

A

SOFTWARE ENGINEERING LABORATORY SERIES SEL-89-006

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME VII

NOVEMBER 1989

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has

three primary organizational members:
NASA/GSFC (Systems Development Branch)
The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development

Operation)

The goals of the SEL are (1) to understand the software
development process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of
reports that includes this document. The papers contained
in this document appeared previously as indicated in each
section.
Single copies of this document can be obtained by writing to

Systems Development Branch

Code 552

NASA/GSFC
Greenbelt, Maryland 20771

iii
5642

PRECEDING PAGE BLANK NOT FILMED

TABLE QF CONTENTS

Section 1 — Introduction

Section 2 - Software Measurement and Technology
S;udig L] . - L] L] L] L] - L] L] L] - . .

 Establishing a Measurement Based Maintenance
Improvement Program: ILessons Learned in the
SEL, H. Rombach and B. Ulery « . . =

Maintenance = Reuse-Oriented Software Develop-
ment, V. Basili. « + « « « + + & . .

Software Development: A Paradigm for the
Future, V. Basili. .

Section 3 — Measurement Environment Studies.

Inteqrating Automated Support for a Software
Management Cyvcle Into the TAME System,
V. Basili and T. Sunazuka.

Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment,
V. Basili and H. Rombach

Section 4 - Ada Technology Studies

vEvolution of Ada Technology in a Production
Software Environment," F. McGarry, L.Esker,
and K. Quimby.+ <« ¢« < + ¢ . .

"Using Ada to Maximize Verbatim Software Reuse, "
M. Stark and E. Booth.

Standard Bibliography of SEL Literature

5642

SECTION 1—INTRODUCTION

SECTION 1 - INTRODUCTION

This document is a collection of selected technical papers
produced by participants in the Software Engineering Labora-
tory (SEL) during the period December 1988, through October
1989. The purpose of the document is to make available, in
one reference, some results of SEL research that originally
appeared in a number of different forums. This is the sev-
enth such volume of technical papers produced by the SEL.
Although these papers cover several topics related to soft-
ware engineering, they do not encompass the entire scope of
SEL activities and interests. Additional information about
the SEL and its research efforts may be obtained from the
sources listed in the bibliography at the end of this docu-

ment.

For the convenience of this presentation, the seven papers

contained here are grouped into three major categories:

° Software Measurement and Technology Studies
° Measurement Environment Studies
° Ada Technology Studies

The first category presents experimental research and eval-
uation of software measurement and technology; the second
presents studies on software environments pertaining to
measurement. The last category represents Ada technology
and includes research, development, and measurement studies.

The SEL is actively working to increase its understanding
and to improve the software development process at Goddard
Space Flight Center (GSFC). Future efforts will be docu-
mented in additional volumes of the Collected Software Engi-

neering Papers and other SEL publications.

5642

SECTION 2—SOFTWARE MEASUREMENT AND
TECHNOLOGY STUDIES

SECTION 2 - SOFTWARE MEASUREMENT AND TECHNOLOGY STUDIES

The technical papers included in this section were originally

prepared as indicated below.

5642

Establishinq a Measurement Based Maintenance Im-

rovement Program: L ns Learn in the SEL,
H. Rombach and B. Ulery, University of Maryland,
Technical Report TR-2252, May 1989

Maintenance = Reuse-Oriented Software Development,

V. Basili, University of Maryland, Technical Report
TR-2244, May 1989

Software Development: A Paradigm for the Future,

V. Basili, University of Maryland, Technical Report
TR-2263, June 1989

UMIACS-TR-89-34 May, 1989
C5-TR-2252

Establishing a Veasurement Based
Maintenance Improvement Program:
Lessons Learned in the SEL
H. Dieter Rombach+
Institute for Advanced Computer Studics
Department of Computer Science
Bradford T. Ulery
Depantment of Computer Science
University of Marvland
College Park, MD 20742

ABSTRACT

The Software Engineering Laboratory (SEL) is a joint venture between NASA s
Goddard Space Flight Center, the University of Maryland, and Computer Sciences
Corporation. We discuss the use of a goul oriented approach to measurement © estab-
lish a maintenance improvement program within the SEL. Differences are found to
exist between the initial phase of the program and its routine application. We demon-
stite our approach through concrete examples, and summarize lessons we have
learned in the establishment of a measurement based. maintenance improvement pro-
gram.

+ This work was supponted by the NASA grant NSG-5123.

This paper will also appear i the Proceedings ot the Conterence on Soltware Manienance 19389

5642

5642

1. INTRODUCTION

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and created
for the purpose of investigating the effectiveness of software engineering technologies. The SEL
was created in 1977 and has three primary organizational members: NASA/GSFC, the University

of Maryland, and Computer Sciences Corporation.

NASA/GSFC develops ground control software systems and other support software for
satellites. A large number of case studies and controlled experiments have been conducted in the
past that have resulted in evolutionary changes to NASA’s development practices
{Basili85 McGarry85|. Some of the changes include the stricter use of code reading techniques
‘Basili87], the use of measurement baselines for management purposes [Ramsey88|, measurement
based recommendations for Ada projects [Brophy87!, and most recently the experimental

adoption of the CLEANROOM development method [Selby87].

In order to formalize the procedures for investigating software technologies and to organize

the resulting experience, three paradigms have been defined for goal oriented measurement:

(1) Goal/question/metric Basili84,Basili85bi. This paradigm is based on the principle that
effective measurement procedures should be derived (top-down) from goals. The GQM
paradigm suggests that measurement needs to start with a precise specification of the goals,
continue with the refinement of each goal into a set of quantifiable questions, and end with
the derivation of a set of metrics. This approach yields a rationale for any chosen set of
metrics all the way back to the original goals. Therefore, it also provides a basis for the

goal oriented interpretation of collected data.

(2) Evaluation [Basili84]. This paradigm is based on the additional principle that the
measurement process must be designed to fit the production environment. The evaluation

paradigm simply extends the GQM paradigm by including the actual measurement

procedures. These procedures must be tailored to the product or process being studied in

order to obtain valid results. Previous publications also refer to this as the GOM paradigm.

(3) Improvement [Basili85b,Basili88]. This paradigm is based on the principle that
improvement is based on continuous learning. The improvement paradigm provides the
context for evaluating multiple projects. It emphasizes recording what has been learned
through measurement so that this knowledge will be available when it is needed.
Knowledge is managed explicitly by modeling the environment and providing feedback from

analysis to production.

Experience from several studies has reaffirmed these principles and our belief in the effectiveness
of goal oriented measurement whether in a production environment or an experiment. This
experience has led to the formulation of specific measurement guidelines and goal templates
{Basili88].

A number of improvement programs have been established based on the improvement
paradigm [Grady87, Rombach87,Basili85, McGarry85]. Most of the published results. however.
address specific studies performed under such programs rather than the establishment of the
programs themselves. Examples include industrial case studies
‘Rombach87, Basili87b, Weiss85, Basili87! as well as academic experiments
Nehmer87 Katz86, Rombach86/. Two noteworthy exceptions address the managerial and
technology transfer problems associated with the establishment of such 2 study

[Brelsford88, Grady87b|.

An organization’s long-term commitment to invest in such a program depends on whether
the potential for future payoff can be demonstrated convincingly. We distinguish between the
“initial program phase" aimed at establishing an effective program and demonstrating its pavoff
potential, and the “"routine program phase" aimed at applying an accepted program to routine

projects.

5642

5642

The purpose of the initial phase is to understand the environment sufficiently to identify
high leverage improvement goals and to establish a proper measurement infrastructure
(procedures, managerial commitment, tools, personnel, ete.). The environment should be modeled
explicitly and limited measurement may be required in order to demonstrate the potential
leverage of the stated goals and the feasibility of the procedures. [t is important to recognize that
this initial phase represents an investment. What is learned in this phase provides the foundation

for improvements during the routine phase.

This paper reports on our experience from establishing an improvement program for
maintenance in the SEL. Section 2 summarizes the approach used to create the initial
understanding of the environment, the improvement goals and measurement procedures. Section
3 characterizes the current status of our program. Sections 4 and 5 highlight some important

lessons, and outline future SEL maintenance improvement activities.

2. MAINTENANCE IMPROVEMENT APPROACH

Within the SEL, development and maintenance are performed by separate organizational
units. In late 1987, measurement of maintenance was included in the scope of the SEL in order to
better understand and eventually improve the software life-cycle. At that time there was little
documentation of the actual maintenance procedures {beyond some general guidelines) on which
to base our initial analysis. Nor was there any explicit [eedback to developers about the product

maintainability, or the types and amounts of maintenance required.

Based on past experience, we were confident that the guidelines supporting the improvement
paradigm would be helpful during the initial program phase. We had, however, only vague ideas
as to how these methods should be applied given the lack of explicitly documented experience in
the SEL maintenance environment that was available when we began. We expected to learn

about the strengths and weaknesses of the improvement approach in a situation where we could

5642

not select improvement goals or design measurement procedures based on a mature understanding

of the environment, but rather would have to initially bootstrap that understanding.

The improvement program established for maintenance in the SEL is based on a version of
the improvement paradigm applied to maintenance [Rombach88]. This paradigm (see Fig. 1)
suggests that maintenance can be improved by iterating the following steps for each project: {1)
characterize the corporate maintenance environment; (2) state improvement goals in quantitative
terms; (3) plan the appropriate maintenance and measurement procedures for the project at hand;
(4) perform maintenance, measure, analyze and provide feedback; and (5) perform post mortem

analysis and provide recommendations for future projects.

[1. Characterize the corporate maintenance environment
I2. State improvement goals
a. State improvement goals informally
b. Specify related measurement goals
I3. Plan maintenance
a. Plan appropriate maintenance process
b. Plan appropriate measurement process
I4. Perform maintenance
a. Perform maintenance process 4
b. Perform measurement process
¢. Analyze collected data and provide immediate
feedback
[5. Perform post-mortem analysis and provide recommendations
for future projects

[6. Return to step I1

Figure 1: The improvement paradigm applied to maintenance.

We applied the principles of the paradigms strictly. However, during the initial phase, our

understanding of the environment, goals, and measurement procedures did not develop according

5642

to a straightforward sequential application of the first three steps of the improvement paradigm.
Nor were all supporting metrics idenl;iﬁed' by a strictly top—down application of the GQM
paradigm. There are two good reasons for not following these steps: (i) we sometimes discover
that our knowledge of prior steps is inadequate, so we retrace our steps, or (ii} practical
constraints (such as existing data collection forms) preclude a strictly top-down derivation of

procedures.

The initial uncertéimy in our understanding of the maintenance environment made it
necessary to allow for planned and ad)zoc feedback loops at any time. Such feedback loops
resulted in revisions of the goals and measurement procedures. Measurement procedures were
validated by actually applying them to real projects on a trial basis. The experience from such
trial data collection, validation, and analysis helped us to further improve our understanding of
the environment, and provided objective data to demonstrate the existence of suspected
maintenance problems. Demonstrating the feasibility of planned measurement procedures on a

trial basis has won confidence in their potential to support the improvement goals.

In summary, a number of quick {and sometimes partial) iterations through the improvement
paradigm eventually resulted in our current status. Based on this status the SEL has reached a
consensus that routinely applying this improvement program to all future maintenance projects is

worthwhile.

3. PROGRAM STATUS

This section presents the current status of our maintenance improvement program
according to the outline of the improvement paradigm (Fig. 1). Section 3.1 summarizes our
current understanding of the SEL maintenance environment (corresponding to improvement step
I1). Selected improvement goals and their supporting data collection, and validation procedures

are summarized in sections 3.2. and 3.3 (corresponding to steps [2 and [3.b}. Initial measurement

5642

data are presented and interpreted in sections 3.4 and 3.3 (corresponding to steps [4.5 and [4.¢).
This form of presentation is intended to demonstrate the use of the improvement paradigm

during this inivial phase.

3.1. ENVIRONMENT

We characterize the SEL maintenance environment in terms of the application, maintained

products, and maintenance process.

Application

Two missions in this study are the Cosmic Background Explorer (COBE) and the Gamma
Ray Observatory (GRO). They are tentatively scheduled to be launched in July, 1989, and April,
1990, respectively. COBE's scientific mission is to investigate the origins of the universe. GRO
will make observations over the energy range from .1 to 30,000 MeV.

The Earth Radiation Budget Satellite (ERBS) was launched from Space Shuttle Challenger
in October, 1984. ERBS carried the Earth Radiation Budget Experiment (ERBE) and the
Stratospheric Aerosol and Gas Experiment (SAGE)-II. Measurements from these experiments are

used to understand the earth’s climate and how environmental [actors affect it.

Largely because of the Challenger disaster in January, 1986, COBE will be the first mission

to which the Flight Dynamics Division of NASA/GSFC has contributed significantly since ERBS.

Maintained Produects

To date, we have monitored five projects representing each of the following three major

types of systems developed in the SEL environment.

N

5642

(1) Attitude Ground Support Systems (AGSS) provide operational support for a mission. Their
functions include determining spacecraft attitude from telemetry data, verifying the on-
board computer’s attitude determination and control, supporting star tracking (for

guidance), and more.

(2) Attitude Telemetry Data Simulator Systems produce realistic attitude telemetry and
engineering data files to exercise the algorithms and processing capabilities of AGSS's.

Telemetry data inciudes essentially everything the spacecraft knows and could report back.

(3) Attitude Dynamics Simulator Systems are analytic tools for testing and evaluating [two
subsystems of) the spacecraft simulators. They simulate the environment of the spacecraft,
sensor data, the on-board computer’s response (actuator commands), and the resulting

control torques in order to model the spacecraft dynamics.

In addition to the many numerical algorithms, each of these systems manages a user
interface including the control of parameters, reading large data files, and printing tables and

plots.

Maintenance Process

In order to understand the role of maintenance in this environment. why changes occur and
who could benefit from our observations, and in order to design effective measurement
procedures, we have modeled the software life-cycle (Fig. 2). The Flight Dynamics Division of
NASA/GSFC is divided into four branches, three of which are included in our model. Note that
communications crossing organizational boundaries tend to be more formal and occur less

frequently than internal communications.

Project Requirements are received by the Specification Developers. The Specification

Developers produce Functional Specifications and Mathematical Derivations for use by the

Requirements Analysts. The Requirements Analysts write the Preliminary Design which includes
the high level system architecture. This design is used by the Software Developers who produce
Code, a User’s Guide, and a System Description. The System Description summarizes the
Preliminary and Detailed Designs. The system is then submitted to Acceptance Testing. Upon
acceptance, the system is eventually passed to Maintenance'. Maintainers are responsible for the
system until about three months after launch. If the system is an AGSS, its routine Operation is
handled by Operations Support. Dynamics simulators and telemetry simulators are not passed on
to Operations Support. Although changes frequently occur immediately after a launch. they are

reportedly quite infrequent during Operational Support.

During maintenance, each change is formally defined by an Operational Soitware
Modification Report {OSMR), a form that specifies the change, and then follows it. zathering
dates and signatures as the change is approved, implemented, tested, installed, ete. Tvpically
there are more out,sAtanding OSMRs than resources. A Project Task Leader is responsiole for

allocating these resources.

OSMRs may be filed for several reasons. Acceptance Testing may reveal the need for
enhancements (corrections are still the responsibility of the Software Developers). Later the
Users (same organization unit as maintainers) may request enhancements or identify the need for
corrections or adaptations. The Specification Developers may also initiate changes. resulting {rom
ideas about similar forthcoming systems. Or, the Project Office may modiiv the Project

Requirements.

There are three software libraries: Working, Testing, and Operational. Entries in the
Working library have not yet been accepted and may not be final. Several changes are made to
the Testing library at once. These changes are tested together. The Operational library is very
stable. Three months prior to launch,(the Operational library is frozen. Maintenance

nevertheless continues (the freeze is lifted after launch).

2-10
5642

5642

Requirements
Analysis

Preliminary
Design

Software
Development

Operational
Support

Project
Office

Functional
Specifications

Mathematical
Derivations

System
Description

Operational
Software

Project
Requirements

Specification
Development

Acceptance
Testing

Maintenance

Figure 2. The software life-cycle in the NASA/GSFC Flight Dynamics

Division. Organizational units are separated by the dotted lines.

5642

Not all projects conform to the general models, but the models provide a common reference
for tailoring procedures to specific projects and making comparisons or generalizations across

projects.

3.2. MAINTENANCE IMPROVEMENT GOALS

We have identified a set of important improvement goals and refined them into quantifiable
questions and metrics according to the GQM paradigm. This subsection presents some
representative goals and questions. We have not included the complete set of goals, questions
and metrics according to the GQM templates suggested in [Basili88], but only highlight selected

ones. In the questions that refer to specific metrics, the metrics are italicized.

Characterizing maintenance

We study the maintenance process itsell to see how maintainers spend their time and what
they do. We study the entire software life-cycle to understand how Specification Developers.
Software Developers, Users, and Maintainers communicate; why changes are made; and whether

the organizational divisions result in the best use of personnel’s skills and knowledge.

Currently we are interested in the following questions:

(1) What are the major masntenance activities? What are the major software life-cycle

activities? What are the major communication links between activities?

{2) How is productivity related to types of changes {corrections, enhancements, adaptations),
and characteristics of the product (type of product, LOC)? How is effort (hours) distributed

across various activities?

10

2-12

5642

Characterizing the delivered product

The quality of the delivered product influences both what changes will be performed and the

amount of effort that will be required. We therefore characterize the products with the following

objectives in mind: to understand how and why the product changes: to understand how the

product influences productivity during a change; and to provide historical. baseline data for

future projects.

We are currently interested in characterizing each of the three types of software products in

terms of the following:

(3)

What are the static characteristics of each product (#LOC. #components. system
archilecture, programming language, types of documents)? What are the functional

characteristics of each?

What types of changes are made {in terms of how both static and functional characteristics

of the system are affected).

Improving maintenance

The maintenance process can be improved by focusing on the maintenance activities

themselves, or by improving the entire software life~cycle of which maintenance is a part.

(3)

(6)

We are currently interested in the following specific possibilities:

Establishing communication from Maintainers to Software Developers for feedback about

product maintainability.

Providing management with better mechanisms for monitoring the process.

Improving the developed products

Because of the relatively short maintenance phase, improvements to the products will be

directed primarily toward the development of future products.

11

2-13

5642

The following ideas have been proposed for improving the product:

(7) The debug code is not well designed from the Maintainers’ perspective. Future designs

should allow the Maintainers more control over which messages are turned on.

{8) We are trying to learn more about the relation between system structure and the locality of

changes. A significant number of changes affect five or more files.

3.3. DATA COLLECTION AND VALIDATION PROCEDURES

The measurement procedures presented in this subsection support the stated improvement
goals within the SEL maintenance environment. These procedures include data collection. their

validation, analysis, and feedback.

We routinely monitor the effort associated with various maintenance activities, and other
characteristics of the changes. Similar data is available from development. This data will be
used to characterize the maintenance process, the types of changes made to the product, and the

reasons for making the changes.

Routine data collection is implemented primarily through the use of forms {Fig. 3). At the
end of each week, project personnel each complete a Weekly Maintenance Effort Form (WMEF)
which briefly summarizes how they spent their time according to tvpe of changes {correction,.
enhancement, adaptation, or other) and maintenance activity (isolation. implementation, unit
test, integration test, other). Upon completion of each change, a Maintenance Change Report
Form (MCRF, Fig. 4) is filed. The MCRF summarizes the change from a user’s perspective
(reason for change and functionality) and from the programmer’s perspective (effort spent, parts
of the system modified, ete). A history of development (phase dates. effort) and product
characteristics (size, number of subsystems, etc.) is summarized on a Project Completion

Statistics Form (PCSF). This data will be made available at the end of development. It will be

12

2-14

5642

compiled through the use of programs which examine the software library and the SEL database.

The data collection forms and procedures reflect our models of the environment, the
maintenance process and products, and measurement procedures. For example, the WMEF is
filed only by Maintainers (as defined in Fig. 2); Specification Developmem_and Use do not
contribute to the hours monitored (although these hours are charged to the project); and

Changed Objects (MCRF, section B) refers to specific documents used in this environment.

Project Task
Leader
T MCRF SEL Library
l WMEF {(Form Validation)
Programmers

Figure 3. Routine data collection and validation procedures. WMEF is
collected weekly from all project personnel (Project Task Leaders, Maintainers.
Managers). MCRF is collected once for each change. These forms are validated,
analyzed, and stored in the SEL, an independent entity.

13
2-15

5642

ORIGINAL PA
GE IS
OF POOR QuaLTy

Project: Date:

MAINTENANCE CHANGE REPORT FORM
Name: OSMR Number:

SECTION A: Change Request Information

Functional Description of Change:
What was the type of modification? What caused the change?
—— Cormection e Requirements/specifications
- ENhancement — SOftware design
— Adaptation — Codse
—— Previous change
- e Other

SECTION B: Change Implementation Information

Componaents Changed/Added/Deieted:

1hrio 1dayto tweektla
<1 1day 1weesk 1 month > 1 month

Estimate the effort spent isolating/determining the changse:

Estimate the effort to design, impiement, and test the change:

Check all changed objects: it code changed, characterize the change (check mast
sppiicabie)

— Requirsments/Spectfications Cocument Intatization

— Design Document — LOgic/contro! structure

— Code (e.g., changed flow of contro!)

— Systemn Oescription — Intertace (Intemnal)

— USEr's Guide (moduie to moduile communication)

——e INtertace (external)

(moduie to external communication)
— Data (value or structure)

(e-g., variabile or value changed)
e Computationai

(e.g., change of math expression)
— Other (none of the above apply)

— Other

Estimate the number of fines of code (Inciuding comments):

aided changed deleted

Enter the number of components:
sdded changed dsieted
Enter the number of the added components that are

= Caly S~ TeuSI WA
new v modifications

Figure 4. The MCRF. A change report summarizes the change from two
perspectives: the functional perspective ("black box*), and the structural
perspective (“white box*).

14

5150G(1) 3

3.4. COLLECTED MAINTENANCE DATA

We began monitoring maintenance projects on a trial basis in October, 1987 (Fig. 5). Our

initial understanding of the environment reflected many biases from our knowledge of the

Software Development process. Prior to October, 1988, the MCRF had emphasized corrective

maintenance, did not request separate functional and structural descriptions of changes, and the

OSMRs were not monitored. Other minor revisions were also made to the forms and procedures.

The latest revision was made in January, 1989. Figure 6 summarizes the number of forms filed in

total across the various projects.

1987

PROJ!L

PROJ2

PROJ3

PROJ4

PROJs

5642

O N D J F M A M J J A S O N D J F
c 0 e a e a p a u Y u e ¢ 0 e a e 1989
t v c n b r F ¥y n g p t v ¢ n b

Vo ‘ Vi CoV2

Figure 3. Five maintenance projects have been monitored on a trial basis since
October, 1987. Two changes to the data collection forms took place in October,
1988, and January, 1989.

Figure 6. Forms received. PROJ3 and PROJ4 have not been continuously
active.

15

2-17

5642

01,08/88
01/15/88
01/22/88
01/29/88
02/05/88
02/12/88
02/19/88
02/26/88
03/04/88
03/11/88
03/18/88
03/25/88
04/01/88
04/08/88
04/15/88
04/22/88
04/29/88
05/06/88
05/13/88
05/20/88
05/27/88
06/03/88
06,10/88
06/17/88
06,/24/88
07/01/88
07/08/88
07/15/88
07/22/88
07,/29/88
08/05,/88
08/12/88
08/19/88
08/26/88
09/02/88 xxs
09/09/88

09/16/88

09/23/88

09/30/88

10/07/88

10/14/88

10/21/88

10/28/88

11/04/88

DATE N1 N2

* %

% X X X X X ® % ¥ X R * *
*

[N
LN

*

*
*

OO ® * % % % # % % % * £ #*

* O #OO * ok K X B

xh
Ed L]
xRRR

EE LS]

[K JEE N 2

L

*

*
*

YOO * ok ok kxR XOOOOODOO * ¥ % # =

0 hours (form submitted)

up to 10
up to 20
up to 30
up to 40
up to 50

RRE
ook
kN
ko kok
LR L 2]
L L]
kX
® kX
k%
*k K
EEEE 2]
EE Lk
xk#
b L]
kR
e kkK
x %%
2 22

ok kR
xR K
kK
ok kK
2L 2]
LR T 2]

XERK
x %ok k

x %
L2]

LE R

hours
hours
hours
hours
hours

MOQOO »O » * = »

* ok
L2 2]
%

EXEX
L E T
L 2 3
P2 2
LR 2§ 3
ok ok
ok
EEZ S
EEE 2
LEE 2
EE S 2

LE 2

Xk o XOOO #*

o
=3

PR LT
xHmR
LT
axxx
*xx X
EEE R
LR 2
KRB E
L T EY

xR AR
ET T T
LR 2
LR 3
*wx

= kR

o

mooco

For each week of the project, total expended effort is shown distributed over the
various personnel. On this project, Maintenance was contracted out to CSC
(CSC manager: M8; CSC programmers: P4 ~ P7). Although NASA personnel
N1 - N3) were primarily responsible for Specification Development, some hours
meetings, consulting, ete.) were attributed to Maintenance.

Figure 7.

Weekly Effort Histograms (PROJ1)

* Ok K R # R oA m

*
*

LI R e R I T e e T S T T S SR S R

O OOT v o 0 D

-
[o4]

5642

Real-time analysis of the data is not yet used by the Project Tasks Leaders or managers,
but figure 7 suggests one way effort might be monitored. It shows for each week how much total
effort has been invested by the various personnel.

Figures 8 through 10 profile some overall trends. The FORTRAN subroutines in these

products are not small, therefore entire components are seldom added or deleted.

MCRF Total LOC LOC LOC Total Files Files Files
LOC Added Deleted Changed Files Added Deleted Changed
—=====g=============================s====s===============
PROJ1 81K 2484 430 1353 ? 3 3 335
PROJ2 16K 2323 325 354 433 10 0 107
PROJ3 52K 10 55 242 0 0
PROJ4 | 37K 0 322 0 0
PROJS 176K 0 0 0

Figure 8. This table summarizes data from section B of the MCRF. The totals
refer to size at delivery (“?" refers to unavailable PCSF data). Files (usually
single subroutines) are called “components” on the MCRF.

3.5. INITIAL ANALYSIS RESULTS

In the initial phase of improvement, analysis results frequently reveal limitations in the
measurement procedures and forms as well as the naivete of early goals and questions.
Obviously, revealing these limitations and misconceptions is the first step toward improvement.
The following examples demonstrate how one’s understanding and models develop through the

analysis of data. These analyses are based on the current goals, questions, and data.

(1) How expensive is maintenance compared to development?

So far the costs have been low compared to figures often quoted in research literature (Fig.

9). There are two very good reasons for this. First, maintenance. as defined in this environment,

-

17

2-19

does not include Operational Support (during which software changes are presumed infrequent).
Second, excepting PROJI, none of the projects has completed. Also note that time spent in

Specification Development (during the Maintenance phase) is not included.

(2) What types of changes are made?

Figure 10 shows the distribution of time spent on various types of maintenance over each of
the projects. There are a few significant limitations to this data which make most generalizations
premature: 1) the "other type" category was not included on the WMEF until October, 1988;
time spent on meetings and management was therefore forced into one of the available categories;
2) there is little total data from some projects; 3) PROJ1 was "maintained* by the original
Software Developers; 4) there is no data summarizing those change requests which were not

implemented.

Development Maintenance |
Hours Hours
PROJ1 17K 3K |
PROJ2 18K 2K
PROJ3 6K 0.2K
PROJ4 12K 01K
PROJ5] 47K 0.5K

Figure 9. A comparison of total technical and management hours. (PROJ2 was
in maintenance before Oct, 1987 when measurement of maintenance began.)

18

2-20
5642

[Total Correction Enhancement Adaptation Other*
'PROJ1 | 3286 18% ¢ 67% 13% 1%
PROJ2 | 2328 4% 54% 0% 0%
PROJ3 234 58% 35% 3% 3%
PROJ4 132 0% 87% 3% 10%
LPROJS_[_459 _____10%________ 8% ______2% _____ 10%_

(Total Isolation Change Implement Unit Test Integra- w
PROJ1 3286 19% 12% 22% 12% 4% |
PROJ2 2328 15% 15% 19% 6% 30%
PROJ3 234 53% 12% 23% 6% 1%
PROJ4 132 15% 15% 24% 15% 0%
PROJS | __459 ____ 15% ____ 0% _____ 5% _____4% _____ 65

Figure 10. These two tables show the distributions of effort (WMEF) by type
of change and activity.

* “Other* was only recently added to section B of the WMEF. Most of the 135
adaptation on PROJ1 actually represents management.

4. LESSONS LEARNED

The lessons learned from our efforts to establish the improvement program for SEL's
maintenance environment address (i) why the introduction of measurement is significant. {ii} how
well the improvement approach worked, (iii) how we built the credibility of our program. and (iv}

automated support.

4.1. WHY IS THE INTRODUCTION OF MEASUREMENT SIGNIFICANT?

It was again apparent from this study that the introduction of measurement into an

industrial setting represents not just the introduction of another method. Instead it signals a

19

2-21
5642

5642

dramatic change in the organization toward a more engineering oriented software development
and maintenance style. Such a change affects all levels of an organization. Most organizations
are not ready for this kind of change. As a consequence, the initial phase of the improvement
program must be sensitive to the need of selling measurement as a credible and promising

mechanism.
Specific lessons learned:

L1: Introducing measurement represents a major shift toward a more engineering oriented

software development and maintenance style.
L2: Most environments are not ready for systematic, measurement based improvement.

L3: Special effort must be made to build the credibility of the selected improvement goals

and measurement procedures before measurement is attempted on a large scale.

The SEL adopted measurement as a means for routine improvement of its development
activities over a decade ago. Still, during the introduction of measurement to the SEL s
maintenance activities we encountered the need for selling measurement to a new audience.
Initially, it was not clear whether we should aim to reduce the need for maintenance through
better Specification Development, making a more maintainable product, or using more stringent
acceptance testing. Our current goals were influenced as much by management’'s receptiveness to

our ideas as by our technical understanding of the maintenance process.

4.2. HOW WELL DID THE IMPROVEMENT APPROACH WORK DURING THE

INITIAL PHASE?

It became apparent again from this study that the basic principles of the improvement
paradigm not only apply to the initial program phase; they are even more important for

organizing learning the higher the level of uncertainty is. On the other hand, varying levels of

5642

understanding of the environment seem to justify (even require) different procedures for applying

the paradigm.
Specific lessons learned:

L4: It is important to distinguish improvement methodologies (which depend on the
environmgnt and the maturity of the program) from principles of the improvement
paradigm (which emphasize explicit learning through the use of measurement). As
expected, the improvement paradigm was extremely helpful during the initial phase:
however, the steps taken had to be modified according to the maturity of the program

and the need to demonstrate its value.

L5: Most initial learning came from exploratory investigations (e.g., meetings, interviews) and

was based on subjective and intuitive data.

In the initial phase, we learned more from attempting to implement the measurement
procedures than from the data they provided. For example, many of the environment problems
were first revealed to us in exploratory meetings with maintenance personnel. Those meetings
provided the focus which enabled us to follow up on some of these issues in a much more goal
oriented fashion (including the use of measurement data). Subjective data are very important
during the initial program phase when our understanding does not allow for the definition of
objective metrics, or when the underlying goal does not require or justify the cost of collecting

objective data.

Our application of the improvement paradigm can be characterized as prototyping. It
allowed for feedback loops at any time. Sometimes our understanding of the environment was
improved when refining goals into questions, metrics, and measurement procedures. An example
of this is how we learned about the maintenance libraries. Given the use of formal change
requests, we assumed that changes were well defined and that upon completion of a change, a
corresponding change form (MCRF) would be filed. Eventually we learned that changes were

being made (the hours showed on weekly forms), but we were not receiving MCRFs. This

21
2-23

inconsistency was only obvious when a new" project started. “Completed* changes were being
entered in the working library, but forms were not filed until after several changes were made,
transferred to the test library, tested and approved. Although, we sometimes identified
interesting metrics based on prior experience or intuition, we always eventually justified such

metrics in the context of some improvement goal.

4.3. HOW DID WE BUILD THE CREDIBILITY OF OUR PROGRAM?

Although the actual collection and interpretation of data was not the objective of the initial
program phase, we used it on a trial basis in order to design effective measurement procedures
and to identify further needs for improvement. It is very hard to convince anyone that vou are
focusing on the right problems without actually providing some objective evidence that those
problems actually exist. It is also difficult to convince someone that a program will be effective
without demonstrating that the planned measurement procedures can be implemented in the
current environment. The techniques used to establish procedures and demonstrate their

credibility are important to the success of the program.
Specific lessons learned:

Ls6: The environment needs to be modeled at a level of detail that enables us to demonstrate
that (i) the chosen goals are justified, (ii) the derived metrics support those goals, and (iii)

the planned measurement procedures can be implemented in the given environment.

L7 Trial data collection and validation may be needed to establish confidence that planned
measurement procedures are effective and that the identified goals address significant

problems.

L8: Depending on the initial level of understanding, data collection may be less accurate,

objective, and complete during the initial phase than during routine application.

22

2-24
5642

5642

Lg: The participation of all people concerned adds to the credibility of the program.

We involved representatives from several organizational levels. They helped build initial
hypotheses based on their insights, and served as reviewers of the results produced. Their
comments were solicited, because without their confidence that we were addressing the right issues

in a feasible way, we could not expect their cooperation during actual data collection.

4.4. HOW MUCH AUTOMATED SUPPORT iS NECESSARY?

This study also illustrated the need for automated support. During the initial phase, simpie
tools are needed for storing and analyzing the measurement data. A database system, statistics
package, and report generator will become more important as the measurement procedures
stabilize and the volume of data increases. Tools for modeling and planning could be very helpful

provided they effectively support change.
Specific lessons learned:

L10: Automated support for measurement is less important during the initial phase. but will

be required during the routine phase.

L11: Graphical models {¢.g., Fig. 2), plans {e.g., relating goals, questions, and metrics), and
raw data are unwieldy and numerous. In addition to a database, automated support for

designing and managing graphical structures would be extremely useful.

During the initial phase, data collection forms were not stored in a database but simply in
folders, and could not be analyzed automatically. As a result it was not always easy to keep
track of forms and we might have lost some. This does not cause severe problems during the
initial program phase, but would during the routine phase when reliance on this data is greater.
We are currently in the process of expanding the SEL development database to include

maintenance data.

5. CONCLUSIONS

In this study we have followed the principles of the improvement paradigm while
introducing an improvement program to the SEL maintenance environment. We have observed
that unlike a well conceived experiment and unlike an environment with a history of using
measurement, this maintenance environment required a period of bootstrapping. Several rapid
improvement (or learning) cycles were required to create the initial understanding of this
environment necessary to identify meaningful goals and to design effective measurement
procedures. Using measurement on a trial basis is also important for building the credibility of

the improvement approach before attempting to apply it routinely on a large scale.

We have completed the initial program phase in which the goals and measurement
procedures presented in this paper have been demonstrated to justify routine application to all
maintenance projects within the SEL. The SEL is now providing routine support for improving

maintenance, including data collection, form validation, and database support.

Establishing the SEL maintenance improvement program has been mainly a technology
transfer problem. We tried to import existing technology. and customize it to the specific needs
within the SEL. During the course of this study we have identified several problem areas that
cannot be solved with existing technology but require additional research. These problem areas
include more formal means for (i) capturing our understanding of an environment, (ii} packaging
it into project specific, domain specific and general knowledge. (iii) relating measurement and the
objects of measurement (i.e. processes and products), (iv) tailoring existing models to specific
needs, and capturing the modeling process itself. Independent of the SEL maintenance
improvement program, other research at the University of Maryland is addressing some of these
issues: the TAME (Tailorihg A Measurement Environment) project [Basili88| focuses on problems
(i1) - (iv). The MVP (Multi-View Process Specification) project .Rombach89l focuses on problems

(1) and (iii).

5642

5642

6. ACKNOWLEDGEMENTS

We thank Frank McGarry and Jon Valett (NASA/GSFC) for supporting this project from
the very beginning, all the NASA and CSC maintenance personnel for putting up with several
evolving versions of data collection forms and for giving us valuable feedback, and the librarians
and database administrator of NASA/GSFC for handling the logistics of so many data collection

forms.

25

2-27

7. REFERENCES

Basili84

Basili85

Basili85b

Basili87b

Basilig7

Basili88

Brelsford88

Brophy37

Grady37

Grady87b

Katz86

McGarry85

Nehmer87

5642

V. R. Basili and D. M. Weiss, “A Methodology for Collecting Valid Software
Engineering Data,”” [EEE Transactions on Software Engineering SE-10(6),
pp.728-738 (November 1984).

V. R. Basili, “Can We Measure Software Technology: Lessons Learned from
Eight Years of Trying,”’ Proceedings Tenth .Annual Software Engineering
Workshop, NASA Goddard Space Flight Center (December 1985).

V. R. Basili, “Quantitative Evaluation of Software Engineering Methodology,”
First Pan Pacific Computer Conference (September 1985).

V. R. Basili and H. D. Rombach, “Tailoring the Software to Project Goals and
Environments,” Proc. Ninth International Conference on Software Engineering,
pp.345-357. (March 30-April 2, 1987).

V R. Basili and R. W. Selby, Jr., “Comparing the Effectiveness of Software
Testing Strategies,” [EEE Transactions on Software Engineersing SE-13(12),
pp-1278-1296 (December 1987).

V. R. Basili and H. D. Rombach, ‘“The TAME Project: Towards Improvement—
Oriented Software Environments,” [EEE Transactions on Software Engineering
SE~14(6), pp.758-773 (June 1988).

’

J. Brelsford, “Establishing a Software Quality Program,” Quality Progress

21(11), pp.34-37 (November 1988).

C. Brophy, W. Agresti, and V. R. Basili, ‘‘Lessons Learned in Use of Ada
Oriented Design Methods,” Proceedings Joint Ada Conference, pp.l31-236
(March 16-17, 1987).

R. B. Grady, “Measuring and Managing Software Maintenance,” [EEE Software
4(5), pp.35—45 (September 1987).

R. B. Grady and D. L. Caswell, Software Metrics: Establishing a Company-tide
Program, Prentice-Hall, [nc., Englewood Cliffs, New Jersey (1987).

E. E. Katz, H. D. Rombach, and V. R. Basili, “Structure and Maintainability of
Ada Programs: Can We Measure the Differences?,”” Proceedings 9th
Minnowbrook Workshop on Software Performance Evaluation (August 1986).

F. E. McGarry, “Recent SEL Studies,” Proceedings Tenth Annual Software
Engineering Workshop, NASA Goddard Space Flight Center (December 1935).

J. Nehmer, D. Haban, F. Mattern, D. Wybranietz, and H. D. Rombach, “Key
Concepts of the INCAS Multicomputer Project,” [EEE Transactions on Software
Engineering SE-13(8), pp.913-923 (August 1987).

5642

Ramsey88

Rombach86

Rombach87

Rombach88

Rombach89

Selby87

Weiss85

C. L. Ramsey and V. R. Basili, ‘“Expert Systems for Software Engineering
Management: A Summarized Evaluation,” in Ezpert Systems and Advanced
Data Processing, ed. M. L. Emrich, A. R. Sadlowe, and L. F. Arrowood, Elsevier
Science Publishing Co., Inc. (1988).

H. D. Rombach, V. R. Basili, and R. W. Selby, Jr., “The Role of Code Reading
in the Software Life Cycle,” Proceedings 9th Minnowbrook Workshop on Software
Performance Evaluation (August 1986).

H. D. Rombach and V. R. Basili, “A Quantitative Assessment of Software
Maintenance: An Industrial Case Study,” Proceedings Conference on Software
Maintenance-1987, pp.134-144 (September 21-24, 1987).

H. D. Rombach and B. T. Ulery, “Improving Software Maintenance through
Measurement,”” Technical Report CS-TR-2131, Dept. of Computer Science,
University of Maryland, College Park, Maryland (October 1988). Published as
an invited paper, [EEE Proceedings, April 1989.

H. D. Rombach and L. Mark, “‘Software Process & Product Specifications: A
Basis for Generating Customized SE Information Bases,” Proceedings Twenty-
Second Annual Hawair International Conference on System Sciences II (1989).

R. W. Selby, Jr., V. R. Basili, and T. Baker, “CLEANROOM Software
Development: An Empirical Evaluvation,” [EEE Transactions on Software
FEngineering SE-13(9), pp.1027-1037 (September 1987).

D. M. Weiss and V. R. Basili, ‘“Evaluating Software Development by Analysis of

Changes: Some Data from the Software Engineering Laboratory,” [EEE
Transactions on Software Engineering SE~11(2), pp.157-168 (February 1985).

27

2-29

5642

UMIACS-TR-89—48 May, 1989
CS-TR-2244

Maintenance = Reuse-Oriented Software
Developmentt
Victor R. Basilit

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

In this paper, we view maintenance as a reuse process. In this context, we dis-
cuss a set of models that can be used to support the maintenance process. We present
a high level reuse framework that characterizes the object of reuse, the process for
adapting that object for its target application, and the reused object within its target ap-
plicadon. Based upon this framework, we offer a qualitative comparison of the three
maintenance process models with regard to their strengths and weaknesses and the cir-
cumstances in which they are appropriate. To provide a more systematic, quantitative
approach for evaluating the appropriateness of the particular maintenance model, we
provide a measurement scheme, based upon the reuse framework, in the form of an or-
ganized set of questons that need to be answered. To support the reuse perspective, a
set of reuse enablers are discussed.

t This research was supported in part by NASA grant NSG-5123 and ONR grant NOOO14-87-K—0307 to the Umiversity of Mary-
land

$ Keynote address, conference on Sofiware Maintenance, Phoenix, AZ, October 1988.

5642

Maintenance = Reuse-Oriented Software Development

Victor R. Basili
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland

[Keynote Address, Conference on Software Maintenance,
Phoenix, AZ, October 1988.]

Abstract

In this paper, we view maintenance as a reuse process. In this context, we discuss a set of models that
can be used to support the maintenance process. We present a high level reuse framework that characterizes the
object of reuse, the process for adapting that object for its target application, and the reused object within its tar-
get application. Based upon this framework, we offer a qualitative comparison of the three maintenance process
models with regard to their strengths and weaknesses and the circumstances in which they are appropriate. To
provide a more systematic, quantitative approach for evaluating the appropriateness of the particular maintenance
model, we provide a measurement scheme, based upon the reuse framework, in the form of an organized set of
questions that need 10 be answered. To support the reuse perspective, a set of reuse enablers are discussed.

Introduction

If we take the view that software should be developed with the goal of maximizing the reuse of prior
experience in the form of knowledge, processes, products and tools, then the maintenance process is logically
ideally suited to a reuse-oriented software development process. There are a variety of reuse models. The key
issue here is which process model is best suited to the particular maintenance problem at hand.

In this paper, we present a high level organizational paradigm for software development and maintenance
in which an organization can leam from prior and current development and maintenance tasks and then apply
that paradigm to several maintenance process models. The paradigm has associated with it a mechanism for set-
ting goals that can be measured so that the organization can evaluate the process and the product and learn from
its experience for future projects or enhancements of the current project.

We begin by identifying three process models that can be used for maintenance. We then present a high
level reuse framework that characterizes the object of reuse, the process for adapting that object for its target
application, and the reuse object within its target application. Based upon this framework, we offer a qualitative
comparison of the three maintenance process models with regard to their strenghts and weaknesses and the cir-
cumstances in which they are appropriate. To provide a sysiematic, quantitative approach for evaluating the
appropriateness of the particular maintenance model, we provide a measurement scheme, using the
Goal/Question/Metric Paradigm. Since reuse requires a supportive environemnt, a set of environmental reuse
enablers are discussed.

Maintenance

The nature of software is that it can be modified without the use of physical wols such as screw drivers
and soldering irons. This has lead to the false assumption that maintenance is easy and inexpensive. Clearly
nothing could be further from the truth.

Most software systems are complex and modification requires a deep understanding of the functional and
non-functional requirements, the mapping of functions to system components, and the interaction of the

5642

(5]

components. Without good documentation of the requirements, design and code with respect to function, tracea-
bility and structure, maintenance becomes a difficult, expensive, error-prone task. As early as 1976, Belady and
Lehman reported on the problems with the evolution of OS 360 {7]. The literature is filled with similar experi-
ences and lessons learned (10,12,16,18,201.

Maintenance consists of several different types of activities: correction of faults existing in the system,
the adapuation of the system to a changing operating environment, e.g., new terminals, operating system
modifications, etc., and changes to the original requirements. The new system is like the old system but
different in a specific set of characteristics. One can view the new version of the system as a modification of
the old system or a new system which reuses many of the components of the old system. Although these two
views have many aspects in common, they are quite different with respect to the process models used and their
effects on future environments.

In fact, we can identify at least three process models associated with maintenance depending upon the
characteristics of the modification. We will call these (1) the quick fix model, (2) the iterative enhancement
model, and (3) the full reuse model. All three models reuse the old system and so are reuse-oriented. Which
model should be chosen for any particular modification is a combination of management and technical decisions.

Quick Fix Model. The quick fix model involves taking the existing system, usuaily just the code, and making
the necessary changes to the source code and the accompanying documentation, e.g. requirements, design, and
recompiling the system as a new version. This may be as straightforward as a change to some internal com-
ponent, e.g. an error correction involving a single component or a structural change or even some functional
enhancement. Here reuse is implicit.

0ld System New System
Requirements Requirements <--|
I’Design Design <-==——--- !J
Cllode ------------- > Code -======—=- >:
'Irest Test <-==——e—mee :

Figure 1. Quick Fix Process Model

Iterative Enhancement Model. lterative Enhancement (5] is an evolutionary mode! which was proposed
for software development in environments where the complete set of requirements for a system were not fully
understood or the author did not know how to build the full system. Although it was proposed as a develop-
ment model, it is well suited to maintenance. The process model involves:

1. Starting with the existing system requirements, design, code, test and analysis documents

2. Redeveloping starting with the appropriate document based upon analysis of the existing system, propagating
the changes through the full set of documents

3. At each step of the evolutionary process, continuing to redesign, based upon analysis.

Old System New System
Requirements = = ~====—==== > Requirements ———=>
| } ! !
Design I Design |
I ! | !
Code | Code I
I I ! I
Test ! Test !
| | I I
Analysis ------=--~ Analysis -------

Figure 2. Iterative Enhancement Model

To view this as a maintenance model, assume the initial implementation is the system in its current state
in the evolutionary maintenance process. The process assumes that the maintenance organization has the ability
to analyze the existing product, characterize the proposed set of modifications, and redesign the current version
where necessary for the new capabilities. Again, reuse is implicit.

Full Reuse Process Model. While iterative enhancement stants with evaluating the existing system for
redesign and modification, a full reuse process model starts with the requirements analysis and design of the new

system, with the concept of reusing whatever requirements, design and code are available from the old system.
The reuse process model invoives:

1. Starting the requirements for the new system, reusing as much of the old system as feasible

2. Building a new system using components from the old system or other systems available in the repository
developing new components where appropriate.

0ld System Repository New System
Requirements --> (Ri} <=====- > Requirements
lljesign -------- > {Di} <====—- > IIDeSJ.gn

Cllode ---------- > {Ci} <===—-- > Cllode

’L‘est ---------- > (Ti} <-—===- > ’]l'.'est

Figure 3. Full Reuse Process Model.

Here reuse is explicit, packaging of prior components is necessary and analysis is required for the selec-
tion of the appropriate components.

5642

5642

The difference between the last two approaches is more one of perspective. The full reuse modei frees the
developer to design the soluton relatve to the available set of solutions of similar sysiems. The iterative
enhancement model takes the last version of the current system and enhances it Both approaches encourage
redesign, but the full reuse mode! suggests a wider forum and can lead to the development of more reusable
components for future systems where the iterative enhancement model suggests the tailoring of an existing sys-
tem for the given extensions.

A Reuse Framework

The existence of several models for maintenance raises several questions. Which is the most appropriate
model for a particular environment? a particular system? a particular set of changes? the task at hand? How
do | improve each step in the process model [have chosen? How do | minimize overail cost and maximize
overall quality?

In order to answer these questions we need a model of the object of reuse, the process of adapting that
object for its target application, and the reused object within its target application. A simple model for reuse is
given in figure 4. In that model, an object is any software process or product and a transformation is the set of
activities that are performed in reusing that object. Given that the scope of the new application are understood,
the steps are:

1. identifying the candidate reusable pieces of the old object
2. understanding them

3. modifying them to our needs

4. integrating them into the process

R 2ERSS RS2 R RS RS R RERRRR SRRl Rl bt sl SRl EnS Rl Es R

¥ emm————— context 0 ==—=----
*| old | = —mmmemmmm——————- I new | *
*| object | ====-= >| transformation | ----- >| object | *
K e m—————] ________________________ *

| repository |

Figure 4. A Simple Reuse Model

To flesh out the model, we need a framework for categorizing objects, transformations, and context. The
framework should cover various categories e.g. reuse object: process, product. Within each category there are
various classification schemes for product e.g. requirements document, code module, test plan, and process: e.g.
cost estimation, risk analysis, design.

There are a variety of approaches to reuse and schemes that classify the object of reuse
(8,9.11,13,15,17,19]. We use here a variation of a reuse framework [4] that captures several aspects of the reuse
process, product and context.

Object dimensions include:

5642

(1) Reuse Object Type: What is a characterization of the candidate reuse object? Sample categories and
classifications are: process (e.g. design, test) and product (e.g. application, tool).

(2) Seif-Containedness: How independent and understandable is the candidate reuse object? Sample categories
and classifications are: syntactic independence (e.g. tightly coupled), semantic independence (e.g. similar
functionality), and precision of specification (e.g. formal, informal).

(3) Reuse Object Quality: How good is the candidate reuse object? Sample categories and classifications are:
maturity (e.g. newly developed, used in one application) complexity (e.g. low cyclomatic complexity) reli-
ability (e.g. no failures during prior use).

Context dimensions include:

(1) Requirements Domain: How similar are the requirements domains of the candidate reuse objects and
current or future projects? Some example categories and classifications are: application (e.g. ground sup-
port software for satellites), distance (e.g. same application, similar algorithms/different probiem focus).

(2) Solution Domain: How similar are the evoloution process which resuited in the candidate reuse objects and
the ones used in the current and future projects? Some example categories and classifications are: process
model (e.g. waterfall model) design method (e.g. function decomposition) programming language (e.g.
FORTRAN).

(3) Knowledge Transfer Mechanism: How is information about the candidate reuse objects and their context
passed to current and future projects? An example classification is: humans (e.g. subset of the develop-
ment team doing maintenance, separate team doing maintenance).

Transformation dimensions include:

(1) Type of Transoformations: How do we characterize the transformation activities 1o be performed? Some
sample categories and classifications are: Percent of Change (e.g. 0%, 5%), Direction (e.g. general to
domain specific, project specific to domain specific), mechanism of modification (e.g. verbatim, parameter-
ization, template-based, unconstrained) and mechanism for identifying (e.g. by name, by functional require-
ments). ’

(2) Activity Integration: How do we integrate the transformation activities into the new system development?
Some sample categories and classifications are: phase activity performed in the new development pianning
(e.g. cost estimadon, risk analysis), construction (e.g. requirements development), analysis (e.g. testing).

(3) Transformed Quality: What is the contribution of the reuse object in the context of the new system with
respect o the objectives set for it? Sample category and classifications are: reliability (e.g. no failures asso-

" ciated with that component) and performance (e.g. satisfies the timing requirement).

Comparing the Models Using the Reuse Framework

When applying the reuse framework to the maintenance process, we are focusing on a set of reuse objects
that are product documents. Let us compare the various models according to the dimensions given.

Consider the reuse object dimensions:

With regard to reuse object type, the object of the quick fix and iterative enhancement models is the set
of documents representing the old system: The object of the full reuse mode! is the repository including the
old system.

With regard to self-containedness, all the models depend upon the unit of change. The quick fix model
depends upon how much evolution has taken place since entropy may have unstructured the system. In iterative
enhancement, the evolved system should be improving for the specific application and for the appropriate set of
changes, the unit of change should be more visible. In the full reuse model, the evolved system should be
improving with respect to reuse object independence for the general application, depending upon the quality and
maturity of the repository.

With regard to reuse object quality, the quick fix model offers little knowledge of the quality of the old
object. In iterative enhancement, the analysis phase provides a fair assessment of quality with respect to the
particular application. In full reuse, we have an assessment of quality of the reuse object across several systems.

5642

Consider the context dimensions:

With regard to the requirements domain, the quick fix and iterative enhancement model assume the same
application, in fact the same project. The fuil reuse model allows for manageable variation in the application
domain, depending upon what is available in the repository.

With regard to the solution domain, the quick fix model assumes the same solution structure exists during
maintenance as during development. There is no change in the basic design or structure of the new system. In
the iterative enhancement model, because redesign is a part of the model, there is some modification (o the solu-
tion structure allowed. The full reuse model allows major differences in the solution structure, i.e. a complete
redesign is possible going from functional decomposition to object oriented design.

With regard to knowledge transfer mechanism, the quick fix model and iterative enhancement work best
with the same people. The fuil reuse model can compensate for having a different team, assuming we have
application specialists and a weil documented reuse object repository.

Consider the transformation dimensions:

With regard to type of activities, the quick fix model typically uses a source code look-up, reading for
understanding, unconstrained modification and re-compilation approach. [terative enhancement typicaily begins
with a search through the highest relevant document, changing it and continuing through the subsequent docu-
ments using a variety of modification mechanisms. The full reuse is uses a library search, and a variety of
modification mechanisms depending upon the type of change. Here modification is done off-line.

With regard to activity integration, in the quick fix model, all activities are performed at same time. Itera-
uve enhancement associates the activities with all the normal development phases. In the full reuse model,
idenafication of the candidate reusable pieces is done during project planning and the other activities are done
during development.

With regard to transformed quality, the quick fix model usually works best on smail well<ontined
modifications since their affect on the system can be understood and verified in context Iterative enhancement
is more appropriate for larger changes where the analysis phase can provide better assessment of the full affect
of changes. Full reuse is appropriate for large changes and major redesigns. Here, analysis and prior history of
the performance of the reuse objects support quality.

Given these differences, we can provide some analysis of the various maintenance process models and
recommend where they might be most applicable. But first, let’s discuss the relationship between the develop-
ment and maintenance process models. In some sense development can be considered a subset of maintenance.
Maintenance environments differ from development environments with regard to the constraints on the soiuuon,
customer demand, timeliness of response, and organization.

Most maintenance organizations are set up for the quick fix model but not for the iterative enhancement or
reuse process models. This is because they are responding to timeliness, e.g. a system failure needs (o be fixed
immediately, or a customer demand, e.g. a modification of the functionality of the system. Clearly these are
strengths for the quick fix model. But the weaknesses of the model are that the modification is usually a patch,
not well documented, the structure of the system has been partly destroyed which makes future evolution of ihe
system difficult and error-ridden, and it is not compatible with development processes. This model is best used
when timeliness and customer need are dominant and there is little chance the system will be modified again.

The iterative enhancement mode! allows for redesign so the structure of the system evoives and future
modification is easier. It focuses on the particular system, making it as good as possible. It is compatible with
development process models. The drawbacks are that it is a more costly and possibly less imely approach (in
the short run) than the quick fix mode! and it provides little support for generics or future similar systems. It is
a good approach 0 use when the product will have a long life and evolve over time. In this case, if timeliness
is also a constraint, the quick fix model can be used as a patch and the iterative enhancement model can be used
for the long term change, replacing the patch.

The full reuse process model provides the maintainer with a broader perspective, focuses on long range
development for a set of products and has the side effect of creating reusable components of all kinds for future
developments. It is compatible with development process models, and in fact, it is the way we would like such
models to evolve. The drawback is that it is more cosdy in the short run, is not appropriate for small
modifications but can be used in conjunction with other models. It is best used when we are living in muld-

5642

product environments or generic development where the product line has a long life.

The assessment given above is informal and intitive. This is due to the fact that it is a qualitative
analysis. To do a quantitative analysis we need quantitative models of the reuse objects, transformations, and
context. We need a measurement framework for characterizing via categorizaton and classification, evaluation,
prediction, and motivation to support management and technical decisions. To do this we apply the
goal/question/metric paradigm to the models.

The Goal Question Metric Paradigm

The goal/question/memic (GQM) paradigm {1,2,6] represents a systematic approach for setting the project
goals (tailored to the specific needs of an organization), defining them in an operational, tractable way by
refining them into a set of quantifiable questions that in twm imply a specific set of mewrics and data for collec-
tion. The tractability of this software engineering process allows the analysis of the collected data and com-
puted metrics in the appropriate context of the questions and the original goal. This context supports feedback
(by integrating analytic and constructive aspects) and learning (by defining the appropriate synthesis procedure
for lower-level into higher-level pieces of experience).

The process of setting goals and refining them into quantifiable questions is complex and requires experi-
ence. In order 10 support this process, a set of templates for setting goals, and a set of guidelines for deriving
questions and metrics has been developed (2].

Goals are defined in terms of purpose, perspective and environment Different sets of guidelines exist for
defining product-related and process-related questions. Product-related questions are formulated for the purpose
of defining the product (e.g., physical attmibutes, cost, changes and defects, context), defining the quality perspec-
tive of interest (e.g., reliability, user friendliness), and providing feedback from the particular quality perspective.
Process-related questions are formulated for the purpose of defining the process (quality of use, domain of use),
defining the quality perspective of interest (e.g., reduction of defects, cost effectiveness of use), and providing
feedback from the particular quality perspectve.

Application of the Goal Question Metric Paradigm

In applying the goal/question/metric paradigm, we define the goals of the maintenance process and articu-
late the issues associated with chocsing the appropriate process model, providing management with the questions

‘that need to be answered to make intelligent decisions, understand the trade-offs, and perform risk analysis.

There are a vaniety of goals we can generate. For example: to determine which process model should be chosen
for a particular product, to improve our performance or evolve a better definition of any of the models for a par-
ticular product line.

In what follows we will generate a sample goal for maintenance and provide a partial list of the questons
involved. Some of the answers will be obvious, either in the measures they require be taken or the information
required form the experts; others will not. Thus a goal for maintenance in the context of the reuse framework
might be:

Purpose:

To evaluate the new product requirements in order to reuse as much of the available products as possible.

Perspective:
Examine the cost and future evolution of the development from the point of view of the organization.
Environment:
Along with the standard environmental factors, such as resource factor, problem factors, we would like to
pay special attention to the three context dimensions of the reuse framework.

Requirements Domain:
Clearly we are using product objects from the same application domain, although we have the ability
to choose candidate components from other application domains.

5642

Soludon Domain:
This defines the process models, methods and tools that were used in the development of the existing
product. If the same processes are to be used for the evolved project then there is not problem with
reuse. However, the reuse model allows us to change the processes (and thus possibly to the product
structure) at the cost of reusing less of the prior project. If there are to be changes then we must
evaluate the cost of modification of the process and resulting product refative to the gains for process
change.

Knowledge Transfer Mechanism:
If the maintenance group is the same as the development group then there is no transfer of knowledge
required. If they are different then there are concerns that must be evaluated with respect to applica-
tion, process and product knowledge of the maintainers and the kinds of documentation available.

Product Definition:
In considering the product, we actually have several. The new product to be built, i.e. the new version
of the system, and the old versions plus any other systems that are relevant.

Product Dimensions

New Product:
How many requirements are there in total for the new system?

Old Product
What is the mapping of requirements (0 system components?
What is the measure of the complexity of the traceabiliry?
How independent are the components to be modified?
What is the complexity of the system and the individual system components?

Repository:
What candidate components are available in the repository and what are their context, transformation and
object classifications?

Difference between new and old:
How many requirements are there that are not in the old system? (Categorize by size, new vs. modification

of old vs. deletion of old, etc.)
How many components must be changed, added, deleted? (categorized by size and type of change)

Changes/Defects

How many errors, faults, failures (categorized by class) are associated with the requirements and components
that need to be changed?
What is the profile of changes to the original system prior to this change?

Cost
What is the cost of understanding the new requirements?
What is the estimated cost of building a new system, reusing the experience and parts of the old project?

What was the cost of the old system in total?
What was the cost of each version?
What is the estimated cost of modifying the old system to meet the new requirements?

Customer Context
How will the new system be used?

What are the potential future modifications based upon our analysis of customer profiles, past modificatons and
the state of technologies?

5642

Perspective:
cost and future evolution of the development

Model of Perspective: cost of modification of the design of the system vs. the expected future modifications
Parameters:

the life time of the system

the cost of future evolution of the system

the cost of evolving the old system versus rebuilding from old parts

Feedback:
Is the model appropriate?
How can the model be improved?
How can the estimations be improved?
How can classifications be improved?
How can activities be improved?

The Goal/Question/Metric paradigm allows us to develop other goals for reuse. These can be developed
for whether the reuse object is a process or a product. Consider the following examples:

Evaluate the modification activity within the reuse process in order to improve it. Examine the cost and correct-
ness of the resulting object from the point of view of the customer.

Predict the appropriate maintenance process model in order to perform the correct one. Examine its cost with
respect to the customer needs and the future evolutions of the system from the point of view of the corporauon.

Evaluate the standard corporate design method in order to assess how it should have been tailored for the current
project. Examine its effectiveness from the point of view of the designer.

Evaluate the components of the existing product in order 0 determine whether to reuse them. Examine their
independence and functional appropriateness from the point of view of their use in fumre systems.

Predict the ability of a set of code eomponents to be integrated into the current system from the point of view of
the developer.

Motivate the development of a reusable set of components in order to engineer them for reuse. Examine the
reward structure from the point of view of the manager and developer.

Reuse Enablers

There are a variety of support mechanisms necessary for achieving maximum reuse that have not been
sufficiently emphaisized in the literature. In this paper we have discussed several of these: a set of maintenance
models, a mechanism for choosing the appropriate such models based upon the goals and characteristics of the
problem at hand, and a measurement and evaluation mechanism. To support these activities there is a need for
an improvement paradigm that aids the organization in evaluating, leaming and enhancing the software process
and product, a reuse-oriented evolution environment that motivates and supports reuse, and automated support
for that model as well as the measurement and evaluation process.

The Improvement Paradigm: The improvement paradigm (1] is a high level organizational process model in
which the organization leams how to improve their product and process. Within this mode!l the organizaton
should learn how to make better decisions on which process model to use for the maintenance of their future
software products based upon learning from past performance. The paradigm is defined as follows:

1. Planning. There are three integrated activities to planning that are iteratively applied:

(a) Characterize the current project environment. [t provides a quantitative analysis of the environment and
a model of the project in the context of that environment. In the context of maintenance, the charac-
terization should provide product dimension data, change and defect data, cost data and customer

10

context data for earlier versions of the system to be modified, information about what classes of candi-
date components are available in the repository for the new system, and any information feedback
from prior projects about experience with the different models for the types of modifications required.

(b) Set up goals and refine them into quantifiable questions and metrics using the goal/question/metric para-
digm, for successful project performance and improvement over previous project performances. This
consists of a top-down analysis of goals that iteratively decomposes high-level goals into detailed sub-
goals. The iteration terminates when it has produced sub-goals that we can measure direcdy. For
maintenance this involves the development of specific G/Q/Ms as specified in the prior section.

(c) Choose and tailor the appropriate construction model for this project and the supporting methods and
tools 1o satisfy the project goals relative to the characterized environment. . Understanding the environ-
ment quantitatively allows us to choose the appropriate process modet and fine tune the methods and
tools needed to be most effective. For example, knowing the effect of prior applications of the various
maintenance models and methods in creating new projects from oid systems allows us o choose and
fine tne the appropriate process model and methods that have been historically most effective in
creating new systems of the type required from older versions and component parts in the repository.

2. Analysis. Analyze the data to evaluate the current practices, determine problems, record the findings and
make recommendations for improvement. We must conduct data analysis during and after the project. The
goal/question/metric paradigm provides traceability from goals to metrics and back. This permits the meas-
urement to be interpreted in context ensuring a focused, simpler analysis. The goal-driven operatonal
measures provide a framework for the kind of analysis needed.

3. Leamning and Feedback. This step involves the organizauon and encoding of the quandutive and qualitative
experience gained from the current project into a corporate information base to help improve planning,
development, and assessment for future projects. The resuits of the analysis and interpretation phase can be
fed back to the organization to change the way it does business based upon explicitly determined successes
and failures. In this way, we can learn how to improve quality and productivity, and how to improve
definition and assessment of goals. We can start the next project armed with the experience gained from
this and previous projects. For example, understanding the problems associated with each new version of a
system, provides insights into the need for redesign and redevelopment.

A Reuse-Oriented Environment: Reuse can be more effectively achieved within an environment that supports
reuse (3,8,13]. Software engineering environments provide such things as a project data bases, and support
the interaction of people with methods, tools and project data. However. expenence is not controlled by
the project data base or owned by the organization. Reuse only exists implicitly.

We need to be abie to incorporate the reuse process model into the context of development. We need to
combine the development and maintenance models in order to maximize the context dimensions. We need o
integrate characterization, evaluation, prediction and motivation into the process. We need to support learning
and feedback to make reuse viable. We propose that the reuse model can exist within the context of the
improvement paradigm, making it possible to support ail of the above requirements.

The TAME Project: The improvement paradigm and the reuse oriented process model require automated support
for the data base, encoded experience, and the repository of prior projects and reusabie components (2,3,14].
We need 10 automate as much of the measurement process as possible, and provide a tool environment for
managers and engineers to develop project specific goals, and generate operational definitions based upon these
goals that specify the appropriate metrics needed for evaluation. The evaluation and feedback cannot be done in
real ime without automated support. Automated support will help in the post mortems analysis.

The goal of the TAME system (2] is to instantiate and integrate the improvement and goal/question metric
paradigms and help in the tailoring of the software development process. But it can also support the reuse-
oriented process model. The TAME environment model contains basic mechanisms for supporting systematic
learning and reuse. To help with sysiematic leamning it provides support for recording experience, off-line gen-
eralizing or tiloring of experience, and formalizing experience. To help with systematic reuse it supports
mechanisms for using existing experience and on-line generalizing or tailoring of candidate experience. In this
way it attempts to integrate both learning and reuse into an overall evolution modei.

5642

5642

11

The application of the TAME system concept to maintenance will provide a mechanism for choosing the
appropriate maintenance process model for a particular project and provide data to help us learn how to do a
better job of maintenance.

Summary

The approach 10 maintenance depends on the nawre of the problem and the size and complexity of the
modification. This paper recommends that we view maintenance as a reuse process. In this way the mainainer
is provided with a reuse model and a framework for viewing maintenance that permits a measurement frame-
work to be applied. A new model of a reuse-oriented evolution process can be developed in which the existing
models can be defined. Existing models can then be analyzed within this framework, allowing an organization
to evaluate the strengths and weaknesses of the different approaches and provides feedback in refining the vari-
ous process models and creating an experience base from which to support further management and technical
decisions.

The approach provides support for defining activities, determining options, and evaluation. If the approach
is not adapted then it is difficult for an organization to know which process modei w use for a particular project,
whether they are evolving the system appropriately, and whether they are maximizing quality and minimizing
cost over the life of the system.

References

(1] V. R. Basili, "Quantitative Evaluaton of Software Methodology,” Dept of Computer Science,
University of Maryland, College Park, TR-1519, July 1985 (aiso in Proc. of the First Pan Pacific
Computer Conference, Australia, September 1986].

(2] V. R. Basili, H. D. Rombach "The TAME Project: Towards Improvement-Oriented Software Environ-
ments,” [EEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988, pp. 758-773.

(31 V. R. Basili, H. D. Rombach "Towards a Comprehensive Framework for Reuse: A Reuse Enabling
Software Evolution Environment,” University of Maryland Computer Science Technical Report,
UMIACS-TR-88-92, December 1988.

[4] V. R. Basili, H. D. Rombach, J. Bailey, and B. G. Joo, "Software Reuse: A Framework." Proc. of the
Tenth Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, J uly 1987.

{51 V. R. Basili, A. J. Turner, "lterative Enhancement: A Practical Technique for Software Development,”
[EEE Transactions on Software Engineering, vol. SE-1, no. 4, pp. 390-396, December, 1975.

{6] V.R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,” IEEE Tran-
sactions on Software Engineering, vol. SE-10, no. 6, pp. 728-738, November 1984,

[71 L. Belady and M. Lehman, "A Model of Large Program Development, IBM Systems Jouma, vol.15, no.3.
1976.

(81 Ted Biggerstaff, "Reusability Framework, Assessment, and Directions,” [EEE Software Magazine,
March 1987, pp.4149,

(9] T.P. Bowen, G. B. Wigle, J. T. Tsai, "Specification of Software Quality Attributes," Technical Repont
RADC-TR-85-37, Rome Air Development Center, Griffiss Air Force Base, N.Y. 13441-5700, February
1985.

(10] Federal Information Processing Standards, "Guideline on Software Maintenance,” U.S. Dept. of
Commerce/National Bureau of Standards, FIPS PUB 106, June 1984,

(11] P. Freeman, "Reusable Software Engineering: Concepts and Research Directions,” Proc. of the
Workshop on Reusability, September 1983, pp. 63-76.

(12] R. B. Grady, "Measuring and Managing Software Maintenance,” [EEE Software, Vol. 4, No. §, September
1987, pp. 3545.

5642

(13]
(14]
(15]

(16]
(17)
(18]

(19]

(21

12

[EEE Software, special issue on 'Reusing Software’, vol.4, no.1, January 1987,

[EEE Software, special issue on 'Tools: Making Reuse a Reality’, vol.4, no.7, July 1987.

G. A. Jones, R. Prieto-Diaz, "Building and Managing Software Libraries,” Proc. Compsac'88, Chicago,
October 5-7, 1988, pp. 228-236.

B. P. Lientz, E.B. Swanson, and G. E. Tompkins, "Characteristics of application software maintenance,”
Communications of the ACM, Vol 21, No. 6, June 1978, pp. 466-471.

R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusability,” [EEE Software, vol.4, no.l, January
1987, pp. 6-16

H. D. Rombach, V. R. Basili, "A Quantitative Assessment of Software Maintenance: A.n Industrial Case
Study,” in Proc. Conf. Software Maintenance, Austn, TX, Sept. 1987, pp. 134-144.

Mary Shaw, "Purposes and Varicties of Software Reuse,” Proceedings of the Tenth Minnowbrook
Workshop on Software Reuse, Blue Mounwin Lake, New York, July, 1987.

W. Tracz, "Tutorial on ’Software Reuse: Emerging Technology',” [EEE Catalog Number EHO278-2,
1988.
S. S. Yau, R. A. Nicholl, J. J.-P. Tsai, and S.-S. Liu, "An Integrated Life-Cycle Model for Software
Maintenance,” [EEE Transactions on Software Engineering, Vol. SE-14, No. 8, August 1988, pp. 1128-
1144,

UMIACS-TR-89-57 June, 1989
CS-TR-2263

Software Development: A Paradigm for the Future +

Victor R. Basili

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

This paper offers a new paradigm for software development that treats sottware
development as an experimental activity. [t provides built—in mechanisms for learning
how to develop software better and reusing previous experience in the forms of
knowledge, processes and products. It uses models and measures to aid in the tasks of
characterizauon, evaluation and motivaton. If proposes an orgunizanon scheme for
separating the project—specific focus from the organization's learning und reuses
focuses of software development. It discusses the implications of this approach for
corporations, rescarch and education and presents some research activities currently
underway at the University ot Maryland that support this approach.

T Research supported nopart by NASA grant NSG=S123, AFOSR grant 87-0130, ONR grant NOODLNT-K 0307, and 11
SILL through the industnan Assocates Program ot the Department ot Computer Sciencey Rovnote address, COMPSAU Sy
lando, IL, Sept. 1989

5642

[}

1. INTRODUCTION

We have been struggling with the problems of software development for
many years [31,64]. Organizations have been clamoring for mechanisms to
improve the quality and productivity of software. We have evolved from focus-
ing on the project, e.g. schedule and resource allocation concerns, to focusing on
the product, e.g. reliability and maintenance concerns, to focusing on the pro-
cess, e.g. improved methods and process models [27,33,39,56]. We have begun to
understand that software development is not an easy task. There is no simple
set of rules and methods that work under all circumstances. We need to better
understand the application, the environment in which we are developing pro-
ducts. the processes we are using and the product characteristics required.

For example, the application, environment, process and product associated
with the development of a toaster and a spacecraft are quite different with
respect to hardware engineering. No one would assume that the same educa-
tional background and training, the same management and technical environ-
ment. the same product characteristics and constraints, and the same processes,
methods and technologies would be appropriate for both. Thev are ulso quite
different with respect to software engineering.

We have not fully accepted the need to understand the differences and learn
from our experiences. We have been slow in building models of products and
processes and people for software engineering even though we have such models
for other engineering disciplines. Measurement and evaluation have only recently
become mechanisms for defining, learning, and improving the software process
and product [3.34].

We have not even delineated the differences between such terms us teeh-
nique. method. process and engineering. For the purpose of this puper we Jdetine
a technique as a basic technology for constructing or assessing software, e.z..
reading or testing. We detine a method as an organized management approach
based upon applying some technique. e.z.. design inspections or test plans. MW
define a process model as an integrated set of methods that covers the life cvele,
e.g.. an iterative enhancement model using structured designs. design inspections.
etc. We define software engineering as the application and tailoring of terh-
niques, methods and processes to the problem, project and organizational charac-
teristics. :

There is a basically experimental nature to software development. We can
draw analogies from disciplines like experimental physics and the social sciences.
As such we need to treat software developments as experiments from which we
can learn and improve the way in which we build software.

5642

D]

e

-3

THE IMPROVEMENT PARADIGM

Based upon our experiences in trying to evaluate and improve the quality in

several organizations [5,29,53,58], we have concluded that a measurement and
analysis program that extends through the entire life cycle is a necessity. Such a
program requires an organization to adopt a long term, quality—oriented, organi-
zational life cycle mode, which we call the Improvement Paradigm [4,19]. The
paradigm has evolved over time, based upon experiences in applying it to
improve various software related issues, e.g., quality and methodology. In its
current form, it has four essential aspects:

1

[1]

5642

Characterizing the environment. This involves data that characterizes the
resource usage, change and defect histories, product dimensions and environ-
mental aspects for prior projects and predictions for the current project. [t
involves information about what processes. methods and techniques have
been successful in the past on projects with these characteristics. [t provides
a quantitative analysis of the environment and a model of the project in the
context of that environment.

Planning. There are two integrated activities to planning that are itera-
tively applied:

" (a) Defining goals for the software process and product operationally rela-

tive to the customer, project, and organization. This coasists of a
top—down analysis of goals that iteratively decomposes high-level goals
into detailed subgoals. The iteration terminates when it has produced
subgoals that we can measure directly. This approach differs from the
usual in that it defines goals relative to a specific project and organiza-
tion from several perspectives. The customer. the developer. and the
development manager all contribute to goal definition. [t is. however,
rhe explicit linkage between goals and measurement that distingiishes
this approach. This not only defines what good is but provides a focus
for what metrics are needed.

(b) Choosing and tailoring the process model, methods, and tools to satistv
the project goals relative to the charactérized environment. Under-
standing the environment quantitatively allows us to choose the
appropriate process model and fine tune the methods and rools needed
to be most effective. For example, knowing prior efect histories
allows us to choose and fine tune the appropriate constructive methods
for preventing those defects during development (e.g. training in the
application to prevent errors in the problem statement) and assessment
methods that have been historically most effective in detecting those
defects (e.g., reading by stepwise abstraction for interface faults).

Analysis. We must conduct data analysis during and after the project. The
information should be disseminated to the responsible organizations. The
operational definitions of process and product goals provide traceability to
metrics and back. This permits the measurement to be interpreted in con-
text ensuring a focused, simpler analysis. The goal-driven operational mens-
ures provide a framework for the kind of analysis needed. During project

4 -

development. analysis can provide feedback to the current project in real
time for corrective action.

Learning and Feedback. The results of the analysis and interpretation phase
can be fed back to the organization to change the way it does business hased
upon explicitly determined successes and failures. For example, understand-
ing that we are allowing faults of omission to pass through the inspection
process and be caught in system test provides explicit information on how
we should modify the inspection process. Quantitative histories can improve
that process. In this way. hard-won experience is propagated throughout
the organization. We can learn how to improve quality and productivity,
and how to improve definition and assessment of goals. This step involves
the organization of the encoded knowledge into an information repository ~r
expereince base to help improve planning, development. and assessment.

¢ Characterize the current project environment.

¢ Set up goals and refine them into quantifiable questions and metrics for successful project

performance and improvement over previous project performances.

o Choose the appropriate software project execution medel for this project and supporfing
methods and tools.

¢ Execute the chosen processes and construct the products, collect the prescribed data. validate
1t, and and analyze the data to provide feedback in real-time for corrective action on rhe

current project.

* Analyze the data to evaluate the current practices. determine problems. record the findings
and make recommendations for improvement for future projects. This is an off-line Proress
which involves the structuring of experience so that it can be reused in the future.

* Proceed to step 1 to start the next project, armed with the recorded. structured exXperpnes

gained from this and previous projects.

FIGURE 1: THE IMPROVEMENT PARADIGM

The Improvement Paradigm is based upon the assumption that software

product needs directly affect the processes used to develop and maintain the pro-
duct. We must first specify our project and organizational goals and their
achievement level. This specification helps determine our processes. In other
words, we can't define the processes and then determine how we are going to
achieve and evaluate certain project characteristics. We must define the project
goals explicitly and quantitatively and use them to drive the process.

As it stands, the improvement paradigm is n generic process whose steps
need to be instantiated by various support mechanisms. [t requires 2 mechanism
for defining operational zoals and transforming them into metries (step 2a). i

-

5642

-5 -

requires a mechanism for evaluating the measurement in the context of the goals
(step 3). It requires a mechanism for feedback and learning (step 4). It requires
a mechanism for storing experience so that it can be reused on other projects
(steps 1,2b). It requires automated support for all of these mechanisms. In the
next three sections, we will discuss mechanisms that have been used to support
these activities. In the last half of the paper, we will discuss a proposed organi-
zational structure that allows these activities to be managed and evolve.

2.1. The Goal/Question/Metric Paradigm

The Goal/Question/Metric (GQM) paradigm is a mechanism for defining
and evaluating a set of operational goals, using measurement on a specific pro-
ject. It represents a systematic approach for setting the project goals tailored to
the specific needs of an organization, defining them in an operational. tractable
way by refining them into a set of quantifiable questions that in turn implies 2
specific set of metrics and data for collection. It involves the development of
data collection mechanisms. e.g.. forms, automated tools, the collection and vaii-
dation of data. [t includes the analysis of the collected data and computed
metrics in the appropriate context of the questions and the original goals.

The GQM paradigm was originally developed for evaluating defects for a set
of projects in the NASA/GSFC environment [28]. The application involved n set
of case study experiments. [t was then expanded to include varions ryvpes of
experimental approaches, including controlled experiments [4.22,25].

The process of setting goals and refining them into quantifiable (uesrions is
complex and requires experience. In order to support this process. 1 ser of tom-
plates for setting goals. and a set of zuidelines for deriving questions and meriies
has been developed {19]. These templates and guidelines reflect our experience
from having applied the GOM paradigm in a variety of environments.

Goals are defined in terms of purpose, perspective and environment. Dit-
ferent sets of guidelines exist for defining product-related and process—related
questions. Product-related questions are formulated for the purpose of defining
the product (e.g., physical attributes, cost, changes and defects, user context).
defining the quality perspective of interest (e.g., functionality, reliability, user
friendliness), and providing feedback from the particular quality perspective.
Process-related questions are formulated for the purpose of defining the process
(process conformance, domain conformance), defining the quality perspective of
interest (e.g., reduction of defects, cost effectiveness of use), and providing feed-
back from the particular quality perspective.

The GOQM provides a mechanism for supporting step 2(a) of the Improve-
ment Paradigm which requires a mechanism for defining operational coals and
transforming them into metries that can be used for characterization. evaluntion,

5642

Goa]l\wu/ n
Question 1 cereenes. Question k......... hlon m

Question m-1

A

d'l m1l m2 m3 d 2 m 4

Questjon 2

FIGURE 2: THE GOAL/QUESTION/METRIC PARADIGM

prediction and motivation. [t supports step 3 by helping to define the sxperi-
mental context and providing mechanisms for the data collection. validation and
analysis activities. [t also supports step 4 by providing yuantitative feedback on
rhe achievement of goals.

The GOM was originally used to define and evaluate zoals tfor a particular
project in a particular environment. In the context of the Improvement Para-
digm. the use of the GOM is expanded. Now. we can use it lor long range cor-
porate goal setting and evaluation. We can improve our evaluation of 1 project
bv analvzing it in the context of several other projects. We can expand our
leve] of feedback and learning by defining the appropriate synthesis procedure for
lower—level into higher—level pieces of experience. As part of the [P we can learn
more about the definition and application of the GQM in a formal way, just as
we would learn about any other experiences.

2.2. The TAME Project
The TAME project [18.19] recognizes the need to characterize, integrate and

automate the various activities involved in instantiating the Ilmprovement Parn-
digm. for use on projects. It delineates the steps performed by the project and

5642

creates the idea of an experience base as the repository for what we have learned
during prior developments. It recognizes the need for constructive and analvtic
activities and supports the tailoring of the software development process.

asks planning
. characterizin [executin
perspectiv. g what i how 8
;
con- ! '
; plan
strue— ‘ r g
! for construct
tive characterize | set, . | construction
___ I R B v X
environment goals ‘ plan
ana- . 3 for - analyze
analysis
lytic
N A A *
A 4 A 4 A 4 ‘
1 A A |
1A v A 4) A4 A
(_. __

FEEDBACK LOOPS FOR FUTURE PROJECTS

EXPERIENCE BASE

FIGURE 3: THE TAME SYSTEM

The TAME system offers an architecture for a software engineering environ-
ment that supports the goal generation, measurement and evaluation activities.
[t is aimed at providing automated support for managers and engineers to
develop project specific goals and specify the appropriate metrics needed for
evaluation. It provides automated support for the evaluation and teedback on 2
particular project in real time as well as help prepare for post mortems.

The Tame project was initiated to understand how to automate as much of
the paradigm as possible using whatever current technology is available and to
determine where research is needed. It provides a vehicle for defining the con-
cepts in the paradigm more rigorously.

A major goal for the TAME project is to ereate a corporate experience base
which incorporates historical information neross all projects with recard 1o

5642

-8 -

project, product and process data, packaged in such a way that it can be useful
to future projects. This experience base would contain as a minimum the histori-
cal data base of collected data and interpreted results, the collection of measured
objects, such as project documents, and collection of measurement plans. such as
GOM models for various projects. It should also contain combinations and syn-
thesis of this information to support future software development and mainte-
nance.

TAME is an ambitious project. It is assumed it will evolve over time and
that we will learn a great deal from formalizing the various aspects of the
Improvement Paradigm as well as integrating the various sub-activities. [t will
result in a series of prototypes, the first of which is to build a simple evaiuation
environment. Building the various evolving prototypes and applying them in o
variety of project environments should help us learn and test out ideas.

Tame provides mechanisms for instantiating the Imprevement Paradigm by
providing an experience base to allow the storing of experience so that it ran be
used on other projects (steps 1.2a), further defining the various steps to be per-
formed (steps 1.2.3.4). and automating whatever is possible.

3. A REUSE-ORIENTED SOFTWARE ENGINEERING MODEL

The Improvement Paradigm, as instantiated in the TAME system. assunes
that improvement can be achieved by iterating planning, execution of plans. and
feedback across projects within an organization. Feedback can be viewed s
reusing experience from the ongoing or prior projects to improve the planning or
execution of ongoing or future projects. Learning can be viewed as the process of
accumuliating and packaging experience so it can be reused effectivelv. Thus. rhe
paradigm explicitly recognizes the need to capture and reuse knowledge. products
and processes {rom prior projects.

On the other hand, it should be noted that reuse can be an =ffective
mechanism only if it is paired with learning and viewed as an integral part of an
improvement-oriented software evolution process model. [we accept the tact
that a better understanding of a process allows for more effective reuse. "reuse
orientation” and "improvement orientation® of a process model are identical
attributes. Both are supported by experimentation.

In a traditional software process model, learning and reuse only ocenr
because of individual efforts or by accident. They are not explicitly supported
and called out as desired characteristics of the development process. As a conse-
quence, this experience is not owned by the organization (via the project data-
base) but rather owned by individual human beings and lost after the project has
been completed. A reuse-oriented process model must view reuse, learning -ind
feedback as integral components, and place all experience. including soltware
evolution methods and tools, under the control of an experience base [20].

5642

~-9-

Since improvement requires the Teedback of available experience and feed-
back is based on learning and reuse activities, a requirement for such a process
model is that it support systematic learning and reuse. Systematic learning
requires support for the off-line recording, generalizing or tailoring, and formaliz-
ing of experience. Systematic reuse requires support for (re-)using existing
experience. Off-line activities are performed independent of any particular pro-
ject in order to improve the reuse potential of existing experience in the experi-
ence base.

Project goals are typically directed towards the development of a specific
system. Thus off-line activities must have their own organizational structure.
They cannot be part of the normal development organization because they
require a different focus, a different set of processes, and an independent cost
base.

For example. the objective of the recording process is to create a repository
of well specified and organized experience. It requires effective mechanisms for
collecting, validating, storing and retrieving experience. This should not be part
of the project focus. The project can contribute by making its experience avail-
able to this independent organization, but cannot itself oversee the recording. [t
might not even be clear to the project what is worth recording.

The objective of generalizing existing experience prior to its reuse is to make
a candidate reuse object useful in a larger set of potential target applications.
The objective of tailoring existing experience prior to its potential reuse is to
fine-tune a candidate reuse object to fit a specific task or exhibit special attri-
butes. such as size or performance. Clearly a project cannot afford to seneralize
or tailor experience for another project within its budget constraints. Even
worse. 1t may not have the perspective to do so since objectives and ~harncteris-
tics are different from project to project, and even more so from environment fo
environment. Generalizing and tailoring require a broader perspective of the
organization and the produects it develops.

The objective of formalizing existing experience prior to its potential reuse is
to encode it in more precise, better understood ways. Off-line tailored or zen-
eralized experience needs to be formalized to increase its reuse potential and
satisfy general reuse needs within an organization. The more we can formalize
experience, the better it can be reused.

Formalization activities include the movement from informal knowledge
(e.g., concepts), to structured or schematized knowledge (e.g.. methods}, or even
tc completely formal knowledge or automation (e.g., tools). [t requires models
of the various reuse objects, notations for making the models more precise. nota-
tions for abstracting reuse object characteristics, mechanisms for validating these
models, and mechanisms for interpreting models in the appropriate context.
Clearly the project has neither the budget nor the need o formalize its own

experience.

5642

5642

- 10 -

Reuse requires a precise specification of the reuse context including the evo-
lution process that is expected to enable reuse, and the characteristics of the
available candidate reuse objects. The objective of a reuse—oriented software
evolution process model is to support the use of previously accumulated experi-
ence during such reuse activities as: (a) specifying reuse needs in a way that
allows matching them with descriptions of available experience, (b) finding and
understanding appropriate reuse candidates, (c¢) evaluating reuse candidates in
order to pick the most promising candidate, {d) actually tailoring the reuse can-
didate if necessary, (e) integrating the reuse candidate into the ongoing software
project, and (f) evaluating the software project.

A reuse-oriented software evolution environment is an integral part of the
improvement paradigm. The mechanisms supplied by the TAME system to sup-
port that paradigm are consistent with the mechanisms needed to support the
reuse environment model with its experience base. It provides a mechanism for
evaluating the recorded experience. helping us to decide what and how to reuse,
tailor and analyze. It captures experience in the form of data from which models
can be built to formalize experience. It supports continuous learning.

[t is clear that an experience base is a key component of the rense -nd
improvement paradigms. A project needs help in accessing the reusable experi-
ence. If the experience is available (recorded), appropriate (tailored or general-
ized), and well-packaged (formalized), it can be used by a project. But un
experience base is more than a physical entity. [t is an organization that must
support all the off-line activities that support its creation and use.

4. DIVIDING UP THE RESPONSIBILITIES AND ACTIVITIES

Based upon the prior discussion, the implementation of the Improvement
Paradigm would best be served by two separate and distinet organizational strue-
tures. One organization is project—oriented. [ts goal is to deliver the systems
required by the customer. We will call this the Project Organization. The other
organization, which we will call the Experience [Factory. will have the role of
monitoring and analyzing project developments, developing and packaging
experience for reuse in the form of knowledge. processes, tools and products. and
supplying it to the Project Organization upon request. The Experience Factory
represents the experience base discussed above and the various activities associ-
ated with building and modifying it, controlling its access, and interfacing to the
Project Organization.

Each project in a Project Organization can choose its process model bused
upon the characteristics of the project. raking advantage of prior experience with
the various process models from the experience base in the Experience Factory.
[t can access information about prior system requirements and solutions. effective
methods and tools and even available system components. Based npon access to
this prior experience, the project can choose and tailor the best possible process,
methods and tools. [t can reuse prior products tailored 1o its needs.

PROJECT ORGANIZATION

- TAME Process Model
| | |
3 E j | construct
| characterize set ‘ select *
| > — : 1
S iq—- methods A
P ‘ } ;
| environment goals ! & ; ‘
} | i tools 4 - analyze
) ‘
A
reuse record
A 4
4 formalize g
>
t e
a informal schematizedproductized Iél
: PROJECT SPECIFIC r
1 a
1 DOMAIN SPEQIFIC 1
O
T 1
[E NERA|L Z
e
v
Experience Base

EXPERIENCE FACTORY

FIGURE 4: IMPROVEMENT AND REUSE
ORIENTED-SOFTWARE ENGINEERING MODEL

The Experience Factory analyzes the project development for all systems
developed by the corporation. Based upon this it recognizes commonality among
projects, generalizes knowledge and packages it for use across all projects. It
creates a repository of reusable information. For example. it can develop resource
models. defect models. and risk munagement models and tailor them for the

5642

-12 -

particular projects. It can develop processes. methods, techniques and tools and
tailor them based upon the characteristics of the particular project. This can be
accomplished based upon the Factory’s analysis of the success and failure of the
various activities across many projects. It can generate system components. at
various levels of the architectural hierarchy based upon its recognition of com-
monality.

4.1. Some Specific Activities in the Project Organization

Let us consider the activities of the Project Organization with regard to the
development of a system and how it might use the Experience Factory while
applving the improvement paradigm.

At the start of a project, project management functions consist of activities
such as resource and schedule planning, organizing, and staffing. These are
covered by the characterizing and planning functions in the Improvement Para-
digm.

During the characterizing phase. hased upon its needs and characteristics.
the project can access the experience base for the information about similar pre-
vious projects. This provides the project manager with a context for planning
that includes resource estimation and allocation information. personnel experi-
ence. software and hardware available for reuse. environmental characteristics of
concern and sets of baselines for resources, schedules. defects. ete. The project
can store information on its own characteristies back into the experience base for
analysis.

During the planning phase, the project can analvze prior zoals and use them
as Jefined or tailor them {or have them tailored bv the Component Factoryy for
its needs. [t can access the collection of construtive and analytic methods and
tools. that have been effective and choose the appropriate ones that will help
satisty its goals. The goals and methods are infitienced by the knowledze e¢ained
from the characterization phase, specifically with regard to elements of prior svs-
tems that can be reused. These elements include data, such as baselines, process
models that have been successful, including methods and techniques that have
been tailored and tools that support those methods, and components of prior pro-
jects such as requirements, design or code that can be adapted for the current
project. The goals define the kinds of data that need to be collected as well as
the mechanisms needed for collection. This provides the manager with informa-
tion about what feedback will be provided for the project during development.
The goals and process model, as tailored for the project. are stored in the experi-
ence base for monitoring the current project and expanding the experience base
for future projects.

5642

- 13 -

EXPERIENCE
PROJECT ORGANIZATION FACTORY

needs and characteristics
of previous projects
. e <
h
CharaCterlZlng needs and characteristics -
(tailored to current project)
active reuse of previous plans
for construction and analysis
planning >
plans for construction and analysis
(tailored to project characteristics)
construction plans,
construction -+ reuse methods,
tools and products
(according to some »
construction model) new products
tracking
b A ' VJ o
analysis plans,
analysis - reuse measurement tools
.
(track construction) collected data -
analysis plans (interpretation)
data from current project,
data./interpretation {rom
. previous projects
feedback/learning < >
feedback and
new knowledge

FIGURE 5: ACCESSING THE EXPERIENCE FACTORY

Project execution covers the directing and controlling activities as well as
the development activities.

During the execution phase, the project proceeds using the tailored process
model, methods, techniques, and tools as specified in the planning phase. It uses
prior product parts, supplied by the experience base. Feedback is supplied to
project management to support directing and controlling of the project. During
execution, project experiences, components and data are returned to the Experi-
ence Factory and feedback is provided to the project.

5642

~ 14 -

At project conclusion, the overall project is analvzed and the results are fed
back to the project as well as packaged and incorporated into the experience base
for use on future projects.

4.2. Some Specific Activities in the Experience Factory

The Experience Factory plays several roles. It builds and maintains the
experience base, it interfaces with the project in the Project Organization by pro-
viding information from the experience base and developing those elements that
are requested by the project based upon its current level of expertise, e.s..
tailored methods and tools and software components. and it acts as a quality
assurance organization. providing feedback to the project with respect to its
goals. As such it has several process models associated with it.

In building and maintaining the experience base, the Experience Factory
performs the learning and reuse activities of recording, generalizing and tailoring.
and formalizing. The degree to which it can perform these activities depends
upon the breadth and depth of the information available and the level of tech-

nology.

[t records information gathered from the various project developments. For
example, it saves experiences from the projects it is monitoring, such as code
modules, lessons learned on the project from the application of the constructive
and analytic processes and measurement data. such as resource and efect data.

It zeneralizes or tailors the information that it has zathered. For example.
it uses the project-specific measurement data across several projects to create
baselines such as defect profiles: it develops generic packages from project speciiic
packages or instantiates a generic package for a specific project: it refines n
design technology bused on the lessons learned from applying it on a specific pro-
Ject: it parameterizes a cost model for a project or uses data from the project ro
improve the estimation capability of the model.

It formalizes the information in the experience base to enhance its reuse
potential. For example, it supplies code modules with their functional
specifications and other appropriate documentation such as characterizing attri-
butes, when needed: it makes more precise the steps in applying a method based
upon lessons learned from its application; it builds cost models empirically bhased
upon the data available; it develops management support systems based upon the
available data and lessons learned; it builds automated support for methods.

In responding to requests from a project, it provides whatever information it
has available from the experience base and the people. The level ol support
clearly depends upon the state of the art in the packaging of experience. The
interface with the Project Organization will change over time. starting with <mall
packets of experience and building to higher level ones.

5642

~15 -

PROJECT
O
ORGANIZATION EXPERIENCE FACTORY
products
> a <
models n
>» a
data R }l, formalize
lessons learned ? EXP erience
> S
direct feedback Base N
< |
roducts . ‘
< P tailor :
data
lessons learned .,
models s }
< Y generalize
baselines n |
< t
tools h <
< e
consulting S
& 1
- S

FIGURE 6: ACTIVITIES IN THE EXPERIENCE FACTORY

The actual information supplied depends upon the request and what is
currently available in the experience base. For example, during characterization.
it provides baselines and estimation models, and information on packaged pro-
ducts, such as requirements templates or code modules. General defect baselines
can be tailored to the specific project by limiting the projects considered to those
with the same characteristics as the current project, e.g., same application
domain, same process model.

During planning it supplies GOM models and process models, methods, tools

and techniques. These can be obtained directly from the experience bhase or
railored for the needs of the project. For example, nssuming that inspections are

5642

- 16 -

chosen for the project and knowing the classes of faults found in similarly
classified projects, the component factory might tailor the reading technology
within inspections to concentrate on locating the kinds of faults that tend to
occur in this type of project. They can also provide training and consulting on
the use of the methods and models.

During project execution, they can act as a contractor supplying various lev-
els of project components. In fact from the Project Organization perspective. any
component that can be well specified can be delivered by the Experience Factory.
In turn, the Experience Factory can respond to the request by delivering an exist-
ing component, modifying an existing component, e.g. instantiating a generic
package from the experience base, or developing the component from scratch and
adding it to the experience base.

If we view quality assurance as the act of leading, teaching, and auditing the
process, then it implies an organizational structure independent but interactive
with the projects. (Note that this is different from quality control. which we
define as the act of directing, influencing, verifying, and correcting the product.
which implies a project controlled organization.) The Experience Factory is an
ideal location for the quality assurance activities.

[n acting as a quality assurance organization, the Experience Factory wudis
activities and collects the prescribed data. provides feedback to the project in
real time, and offers training in the various planning, constructive. and analvtic
approaches. The quality assurance activities is consistent with the activities of
building and maintaining the experience base and responding to requests from
the Project Organization. It also provides an independent chain of command and
a corporate perspective with regard to goals. data collection. process and pro-
ducts.

4.3. Viewing the Experience Factory as a Component Factory

As a particular dimension of the Project Organization and the Experience
Factory, consider the activities of the Project Organization with regard to the
development of a system and how it might use the Factory from the point of
view of code development, e.g., as a Component Factory. We can view the pro-
Ject organization within the Project Organization as having the following activi-
ties:

Requirements Definition: The system analysts will interact with the custo-
mer to determine project requirements. It is assumed that the analysts will know
the application domain and what is available in the repository for reuse. Thev
will have access to repository information about what kinds of components are
available so they can make tradeoff decisions, negotiating with the customer for
function vs. price.

5642

- 17 -

Initially. this negotiation will be limited since the repository will be sparsely
populated. This shouid change over time as the repository fills with com-
ponents. It should be noted that the system analyst can use Factory components
for building and analyzing prototypes of the system.

Specification and Design: The requirements will be turned into a system
design and specification for the required components. Those components that
can be well specified can be turned over to the Experience Factory and orders
will be filled for components.

Initially, the specifications will be for low level components since the Factory
will begin bottom up. As time goes on and the repository builds up in terms of
components, and the technology for recognizing, specifying and integrating larger
pieces of systems develops, larger components can be ordered.

The Experience Factory operates according to several process models. \When
an order for a component arrives, it can check its repository for the appropriate
component or order it externally if it is available from an outside vendor. It -an
develop it from scratch. using verification technology, based upon the fact that it
has the specification and the component it is developing is limited in size. How-
ever. given that it has been required to deliver such a component. it can decide
whether the component is of general use, from its knowledge of other projects.
and can generalize or tailor the component, package it with the necessary attri-
butes for future reuse and store it in the repository.

As an initializing activity, the Factory can analyze prior systems for reusable
components and re-engineer them to seed the repository. [t can develop com-
ponents, so they are easy to combine, modify with respect to certain eriterin and
lubel and package appropriately.

[ntegration and Evaluation: The project will have the task of intecrating the
components into its own specified design. These integrated components mizht be
returned to the Factory for future use. It will then evaluate the svstem buased
upon the customer requirements and deliver the system.

5. IMPLICATIONS OF THE NEW LIFE CYCLE ORGANIZATION

5.1. Implications for Corporations

One of the major problems with software development in the past has been
that projects have been unable to explicitly reuse experience from prior projects
or contribute to the experience base for future projects. This has been due in
part to the fact that immediate project delivery goals and the more long -range
goals of reuse and learning are distinct and not easily paired. Project schedule
often takes precedence over the luxury of passing on learned experience,

5642

- 18 -

The new life cycle organization divides the focus of software development
into two separate organizations. [t separates the immediate project goals from
the long range learning and reuse—oriented goals. In the approach, the Project
Organization can focus on the customer needs and has the advantage of access to
a knowledgeable support organization in the form of the Experience Factory.
The Experience Factory focuses on the organization’s goals to learn and reuse. It
has the advantage of accumulating experience from a large number of projects
which provides it with a broader perspective than any particular project.

This organizational structure has many advantages. [t should promote
higher quality and productivity because of reuse and learning. It can provide
better and more focused education and training for developers and provide better
methods and tools for them to use.

It provides the corporation with a corporate asset in the guise of the Experi-
ence Factory. The Experience Factory contains everything the organization has
learned and developed that is useful for future developments as well as an assess-
ment of the status of corporate quality and productivity. As the Experience Fac-
tory grows in its role and assets. the corporation can learn more and more from
the various experiences across the corporation.

There will be more emphasis on formalization of all parts of management
and development. Formal verification becomes cost effective since the correct
units will be used in many systems; it becomes more applicable since we will be
applying it to smaller units, at least in the beginning, where the technology is
manageable. Formal models of risk assessment can be used since the experience
base should provide a broad basis for nnderstanding and comparison.

The organizational scheme has the advantage that it can start small and
expand with the growth in technology and the experience base. However. there
are several issues that must be dealt with in putting this organization in place.
e.z. financial and organizational.

This organization requires separate cost centers for the Project Organization
and the Experience Factory. There are several models of how the funding o! rhe
Experience Factory might work. For example. it could be funded out of cor-
porate overhead which would grow with the success of the factory or projects
could be billed for factory items. The right model will depend upon the com-
pany and the organization and politics within that company.

This organization requires a careful definition of management and responsi-
bility structures. [t is clear that we do not want to create new conflicts over
responsibility for problems with packaged experience.

This organization needs to be motivated and supported. Incentive and
reward structures need to be developed. We will need to learn from experience
gained from applying different financial and management structures.

5642

- 19 -

5.2. Implications for Research

There are several implications for research based upon this organizational
structure. Many of the technologies already developed for programming in the
small are applicable in the factory domain. For example, verification technology
is already available for factory produced components and it is necessary and cost
effective because those units will be reused many times. Research activities can
focus on the transfer of these technologies. Therefore, user friendly tools to sup-
port verification are needed. Based upon this formalization, we should learn
more about the relevant primitives for particular application domains and how to
encapsulate them.

There are research activities associated with defining and tailoring models.
These include process models, methods and tools: product models of the various
products and qualities of those products; and models of information. like goal
generation languages. cost, resource allocation, risk, and defect prediction.
Models must be defined for the Project Organization and the Experience Factory
and must take into account their interface. This involves the definition of
languages for defining these models and tool generators, i.e. tools that can be
instantiated to support variations of a method.

There are research activities associated with generating larger product units
from the Experience Factory. These include defining models of module intercon-
nection languages that scale up, combining specifications and verifying them. and
combining test plans to validate integrated components.

There are research activities associated with the building and accessing of
the experience base, e.g.. mechanisms for encoding lessons learned into 2 model.
tools for generating goals and mapping them onto measures. models that permit
the model to learn automatically.

5.3. Implications for Education

The organizational scheme provides a focus for many of the technologies
already taught at the University and so makes much of the current education
more relevant. Topics that require more emphasis are formalisms of all kinds.
e.g., verification technologies, formal requirements and specification notations.
formal models of measurement and management. There is a need to teach stu-
dents how to develop, use and assess methods and tools and deal with access and
retrieval of libraries. Reuse and learning technologies need to be made available.

There is a clear entry path for new software engineers through the Com-
ponent Factory where they can develop small components under careful guidance
and tool support and learn from the general experience base. As their experience
grows they can be moved into any of the other higher leve]l activities. e.g.. the
Project Organization, or other parts of the Experience Factory.,

5642

_90 -

6. RESEARCH ACTIVITIES AT MARYLAND THAT SUPPORT
THE NEW LIFE CYCLE

The paradigms and organization described in this paper offer a framework
for research that focuses on the key issues for improving the software process and
product in a context that permit the research to be used and experimented with
in an industrial setting. Over the past dozen years, at the University of Mary-
land. we have been working on several research projects whose goal is to evolve
to this framework.

The projects are organized into those dealing with the instantiation of the
improvement paradigm in the SEL [5,46], where the concepts of the Project
Organization and the Experience Factory have been evolving, the TAME project
which is automating support for this framework in a formal way. and a variety
of other projects which are attempting to understand, formalize and improve
various process and product characteristics.

A major source of activity has been the Software Engineering Laboratory
(SEL). a joint venture of the NASA Goddard Space Flight Center. the University
of Maryland. and Computer Sciences Corporation. The SEL has informallv wcted
as an Experience Factory that supports project development. The application
domain is ground support software for satellites. We have been building moriels
and supplying these models and lessons learned back to projects so thev can
improve their process and product. This work has been performed via experi-
ments of various kinds, dealing with resource. defect. process. and product
models.

In an attempt to better understand the environment we have nsed Jdat <ni-
lected curing development to build various descriptive models of the SEL
environment. In this way we have formalized knowledge trom raw latn to for-
mal mordels or baselines and made the results available to the project Jrganiza-
tion for use in characterizing, planning and evaluating the project.

We have collected data on resource expenditures, applied various existing
models [32,47.49.61] and eventually built and tailored models that explicitly
described resource allocation in the SEL environment [2.8,10.15.30]. These wre
used for estimating, planning and evaluating new projects.

We have developed baselines for defects by accumulating defect data over
many projects [62]. These defects a classified by phase and type. They vary
with different project classifications [16]. They provide insight into the environ-
ment, support for project management and evaluation, and point to areas areas
that need improvement in the process [18].

We have used various product metries [41,45] to provide insight into the
characteristics of the products being developed as well as evaluating the nseful-

ness of these metrics for the SEL environment [6,11,26.42]. Areas of new rechnol-
ogy that have been introduced, like Ada have generated the need for developing
2-62

5642

- 91 -

new metrics to characterize new- product qualities [12,40]. We have used these
metrics as baselines to provide the project manager with insights as to what the
problems may be-with the current development [38].

With regard to process improvement, we have built descriptive and perscrip-
tive models of processes, methods and techniques and experimented with their
application. The results of our studies are formalized and reused for future pro-
jects within the limits of the technology available.

In some cases, we have performed controlled experiments in which we
analyzed the effects of various methods and techniques before recommending
them on actual projects. We would then perform case study experiments to
evaluate the effect of the method or technology on an actual project development
to assure that it scales up and is applicable to the SEL environment. For exam-
ple, we ran controlled experiments on a set of structured programming methods
and techniques [17], various testing and reading techniques [23.5:4]. object
oriented design in Ada [12,40] and the Cleanroom process model [59].

We then apply these approaches to projects within the project organization.
We evaluate their effect there, and make recommendations. write lessons learned
documents. and refine or change the models to incorporate what we have learned.
In this way, the experiences gained from applyving a particular model from the
experience base is improved based upon the lessons learned from applying the
model so that it can be used for future projects. Two case studies currently
being run in the SEL, based upon controlled experiments, are the use of object
oriented development in Ada [1,14,35] and the application of the Cleanroom pro-
cess.

In other instances we have developed models and experimented directiy on
rhe projects. For example, we have evaluated the test methodolozy used for
acceptance test [51] and the methods used for maintenance [55].

Parts of the data collection process have been automated for the FORTRAN
environment [37. 43] and are being automated for the transition to Ada 39l
Other tools have been developed that help support the various technologies used.
Parts of the evaluation process have been automated using a knowledge base to
create a decision support system [50,60|.

The Tame project has focused on the architecture for the measurement and
evaluation processes [19]. Work has been done by using studies performed in the
SEL to define the process improvement mechanisms [18]. We have devised a
resource planning and feedback model that is consistent with the Improvement
Paradigm {43].

The Goal/Question/Metric Paradigm has been applied in a variety of

environments other than the SEL and has evolved based upon these activities
(20.53,58].

5642

We are currently working on supporting the automation of the generation of
operational goals in a reasonably complete and consistent manner. A key aspect
of the approach is that project personnel can generate goals that can be meas-
ured and evaluated. We are working on extending the GQM templates into a
goal generation language that will aid the goal writer in articulating questions
and metrics based upon the goal and the model of the object of interest. We are
currently experimenting with hypertext and attribute grammar technology to
develop prototypes of this automated support mechanism.

We are in various stages in the development of three measurement tools for
analyzing programs in Ada and C. A source code analyzer for various svntactic
metrics., such as cyclomatic complexity and software science metrics. has been
developed for Ada (ASAP) [38] and C (CSAP). A structural coverage analvzer
(SCA) is under development for Ada [63]. Data bindings analyvzers are being
developed for Ada and C based on prior versions of the tools for FORTRAN.
SIMPL, and PL/C.

We have developed a set of requirements and defined a system architecture
for measurement tool generations using a parser generator that retains the purse
tree for further transformations [48]. an enhancement of YACC and are experi-
menting with the prototypes of this tool generation system.

With regard to reuse. we have developed a model of a reuse support
environment that can exist within the TAME framework [20]. We have applicd
the model to the maintenance process to show the advantages of viewinz muint.-
nance as a reuse process [7|.

We are developing a model of reuse consistent with the approach presente|
in this paper that classifies the objects as they exist in the experience base, the
reuse activities and the objects as they are reused [21;. For example, the reusabie
object can be classified uccording to the characteristics of the unit itself. its inter-
faces, and its context. The model recognizes the need to assess the qualities f
the reusable object based upon the characteristics of the project in which ir wiil
be reused.

We are working on a language and support system that takes elementary
processes and generalizes them into more complex processes. Elementary
processes correspond to the "basic algorithms" used to perform small tasks. such
as the addition of two atomic units. Our goal is to identify useful sets of elemen-
tary processes, and then show how they can he combined and extended to per-
form more complex actions (such as the addition of a stream of atomic units.)
Using our language. abstract data structures may be mapped onto particular
structures (e.g., the addition process for streams could be mapped onto a process
for addition of arrays of numbers), and also composed with other structures (e.s..
an array addition task could be composed with a division task in order to create
a module for computing means.) Finally the system will package resulting
processes into an acceptable language component. whether a procedure or fune-
tion. Our current langague supports only Mmnctional processes, a future step is 1o

5642

- 93 -

support the creation of data abstractions or modules.

To study the issue of code reuse, the LASER project is currently building a
system that examines exising systems in order to study and extract code that can
be reused to seed a component repository. The system measures the various
components in the system and identifies candidate reusable components based
upon their lack of complexity, reusability within the existing system. indepen-
dence, etc. These candidate components are then isolated (inade independent)
and qualified. The qualification involves the catagorization and classification
based upon a number of attributes, and the association of a functional
specification with the component.

The approach expressed here provides a focus for further research issues.
Some of the questions for which work has begun are:

e How can process models be formally expressed so they can be communicated.
analyzed and tailored?

e How can various models be stored so they can be accessed by the GOM tool
and help generate the automated collection of the appropriate meusures’

e How can a specific process model be developed that satisfies the definition and
storage of the prior two questions?

e How can we better capture and reuse experiences in the form of lessons learned
from previous efforts?

e What other measurement data can be automatically collected?

e How could the set of measurement tools defined above be developed so thu
they can be tailored for various types of measures. maximizing the reuse of =vs-
tem components among the tools and the language independence?
e How can we classify experience so it can be appropriately reused”

e Based upon a specification, how can a component be devised (uickly tfrom elo-
mentary processes’

¢ How can we transform existing components to make them more independent.
and measure the cost of reuse?

e How can we have confidence that the factory-provided modules will do what
we want?

e How can we integrate aggregates of modules with their associated attributes so
that they can be analyzed, managed, and controlled?

e How can we verify properties of aggregates of modules. not just individual
modules?

e How can the test plans for components be combined to provide a test. plan
and oracle for aggrecate application strnetures?

5642

5642

~ 94 -

7. CONCLUSIONS

The approach expressed in this paper has evolved over years of studying and
experimenting with software development and maintenance. It provides a com-
patable and consistent framework for both software development and software
engineering research. It recognizes and takes advantage of the experimental
nature of software engineering.

It allows us to understand how things are being done and where the prob-
lems are by studying the process and product in actual environments. It allows us
to formalize models of the process, product and knowledge. These models can
then be analyzed. They can be used to form a basis for research and ut the same
time provide immediate input to project development.

From a research perspective, it provides a focus for research problems based
upon problems that need to be solved. It provides a framework to tie tosether
existing pieces of research.

From a corporate perspective, the approach can be applied directly and rhe
organization can grow and build its own experience base. It supports rechnology
transfer in a natural way and it ties the research and development organizations
closer together.

REFERENCES

11 W Agresti, "SEL Ada Experiment: Status and Desizn Experience.” Drocee:]-
ings of the Eleventh Annual Software Engineering Workshop. NASA Goddarid
space Flight Center, Greenbelt, MD. December 1056.

21 J. Bailey, V. R. Basili, "A Meta-Model for Software Development Resouree
Expenditures." Proceedings of the Fifth International Conterence on Soitware
Engineering, San Diego, USA. March 1981, pp. 107-116.

31\, R. Basili, "Data Collection, Validation, and Analvsis.” in Tutorial on
Models and Metries for Software Management and Engineering, [EEE
Catalog No. EHO-167-7, 1981, pp. 310-313.

4] V. R. Basili, "Quantitative Evaluation of Software Engineering Methodol-
ogy," Proc. of the First Pan Pacific Computer Conference, Melbourne, Australia.
September 1985 [also available as Technical Report, TR-1519, Dept. of Com-
puter Science, University of Maryland, College Park, July 1985].

5] V. R. Basili, "Can We Measure Software Technology: Lessons Learned from
X Years of Trying," Proceedings of the Tenth Annual Software Engincering
Workshop., NASA Goddard Space Flight Center, Greenbelt. MD. Decomber
1985,

_95 -

(6] V. R. Basili, "Evaluating Software Characteristics: Assessment of Software
Measures in the Software Engineering Laboratory," Proceedings of the Sixth
Annual Software Engineering Workshop, NASA Goddard Space Flight Center,
Greenbelt, MD, 1981.

[7] Victor R. Basili, "Software Maintenance = Reuse-Oriented Software
Development," in Proc. Conference on Software Maintenance, Key—Note
Address, Phoenix. AZ, October 1988 [also available as Technical Report, TR~
2244, Dept. of Computer Science, University of Maryland, College Park. July
1985).

[8] V. R. Basili. J. Beane. "Can the Parr Curve help with the Manpower Distri-
bution and Resource Estimation Problems," Journal of Systems and Software,
vol. 2, no. 1, 1981, pp. 47 - 57.

[9] V. R. Basili. G. Caldiera, "Reusing Existing Software." Technical Report-
2116, Institute for Advanced Computer Studies., University of Marvland. Collece
Park, Marvland, October 1988.

[10] V. R. Basili, . Freburger. "Programming Measurement and Estimation in
the Software Engineering Laboratory.”" Journal of Systems and Software. vol. 2.
no. 1, 1981, pp. 47-57.

(11] V. R. Basili, D. H. Hutchens. "An Empirical Study of a Syntactic Measure
Family," IEEE Transactions on Software Engineering, vol. SE-9. no. 11.
November 1933, pp. 664-672.

12] V. R. Basili, E. E. Katz. "Metrics of [nterest in an Ada Development.”
Proc. of the [EEE Computer Society Workshop on Software Engineering Tech-
nology Transfer, April 1983, pp. 22-29.

(13] V. R. Basili, E. E. Katz, "Examining the Modularity of Ada Programs."
Proc. of the Joint Ada Conference, Arlington. Virginia, March 16-19. 1987,

[14] V. R. Basili, E. E. Katz. N. M. Panlilio-Yap, C. Loggia Ramsey. =.
Chang, "Characterization of an Ada Software Development," [EEE Computer
Magazine, September 1985, pp. 53-65.

[15] V. R. Basili, N. M. Panlilio-Yap, "Finding Relationships Between Effort
and Other Variables in the SEL," IEEE COMPSAC, October 1985.

(16] V. R. Basili, B. Perricone, "Software Errors and Complexity: An Empirical
Investigation," ACM Communications, vol. 27, no. 1, January 1984, pp. 45-52.

[17] V. R. Basili. R. Reiter, Jr., "A Controlled Experiment Quantitatively
Comparing Software Development Approaches." [EEE Transactions on Software
Engineering, vol. SE-7. no. 5. Muay LOX1, pp. 299-320.

5642

— 96 -

(18] V. R. Basili, H. D. Rombach, "Tailoring the Software Process to Project
Goals and Environments," Proc. of the Ninth International Conference on
Software Engineering, Monterey, CA, March 30 -~ April 2, 1987. pp. 345-357.

(18] V. R. Basili. H. D. Rombach "The TAME Project: Towards
Improvement-Oriented Software Environments," IEEE Transactions on
Software Engineering, vol. SE-14, no. 6, June 1988, pp. 758-773.

(20} V. R. Basili, H. D. Rombach, "Software Reuse: A Comprehensive
Framework," CS-TR-2158, Department of Computer Science. University of
Maryland. College Park. Maryland.

[21] V. R. Basili. H. D. Rombach, J. Bailey, and B. G. Joo. "Software
Reuse: A Framework." Proc. of the Tenth Minnowbrook Workshop on
Software Reuse. Blue Mountain Lake, New York, July 1987.

[22] V. R. Basili. R. W. Selby, Jr., "Data Collection and Analvsis in Software
Research and Management." Proc. of the American Statistical Association i
Biomeasure Society Joint Statistical Meetings, Philadelphia, PA. August 13-16.
1984. '

[23] Victor R. Basili. R. W. Selby, "Comparing the Effectiveness of Softwnre
Testing Strategies," IEEE Transactions on Software Engineering. \Vol.
SE-13, No. 12, December 1987, pp. 1278-1296.

[24] V. R. Basili. R. W. Selby. Jr., "Calculation and Use of an Environment =
Characteristic Software Metric Set," Proceedings of the Eighth International
Conference on Software Engineering, London, U, August 1985.

25] V. R. Basili. R. W. Selby, D. H. Hutchens. "Experimentation in
Software Engineering," [EEE Transactions on Software Engineering. voi.sF -
12, no.7. July 1986, pp.733-743.

(26} V. R. Basili. R. W. Selby, and T.-Y. Phillips. "Metric Analvsis and Dain
Validation Across Fortran Projects," [EEE Transactions on Software Engineer-
ing, vol. SE-9. no. 6, November 1983, pp. 652-663.

[27] V. R. Basili, A. J. Turner, "Iterative Enhancement: A Practical Tech-
nique for Software Development," [EEE Transactions on Software Engineering.
vol. SE-1, no. 4., December 1975.

(28] V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software
Engineering Data," IEEE Transactions on Software Engineering, vol. SE-10,

no.6. November 1984, pp. 728-738.

[20] V. R. Basili. D. M. Weiss, "Evaluation of 2 Software Requirements Docii-
ment by Analysis of Change Data." Proceedings of the Fifth [nternational

5642

Conference on Software Engineering, San Diego, USA, March 1981, pp. 314-323.

(30] V. R. Basili, M. V. Zelkowitz, "Analyzing Medium Scale Software
Development," Proceedings of the Third International Conference on Software
Engineering, Atlanta, Georgia, USA, May 1978, pp. 116-123.

(31] B. W. Boehm, "Software Engineering," IEEE Transactions on Computers,
vol. C-25, no. 12, December 1976, pp. 1226-1241.

(32] B. W. Boehm, "Software Engineering Economics.” Prentice-Hall, Engle-
wood Cliffs, NJ, 1981.

[33] B. W. Boehm, "A Spiral Model of Software Development and Enhance-
ment," ACM Software Engineering Notes, vol. 11, no. 4. August 1986, pp. 22-
42,

(34| B. W. Boehm. J. R. Brown, and M. Lipow. "Quantitative Evaluation of
Software Quality," Proceedings of the Second International Conference on
Software Engineering, 1976, pp. 592-605.

[35] C. Brophy, W. Agresti, and V. R. Basili. "Lessons Learned in Use of Ada
Oriented Design Methods," Proc. of the Joint Ada Conference, Arlington, Vir-
ginia, March 16-19, 1987.

[36] W. J. Decker, W. A. Taylor. "Fortran Static Source Code Analyzer Pro-
gram (SAP)," Technical Report SEL-82-002. NASA Goddard Space Flight
Center. August 1982.

137) C. W. Doerflinger, V. R. Basili. "Monitoring Software Development
Through Dyvnamic Variables." [EEE Transactions on Sottware Engineering, vol.
SE-11. no. 9, September 1985, pp. 978-985.

38/ D. L. Doubleday, "ASAP: An Ada Static Source Code Analyzer Program."
Technical Report, TR-1895, Deptartment of Computer Science, University of

Maryland, College Park, August 1987.

(39] M. Dyer, "Cleanroom Software Development Method," [BM Federal Sys-
tems Division, Bethesda, Maryland, October 14, 1982,

[40] J. Gannon, E. E. Katz, and V. R. Basili, "Measures for Ada Packages:
An Initial Study," Communications of the ACM, vol. 29, no. 7, July 1986. pp.
616-623.

[41] M. H. Halstead, "Elements of Software Science," Elsevier North-Holland,
New York, 1977.

42! D. H. Hutchens, V. R. Basili, "System Structure Analvsis: Clustering with

5642

- 928 -

Data Bindings." [EEE Transactions on Software Engineering, August 1985, pp.
T49-757.

[43] D. R. Jefferey, V. R. Basili, "Validating the TAME Resource Data Model."
Proceedings of the Tenth International Conference on Software Engineering,
Singapore, April, 1988, pp. 187-201.

[44] E. E. Katz, H. D. Rombach, and V. R. Basili, "Structure and Maintai-
nability of Ada Programs: Can We Measure the Differences?," Proc. of the
Ninth Minnowbrook Workshop on Software Performance Evaluation. Blue Moun-
tain Lake, New York, August 5-8, 19886.

43] T. J. McCabe, "A Cémplexity Measure," IEEE Transactions on Software
Engineering, December 1976, pp. 308-320.

6] F. E. McGarry. "Recent SEL Studies." Proceedings of the Tenth Annual
Software Engineering Workshop, NASA Goddard Space Flight Center. December
1985.

47} F. N. Parr. "An Alternative to the Rayleigh Curve Model for Software
Development Effort," [EEE Transactions on Software Engineering, vol. SE-6.
no. 3. March 1980.

[48] J. Purtilo and J. Callahan, "Parse Tree Annotations”, Communications of
the ACM, to appear.

[49] L. Putnam, "A General Empirical Solution to the Macro Software Sizing
and Estimating Problem." [EEE Transactions on Software Engineering. vol.
SE—4. no. 4. April 1978, pp. 345-361.

'50] C. Loggia-Ramsey. V. R. Basili. "An Evaluation of Expert Svstems for
Software Engineering Management." [EEE Transactions on Software Engineer-
ing, Vol. 15. no. 6, June 1989. pp. 747-7597.

[51] J. Ramsey, V. R. Basili, "Analyzing the Test Process Using Structural
Coverage," Proceedings of the Eighth International Conference on Software
Engineering, London, UK, August 1985.

[52] H. D. Rombach, "Software Design Metrics for Maintenance.” Proceedings
of the Ninth Annual Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD, November 1984.

(53] H. D. Rombach, V. R. Basili, "A Quantitative Assessment of Software
Maintenance: An Industrial Case Study,” Conference on Software Maintenance.

Austin, Texas, September 1987.

[54] H. D. Rombach. V. R. Basili. and R. W. Selby, Jr.. "The Role of Code

-

5642

- 929 -

Reading in the Software Life Cycle," Proc. of the Ninth Minnowbrook Workshop
on Software Performance Evaluation, Blue Mountain Lake, New York, August
5-8, 1986.

[55] H. D. Rombach, B. T. Ulery, "Establishing a Measurement-Based Mainte-
nance Environment Program: Lessons Learned in the SEL", Proceedings of the
IEEE Conference on Software Maintenance, Miami Beach, October, 1989.

[56] W. W. Royce, "Managing the Development of Large Software Systems:
Concepts and Techniques," Proceedings of the WESCON, August 1970.

[57] R. W. Selby. Jr., "Incorporating Metrics into a Software Environment.”
Proc¢eedings of the Joint Ada Conference, Arlington. VA, March 16-19, 1987, pp.
326-333.

[58] R. W. Selby, Jr.. V. R. Basili, "Analyzing Error-Prone System Coupling
and Cohesion." Technical Report TR-88-46, Institute for Advanced Compnter
Studies. University of Maryland. College Park, Maryiland. June 193s.

[59] R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROONM[Software
Development: An Empirical Evaluation." [EEE Transactions on Software
Engineering, Vol. 13 no. 9, September, 1987, pp. 1027-1037.

(60] J. D. Valett, "The Dynamic Management Information Tool
(DYNAMITE):Analysis of the Prototype, Requirements and Operational
Scenarios." M.Sc. Thesis, University of Maryland. 1987.

61] C. E. Walston, C. P. Felix, "A Method of Programming Measurement
and Estimation." IBM Svstems Journal, vol. 16. no. 1. 1977, pp. 34-73.

[62) D. M. Weiss. V. R. Basili, "Evaluating Sottware Development by Analysis
of Changes: Some Data from the Software Engineering Laboratory.” [EEE Tran-
sactions on Software Engineering, vol. SE-11. no. 2, February 1935, pp. 157~
168.

(63] L. Wu, V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada
Software Systems," Proc. of the Joint Ada Conference, Arlington, Virginia.
March 16-19, 1987.

(64] M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. R. Basili, "Software

Engineering Practices in the U.S. and Japan," IEEE Computer Magazine, June
1984, pp. 57-66.

5642

SECTION 3—MEASUREMENT ENVIRONMENT
STUDIES

SECTION 3 - MEASUREMENT ENVIRONMENT STUDIES

The technical papers included in this section were originally

prepared as indicated below.

5642

Integrating Automated Support for a Software Manage-

ment Cycle Into the TAME System, V. Basili and
T. Sunazuka, University of Maryland Technical
Report TR-2289, July 1989

Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment,

V. Basili and H. Rombach, University of Maryland,
Technical Report TR-2158, December 1988

UMIACS-TR-89-75 July, 1989
CS-TR-2289

Integrating Automated Support for a Software
Management Cycle into the TAME Systemt
Toshihiko Sunazuka
NEC Corporation
Tokyo, Japan
Victor R. Basili

Institute for Advanced Computer Studies
Computer-Science Department
University of Maryland
College Park, MD 20742

5642

ABSTRACT

Software managers are interested in the quantitative management of software
quality, cost and progress. There have been many of models and tools developed, but
they are of limited scope. An integrated software management methodology, which
can be applied throughout the software life cycle for any number purposes, is required.

The TAME (Tailoring A Measurement Environment) methodology, developed at
the University of Maryland, is based on the improvement paradigm and the
Goal/Question/Metric (GQM) paradigm. This methodology helps generate a software
engineering process and measurement environment based on the project characteristics.

The SQMAR (Software Quality Measurement and Assurance Technology)
developed in NEC is a software quality metric system and methodology applied to the
development processes. It is based on the feed forward control principle. Quality tar-
get setting is carried out before the Plan-Do—Check—Action activities are performed.

These methodologies are integrated to realize goal-oriented measurement, process
control and visual management. The Software Management Cycle is a substantiation
of these concepts. Based on the TAME process model, development and management
environments can be generated. The SQMAT system helps target setting, data analysis
and visual display.

In this paper we discuss a metric setting procedure based on the GQM paradigm,
a management system called the Software Management Cycle (SMC), and its applica-
ton to a case study based on NASA/SEL data. A method for evaluation Software
Management Cycle process is described. The expected effects of SMC are quality im-
provement, managerial cost reduction, accumulation and reuse of experience, and a
highly visual management reporting system.

KEYWORDS

TAME, improvement paradigm, Goal/Question/Metric paradigm, SQMAR.
Plan-Do-Check—Action activities, process control, visual management, software en-
gineering process, goal-oriented measurement, software quality metrics.

1 Research supported in pant by NASA grant NSG-5123 and NEC (through the Industrial Associates Program of the Department
of Computer Science.)

5642

1. Introduction

Management plays a key role in the software development process. In the end, it is
management's responsibility to produce and deliver a quality product productively and profitably
and to generate corporate credibility with the customer. Thus, effective management methodolo-
gies are needed to support management in assessing the current status of the project and achiev-
ing delivery of the final system on-time, within budget, and with the specified product qualities.
It would also be useful if the methodology supported the improvement of quality and productivity
on the current project and on future projects. Many companies are working to provide such
methods for their managers.

However, it is difficult to assess the current status of a project precisely because of the lack of
visibility of the software during development. It is even more difficult to predict project progress
because of the lack of clearly defined goals, the lack of feedback in the achievement of those goals,
and the difficulties caused by the variation in personnel.

2. Supporting Methodologies

Thus, requirements for the management methodology include the ability to make the software
as visible, quantifiable and objective as possible. Several methodologies and paradigms use
metrics to satisfy these management needs during development. There have been many software
metrics proposed in the literature that attempt to provide the visibility, quantification and objec-
tivity (Boeh76, McRW77, Muri80, BaKa83|.

From a customer perspective of product quality, a comprehensive set of quantifiable software
characteristics were proposed by Boehm, et al. [Boeh76] and later refined by McCall and Walters
[McRW77]. Based on these studies, Software Quality Metrics (SQM) was developed by Murine
(METRIQS Incorporated) as a quantitative software quality assessment technology [Murig0].

SQMAT

Based upon the SQM, the NEC Corporation has developed a Software Quality Measurement
and Assurance Technology (SQMAT) [AzSM87, Az5u86, SuAY85| and has been using it as one of
the support tools in their software quality control (SWQC) group activities [Mizu82]. Quality
control seminars are held periodically for every level of worker; programmer through general
manager. The seminars are used to motivate as well as educate everyone with respect to the
quality control technologies.

SQMAT is a software quality metric system and methodology applied to the development
processes, which takes experimental SQM results into consideration. SQMAT consists of a quality
measurement and evaluation method with three levels of quality criteria, and a support tool for a
visual display for management. Its most notable feature is that the feed forward control principle
is employed in addition to the feedback control principle. That is, quality target setting is car-
ried out before the Plan-Do-Check-Action activities (Deming’s PDCA cycle) are performed.
SQMAT procedures are defined as follows:

(1) In the TARGET phase, a quality priority ranking is established for the individual quality
characteristics, based on the users’ requirements and the development policy. It is impor-
tant to clarify the quality target, i.e., classify the quality characteristics into 3 categories
and set the target quantitatively.

(2) In the PLAN phase, Software Quality Measurement Criteria (SQMC), are set up and
methods for achieving the target quality are discussed in advance, primarily with the

5642

quality assurance people and managers.

(3) In the DO phase, high quality software is produced by complying with development stan-
dards and SQMC as guidelines. ‘Before the formal review, the developer executes a quality
self-check.

(4) In the CHECK phase, the software is checked and evaluated against the individual quality
criteria set up in the PLAN phase. Quality is measured by a third party. If errors are
detected, problem reports are drawn up. After scoring, score sheets and quality graphs are
developed, and the achieved quality is judged by comparing it to the target quality level.

(5) In the ACTION phase, corrective action is taken, based on problem reports. Achieving the
quality target permits proceeding on to the next phase. SQMAT can be applicable not only
to large scale software, but also to small projects. NEC's experience with the approach has
had measurable results. For example, based upon comparison with historical data, (1) a
number of errors have been eliminated during the design and implementation phases, and
{2) productivity (measured by lines—of-source—code/hour) has increased by 10%.

The Improvement Paradigm

The Quality Improvement Paradigm [Bas85a] for software engineering processes is a top level
paradigm that is based upon the scientific method as applied to software evaluation. It provides
the view of software evolution as an experimental process from which we must learn and improve
the current project as well as future projects (Characterize, Set Goals, Choose Methods, Build,
Analyze, Learn and Feed Back). It is a meta-life cycle model that aims at improving the
software quality and productivity based upon measurement and reuse of experience. It needs to
be instantiated for a variety of sub-activities, e.g. specific processes such as testing, product
reviews, managing. It consists of six major steps:

(1) Characterize the current project environment.

(2) Set up goals and refine them into quantifiable questions and metrics for successful project
performance and improvement over previous project performances.

(3) Choose the appropriate software project execution model for this project and supporting
methods and tools. '

(4) Execute the chosen processes and construct the products, collect the prescribed data, vali-
date it, and analyze the data to provide feedback in real-time for corrective action on the
current project.

(5) Analyze the data to evaluate the current practices, determine problems, record the findings
and make recommendations for improvement for future projects.

(8) Package the experience in the form of updated and refined models and other forms of struc-
tured knowledge gained from this and previous projects and proceed to step 1 to start the
next project.

This paradigm is aimed at providing a basis for corporate learning and improvement
[BaRo87] and is based upon experience with measurement and evaluation of software development
in a number of companies.

Goal Question/Metric Paradigm

The Goal/Question/Metric (GQM) paradigm [BaWe85, BaSe84| is a mechanism for generating
measurement in a goal-directed manner. It represents a systematic approach for setting the pro-
ject goals (tailored to the specific needs of an organization), defining them in an operational,
tractable way by refining them into a set of quantifiable questions that in turn imply a specific set
of metrics and data for collection (addresses the aspects related to step 2) of the improvement

5642

paradigm). Appropriate metrics are tailored to each project based on the G/Q/M templates and
past experience. It includes the development of data collection mechanisms, e.g., forms,
automated tools, the collection and validation of data, and the analysis and interpretation of the
collected data and computed metrics in the appropriate context of the questions and the original
goals.

In order to support the process of setting goals and refining them into quantifiable questions,
a set of templates for setting goals, and a set of guidelines for deriving questions and metrics has
been developed [BaRo88]. These templates and guidelines reflect our experience from having
applied the GQM paradigm in a variety of environments [RoBa87, WeBa84, BaWesl]|.

Goals are defined in terms of purpose, perspective and environment. Different sets of guide-
lines exist for defining product-related and process-related questions. Product-related questions
are formulated for the purpose of defining the product (e.g., physical attributes, cost, changes and
defects, user context), defining the quality perspective of interest {e.g., functionality, reliability,
user f[riendliness), and providing feedback from the particular quality perspective. Process—
related questions are formulated for the purpose of defining the process (process conformance,
domain conformance), defining the quality perspective of interest (e.g., reduction of defects, cost
effectiveness of use), and providing feedback from the particular quality perspective.

The TAME (Tailoring A Measurement Environments) system [BaRo88| is a measurement
environment that supports and integrates the Quality Improvement and the Goal Question Metric
paradigms.

Based on the work at NEC, the TAME project, and the managerial requirements specified
above, a management methodology, called the Software Management Cycle (SMC), has been
developed. Its main concepts are goal oriented, process control and visual management. Manage-
ment procedures, support tools and forms, and an evaluation method are provided as part of

SMC.

3. Relationship of the SQM, GQM, and SQMAT

The SQM and the GQM are both mechanisms for measuring software quality. Both models
are top-down and characterize quality characteristics at three levels. In the SQM, these levels are
Factor, Criteria, and Metric. For example, a high level factor such as correctness is defined by
the set of criteria traceability, completeness, and consistency which in turn are defined in terms of
a predefined set of metrics.

The GQM model consists of a goal, which is specified by a set of quantifiable questions, which
in turn are defined by a set of metrics and data distributions tailored to the specific environment.
Thus to define a high level goal like correctness of the final product, we must define a set of ques-
tions that characterize the product (with respect to its physical attributes, cost of development,
changes and defects, and customer base and operational profile), define a model for correctness
(which could include such concepts as traceability, completeness, and consistency), provide
insights into the validity of the model and the data within the particular environment, and the
results of the model along with some possible substantiation of the model results.

The SQM model predates the GQM model, but the latter is more general. The GQM can be
used to characterize, evaluate, predict, or motivate a product, process, model or metric, with
respect to a variety of perspectives (e.g. customer, developer, user, manager, etc.) based upon an
open ended definition of quality. It takes into account the specific environment in which the pro-
duct has been developed as well as assessment of such things as an evaluation of how well the

5642

particular methods were used, how well the domain of application was understood in order to
help interpret the resulting evaluation metrics appropriately. It also involves the feedback of
information for future development through learning.

The SQM model is written from the point of view of determining a set of quality characteris-
tics of the final product from the point of view of the customer. It does not measure process for
developing that product and since its viewpoint is that of the customer, it provides limited sup-
port for learning, feedback and improvement within the development organization. Its measure-
ment process tends to be passive and is not focussed on capturing the causes of the quality prob-
lems.

The measurement focus of SQM as used in SQMAT has evolved and widened over time and is
currently more consistent with the GQM. This wider view of SQM uses metrics to measure qual-
ity of an intermediate product from the point of user, developer and so on.

GQM SOM
narrow-sense | wide—sense
Objective Characterize, Assess, Assess (Quality)
Predict, Motivate
Structure Goal Factor
Question Criteria
Metric Metric
Usage Project & Quality Management Quality Management
Object Any Product, Process, Product Any Product
Model, or Metric Process
Viewpoint Developer, User, ‘ User (same as’
Manager, Corporate GQM)
Establish—~ G Select or Tailor F Select
ment manner
of GQM or Q Select or Tailor C Select
SQM -
Select or Tailor M Select Select
or Tailor

Table 1. Features of GQM and SQM.

5642

4. Software Management Cyecle (SMC)

The Quality Improvement Paradigm provides a top level organizational perspective on the
software development and maintenance process. SMC is the management procedure and support
system under that paradigm. It emphasizes three concepts; goal-oriented measurement, process
control, and visual management. In response to each concept, several activities are necessary.
These activities, performed during the management procedure, make it possible for management
to achieve higher quality and productivity.

The managément procedure used in SMC consists of the following five steps:
(Step 1) Define system/project characteristics

It is important to define the system characteristics in detail to reflect the user requirements
for development. A set of system/project characteristics forms are prepared to gather informa-
tion on the requirements and the current project status.

This is equivalent to the first step of the Quality Improvement Paradigm. The system
engineer is responsible for understanding the customer requirements for the particular project
correctly. The development environment should be also clarified. This characterization permits
the comparison of the current project with prior projects with similar characteristics. This infor-
mation is used in the next step.

(Step 2) Select Goals,Questions, and Metrics

To achieve high quality and productivity, it is necessary to set the specific objectives. This is
the key step to the success of the project. Unless the goals are appropriate, the project will fail.
The GQM paradigm is used to do this. It satisfies the requirement for goal-oriented measure-
ment. [t helps both developers and managers clarify the objectives of the project prior to
development.

Guidelines and templates are used to establish the particular GQM used. Templates from
prior systems can be used or modified for this project. For each metric, measurement instructions
are prepared, which include the importance of metric, the collection method and person responsi-
ble, the data presentation, the decisions affected ete.

Besides the set of goals and metrics for the particular project, a common set of managerial
metrics have been specified to be applied to all projects. We can gather the data for getting the
level of quality and productivity through projects and development phases. The metrics from
this common set are shown below.

[Quality |
- Number of detected errors at test phase (from
integration test through system test)
- Number of detected errors within six months after release

[Productivity |
- Number of specification pages
- Number of non-comment source statement .
— Effort at each phase by man-hour

5642

(Step 3) Select activities

Methods to effectively achieve the objective are considered at this time. Appropriate activi-
ties for economically producing the software and managing the quality of the project can now be
chosen based on the specific objectives laid out in the GQM.

This step is critical to achieve the objectives. Setting goals, without specifying the means to
achieve them, is meaningless. Sufficient discussion on the activity selection process is necessary
from various viewpoints; how they fit into the development environment, how they integrate with
the management methods and training plans, etc. and how the help achieve the objectives, pro-
vide focus for the questions and affect the definition of the metrics.

For process control, a review checklist is prepared for each phase of development based on the
metrics specified by the GQM model and past history, e.g. prior fault data. Feedback to the pro-
cess should also be performed as soon as possible after a review. Problems can be easily found
using the review checklist. Periodic checks; e.g. monthly, or at the final review of each develop-
ment phase, are required to monitor the process. The earlier the phase at which monitoring
starts, the more effective it is for quality improvement. Audit and configuration management are
also process control methods governing quality.

(Step 4) Measure and assess the process and the products

Project data will be collected periodically, at least at the end of each development phase.
Based on the metrics selected, the process and the products are measured. The results are
assessed by using specific rating criteria. It is helpful for manager to take proper action quickly.
Continuous measurement and assessment can produce high quality product.

For visual management, graphical displays of the appropriate management information can
be selected based on the graph selection form. The project’s current status can be found by using
the visual display tool provided by the SMC system. It is helpful for software managers to see
the achieved quality level in a concrete form to support such activities as decision making, the
management of quality and scheduling of the next workload. For example, graphs provide the
manager with time series data indicating process and product changes, as well as comparative
data from past projects.

(Step 5) Support corrective action

For low scoring metrics, some action should be taken. A corrective action list is prepared and
used to improve both the current and future process and products.

Based on the assessment of results at step 4, proper action is required quickly for problems or

the sign of any problems. If necessary, the activity plan can be revised. These experiences are
accumulated and used to future projects.

Guidelines necessary to perform project management, based on SMC, are as follows:

- Goal selection ~ Management graph selection
- Question selection - Project status diagnosis
— Metric selection - Corrective action recommendation
- Activity selection - Reliability prediction
8
3-9

5642

5642

The SMC helps the manager in the definition of an appropriate software engineering process
during the GQM and activities selection phases {steps 2 and 3), by allowing the manager to tailor
goals, measures, methods and tools to the specific system/project characteristics. A data base can
be defined and built to support the measurement environment during the GQM selection phase
and to support both the development and management environments during the activities selec-
tion phase. After executing one whole cycle through the SMC process, the results of analyzing the
current project data can be fed back to each SMC phase. Updating the database and improving
each step of the SMC helps generate a software engineering process for future projects.

The SMC support system is currently a prototype built on top of existing software packages.
It consists of (1) a data base, (2) a set of statistical packages, and (3) a set of graphical types
(developed using Microsoft Excel), all integrated under a common user interface.

Accumulation of application information in a data base enables the organization to establish
guidelines for future projects. Therefore, the relation between the system characteristics and the
measurements associated with the particular GQM should be collected and saved in a data base.
Emphasis should be on the metrics common across several projects
5. An example G/Q/M

A simplified pair of GQM models, one for product and one for process are given. They are
written from the point of view of the manager (which may include some of the concerns of the
customer) for evaluating various components to improve quality, cost and usage of methods based
upon managerial data.

First we will define some terms and offer a model of the qualities of interest:

DEFINITIONS:
Size (NCSS) = the number of non-commentary source statement (NCSS)

Actual Effort (AEF) = total number of staff hours to develop a component

Estimated Effort (EEF) = estimated number of staff hours based upon the software science
metric, E

Actual Errors (AER) = the total number of errors reported

Estimated Errors (EER) = the estimated number of errors based upon the software science
metric, B

Actual Error Rate (AERR) = AER / NCSS
Estimated Error Rate (EERR) = EER / NCSS
Changes (CH) = the total number of changes reported
Change Rate {CR) = CH / NCSS

Effort Distribution {PED) = the percent of staff hours for a particular component spent in each
phase

Test Efficiency (PTE) = the percent of machine time spent testing a component
Work Rate (WR) = NCSS / AEF
Effort Variance (EFV) = AEF / EEF

Error Variance (ERV) = AER / EER

MODEL:

The objectives for management are cost, quality and the effectiveness of the methods.
Evaluation is performed on the basis of improvement over some norm.

Cost can be assessed as the relationship between input, staff effort, and output, the quantity
of documentation and program produced. In this case we will consider cost as demonstrated by
two factors: work rate (WR), which provides some measure of the cost of production for a line of
code, and Effort Variance (EFV), which provides some measure of whether the effort is reasonable
relative to some measure of the expected effort.

Quality is assessed in two categories, must-be quality and attractive quality. These terms,
must-be quality and attractive quality, are common Japanese quality perspectives. Must-be
quality means the fundamental qualities necessary for software to function, i.e., functionality and
reliability. Attractive quality means any additional quality characteristics for the software to
satisfy the users specific needs, e.g., usability, security, portability. In this case, we will consider
quality as demonstrated by two factors: error variance (ERV), which provides some measure of
whether the error rate is reasonable relative to some measure of expected errors, and change rate
(CR), which provides some measure of the entropy of the system.

Method characteristics are assessed based upon their adherence to a set of standards. Project
manager experience is also assessed since the success of a project deeply depends on his ability. In
this case, we consider method evaluation using two factors: effort distribution (PED), which will
provides us some insight into whether the distribution of the effort was acceptable according to
standard baselines of effort distribution, and test efficiency (PTE) which when combined with test
time, will provide some insight into the effectiveness of the test process, and therefore the effec-
tiveness of the methods used for development.

Note that the model uses the software science measures, E and B as a basis for estimating,
effort and bugs. It assumes these calculated values as basic estimates for the variables effort and
errors and uses them as norms when comparing the actual values for effort and errors.

In our proposed model, the values of these variables for any component are then compared to
the values for some normal population. All values within 2 sigma variation from the average are
considered acceptable. Those values with more than a 2 sigma variation in the "right* direction
are considered good; those with more than a two sigma variation in the "wrong" direction are
considered as not meeting the target goal. For example, the effort variance (EFV) for a com-
ponent is considered bad if it is greater than two sigma above the norm determined by the aver-
age value of cost for the rest of the population.

In the example given in the next section the baselines are determined by the the rest of the
component population in the particular project. In an environment where there is data from a
sufficient number of projects, the baselines could be determined by projects with similar charac-
teristics from other projects.

5642

PRODUCT GOAL:

Purpose: Evaluate various software components within a project in order to assess them and
recommend areas for improvement.

Perspective: Examine the relative cost and quality from the point of view of the manager.
PRODUCT DEFINITION:

Product Dimensions: A quantitative characterization of the physical attributes of the product.
Q1. What is the size of each component in terms of non~commented source statements (NCsSs)?
Q2. What is the value of the software science metrics for each component (E B)?
Changes/Defects: A quantitative characterization of the enhancements, errors, faults, and failures.
Q3. What is the number of defects associated with each component (AER)?

Q4. What is the number of changes associated with each component (CH)?

Q5. What is the fault rate, change rate (AERR, CR)?

Cost: A quantitative characterization of the resources expended.

Q6. What is the staff effort involved in the development of each component, i.e. design, code,
test?

Q7. What is the distribution of effort spent in the design, code and test phase (PED)?

Context: A quantitative characterization of the customer community and their operational
profiles.

[No questions for this example]

In general, five viewpoints are necessary for process questions. Two of five, "Effort of Use"
and "Effect of Use®, are actually used in a case study next section.

PROCESS GOAL:
Purpose: Evaluate the design, code and test processes in order to improve them.

Perspective: Examine the relative cost distribution and test efficiency from the point of view of
the manager.

PROCESS QUESTIONS:

Quality of Use: A quantitative characterization of the process and an assessment of how well it is
performed.

Q8. How much experience does the team have with respect to the methods and tools used?

Q9. How much experience does the manager have with respect to similar projects?

5642

Domain of Use: A quantitative characterization of the object to which the process is applied and
an analysis of the process performer’s knowledge concerning this object.

Q10. How understandable are the requirements?

Effort of Use: A quantitative specification of the quality perspective of interest. In this case, a
quantitative specification of the costs.

Q6. What is the staff effort involved in the development of each component, i.e. design, code,
test?

Q7. What is the distribution of effort spent in the design, code and test phase (PED)?
Ql1. What is the machine time spent in the test phase for each component (PTE)?

Feedback from Use: This includes questions related to improving the process relative to the qual-
ity perspective of interest.

Q12. What is the input to the design and code methods and tools, and the defect detection
methods and tools?

Q13. What should be automated?

6. Case Study

The concepts of SMC can be applied to a variety of project types because of the flexibility of
this methodology. Metrics and development methodologies are tailored to each project. In this
section, we discuss several general issues in applying SMC and provide a sample application to the
management of a specific project based upon models and the goals, questions and metrics of the
previous section.

In executing SMC in a project, the software management procedure mentioned previously, the
templates, guidelines and some forms are used. A step by step approach based on this procedure
is demonstrated. A sufficient budget for managing these activities is required. It is also neces-
sary to establish an organization to support the SQM process. Certainly, a seminar on SMC for
both managers and developers would have provided better results. It should be remembered that
the more experience the manager and the organization have with SMC, the better they will be
able to apply the method. The continuous application of the method provides a better support
for quality and productivity.

This example uses the NASA/SEL [McGa85, Bas85b| project data base. Thirteen newly
developed components for a particular project were selected. Size range of non-comment source
statements is from 60 to 299 LOC. Graphs for project management were made using Microsoft
Excel.

In step 1, "System/Project Form® is filled out. This clarify both the software functional
requirements and the development environment. The profile of the system and the environment

are defined.

In step 2, the project goals are determined based on the system/project characteristics from
step 1 and the managerial strategy; e.g. cost, quality level to be achieved, methodologies to be

5642

employed, etc. Each goal is extended to questions and metrics by means of the GQM template.
The *Quality Target® and “Managerial Metrics* are determined at this step. Cost and quality
improvement and better usage of various methods were chosen as goals. To support manage-
ment, the *Graph Selection Form® is provided. Six graphs were selected; those are for work rate,
effort variance, error variance, change rate, effort distribution and test efficiency. Questions to
achieve these goals are shown-in Chap. 2.

In step 3, the best way to achieve GQM is discussed and appropriate activities are selected.
These depend on the pieces of information from previous steps. Development methodologies and
quality checkpoints are listed on a specific form. This form is used as a checklist during develop-
ment.

In step 4, the development process is monitored and managerial data are collected periodi-
cally. To make the project status visible, display graphs are very helpful. The graphs used were
selected in step 2.

The following table shows the results of statistical analysis on the NASA/SEL project. Six
criteria on three categories are chosen. Regression analysis was executed for the "Error Vari-
ance® data. Analysis of variance was executed for the rest of data. Based on the graphs and this
table, the project’s current status can be found. Comments for four of 13 components are
described below. Figure 2 shows some sample graphs.

Rules for interpreting the results

For each metric, there exists pattern to interpret the results. Consider the following exam-
ples.

[Cost |
(1) Work Rate: Development speed measured by NCSS per man-hour

- In case of a low value, there are several potential problems
* low quality
* insufficient development environment
* loose process control
ete.

(2) Effort Variance: actual effort vs. estimated effort

- Evaluate the goodness by variation between estimated and
actual effort
* in the case that the actual effort is lower, the work
rate is high (or functions could be simple)
* in the case that actual effort is high, the interpretation
of the results are the same as for Work Rate.

[Quality |

(1) Error Variation: the number of actual errors compared
with the estimated (a measure of complexity)

5642

COST QUALITY METHOD
Component
number Work Effort Error Change Effort Distri- Test Effi-
Rate Variance Variance Rate bution ciency
C T
¢29 0] X XX XX
¢61 O
c6 X X XX
c5 X XX 00 X O
cd6 XX
c? XX XX XX X 00
c9 XX
c4
c49 XX X
c43 00 0] 00 0 X 00
cll X XX X XX
c63 00 X XX
¢50 0o
D design phase
C code phase
T test phase
Assessment Criteria (except Cost Distribution)
OO : excellent (>=AVE +207)
O: good (> +107)
X: poor (< -107)
XX: bad { < -207)
Assessment Criteria for Cost Distribution
XX : very highrate (>=AVE +207)
X: high rate (>= +107)
X: low rate (< -107)
xx: very low rate (< -207)

- It assumes that the greater the complexity, the greater the

Table 2. Component Assessment Table.

number of errors.
¥ Quality is high if the number of errors is low in
comparison with the estimated number based on complexity.

(2) Change Rate: the normalized magnitude of the number of

specification changes and error modifications

- In case that the number of specification change is large,

there is a problem in the development methods
* insufficient review

* less communication with user
* loose configuration control
- In case that the number of error modification is large,

5642

quality is considered to be low.
- In both cases, degradation of the system can be assumed
due to entropy because of change

[Methodology |
(1) Effort distribution: effort ratio of each phase

- Evaluate the percentage of effort in each phase (design /
coding / test).

* Is the effort in the design phase sufficient?
In the case of insufficient effort, the degree of
specification completion is considered to be low.

* Does it cost too much in coding phase?
In case of too much effort, it is assumed that the
specification is insufficient or the development
environment is not so good.

* Is the effort appropriate in test phase?
In case of too little effort, it is assumed that testing
was insufficient and the system was delivered with errors.
In case of too much effort, it is assumed that the test
method is not efficient and/or the quality is low so
the test phase lasted too long.

(2) Test efficiency : percent of machine time in the test phase
- The ratio is high if the preparation of test cases is sufficient.
- The ratio is high if quality is high so error modification

effort is small.

Assumed activities in the test phase

[Preparation l Machine Test (fixed) | Error_modification l

The pattern for interpretating of results can be made by combining the above heuristics.

Comments

¢S
Quality is good, but cost is high. Because of the high cost
in design and code phases, product quality must be high.
Some changes may have caused the rise of both design and
code cost rate.

(good)
Quality is high.

(to be improved)
Work rate is low.

(diagnosis)

It is necessary to monitor the early process to avoid
the slide of schedule. Quick feedback and effective

5642

5642

reviews are necessary.

c7
There is a problem in the methods {or development and management.
The number of changes is large. This caused the rate of
design and code to be too high. Because of insufficient test
instead of high test efficiency, number of errors is also large.

(to be improved)

- Though test efficiency is very high, preparation,

interpretation and error correction must be insufficient,

because there are still many errors.

- There are many more changes than those of other components.

{diagnosis)

Design or review methodology must be improved. Be
more careful in test phase. Try to find out the potential
errors based on the test results. More experience and
knowledge are required to do so.

c43 :
It’s a very good component. The only concern is the percentage
effort of the code phase. It is true that the difficulty
of this component is low, but both quality and productivity
are high.

cll:
There is a problem in methods for development and management.

(to be improved)
Because of poor design, the code phase costs too much
and there are many errors.

(diagnosis)

It is necessary to improve design phase to be able to make
a better quality document. The test method should also be
reconsidered.

In total, the difference between the goals and results can be evaluated from Table 1.

From the view of COST, only component 5 was well above the standard cost. This com-
ponent, however, achieved a high quality rating, so its project goal can be considered as achieved.

From the view of QUALITY, four of thirteen components (7,11,46,49) did not realize their
quality target. Error analysis indicates that most errors can be reduced by avoiding careless mis-
takes. Component 7 has an extra problem. An unusually high number of changes extended the
design phase and caused many errors. Further investigative action should be taken into the
causes of those changes and the manager should be encouraged to minimize change. The quality
target has not been achieved for these four components.

From the view of USAGE OF METHODS, two components (6, 29) had too high a cost in test
phase. They rated satisfactory for cost and quality however. Four component (9, 11, 29, 63)
rated poorly with respect to test efficiency. One component (29) did not meet target in both

-

14

categories. There are several problems to be solved in test phase.

All three goals can not always be achieved sufficiently. However, avoiding careless mistakes
and improving the test method should produce a better product.

In step 5, corrective action is taken based on the collected data and managerial graphs from
step 4. For unachieved items in Figs. 4 and 6, the cause of each problem is pursued and an
improvement method is discussed and executed. If something is found wrong in a certain step,
the activities in that step are improved quickly. In this way, a project can be managed systemati-
cally throughout the life cycle.

The expected effects of applying SMC are quality improvement, managerial cost reduction,
accumulation and reuse of experience and a highly visible management reporting system.

7. Evaluation of Software Management Cycle .
We are interested in evaluating and improving the SMC itself. Data collected at each phase

and after release enable us to analyze the effect of the SMC. The followings are the GQM for

evaluation of SMC.

Goal: Evaluate the effectiveness of the SMC

Process Conformance:

Q1. How much managerial training was given to the manager?
Q2. How well were the SMC methods applied? -

Domain Conformance:

Q3. How well was the SMC procedure understood?
Q4. How well was how to interpret graphs understood?

Cost:
Q5. How many hours were spent to perform SMC?
Effect;

Q6. What was the distribution of the management time?
Q7. Were graphs and forms helpful for the manager?

Feedback:

Q8. What changes need to be made in the methodology to
make it more effective?

Q9. What tools or activities would make the use of SMC
more effective?

During development, quality/productivity metrics (set Q), methods metrics (set M) and
15

3-18
5642

feedback metrics (set F) are necessary. Customer satisfaction metrics (set C) are required after
release.

Table 2 shows the classification of data.
Four evaluation methods are provided.
(1) How good are goals?

Based on correlation analysis between Q, M, F and C, it can be judged that a project must be
good if the metrics of the project include most of elements of Q, M or F which have high correla-
tion coefficient to C.

(2) How good are activities {methods, feedback)?

Based on correlation analysis between M, F and C, it must be good activity if an element of
M or F has high correlation coefficient.

(3) How good are metrics?

Based on regression analysis between C and Q, M, F, the metrics of a project must be good or
predictable if the project has high regression coefficient.

(4) How good are products?

Based on significant test of the difference between two population (past projects’ C and
current C), the current projects’ products must be good if the difference is statistically significant.

The results of these analyses help to improve Software Management Cycle and update the
knowledge of management database.

8. Conclusion

The concepts and use of Software Management Cycle based on the Quality Improvement
Paradigm are described in this paper. This methodology can improve not only product quality
but also process quality. Three concepts; goal-oriented measurement, process control and visual

management, are important to manage a project effectively, quantitatively and objectively.

Further plans for the SMC include:

(1) its application to a variety of projects, analyzing the processes and accumulating knowledge
for different project classes, and

(2) the development of a full management support tool which covers the whole process.

The authors are convinced that this methodology contributes to the building of an
appropriate software engineering process for improving both quality and productivity.

5642

9. References

[A2Su86] M.Azuma, T.Sunazuka, *Software Quality Measurement and Assurance Technology
(SQMAT)*, Quality, Vol.16, No.1, pp.79-84, January 1986, (in Japanese).

([AzSM87] M.Azuma, T.Sunazuka, K.Minomura, *Software Quality Assessment Criteria and
Measurement Technology®, Standardization and Quality Control, Vol.40, No.8, pp.63-75, August
1987, (in Japanese).

[Bas85a] V.R.Basili, *Quantitative Evaluation of Software Engineering Methodology,” Proc. of
the First Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also available
as Technical Report, TR-1519, Dept. of Computer Science, University of Maryland, College
Park, July 1985].

(Bas85b] V.R.Basili, *Can We Measure Software Technology: Lessons Learned from 8 Years of
Trying," Proceedings of the Tenth Annual Software Engineering Workshop, NASA Goddard
Space Flight Center, Greenbelt, MD, December 1985.

(BaKa83] V.R.Basili, E.E.Katz, "Metrics of Interest in an Ada Development,” Proc. of the [IEEE
Computer Society Workshop on Software Engineering Technology Transfer, April 1983, pp.
22-29.

[BaRo87] V .R.Basili, H.D.Rombach, *Tailoring the Software Process to Project Goals and
Environments,* Proc. of the Ninth International Conference on Software Engimeering, Mon-
terey, CA, March 30 - April 2, 1987, pp. 345-357.

(BaRo88| V.R.Basili, HD.Rombach, *“The TAME Project: Towards Improvement-Oriented
Software Environments,* [EEE Transactions on Software Engineering, vol. SE-14, no. 6,
June 1988, pp. 758-773.

[BaSe84] V.R.Basili, R.W.Selby,Jr., “Data Collection and Analysis in Software Research and
Management,* Proc. of the American Statistical Association and Biomeasure Society Joint Sta-
tistical Meetings, Philadelphia, PA, August 13-16, 1984.

[BaSe85] V.R.Basili, R.W.Selby,Jr., *Calculation and Use of an Environment’s Characteristic
Software Metric Set,* Proceedings of the Eighth International Conference on Software Engineer-
ing, London, UK, August 1985.

(BaWes4] V.R.Basili, D.M.Weiss, "A Methodology for Collecting Valid Software Engineering
Data,* IEEE Transactions on Software Engineering, vol. SE-10, no.6, November 1984, pp.
728-738.

[BaWeg1)] V.R.Basili, D.M.Weiss, “Evaluation of a Software Requirements Document by Analysis
of Change Data,* Proceedings of the Fifth International Conference on Software Engineering,
San Diego, USA, March 1981, pp. 314-323.

(BoBL76] B.W.Boehm, J.R.Brown, and M.Lipow, "Quantitative Evaluation of Software Quality,"
Proceedings of the Second International Conference on Software Engineering, 1976, pp. 592-605.

{Grad87| R.B.Grady, “Measuring and Managing Software Maintenance*, [EEE Software, Vol.4,
No.5, pp.35—45, September 1987. '

[GrCa87] R.B.Grady, D.L.Caswell, "SOFTWARE METRICS: Establishing A Company-wide

17

3-20
5642

Program*, Prentice~Hall, Englewood Cliffs, NJ, 1987.

McRW77] J. AMcCall, P.K.Richards, G.F.Walters, "Factors in Software Quality", RADC TR-
77-369, 1977.

[McGas5] F.EMcGarry, “Recent SEL Studies,* Proceedings of the Tenth Annual Software
Engineering Workshop, NASA Goddard Space Flight Center, December 1985.

[Mizu82] Y.Mizuno, *Software Quality Improvement®, Proc. 6th compszic 82, 1982.

[Muri80] G.E.Murine, “Applying Software Quality Metrics in the Requirement Analysis Phase of
a Distributive System*, Proc. Minnow Brook Conference, 1980.

[RoBa87| H.D.Rombach, V.R.Basili, *A Quantitative Assessment of Software Maintenance: An
Industrial Case Study,* Conference on Software Maintenance, Austin, Texas, September 1987, pp

134-144.

[SuAY85] T.Sunazuka, M.Azuma,N.Yamagishi, *Software Quality Assessment Technology",
Proc. 8th International Conference on Software Engineering, London, UK, pp.142-148, August
1985.

[WeBa85] D.M.Weiss, V.R.Basili, “Evaluating Software Development by Analysis of Changes:
Some Data from the Software Engineering Laboratory,* IEEE Transactions on Software
Engineering, vol. SE-11, no. 2, February 1985, pp. 157-168.

18

5642

5642

UMIACS-TR-88-92 December, 1988
CS-TR-2158

Towards A Comprehensive Framework for Reuse:+
A Reuse-Enabling Software Evolution Environment

V. R. Basili and H.D. Rombach

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Reuse of products, processes and knowledge will be the key to enable the
software industry to achieve the dramatc improvement in productivity and quality re-
quired to satisfy the anticipated growing demands. Although experience shows that
certain kinds of reuse can be successful, general success has been elusive. A software
life—cycle technology which allows broad and extensive reuse could provide the means
to achieving the desired order-of-magnitude improvements. This paper motivates and
outlines the scope of a comprehensive framework for understanding, planning, evaluat-
ing and motivating reuse practices and the necessary research activities. As a first step
towards such a framework, a reuse—enabling software evolution environment model is
inroduced which provides a basis for the effective recording of experience, the gen-
eralization and tailoring of experience, the formalization of experience, and the (re-)use
of experience.

+ Research for this study was supported in part by NASA grant nSG-5123, ONR grant NOOO14-87-K-0307 and Airmics grant
DE-ACO5-OR21400 to the University of Maryland.

5642

TABLE OF CONTENTS:

1 INTRODUCGTION ..ot e
2 SCOPE OF A COMPREHENSIVE REUSE FRAMEWORK

3 A REUSE-ENABLING ENVIRONMENT MODELcoocooiiiiiiiineicin,
3.1 Implicit Learning and Reuse ...,
3.2 Explicit Modeling of Learning and Reusecocooiiiimiiiiniinnnininiien,

3.2.1 Recording Experiencecccccccoiiiiiiiiiiiiiiiiii e
3.2.2 Generalizing & Tailoring Existing Experience Prior to its Potential
RIS ..o ettt bttt ae e ettt n s
3.2.3 Formalizing Existing Experience Prior to its Potential Reuse
3.2.4 (Re-) Using Existing Experiencec.cccoocoiiiiiiinii .

4 TAME: AN INSTANTIATION OF THE REUSE-ENABLING ENVIRON-
MENT MODELoooiiiiiiiiiiiienet et s s

5 CONCLUSIONS .o

6 ACKNOWLEDGEMENTSt

7TREFERENCES ..o e

10
11

12

15

16

17

20

21

21

5642

ORIGINAL PAGE IS
OF POOR QUALITY

1. INTRODUCTION

The existing gap between the demand and our ability to produce high quality software
cost-effectively calls for improved software life-cycle technology A reuse-enabling software Lfe-
cycle technology is expected to contribute significantly to h;gher quality and productivity OQual-
1ty can be expected to improve by reusing proven experience in the form of prodiets PPoeesses
and knowledge. Productivity can be expected to increase by using existing experiener rather han

developing it from scratch whenever needed.

Reusing existing experience is the kev to progress in any area. Without reuse evervrhing

must be re-learned and re-created: progress in an economical fashion 15 nnlikely Durine vie
.

evolution of software. we routinely reuse expertence in the form of existing products i« 2 zeper;
Ada romponents. design documents. mathematical subroutines). processes ez fesizn Hispection-
methods. compiler tools), and domain-specitic knowiedge (¢ ¢ cost models. lessons learned 1eia-
urement data). Most reuse occurs implicitly 1n an ad-hoc fashion rather than as the result of
explicit planning and support. While reuse is less institutionalized in software snginesring than 1
nther engineering disciplines, there exist some successiul cases of reuse, 1o product rense Rense 1
soltware engineering has been successful whenever the reused oxperience 15 <elf «de<eribing o
mathematical subroutines, or the stabtlity of the context m which rthe experience s ronsed oo
pensates for the lack of self-description. r g, reuse of hugh-level designs wcross projects with ~imii-
lar charactenstics regarding the application domaun, the design methods. and the personnel Ip
software engineering, the potential productivity pav.off from reuse can be quite high ~inee -

inexpensive to store and reproduce software engineering experience compared Lo other snginesr-

ing disciplines.

The goal of research in the area of reuse is the achievement of systematic methods for effec-
tively reusing existing experience to maximize quality and cost benetits. Successful reuse deprnds

on the charactéristies of the candidate reuse objects. the characteristies of the reuse process

* The tarm ®evouution® 15 used in this paper Lo romprise the cntire oftware (e cycle fdevelopment und muatenanes

3-24

=IGTNAL PAGE IS
OF POCR QUALITY

itself, and the technical and managerial environment in which reuse takes place. Interest in
reusability has re—emerged during the last couple of years 4. 9, 11. 12, 13, 14, 15 16, 17, 19,

20, 21}, due in part to the suumulus provided by Ada and in part to our increased understanding

of the relation between software processes and products.

Our increased understanding tells us that in order to improve quality and productiviry vin
reuse we need a framework which allows (a) the reuse of all kinds of software »naqineering vxper:-
ence. i.e., products, processes and knowledge, (b) the better understanding of rhe reuse nrocess
itself, and (c) the better understanding of the technical and managerial »volution »nvironment in

which reuse is expected to be enabled.

This paper presents a reuse--nabling software evolution environment model. he Hear ~ter
towards a comprehensive framework for understanding, planning, »rvnlua.unz nd monaning
reuse practices and the necessary research activities. Section 2 motivates the necessary ~cope of
comprehensive reuse framework and the important role of a reuse-enabling software evolution
environment model within such a framework. Section 3 introduces the reuse-enabling <oftware
evolution environment model and diseusses its ability to explicitly model the recording of »xperi-
ence. the generalization and tailoring of expertence. the formalization of experience, g e o
use of experience. The TAME model a specific instantiation of the reuse—enabling ~oftware »vo-
lution environment model, is presented in Section 4. This specific instantiation 1= n=ed w0 oo

specifically describe the mtegration of the recording and [re-juse actuivities inro an impreyeen?

oriented software evolution process.

Before we proceed. we detine some crucial terms that will be used in this paper <o the reader
understands what we mean by them in the software context. We have tailored Webster's zeneral
definitions of these terms to the specific domain of software evolution. [mprovement means
enhancing a software process or product with respect to quality and productivity [Learning i~ the
activity of acquiring experience by instruction (e.g., construction} or study (e.g. analysist flense

e}

is the activity of repeatedly using existing experience. after reclaiming 1t, with or wirthout

5642

5642

ORIGINAL PAGE S
OF PCOR QUALITY

modification. Freedback means returning to the cntry point of some process armed with the
experience created during prior executions of the process. We use the expression erperience base
to mean a repository contamning all kinds of experience. An experience base can he implemented
in a variety of ways depending on the type of experience stored. An experience base may consisi
ol one or more of the following: traditional Jdatabases containing factual pieces of informaton.
information bases containing structured information, and knowledge bases including mechanisms

for deducing new information '3, 241

SCOPE OF A COMPREHENSIVE REUSE FRAMEWORK

Reuse in most environments is implicit and ad-hoe When o s explicin or planned. o
predominantly deals with the reuse of code. [n Section 1. we expressed our belief that eifective
rense technology needs to be based on (a} the reuse of products. processes and knowledae. (b 4
good understanding of the reuse process itself, and {c) a good understanding of the rense —enabling

software evolution environment.

To better justify these beliefs, we will deseribe and discuss the reuse practies i
Software Engineering Laboratory (SEL) at NASA Goddard Space Flight Center 20 1s - This -
an example where reuse has been quite successful ab a variery of leveis alben predominantly
tmplicit. Ground support software for satellites has been developed for a number of vears n
FORTRAN. Reused experience exists in the people. merhods. and rools 1= well as in the program

library and measurement database.

To explain reuse in this environment we must first explain the management structure.
There are two levels of management involved in the technical project management. The second
level managers (one from NASA and one from Computer Seiences Corporation, the contractor),
have been managing this class of projects for several vears. Specific project managers are Ly pi-

cally promoted from within the ranks. on vither side, from the better developers on prior projects.

I QUALITY

This provides a continual learning experience for the management team. Technical review and
discussion is informal but commonplace. Lessons learned {rom experience are used to improve

management’s ability to monitor and control project developments.

The organizational structure has been relatively constant from project 1o project Theer
have been minor variations due to improvements in such things as methods and rocls which have
evolved from experience or been motivated the literature and verified by experimental dara
analysis on prior projects.

The basic systems have been relatively constant. This permits reuse of the application
knowledge as well as the requiremments. and design. For example the requirements docnnments e
quite mixed with regard to the level of specificity. In some places they are quite precise bur oy

other cases the are very incomplete. relving on the expertence of the people from prior rroeeis

Requirements documents have phrases similar to the following: Capability X for new satei-
lite S2 is similar to capability X for satellite S1 except for the following .. This implicitly pro-
vides reuse of prior requirements documents as well as implicitly allows for reuse of prior Jdesign

documents and code.

Systems within a class, all have a similar design at the top level and the mterfaees vmons
subsystems are relatively well defined and tend to be refatively error free. Design = impliently

reused from system to system as specified by the experienceed high level managers

Reuse at the code level is more explicit. The software development process used 15 4 reuse
oriented version of the waterfall model. The coding phase begins by seeding the code library with
the appropriately specified elements from the appropriate vpnor projects. These code romponents
are then examined for their ability to be reused. Some are used as is. others modified minimally,
others modified extensively, and yet others are eliminated and judged easier to develop from

scratch. This is a reuse approach that has evolved over time and has been quite effective

A variery of tools have evolved that are quite application specitic. These include vvervthing

from tools that generate displays needed for testing o application spectlic system antlities

3-27

5642

ORIGINAL PACE 'e
OF POCR QUALITY

hnowledge about these tools has been disseminated by guidance from more senior members of the

development team.

The SEL environment 15 a good example of strong reuse at a variety of levels. in a variety
of ways as part of the software development process. There has been a pattern of tearning and

reusing knowledge. processes and products. The use of the measurement database

hiw teiped
with project control and schedule as well as quality assessment and productivity 2. 1<

NASA s now considering changing to Ada. Several Ada projects have already bren com-
pleted. This has involved an obvious loss in the reuse heritage at the code level asx was antici-
pated. But it has also involved a less obvious and unexpected loss of reuse ar the Tearemen
and design level i the orgamzational structure. and even in the application knowieds.

The miual impact of Adu was staggering because of the implicit. rather fnan -xpin

understanding of reuse in the environment. This understanding of reuse needs to be formigmi

Based upon the concept that reuse is more than just reuse of code and that it needs 1o

}
expheitdy

e
modeled. we need to reconsider how we measure progress in reuse. The mrasurement -
currently used in the SEL are hased upon lines of code reused from one project 1o anotiner

{
this view

tiv ey
. progress may not be related av all to the lines of code reused

W need to measiee o
»ffects of

13

reuse on the resources expended in the entire software life cvele and on the oy o

the products produced using an explicit reuse oriented evolution model

[n f(\l't the S AT

should allow us measure for any set of reuse -related goals 3, 4. %, 10, Changing our models

our metries will help us to better understand the effects of the traditional reuse practiees and

compare them with the effects of an explicit reuse oriented reuse model.

In summary. we believe that a comprehensive reuse framework needs to include (4} A rese-

enabling software evolution environment model, {b) detailed models of reuse and learming, and {¢|

characterization schemes for reuse and learning based upon these models.

3-28
5642

3. A REUSE-ENABLING ENVIRONMENT MODEL

In the past. reuse has been discussed independent of the software evolution environment
We believe reuse can only be an effective mechanism if it s viewed as an integral parr
paired with learning, of a reuse—enubl-in‘.; software evolution environment. None of the
traditional engineering disciplines has ever mtroduced the reuse of building blocks s indepen-
dent of the respective building process. For example. 1 avil engineering people nave not
created “"reuse libraries® containing building blocks of all shapes and structures, and then rried
to use them to build bridges. town houses, high-rises and rottages. Instead, they devised o
standard technology for hutlding certam rypes of binldines ie oz rown housesy through «ong pre-
cess of understanding and learning This allowed them ro denne the needs for certun <tandard

building blocks at well-defined stages of their construction proeess. In the <oftware apsna e

have not followed this approach.

[l we accept the premise that effective reuse requires a good understanding of the environ-
ment in which it 15 expected to take place, then we must model reuse in the context of A rense
rnabling software evolution environment. Such a context will allow us to learn how 1o reuse
better. The alumate expectation s that such improvement would Tead 1o an over mereasins
nsage of zenerator-technology during software »volution. The ability 1o automate the senerarion
of products from other products retlects the nltimate degree of understanding the anderbving on-
struction processes. Automated processes are easy to reuse. For example, in building compiler
front-ends. we rarely reuse components of other compilers: instead, we rense the compiler genern-
tors which automate the entire process of building compiler front-snds from formal language

spectfications

In Section 3.1 we discuss how learning and reuse impheitly oceur in the context of rradi-
tional software evolution »nvironments. In Section 3.2, we discuss how learning and reuse can be

explicitly modeled in the context of a reuse-enabhng software evolution »nvironment

3-29
5642

ORIGINAL PAGE IS
OF POOR QUALITY

3.1. Implicit Learning and Reuse

During 2 workshop on “Requirements for Software Development Environments”
held at the University of Maryland in 1985, a view of a soltware evolution environinent w:is
proposed that consisted of an information <vstem and three mk'ormaLi(;n producers and ropsu-
mers: people, methods. and tools 22 The anformation system is delined by 4 seftware rvoli-
non process model describing the information. the communication among people. iethos

and tools. and the activity sequences for developing and maintaining software.

The traditional software evolution environment model in Figure 1 is o refinement of this

sariier model

' people methods tools
A A .Y
h 4 "4 h 4

Software Evolution Process

product;

v

— products
- management plans

. schedules < -- -
- project data

Figure 1: Traditional (non-reuse oriented) Software Evolution Environment Model

5642

DTEATT DA g
T e AT INAES

-

R

Vo b

’.';.v.E.ET‘{

The purpose of the software evolution process is to produce output products. #.g.. design
documents. code, from input products, e.g., requirement documents. Prople execute this process
manuallv or by utilizing available methods and tools. These methods and rools can be under the
control of a project database. All or part of the information produced furing this process
stored in a project database, og. products. plans such as management pluns or ~chedules. pro-

ject data.

Typically. support for such a traditional software svolution environment model includes o
project database and means for the interaction of people with methods. tools. and the projert
database during software evolution. The sxperience of people. as well 1 some of the methols
and tools, 15 usually not controlled by the project database A\s a4 consequence. this sxperience i

not owned by the organization ({via the project database) but rather owoed by medividuad

human beings and lost entirely after the project has been compieted.

Although the ideas of learning and reuse are not exphcitly reflected n the tradinionai
software evolution environment model, they do exist implicitly. The expertence of the prople
involved in the software evolution process and the experience =ncoded 1n methods and tools 1
reused. In many cases. previously developed products are reused as mput prodocts In the ~ame
way. products developed during one activity of the evoluuion process can b rewsed nosubsre
quent activities of this same process. People learn (gain expertence) from performing rhe activ-
ties of the »volution process. Another form of implicit learning ocears whenever products plans.
or project data are stored in the project database

The basic problem in this traditional environment model s not that learnming and reuse

can not occur. but that learning and reuse are not explicitly supported and only because of wndi-

vidual efforts or by accident.

5642

ORIGINAL PAGE IS
OF POOR QUALITY

3.2. Explicit Modeling of Learning and Reuse

Systematic improvement of software evolution practices requires a reuse-enabling environ-
ment model which explicitly models learning, reuse and feedback activities. and integrates them

into the software evolution process. Figure 2 depicts such a reuse—snabling snvironment model

Software Evolution Process

input
oduct
- '.‘
0 A
A A A v
: U R|-T - R
L : f
E» ! hd ‘ '
‘ ~ - F(B_.~ ’.; i
informal schematizedproductized ;
!
N - PROJEC[F SPECIFIC AT <
rB _
ol DOMAIN SPECIFIC . FB
= ‘--s-_,__,__-,_______.___(___4;__ [ep— S =
GEFJERAL|F G

EXPERIENCE BASE

Figure 2: Reuse-Enabling Software Evolution Environment Model

All the potentially reusable experience. including software svolution methods and tools are

under the control of an experience base. Improvement is based on the feedbick of eXISHING experi-

snce [labeled with “FB* for reuse in Figure 2). Feedback requires learning and reuse Svstematic

learning requires support for the recording of experience (Lubeled with "R for recording e [ienre
g i g

- 10 -

3-32
5642

~

2), the ol’f—line. generalizing or talloring of experience (labeled with *G*" and "*T*" {or generaliz-
ing and tailoring in Figure 2), and the formalizing of experience (labeled with "F" for formaiizing
in Figure 2). Off-line generalization is concerned with movement of experience from project -
specific to domain-specific and general: off-line tailoring is concerned with movement of »xperi-
ence from general to domain—specific and project-specitic. Off-line formalization = concerned
with movement of experience from informal to schematized and productized. Svsiemarie rense

o

requires support for {re-jusing existing experience (labeled with “U" for use tn igure 2y g
*
)

on-line generalizing or tailoring of candidate experience (not explicitly retlected in Ficure 2.

because it 1s assumed to be an integral part of the (re-juse activity}.

Although reuse and learning are possible n both the reuse-enabling and rure revhinona
environment models. there are sigmificant hifferences in the way experience s viewsr aned fow
learning and reuse are explicitly integrated and supported. The basic (hfferenes berweon oo
reuse-enabling model and the traditional model s that learming and reuse become »xplicithy

modeled and are desired characteristics of soltware evolution

3.2.1. Recording Experience

The objective of recording experience 15 to create o repository of well specilivg ey orezan-
1zed experience. This requires a precse description of the experience to be recorded the desian
and 1mplementation of a comprehensive experience base, and effective mechanisiis for noileninyg
validating, storing and retrieving experience. We replace the project database of the rruditionns
environment model by an the more comprehensive concept of an experience base which s
intended to capture the entire body of experience recorded during the planning and execution of
all software projects within an organization. All information Hows between the software evolu-
.{ll

tion process and the experience base reflecting the recording of expertence are labeled with "R an

Figure 2.

* The attributes *nn-line® and *off-line® indicate whether the corresponding activities are performed a5 0 aft or mdenen
dent of any particntar snftware svolution projeect

5642

ORIGINAL PAGE IS
OF POOR QUALITY

Examples of recording experience inciude such activities as fal storing of appropriately
documented. catalogued and categorized code components from prior systems in a product
library, (b) cataloguing of a set of lessons learned in applying a new technology in 1 knowiedge
base. or (¢) capturing of measurement data related to the cost of developing 1 system in a meas-

urement database.

In the SEL example of Section 2. code from prior systems is available o the DroTeam
library of the current project although no code object repository has been deveioped Nioasure-
ment data characterizing a broad number of project aspects such as the project »nvironment.
methods and tools used. Aiefects encountered, and resources sp;nn are explieitly stored in rthe SFL
measurement latabase 2050 18 0 Requirements and design documents as well v besone enpied

about the technical and managerial implications of various methods nd tools .re ST ST TR LR

stored 1n humans or on paper

Today 1t 1s possible. but not common. to tind product libraries. It is =ven less ~ommon 1o
record process-related expermncﬁ such as process plans or data which characterize the mpact of
certain methods and tools within an organization There exist 1wo main reasons why e gpeed g
record more process—refated experience: (1] it 1s generally hard to modily eNisting proagi-
efficiently without any knowledge regarding the processes aceording o which Thev were crenten
and (b} the »ffectuive rruse of process-related »xperience such as process plans or Jfara covpg ro-

vide significantly more leverage for improvement than Just the reuse of products

3.2.2. Generalizing & Tailoring Existing Experience Prior to its Potential Reuse

The objective of generalizing existing experience prior to its reuse is to make a candidate
reuse object useful in a larger set of potential target applications. The objective of taloring exist-
INg BXperience prior to its potential reuse 1s to fine-tune a candidate reuse object 1o lit a ~prcitie
task or exhibit special ateributes, such as size or performance. These activitjes require 0 well

documented rataloged and categorized set of rruse objects, mechanisms that support e

5642

et e n g
[T .

| S

P RIS

SCALITY,

modification process, and an understanding of the potenual target applications (reneralization
and tailoring are specifically concerned with movement across the boundaries of the "generality®
dimension: from general to domain-specific and project—specific and vice versa. Objectives and
characteristics are different from project to project, and even more so [rom environment to
»nvironment. We cannot reuse past experience without modifving 1t to the needs of the current
project. The stability of the environment in which reuse takes place. as well as the onigimation of

the experience, determine the amount of tailoring required.

Examples of generalizing and tailoring experience include such activities as (a) developing a
zeneric package from a spectfic package, (b} instantiating a generte package for o speetfic type, o)
zeneralizing lessons learned from a specitic design technology for o speeitic application 1o any
design for that application or any appheation, {1} or parameterizing a rcost model for w speaiie

»nvironment.

(n the SEL. requirements and design documents have implicitly evolved to be applicable to
all FORTRAN projects in the ground support software domain. Measurement Jdata have been
explicitly generalized into domain-specific baselines recarding defects and resonrce »xpenditures
2. % 1% Requirements and designs are impheitly radored towards the needs of a new propect
based on the manager’s experience, and code 15 exphicitly hand- modified to the needs of a4 new

project.

In general, recorded experience is project specttic. o order 1o reuse this experience oo
future project within the same application domain, we have to ia) generalize the recorded project
specific experience into domain specific or general experience and (bj then tailor it again to the
specific characteristics of the new project. We distinguish between off-line and on-line generaliz-

ing and tatloring activities:

¢ Off-line generalizing and tailoring is concerned with increasing the reuse potential of exist-
ing process and product-related experience before knowing the precise reuse context {i.e.. the

project within which the experience s bemng reused] OFf Dine generabization and tuloring s

~ 13 -

3-35

5642

concerned with movement across the boundaries of the specificity dimension within the PXpeTt-
ence base: from general to domain-specific and then to project-specific. and visa versa. These
activities are labeled with *G* and *T" in Figure 2. An example of off-line generalization 1=
the construction of baselines. The idea is to use project-specific measurement data i~ 2 . “wult
protiles across development phases) of several projects within some application Jomiun i to
create the application-domain specitic fault protile baseline. Each new projeet within the ~une
application domain might reuse this baseline in order to control its development process as Tar
as faults are concerned. An example of off-line tailoring 1s the adaptation of a general

sctentific paradigm such as *divide and -onquer" to the software enginesring domain

On-line tailoring and generalizing i» concerned with tatloring candidate provess g
product-related experience to rhe specilic needs and characteristics of o Droject and ine choeen
software evolution environment These acuvities are not explicitly reflected in Figure 2 fecniae
they are integral part of the (re-)use activity An example of on-line tatloring s the adapta-
tion of a design inspection method ro better detect the lault types anticipaterd n the surrent
project 6 An example of on-line generalization 1s the inclusion of project spectfie ~fforr dar i
from a past project into the domain <pecitic effort baseline in order ro berger plan the reonnren

resources for the current project. Obviously. this kind of generalization could hay e Leen -

formed off-line too.

[t 15 important to tind a cost-effective balaner between off -line aud on -line radaring ang

generalization. [t can be expected that generalization is predominantly performed off<line, tarlor-

ing on-line.

A good developer is capable of informally tailoring general and domain specific experience

1o the specific needs of his or her project. Performing these transformations on PXISUING eNperi-

~nce assumes the ability to generalize experience to a broader context than the one <tudied.

or to talor experience to a specific project. The hetter this expericnce s packaged. the hetter

onr wderstanding of the envitonment. Mantamimg 4 body of experienes acguired during o

5642

3~-36

5642

number of projects 1s one of the prerequisites for learning and feedback across projects.

A misunderstanding of the importance of tailoring exists in many organizations. These

organizations have specific development guidebooks which are of limited value because they *uare
written for some ideal project” which "has nothing in common with the current project and
therefore. do not appiv® 231 All guidebooks (including standards such as DOD-=TD 21571 ar»

general and need to be taillored to each project in order to be »ffective.

3.2.3. Formalizing Existing Experience Prior to its Potential Reuse

The nbjective of formaiizing existing »xperience prior to its potential reuse s to tnerense the
reuse potential of a candidate reuse object by encoding it in more precise, better under-tox Wl owes
This requires models of the various reuse objects. notations for making the modeis more precse
notations for abstracting reuse object characteristics, mechanisms for vahdating rhese models and
mechanisms for interpreting models in the appropriate context. Formalization activities are ron-
cerned with movement across the boundaries of the formality dimension within the experience
base: from informal to schematized and then to productized. These activities are lubeied wath
“F* in Figure 2.

Examples of formalizing experience include such activities as {aj wrinng Pinenonn
specifications for a code module. {b) turning a lessons learned document into 1 management =y
tem that supports decision making, {¢) buillding a cost model empirically based npon the -inta
available. {d) developing evaluation criteria for evaluauing the performance of & particuiar

method, or {¢) automating methods into tools.

In the SEL, measurement data have been explicitly formalized into cost models 1 and rrror
models enabling the better planning and control of software projects with regard to rost estima-
tion and the effectiveness of fanlt detection and isolation methods 2, 6. X 1% Lessons fearned

have been integrated into expert systems aimed at supporting the management Hecision process

5. 24

The more we can formalize experience, the better 1t can be reused. Therefore. we try not
only to record experience. but over time to formalize experience (rom entirely informal (e.g.. con-
cepts), to structured or schematized {e.g.. methods), or even to completely formal (e.g.. tools)

The potential for misunderstanding or misinterpretation decreases as experience is described more

formallv. To the same degree the experience can be modilied more easily, or In the case of

processes. it may be executed automatically (¢.g.. tools) rather than manually {e.g., methods).

3.2.4. (Re-) Using Existing Experience

The objective of reusing existing expertence 15 to maximize the effective use of previously
recorded experien;:e during the planning and execuuion of all projects within an organizaton
This requires a precise characterization of the available candidate reuse objects, a pracise charac-
rerization of the reuse-enabling environment ineluding the evolution process that is expected o
enable reuse. and mechanisms that support the reuse o»f expertence. We must support the (re-juse
of existing experience during the specification of reuse needs in order to compare them with
Aescriptions of existing experience, the identification and understanding of candidate. the evalua-
tion of randidate reuse objects. the possible tamloring of the couse object, the integration of rhe
rewse object 1nto the ongoing software project, and the ~valuating of the project » ~tecess All

information Hows between the experience base and the soitware evolution proeess retlecting rhe

ire-juse of expertence are labeled with *U" in Figure 2.

Examples of reusing experience include such wetivities as {a) using code components from
the repository. (b} developing a risk management plan based upon the lessons learned from apply-
Ing a new technology, (c) estimating the cost of a project based on data collected from past pro-

jects, or (d) using a development method created for a prior project.

In the SEL. reuse needs are informally specified as part of the requirements document
Matching candidate requirements and design documents are identufied by managers who are

experenced n o this environment. The svaluation of those eandidate reuse objects s 10 part based

- 18 -

3-38

5642

on human experience and in part on measurement data. They are tailored based on the
application-domain knowledge of the-personnel. They are integrated into a very stable evolution
process based on human experience. All this reuse s implicit except for the reuse of code. which
although explicit, is informal. It could only be successful because it evolved within a very stahie
environment. The recent change from FORTRAN to Ada has resalted m drastic changes of rhis

environment and as a consequence to the loss in the implicit reuse heritage.

Since the key for improvement of products is always improvement of the process creating
those products, we need to put equal =mphasis on the reuse of product and process oriented
expertence. Even today. we have examples of reuse of process experience such 1 process
plans (standards such as DOD-STD-2167. management plans. schedules) or process aut ferror
effort or reliability data that define baselines regarding software svolution processes within 2
specific organization). In most of these cases the actual use of this information within v <peethie

project context is not supported; 1t 1s up to the respective manager to find the needed informa-

tion, and to make sense out of it in the context of the current project.

4. TAME: AN INSTANTIATION OF THE REUSE-ENABLING ENVIRONMENT

MODEL

The objective of the reuse-enabling software »voluton environment model of =retion 32 1s
to explicitly model the learning and reuse -related activities of recording experience. generaizing
and tailoring experience, formalizing experience. and (re-jusing experience so that they can be

understood, evaluated, predicted and motivated.

In order to instantiate a specific reuse-enabling environment. we need to choose 1 model of
the software evolution process itself. [n general. such an evolution process model needs to be rapa-
ble of describing the integration of learning and reuse into the software evolution process. In par-

ticular. 1t needs to be capable of modeling when experience s ereated and eecorded mro the

5642

P PS‘%E ‘S

GUALITY

UL I UL P
LA L

Gl

experience base as well as when existing experience is used. [t needs to provide analysis for the
purpose of on-line feedback. evaluating the application of all reuse experience. and off-line ferd-
back for improving the experience base.

The reuse-enabling TAME environment model depicted in Figure 3 s un instantintion of
the reuse-enabling software environment model of Section 3.2 based on 1 very genera T POy e

ment oriented evolution process model.

;Software Evolution Proces

(. : 1 1 “:g_d;)nstructT m
characterize- set —iSelect : croductf
; | . ;'—methods il] /
: environment! goals | & i
S | o | |tools «—analyze |
LA A X ; v
. i . v
o U R " R
| x‘ v | _
f <~ EB_ ;
' informal schematizedproductized ‘
PROJECIT SPECIFIC ‘T ¢
B °F
. DOMAIN SPECIFIC . FB
== B b — e — {_ i e e e S o =
GEYERAL™ |F G

EXPERIENCE BASE

Figure 3: Reuse-Enabling "TAME" Environment Model

Each software project performed according to this improvement ortented svolution process

model ronsistx of A planning and an sxecution stage. The planning ~tage mebudes 4 charaerer

_ 18 -

3-40
5642

Cricilial PAGE IS

OF FOOR GUALITY

uon of the current status of the project environment, the setting of project and 1mprovement
goals. and the selection of construction and analvsis methods and tools that promise to me=t the
stated goals itn the context of the characterized environment. The execution stage includes the
construction of output products and the analysis of these construction processes and resulting ont-

put products.

The TAVME environment model gives us a basis for discussing the integration of the rorord-
ing and (re-}use activities into the software evolution process. During the environment charneter-
ization stage of the improvement oriented process model we (re-Juse knowledge about rhe needs
and characteristics of previous projects and record the needs and characteristies of “he “ureent
project into the experience base. During the goal setting stage we {re-jise oX1sting pians for -
struction and analysis from similar projects and record the new plans which have been ragiored -
the needs of the current project into the experience base. During the method and raol sofeeiion
stage. we (re—juse as many of the constructive and analvtic methods and tools which had been
used successfully in prior projects of similar tvpe as feasible and record possibly tailored versions
of these methods and tools into the experience base. During construction we apply rhe selectog
methods and tools. and record the constructed products into the experiener base During ans 1=

we use the selected methods and tools in order to collect and validate data and analvee shem s

record the data. analysis results and lessons learned into the expertence baar

The TAME environment explicitly supports the capturing of all kinds of »xperienes The
consistent application of the improvement oriented process model neross all projects within o
organization provides a mechanism for evaluating the recorded experience. heiping us to decide
what and how to reuse, tailoring and analyzing. TAME supports continuous learning. The expli-
cit and comprehensive modeling of the reuse-enabling evolution environment including the »xperi-
ence base, the evolution process, and the various learning and reuse activities {zee Figure 3} allows
us to measure and evaluate all relevant aspects of reuse. The measurement methodology used and

supported within the TAME environment has been published in earlier papers 7%

5642

ORIGINAL FACE 2
OF PCOR QUALITY

5642

5. CONCLUSIONS

[n this paper we have motivated and outlined the scope of a comprehensive reuse frame-
work. introduced a reuse—enabling soltware environment model as a first step towards such a
comprehensive reuse framework, and presented a first instantiation of such an environment it he
context of the TAME {Tailoring A Measurement Environment) project at the University of Mary-

land 7. 8i.

The reuse-enabling software evolution environment model presented in Section 3 provides
basic environment for supporting the recording of experience. the off-line generailzgtion ind
tatloring of experience. the off-line formahzation of experience. and the (tr 1 ase of ovi-tins

experience.

Further steps required towards the outlined reuse framework are more specitie nodeis
each of these activities that differentiate the components of these activities and serve s 1 basis
for characterization, discussion and analvsis. We are currently taking the reuse-enabling <oftware
environment model of section 3.2 down one level and developing a model for fre-lusing wxperi-
»nce. Based on this reuse model we will develop a reuse taxonomy allowing for the charneora-
ton of any instanee of reuse. The reuse model will provide msight into the other e o
reuse-enabling environment model only 1 the way thev interact with the [re-se AtV
Corresponding models for rach of the other activities nesd to be developed and invegrated o,

the reuse-enabling software environment model.

The reuse—enabling TAME environmeiit model serves as a basis for better understanding,
evaluating and motivating reuse practices and necessary research activities. Performing projects
according to the TAME environment model requires powerful automated support for dealing wirh
the large amounts of experience and performing the complicated activities of recording. zeneraliz-
ing and tailoring, formalizing, and (re-Jusing experience. Indispensable components of such an
automated support system are o powerful experience base. and o measurement SUPPOTT =ystem

Many of the reuse approaches tn the past have assumed that the developer has suffieient nngdren

- 20 —

3-42

Fars 15

GUAUTY
knowledge of the characteristics of the particular project ‘environment, specific needs for
It is not trivial to have all this inlormation available.

reuse, the candidate reuse objects. etc.
The institutionalized learning of an organization and the proper documentation of that

knowledge is definitely one of the keys to effective reuse. This leads to even better specification
methods and tools {one of the frequently mentioned keys to effective reuse)

As part of the TAME project at the University of Marvland we have been working on pro-

viding appropriate support for building such an experience base. and supporting learning and
g approp PP g P pPp 2
We have completed several components towards a first prototype

(re-)use via measurement.
TAME svstem. These components include the definition of project goals and their refinement into

quantifiable questions and metrics, the collection and validation of data. therr analy<s and the

storage of all kinds of experience. One of the roughest research problems is to use measurement

and reuse as

not only for analysis. but also for feedback {learning and reuse} and planning purposes Wo need
more understanding of how to support feedback and planning. The TAME svstem 15 intended 1o

serve as a vehicle for our research towards the effective support of explicit learning

outlined in this paper.

8. ACKNOWLEDGEMENTS
We thank all our colleagues and ¢raduate students who contributed to this paper by etther

working on the TAME or any other reuse-related project or reviewing earlier versions oi this

paper.

7. REFERENCES
J. Bailey, V. R. Basili, A Meta-Model for Software Development Resource Expenditures ™ in

"
Nl
Proc. Fifth International Conference on Software Engineering, San Diego, USAL March

1981, pp. 107-116

5642

RUGNAL PAGE IS
OF POOR QUALITY

5642

10

1

19

20

V. R. Basili, *Can We Measure Software Technology: Lessons Learned from Eight Years of
Trying,” in Proc. Tenth Annual Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt. MD, December 1985.

V. R. Basili, "Quantitative Evaluation of Software Methodology," Dept. of Computer
Science, University of Maryland, College Park. TR-1519. July 1985 ‘also in Proc. of
the First Pan Pacific Computer Conference, Australia, September 19861

Victor R. Basili, "Software Maintenance = Reuse-Oriented Software Development " in
Proc. Conference on Software Matntenance, I{ey-Note Address, Phoentx. AZ. October [G8%

V. R. Basili. C. Loggia Ramsey, "ARROWSMITH-P - A Prototype Expert Svstem for
Software Engineering Management.” [EEE Proceedings of the Expert Svstems in
Government Symposium. McLean, VA, October 1985, pp. 25.1-264.

V' R. Basili, H. D. Rombach. “Tailoring the Software Process to Project Goals and
Environments,* Proc. of the Ninth I[nternational Conference on Software Engineer-
ing, Monterey, CA, March 30 - April 2, 1987, pp. 345-357

V' R. Basili, H. D. Rombach, "TAME: Integrating Measurement into Software Environ-
ments." Technical Report TR-1764 {or TAME-TR-1-1957}, Dept. of Computer Sorenes
University of Maryland. College Park. MD 20742, June (987

V. R. Basili, H. D Rombach “The TAME Project: Towards Improvement-Orient=i
Software Environments.* [EEE Transactions on Software Engineering, vol. SE 1i. 20 %
June 1988. pp. 758-7T73. is also available as Twchnical Reporr (UMLACS-TR-w5-~ (5.
TR-1983. or TAME-TR-2-1988), Department of Computer Science. University of Muarv-
land. College Park, MD 20742

V. R. Basili, H. D. Rombach. J Bailey, and B G Joo. "Software Reuse A Framework *

Proc. of the Tenth Minnowbrook Workshop on Software Reuse. Blue Mountan Lake.
New York, July 1987.

V. R. Basili, R. W. Selby, D. H. Hutchens, “Experimentation in Software Engineering
IEEE Transactions on Software Engineering, vol.SE-12. no.T. July 19%6, pp 733- 712

V' R. Basili and M. Shaw, *Scope of Software Reuse.® White paper. working zroup -
‘Scope of Software Reuse’. Tenth Minnowbrook Warkshop on Software Reuse 13l
Mountain Lake, New York, July 1937 (in preparaton)

Ted Biggerstaff, "Reusability Framework, Assessment. and Directions. [FEE software
Magazine, March 19537 pp t1-49.

P. Freeman. "Reusable Software Engincering: Concepts and Research Directions. " Proc.
of rhe Workshop on Reusability, September 1933, pp. 3 76

R. Prieto-Diaz. P. Freeman, "Classifying Sofltware lor Rensabilivy . * IEEE Software. vol 1.
no.l. January 1987, pp. 6-16.

IEEE Software, special issue on 'Reusing Software’. vol.4. no.1. January 1987

IEEE Software, special issue on "Tools: Making Reuse a Reality’, vol.4, no.7. Juiv 1987

G. A Jones, R. Prieto-Diaz, "Building and Managing Software Libraries." Proc. Comp-
sac'88, Chicago, October 5-7, 1988, pp. 228-236.

F. E. McGarry, *Recent SEL Studies.” in Proc. Tenth Annual Software Engineering
Workshop. NASA Goddard Space Flight Center, Greenbelt, MD. Dec. 1985

3

Mary Shaw, "Purposes’and Varieties of Software Reuse." Proceedings of the Tenth
Minnowbrook Workshop on Software Reuse, Blue Mountain Lake. New York. July
1987

T A Standish. "An Essay on Software Reuse.™ [EEE Transactions on =oftwaee
Engineering, vol. SE-10. no. 5. Seprember 1984, pp. 194 197

- 22

3-44

5642

My
PTG

D}

o

W. Tracz. *Tutorial on "Software Reuse: Emerging Tuchnology * [EEE Cutales Nimiber
EHCOC278-2. 1988

MoV Zelkownz fed.!. “*Proceedings of she University of Marriand Workziiop o
‘Requirzments for & Software Engineering Environment’. Greenbeit, MD AR RN
Technreal Report TR-1733. Dept. of Computer Scisnes, Fniversity of Marstond sl
lege Park. MD 20742 December 1956 to be published as 2 hook. Ablex Punl [09%%

ege
MoV Zelkowrte, ROYeh R Hamler, J Gannon, VR Basili, "Noliware ez e S
tiees i the U2 and Japan [EEE Computer Magazine, June 1984 o 37 vin

I Valewe, Bo Decker. J0 Buelll "The Software Management Eaviennment " o U Thrs
reenth Annual Software Engineering Workshop, NASA Goddard Space Flirne o enror
Greenbelt, MDD November 30, 1983

SECTION 4—ADA TECHNOLOGY
STUDIES

The technical papers included in this section were originally

SECTION 4 - ADA TECHNOLOGY STUDIES

prepared as indicated below.

5642

"Evolution of Ada Technology in a Production Soft-
ware Environment," F. McGarry, L. Esker, and
K. Quimby, Proceedings of the Sixth Washington Ada

Svmposium (WADAS), June 1989

"Using Ada to Maximize Verbatim Software Reuse,"
M. Stark and E. Booth, Proceedings of TRI-Ada 1989,

October 1989

EVOLUTION OF ADA TECHNOLOGY IN A PRODUCTION SOFTWARE ENVIRONMENT

Frank McGarry

National Aeronautics and Space
Administration
Goddard Space Flight Center
Greenbelt, Md. 20771

INTRODUCTION

The Ada programming language and the associated
software engineering disciplines have been de-
scribed as one of the most significant develop-
ments in software technology in many years.
Although many claims have been made about its ad-
vantages and impacts, there have been very few
ampirical studies that clarify the impact of Ada.

The Software Engineering Laboratory (SEL) is an
organization sponsored by the National Aeronautics
and Space Administration (NASA) consisting of
three principal members: NASA/Goddard Space
Flight Center, the University of Maryland, and
Computer Sciences Corporation. The SEL was
founded in 1976 to carry out studies and measure-
ments related to evolving software technologies
[7]. The studies are aimed at understanding both
the software development process and the impacts
that evolving software practices may have on the
software process and product. Since 1976, the SEL
has conducted over 65 experiments by applying se-
lected techniques to specific development efforts
and measuring the resulting process and product.

In early 1985, the SEL initiated an' effort to
study the characteristics, applications, and im-
pacts of Ada. Beginning with a relatively small
practice problem (6000 source lines of Ada), the
SEL has collected detailed development data from a
total of eight Ada projects (some of which are
still ongoing). The projects range in size from
6000 lines to approximately 160,000 lines of code.

PROJECT BACKGROUND

velopmen vironmen

A1l Ada projects studied were developed in a
DEC environment, using either a VAX 11/780 or a
VAX 8600. Both machines are shared with other
general users, and the support was average com-
pared to other typical projects developed in
FORTRAN. As will be pointed out 1later, varying
degrees of use were made of the available tools
and methadologies.

COPYRIGHT 1989 8Y THE ASSOCIATION FOR COMPUTING MACHINERY. INC.
Permission to copy without lee ail or part of this matenal 13 granted provided

that the copies are nol made or distnbuted for direct commercial sdvantage, the
ACM copyright notice and the titie of the publication and its date appear, and
nolice is given that copying 1s by permission of the Assaciation tor Computing
Machinery. To copy otherwise, or 1o republish. requires a fee and/or specific
permission

5642

Linda Esker

Computer Sciences Corporation
System Sciences Division
10110 Aerospace Rd.
tanham-Seabrook, Md.

Kelvin Quimby

Computer Sciences Corporation
System Sciences Division
10110 Aerospace Rd.

20706 Lanham-Seabrook, Md. 20706

In studying the series of Ada projects, tha
goal/question/metric (GQM) paradigm [3] was fol-
lowed. The goal of the study was to determine the
impact of Ada on productivity, reliability, reuse,
and general oproduct characteristics. A second
interest was to study the use of Ada features
(such as generics and strong typing) over time.

Project History

Information on six Ada projects was analyzed
for this study. The projects were developed over
a span of 4-1/2 years starting in late 1584 and
ending with two projects that will be completed in
1989. The study categorized the six projects into
three groups distinguished solely by approximate
start date: the first two are called the first
Ada projects, the next two are the second Ada
projects, and the mast recent are the third Ada
projects. The timeline for the six projects is
shown in Figure 1.

The first experiences with Ada in the SEL oc-
curred with two projects that were initiated in
late 1984 and early 1985. A team of seven pro-
grammers was formed in late 1984 and began exten-
sive training in December of 1985. The first
target project was a simulator that was required
to model an attitude control system of a particu-
lar NASA satellite, the Gamma Ray Observatory
(GRO). Comparable simulators had been developed
in the past by NASA, and this particular Ada proj-
ect (GRODY) was developed in parallel to the iden-
tical project being developed in FORTRAN. The
results of -that particular comparison are docu-
mented by Agresti et al. [1] and McGarry and
Nelson [14]. It was estimated that the develop-
ment of GRODY would probably require from 10 to
12 staff-years of effort, considering previous
experiences with similar FORTRAN projects.

The GROOY team had an average of nearly 5 years
of experience with software development; however,
none had any previous Ada experience. In fact,
there had been no earlier Ada experience by anyone
in this environment, so no lessons learned and no
Ada experts were available to team members. The
team was experienced with flight dymamics problems
although it was, on the average, less experienced
than the typical development teams in this envi-
ronment.

To prepare for the design and development of
GRODY, the team underwent 6 months of extensive

5642

EUVEDS
135 KSLOC
- EUVETELS
75 KSLQC
UARSTELS
FDAS PROJECTS
67 KSLOC
GOESIM
GOADA PROJECTS
162 KSLOC
GROOY
128 KSLOC
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 1ST ADA
\ -
Y PARALLEL FORTRAN EFFORT (46 KSLOG) 3 PROJECTS =
AR S S SL SR AL SN S LN NNN ‘:‘,
EAAS 2
6 KSLOC | | I | | 18
1/85 1/86 1/87 1/88 1/89 1/90
“Figure 1., Ada Projects in the Flight Dynamics Division of NASA/Goddard
training, which covered Ada syntax as well as GOESIM was a telemetry simulator that would be

principles of software engineering and detailed
design techniques [16]. The training included the
following:

e Alsys video tapes with discussion

e Llectures on Ada from University of
Marytand staff

e Lectures and workshops on PAMELA [8],
object-oriented design, and other de-
sign techniques

o HMorkshops based on
materials [5)

e Lectures on software engineering prin-
ciples, including abstraction and ‘n-
formation hiding

Booch's training

Suring the 6 months of training, the electronic
mail system (EMS) Ada project was developed. This
was the first Ada effort completed by this organi-
zation. It was set up as a training problem, but
detailed statistics were kept so that the devel-
opment process and product could be analyzed.
wWhen completed, EMS consisted of approximately
6000 lines of Ada code.

These first Ada projects, GRODY and EMS, were
developed by the same personnel in a similar soft-
ware development environment. The EMS project was
developed on a VAX 11/780 using the DEC Ada Com~
ptlation System (ACS); the GRODY project was de-
veloped on the VAX 8600, also using the DEC ACS.

The two projects classified as the second Ada
projects both began in early 1987 and were of
medium size with complexity typical of other ef-
forts in this environment. B8oth projects wers
simulators required to support the GOES mission.
GOADA was a dynamics simulator similar to GRODY;

used in testing the attitude ground support soft-
ware.

The GOADA team consisted of approximately seven
people, some of whom were not assigned full time
to this project. Of these seven, three had pre-
vious Ada experience and two had experience in the
application area. The GOESIM team consisted of
four people, one of whom had previous Ada experi-
ence and one who had experience with this type of
application. The training ccnsisted of Jlectures
and video tapes on Ada, with particular attention
to the Ada style guide that had recently been de-
veloped: lectures and classes in Ada syntax and
Ada ~ncepts were aiso held. The training lasted
a,-oxirately 4 weeks for each team.

Both of these second Ada projects used the OEC
ACS to complete development. Because there had
been previous Ada experience from the first Ada
projects, experienced Ada programmers were avail-
able to these teams for consultation and guidance.
They proved to be heavily used commodities. The
second Ada projects spanned zpproximately 18 months
each.

The final two projects analyzed in this study,
the third Ada projects, were both started in early
1988. The UARSTELS project had requirements and
characteristics similar to GOESIM, one of the sec-
ond Ada projects. The other project, FDAS, was a
much difference type of system, a source code man-
ager used for manipulating fl1ght dynamics soft-
ware components.

The UARSTELS team cons!stcd of three people,
one of whom had previous Ada expsrience; the FDAS
team consisted of four people, none of whom had
previous Ada experience. Training for both teams
took the form of lectures and workshops based on

5642

the Ada style guide; additionai training from per-
sonnel with previous Ada experience was also pro-
vided. All team members attended classes on Ada
syntax and Ada development.

The teams supporting the third Ada projects had
more personnel available to them who had previous
Ada experience, and they also had available sev-
eral lessons-learned reports that had been devel-
oped by the eariier Ada projects. These two

projects spanned approximately 15 to 18 months
each.
Qata Collection

Detatled data for this study were collected for
the six projects. As for all software developed
in the flight dynamics environment, the data are
collected from the following sources:

¢ Data collection forms
& Tools and accounting records
¢ Interviews and subjective information

The most extensive and detalled data were provided
on a series of data collection forms completed by
both the developers and managers and including the
following:

e Effort data
activity)

Error data (for all changes and errors)

e Project estimation (managers’ estimate
of final size, cost, schedules)

e Product origination (characteristics
of modules as they are designed)

Chours spent weekly by

These data were the major source of information
used in the comparisons.

The tools used to record f{nformation include
the automated accounting system (for records of
computer time wused, source code changes, and
source code size history); configuration control
tools (Configuration Management System (CMS). used
to record changes to source code); and ASAP, the
Ada Static Source Code Analyzer [9], which calcu-
Tates detailed counts and characteristics of Ada
source code. Information was also proviged
through 1interviews with team developers and man-
agers (to record lessons learned and general im-
pressions) and through subjective assessments made
by senior software engineers (on topics such as
methodologies applied). A1l this information is
consistently collected, quality assured, and re-
corded on a data base where it is used as the
basis for study or analysis,

EVOLVING CHARACTERISTICS OF THE SOFTWARE
Resign Characteristics

The first Ada project did not automatically
assume the reuse of the standard FORTRAN project
methodologies and products. Ouring the predesign
phase, the project decided on the products, re-
views, and methodology to be used. Project per-
sonnel decided to conform to the traditional
design review process that had been used in the
flight dynamics environment for many years (2,
15]. However, project members investigated sev-

eral design methodologies and eventually applied a
modified version of object-oriented design (1, 12,
19].

Use of an object-oriented design required a
rethinking of the design, its documentation, and
its presentation. This caused some inconsisten-
cles with the traditional approach used in the
SEL. Project members were required to develop new
design products because the existing design docu-
mentation methods for structured and functionally
oriented software design did not apply to the
object-oriented design [17]. To develop a design
notation used 1n the design documentation, they
combined concepts from George Cherry's process
abstraction method, PAMELA (8], and Grady Boach's
object-oriented design (S51. Design diagrams were
presented at the preliminary design review (POR),
and top-level package specifications were devel-
oped for the critical design review (COR). These
components were then expanded and compiled during
Build 0 of the implementation phase.

The second and third Ada projects adopted and
butlt on the same methodology and design nota-
tion. They also conducted design reviews, but the
specific products generated at each stage were
somewhat modified from the first Ada efforts. For
these later projects, package specifications were
developed for the POR, and package bodies and sub-
unit program design language (PDL) were developed
for the CDR. 1In addition, the components were
compiied before the CDR. These efforts pointed
out the need to redefine the specific products
produced at key milestones of the design process;
however, the characteristics of the products have
yet to be decided. Quimby and Esker [17] present
a more detailed analysis of the evolving charac-
teristics of both the design process and the prod-
ucts developed.

Software Size

Traditionally, software size has been described
in terms of the lines of code developed for the
system. Lines of code can, however, be expressed
by many measurements [11], including the following:

e Tota. physical lines of code (carriage
recurns)

o Noncomment/nonblank physical lines of
code

e Executable lines of code (ELOC) (not
including declarations)

o Statements (semicolons
include declarations)

in Ada, which

Table 1 describes the size of the Ada projects in
the flight dynamics environment using these four
measurements. For comparison to the Ada projects,
typical FORTRAN projects of similar applications
are also summarized.

Unless only Ada statements are counted, these
figures 1indicate that ustag Ada results in many
more lines of code than using FORTRAN. The in-
crease in 1ines of code is not necessarily a nega-
tive result; rather, it means that the size of the
system implemented in Ada will be larger than an
equivalent system in FORTRAN. It s also clear

5642

Table 1. Software Characteristics of Projects
1ST ADA 2NO ADA 3RD ADA FORTRAN
APPLICATION PROJECTS PROJECTS PROJECTS PROJECTS
DYN SIM DYN SiM T™ SIM CONFIG TMSIM| DYNSIM TM SiM
TOTAL LINES 128,000 162,200 87.500 67,700 75,000 45,500 28,000
(CARRIAGE RETURNS)
NONCOMMENT/ 60,000 79,900 42,300 36.000 41,400 26,000 15,000
NONBLANK
EXECUTABLE LINES 40,250 49,000 25,500 19,700 22,150 22,500 12,500
(NO DECLARATIONS) -
STATEMENTS 22,500 29,200 16,300 12,700 15,200 22,300 12,000 8‘:
(SEMICOLON ~ INCLUDES 2
DECLARATIONS) §
Table 2. Effort Distribution (Percent of Total Effort) During Each
Life-Cycle Phase of Ada and FORTRAR Projects
PHASE 18T ADA 2ND ADA 3R0D ADA FORTRAN
PROJECTS PROJECTS PROJECTS PROJECTS
REQUIREMENTS 8 4.3 6.7 12.5
ANALYSIS
DESIGN 24 30.5 36.0 225
“o
CODE 42 52.0 440 35.0 g
U]
TEST 2% 13.2 133 30 g
V2]

that a precise definition ts needed of what con-
stitutes a 1ine of code in Ada and what types of
code are intluded in that measurement.

Many factors contribute to the increased size
of the Ada projects. The style of Ada results in
code growth because it encourages formatting,
blank lines, and longer, readable names for data
elements and subunits. The strong typing within
Ada also produces more code than in FORTRAN be-
cause each data element must be explicitly de-
clared. In addition, the local style guide places
further requirements on the format for readabil-
fty. Among other requirements, the style guide
stipulates that each calling argument must be on a
separate physical line. All these features have
increased the code size, but the increased size
also provides advancements in the areas of capa-
bility, readability, and understanding.

Effort Distribution by Phase Dates

Effort distributions can be described by the
effort expended during the key life-cycle phases
of a project and by the effort expended in soft-
ware development activities. Using the first ap-

proach, effort distribution by phase dates, the

typical FORTRAN 1ife-cycle effort distribution

{151 in the flight dynamics environment shows
4-5

12.5 percent of the total effort expended during
the predesign or requirements analysis phase,
22.5 percar* during the design phase, 35 percent
during the code implementation phase, and 30 per-
cent during the system test phase (Table 2).

From the review of iiterature on Ada [18], it
was expected that the effort distributions would
be significantly different for the Ada projects
due to the modified design and implementation ap-
proaches. It had been anticipated that the Ada
projects would require more effort during the de-
tailed design phase and less effort during the
code and test phases. However, 1in the flight
dynamics environment, significant changes to the
1ife cycle have not been observed. The Ada proj-
ects were planned by managers experienced with
FORTRAN projects, and perhaps their plans were
influenced by the FORTRAN 1ife cycle.

Although the changes are not occurring as
quickly as anticipated, the Ada life cycle s
changing slightly with each project and may soon
show a different 11fe cycle than that expected for
a FORTRAN project. The life cycles for the second
and third Ada projects are shifting slightly to
show more design time required and less system
test time. The effort distributions of the Ada

5642

Table 3. Effort Distribution (Percent of Total E€ffort) for Devel-
apment Activities Across All Life-Cycle Phases of Ada
and FORTRAN Projects
PHASE 18T ADA 2ND ADA 3RD ADA FORTRAN
PROJECTS PROJECTS PROJECTS PROJECTS
REQUIREMENTS 3.2 37 8.5 6.0
ANALYSIS
35.7
DESIGN 36.5 275 24.0
~
CODE 427 52.0 445 450 g
d
TEST 176 16.8 133 25.0 §
projects are showing that the FORTRAN 11ife Hela Ada Static Source Code Analyzer Program [9].

cannot be automatically assumed for Ada.

These observations probably indicate that the
M fe-cycle definition is not eastly changed merely
because a different language or technique is ap-
plied. The evolution toward the expected charac-
teristics of the new technology is a slow, gradual
process.

fort Di Activi

The second approach to effort distributions is
to analyze the effort by activity. In addition to

collecting the effort expended between key phase’

dates (e.g., between the COR and the start of Sys-
tem test), the SEL also collects detailed effort
data independent of phase dates.’ Effort by phase
fs time driven and assumes, for example, that all
design activities are complete and cease at the
end of the design phase. In reality, many activi-
ties take place during each life-cycle phase and,
therefore, the effort distribution by activity can
be quite different from the distribution by phases.

This, 1indeed, was the case for the first Ada
projects. Although only 24 percent of the total
effort was allocated to the design phase,
36.5 percent of the total project effort was spent
on design activities (Tables 2 and 3). The extra
effort needed for Ada design activities {s more
apparent in the distribution of effort by activity
than in the distribution by phase dates. The ef-
fort by development activity again reinforces the
trend seen above. On the Ada projects, more ef-
fort was required for design and less effort for
software testing than an the FORTRAN projects.

Use of Ada Features

In an effort to achieve some measurement of the
use of the features available in the Ada language,
the SEL fdentified six Ada features to monitor:
generic packages, type declarations, packages,
tasks, compilable POL, and exception handling.
The SEL then examined the code to see how Tittle
or how much these features were used. The pur-
poses of this analysis were, first, to determine
to what degree features of Ada were used by the
Ada project and, second, to determine whether the
use of Ada features “"matured® as an environment
gained experience with the language. Data on the
use of these Ada features were obtained using the

Analysis of the use of compilable POL and excep-
tion handiing did not show any trends. Perhaps it
is too early to see results in these areas; how-
ever, trends were observed in the use of the other
features.

The average size of packages (in source lines
of code (SLOC)) for the first Ada projects s much
larger than the average size of packages for the
second and third Ada projects (Figure 2). This
increase 1s due to a difference in the structuring
method between the first Ada projects and all sub-
sequent Ada projects [17]. The first Ada projects
were designed with ond package at the root of each
subsystem, which led to a heavily nested struc-
ture. In addition, nesting of package specifi-
cations within package bodies was used to control
package visibility. Current Ada projects are
using the view of subsystems described by
Grady Booch {6, Ch. 17] as an abstract design en-
tity whose interface 1is defined by a number of
separately compilable packages, and the only
nested Ada packages are generic package instantia-
tions.

The generic package is a major tool in the Ada
language contributing to software reuysability.
Reports have shown the benefits of Ada reusable
software (18] and, in the flight dynamics environ-
ment, use of generic packages has been increasing
from the first to the current Ada projects. More
than one-third of the packages on current projects
are generic packages. Although more analysis is
needed, this higher use of generics possibly re-
flects both a stronger emphasis on the development
of verbatim reusable components and an increased
understanding of how to use generic Ada packages
effectively in the flight dynamics environment.

The use of strong typing in these software sys-
tems was measured by the number of type declara-
tions per thousand Iines of code. Although the
measure {tself ts not fntuitively meaningful, it
provides a method of observing trends in the use
of Ada type declarations. In the flight dynamics
environment, the amount of typing 1s increasing
over time. This may indicate that the developers
are becoming more comfortable with the strong typ-
ing features of Ada and are using its capabilities
to a fuller extent.

5642

GENERICS

STRONG TYPING

GENERIC PACK TOTAL TYPES
TOTAL PACK KSLOC
1ST ADA 2ND ADA 3IAD ADA ST ADA 2ND ADA 3RD ADA
PROJECTS PROJECTS PROUECTS PROJECTS PROJECTS PROJECTS
a PACKAGES 10 TASKING
KSLOC TOTAL
PACKAGE TASKS
o
2
g
8
1ST ADA 2ND ADA 3AD ADA 1ST ADA 2ND ADA 3R0 ADA
PROJECTS PROJECTS PROJECTS PROJECTS PROJECTS PROJECTS
Figure 2. Use of Ada Features ‘
The tasking feature of Ada 1s used in the maftns in the Ada projects over time, but the Ada
flight dynamics environment for the dymamics simu- projects have not yet achieved the productivity

lators. Eight tasks were used for GROOY, the
first dynamics simulator in Ada. For subsequent
dynamics simulators of approximately the same size
and functionality as GRODY, design personnel de-
termined that four tasks were sufficient to imple-
ment the interactive capability of the system. It
is expected that future dynamics simulators will
continue to use tasking, however developers are
now using tasking more judiciously. The third Ada
projects are telemetry simulators, which are se-
quential systems that do not benefit from the fea-
ture of the language, and thus do ndt use Ada
tasks.

COST/RELIABILITY/REUSE
Broductivity

Discussions on Ada productivity require careful
interpretation because so many definitions exist
for software size measures in Ada. Depending on
the measurement used, software developers using
Ada can be shown to be efther as productive as or
not as productive as software developers using
FORTRAN. Using the total 1ines of delivered code
as a measure, the Ada projects studied show an
improving productivity over time, and they show a
productivity greater than FORTRAN (Figure 3).
However, considering only code statements (semi-
coions for Ada or excluding all comments and con-
tinued lines of code in FORTRAN), the results are
different. An increasing productivity trend re-

level of FORTRAN projects.

In the flight dynamics environment, many soft-
ware components are reused on FORTRAN projects.
Because no Ada components existed previously, the
first Ada projects were, in fact, developing a
greater percentage of their delivered code than
the typical FORTRAN project. A past study by the
SEL and experience with FORTRAN projects indicated
that reused code costs approximately 20 percent of
the cost of new code (2]. Using this estimate,
reusability can be factored Into software size by
estimating the amount of developed code. De-
veloped code 1s calculated as the amount of new
code plus 20 percent of the reused code. HWith
software reusability factored in, the productivity
for developed statements on Ada projects is ap-
proximately the same as that for FORTRAN projects
(Figure 4). .

Many objections are often made when computing
productivity 1in terms of 1lines of code: it is
affected by style, there are many ways to code the
same function, etc. The most intuitive measure to
use tn computing productivity is cost per “func-
tion." Some attempts have been made within the
SEL to compare the functionality of projects being
compared (e.g., GRODY versus GROSS), and data seem
to indicate that comparing "statements* s the
closest measure to comparing functionality.

The trends in Ada productivity are very posi-
tive in that the overall cost of producing an Ada

5642

(TOTAL LINES)

80

LINES
PER
STAFF-
DAY

FORTRAN 1STADA 2NDADA 3RD ADA
PROJECTS PROJECTS PROJECTS PAOJECTS

Figure 3.

DEVELOPED LINES (NEW + 20% OLD)
5 48.8 48

FORTRAN
PROJECTS PROJECTS PROJECTS PROJECTS

Figure 4.

1STADA 2NDADA 3RO ADA

system has quickly become equivalent to that of
producing a FORTRAN system. The flight dynamics
FORTRAN environment is stable, mature, and built
on a long and extended legacy of experience.
Although the first Ada project required 30 percent
more staff-hours to complete than a similar
FORTRAN project, this overhead inciuded effort to
develop new practices and processes and to learn a
new environment. HWith experience, the envircnment
is becoming more stable and productivity s in-
creasing.

Bellability

As with productivity, the many ways of measur-
Ing software size affect the results of rellabil-
ity studies. For example, will the error rate
normalized by the total system size or by the num~
ber of language statements give the most accurats
reading of the rellability of Ada software com-
pared to FORTRAN? In the flight dynamics environ-
ment, changes to the software made after unit
testing when the software is placed under con~
figuration control are formally reported on change
report forms. The developer must supply the rea-
son for the change (e.g., error, requirement
change) and, 1f the change is due to an error, the
source and type of error.

(STATEMENTS)

5386G(23)-9

1ST ADA
PROJECTS PROJECTS PROJECTS PROJECTS

Ada Cost/Productivity of Delivered Code

FORTRAN 2ND ADA 3RD ADA

(DEVELOPED STATEMENTS)

103

5386G(23)-3

FORTRAN

1STADA
PROJECTS PROJECTS PROJECTS PROJECTS

Ada Cost/Productivity of Developed Code

2NDADA 3RD ADA

In a very mature FORTRAN development environ-
ment, the GROSS project reported 3.4 errors per
thousand lines of source code (KSLOC) in the Sys-
tem. As Table 4 shows, all the Ada projects
achieved an error rate lower than the rate on the
FORTRAN project. In addition, the error rate on
the Ada projects shows a decreasing trend over
time.

hhen the error rate s normalized by the number
of language statements, the first and second Ada
projects show a slightly higher error rate than
the FORTRAN project. However, the error rate
again shows a decreasing trend over time. On the
third Ada projects, the errors have decreased to a
rate as good as, if not better than, the error
rate on the FORTRAN project. It is still too
early to observe a definite difference from the
FORTRAN rates; however, the reliability of the Ada
projects appears at least as good as that of
FORTRAN projects and f1s improving with each Ada
project.

Classes of Errors

Errors reported are classified according to
source and type of error. Sources of errors can
be requirements, functional specifications, de-
sign, code, or previous changes. Types of errors

5642

Table 4. Ada and Error/Change Rate
1ST ADA 2ND ADA 3RD ADA FORTRAN
PROJECTS PROJECTS® PROJECTS ® | PROJECTS
ERRORS/KSLOC * 1.8 1.7 1.4 1.0 1.0 3.4
®
ERRORS/K STMTS 10.2 9.4 75 5.3 5.6 6.9 g
2
2

* SLOC = TOTAL LINES (INCLUDES COMMENTS/REUSED)

** FIGURES BASED ON ESTIMATES

are inttialization, 1logic/control structure, in-
ternal {nterface, external interface, data value
or structure, and computational. ’

On a typical FORTRAN project in the flight dy-
namics environment, design errors amount to only
3 percent of the total errors on the project (Fig-
ure 5). For the first and second Ada projects, 25
to 35 percent of all errors were classified as
design errors, a substantial Increase. For the
third Ada project, however, design errors dropped
significantly and are estimated to be approxi-
mately 7 percent. This rate is close to that ex-
perienced on FORTRAN projects and clearly shows a
maturation process with growing expertise in Ada.

The 1iterature on Ada reports that the use of
Ada should help reduce the number of 1interface
errors 1n the software [4]). Although the compiler
will catch most calling parameter consistency
errors, interface errors can also include errors
that will not be detected until run time. Typi-
cally, these are errors in string parameters or
subtypes with different constraints and errors in
calling parameters due to the need for additional
or different types of parameters. Using guide-
lines and examples in the data collection document
[13], the errors are classified by the developer
reporting and correcting the error.

In the flight dynamics FORTRAN environment,
about one-third of all errors on a project are
interface errors. On the first and second Ada
projects, the percentage of interface errors was
not greatly reduced (Figure S), with approximately

DESIGN ERRORS

. more than 35 percent reused code.

INTERFACE ERRORS

one-fourth of the errors being interface errors.
With current projects, however, the SEL is now
observing a significant change: 1{nterface errors
are decreasing.

In the SEL, “errors due to a previous change®
categorizes errors caused by a previous modifica-
tion to the software. The first Ada projects
showed a large jump in the percentage of these
errors compared to projects using FORTRAN (Fig-
ure 5). However, all subsequent Ada projects show
a rate for these errors that s very similar to
the FORTRAN rate. This initial jump 1n .the error
rate can probably be attributed to inexperiance
with Ada, inexperience with Ada design methodolo-
gies, and a nested software architecture that made
the software much more compiex. Again, the error
profile is evolving ‘with the maturity of the Ada
environment.

Software Reuse

Throughout the years of developing similar sys-
tems in FORTRAN 1in the flight dynamics environ-
ment, the average level of software reuse has been
between 15 and 20 percent [10, 20]. FORTRAN proj-
ects that attained a software reuse rate of
35 percent or higher are rare. After the first
Ada projects and with only 5 to 6 years of matur-
ing in the environment, Ada projects . have now
achieved a software reuse rate of over 25 percent,
already greater thanm the typical FORTRAN project.
The UARSTELS project ts expected to consist of
This trend of
increasing software reuse 15 very promising.

ERROR DUE TO PREVIOUS CHANGE

FORTRAN 1STADA 2NDADA 3RO ADA
PROJECTS PROJECTS PROJECTS PROJECTS

Figure 5.

FORTRAM 1STADA 2NDADA JRD ADA
PROJECTS PROJECTS PROJECTS PACUECTS

$386G(23)-4

FORTRAN 1STADA 2NDADA 3R0 ADA
PRCJECTS PAOJECTS PROJUECTS PROJECTS

Error Charactertstics

5642

CONCLUSIONS/OBSERVATIONS/COMPARISONS

Many aspects of software development with Ada
have evolved as our Ada development environment
has matured and our personnel have become ‘more
experienced 1n the use of Ada. The SEL has seen
differences in the areas of cost, reifabtlity,
reuse, size, and use of Ada features.

A first-time Ada project can be expected to
cost about 30 percent more than an equivalent
FORTRAN project. However, the SEL has observed
significant improvements over time as a develop-
ment environment progresses to second and third
uses of Ada.

The rellability of Ada projects is initially
similar to that expected in a mature FORTRAN en-

vironment. With time, however, improvements can
be expected as experience with the language in-
creases.

Reuse fs one of the most promising aspects of
Ada. The proportion of reusable Ada software on
our Ada projects exceeds the proportion of reus-
able FORTRAN software on our FORTRAN projects.
This result was noted fairly early in our Ada
praojects, and our experience shows an increasing
trend over time.

The size of an Ada system will be larger than a
similar system in FORTRAN when considering SLOC.
Size measurements can be misleading because dif-
ferent measurements reveal different results.
Ratios of Ada to FORTRAN range from 3 to ! for
tota! physical lines to | to 1 for statements.

The use of Ada features definitely evolves with
experience. As more experience is gained, some
Ada features may be found to be inappropriate for
spectific applications. However, the lessons
tearned on an earlier project play an invalvable
part in the success of tater projects.

REFERENCES

i. Agresti, W.,
satellite simylation:

r n 'm|
the NASA Space Station, June 1986.
2. Agresti, W., McGarry, F., et al. Manager's
H . Software Engi-
neering Laboratory, SEL-84-001, Aprii 1984.

Designing with Ada for
Proceedings

et al.
A case study.

3. Bastii, v. v n -
w. M . University of Maryland, Tech-
ntcal Report TR-1519, 198S.
4. Basilt, V., et al. FAA' -
¥ m, AAS). The MITRE Cor-
poration, Aprii 1987.

4-10

5. Booch, G.
Menlo Park, CA:
pany, 1983.

6. Booch, G. Software Components HWith Ada --
Menlo Park,

CA: Benjamin/Cummings Publishing C&mpany. 1987.

7. Card, D., McGarry, F., Page, G., et al. The
. Software Engi-

neering Laboratory, SEL-81-104, February 1982.

2oftware Engineering With Ada.
Benjamin/Cummings Publishing Com-

8. Cherry, G. ring With
~=Pr
Applications Language Automation Associates,

Reston, VA, 1985.

9. Doubleday, D. ASAP; Ap Ada Static Source

University of Maryland,

Department of Computer Science, Technical Re-
port 1895, August 1987.
10. Esker, L. Software Reuse Profile Study of Re-

Computer Sciences Corporation, IM-88/083(59 253):
January 1989.

11. Firesmith, D. Mixing apples and oranges: Or
what 1s an Ada line of code anyway? Ada [etters,
September/October 1988.

12. Godfrey, S., and Brophy, C{ Assessing the
A .

Software Engineering Laboratory,

SEL-87-004, July 1987.
13. Heller, G. Qata Collection Procedures for

. Software Engineering
Laboratory, SEL-87-008, October 1987.

14. " McGarry, F., and Nelson, R. A xperimen
- i i r. NASA/GSFC,

April 1985.

1S. McGarry, F., Page, G., et al. Reccmmended

A t Jopmept. Software Engi-

v
neering Laboratory, SEL-81-205, April 1983,

16. Murphy, R., and Stark, M. Ada Training Evil-
mmen ns. Software Engineering

Laboratory, SEL-85-002, October 1985.
17. Quimby, K., and Esker, L. Evolution of Ada
i i

a .
P Software Engineering Laboratory,

SEL-88-003, 1988.

18. Reifer, D.
assessment. P

Ada's impact: A quantitative

December 1987.

19. Seidewitz, E., and Stark, M. Geperal Qhject-
W, . Software Engineer-
ing Laboratory, SEL-86-002, August 1986.

20. Soloﬁon. D., and Agrestf, W. Prof f
AR ronment
Corporation,

Computer Sciences

(Preliminary).
CSC/TM-87/6062, 1987.

USING ADA TO MAXIMIZE VERBATIM SOFTWARE. REUSE

Michael E. Stark, NASA/Goddard Space Flight Center
Eric W. Booth, Computer Sciences Corporation

1. INTRODUCTION

The reuse of software holds the promise of increased productivity
and reliability. Experience has shown that making even the
slightest change to a “reused” piece of software can result in costy,
unpredictable errors [Solomon, 1987]. For this reason, the Flight
Dynamics Division (FDD) of Goddard Space Flight Center
(GSFC) is concentrating effort on developing "verbatim” reusable
software components with Ada, where verbatim means that no
changes whatever are made to the component.

This paper presents the lessons learned on several simulator
projects in the FDD environment that exploit features of the Ada

language, such as packages and generics, to achieve verbatim reuse.
These simulators are divided into two separate, but related, problem
domains. A dynamics simulator is used by the FDD mathematical
mnalysts to verify the attitude control laws that a spacecraft builder
has developed. A relemetry simulator generates test data sets for
other mission support software. FDD began using Ada in 1985
with the development of the Gamma Ray Observatory attitude
dynamics simulator (GRODY). Since that time, six additional
simulator projects have been started. With each successive project,
2 concentrated effort is made to use the lessons learned from

previous Ada simulator development projects.

This paper focuses on the concepts used in the projects that have
had the most impact on verbatim software reuse in the FDD
environment: GRODY, the Upper Atmosphere Research Satellite
Telemetry Simulator (UARSTELS), and the Generic Dynamics and
Telemetry Simulator (GENSIM). This paper defines underlying
design principles, discusses how Ada features support these
principles for reuse in the small, and shows how these principles
are used to achieve reuse in the large. Finally, this paper presents
supporting data from current reusability results.

The FDD has been using a modified version of the General Object-
Oriented Development (GOOD) methodology [Seidewitz, 1986;
Stark, 1987; Seidewitz, 1988) to develop its Ada software, Three
concepts that play a role in GOOD enhance verbatim reuse:
abstraction, inheritance, and problem-specific architectures. These
concepts support the reuse of successively larger components

5642

within successively narrower domains. The next two sections

describe how these concepts are applied to simulator projects in the
FDD. Abstraction supports "reuse in the small,” and inheritance

and problem-specific architectures support "reuse in the large.” The
current practice is to support reuse in the small through component
libraries, as is done with a collection of components by Grady
Booch (Booch, 1987} and EVB's Generic, Reusable Ada

Components for Engineering (GRACE) [Berard, 1989]. The

UARSTELS and GENSIM projects are cited to describe how reuse

on a large scale is accomplished and to demonstrate the potential in
cost savings and/or the ability to solve more complex problems.

2. REUSE IN THE SMALL:
USE OF ADA GENERICS

This section presents design and implementation guidelines for
using Ada generics. It shows how the design principles mentioned
in the previous section are implemented using Ada.

Designing individual generic components is understood to the
point that such components are commercially available, The Booch
taxonomy of structures creates a family of components that satisfy
the same abstraction within the context of different problems, for
example, sequential versus concurrent applications.

The design process becomes more interesting when a hierarchy of
generic components is needed. This is the case when designing
generic subsystems with multiple levels of abstraction. This
leveling of a subsystem can be embodied in the Ada code by using
generic units and instantiations in the following three ways:

1. Library unit instantiations

2. Nested instantiations

3. Nested generic definitions
This section will define each of these approaches and provide
examples to demonstrate their application. Implications for
reusability and lessons leamed are included for each spproach.
Library Unit Instantiations
The first approach is to create sn instantiation of a generic that is a
library unit. This approach is appealing for practical rcasons. The

potentially broad scope provided by library unit instantiations may
be necessary for Ada compilers that do not implement code

sharing! {Ganapathi, 1989). Most implementations currently do
not support code sharing. Instead, each instantiation creates a
complete object code copy of the generic template. The system-
wide scope provided by library units often makes only one copy
(instance) necessary.

To describe the first method of library unit instantiations, assume
that the generic package A depends on a set of subprograms, P,
provided by the generic package B. Instantiating B as a library unit
creates a copy of this generic package called Instance_B. The
generic package A may then be instantiated by using the
subprograms provided by Instance_B as actual parameters. This
allows the generic packages A and B to be designed and
implemented having no external dependencies, which makes reuse
simpler. This approach is depicted in the design diagram? shown
in Figure 1.

s, /
P ../;........

A

PR LN
8 -
et

S % TIO

/"0-0000”0.‘ :
.
H

.
4

Figure 1.

As previously mentioned, instantiating generics as library umits
has the advantage that instantiations of A and B mxy be imported
(named in a with clause) by any compilation unit in a system.

When full visibility is desired, this technique works well.
However, if B were an abstract state machine” and the design
required that B should be visible only to A, this potentiaily broad
visibility of B is undesirable. It would be far better o use the
language to enforce that design decision.

Another drawback of library unit instantiations is that as generic
components become more complex, they require s longer list of
more problem-specific generic formal parameters. Each
instantiation of the generic becomes long and complex. The
instantiations can be made simpler by specifying defaults for
formal subprograms using the notation “with procedure P1 is <.”
Then (assuming in this case that A's only formal parameter is P1),
the instance of A can be written as shown in Figure 2.

1 Code sharing isatechniqmdnullnmexhimtmceohgmaic
to share the same object code. The result is usuaily a smaller
object code size and slower execution speed for the system.

2 The notation for the design disgrams uses rounded-comner
rectangles to represent packages, solid amows to represent
dependencies, broken arrows 1o represent instantiations, and broken
package symbols to represent a generic unit.

3 A package that is an abstract state machine is a package that
maintains state information in the package body {(Booch, 1983].

5642

generic
with procedure Pl Is ©;
package A Is
end A;
generic

pa.c"kage Bls
procedure P1;

end B;
with A Instance_B;

use Instance_B;
package Instance_A is new A;

Figure 2,

This technique works well when numerous simple functions are
used as formal parameters. This use of Ada sinudates the search of
an object code library to resolve external references. Figure 3, part
2 presents an example of mathematical packages being used w0
instantiate the package of flight dynamics abstract data types"'
shown in part 1. Care should be used with this technique, since
the use clause does more than simply make objects and operations
directly visible. There are visibility and precedence rules of the
language that will affect what defaults will be used [Mendal, 1988].

generic
type REAL Is digits ©;
type RADIANS ls digits <;
type VECTOR is array (INTEGER nngeo)olREAL,
type MATRIX Is array (INTEGER range <,
INTEGER range <) of REAL;
with function sin (Angle : In RADIANS)
return REAL Is <;
with function cos (Angle : in RADIANS)
return REAL is <;
with function Floor (Itam: in REAL)
return REAL Is <}
package Generic_Attitude_Types Is

en; .Gcneric Auitude Types:

Figure 3 (1 of 2).

4 A package that is an abstract data type exports objects, types, and
operations but does not maintain state information in the body
[Booch, 1983].

with Single_Math_Functions,
Single_Linear_Algebra; -

use Single_Math_Functions,
Single_Linear_Algebra;

with Math_Types,
Generic_Attitude_Types;

package Single_Attitude_Types Is
pew Generic_Attitude_Types (
- REAL => Math_Types.SINGLE,
RADIANS => Single_Math_Functions.RADIANS,
VECTOR => Single_Linear_Algebra. VECTOR,
MATRIX => Single_Linear_Algebra MATRIX)

Figure 3 (2 of 2).

A second method that uses library unit instances is to instantiate B
a5 a library unit, which is then with-ed into the body of generic A
(Figure 4). Since the procedures do not need to be passed as actual
parameters, this option allows A to have a shorter formal

parameter list. However, method often requires the use of common -

types for A and B. For example, for a flight dynamics application,
the generic package A would have to be coupled to the same
floating-point types as the generic or instance of package B. As
long as this sort of coupling is relatively simple, it can be
managed (in the simulator case by having & single package
containing the basic floating-point types).

." B -
B 1
’

.
evssnsssssss?

RETTS

Figure 4.

The disadvantage of this approach is the use of a common types
package o implicitly couple A and B. This defeats software
engineering principles of information hiding and data abstraction.
The following section describes how to exploit these software
engineering principles by nesting generic instantiations.

Nested Instantiations

Continuing the same example, the generic package B may be

instantiated in the body of generic A (Figure 5) using the generic
formals of A. This option is ideal for abstraction and information

5642

hiding because it can be extended 1o a serics of nested
instantistions. Objects, types, and operations from B may be used
as building biocks and specialized to raise the level of
abstraction [Stark, 1987]. This is sometimes referred to as re-
exported. Importing the package B in this manner allows objects,
types, and operations to be hidden in the body of the generic
package A but still used to instantiate B.

l"
""'1,' sovrrorawwws »
'»&,,/ A .’,
4: I‘,....
H
Mecporcppaneet
' A5 body ;
R e P ey
"¢ l "
B
Y Y
.......... -
Figure 5.

Using nested instantiations is an appealing technique for software
engineering reasons. The limited scope provided by a package
boundary increases information hiding and protection. The amount
of information that the user of the outer package A needs to know
may be limited to the package specification of A. The fact that an
instantiation of a lower level generic is used to implement the
package is irrelevant to the user. Ramifications of future changes
made during the maintenance phase will be much more limited in
scope than the library unit instantiation approach.

The disadvantage of using nesting instantiations is the advantage of
using library unit instantiations. That is, if the Ada compiler
being used does not support code sharing and an instance of a
particular generic is necessary in several locations, nesting will
result m multiple object code copies. For example, the cxecutable .
size of GRODY is less than 2 megabytes (Mb). This simulator
does not have multiple copies of nested instantiations.
UARSTELS, on the other hand, makes extensive use of nested
instantiations, which resulted in an executable size of 6 Md.

On the surface, the implication of these findings seems to suggest
using library unit instantiations exclusively. The actual

implication, however, is that one should use nested instantiations
only when & few copies are necessary. One way to minimize the
number of copies is to implement the generic package as an
abstract data type rather than an abstract state machine. This
approach may be possible when multiple instances of the
abstraction use the same types and subprograms as actual

parameters but use different objects (Ada allows objects to be
passed at run time, while types and subprograms must be passed at
mstantiation time). This approach allows copies to be created with
object declarations instead of generic instantiations; it also has the
benefit of increased flexibility, since objects may be declared static

at compilation time or created (dynamically) at nm time.

When the correct design calls for multiple instances of an abstract
state machine the long-term solution is to acquire a compiler that
supports code sharing.

Nested Genaeric Definitions

Nested generic definitions is the third design approach described
here. This technique is appealing when the problem calls for a
high degree of coupling between generics.

Changing the previous examples, il instantiations of generic
package A and generic package B will have common types and
subprograms as actual parameters, the following architectures are

possible:

1. Make the types and subprograms visible to the generic
templates via with clauses. .

2. Make each generic package 2 library unit and duplicate the
generic formal parameters in the generic part of each.

3. Nest the generic definitions within the specification of
another generic package, C. The generic part of C
contains the common formal parameters (Figure 6).

w

|
L

Q \\\\;1§§\\\~

/’-m-ovo._

A

LR 4

REIL LN
of
~aaod

svovocsovon,

B
S
/

LTSS
o
anas!

Figure 6.

Although the first option works, it suffers from a high degree of
coupling. Future instances of either A or B will always be using
the same common types and subprograms. This inflexibility
results in limiting the verbatim reusability. :

5642

The second option is a large improvement over the first. Future
users of packages A and B may now supply their own types and
subprograms for the generic formal parameters. However, this
architecture becomes tedious and error prone when the common
types and subprograms are long and complex. Since gencnc
instantiation becomes a large part of the effort when maximizing
verbatim reuse, it is desirable to simplify this activity.

The third option accomplishes the same goals as the second aption
but with less duplication. This option is useful when the number
of nested generics or the number of common generic formal
parameters becomes large. It is less error prone because the
common actual parameters are supplied only once. The
maintenance phase also benefits from the single location of
common actual parameters.

Figure 7 shows an example of nested generic definitions from
UARSTELS. The generic function FSS Digitize is declared
within the generic package Generic Sensor Digitization. The
generic formal perameters of the composite package (generic sensor
digitization), as well as the generic formal parameters of FSS
Digitize, are referenced in the body of FSS Digitize.

generic
type REAL Is digits <>;
type COUNTS is range <;
with procedure Log_Error
(Message : In String) is Text_IO.Put_Line;
package Generic_Sensor_Digitization Is

function Linear_Digitize
(Parameter: in REAL;
Dias : in REAL;
Scale: in REAL) return COUNTS;

generie
type COUNTER s range <>;
with function tan (X: REAL) return REAL is <>;
with function sin (X: REAL) return REAL is <>;
with function cos (X: REAL) return REAL is <>;
with function Floor (X: REAL) return REAL is <;
function FSS_Digitize
(Angle:in REAL;
Coefficient : in REAL;
Tolerance : in REAL;
Maximum_Number_of_lterations : in COUNTER)
return COUNTS;

end Generic_Sensor_Digitization;

Figure 7.

Finally, a practical benefit accrues from using the nested generic
definition approach. Most compilers, as previously pointed out, do
not support code sharing; instead, they expand the generic template
at instantiation time. The advantage for the designer needing only
1 generic from a package containing 10 nested generic definitions
is that only the object code for the 1 instantiation will be
generaied.

3. REUSE IN THE LARGE:
PROJECT-SCALE REUSE

This section presents the details of the.two projects in FDD that
have had the most impact on verbatim reuse: UARSTELS and
GENSIM. For both projects, an overview is presented giving the
background information, the goals, and the motivating factors
involved during development. Each system's architecture is
discussed using the concepts and notation from the previous
section of this paper. Finally, the lessons leamed from each
project are discussed with their implications for future development
efforts.

UARSTELS Overview

The UARSTELS project was started in February 1988 and was the
fourth Ada simulator initiated at FDD. Previous simulators
included the GRODY experiment, the Geostationary Operational
Environmental Satellite-I (GOES-I) dynamics simulator
(GOADA), and the GOES-I telemetry simulator (GOESIM). The
GOES-I simulators represent the first operational Ada software
developed at FDD. _

The GRODY design team exploited the feature of nested umits,
which resulted in increased information hiding (information
protection might be a better phrase). The rationale for using
information hiding is increased reliability. Higher reliability
should, in tum, increase reusability; that is, if a component is very
reliable, it is appealing o reuse. This was the basis for the
GRODY design.

The lesson learned from this approach was that extensive use of
nested packages actually decreased reusability [Quimby, 1988]. In
addition, during the coding and testing phases, the deveiopment
team observed the high compilation overhead incurred by the nested
architecture.

Given these lessons from GRODY, the GOADA and GOESIM
design teams developed a non-nested architecture with the twin
goals of increasing reusability and reducing compilation overhead.
Both these goals were met. Individual software components could
be picked up by successive projects and reused with slight
modifications. The use of library packages, rather than nested
packages, kept the compilation costs to a minimum.

One of the lessons learned from the implementation phases of the
GOADA and GOESIM projects was that using Ada was not
significantly decreasing the level of effort for integration testing.
This was unexpected. It was predicted that the integration test
phase would require less effort than past FORTRAN integration
test phases. Some Ada developments have claimed that system
integration took significantly less effort than for similar, previous
non-Ada projects {Hudson, 1988].

Analysis by the UARSTELS design team showed that by un-
nesting GRODY's packages, more objects and types became visible
at a high level in the GOADA design. This increased the number
of components to integrate at each level.

UARSTELS Architecture

The architecture of UARSTELS was influenced from the start with
the knowledge that another, very similar simulator would follow:
the Extreme Ultraviolet Explorer (EUVE) telemetry simulator
(EUVETELS). A high level of reuse from UARSTELS to

5642

EUVETELS was both desired and Lthought to be possible because
of reused functional specifications. However, because the two
spacecraft were themselves different, the telemetry simulators
would be different. The design for UARSTELS needed to take into
account these spacecraft deperdencics and parameterize them.

Each design decision made on UARSTELS attempted 1o satisfy the
following requirements:

1. All UARSTELS requirements
2. Some known requirements from previous systems
3. Some possible future mission requirements

The goals of the UARSTELS team were to maximize verbatim
reuse and allow the compiler to check system integration as much
as possible. To achieve this, the design team took a hybrid
approach to the system's architecture. Most packages were
developed as library packages, rather than nested units; however,
these packages were designed as generic units. This allowed the
instantiations of these generic packages o be nested in successively
higher level packages. The level of nesting (or layering) within
UARSTELS is comparable to that of GRODY, with the important
difference being the use of generic units in UARSTELS. The
generic packages may be picked up and reused just as the
nongeneric packages in GOADA or GOESIM, with the important
difference again being the use of generics. The nested
instantiations allow the language to perform integration checks
(whether the programmer wants them performed or not) at each
compilation just as in GRODY.

- .- A specific example of this nested instantiation approach is the

design of each simulated sensor model within UARSTELS. In
Figure 8, the Report_Writer, Data_Set, and Plot_File generic
packages are library units. As such, they may be picked up and
reused independently of each other. In the case of a sensor model,
however, each of these objects is necessary. To provide all three
of these abstractions to each sensor model, they are instantiated
within the specification of the generic package Sensor_Output.
The application-specific parameters are provided to the three low-
level generics when they are instantiated. The sensor-specific
parameters are generic formal parameters to Sensor_Output.
Sensor_Output is then instantiated within the body of the generic
sensor model package, with the sensor-specific parameters being
provided at that time. The spacecraft-specific parameters are
generic formal parameters of the generic sensor model package.
The instantiation of the generic sensor mode! package resolves all
the formal parameters, resulting in the Fine_Sun_Sensor object

As a result of this architecture, UARSTELS differs from previous
systems in its recompilation time and executable size. The
increased use of generic units had a direct effect on the compilation
overhead. It takes longer, in CPU time and elapsed time, to
recompile UARSTELS than any of the other simulators. In
addition, while UARSTELS is significantly smaller in source lines
of code and in number of components, it is also significantly larger
in executable image size. This is because the Ada compiler used in
FDD does not support code sharing. Instead, it expands generic
units for each instantiation.

peeeessssten,

{ Semsor_ :
H '

Ouput
e
//// /// '»'o,""
o P ""o
K . // / o2,
/j..... /A..,' /,....Z....,. /..'..%.....,_
{ Repon % ;7 Dam %" ¢ Plot
Y Wrter ; ! Set 5+ File
Figure 8.

UARSTELS Lessons Leamned
The lessons lesrned may be summarized as follows:
» Nesting reduces integration testing
« Library units provide reusable software components

¢ Generic library units provide reusable components and
allow information hiding via nested instantiations

¢ Many Ada implementations incur a large compilation
time overhead for the use of nested and generic units

« Many Ada compilers provide a simple implementation of
generic units

The nesting feature of Ada must be exploited. The virtue of
nesting is information hiding (protection) and higher reliability;
this is one of the promises of using Ada. However, like all of
Ada’s promises, higher reliability does not happen automaticaily.
It must be engineered.

The strong typing feature of Ada must also be exploited. The
definition of distinct types that are relevant to the application
domain, such as flight dynamics, needs to be engineered. Ada can
help eliminate the common mistakes (i.e., mixing radians and
degrees or meters and kilometers), but this will not occur
automatically either. Through the use of strongly typed objects,
reliability can be further improved and integration testing can be
further automated.

Strong typing encourages and, in most cases, forces the use of
nesting. Operations on private types must be defined within the
same scope (package) that defines the type. Since the internal
structure of that type is not visible outside this scope, ail
operations must be defined within the scope or the operations must
be imported with a generic instantiation.

5642

Circumventing nesting, strong typing, and generics in order to
minimize compilation time is a short-term fix with the long-term
ramification of decreascd reliability and reusability. If the
compilation overhead is unacceptabie, then alicmative Ada
development environments will be required.

GENSIM Overview

The GENSIM project was started in 1986 by a group studying
ways to increase the reuse of simulator software and the possibility
of integrating the dynamics and telemetry simulation capabilities.
This group consisted of both software developers and mathematical
analysts, all of whom had simulator project experience. At the
same time, reuse studies in the Software Engineering Laboratory
(SEL) [Solomon. 1987] showed that reusing code without
modification (verbatim reuse) yields a tremendous reduction in
development cost. One of the early products of the GENSIM effort
was a study that estimated that costs of software development for a
dynamics simulator could be cut in half by creating verbatim

reusable components.

The GENSIM team believed that the best approach to maximizing
verbatim reuse was to reuse products from all phases of the
software engineering life cycle. This belief was based on developer
experience, rather than any formal software engineering theory.
The simulator problem was divided into "modules,” each of which
models an entity in the problem domain. The products associated
with each module include a specification, design documentation,
code, and test cases; each follows project-wide standards. A module
specification consists of a complete definition of the inputs and
outputs needed, the algorithms to be implemented to model the
entity, and documentation of the mathematical analysis and
assumptions underlying the algorithm. A module design is built
according to standard protocols for initialization, computations, and
the passing of parameters between modules. These protocols allow
the individual modules to be configured into & standard simulator
architecture,

To determine the feasibility of a generic simulator, a prototype is
being developed and applied to a simplified mission. After the
protolype demonstrates the ability to configure a dynamics
simulator for different missions, a full set of components and
modules will be developed.

GENSIM Architecture

This subsection first describes the GENSIM dynamics simulator
architecture, then discusses design issues for both modules and
standard subsystems. The next subsection discusses lessons learned
from the initial GENSIM design that can be applied to the finai
version of the system.

Figure 9 shows the standard dynamics simulator architecture. The
reusable modules are parts of the spacecraft, hardware, and
environment models (SHEM) subsystem. Typical SHEM
modules include Sun sensor modeling and geomagnetic field
modeling. The spacecraft control subsystem is always mission
dependent because a dynamics simulator is intended 1o test attitude
control algorithms for s specific satellite. The only reusable parts
in this subsystem are a simulated ground command uplink interface
and & module that computes estimation and control errors. The
user interface has the obvious capabilities of reading and editing
input parameters and producing reports and plots from analysis
results. The case interface subsystem 1s responsible for
maintaining simulation cases, including analysis results data,
simulation input parameters, and suspended simulation cases. The

case interface also standardizes communications between the SHEM
modules and the user interface. The simulation executive
subsystem has two major purposes: to manage requests to control
the simulator and to control the sequencing and timing of module
execution. The last subsystem is a utilities subsystem, which
consists of several generic units and a set of standard, interrelated
instantiations, as is described in Section 2. For example, the
instantiation of a generic linear algebra package requires s square
root function, which is provided by the instantation of a general
mathematical functions package.

Figure 9.

Figure 10 shows the implementation for a typical SHEM module
(Module K). The package Module_K performs the actual
modeling. It can be initialized and invoked from the simulation
executive, and communicates with other SHEM modules through
procedure and function calls. The generic module database and
generic module results objects are generic packages that implement
the standard communications between a module and the other
subsystems. These generics are instantiated with types and values
from the Module_K_Types package. These instantiations are called
on by the Module_K package when the model itself is being
initialized or activated, and they are called on by case interface
components whenever parameter or results data is required by some
other subsystem. Using this standard approach allows a different
set of SHEM modules to be used for each mission.

5642

"
.
.
3
"

"
0
.‘
‘D
",

Seen,
{ Generic
¢ Module ¢
* Results /
erface T
Interface Types () Tome mecfacon s Interface Types
dependent an the prticular
GENSIM
Figure 10.

The GENSIM design just described is a conservative extension of
existing simulator designs. In general, the dynamics simulation

capability remains the same, but the design has been reworked o
be more object oriented. For example, the case interface

subsystem was added to treat the concept of simulation case as an
object, rather than to distribute those capabilities between the user
interface, the SHEM, and the utilities. The utilities subsystem
was also changed from one gigantic generic package to several

smaller, independent generic units. The main effort in GENSIM

has been directed toward generalizing the design to make the
components reconfigurable, rather than adding new capabilities.

The user interface, case interface, and the simulation executive
subsystems must be implemented as generic subsystems that can
be parameterized by the selection of modules for a given mission.
The case interface subsystem can be used to demonstrate how a
generic subsystem is designed. The discussion of individual
modules in the previous paragraph shows how the generic module
database and module results packages are used by modules. The
case interface subsystemn must access these same instances to
communicate with the user and to maintain simulation cases.

Figure 11 shows the design for the generic case interface
subsystem. The case manager object is responsible for managing
simulation cases as a unit; and the ground command interface,
parameter interface, and results interface objccts manage
components (such as analysis results) of a simulation case. The
parameter interface and the results interface also mhnage the
communications with SHEM modules. Figure 11 shows that all
these packages are interrelated; however, they are used one at a
time. For example, a procedure that edits ground commands would
use the ground command interface but not the other objects.

Lists

Sequential IO .

Figure 11.

If these objects were not being implemented as generics, each
object in this subsystem would be implemented as a library
package, which could be imported independently. With a generic
subsystem, each of these packages must be parameterized, and
many of the generic formal parameters are common to more than
one package. If each object were implemented as a separate generic
package, there would be muitiple definitions of the same formal
parameters with all the maintenance problems such a redundant
structure entails. Since the packages in this subsystem are coupled
anyway, the case interface subsystem is implemented using the
nested generic definitions technique (described in Section 2 of this
paper), which allows the common parameters to be placed in the
generic part of the composite package.

In the GENSIM design, even the parameters that apply to only one
package were placed.in the composite package. When this is done,
the nested packages are no longer generic. This approach reduces
any possible confusion between generic packages and their
instances by allowing the user to instantiate the entire subsystem.
Then the nested packages can be used without having to instantiate
more generics. The cost is that the nested packages are now more
highly coupled. In the case interface, this increased coupling is
Jjustified because all the coupled packages are part of the abstraction
"simulation case.” The utilities subsystem consists of independent
generic packages, where the coupling is introduced between

instances of these generics. This approach allows the generic
packages 1o be used outside the context of dynamics simulators.
There is no corresponding need to use individual components of
case interface outside the context of dynamics simulators because

5642

the coupling between the components is defined by the nature of a
simulation case. The degree of coupling allowed in the design and
implementation of reusable components is one of the key
Jjudgments developers must make.

& W, Suspended cases
& *, Parameters
& ", Results
& ,_,:4,__,"“_. Ground Commands
Mission i Generic @
Interface : Case :
Package i Interface

‘rossssgersoes

@
Mission module databases . . Interface Types
Mission module results

Figure 12.
GENSIM Contributions

The major benefits derived from the GENSIM project are in the
categories of (1) gaining experience in the use of advanced Ada
features, (2) getting ideas for improvements in simulator design,
and (3) producing the reusable components themselves. This
subsection will focus on the first two categories. In the first area,
the redefinition of the utilities subsystem as a set of independens
generic packages tied together as a set of interrelated instantiations
demonstrated the ability to write generic packages as described in
Section 2.

When designing & subsystem this way, the developer must make
sure that all the generic formal parameters designed are matched by
actual parameters provided by some other package. It is also eases
development if the code is written and tested bottom up, so that the
lower level instantiations needed to instantiate the senior-level
generics are tested and, in turn, can be relicd on 1o support the
testing of other objects. If care is taken to design a set of generic
packages with consistent naming conventions, defaults can be
provided by standard instantiations, allowing the rapid writing of
instantiations for testing purposes. When all these conditions are
met, the techniques described in Section 2 work very well. The
decoupled generics/coupled instantiations technique is the best
approach to develop packages that provide the ability to use
problem domain abstractions rather than predefined Ada constructs.

GENSIM has also contributed to the use of strong typing by using
more privale types than previous simulators and by beginning o0
focus on the decision criteria for their use. The criteria for using
private types is thal they should add the protection of data integrity.
For example, the attitude types package defines the private rype
COSINE_MATRIX. This type is identical in data definition to

any other 3-by-3 matrix but has a set of operations that guaraniee
that a COSINE_MATRIX always represents a rotation. In the case
of GENSIM's orbit data types, a privale type does not add any such
data protection; the effect is to force a user to use operations
provided for the data type in precisely the same way as one would
use an assignment statement. When this is the case, the type
should be made visible in a package specification.

Possible improvements to GENSIM

The GENSIM prototyping has been successful in generalizing
dynamics simulator designs, but some features inherited from past
simulators can be improved on. Currently, simulator module state
data types are built from individual scalar objects or arrays of scalar
objects. A more object-oriented design would define abstract data
types (ADTs) for the problem domain entities and then use these
ADTs to define module states. This is particularly true when there
are multiple objects of a type, as is the case with spacecraft
sensors. As an example, the current design of a fine Sun sensor
model defines the simplified module state as follows:

package body Fine_Sun_Sensor is
— N is the number of Fine Sun Sensors used for a mission
type STATE is record
Alpha_Angles
: Double_Linear_Algebra. VECTOR(1..N);
Beta_Angles
: Double_Linear_Algebra. VECTOR(1..N);
Alpha_Limit
: Double_Linear_Algebra. VECTOR(1..N);
Beta_Limit
: Double_Linear_Algebra. VECTOR(1..N);
end record;

Module_State : STATE;

enc.i‘ i’me_Sm_Sm_Module;

A better implementation is as follows:

with Fine_Sun_Sensor_ADT;
package body Fine_Sun_Sensor_Module is
type STATE is array of (1..N)
of Fine_Sun_Sensor_ADT.FINE_SUN_SENSOR;

Module_State : STATE;

ezx.i' i’me_Sun_Smsor_M odule;

In the second implementation, Fine_Sun_Sensor_ADT
-FINE_SUN_SENSOR is an abstract data type that encapsulates
all the necessary attributes for a single sensor and provides both
selector and constructor operations. One advantage of using
abstract data types is the tighter encapsulation of data. If a change
is made to the fine Sun sensor modeling, the scope of the change
is then restricted to the body of the abstract data type package rather
than affecting the entire module.

Another advantage of using abstract data types in this context is
the strict separation of the problem domain object itself and its use
within a software system. In the first example, the declaration of

5642

Alpha_Limit mixes the problem domain concept of a limited
sensor field of view with the fact that N sensors are used for a
particular mission. The sccond implementation makes it clear that
N refers to the number of sensors and that the abstract data type
encapsulates each sensor’s angles and limits.

When the problem domain object (or class) is implemented with a
distinct Ada library unit, it is possible 10 use the object-oriented
programming concept of inheritance to create a hierarchy of classes
and subclasses. Figure 13 shows how this could work when all
the details of a fine Sun sensor model are considercd. This
inheritance tree, which is implemented using nested instantiations,
shows four levels of increasing compiexity, starting with the

superclass FSS_ADT and creating a chain of subclasses from there.
Each of these four generics can be instantiated either as & library
umit or nested within a module. Each subclass in the chain tailors

its superclass by imcorporating the models provided by the
respective utility packages. Inherited operations can also be
specialized and new operations can be added to a package [Stark,

1987]. For example, a fine Sun sensor engineering model needs
to decalibrate simulated data so that calibration algorithms can be

tested. Since this decalibration is specific to fine Sun sensors, the

operation would be added to the generic FSS engineering model
package, with the noise, biases, and misalignments being provided

by the generic measurement utilities.

FSs FSS FSS with
[FSSADI'] Fmgxmaina [Hndwm] Tdemary]
Model ADT

vosd
-

!

A rereenansinges
"
-

Bt D e e S oS B L T e
J
%,
N
4
\
]
[
[
1)
i
3

i
]

N esrasssanen
*,

Figure 13.

This approach uses the nested generic instantiations in the same
way as UARSTELS. The difference is that all sensor-specific
utilities, such as fine Sun sensor decalibration, are part of the
sensor abstract state machine, not part of the utility packages.

The use of inheritance allows Lhe selection of an appropriate model
for a wider variety of applications. A telemetry simulator would
typically pick the telemetry model, & dynamics simulator would
pick the hardware model, and error analysis software would use the
engineering model. The use of inheritance reduces the redundancy
between the different applications, which saves effort in both
development and maintenance.

The other area in which the simulator can be made more general is
the module types packages. These packages are not defined as
generic units, but they contain a mix of mission-specific
parameters (such as default initial conditions) and mission
independent parameters. The nesting of a generic package within
the types package is one possible way to make the system easier to
configure. The nested generic would be parameterized by the
mission dependencies, with the rest of the types package remaining
mission independent. A library instantiation of the nested generic
would then be created to define the module’s use for a particular
mission rather than to extensively modify the types packages.
Figure 14 shows how this would work for a fine Sun sensor
module. The cost of this is that the other packages in a module
now need to import both the types package and the instance of the
nested generic, whereas only the types package was needed before.
The strict separation of the parameterized part from the consistent
part is worth the added complexity.

C Mission_Specific_FSS_Defaults)

5
3
.
3
e,

FSS_Types
7

Generic FSS Defaults

JRTRN

Figure 14,

4. FUTURE DIRECTIONS

The experiences of the UARSTELS and GENSIM projects have
demonstrated that the Ada language, and particularly generics, can
be used 10 produce verbatim reusable components that can be fit
into more than one architecture. Some other Ada language feamres
need to be examined more closely to see how useful they are for
simulation softwarc. There has been a trend to using more strong
typing as more experience is gained, but the FDD's Ada software
has not gone as far as the Common Ada Missile Packages
(CAMP) packages in using distinct types. The CAMP packages
use a separate type for each unit of measure, both in generic
parameter lists and in nongeneric code [Herr, 1988]. The
advantage of using this degree of strong typing is that the compiler
is able o catch any dimensionally incorrect computation. The
disadvantage is that overloaded operators need to be defined
anywhere that two or more different types can be correctly used in a
computation. A balance needs to be found between the extremes of

5642

CAMP and of using a single floating-point type as the basis of ail
calculations. To do this, criteria must be defined for the proper use
of Ada’s typing fcatures. When (o use or not to use types,
subtypes, derived types, or private types needs clear definition.

This paper's discussion of inheritance focuses on nested generic
instantiations as a means of implementing the concept. An
alternate approach is to use derived types to simulate inheritance
[Perez, 1988]. In the simulators discussed earlier, gencrics are used
for both parameterization and for inheritance. To use derived types
for inheritance would require the investigation of the interaction
between parameterization and inheritance when different language
feanmres are used.

General Concepts for Large-Scale Verbatim Reuse

The lessons learned by the UARSTELS and the GENSIM projects
have led us to a general reuse model. This model defines different
levels of reuse and which reuse-in-the-small techniques should be
applied at which level. Figure 15 shows the leveled reuse model
on the left and typical examples on the right. As in most layered
models, the higher layers depend on services provided by the lower
layers.

LEVELS EXAMPLE
+ System Templates | Generic_Case
ARCHITECTURE Interface
LEVELS
« Component Double_Precision
Templates FSS_Module
« Domain Objects FSS_ADT
PROBLEM and Classes
DOMAIN
LEVELS- » Language Extending | Linear Algebra
Objects and Classes
Figure 15.

The lowest layer of the model is the language extension layer. This
layer’s purpose is to create a problem-specific language by adding
reusable Ada components to the existing capabilities of the Ada
language. In the flight dynamics domain, this means defining
types and operations for mathematical constructs such as vectors,
matrices, and orbits. Applications code can then be developed
using the specialized capabilities rather than predefined Ada
constructs. This level can be considered the state of the practice for
software reuse. The Booch components and the EVB GRACE
components are at this level.

The language extension layer itself uses a layered approach. The
domain-specific objects are usually built on top of more general
objects. The orbit data described above is specific to flight
dynamics, but it is represented as two vectors representing position
and velocity. When carried into design, an orbit data types package
would depend on a more general linear algebra package that exports

vector types.

The other important distinction at this level is between entity
abstractions and action abstractions. An object with action
abstraction is completely described by what it does. A sort
package provides operations to sort data; a random number
generator generates random numbers. An object with entity
abstraction has attributes beyond its set of computations. For
example, a queue can be described as a set of homogencous data
that is accessed and modified using a FIFO protocol.

Figure 16 shows how the level of abstraction and level of
generality can be used to characterize language exiension
components. Some typical simulator components are charactenzed
by these two characieristics. The scale from domain specific to
general is more continuous than is shown on this diagram. For
example, a linear algebra package is specific to the mathematical
domain, but it is considered a general-purpose package in the flight
dynamics domain. Thus, it would fall somewhere in the middle of
the scale. The distinction between entity and action abstraction is
more clear cut. If the object has relevant properties beyond the
actions it performs, it has entity abstraction. These properties are
seen in Ada code as state information that can be retrieved and

modified by a package's operations.
ENTITY ACTION
ABSTRACTIONS | ABSTRACTIONS
Quatermion Telemetry Encoding
DOMAIN Orbit Hardware Failure
Models
Stacks, Queues, Sorts, Integrators,
GENERAL Vectors, Matrices Random Number
) Generators
Figure 16.

The next level of the model is the domain level . This is the level
at which the major problem domain entities reside. State-of-the-art
reuse libraries such as the CAMP contain components that are
reused at this level [Herr, 1988]. Both the domain level and
language extension level consist of objects and classes. The
difference is that the objects at the domain level define the problem
domain, and the objects at the language extension level are a
means of expressing the model for & given problem domain object.
The fine Sun sensor abstract data types described in the previous
section are all problem domain entities. They are described in
terms of vector and matrix algebra, and in terms of standard error
sources, telemetry encoding, and sensor failure models. The
generic packages for fine Sun sensor data types implement the
domain entities using capabilities provided at the language
extension level.

Figure 13 shows how a mix of domain entities and generic
language extensions can be used to build a hierarchy of classes and
subclasses. The measurement utilities, hardware utilities, and the
telemetry utilities are all Janguage extensions, but they are used in
building the probiem domain inheritance model.

The next level of reuse is the componens template level, the level
at which generic components are built to fit into a given system
architecture. The GENSIM SHEM modules and the UARSTELS
sensor models are examples of component templates. Components
can be built directly from problem domain objects, or they can
provide indirect support. In GENSIM, the SHEM modules will be
built around abstract data types, such as those provided for the fine
Sun sensors, and the standard module database and module results
packages that are instantiated to support the module. In addition to
these packages, a standard screen format file is used by the user
interface to allow user inputs for each SHEM module, The key
distinction is that the component template level defines all the
components needed to fit a problem domain object into a given
system architecture, where the domain level consists of a set of
objects that are not constrained by a particular system design, but
only by the problem being solved.

5642

The component template level objects are also paramcterized, but
the emphasis shifts somewhat. The fine Sun sensor abstract data
types are parameterized by data types for vectors and matrices and
by operations needed to interface with other problem domain
objects. The fine Sun sensor module is parameterized by items
such as the number of sensors, the default input values, and
selections of which inputs a user is allowed w modify. Some
values of problem domain parameters may be constrained at this
level. Figure 15 gives the example of Double_Precision_FSS_
Module. This module has been constrained to use a particular
floating-point data type, but it is still parameterized by the
number of sensors and default values.

The top level is the system template level. A generic system is a
reusable design into which individual components can be fit.
Objects at this level are parameterized by the set of components

being used in & particular configuration and by any other values

that have a system-wide effect. In GENSIM, the parameterization
of the generic case interface is related to the particular set of SHEM
modules being used. The simulation executive is parameterized
both by the set of components being used and by the spacecraft's
control modes, which affect how often these components need to be
executed.

The two template levels provide the capability of quickly building
& software system. Like the language extension and domain levels,
the capabilities provided by the lower level are used by the higher
one. The key distinction is that the lower two levels give a
complete definition of the problem domain, and the upper two
levels give a complete definition of a generalized software system
architecture. It is important that the problem domain objects be
completely independent of particular system architectures. To
achieve this, the lower two levels from Figure 15 are grouped as
problem domain levels and the upper two are grouped as
architecture levels.

The discussion in this section has focused on design issues, not
how Ada should be used to realize these designs. The principles
that apply to reuse in the small can be extended to reuse in the
large. A developer must still be concemed about a mix of generic
packages and their instantiations, and the coupling between

components remains a key issue.

In the problem domain level, the only coupling between objects
should be defined by the problem. The preferred means of linking
objects together is o restrict dependencies to those between library
instantiations. One previously mentioned exception to this is the
simulation of inheritance. Other relationships can also be
simulated through nested generic instantiations or nested generic
declarations. An example where nested instantiations are useful is
m the case where one object is built from simpier components, as
an mnertial reference unit (IRU) is built from gyroscopes. The IRU
presents a somewhat different interface than s gyroscope, although
they are strongly related. The nested generic declarations are useful
when altemnate models depend on the same objects or types. For
example, an orbit types package is parameterized in terms of
simple mathematical functions, but they are used by a variety of
different models for propagating orbits over time. Rather than
nesting instantiations of the orbit types within several different
models, the designer can present the models as 2 sct of options
that depend on the same orbit types.

Importing other library units into gencric units is not a problem
when used for component templates or system templates. Figure
17 shows where the generic case interface package imports the
instantistion of s generic types package. This interface types

package provides standard data types for communication between
the user, the stored sumulation data, and the SHEM modules. The
designer should try to minimize this sort of coupling. In
GENSIM., only interface types and a common types package are
imported into generics in this manner.

Generic

Interface

y

(j Interface Types ;)

(Generic Interface Types)

Figure 17.

5. MEASURING THE EFFECT OF LARGE-SCALE
VERBATIM SOFTWARE REUSE

This section discusses the impact of the verbatim reuse on project
management by describing how costs are affected and the effects of
the layered model. A recent SEL study [Solomon, 1987)
characterized software components as being new, rebuilt (greater
than 25-percent modification), adapted (up to 25-percent modified),
and verbatim (unmodified). Expressed as s percentage of the cost of
a new component, the costs of the different types of reused

components are approximately :

Verbatim 10% (actually 7.2 %)
Adaped 0%
Rebuilt 50 %

To make conservative estimates, the 10-percent figure is used for
verbatim components, and any nonverbatim component is assumed
to be new.

The GENSIM cost study [Mendelsohn, 1988] shows that the
current levels of reuse for dynamics simulators save 15 to 20
percent over all-new systems. The study also determined that
dynamics simulators have a potential for about 70- to 80-percent
verbatim reuse; only the spacecraft control system code is
developed from scratch for each mission. These verbatim reuse

5642

levels translaic o a cost savings of from 60 to 70 percent over an
all-new system or at least 50 percent from current systems.

The key to achieving high levels of verbatim reuse is-to reuse
specifications and design. The analysts who define the
requirements for FDD systems developed common mathematical
specifications for all systems supporting EUVE and UARS. The
current estimate for EUVETELS reuse from UARSTELS is 87
percent, which translates to approximately 80-percent cost savings
over a new system. Even the FORTRAN software supporting
EUVE has 2 reuse level of from 60 o 70 percent from UARS,
whereas typical levels fall into the 20- to 30-percent range. The
increase from reusing the mathematical specifications is much
greater than the increase observed as the result of using Ada as the
implementation language for simulators {Brechbiel, 1989]. These
data confirm the correctness of GENSIM's use of a set of standard
mathematical specifications.

In addition o measuring the level of verbatim reuse, the effect of
verbatim reuse can be divided into the reuse of problem domain
components and the reuse of components at the architecture levels.
No FDD simulators have been developed using the proposed reuse
model, so the estimate will be based on the fact that the user
interface for the dynamics simulators typically contains 40 percent
of the source lines of code and no problem domain objects. Since
the capabilities of the GENSIM simulation executive and case
interface subsystems are currently distributed among other
subsystems, 40 percent is a conservative estimate. It is probably
correct to assert that the benefits of reusable architectures equal or
exceed those of developing reusable problem domain components.
It is clear that these benefits are roughly equal.

6. MANAGEMENT RECOMMENDATIONS

The primary management recommendation is to build the problem
domain levels first and to buiid them bottom up. The language
extension layer is a means of expression for domain objects and
classes. The domain objects and classes serve as the building
blocks for reusable system archilectures. Another advantage of
building the problem domain layers first is the ability to build
multiple architectures from the same set of problem domain
objects. For simulation applications, this means that the same
set of problem domain objects could be used to twrild a dynamics
simulator, a telemetry simulator, or a combined dynamics and
telemetry simulator.

The strict separation of problem layers from architectre layers also
provides the means of keeping up with technology. The same
domain objects would be usable on either an 8086 based computer
with a monochrome text screen or on an 80386-bascd computer
with high-resolution graphics. The architecture of the system
would be changed. although it would probably not be rebuilt from
scratch. The architecture of a system should be driven by
technology, and the solution of flight dynamics problems should
not be. The separation of these considerations in design makes it
casier to manage technological change.

7. CONCLUSIONS

The current state of the art in software rcuse is to provide problem
domain components and problern domain objects. This paper has
demonstrated that designing verbatim reusable components at the
architecture level can create approximately the same savings as the
current stale of the art. The new approach that needs to be applicd

o future systems is o strictly scparate the problem domain objects Stark, M., and E. Seidewitz, "Towards a General Object-Oriented
from the particular system architectures and to build the problem Ada Life Cycle,” Proceedings of the Joint Ada Conference, March
domain layers from the bottom-up. When this approach is used to 1987 .

develop verbatim reusable software, the resources saved can be

applied o new problems (extending the problem domain) or to

provide better solutions to existing problems by upgrading the

archilecture.

REFERENCES

Berard, E., "Reusability Tutorial,” Proceedings of the Washington
Ada Symposium, 1989

Booch, G., Software Engineering With Ada. Menlo Park, CA:
Benjamin Cummings, 1987

Booch, G., Software Components With Ada. Menlo Park, CA:
Benjamin Cummings, 1987

Brechbiel, F., "Ada and Specification Reuse Versus Software Cost,
Reliability, and Reusability in a Flight Dynamics Support
Environment,” (to be published)

Ganapathi, M., and G. Mendal, "Issues of Ada Compiler
Technology,” IEEE Computer, February 1989, vol. 22, no. 2, pp.
52-60

Herr, C., D. McNicholl, and S. Cohen, "Compiler Validation and
Reusable Ada Parts for Real-Time, Embedded Applications,” ACM
SIGAda Ada Letters, September/October 1988, vol. VIII, no. 5,
pp. 75-86

Hudson, W., "Ada Compiler Development,” Defense Science,
March 1988, pp. 59-64

Mendal, G., "Three Reasons To Avoid the Use Clause,” ACM
SIGAda Ada Letters, January/February 1988, vol. II1, no. 1, pp.
52-57

Mendelsohn, C., "Impact Study of Generic Simulator Software
(GENSIM) on Attitude Dynamics Simulator Development Within
the Systems Development Branch,” (unpublished study of
simulator reuse data)

Perez, E., "Simulating Inheritance With Ada,” ACM SIGAda Ada
Lerters, September/October 1988, vol. VIII, no. 5, pp. 3746

Quimby, K., "Evolution of Ada Technology in the Flight
Dynamics Area: Design Phase Analysis,” Software Engineering
Laboratory, SEL-88-003, December 1988

Seidewitz, E.. and M. Stark, "Towards a General Object-Oriented
Development Methodology,” Proceedings of the First International
Symposium on Ada for the NASA Space Station, June 1986

Seidewitz, E., "General Object-Oriented Sofiware Development
With Ada: A Life Cycle Approach,” Proceedings of the CASE
Technology Conference, April 1988

Solomon, D., and W. Agresti, "Profile of Software Reuse in the

Flight Dynamics Environment," Computer Sciences Corporation,
CSC/TM-87/6062, November 1987

5642

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, Augqust 1976

SEL-77-002, Proceedings From the Second Summer Software En-—
gineering Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Langquages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 3), W. J. Decker and
W. A. Taylor, July 1986

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,

~and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B-1
5642

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Lanquage-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
-Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analvsis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems,
G. O. Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

5642

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revision 1), W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-806, Annotated Bibliogqraphy of Software Engineering
Laboratory Literature, M. Buhler and J. Valett, November 1989

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D, N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Vol-
ume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

5642

SEL-83-007, Proceedings From the Eighth Annual Software En-
dineering Workshop, November 1983

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Enqi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M., Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Vol-
ume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engi-
neering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dvnamics Soft-
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Vol-
ume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October
1986

5642

SEL-86-006, Proceedings From the Eleventh Annual Software
Engineering Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for
Flight Dynamics Software Development, S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz
et al., May 1987

SEL-87-003, Guidelines for Applving the Composite Specifica-
tion Model (CSM), W. W. Agresti, June 1987

SEL-87~-004, Assessing the Ada Desian Process and Its Impli-
cations: A Case Study, S. Godfrey, C. Brophy, et al.,
July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL
Database, G. Heller, October 1987

SEL-87-009, Collected Software Engineering Papers: Volume v,
S. DeLong, November 1987

SEL-87-010, Proceedings From the Twelfth Annual Software En-
gineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Proiject: The
GRODY Study, J. Seigle, L. Ester, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Vol-
ume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dvnam-
ics Area: Design Phase Analysis, K. Quimby and L. Esker,
December 1988

SEL-88-004, Proceeding of the Thirteenth Annual Software
Engineering Workshop, November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Svm-
posium, December 1988

SEL-89-001, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide, M. So et al., May 1989

SEL-89-002, Implementation of a Production Ada Project: The
GRODY Study, S. Godfrey and C. Brophy, May 1989

SEL-89-003, Software Management Environment (SME) Concepts
and Architecture, W. Decker and J. Valett, August 1989

5642

SEL-89-004, Evolution of Ada Technology in the Flight Dy-
namics Area: Implementation/Testing Phase Analysis,

K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

SEL-89-005, L ns Learn in the Transition Ada from
FORTRAN at NASA/Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Vol-

ume VII, November 1989

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedings of the First International Symposium on Ada for
the NASA Space Station, June 1986

2pgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Program Transformation and Pro-

gramming Environments. New York: Springer-Verlag, 1984

lBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1981

7Basili, V. R., Maintenance = Reuse-Oriented Software

Development, University of Maryland, Technical Report
TR-2244, May 1989

1Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

7Basili, V. R., Software Development: A Paradigm for the

Future, University of Maryland, Technical Report TR-2263,
June 1989

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineerind. New York: IEEE Computer Society
Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Meth-
odology," Proceedings of the First Pan-Pacific Computer Con-
ference, September 1985

1Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?," Journal of Systems and Software, February 1981,
vol. 2, no. 1

B-6
5642

lpasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL,"
Proceedings of the International Computer Software and Ap-
plications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction
and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation,” Communications of
the ACM, January 1984, vol. 27, no. 1

lBasili, v. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,*
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-

ity Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coverage of Func-
tional Testing, University of Maryland, Technical Report
TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P—-A Proto-
type Expert System for Software Engineering Management, "
Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity,
and Cost. New York: IEEE Computer Society Press, 1979

SBasili, V., and H. D. Rombach, "Tailoring the Software
Process to Project Goals and Environments, " Proceedings of
the 9th International Conference on Software Engineering,
March 1987

5Basili, V., and H. D. Rombach, "T A M E: Tailoring an Ada
Measurement Environment," Proceedings of the Joint Ada Con-
ference, March 1987

SBasili, V., and H. D. Rombach, T A M E: Integrating
Measurement Into Software Environments, University of
Maryland, Technical Report TR-1764, June 1987

5642

6Basili, V. R., and H. D. Rombach, "The TAME Project:
Towards Improvement-Oriented Software Environments," IEEE
Transactions on Software Engineering, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive
Framework for Reuse: A Reuse-Enabling Software Evolution
Environment, University of Maryland, Technical Report
TR-2158, December 1988

2Basili, V. R., R. W. Selby, Jr., and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-
ness of Software Testing Strategies, University of Maryland,
Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., "Four Applications
of a Software Data Collection and Analysis Methodology," Pro-
ceedings of the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering," IEEE Transactions on
Software Engineering, July 1986

5Basili, V. and R. Selby, Jr., "Comparing the
Effectiveness of Software Testing Strategies," IEEE
Transactions on Software Engineering, December 1987

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting
Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Engineering, November 1984

lBasili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedings of the Fif-
teenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

B-8
5642

l1Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory,” Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

lBasili, V. R., and M. V. Zelkowitz, *Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

SBrophy, C., W. Agresti, and V. Basili, "Lessons Learned
in Use of Ada-Oriented Design Methods," Proceedings of the
Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,
"Lessons Learned in the Implementation Phase of a Large Ada
Project, " Proceedings of the Washington Ada Technical Con-
ference, March 1988

2Ccard, D. N., “Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical Memo-
randum, June 1982

2card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation,® Computer Sciences Corporation,
Technical Memorandum, November 1982

3card, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Congresso Nacional de Informatica,
October 1985

5Card, D., and W. Agresti, "Resolving the Software Science
Anomaly," The Journal of Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design
Complexity," The Journal of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,
"A Software Engineering View of Flight Dynamics Analysis
System," Parts I and II, Computer Sciences Corporation,
Technical Memorandum, February 1984

4card, D. N., V. E. Church, and W. W. Agresti, "An Empirical
Study of Software Design Practices," IEEE Transactions on
Software Engineering, February 1986

5642

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-
tics of FORTRAN Modules," Computer Sciences Corporation,
Technical Memorandum, June 1984

5Ccard, D., F. McGarry, and G. Page, "Evaluating Software
Engineering Technologies,"” IEEE Transactions on Software
Engineering, July 1987

3card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eigqhth Interna-
tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1985

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceedings
of the Fifth International Conference on Software Engineer-

ing. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan,
"An Approach for Assessing Software Prototypes," ACM Software
Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedings of the
Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

5Doub1eday, D., ASAP: An Ada Static Source Code Analyzer
Program, University of Maryland, Technical Report TR-1895,
August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implemen-
tation of a Large Ada Project," Proceedings of the 1988
Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for
NAVPAK, Higher Order Software, Inc., TR-9, September 1977
(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, Characterizing Resource
Data: A Model for Logical Association of Software Data,
University of Maryland, Technical Report TR-1848, May 1987

6jeffery, D. R., and V. R. Basili, "Validating the TAME
Resource Data Model,"” Proceedings of the Tenth International
Conference on Software Engineering, April 1988

SMark, L., and H. D. Rombach, A Meta Information Base for
Software Engineering, University of Maryland, Technical Re-
port TR-1765, July 1987

5642

6Mark, L., and H. D. Rombach, "Generating Customized Software
Engineering Information Bases From Software Process and Pro-
duct Specifications," Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

5McGarry, F., and W. Agresti, "Measuring Ada for Software
Development in the Software Engineering Laboratory (SEL),"
Proceedings of the 21st Annual Hawaii International Con-
ference on System Sciences, January 1988

"McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada
Technology in a Production Software Environment," Proceed-
ings of the Sixth Washington Ada Symposium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedings of the Hawaiian Inter-
national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (Proceedings), March
1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

5ramsey, C., and V. R. Basili, An Evaluation of Expert Sys-
tems for Software Engineering Management, University of
Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eighth Inter-
national Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

SRombach, H. D., "A Controlled Experiment on the Impact of
Software Structure on Maintainability," IEEE Transactions on
Software Engineering, March 1987

6rRombach, H. D., and V. R. Basili, "Quantitative Assessment
of Maintenance: An Industrial Case Study," Proceedings From
the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, “Software Process and Prod-
uct Specifications: A Basis for Generating Customized SE
Information Bases," Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

5642

7Rombach, H. D., and B. T. Ulery, Establishing a Measure-
ment Based Maintenance Improvement Program: Lessons Learned
in the SEL, University of Maryland, Technical Report
TR-2252, May 1989

S5seidewitz, E., "General Object-Oriented Software Develop-
ment: Background and Experience," Proceedings of the 21st
Hawaii International Conference on System Sciences, January
1988

6seidewitz, E., "General Object-Oriented Software Develop-
ment with Ada: A Life Cycle Approach," Proceedings of the
CASE Technologqy Conference, April 1988

6seidewitz, E., "Object-Oriented Programming in Smalltalk
and Ada," Proceedings of the 1987 Conference on Object-
Oriented Programming Systems, Languages, and Applications,
October 1987

4seidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedings of
the First International Symposium on Ada for the NASA Space
Station, June 1986

7stark, M. E. and E. W. Booth, "Using Ada to Maximize
Verbatim Software Reuse," Proceedings of TRI-Ada 1989,
October 1989

Stark, M., and E. Seidewitz, "Towards a General Object-
Oriented Ada Lifecycle," Proceedings of the Joint Ada Con-
ference, March ‘1987

7sunazuka. T., and V. R. Basili, Integrating Automated
Support for a Software Management Cycle Into the TAME Sys-—
tem, University of Maryland, Technical Report TR-2289, July
1989

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

Svalett, J., and F. McGarry, "A Summary of Software Measure-
ment Experiences in the Software Engineering Laboratory,"
Proceedings of the 21st Annual Hawaii International Confer-
ence on System Sciences, January 1988

5642

3Weiss, D. M., and V. R. Basili, “Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Engineering, February 1985

SWu, L., V. Basili, and K. Reed, "A Structure Coverage Tool
for Ada Software Systems," Proceedings of the Joint Ada Con-
ference, March 1987

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science. New York:
IEEE Computer Society Press, 1979

2zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research,” Empirical Foundations
for Computer and Information Science (proceedings),

November 1982

6zelkowitz, M. V., "The Effectiveness of Software Proto-
typing: A Case Study,"” Proceedings of the 26th Annual Tech-
nical Symposium of the Washington, D. C., Chapter of the ACM,
June 1987

6zelkowitz, M. V., "Resource Utilization During Software
Development, " Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

NOTES:

1This article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers: Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-
ware FEngineering Papers: Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Soft-
ware Engineering Papers: Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-
ware Engineering Papers: Volume IV, November 1986.

SThis article also appears in SEL-87-009, Collected Soft-
ware Engineering Papers: Volume V, November 1987.

5642

6This article also appears in SEL-88-002, Collected Soft-
ware Engineering Papers: Volume VI, November 1988.

7This article also appears in SEL-89-006, Collected Soft-
ware FEngineering Papers: Volume VII, November 1989.

5642

