
/

!

\

Enclosed is a copy of a technical report produced by tile ISIS

group. This report was produced under co. tract number NAG2-593.

Respectfully yours,

Susan AJle.,

ISIS Project Secretary

(607) 255-9198

Tills REPORT IS UNCI,ASSIFIEI) AND HAY BE DISTRIBUTED WITItOUT RESTRICTION

"" J /,:., 2

EXPLOITING VIRTUAL SYNCHRONY IN DISTRIBUTED SYSTEMS

Kenneth P. Birman and Thomas A. Joseph

Department of Computer Science,

Cornell University, Ithaca, New York 14853.

Abstract We de•crib• applications of • virtually synchro-

nous environment for distributed prolpamming, which

underlies a collection of' distributed programming tools in
the ISIS_ system. A virtually synchronous environment
• Slows processes to be structured into proceu groups, and
m•kso events like brondcants to the group as an entity,

group membership changes, and even migration oF sn
activity From one place to another appear to occur ins•an.
tanecusly - in other words, synchronously. A rngjor
advantage to this approach i8 that many upects of" • dis-
tributad application can be treated independently without
compromising correctness. Moreover, user cede that is
designed as if the system were synchronous can o/tan be

executed concurrently. We argue that this approach to
building distributed and fault.tolerant so/•war• is more
straightforward, more. flexible, and more likely to yield
correct solutions than alternative approaches.

I, A toolkit for distributed systems

Consider the design of a distributed system for

factory automation, say for VLSI chip fabrication.

Such a system would need to group control processes

into services responsible for different aspects of the

fabrication procedure. One service might accept

batches of chips needing photographic emulsions,

another oversee transport of ch/ps from station to sta-

tion, etc. Within a service, algorithms would be

needed for scheduling work, replicating data, coordi.

This work wu supported by the Defense Advanced
Research Projects Agency (DoD) under ARPA order 5378,

Contracts MDAg03-85-C-0124 and N00140-87-C-8904, and
by the National Science Foundation under grant DCR.
8412582. The views, opinions and finding• contained in
this report are those o/" the authors and should not be con-

strued as an o/_cisl Department M" DM'mum pesit/ou, pol-
icy, or deciJim.

Permission to copy without fee all or pert of"this material is lprsnted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright no(ice and the title of
the publication and its date appear, and notice is liven that copyin8
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires • tee and/or specfic
oermission.

nating actions at physically separate locations, load

balancing, and dynamically reconfignring the system

after a component goes off line or comes back on line.

The premise of' the 18/S project and this paper is

that the existing software development methodology

is inadequate to address this class of. applications.

Here, we put forward a new approach that permits

applications to be decomposed into orthogoual com-

ponentdJ that can be treated separately and in a

surprisingly "non-d/stributod" fesldon. Our research

seeks to provide a toolkit for distributed programming

to assist in solving thee• sub-problems that arise most

commonly in distributed systems. Each tool consists

of a set of subroutines callable from application

•of•ware, in some cases augmented by a distributed

program that maintains persistent state information.

Us•re develop software by interconnecting non-

distributed programs using the tools. 18IS, provides

tools for initiating nsynchronous actions, updating

replicated data without blocking, obtaining mutual

exclusion using fault.tolerant replicated semaphores,

and many others. A distributed program that uses

replicated data would consist of a set of. conventional

programs, each of which performs subroutine calls to

the appropriate tool to access their shared state.

The essential issue in designing the toolkit is to

ensure that the tools have or•hog•hal functionality,

sines it is this aopact that permits the programmer to

break up an application into components that can be

solved indepandenUy and extended gradually into a

complete system. A second issue relatse to con-

currency, In order to make full use of. the potential

for concurrency available in a distributed system,

processes must be 8bla to make local decieions when-

ever pouible, since a procees that must interact with

• there before making a decision would be delayed

until they respond. To address these issues we have

© 1987 ACM 089791-242-X/87/0011/0123 $1.50
123

developed a new computation model that we refer to

as oirtual synchrony. In It virtually synchronous

environment, routines can be programmed and will

behave as if distributed actions were performed

instantaneously and in lock-step. The physical reali-
zation of such an environment can be much more con-

current, however. For example, the replicated update

tool mentioned above olmrat_ esynchronoualy. That

is, the caller that requested an update may continue

computing without waiting for it to complete ,very.

where, but can be programmed as if updates occur

inotantaneously. No mquence of actions, even

indirect ones, will catmea read that is performed after

such an update to be satisfied using a prior value of

the updated data item. The too¼ themselves are

implemented using a more primitive communication

mechanism that provides virtually synchronous pro-

cess groups [Birman-a].

The notion of providing an idealised distributed

programming environment ht not a new one

[Lamport-a] [Schneider.a]. Similarities exist between

our work and that of [Cheriton] (who proposed t sys-

tem structuring Imesd on proceu grouim), of [Changl

(who gives a protocol for atomic multicaat
communication) and of (Jefferson] [Stroml and [Peter-

sonl (who develop mechanisms for suPimrting asyn-

chronous execution* that exhibit prolmrtim similar to

virtual eynchrony). Since virtual eynchrony combines

a notion OF atomicity with an ordering restriction, it

is also related to transactional esrialisability,

although nothing analogous to the "transaction"

exists in a virtually synchronous setting. What we

have done in the ISIS 2 project is essentially to unify

theso concepts, weakening some aspects that proved

to be overly limiting, and optimizing behavior in the

common situations that arise when asynchronous

computation la 4mirod and failur_ can occur. The

result is a syetma calmble of Mtitfying even demand-

ing practitionm_ that is at tim same time formally

rigormm.

This Impm' _ by exploring tim concept of vir-

tual synchrony end tlm ways that it is relhteted in the

intarfncm provided by the 1818 z toolkit. We illustrate

these mechanisms by examining the internal stepwise

development of an ISIS s application and of a typical

toolkit routine. We then examine performance issues

2. Virtual synchrony

2.1. Assumptions

In this work, we assume that a distributed sys-

tem consistsofprocesseswith disjointaddressspaces

communicating over a conventionalLAN using mes-

sage passing. Processes are assumed to execute on

computing sites. Individual processes and entire sites

can crash; the former type of crash is assumed detect-

able by Some monitoring mechanism at the site of the

proem, while the lattor can only be detected by
another site by menno of a timeout. It is assumed

that failing Vroce_as send no incorrect messages.
Our system tolerates mange loss, but not partition-

ing failures (wherein links that interconnect groups of

sites fail). Partitioning could cause parts of our sys-

tem to hang until communication is restored.

2.2. Subproblems we wish to solve

We now enumersto some of the specific sub-

problems we with to solve in this setting;, each of

these corresponds to a separate tool within ISIS s.

Process groups ud group communication. It is

often desirable to structure a system into "groups" of

(po_ibly non-identical) procomum .- such a group

might implement a high level abstraction like the

emulsion depesiting service, or a low level one, like a

replicated data item. Ideally, such a mechanism

should enable each process to belong to multiple pro.

cees groups, provide flexible mechanisms for joining

and leaving groups, and be inexpensive. Also needed

is a facility for communicating with the members of a

group while membership is changing.

Deciding how to respond to a request. When a

group OFprocAmum receives a request, a strategy must

be deviesd for executing it. The process group

mechanism should enable a process to respond to a

request using only local information (without running

any agreement protocol among the group members), if

it is practical to do m.

Concurrency. Am much as posoible, designers will

need to exploit the concurrency available in a distri-

butod system, for example by arranging for several

processes to take actions at the same time, or to con-

tinua executing uynchronously after sending a mes.

sage to inform other processes of some event (without

waiting for that mesuge to be delivered).

Synchronization. On the flip side of the coin,

processes executing concurrently will need locking

124

andmutualexclusionmechanisms to avoid interfer-

ence between concurrent activities. These mechan-

isms must also deal with the failure of a process hold-

ing a lock or semaphore, and with deadlock detection.

Replicated data. Many applications require efficient

mechanisms for replicating date, at the level of indi-

vidual data structures, and among cooperating but

not necessarily identical processes.

Detecting and reacting to a failure. A mechanism

is required for detecting failures and informing any

interested parties of a failure. For example, when the

members of a group are cooperating to respond to a

request from • caller, operational members should be

informed if a member fails, and the caller should be

informed if all members fail. One would also like the

assurance that a message from a failed process will

never be delayed so long as to arrive after the failure

has already been observed.

Dynamic reeonflguretion. After a failure, recovery,

or in response to certain types of requests or changes

in system load, it may be desirable to adjust the sys-

tern configuration. To be practical, this must impact

as little as possible on new and ongoing activities.

Stable storage. If processes need to recover their

state eL_er a failure, a mechanism is needed for creat-

ing periodic checkpoints or lop that can be replayed

on recovery.

Recovery. [t should be possible to design sottware

capable of recovering a./ter failures. After a tots/

failure, where all the processes that make up an

application cruh simultaneously, the nmd is to res-

tart the whole application gracefully using its stable

state. The second and more common problem is to

recover from a partial failure, when a failed process is

attempting to recover while the remainder of the sys-

tam is still operational. Mechanisms are needed for

reintegrating such a proem into the system, and

perhaps for transferrinll some part of tlm current aye-

tern state to it.

Transactions. Applieat/om that msnap shared

complex disk-based data structures or distributed

ones will sometimes need ways to accom and update

them es a transaction. Even thoua4t the focus of

18152 is on non.transactional software, such applica-

tions will need to be supported, and they should be

able to make usa of the remainder of 1818 2 as well.

Protection. To the maximum extent that is precti.

cal, the 18182 system must protect itself and its

clients against actions by erroneous clients.

Consistency. Pervading the above discussion is an

implicit notion of consistency. Despite the uncer-

tainty of the system state introduced by concurrency

and failures, the designer needs to know that there is

some sense in which the operational processes in the

system will satisfy a global correctness constraint. As

far as possible, given locally correct algorithms one

would like to know that a globally correct system will

result from interconnecting them. [n particular, con-

currency should not introduce subtle correctness prob-

lems, even when processes are sometimes out of synch

with other processes they need to interact with.

2.3. Existing methodologies

What makes problems hard to tackle in a conven-

tional environment is the asynchronous propagation

of information among processes. [n the absence of

shared memory, the only way a process can learn of

the behavior of other processes is through messages it

receives. Since message transmission times vary from

process to process, and change with the load on the

system, mesealles relating to a single event may

arrive at different processes at different times, and in

different orders relative to other messages. Further,

the failure of a process can only be detected when a

timeout occurs while waiting for a meseage from it,

and hence cannot be distinguished from a transient

communication failure or an overload. All this makes

it difficult for • set o(processes to maintain a con-

sistent view of one another's status, or for them to

coordinate their actions effÉciently.

We believe that the current distributed program-

ming methodologies are inadequate in light of these

concerns. Mint distributed systems are based on

remote procedure calls (RPC) with timeout for failure

detection [Birrell]: a mechanism that provides almost

no support for any of the issues cited above. The

current trend is to turn to nested transactions [Moas]

or atomic sctiom* for purpe,_ of fault-toleraaos, but

these provide only s limited solution. Transactions

facilitate the management of stable storage, but they

offer ao help in integrating a recovered stato with the

current state of the rest of the system. In large sys.

terns, transactional concurrency control can be overly

restrictive: many of the behaviors listed above are

inherently nonserializable. Further, long computa-

tions tend to lock shared data structures for extended

periods, delaying other computations. We claim that

transactions are the appropriate mechanism in situa-

125

tionsthat involveshort.lived access to shared data

_tored on a di_k. Alternatives ere needed in other

situations.

2.4. Virtually synchronous environments

One way out of the problems enumerated in Sec.

2.2 would be to base the system on atomic multicast

protocols, l A multicast is atomic if all of its opera-

tional destinations receive the message unless the

sender fails, in which case either el] receive it or none

does 80. Moreover, all recipients see the same mes-

sage delivery ordering. We need to extend this

definition of atomicity to cover the case of a multicast

whose destinations include process groups with

memberships that may be changing. Such a multi-

cast should logically be delivered to the group

membership that applied when it was invoked, but

this may not be the one that is current at the time of

delivery. We will consequently require that the

delivery of an atomic multicast is always completed

before a group that forms part of its destinations is

allowed to take on a new member. We point out that

many existing atomic multicast protocols assume
stat/c sets of destinations that are known when the

protocol is initiated [Chang] [Cristian] [Schneider-b].

We will use the term synchronous to a describe

an environment in which multicasts are atomic and

events such as message deliveries, process and site

failures, recoveries, and other events described below,

occur in the same order everywhere. In a synchro-

nous environment, mechanisms solving all the prob-

lems cited above can be implemented without much

difficulty. Processes can easily maintem a consistent

view of one another, as each process is always in the
same point in its computation as any other. Syn-

chronization, when needed, is simple for the same

reason. Proce_ failures can be handled colistantly

because all operational procmam Imum of a failure

simultaneously, in tlm same eomlmtation*l step.

Unfortunately, tlff, ia prohibitively expanJive. The

problem in that it requires a// nummgn deliveries to

be ordered relative to one another, rqardlees of

whether the application needs this to maintain con-

sistency. The protocols needed to achieve such a

strong ordering are invariably costly, both in terms of

tThie is a muiticast to a set of p_, not s breed-
cut to 811 the machines connected to a local network with
a hardware broadcut capability. Such hardware might,
however, be exploited to optimize the implementation of
the multlcut protocol [Babaoglu].

the number ofmessages sent and interms ofthe time

spent waitingforthem toterminate.

This leads us to the concept of virtual synchrony.

The basic idea is to preserve the illusion that events

are occurring instantaneously, but to use different

communication primitives that enforce weaker

delivery orderings in situations where the application

or tool is insensitive to the delivery ordering. For

example, one could imagine a muiticaat primitive

that delivers messages in the order that the sending

process sent them, but is completely unordered rela-

tive to multicasts from other origins. A process with

private access to a replicated FIFO queue could use

this primitive to update it, since updates would be

processed in the same order at all copies. On the

other hand, if more than one process can perform

operations on the queue, this primitive would be

inadequate, because updates from different processes

might be processed out of order. The advantage of

using this primitive in the former ease is that it is

likely to have a cheaper implementation than a full

atomic muiticast, and yet gives the degree of syn-

chrony needed for that application.

A virtually synchronous execution is thus charac-

terized by the following property:

It will appear to any observer - any process

using the system - that all processes observed

the same events in the same order. This applies

not just to message delivery events, hut also to

failures, recoveries, group membership changes,

and other events described below. As we will see

in the next section, this enables one to make a-

priori assumptions about the actions other

processes will take, and simplifies algorithmic

design.

Recall that the actual sequence of events will some-

timee differ from procees to process in situations

where the resulting actions ere the same (or semanti-

cally equivalent) to these that would have been taken

had the event sequences actually been identical. We

will exploit this to increase concurrency.

2.5, Other virtually synchronous tools

The above discussion is so focused on atomic mul-

ticasting that one might conclude that this is all

ISIS s provides. In fact, we view atomic multicasts as

just one of a family of tools that all provide virtually

synchronous behavior. For example, there is a tool

that supports bulk transfers of information between

processes in 8 way that looks instantaneous. Another

126

toolmake_updatesto replicated data appear to be

instantaneous. The actual implementations of the

tools,moreover, are highly concurrentand asynchro-

nous. The main point is that they can be used as if

they were synchronous. Furthermore, the tools meet

our goal of orthogonaiity. After developing an appli-

cation using the replication tool, one can extend it

using the state transfer tool: these two kinds of

"instantaneous" events are guaranteed not to conflict.

These and other tools are described in the next sec-
tion.

3. Virtually synchronous tools

This section reviews some of the tools supported
by ISIS2, describing both the role of each tool and the

sense in which its behavior is virtua/ly synchronous.

Our aim in chosing this set of tools was to enable one

to develop applications using a small set of tools, and

then to add functionality by invoking additional tools,

making only minor changes to the existing code. We

expect the tools to grow into an extensive collection

covering moat of the problems that arise commonly in

distributed systems. We begin our discussion with

the lowest level of the system, which provides com-

munication primitives, and then work up to higher

level tools, many of which use these primitives.

Except in Section 3.11, we restrict ourselves to tools

that are fully operational (as of August, 1987).

3.1. Atomic multicast primitives

The three primitives described below, ABCAST,

CBCAST and GBCAST have been described in

[Birman.a]. The implementation is faithful to the one

in that paper and is not discussed here. Readers fam-

iliar with the primitives may wish to skip to Section
3.2.

ABCAST primitive. A commonly occurring

situation involves a number of concurrently executing

processes that commuaicato with a shared distributed

resource, whose internal state is sensitive to the order

in which requests arrive at different components of

the resource. For ezaml_, concurrent operations on

a shared replicated FIFO queue must be received and

processed at all copies in the same order. This

ordering requirement corresponds to the primitive we

call ABCAST, which delivers messages atomically and

in the same order everywhere. [/" all requests for

queue operations are transmitted using this primi-

tive, the enqueuing operations would look synchro-

nous relative to other such operations on the same
queue.

CBCAST primitive. The correctness of a repli-

cated FIFO queue depends on preserving the order of

all operations performed on it. Consider, instead, a

service that maintains a set of replicated variables on

behalf of several clients. Each client has exclusive

access to its variables. Although the service is likely

to receive requests concurrently from many clients, it

is only necessary to preserve the order of requests ori-

ginating from the same client. Clearly, a multicast

primitive weaker than ABCAST could be used in this

case. On the other hand, because of remote procedure

calls, a computation could span multiple processes,

and hence messages sent by the same client could ori-

ginato from several different processes. Short of ord-

ering all multicaste, i8 there a way of characterizing

the ordering requirement applicable in this case?

Lamport observed that in a distributed system,

the ordering of events is meaningful only when in/or.

matien could have flowed from one to the other

through some chain of message transmissions, recep-

tions and intervening local computations [Lamport-b].
It follows that we can define two multicast events to

be po_enlially causally related if information about the

first could have reached the point where the second

was begum before it was initiated there. Notice that

by this definition, two multicaats issued by a single

computation are always potentially causally related.

This leads us to the primitive called CBCAST, which

guarantees that if any invocations of CBCAST are

potentially causally related, the corresponding mes-

sages are delivered everywhere in the order of invoca-

tion. This is a conservative 2 approach to ensuring

that any genuinely related operations will be seen in
the correct order.

GBCAaT primitive. We have arrived at a

situation in which applications might be constructed

using mixtures of two kinds of multicasts - ABCAST

and CaCAST. For example, one could use ABCAST to

obtain a replicated lock on a distributed resource, and

once mutual exclusion has been obtained, switch to

CBCAST when accessing that resource. Some algo-

rithms, however, will perform operations that look

instantaneous with respect to both kinds of primitive.

This is what the protocol we call GBCAST is designed

to do. GBCAST is used by the system to manage

=CBCAST is conservative because, were we in a poei-
tion to exploit still more semantic information, it might be
poseible to use a weaker primitive. See lSchmuck] for a
more sophisticated treatment of this issue.

127

groupaddressing,andisavailabletousers as well, for

managing configuration data structures (see below).

3,2, Process groups and group RPC

Process groups. This collection of tools imple-

ments process groups, providing an interface that can

be used to join a group, leave a group, and to monitor

group membership changes. Each member sees the

same sequence of membership changes, and all

processes receiving a multicast addressed to the group

see the same "currant" membership at the time of

reception. Moreover, the membership list is sorted in

order of decreasing age, providing a natural ranking

on the members, and one that is the same at all

members. If a process group member combines these

properties with knowledge of the algorithms that

other members are using, actions taken by the

different members can be coordinated using any

deterministic rule, without a special exchange of mew

sages. Notice that in a synchronous system these pro-

parties are immediate consequences because group

membership changes occur instantly and when no

messages are being sent to a proems group. Thus, the

behavior we describe is virtmdly synchronous.

Broadeners and group RPC. This facility pro-

vides a remote-procedure call interface to the

CBCAST, ABCAST, and GBCAgT protocols. Each rues-

sage can be transmitted to a list of destinations; if

one of these destinations is a process group, a copy
will be delivered to each of its members u described

in the previous section. On receiving a message, a

process group member can assume that all other

current members received a copy too, and process the

message accordingly (this does not imply that all reci-

pients process the message; it is always possible for a

recipient to crash before being able to act upon a mes-

sage).

The caller indicates how many responses are

desired; tiffs will normally be 0, I, or ALL, although

any limit could be specified. If no r_ponea are

desired, the tmmdcsst is performed uyuchronously 3

and the client is permitted to continus executing.

Otherwise, the client specifies an array into which

responses can be stored, and a second array into

*When mmesges are being sent asynchrenously, it is
advisable to invoke the flush primitive described in
[Birman-a] prior to interacting w/th the entornel world or
updating stable stornge, l?lush blocks until all asynchro-
nous broadcasts have been delivered, and is called an-
Somatically by the tools that manage logs and stable
storage.

which the addresses of the respondents can be stored.

While collecting responses, the system waits until it

has the number desired, or until all the remaining
destinations have failed.

A reply mechanism is used to respond to a group

RPC. The reply itself will be transmitted using a
multicast protocol, hence copies can be sent to other

prcce_um if desired, and we will use this ability

below. Superfluous and duplicate replies are discarded

silently. [t is also possible for a destination to send a

null reply, indicating that it does not intend to send a

normal reply to a message. The null reply mechan-

ism is useful when a group includes extra processes

that receive copies of messages to the group but sim-

ply log or ignore them, as a standby might do. In this

case, the standbys can send null replies and the sys-

tem will not wait for them even if a client requests

replies from ALL group members. This makes it

unnecessary for a client to know about the existence

of the standbys.

3.3. Cooperating to execute requests

ISIS j provides tool- that make it possible to

employ any of the popular methods for responding to

a request, sa well as to create one's own method,

depending on the needs of application.

Configuration tool This tool allows a process

group to maintain a configuration data structure,

much like the one that lists membership for a process

group. The data structure is stored directly in the

process group members, hence there is minimal over-

head aaseciated with accessing it. As with a group

membership change, it will appear that configuratien

changes occur when no muiticasta to the group are

pending, hence all recipients of a message will see the

same group configuration when a message arrives. If

all members use this data structure to decide how to

divide up the work, they will make mutually con-
sistent decisions.

quorum and full replication. Some replicated

processing methods, such as the full replication

method used in CIRCUS [Cooperl or the quorum

methods used in [Gifford] {Herlihy], have straightfor-

ward implementations in IS152. In the former case,

the caller waits for ALL responses and all recipients

respond. [f the caller knows the quorum size, Q, it

simply waits for Q replies. If it does not know the

quorum, it waits for ALL replies, and the Q oldest

group members (or any other set of Q members that

can be identified consistently) reply, giving the value

128

of Q as part of their reply. Other members send null

replies. The caller will obtain fewer than Q replies

only if some of the processes responsible for executing

a request have failed.

Coordinator.cohort tool The preferred repli-

cated processing method in ISIS: is the coordinator-

cohort scheme, whereby the action associated with a

request is performed by one group member while oth-

ers monitor its progress, taking over one by one as

failures occur {Birman-b]. The tool is invoked by all

processes receiving a request for a computation (nor-

mally, all members of a process group). The tool

picks the coordinator to reside at the same site as the

caller if possible (to minimize latency), and otherwise

in a way that will balance load. When the coordina-

tor terminates, a copy of its reply message is sent to

the cohorts. Because the multicast used to send this

reply is atomic, it reaches the cohorts if it reached the

caller. Thus, if the coordinator is observed to fail

before receiving the reply, the tool can deduce that

the reply was not sent and select a cohort to take

over. If a copy of the reply is received, the computa-

tion succeeded.

3.4. Coneurrency

The primary tool for obtaining concurrency in

i$1S_ is the asynchronous multicast. One can multi-

cast a request to a set of processes; all will receive the

request concurrently and can execute it in parallel.

For example, when CBCAST is used to asynchronously

update replicated information, the caller can pretend

that the message was delivered to its destinations at

the moment the CBCAST was issued. The properties

of CBCAST ensure that such a caller will not

somehow interact with an "out of synch" destination.

Thus, there is no need to implement timestamps at

the application level, ns in [Liskov], where this is

done to resynchronize callers and services when asyn-

chronous updates are being done.

3.5. Semaphores

ISIS2 provides replicated semaphores, using a

fair (FIFO) request qumminlg method. If desired, a

semaphore will automatically be released when the

holder fails.

3.6. Replicated data

This tool provides a simple way to replicate data,

reducing access time in read.intensive settings and

achieving low-overhead fault.tolerance. The processes

that are managing the item supply routines that will

update and, if meaningful, perform read-only access

to the item. Arguments such as the item name, byte

offset, etc. are passed to these routines without

interpretation. The client, which may be one of the

processes managing a copy of the item, sees an inter.

face exported by the tool, which can be concealed

beneath an RPC stub. In an optional logging mode,

the tool records updates on stable storage, making it

possible to reload data after recovery from a crash

and to automatically transfer it to a process joining a

process group (see Sec. 3.9). In this mode, a check-

pointing routine can optionally be supplied; it must

be capable of carving the replicated data into some

number of chunks (of variable size), and is invoked

repeatedly during transfers and to create • checkpoint

if the log gets long.

The replication tool is completely general: repli-

cated data could be memory resident, stored on a disk,

or could even be computed on request. The tool inter-

face handles the multicasting needed to ensure that

the replicated data structure will remain in a con-

sistent state. If the process managing • replicated

data structure indicates that it requires • globally

consistent request ordering, like the FIFO queue we

mentioned earlier, ABCAST is used to transmit reads

and updates. If the data structure can be updated

nsynchroneusly or the caller has obtained mutual

exclusion, CBCAST is used instead.

3.7. Detecting and reacting to failures

ISIS : provides • site-monitoring facility that can

trigger actions when a site or process fails or a site

recovers. Site and process failures are clean events in

ISIS:: once a failure is signaled, all interested

procm will observe it, and all m the same

sequence of failures and recoveries. The failed entity

will have to undergo recovery even if it was actually

experiencing a transient communication problem that

looked like a failure. The ISIS= failure detector

adaptively adjusts the timeout interval to avoid treat-

ing an overloaded site se having failed.

3.8. Recovery and reconflguration

Recovery manager. This tool will restart

processes altar they fail, or if a site recovers. The

recovery manager runs an algorithm similar to the

one in [Skeen] to distinguish the total failure of a pro-

em group from the partial failure of a member, and

will advise the recovering process either to restart the

129

group (if it was one of the last to fail) or to wait for it

to restart elsewhere end then rejoin. The recovery

manager can be used with the replication tool to

obtain a simple mechanism for restarting services

that maintain replicated data.

State transfer. This tool provides a way to join

a pre-existing group of processes, transferring state

from the operational processes to the one that wants

to join. The application must be able to encode its

state into a series of variable sized blocks of data.

The tool transfers successive blocks, using ISIS s rues-

sages for small transfers and TCP channels for large

ones. The tranal'er is virtually synchronous with

respect to incoming requests to the group. Up to the

instant before the join occurs, the old set of members

continue to receive requests and the new one does not.

Then, the join takes place and the next request is

received by the new member too, and only after it has

received the state that wu current at the time of the

join. Process migration can thus be performed by

starting a process that will join the group and then

arranging for some other member to drop out of the

group as soon as the transfor completes. Clients will

see this as an atomic event. If a state trarmfor is

interrupted by a failure, it is restarted automatically,

either from the point d interruption or from the

beginning. Most of the tools, such as the

configuration tool, the replicated data tool, and the

semaphore tool, automatically tran_for their internal

states when this facility is in use.

3.9. News service

This service allows processes to enroll in a

system-wide news facility. Each subscriber receives a

copy of any messages having a "subject" for which it

has enrolled in the order they ware posted. Although

modeled after net-news, the now, service is an active

entity that inform procaines immediately on learning

of an event about which they have oxpre_ed interest.

3.10. ProN_on

A protection tool is wovided that, if desired, will

validate all incoming messages using the sender

address. Messages that arrive from an unknown or

untrusted client will be presented to a usor-specified

routine that must determine the appropriate action to

take baaed on the sender and tim meesage contents.

This works because ISlS a ensures that a lender's

address cannot be forged. Group membership changes

are similarly validated before a process is allowed to

join or to receive a state transfer. Provided that

clients work only through the toolkit, ISIS2 cannot be

corrupted by the actions of an erroneous user pro-

gram.

3.11. Additional tools

Several tools are now being designed and will be

implemented later this year. We plan to add a real

time facility to 1S152. The tool would provide for

clock synchronization within site clusters, scheduling

actions at predetermined global times, and reconcilia-

tion of sensor readings (the tool will act as a

database, collecting timestamped sensor values and

reporting the set of sensor values read during a given

time interval). We have also designed a transactional

facility, providing a simple subroutine interface

implementing the nested transaction constructs

begin, commit, and abort (Moss], which the user

simply includes in hie or her code. Transactional

access to stable storage end 2-phnse locks will be pro-

vided, using the algorithms (and much of the code!)

reported in [Joseph] [Birman-b]. Finally, in

(Birmen-d] we describe a very high level tool that

supports bulletin boards of the sort used in many

artificial intelligence applications. Unlike the news

service, the bulletin board facility is linked directly

into its clients and does not effilst as a separate entity;

it is intended for high performance shared data

management. Processes can read and polt messages

on one or more shared bulletin boards, and these

operations are implemented using the muiticast prim-

itives.

4. Miscellaneous system-level facilities

The remaining sections of this paper focus on

some examples. To understand them, it will be help-

ful to have a picture of the overall /SIS 2 architecture,

illustrated in Figuro 1. AJ the figure shows, the sys-

tem is organized around a protocols process which

implemente the multicast primitives, handles process

group addressing and does all inter-site communica-

tion. This process maintains process group member-

ship views, using a cache for groups not resident at

the site. Client programs are linked directly to what-

ever tools they employ. A set of service processes han-

dle service-specific databases. Several services exist at

each site: the remote execution service, the recovery

manager, and the news service.

130

t ,f "_.I- tJ

Oi: POOR (_JALIT¥

ooo

Pw.k

Figure I: ISIS system architecture

4.1. Run time facilities

All processes in the system have access to the fol-

lowing run time support facilities.

Message subsystem. In /SIS:, a message is

represented as a symbol table contalrung multiple

fields, each having a name, type, and variable length

data. Fields can be inserted and deleted at will, and

special system fields carry informatien such as the

address of the sender of a message (this cannot be

forged), the session-id number used to match a reply

with 8 pending call, etc. A field can even contain

another message.

Tasks. ISISI implements a light.weight task

facility permitting a single process to execute multi-

pie concurrent tasks with no changes to the operating

system. Tasks have stack areas of fixed but large
size, and are implemented using a coroutine mechan-

ism.

Addresses. IS/as supports a highly encoded pro-

cees addressing echome that represents addresses

using an &byte idmtit_. Group addrmm can be

used in any context where a process address is accept-

able, and a way to map symbolic names to group

addresses is provided.

Entries. Each process using ISIS s binds routines

to any entry point on which it will receive messages.

Entry points are known to callers through 1-byto

identifiers. Some entry points are ge_r/¢ ones used

by the toolkit, for example the entry used to join •

process group, and the one used by the system to

report a group membership change. When 8 message

arrives, a new task is started up corresponding to the

entry point in its destination address, and the mes-

sage is passed to this task for processing.

Filters. Messages arriving in a client are passed

through s series of filters. A filter is s software pro-

cedure that will be given an opportunity to examine

each arriving message. For example, the protection

facility uses a filter to validate incoming, messages.

The last filter is the one that creates new tasks.

4.2, Machine Independence and scaling,

l$1Ss currently runs on 4.3BSD UNIX systems (it

is operational on DEC, SUN, and GOULD versions of

the system). We hope to port it to non.UNIX systems

in the future. ISIS= currently implements a non-

hierarchical protocol suite. Although these would

scale smoothly up to groups of 32 or 64 sites, the

extensions reported in (Birman-a] will be needed in

much larger networks.

5. A toolkit application

One of our goals in developing the toolkit was to

support the stepwies development of distributed 8ppli-

cation software. To see how the toolkit makes pussi-

ble such an approach, we now present an example: •

"twenty questions" program that was one of the first

operational ISIS = applications. The program plays a

guessing game in which a caller issues up to 20 ques-

tions about an unknown category of objects ("cars",

"planes", etc) and then must guess the category based

on the answers. Only questions that can be answered

yes, no, or sometimes are permitted.

Twenty questions may seem to be a frivolous

application, but in fact it is illustrative of • large

class o/" serious ones. Our program works by patti-

tioning a replicated database among several processes

and supporting queries on it. It divides the responsi.

bility for handling queries among the processes,

which requires that each incoming request be handled

consistently. The program supports dynamic updates,

tolerates failures, and can dynamically reassign the

workload decomposition. As noted in the introduc.

tion, an application like this one would be exception-

ally difficult to develop in most settings. In ISIS =, the

tint 6 steps described below were completed in one

day, required only 460 lines of code (in C) for the

twenty-quest/ons service and 160 for the interactive

front end. This includes all code, even comments,

that constitute the two programs, but excludes the

131

toolkit routinesthe application employs. It was

nearly bug.free from the outset. We now enumerate

the stages in developing this program.

Step I. Non-distributed version.

We started by designing a non-distributed twenty

questions program with a static database, consisting

of a back-end program that reads the database and a

front-end program that interacts with users, the

front-end does RPC'a to pass queries to the back-end.

The database is organized u a relation; the first 11

lines of the one we use for demonstrations are as fol-

lows:

object color size pries make model
car red mall S Weeks Toy
car yellow tiny 6 Matml Toy
car black compact 4995 Hyundal Ezcol
car tan waist 6190 Nhmn Sentra
car 8rem sedan IOM9 Peril Taurus
car bhm compact 5799 Hoods Civic
car wh/t_ wsam 15248 Feed r Taurus
car blue sport 18409 Ntman 300ZX
car blue apart 26776 Porch4 944
car whit4 qmct 35000 Mm'mdm 300D

A query specifies an item, a value, and a rela.

tional operator, for example price >9000 or co4or :red.

The srmwor to such a query would be yes, no, or some.

times. Obviously, a real database would have several

kinds of objects, and the game would start by picking

the object using a random number generator. All

queries would be implicitly qualified by this (secret)

number.

Implementing this program in the 1818z system

is straightforward. A main procedure initializes the

program (by reading the database), declares the entry

that will raspemi to queries, and then runs the light-

weight task subsystem. As each query arrives, a

lightweight task is created to respond to it.

Step L I)tsUibu_d version.

A distld_tod twenty questions program would

replicate the datehuse among members of' a process

group that msdkas up the twenty questions "service."

Say that there are NM£MB£R$ such processes. There

are two options. We could d/vide the work omica.y,

with each prec_ being reepousibla for one or more

co_umas of the database, or we could do so &u'_zontalty,

with each process being raspmmible for one or more

rows. We decided to provide both options, and to

extend the query interface to specify which option is

to be used. A vertw.al mode query looks just like the

ones described above. We adopted the rule that a

query referencing column C of the database should be

handled by member C rnod NMEMBERS. A horLzontai

mode query is prefixed by a °, e,g. "price >9000. Aii

the members respond to such a query, with member

M basing its response on the rows R in the database

satisfying R ,nod NMEMBERS =M. For the above

database, if NMEMBERS :5, the query *price >9000

would return the following set of replies:

['o [.omatim" I ,,o=_i.m,.- [.o,=.,im- lY" I

Notice that both kinds of query require a well

known ordering on the members of the service.

This extension requires minor changes to the

front end program, since it must know how many

replies to wait for, viz. 1 in the vertical case, and ALL

in the horizontal case (or NMEMBERS, if this is

known). The extension to the back end program

involves adding an argument to the program which,

when the program is run, indicates if it should "join"

the service or "croate" it. The creator first reads the

database and creates a process group with symbolic

mtme "twenty". A joining member calls the toolkit

routine join-and..zfedgid,credentials) which requests

permission to join the specified group (the gid is

obtained by calling pg..lookup("twenty")). The current

state of the group is then transferred to the proces_

that is joining - in our case, the contents of the data-

base.

Each time a process joins the group or fails, the

operational members will need to know about this.

Hence, all members mon,or the membership data

structure. This is done by a call to a system pro.

cedure pg..monitor(routin_), where routine is the pro-

cedure to invoke each time such a change occurs.

Because members are listed in order of decreasing age

within this structure, and all see the same sequence

of changes, and see thoas changes in the same order

relative to arriving requasts, a member's index in this

list can be taken u its member number. By so doing,

each incoming reqmmt can be handled in a consistent

manner by all the members, provided that

NM£MB£R8 _ are actually operational.

This solution e_umes that NMi£MBERS processes

are operational. In a vertical mode query, if fewer

than NM£MB£RS processes belong to the group when

it arrives, a caller, who will have requested one

response, might get no responses and hang if the pro-

ceas responsible for sending the response fails. In our

version, we corrected this problem by having non-

respondents send null replies, thus informing the sys-

tem that they will not send a true reply to the rues-

132

sage in question. Instead of hanging, the caller will

now obtain an error code from the multicaat it used to

issue the query, and will have to reissue its request.

We could also have had the r_pondent send copies of

its replies to the other members of the service, using

an approach not unlike the coordinator-cohort one

described earlier. However, this approach would be

more complex.

A different kind of incorrect behavior occurs if a

a horizontal query hi handled using tim above algo-

rithm when the number of peecomes dropo below

NMEMB£RS. Here, this caller will not get the correct

number of responses, and will thus only learn about

some rows of the database. Tn our solution, the caller

iterates until it receives the expected number of

responses. A more complex alternative would be to
use s coordinator.cohort scheme under which some

representative of the service would compute and

return the entire vector of responses.

Stop 3. Automatic member restart.

An ea,y extension to the above solution is to

have the oldest member of the service start new

members up at an appropriate site until the number

of operational ones reaches NM£MB£RS. If the oldest

member fails while doing this restart, a surviving
member could take over and roiseua the restart.

Notice that this involves a potential race condition

that could result in extra group members beyond the

number intended. This can be corr_ted by having

cohorte spy on the restart procem, but we chose not to

do so, for reasons described below.

Step 4. Hot standby processes.

The extra group member "problem" can be turned

to our advantage. The idea is to have

NMEMBERS +NSTANDBY processes (or more) opera-

tional group members whenever posoibi,. Standbys

would join the group, but send nu// rep//es to 111

incoming requests, thus a client will be obliviotm to

their existence. On tlm _ hand, should a member

fail, the standbys will Nmmput, their ranking along

with all the other mmsbws, sad dsc/da whether to

function as • real momber. This r_ts in a very

rapid transfer of respomibilities.

Step 5. Dynamically updat/ng the dMabmm.

Having arrived at a workable distributed twenty

questions program, we can now extmu/ it to support

dynamic updates to tlm datahezo. On# could malta

the rule that only ezmting members can issue

updates, or that only specially designated clients can

do so (this can be enforced using the ISIS 1 protection

tool), or that any client can do updates.

Clearly, we need to arrange for updates that are

virtually synchronous relative to queries, hence we

must pick the appropriate protocol for sending queries

and updates. One option is to implement beth queries

and updates using ABCAaT. The alternative is to

implement queries with CBCA3"T and updates with

GBCAST, or vice versa. The choice should be based on

the relative frequency of thrum operations. For exam-

ple, if it can be predioted that meat requests will be

queries, one would uas CBCAaT to transmit queries,

and GBCAST for updates. This is how our version

works. Having made this decision, one might went to

use the replicated data tool to maintain the twenty

questions databam, ipacifying the kind of multicast to

use for updates and queries ("feral" operations). The

chimges needed to make this converlion m'e minimal.

Step 8. Restarting from total failures.

Our solution il tolerant of partial failure*, but

not total ones. An mmy way to extend it would be to

activate the logging option in the replicated data tool,

which will now maintain checkpoints and lop from

which the datalmso state could be recovered. One

must also rqist_ the twenty questh_ service with

the "recovery manager" at tboso sites whers the ser-

vice can be rsetarted after failure. ,nd call the log-

recovery routine during recovery, when the ori_ul

version of the progrum would have re,d the database

from disk.

Step 7. Dynamic load b_e_|.

If desired, it would be straightforward to use the

configuration tool to change the rule for assigning

numbers to members at run time. Such a elumge

might he u,ed to dym-nioally shuffle the members

when a site becomes overloaded and unresponsive (an

overloaded memher could also just drop out]).

8umesary.

Virtual synchrmy was usoful in _ ways in

tha above solution. The most obvious ben#Jlt was the

cbem decompesition of thi, distributed _ into

nspocte that could be solved relativoly independently

from one another. Virtual eynehrony _ permitted

us to design the distributed alaerithm using simple

assumptions about how a sol of procesmm would reset

to an event that all obasrve. For example, we dld this

when we based the response of member M on the

133

valueofM: obviously, such an approach only works if

each process kno_vs its relative number and the

numbering is the same when each sees a given

request. We were able to write a fault-tolerant distri-

butod program in one day. When run on 4 SUN 3/50

workstations using a 10-Mhit ethernet and with

members at all sites, it supports an aggregate of 30

queries or 5 replicated updates per second. We know

of no altornative distributed programming methodol-

ogy in which this would have been possible.

The solution also illustrates some of the limits to

the methodology in its present realization. Par exam-

pie, if a proce_ takes an external action after receiv-

ing a message, it is hard to deduce the statue of the

action if • failure occurs beforo the action completes.

Eventually, we hope to identify parndigu_ for prob-

lems like this, and to package mlutions es tools.

Moreover, correct behavior of the twenty-questions

service whm dynamic updatm era beis_j done

require, that the appropriate broadcast primitive be

used by clients when transmitting update and query

requests. A programming error in one of many

clients could violate such a rule, alYacting other

cliento. A %7PO obackin8 _ moclumism seems to be

needed for ve_g tim compliance of clients with

the roqulrements of services they exploit.

6. Inside the coordinator-cohort tool

This section focuses on the internal structure of

the coordinator-cohort tool. It is a rehttively simple

tool, and we present it primarily to demystify the

internals of the toolkit. A mmmingiy more complex

tool, the stats transfer facility, is basically just an

encapsulation of this method into a special interface.

As described in Section 3, this tool enables a

group of procms_ to use the coordinator-cohort stra.

to respond to a mmsa_ sent to the group by a

caller. Tins _ is mmmin_ only when more
alum one msmb_ of the group is capable of pro'form-

ing the ,eti_ roqumtmi by the caller, so that at lmmt

one cohort can take over should the coordinator fail.

The callar snnply does a group RPC, and waits for one

reply. When the group mmabe_ roative a meeeago,

they etch use the same deform/static algorithm to

determine a subast of the group members, p/i_, that

will actually participate in this coordinator-cohort

computation. This list depends on the action to be

taken, since some members may be incapable of per-

forming some requsote (uy, if they do not have accm

to necessary data). The members in pliJt then coch

call the toolkit routine

coord-cohort_ms&, gid, plier, action, got_reply),

where meg is the incoming message, &Jd is the group-

id for the group, action is the routine that processes

the request, and got_reply is a routine that, in a

cohort, will be called when the coordinator completes

its action and replies to the caller. Non-participants

issue null replies to the request.

The toolkit routine itself behaves as follows.

When called, it examines mJg to determine the site-id

of the caller. It then calls pg_/ookup (g_d) to find the

current membership of the group, and scans plist to

find an operational proce_ that resides at that site.

If ther9 is one, it is assumed to be the coordinator for

this computation (if there is more than one such pro-

ca_, the first is choeen). If there is no process at that

site, the caller's sito-id is used es a "random" index

into pl_G and the first operational process, in a circu-

lar scan, is chosen. Notice that because all the parti-

cipants use the same plist and see the same group

membenhip, all will agree on the same value for the

coordinator, without any additional communication

among the group members. The other la'o¢_mes in

plies are the cohorts, _ the remaining members of

the group are non-participants.

If • member determine, that it is the coordinator,

it then eltlhl the routine action. When it returns, it

multicasts the result not just to the caller, but also to

the generic entry point GENERIC_CC_REPLF in each

of the cohort,. The computation then terminates in
the coordinator.

The cohorts, meanwhile, call the routine

pg_moniw (lid) to monitor the status of the group.

Should the coordinator fail before sending a reply, all

cohorts learn of thi, and, again without interacting,

use the same algerithm es above to pick a new coordi-

nator and monitor its progress. If the coordinator

succeeds in sending a reply to the caller, the

GF.N£RIC_CC..P_PLY entry in each of the cohorts will

be called. It tint deactivates the momtor, then calls

got.JYply, paaeing a pointer to the result and its

len_h as arguments. Tiff, terminates the cohort

algorithm.

What ebout the case where all recipients fail

before the computation terminates? Here, the caller

will receive an error code, since the group RPC will

detect that no pmsible respondents are still opera-

tional. Because non-participsnts send null replies,

this works even when a subset of the group members

134

ORIGINAL PA_E IS

OF POOR QUALITY

TABLE ! - MULTICAST OVERHEAD FOR SELECTED TOOLB

Tool Description MnltJeuta required
Group RPC

nrelm= mcast(desto,mq,nw,nt,answere,who) MuJtiCalt, collect nwant repi/es See F_ure 2.
reply(ms|,ensw.elon) Normal or null reply to ms& I async CBCAST (t deer)
reply_c_mq,co-destojnsw,elen) Reply, with copies, t ssyuc CBCAST

Process IrmUpe
i0d = pt_erm to("symbolic name")
|id = plg..lookupCeymbolic name")
pa_eddmem ber_who,ilid)
p|_lemv_|id)
pe-join(Irid,eredon theb)
pig-kill(¢id _ilrna Leo)
pf_monitor(|id,mrontine)
pe-m q- verifF(weut/na)
p8-._oi,, vet_f]Kvl'ontine)

Cm,tto proems SToup
Lookup group 8ddrms
Add member (done by member)
Leave frreup
Request to be added
Send UNIX ileal
mvou_ne momtam membenhip
oroa_ne validate mesmees
vreu_e validate joins

t Weal RPC
1 local RPC [+ I CBCAST, I reply
I GBCA_P
I GBCAST
t CBCAST, 1 psJddmemb, l reply
I ABCAS'r
1 local RPC pet ¢hmnee

Noes=
State transfer

_ n.a nd..ttm_fid _=redonthtIs_outine)
Coo_limalor-eohort

mord-cohort(mN4id,pli_t jction4oLrm)
Replicated data

updat_l/d,arlls)
reed(|id_rlll)
rmd(qgid_trlls)

Symcluonindon
F_Sid_asme_ss_on.Jafluro)

V(sid_mme)
Comllftnlbm

eouLupdata(itom,velue,lon)
con L.rond(Jtam,&value,& ion)

New8

,u ba=ibe('sut_,et"_uuLJeutine)

poLn_,Cmb_'=q>

Jeia, sm=_:ne tern?t8 state

Sm esction 6.

I _ + ITCP trau/'er

1 CBCAST to invoke, t to r_i_

Update replieatod data I aaync CBCAaT ur I ABCAaT
Read-only aecem by monaller No cost

Rond-only eeesm by oth_ ciionto CBCAaT + I re[,ly

Obtain mutual exdumon
ReJmm mutual seclusion

1 ABCA3T, aII rupMss
1 _ CBCAST

Update eonSfution I GBCAaT

Rond conlil_ration No

P.qtst_ with esrvim

Pssta news memaje

I b==J RI_ pw psst/na
I as_c CBCA3T or ABCAaT

run the algorithm. Finally, we note that the tool can

be invoked reentrantly, provided that appropriate

care is taken in the action routine if the computation

will require mutual exclusion on any resources.

The cost of the approach is low. Instead of an

RPC to the sinale destination that will respond, the

caller used a broadcast. However, the caller will

often have received its reply and resumed compute-

tion before the original RPC even reaches the remote

cohorts, since local communication is faster and the

tool is biased towards picking a local coordinator,

Thus, any overhead aseoeiated with the tool is pri.

marily a backilround one.

7. Performance

Table I summarlsm communication overhead, in

multicnsts, of the major toolkit routines cited in Sec-

tion 3. Fillure 2 shows the throughput in bytes per

second for uynehronous CBCA.Tr's (where the sender

continues execution without requesting a reply), and

the latency seen by the sender for CBCAST, ABCAST

and GBCAST invocations in which one reply is needed

and comes from a local process. This latency meM-

urea the delay between when the sender invokes the

primitive and when the desired reply is received.

Except for CBCAST, the primitives _ve similar

behavior when all destinations reply. Asynchronous

multicaste and multicuts with a local destination

resulted in much more efficient CPU utilization: loads

of 96% to 98% were observed on the sending site in

these teats, compared with 30% to 35% when running

a protocol like ABCAST that must wait for messages

from remote sites. The remote sites, if otherwise idle,

typically showed loads of 20% or less. The sharp rise

in latency between messaae sizes of Ikbytes and

10kbytas occurs because large inter-site messages are

frasmanted into 4kbyte Imckets.

Fiaure 3 focuses on the actual caste essociatecl

with sending an ABCAST in the system. The figure

reveals just how expensive message puainll can be, in

comparison with all other aspects of • distributed pro-

tocol. The link delay8 shown are for • single traversaI

of tAe fink: lOuts to traverse a link within a site, and

16ms to ,end an interuite packet. Thus the latency

before an ABCAST delivery occurs at a remote desti-

nation is 70nu - 3 inter4ite mesaailes are sent.

CBCAST sends I inter4ite me.mac, and GBCAST

sends 3 or 5, depondinll on how it is used.

135

100K

60K

40K

20K

ms

5OO

_0

30O

2O0

100

ms

I

2

!9 dem

1 I I !

_ (_l
?ackeS_

dO0

4OO

3O0

2OO

IO0

2

ldea

i

10 100 1000 10000
I I I i

la_-y (_)

ms

4

2
Idmt

10 100 1000 10000
I I I I

_ (_)
Pk:k/l lira

500

400

3(]O

200

100

4

2

Idols

10 100 1000 10000
I I I I

_ (_)

Filure 3: Throughput for broadcast primitives

Figure 3: Breakdown of ABCAST execution time

136

07 POOR QUALITY

In the future, we plan a much more detailed

study of performance, including 8 study of how the

protocols will perform on a system subjected to a uni-

form load from multiple sites, and how the system

performance changes with scale. The initial version

of the system has not been operational long enough to

permit careful tuning, hence the figures reported

above should be understood to be preliminary ones,

and are likely to be reduced by optimizatiorm.

8. Status

ISIS 2 has now been operational for six months,

and is increasingly robust. Working in collaboration

with other academic researchers •t Cornell and with

industrial research and development teams, we are

now beginning to develop ISIS: based application

software. Nonetheless, many questions remain open,

and substantial changes and extensions to the system

will be needed before w• consider it complete. For

example, although the present system is clearly capt-

hie of addressing many aspects of the factory •utoma-

t/on example (Sac. I), it remains to be shown that •

very large system could really be built using our

approach. A pragmatic problem that this raises is

that 1S/8: will have to coexist with many existing

systems, such as the Manul'acturing Automation Pro-

toool (MAP), with a variety of databases, and may

have to be ported to different kinds of hardware.

At a conceptual level, we are just learning how to

infer the choice of protocol from context [Schmuck].

We have largely overlooked real time issues, and

extremely demanding real time scheduling con-

strainte are probably incompatible with the 18/S s sys-

tem. Likewise, the most appropriate way to deal with

network partitioning remains 8 pressing problem.

Despite these limitations, we are convinced that

the virtually synchronous approach represents • con-

ceptual breakthrough. Having tried to build robust

distributed soRwaro using other methodologies and

failed, we have now mccasded using this approach.

As this technology becomes widely available and the

remaining limitations lure overcome, it could ftmda-

mentally change the way we formulate and solve dis-

tributed computing problems.

9. Acknowledgements

Yu-Jen Hsiso undertook the performance studies

reported above. In addition to the theoretical work

cited earlier, Frank Schmuck implemented the

recovery manager currently used in ISIS: and has

become increasingly involved in all aspects of system

design. Keith Marzullo, Sam Toueg, and John Warne

all made insightful suggestions about the virtual syn-

chrony approach, for which we are grateful. Finally,

we thank the SOSP program committee. In particu-

lar, Ozaip Babaoglu and Alfred Specter have provided

invaluable guidance and assistance throughout the

revision process, for which we are deeply indebted.

I0. References

[Bab-oglu] Babaoglu, O., and Drummond, R. Streets of Bymn-
tium: Network architectures _r feat reliable broadcasts.
lEEK T$£ BLII, @ (June 1986), 846-554.

(Bknml] Birrsll, k., Helms, B. Implem,atin| remote procadum
mils. ACM Tnmm_mnJ on CompaCt 8ys_ml 2, t (Feb.
19Q4). 39-50.

[Sblan-e] Birman, K. and Joseph, T. R_hble comnunication
in the prsmm_ o4' faihn'_N. ACM Tran_ on Com.
pu/er 8ysdem 5, I (Feb. 1987}.

[Bfrman-b] BJrman, !_ Repli¢stioa and fruit.tolerance in the
ISiS system. P_. 101h ACM 81GOP8 8ympomum on
OpemtmX 8yskms Pnncip_ Or,as Island, Wuhinstms,
Dec. 1985, 79-8e.

[Bh-mea-e] Birmau, K., Joeepb, T. and Schmuck, F. ISIS Sye-
tan Docummtotion, R,e_N I. Available a, TR-87-849,
Dqmrtmmat of Comlmtm' Saieam, Coach Uuivws/ty, July
1987,

[lSbrman_] Blrmu, K. and Joeeph, T. Prozramning with
shared bulletin boards in ssynchrouous distributed my*-
tans. Dept. of Computor Scismca TR-S&772, Coruoll
Un/versity (Ausuat 1986; ReviNd DoaJmb_ 19M).

[Cluuql] Chang, J, Maxemchuk, N. R,I/abk broadcast protocols.
ACM Tran_acf_ons on Compututg 8ys_m# 2, 3 (Aug. L984),
251-2"/3.

[Cberitom] Chefitam, D. ="d Zwseaepm, L W. Distributed pro-
irroulm in the V km'nel. ACM Trua_c_ on Com.

pu_.r 8yWm# $, 2 (May. 1985), 77-107.
(C_IMrl Cooper, g. l_lpll_ted dletributod proqrmmL Proc.

10_ ACM 8IGOP8 8ympoeium on Opens I 8ysk,ms
Prm_D,_,. Omas Island, Wuh/aStm, Dec l_, 53-78.

(Crledmsl Cricba-, F., Asbili, H., Strmss, R., Dolev, D. Atomic
brmdmat: l_m simple mesas• dJJ_uskm to Bymntmo
88rnement. IBM Teebaiml RSlPmrt RJ 4540 (48668)
12/10/114.

[O_ro_l| GMwd. D. W_dzhtod votingforinputted d_to. Pr,_.
7_ ACM 81GOP8 8ympwmm o_ O_ 8ylr_ml Prin.
z,.,. Decamb 1979.

(HorMhy] Hwlthy, M. R,plicatimt mothedo for abatract data
type•. Pk.D. t/_, Dept. of Computw Solace, MIT (LCS
84-319), May 1984.

{Jefferson] Jefferson, D. Virtunl t/me. USC T-_hniml report
TR-83-213, Uaivmsi_ of Southern Califomi,, lam Anilelu,
May 19_3.

[Joeep_] Jeeeph, T. and Birman, K. Low eoet mane|ernst o(
repflcated data in fault-tolwaut distributed rystom,. ACM
Transac_on# on Computzng 8ymt_m8 4, I (Feb. 1986), 54-
70.

137

[Lampurt.m] IAmpwt, L Us/nl t/me insteadoL t_moout for
tsult-tolersneein distributedsystems. ACM TOPLAS 6,2
(April1904),264-260.

(L4ipe85-b| L4mpert, L Time, cJocka, sad the onierin| o(
events in • distributed system. CACM 21, ?, July 1978,
568-646.

[LJskov] LhJkov, B., Ladin, R. Hi|h Available Distributed
Serversand Pault Tolerant 6arbsje Collection. Prvc5th
ACM SIGACTISIGOPS Sympoe_m on Principles uf D_tn.
baled Computmfro Au I. 19N, 40-51.

[Moss] Moea, g. Nested trumct/oez An appreecb to reliable,
•_/butd oemputinl. Ph.D. thesis, MIT Dep4 of EECS.
TR 260, April 1981.

[Petoreon] Petmnma, L. Pnmrw_ I eoelext informaUm in an
IPC abetrsetlm. Prc_. 601 8ympt_um oa Rehabd_y m
Dwnbu_d 3,_umre ,,rid Dombae SysSema, March 1907,
22-31.

[kbaeidor-s] Schneider, g. Syncbrmbat/ea in diaributed pro-
lrrsms. ACM TOPLAS 4, 2 (April 1982), 179-196.

(Bohneider-b] Schneider, g., Grim, D., Schlbs/nl, R. Reliable
br_4ksat Im_ne_. So,race of Comp._- Prolrammvng 3,
2 ()larch 1984).

[flebmuek] Sdsmuck, P. Ptckiq the chmpmt brmuimst proto-
mis ia • d/m.ibuted proMam. Ph.D. tlum/s, Cwnell Univ.
Dell e(Computer Sdmes, (espe=ed} Dec. L987.

[Skoes] Sk_a. D. Daw_mial t_ hum _ te _L ACM
T,u.,m_s _ Co,u_ri_ Sjnmm 8, 1. Feb. 19e6. lS40.

If#tom] 8Usm, R. and Yemini, 8. Ol,_Im/etle meevmT ia dlm.i-
buted sy_emL ACM T_ o_ Comput_qr S_ms
S,3 (Aldd t_}, 204-_.

138

