref. 38).
Velocity = $-0.007 \times$ percent porosity + 0.675.
Percent theoretical velocity = $-1.10 \times$ percent porosity + 100
Correlation coefficient = -0.984.
Figure 46. - Shear velocity versus percent porosity for Si₃N₄ (refs. 37, 38).
Velocity = \(-0.007\) x percent porosity + 0.645.
Percent theoretical velocity = \(-1.07\) x percent porosity + 100
Correlation coefficient = \(-0.973\).

Figure 47. - Ultrasonic velocity versus percent porosity for Si₃N₄ (refs. 36 to 38).

Figure 48. - Longitudinal velocity measured in the A direction versus percent porosity for steel (ref. 39).
Velocity = \(-0.007\) x percent porosity + 0.563.
Percent theoretical velocity = \(-1.19\) x percent porosity + 100,
Correlation coefficient = \(-0.972\).
Figure 49. - Longitudinal velocity measured in the B direction versus percent porosity for steel (ref. 39).
Velocity = -0.009 x percent porosity + 0.568
Percent theoretical velocity = -1.53 x percent porosity + 100.
Correlation coefficient = -0.985.

Figure 50. - Longitudinal velocity measured in the C direction versus percent porosity for steel (ref. 39).
Velocity = -0.009 x percent porosity + 0.590
Percent theoretical velocity = -1.48 x percent porosity + 100.
Correlation coefficient = -0.996.

Figure 51. - Ultrasonic velocity versus percent porosity for steel (ref. 39).
Figure 52. - Longitudinal velocity versus percent porosity for tungsten (ref. 2) with
Kenna nominal 4 \mu\text{m} starting powder size.
Velocity = -0.005 \times \text{percent porosity} + 0.520.
Percent theoretical velocity = -0.939 \times \text{percent porosity} + 100.
Correlation coefficient = -0.960.

Figure 53. - Longitudinal velocity versus percent porosity for tungsten (ref. 2) with
General Electric nominal 4 \mu\text{m} starting powder size.
Velocity = -0.006 \times \text{percent porosity} + 0.558.
Percent theoretical velocity = -1.13 \times \text{percent porosity} + 100.
Correlation coefficient = -0.918.

Figure 54. - Longitudinal velocity versus percent porosity for tungsten (ref. 2) with
General Electric nominal 18 \mu\text{m} starting powder size.
Velocity = -0.008 \times \text{percent porosity} + 0.554.
Percent theoretical velocity = -1.38 \times \text{percent porosity} + 100.
Correlation coefficient = -0.992.
Figure 55. - Longitudinal velocity versus percent porosity for tungsten (ref. 2).
Velocity = -0.006 x percent porosity + 0.533.
Percent theoretical velocity = -1.11 x percent porosity + 100.
Correlation coefficient = -0.916.

Figure 56. - Longitudinal velocity versus percent porosity for tungsten (ref. 2).

Figure 57. - Longitudinal velocity versus percent porosity for UO₂ (ref. 40).
Velocity = -0.008 x percent porosity + 0.550.
Percent theoretical velocity = -1.49 x percent porosity + 100.
Correlation coefficient = -0.997.
Figure 58. - Longitudinal velocity versus percent porosity for $(U_{0.30}Pu_{0.70})C$ (ref. 41).
Velocity = $-0.004 \times \text{percent porosity} + 0.460$.
Percent theoretical velocity = $-0.958 \times \text{percent porosity} + 100$.
Correlation coefficient = -0.949.

Figure 59. - Longitudinal velocity versus percent porosity for $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ (ref. 43).
Velocity = $-0.007 \times \text{percent porosity} + 0.565$.
Percent theoretical velocity = $-1.28 \times \text{percent porosity} + 100$.
Correlation coefficient = -0.991.

Figure 60. - Shear velocity versus percent porosity for $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ (refs. 11, 42 to 45).
Velocity = $-0.002 \times \text{percent porosity} + 0.313$.
Percent theoretical velocity = $-0.768 \times \text{percent porosity} + 100$.
Correlation coefficient = -0.814.

Figure 61. Ultrasonic velocity versus percent porosity for YBa$_2$Cu$_3$O$_{7-x}$ (refs 11, 42 to 45).
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al₂O₃, CuO, MgO, porcelain-based ceramics, PZT, SiC, Si₃N₄, steel, tungsten, UO₂, (U₀.₃Pu₀.₇)C, and YBa₂Cu₃O₇₋ₓ. Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.