NASA Contractor Report 4297

Janice S. Wallace and Janet V. Powers

CONTRACT NASW-4324
MAY 1990

Janice S. Wallace and Janet V. Powers
The George Washington University
Washington, D.C.

Prepared for
NASA Office of Space Science and Applications
under Contract NASW-4324

1990
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Food Production: Higher Plants</td>
<td>5</td>
</tr>
<tr>
<td>Food Production: Lower Plants</td>
<td>35</td>
</tr>
<tr>
<td>Nutritional Requirements</td>
<td>45</td>
</tr>
<tr>
<td>Waste Management</td>
<td>49</td>
</tr>
<tr>
<td>Systems Management and Control</td>
<td>59</td>
</tr>
<tr>
<td>CELSS Principal Investigators</td>
<td>69</td>
</tr>
</tbody>
</table>
Introduction

Food, water, and a breathable atmosphere are three elements fundamental to human survival. Expendable supplies of these elements may be carried onboard spacecraft for brief spaceflights; for permanent missions in low Earth orbit, they may be resupplied from Earth, though only at high cost. Missions to more distant places, such as the moon, Mars and beyond, however, will require regeneration of food, air, and water. An autonomous bioregenerative life support system that continually recycles the solid, liquid, and gaseous materials essential for human life is the goal of NASA’s Controlled Ecological Life Support System (CELSS) Program.

NASA has conducted research in various aspects of closed regenerative life support systems since the 1960s. In 1979, the CELSS Program was established in the Life Sciences Division, located within NASA’s Office of Space Science and Applications, to encompass Life Sciences’ CELSS efforts in one program. CELSS research and technology development is currently being performed in a broad range of areas, including food production, nutritional requirements, waste management, and systems management and control.

Food Production. This subject area includes determining the optimal plant species (both higher and lower plants) that will provide a large percentage of edible plant biomass, maximum yield, and maximum nutrient value, while using a minimum of space and power. Another aspect of Food Production includes controlling the system’s environment, i.e., examining and regulating such factors as temperature, airflow, humidity, CO₂ level, and illumination to provide for optimal growth and production. Researchers also explore methods to convert inedible biomass to food.

Nutritional Requirements. This area involves analyzing human nutritional requirements on Earth and in microgravity and determining which crop species under consideration for a CELSS will meet these requirements.

Waste Management. Research in this subject area examines the control of CO₂, O₂, and trace gas contaminants; atmospheric regeneration; water purification for spent nutrients and condensate; and recycling the constituents of solid and liquid human waste and nonedible biomass.

Systems Management and Control. This area examines the integration, monitoring, control, and stability of whole CELSS systems. This includes modeling and design of systems within sealed chambers that provide for atmospheric regeneration, food production and processing, and waste management, thus testing the research results obtained in the other research areas.

The purpose of compiling this bibliography is to provide the scientific community with a list of publications resulting from CELSS-related research, from its official beginnings in 1979 through mid-1989. Certain papers published prior to 1979 that involve background research leading to the development of the CELSS Program are also included. It is anticipated that the bibliography will stimulate the exchange of information and ideas between scientists working in different areas of the program and in the field of bioregenerative life support in general.
The arrangement of citations in this bibliography follows the four divisions of research outlined above. Publications are listed alphabetically by author within the research area with which they are most closely associated. Authors conducting research under the auspices of the CELSS Program have been identified with an asterisk.

The assistance of the CELSS Principal Investigators in providing lists of their publications and the technical assistance of Rodney P. Johnson are gratefully acknowledged.

Maurice M. Averner, Ph.D.
NASA CELSS Program Manager
FOOD PRODUCTION: Higher Plants
Akers, C.P.; Akers, S.W.; Mitchell*, C.A.
The Minitron System for growth of small plants under controlled environment conditions.

Akhavan-Kharazian, M.; Campbell, W.F.; Bugbee, B. (Salisbury, F.B. = P.I.)
Calcium amelioration of NaCl effects on leaf expansion, photosynthesis, and transpiration in *Phaseolus vulgaris* L. (Abstract).

Aslam, M.; Harbit, K.B.; Huffaker*, R.C.
Comparative effect of selenite and selenate on nitrate assimilation in barley seedlings (Abstract).
Plant Physiology 86(4, Suppl.): 58, 1988. (GWU 11155)

Aslam, M.; Huffaker*, R.
Effects of various forms of nitrogen nutrition on the development of nitrate and nitrite reductase activities in *Glycine max* (L.) Merr (Abstract).
Plant Physiology 75(1, Suppl.): 119, 1984. (GWU 5756)

Aslam, M.; Huffaker*, R.
In vivo nitrate reduction in roots and shoots of barley *Hordeum vulgare* L. seedlings in light and darkness.

Aslam, M.; Huffaker*, R.C.
Effects of sugars on *in vivo* nitrate reduction in barley leaves in light and darkness under aerobic conditions (Abstract).
Plant Physiology 72(1, Suppl.): 129, 1983. (GWU 4487)

Aslam, M.; Huffaker*, R.C.
Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings.
Plant Physiology 91: 1152-1156, 1989. (GWU 10971)

Aslam, M.; Huffaker*, R.C.
Role of nitrate and nitrite in the induction of nitrite reductase in barley leaves (Abstract).

Aslam, M.; Huffaker*, R.C.
Role of nitrite in the induction of nitrate reductase activity in barley leaves (Abstract).
Plant Physiology 80(4, Suppl.): 41, 1986. (GWU 8827)

Aslam, M.; Rosichan, J.L.; Huffaker*, R.C.
Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves.

Aslam, M.; Rosichan, J.L.; Huffaker*, R.C.
Induction of nitrate and nitrite reductase activities by NO$_3^-$ and NO$_2^-$ in barley leaves (Abstract).
Plant Physiology 77(4, Suppl.): 45, 1985. (GWU 10242)

Early effects of salinity on nitrate and ammonium assimilation in barley seedlings (Abstract).
Plant Physiology 75(1, Suppl.): 65, 1984. (GWU 5827)
Barta, D.J.; Tibbitts*, T.W.
Characteristics of high intensity discharge lamps (Abstract).
HortScience 17(3): 493, 1982. (GWU 6270)

Barta, D.J.; Tibbitts*, T.W.
Diurnal fluctuations in calcium and magnesium concentration of lettuce leaves (Abstract).

Barta, D.J.; Tibbitts*, T.W.
Effects of artificial enclosure of young lettuce leaves on tipburn incidence and leaf calcium concentration.

Barta, D.J.; Tibbitts*, T.W.

Barta, D.J.; Tibbitts*, T.W.
Enclosure of young lettuce leaves: Effects of tipburn incidence and leaf calcium and magnesium concentration (Abstract).
HortScience 19(3): 582-583, 1984. (GWU 6268)

Barta, D.J.; Tibbitts*, T.W.
Mineral localization in young enlarging leaves of lettuce: Implications for tipburn development (Abstract).
HortScience 21(3): 728, 1986. (GWU 11149)

Barta, D.J.; Tibbitts*, T.W.
Use of electron microprobe x-ray analysis for determination of low calcium concentrations across leaf tissue (Abstract).
HortScience 20(3): 555, 1985. (GWU 11160)

Barta, D.J.; Tibbitts*, T.W.
Use of the wavelength-dispersive microprobe for determination of low calcium levels in plant tissues.

Bennett, S.M.; Corey, B.R.; Bula, R.J.; Tibbitts*, T.W.
Potential use of ion exchange materials in controlling nutrient balance of a recirculating solution for use in a CELSS (Abstract).
ASGSB Bulletin 2: 38, 1989. (GWU 10427)

Bennett, S.M.; Tibbitts*, T.W.; Wheeler, R.M.; Fitzpatrick, A.H.
Effect of diurnal temperature fluctuations on growth of potato (Abstract).

Berry, W.; Hoshizaki*, T.; Ulrich, A.
The effect of ultradian and orbital cycles on plant growth.

Berry, W.L.; Koontz, H.V.; Wheeler, R.M.; Prince, R.P. (Knott, W.M. = P.I.)
Criteria for evaluating experiments on crop production in space.
Berry, W.L.; Krizek, D.T.; Ormrod, D.P.; McFarlane, J.C.; Langhans, R.W.; Tibbitts*, T.W.
Variation in elemental content of lettuce grown under base-line conditions in five controlled-environment facilities.

Tibbitts*, T.W.
Uniformity studies with lettuce in controlled environment chambers: Results of growth and tissue analysis.

Brooks, C.A.; Mitchell*, C.A.
Effect of salicylhydroxamic acid on endosperm strength and embryo growth of *Lactuca sativa* L. cv.
‘Waldmann’s Green’ seeds.

Brooks, C.A.; Mitchell*, C.A.
Sham stimulated dark germination of Waldmann’s Green lettuce (Abstract).
Plant Physiology 75(1, Suppl.): 69, 1984. (GWU 5830)

Brooks, C.A.; Yu, K.S.; Mitchell*, C.A.
Salicylhydroxamic acid potentiates germination of ‘Waldmann’s Green’ lettuce seed.

Bubenheim*, D.L.
The Crop Growth Research Chamber: A ground-based facility for CELSS research.

Bubenheim*, D.L.
The Crop Growth Research Chamber: A ground based facility for CELSS research (Abstract).
(GWU 10390)

Bubenheim, D.L.; Bugbee, B.; Salisbury*, F.B.
Effect of water filters on radiation in controlled environments (Abstract).

Bubenheim, D.L.; Bugbee, B.; Salisbury*, F.B.
Growth and yield of wheat in photoperiods characteristic of polar and equatorial earth orbits (Abstract).

Bubenheim, D.L.; Bugbee, B.; Salisbury*, F.B.
Influence of a roof applied water layer on radiation, cooling requirements, and CO₂ enrichment efficiency in a greenhouse (Abstract).

Bubenheim*, D.L.; Bugbee*, B.; Salisbury*, F.B.
Low-irradiance blue-light induced lignin synthesis in wheat (Abstract).
Plant Physiology 89(4, Suppl.): 22, 1989. (GWU 11013)

Bubenheim*, D.L.; Bugbee, B.; Salisbury*, F.B.
Radiation in controlled environments: Influence of lamp type and filter material.
Bubenheim, D.L.; Dreschel, T.W.; Mitchell*, C.A.
Comparison of plant growth in a tubular membrane hydroponic system with that in conventional hydroponic culture (Abstract).

Bubenheim, D.L.; Mitchell*, C.A.
Cowpea harvest strategies and yield efficiency for space food production (Abstract).

Bubenheim, D.L.; Mitchell*, C.A.
Evaluation of new candidate crop species for CELSS (Abstract).

Bubenheim, D.L.; Salisbury*, F.B.
Photoperiod sensitivity of wheat (Abstract).
Plant Physiology 77(4, Suppl.): 110, 1985. (GWU 8510)

Bugbee*, B.
Carbon use efficiency in optimal environments.

Bugbee, B. (Salisbury, F.B. = P.I.)
Design and maintenance of recirculating hydroponic systems (Abstract).

Bugbee*, B.
Exploring the limits of crop productivity: A model to evaluate progress (Abstract).

Bugbee, B. (Salisbury, F.B. = P.I.)

Bugbee, B. (Salisbury, F.B. = P.I.)
When does CO₂ enrichment become toxic to plants? (Abstract)

Bugbee, B.; Bubenheim, D.L.; Salisbury*, F.B.
Temperature/photoperiod effects on reproductive development in a long-day plant (wheat) (Abstract).
Plant Physiology 80(4, Suppl.): 3, 1986. (GWU 8767)

Bugbee, B.; Guerra, D.; Salisbury*, F.
A simple, effective modification for increasing radiation in controlled environments (Abstract).

Bugbee, B.; Salisbury*, F.
Evaluation of pH buffering agents for nutrient solution studies (Abstract).
Plant Physiology 72(1, Suppl.): 5, 1983. (GWU 4473)
Bugbee, B.; Salisbury*, F.B.
Exploring the limits of crop productivity: Photosynthetic and carbon partitioning efficiency in an optimizing environment (Abstract).

Bugbee, B.; Salisbury*, F.B.
Food production in simulated microgravity (Abstract).

Bugbee, B.; Salisbury*, F.B.
Iron nutrition of wheat in solution culture (Abstract).
HortScience 17(3): 514, 1982. (GWU 4761)

Bugbee, B.; Salisbury*, F.B.
Physiological and genetic studies on wheat for the controlled environments of space (Abstract).

Bugbee, B.; Salisbury*, F.B.
The role of phasic environmental control in lunar food production efficiency: Architectural implications (Abstract).
In: *Symposium on Lunar Bases and Space Activities in the 21st Century*, Houston, TX, April 5-7, 1988, p. 38. (GWU 10501)

Bugbee, B.; Salisbury*, F.B.
Wheat production in the controlled environments of space.

Bugbee, B.; White, J.W. (Salisbury, F.B. = P.I.)
Tomato growth as affected by root-zone temperature and the addition of giberellic acid and kinetin to nutrient solutions.

Bugbee*, B.G.; Salisbury*, F.B.
Controlled environment crop production: Hydroponic vs. lunar regolith.

Bugbee*, B.G.; Salisbury*, F.B.
Current and potential productivity of wheat for CELSS (Abstract).
In: *Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research*, Espoo, Finland, July 18-29, 1988, p. 390. (GWU 10198)

Bugbee*, B.G.; Salisbury*, F.B.
Current and potential productivity of wheat for a controlled environment life support system.

Bugbee, B.G.; Salisbury*, F.B.
An evaluation of MES [2(N-morpholino)-ethanesulfonic acid] and amberlite IRC-50 as pH buffers for nutrient solution studies.
Bugbee, B.G.; Salisbury*, F.B.
Exploring the limits of crop productivity: Photosynthetic and carbon partitioning efficiency in optimizing environments for a CELSS (Abstract).
ASGSB Bulletin 1: 30-31, 1988. (GWU 8837)

Bugbee, B.G.; Salisbury*, F.B.
Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments.

Bugbee, B.G.; Salisbury*, F.B.
Studies on maximum yield of wheat for the controlled environments of space.

Bula, R.J.; Corey, R.B.; Volkweiss, S.J.; Tibbitts*, T.W.
Concepts for a commercial space-based plant growth unit (Abstract).

Bula, R.J.; Morrow, R.C.; Tibbitts*, T.W.
Technology for subsystems of space-based plant growth facilities (Abstract).

Campbell*, W.F.
Interactive effects of temperature and humidity on onion pollen germination and pollen tube growth (Abstract).
HortScience 17(1): 26, 1982. (GWU 5210)

Campbell*, W.F.; Wagenet, R.J.; Rodriguez, R.R.
Fertility, salinity and water management interactions on yield components and nitrogen fixation in *Phaseolus* L. (Abstract).
HortScience 17(3): 479, 1982. (GWU 4762)

Optimizing nutrient, phytohormone and gas concentrations for mass propagation of wheat through somatic embryogenesis (Abstract).

Carman, J.G.; Hess, J.R.; Bugbee*, B.
Cloning plant embryos by simulating ovular conditions in controlled environments (Abstract).
ASGSB Bulletin 3(1): 63, 1989. (GWU 11041)

Glycoalkaloids of potato tubers grown under controlled environments (Abstract).

Coe, L.L.; Mitchell*, C.A.
Ability of chemical growth promoters to negate mechanical stress effects on dark grown pea seedlings (Abstract).
ASGSB Bulletin 3(1): 63, 1989. (GWU 11040)
Coe, L.L.; Mitchell*, C.A.
Plant Physiology 89(4, Suppl.): 104, 1989. (GWU 11011)

Collier, G.F.; Tibbits*, T.W.
Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce.

Collier, G.F.; Tibbits*, T.W.
Tipburn of lettuce.
Horticultural Reviews 4: 49-65, 1982. (GWU 6269)

Effects of NaCl on metabolic heat evolution rates by barley roots.

Criddle, R.S.; Ward, M.R.; Huffaker*, R.C.
Nitrogen uptake by wheat seedlings, interactive effects of four nitrogen sources: NO₃⁻, NO₂⁻, NH₄⁺, and urea.

Cuellar, M.D.; Mitchell*, C.A.
Effects of static vs. flowing atmospheres on plant growth in the space shuttle plant growth unit (Abstract).

Cure, J.D.; Raper*, C.D., Jr.; Patterson, R.P.; Robarge, W.P.
Dinitrogen fixation in soybean in response to leaf water stress and seed growth rate.
Crop Science 25: 52-58, 1985. (GWU 11150)

Davis, T.L.; Nielson, S.S.; Mitchell*, C.A.
Interactive effects of CO₂ enrichment, radiation enhancement, and nitrogen form and level on growth and nutritional value of leaf lettuce (Abstract).

Dreschel, T.W. (Knott, W.M. = P.I.)
The Results of Porous Tube Plant Growth Unit Experiment T6B. Kennedy Space Center, FL: NASA, Kennedy Space Center, 1988. (NASA-TM-100988)

Dreschel, T.W. (Knott, W.M. = P.I.)
Status of porous tube plant growth unit research: Development of a plant nutrient delivery system for space.

Development of a membrane nutrient system (Abstract).
Porous membrane utilization in plant nutrient delivery.

Tubular membrane plant growth unit for hydroponics in microgravity.
In: Program and Abstracts, 2nd Annual Meeting of the American Society for Gravitational and Space Biology, Charlottesville, VA, October 1-3, 1986, p. 42. (GWU 9085)

Dreschel, T.W.; Sager, J.C. (Knott, W.M. = P.I.)
Control of water and nutrients using a porous tube: A method for growing plants in space.

Plant growth in a porous tube nutrient delivery system: The effects of pressure and pore size on productivity (Abstract).

Dreschel, T.W.; Wheeler, R.M.; Sager, J.C.; Knott*, W.M.
Factors affecting plant growth in membrane nutrient delivery (Abstract).

Fellows, R.J.; Patterson, R.P.; Raper*, C.D., Jr.; Harris, D.
Nodule activity and allocation of photosynthate of soybean during recovery from water stress.

Ford, T.L.; Mitchell*, C.A.
Effects of HPS with low level MH + QI illumination on growth and chlorosis of leaf lettuce in growth chambers (Abstract).

Gale, J.; Smernoff, D.; Macler, B.; MacElroy*, R.D.
Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS (Abstract).
In: Proceedings of the 27th Plenary Meeting of the Committee on Space Research, Espoo, Finland, July 18-29, 1988, p. 391. (GWU 10429)

Gale, J.; Smernoff, D.T.; Macler, B.A.; MacElroy*, R.D.
Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS.

Gallagher, L.W.; Soliman, K.M.; Qualset, C.O.; Huffaker*, R.C.; Rains, D.W.
Major gene control of nitrate-reductase activity in common wheat.
Crop Science 20: 717-721, 1980. (GWU 3098)

Garland, J.L.; Garland, R.F. (Knott, W.M. = P.I.)
Bacterial rhizosphere interactions in hydroponically grown wheat (Abstract).

Garland, J.L.; MacKowiak, C.L.; Strayer, R.F. (Knott, W.M. = P.I.)
Utilization of the soluble fraction of cold water leachate from inedible wheat biomass in a controlled ecological life support system (Abstract).
ASGSB Bulletin 2: 37, 1989. (GWU 10423)
Garland, J.L.; Strayer, R.F. (Knott, W.M. = P.I.)
Bacterial dynamics in wheat hydroponic culture subsystems of CELSS (Abstract).

Garland, J.L.; Strayer, R.F. (Knott, W.M. = P.I.)

Goeschl, J.D.; Sauer, R.L.; Scheld*, H.W.
A method for screening of plant species for space use.

Goknur, A.B.; Tibbitts*, T.W.
Dark opening of stomata as related to SO₂ sensitivity of potatoes (Abstract).

Goyal, S.S.; Huffaker*, R.C.
Induction and kinetics of NO₃⁻, NO₂⁻ and NH₄⁺ uptake systems in wheat (*Triticum aestivum* L.) (Abstract).
Plant Physiology 75(1, Suppl.): 11, 1984. (GWU 5823)

Goyal, S.S.; Huffaker*, R.C.
Induction of NO₃⁻ transport system in wheat seedlings: Effect of NH₄⁺ and NO₂⁻ (Abstract).

Goyal, S.S.; Huffaker*, R.C.
Interactions among nitrate, nitrite and ammonium during assimilation in detached barley leaves (Abstract).
Plant Physiology 65(6, Suppl.): 16, 1980. (GWU 3897)

Goyal, S.S.; Huffaker*, R.C.
Interactive effects of NO₃⁻, NO₂⁻ and NH₄⁺ on each other's uptake and assimilation in intact wheat seedlings (Abstract).
Plant Physiology 72(1, Suppl.): 110, 1983. (GWU 4490)

Goyal, S.S.; Huffaker*, R.C.
Nitrogen toxicity in plants.

Goyal, S.S.; Huffaker*, R.C.
A novel approach and a fully automated microcomputer-based system to study kinetics of NO₃⁻, NO₂⁻ and NH₄⁺ transport simultaneously by intact wheat seedlings.

Goyal, S.S.; Huffaker*, R.C.
The uptake of NO₃⁻, NO₂⁻ and NH₄⁺ by intact wheat (*Triticum aestivum*) seedlings. I. Induction and kinetics of transport systems.
Plant Physiology 82: 1051-1056, 1986. (GWU 11017)
Goyal, S.S.; Huffaker*, R.C.; Lorenz, O.A.
Inhibitory effects of ammoniacal nitrogen on growth of radish plants. II. Investigation on the possible causes of ammonium toxicity to radish plants and its reversal by nitrate.

Goyal, S.S.; Lorenz, O.A.; Huffaker*, R.C.
Inhibitory effects of ammoniacal nitrogen on growth of radish plants. I. Characterization of toxic effects of \(\text{NH}_4^+ \) on growth and its alleviation by \(\text{NO}_3^- \).

Goyal, S.S.; Rains, D.W.; Huffaker*, R.C.
Determination of ammonium ion by fluorometry or spectrophotometry after on-line derivatization with \(\alpha \)-phthalaldehyde.
Analytical Chemistry 60: 175-179, 1988. (GWU 11175)

Granato, T.C.; Raper*, C.D., Jr.
Proliferation of maize (*Zea mays* L.) roots in response to localized supply of nitrate.

Granato, T.C.; Raper*, C.D., Jr.; Wilkerson, G.G.
Respiration rate in maize roots is related to concentration of reduced nitrogen and proliferation of lateral roots.
Physiologia Plantarum 76: 419-424, 1989. (GWU 11134)

Guerra, D.; Anderson, A.J.; Salisbury*, F.B.
Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps.

Guerra, D.; Salisbury*, F.B.
Effects of long term exposure of wheat to diverse spectral environments: In vivo control mechanism of the phenylpropanoid pathway (Abstract).
Plant Physiology 72(1, Suppl.): 163, 1983. (GWU 4472)

Gupta*, A.S.; Huffaker*, R.C.; Rains, D.W.
The effects of salt stress on nitrogen uptake and metabolism in barley (Abstract).
Plant Physiology 72(1, Suppl.): 135, 1983. (GWU 4492)

Hammer, P.A.; Tibbits*, T.W.; Langhans, R.W.; McFarlane, J.C.
Base-line growth studies of 'Grand Rapids' lettuce in controlled environments.

Heath-Pagliuso, S.; Huffaker*, R.C.; Allard, R.W.
Inheritance of nitrite reductase and regulation of nitrate reductase, nitrite reductase, and glutamine synthetase isozymes.

Henninger*, D.L.; Lagle, C.W.; Ming, D.W.
Lunar agricultural soils (Abstract).
Henninger*, D.L.; Lagle, C.W.; Ming, D.W.
Lunar agricultural 'soils' (Abstract).

Henninger*, D.L.; Lagle, C.W.; Ming, D.W.
A lunar derived 'soil' for the growth of higher plants.

Henninger*, D.L.; Ming, D.W.; Lagle, C.W.
Extraterrestrial 'soils' for the growth of higher plants (Abstract).

Henry, L.T.; Raper*, C.D., Jr.
Cyclic variations in nitrogen uptake rate of soybean plants.
Plant Physiology 91: 1345-1350, 1989. (GWU 10972)

Henry, L.T.; Raper*, C.D., Jr.
Effects of root zone acidity on utilization of nitrate and ammonium in tobacco plants.

Hoenecke, M.E.; Bula, R.J.; Tibbits*, T.W.
Lettuce seedling response to red light-emitting diodes supplemented with varying levels of blue photons (Abstract).
ASGSB Bulletin 3(1): 59, 1989. (GWU 11038)

Hoff*, J.E.; Howe*, J.M.; Mitchell*, C.A.
Development of selection criteria and their application in evaluation of CELSS candidate species.

Hoff*, J.E.; Howe*, J.M.; Mitchell*, C.A.

Hoshizaki*, T.
Arabidopsis seed production limited by CO₂ in simulated space experiments.
Physiologist 27(6, Suppl.): S137-S138, 1984. (GWU 10245)

Hoshizaki*, T.
Closed culture plant studies: Implications for CELSS.

Howe*, J.M.; Hoff*, J.E.
Howe*, J.M.; Hoff*, J.E.

Huffaker*, R.C.

Biochemistry and physiology of leaf proteins.

Huffaker*, R.C.

Selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate in CELSS.

Huffaker*, R.C.; Aslam, M.; Ward, M.R.

Efficiency of N use by wheat as a function of influx and efflux of NO₃⁻ (Abstract).

Huffaker*, R.C.; Miller, B.L.

Reutilization of ribulose bisphosphate carboxylase.

Huffaker*, R.C.; Rains, D.W.; Qualset, C.O.

Huffaker*, R.C.; Ward, M.R.

*Developing a Basis for the Use of NO₃⁻, NO₂⁻, NH₄⁺ and Urea to Produce Wheat for CELSS.

Huffaker*, R.C.; Ward, M.R.

Effects of NO₃⁻, NH₄⁺, and urea on each other's uptake and incorporation.

Janik, D.; Macler, B.; MacElroy*, R.; Thorstenson, Y.; Sauer, R.

Effect of iodine disinfection products on higher plants.

Janik, D.S.; Macler, B.A.; MacElroy*, R.D.; Thorstenson, Y.R.; Sauer, R.L.

Effect of iodine disinfection products on higher plants (Abstract).
In: *Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research, Espoo, Finland, July 18-29, 1988, p. 395. (GWU 10235)

Joshi*, J.

Quantitative analysis of biomass production and compatibility studies of early maturing soybean cultivars for GBCD.
Klobus, G.; Huffaker*, R.C.
Early effect of NaCl salinity on the nitrate uptake activity and its reversibility in barley and soybean seedlings (Abstract).

Characteristics of injury and recovery of net NO₃⁻ transport of barley seedlings from treatments of NaCl.

Knight, S.; Akers, C.P.; Akers, S.W.; Mitchell*, C.A.
Minitron II: A second-generation chamber system providing precise control of the plant environment (Abstract).

Knight, S.L.; Akers, C.P.; Akers, S.W.; Mitchell*, C.A.
Minitron II system for precise control of the plant growth environment.

Knight, S.L.; Mitchell*, C.A.
Effects of benzyladenine (BA) and gibberellic acid (GA₃) on yield of ‘Waldmann’s Green’ leaf lettuce (Abstract).

Knight, S.L.; Mitchell*, C.A.
Effects of CO₂ and photosynthetic photon flux on yield, gas exchange and growth rate of *Lactuca sativa* L. ‘Waldmann’s Green.’

Knight, S.L.; Mitchell*, C.A.
Effects of elevated CO₂ and/or PAR on growth kinetics of ‘Waldmann’s Green’ leaf lettuce (Abstract).

Knight, S.L.; Mitchell*, C.A.
Effects of incandescent radiation on photosynthesis, growth rate and yield of ‘Waldmann’s Green’ leaf lettuce.

Knight, S.L.; Mitchell*, C.A.
Enhancement of lettuce yield by manipulation of light and nitrogen nutrition.

Knight, S.L.; Mitchell*, C.A.
Growth enhancement of ‘Waldmann’s Green’ leaf lettuce by CO₂ enrichment, PAR elevation, and/or PGR’s (Abstract).
Plant Physiology 75(1, Suppl.): 191, 1984. (GWU 5821)

Knight, S.L.; Mitchell*, C.A.
Growth and yield characteristics of ‘Waldmann’s Green’ leaf lettuce under different photon fluxes from metal halide or incandescent + fluorescent radiation.
Scientia Horticulturae 35: 51-61, 1988 (GWU 8588)
Knight, S.L.; Mitchell*, C.A.
Identification of light/CO\textsubscript{2} regimes to optimize lettuce yield for life support of humans in space (Abstract).
\textit{HortScience} 21(3): 742, 1986. (GWU 11158)

Knight, S.L.; Mitchell*, C.A.
Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol.

Knight, S.L.; Mitchell*, C.A.
Stimulation of lettuce productivity by manipulation of diurnal temperature and light.

Knight, S.L.; Mitchell*, C.A.
Stimulation of lettuce productivity by various combinations of light, temperature, and nitrogen nutrition (Abstract).
\textit{HortScience} 17: 477, 1982. (GWU 3430)

Knott*, W.M.
Activation of a controlled ecological life support system (CELSS) Breadboard Facility: Wheat growth studies.

Kobriger, J.M.; Tibbitts*, T.W.
Diurnal response of peas to mixtures of SO\textsubscript{2} and O\textsubscript{3} exposed at different humidity levels (Abstract).

Kobriger, J.M.; Tibbitts*, T.W.
Effect of humidity on the sensitivity of peas to O\textsubscript{3} and SO\textsubscript{2} (Abstract).
\textit{HortScience} 17(3): 513, 1982. (GWU 4424)

Koontz, H.V.; Prince, R.P. (Knott, W.M. = P.I.)
Effect of 16 and 24 hours daily radiation (light) on lettuce growth.

Koontz, H.V.; Prince, R.P.; Koontz, R.F. (Knott, W.M. = P.I.)
Comparison of fluorescent and high-pressure sodium lamps on growth of leaf lettuce.

Irradiance and spectral distribution control system for controlled environment chambers.

Lang, A.S.; Tibbitts*, T.W.
Oedema of tomato plants: An air contaminant induced injury (Abstract).

Lang, S.P.; Tibbitts*, T.W.
Factors controlling intumescence development on tomato plants.
Latimer, J.G.; Mitchell*, C.A.
Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings.

Latimer, J.G.; Mitchell*, C.A.
UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

Latimer, J.G.; Pappas, T.; Mitchell*, C.A.
Growth responses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments.

Lee, Y.B.; Campbell*, W.F.
Effects of BA and 2,4-D on shoot and root formation from petiole segments of strawberry plant in vitro culture (Abstract).
HortScience 17(3): 483, 1982. (GWU 5202)

MacElroy*, R.D.
Concepts for the early utilization of CELSS technology: The "salad machine" (Abstract).

MacElroy*, R.D.; Smernoff, D.T.; Rummel, J.D.

Mackowiak, C.L.; Mion, L.P.; Hinkle, C.R.; Prince, R.P. (Knott, W.M. = P.I.)
Continuous hydroponic wheat production using a recirculating solution (Abstract).
ASGSB Bulletin 1: 46, 1988. (GWU 10513)

Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system (Abstract).

Macler, B.A.; MacElroy*, R.D.
Productivity and food value of *Amaranthus cruentus* under non-lethal salt stress.

Shuttle locker-contained seed germination system (Abstract).

Ming, D.W. (Henninger, D.L. = P.I.)
Applications for special purpose minerals at a lunar base (Abstract).
In: *Symposium on Lunar Bases and Space Activities in the 21st Century*, Houston, TX, April 5-7, 1988, p. 174. (GWU 10508)

Ming, D.W.; Henninger*, D.L. (Eds.)
Lunar Base Agriculture: Soils for Plant Growth.
Ming, D.W.; Henninger*, D.L.; Galindo, C.
Solid support substrates for plant growth (Abstract).

Ming, D.W.; Henninger*, D.L.; Lofgren, G.E.
Ion exchange selectivities of essential plant nutrient cations in clinoptilolite (Abstract).

Mitchell*, C.A.
Candidate species selection: Cultural and photosynthetic aspects.

Mitchell*, C.A.; Knight, S.L.; Davis, T.L.

Mitchell*, C.A.; Knight, S.L.; Ford, T.L.
Optimization of controlled environments for hydroponic production of leaf lettuce for human life support in CELSS.

Mitchell*, C.A.; Knight, S.L.; Pappas, T.
Photosynthetic productivity and vibration/acceleration stress considerations for higher plants in bioregenerative systems.
Physiologist 27(6, Suppl.): S29-S30, 1984. (GWU 6225)

Mitchell*, C.A.; Nielsen, S.S.
Environmental modification of yield and food composition of cowpea and leaf lettuce (Abstract).

Mitchell*, C.A.; Nielsen, S.S.
Environmental modification of yield and food composition of leaf lettuce (Abstract).

Morrison, S.L.; Huffaker*, R.C.
Effect of light and plant age on assimilation of nitrate by leaf slices of barley (Abstract).
Plant Physiology 75(1, Suppl.): 30, 1984. (GWU 5824)

Short-term movement of nitrate in soybean shoots using radioactive N-13 (Abstract).
Plant Physiology 72(1, Suppl.): 110, 1983. (GWU 4489)

Morrow, R.C.; Bula, R.J.; Tibbits*, T.W.
Light emitting diodes as a photosynthetic irradiance source for plants (Abstract).
Morrow, R.C.; Bula, R.J.; Tibbitts*, T.W.
Orbital light/dark cycle effects on plant growth (Abstract).

Morrow, R.C.; Tibbitts*, T.W.
Air ion exposure system for plants.

Morrow, R.C.; Tibbitts*, T.W.
Air ion stimulation of intumescence development in tomato (Abstract).

Morrow, R.C.; Tibbitts*, T.W.
Evidence for involvement of phytochrome in tumor development on plants.

Osmond, D.L.; Wilson, R.F.; Raper*, C.D., Jr.
Fatty acid composition and nitrate uptake of soybean roots during acclimation to low temperature.

Osmond, D.L.; Wilson, R.F.; Raper*, C.D., Jr.
Fatty acid composition and nitrate uptake of soybean roots during acclimation to low temperature.
Plant Physiology 70: 1689-1693, 1982. (GWU 4873)

Owens, L.P.; Hall, C.R. (Knott, W.M. = P.I.)
Biomass production and nitrogen dynamics in an integrated, aquaculture/agriculture system (Abstract).

Patterson, R.P.; Raper*, C.D., Jr.
Influence of duration and rate of seed fill on soybean growth and development.

Peet, M.M.; Raper*, C.D., Jr.; Tolley, L.C.; Robarge, W.P.
Tomato responses to ammonium and nitrate nutrition under controlled root-zone pH.

Tomato plant growth on a CELSS tubular membrane growth unit (Abstract).
ASGSB Bulletin 3(1): 93, 1989. (GWU 11043)

Prince, R.P.; Knott*, W.M.
Plant growth chamber 'M' design.
Raper*, C.D., Jr.
Plant growth in controlled environments in response to characteristics of nutrient solutions.

Raper*, C.D., Jr. (Ed.)

Regulation of nitrogen uptake and assimilation: Effects of nitrogen source, pH, and CO$_2$ (Abstract).

Raper*, C.D., Jr.; Kramer, P.J.
Stress physiology.

Raper*, C.D., Jr.; Patterson, R.P.
Temperature and photoperiod responses of soybean embryos cultured in vitro.

Raper*, C.D., Jr.; Patterson, R.P.; List, M.L.; Obendorf, R.L.; Downs, R.J.
Photoperiod effects on growth rate of in vitro cultured soybean embryos.

Raper*, C.D., Jr.; Pollock, T.A.; Thomas, J.F.
Use of phytotrons in assessing environmental requirements for plants in space habitats.

Raper*, C.D., Jr.; Tolley-Henry, L.C.
Nitrogen uptake and utilization by intact plants.

Raper*, C.D., Jr.; Wann, M.
Simulation model for plant growth in controlled environment systems.

Raper*, C.D., Jr.; Wann, M.
Simulation model for plant growth in controlled environment systems.

Reiss-Bubenheim, D.; Bugbee, B. (Salisbury, F.B. = P.I.)
Use of (2-chloroethyl)-trimethyl ammonium chloride (CCC) in hydroponic and soilless culture (Abstract).
HortScience 20(3): 555, 1985. (GWU 11161)
Rufty, T.W., Jr.; Jackson, W.A.; Raper*, C.D., Jr.
Inhibition of nitrate assimilation in roots in the presence of ammonium: The moderating influence of potassium.
Journal of Experimental Botany 33: 1122-1137, 1982. (GWU 5042)

Rufty, T.W., Jr.; Jackson, W.A.; Raper*, C.D., Jr.
Nitrate reduction in roots as affected by the presence of potassium and by flux of nitrate through the roots.

Rufty, T.W., Jr.; Raper*, C.D., Jr.; Huber, S.C.
Alterations in internal partitioning of carbon in soybean plants in response to nitrogen stress.

Rufty, T.W., Jr.; Raper*, C.D., Jr.; Huber, S.C.
Assimilation and internal partitioning of carbon by soybean plants in response to nitrogen stress.

Rufty, T.W., Jr.; Raper*, C.D., Jr.; Jackson, W.A.
Growth and nitrogen assimilation of soybeans in response to ammonium and nitrate nutrition.
Botanical Gazette 144(4): 466-470, 1983. (GWU 8698)

Rufty, T.W., Jr.; Raper*, C.D., Jr.; Jackson, W.A.
Nitrate uptake root and shoot growth, and ion balance of soybean plants during acclimation to root-zone acidity.
Botanical Gazette 143(1): 5-14, 1982. (GWU 4275)

Rufty, T.W., Jr.; Raper*, C.D., Jr.; Jackson, W.A.
Nitrogen assimilation by soybeans in response to ammonium and nitrate nutrition.

Rufty, T.W., Jr.; Raper*, C.D., Jr.; Jackson, W.A.
Nitrogen assimilation, root growth and whole plant responses of soybean to root temperature, and to carbon dioxide and light in the aerial environment.

Rufty, T.W., Jr.; Volk, R.J.; McClure, P.R.; Israel, D.W.; Raper*, C.D., Jr.
Relative content of NO$_3^-$ and reduced N in xylem exudate as an indicator of root reduction of concurrently absorbed 15NO$_3^-$.
Plant Physiology 69: 166-170, 1982. (GWU 4764)

Rupp, L.A.; Bugbee*, B.G.; Frisby, J.W.
A comparison of greenhouse cooling techniques (Abstract).

Salisbury*, F.B.
Achieving maximum plant yield in a weightless, bioregenerative system for a space craft.
Physiologist 27(6, Suppl.): S31-S34, 1984. (GWU 6202)
Salisbury*, F.B.
Approaching the photosynthetic limits of crop productivity.

Salisbury*, F.B.
Farming on the moon: Reaching the potential of crop productivity.

Salisbury*, F.B.
Ground-based studies on gravitropism and on maximum yield of wheat.

Salisbury*, F.B.
Plant productivity in controlled environments (Abstract).
HortScience 21(3): 661, 1986. (GWU 11165)

Salisbury*, F.B.
Preparatory space experiments for development of a CELSS.

Salisbury*, F.B.
USU research helps agriculture enter the space age.

Salisbury*, F.B.; Albrechtsen, R.S.; Campbell*, W.F.; Dewey, W.G.
Studies on maximum yield of wheat and other small grains in controlled environments.

Salisbury*, F.B.; Bugbee, B.
Plant productivity in controlled environments.

Salisbury*, F.B.; Bugbee, B.G.
Space farming in the 21st century.

Salisbury*, F.B.; Bugbee, B.G.
Wheat farming in a lunar base.

Salisbury*, F.B.; Bugbee, B.G.; Bubenheim, D.
Wheat production in controlled environments.

Salisbury*, F.B.; Bugbee, B.G.; Bubenheim, D.
Wheat production in controlled environments (Abstract).
In: *Abstracts, Twenty-Sixth Plenary Meeting of the Committee on Space Research*, Toulouse, France, June 30-July 11, 1986, p. 156. (GWU 9443)
Schwartzkopf*, S.; Oleson, M.
Design of a plant growth unit for CELSS flight experiments.

Schwartzkopf*, S.H.
Electrochemical control of pH in a hydroponic nutrient solution.

Schwartzkopf*, S.H.
A non-destructive method for monitoring plant growth.

Schwartzkopf*, S.H.; Kane, D.G.; Stempson, R.L.
Greenhouses and green cheese: Use of lunar resources in CELSS development.

Schwartzkopf*, S.H.; Oleson, M.W.; Cullingford*, H.S.
Conceptual design for a micro-gravity nutrient delivery system for CELSS use (Abstract).

Schwartzkopf*, S.H.; Oleson, M.W.; Cullingford*, H.S.
Conceptual design of a closed loop nutrient solution delivery system for CELSS implementation in a micro-gravity environment.

Schwartzkopf*, S.H.; Oleson, M.W.; Cullingford*, H.S.
Conceptual design of an experimental, closed loop nutrient solution delivery system for supporting higher plants in microgravity environments (Abstract).

Photosynthetic adaptation to growth temperature in potato (Abstract).

Strayer, R.F.; Brannon, M.A.; Garland, J.L. (Knott, W.M. = P.I.)
Use of inedible wheat residues from the KSC-CELSS Breadboard Facility for production of fungal cellulase (Abstract).

Tang, A.B.; Dalling, M.J.; Huffaker*, R.C.
Proteolytic activities associated with barley chloroplasts and chloroplast components (Abstract).
Plant Physiology 72(1, Suppl.): 156, 1983. (GWU 4491)

Tang, A.B.; Huffaker*, R.C.
Characterization of proteolytic activities localized in the thylakoid, stroma, and envelope of barley chloroplasts (Abstract).
Plant Physiology 75(1, Suppl.): 119, 1984. (GWU 5828)
Thayer, J.R.; Huffaker*, R.C.
Nitrate and nitrite uptake and product excretion by barley (Hordeum vulgare) chloroplasts (Abstract).
Plant Physiology 80(4, Suppl.): 11, 1986. (GWU 8783)

Thayer, J.R.; Huffaker*, R.C.
Regulation of nitrate assimilation in barley leaf sections by light (Abstract).
Plant Physiology 75(1, Suppl.): 29, 1984. (GWU 5825)

Thayer, S.S.; Choe, H.T.; Raussler, S.; Huffaker*, R.C.
Characterization and subcellular localization of aminopeptidases in senescing barley leaves.

Thayer, S.S.; Huffaker*, R.C.
Localisation and characterization of exopeptidases in barley leaves (Abstract).
Plant Physiology 75(1, Suppl.): 154, 1984. (GWU 5826)

Thayer, S.S.; Huffaker*, R.C.
Plant Physiology 72(1, Suppl.): 118, 1983. (GWU 4493)

Thomas, H.; Huffaker*, R.C.
Hydrolysis of radioactively-labelled ribulose-1,5-bisphosphate carboxylase by an endopeptidase from the primary leaf of barley seedlings.

Thomas, J.F.; Raper*, C.D., Jr.
Internode and petiole elongation of soybean in response to photoperiod and end-of-day light quality.

Thomas, J.F.; Raper*, C.D., Jr.
Photoperiod effects on soybean growth during the onset of reproductive development under various temperature regimes.

Thomas, J.F.; Raper*, C.D., Jr.
Photoperiod regulation of floral initiation for soybean plants at different ages.
Crop Science 24: 611-614, 1984. (GWU 9116)

Thomas, J.F.; Raper*, C.D., Jr.
Photoperiod and temperature regulation of floral initiation and anthesis in soya bean.

Tibbitts*, T.; Bula, R.; Corey, R.; Morrow, R.
Cultural systems for growing potatoes in space.

Tibbitts*, T.W.
Candidate species selection and controlled environment injuries.
Tibbitts*, T.W.

Tibbitts*, T.W.
Humidity and plants.

Tibbitts*, T.W.
Plant considerations for lunar base agriculture.

Tibbitts*, T.W.
Quality assurance procedures for environmental control and monitoring in plant growth facilities.

Tibbitts*, T.W.
Standardization of controlled environment research.

Tibbitts*, T.W.
Utilization of potatoes in CELSS: Productivity and growing systems.

Tibbitts*, T.W.; Alford, D.K. (Eds.)

Tibbitts*, T.W.; Alford, D.K.

Tibbitts*, T.W.; Bennett, S.M.
Avoidance of continuous light injury of potatoes using cycling temperatures (Abstract).

Tibbitts*, T.W.; Bennett, S.M.
Environmental and cultural considerations for growth of potatoes in CELSS (Abstract).

Tibbitts*, T.W.; Bennett, S.M.; Morrow, R.C.; Bula, R.J.
Utilization of white potatoes in CELSS.

Tibbitts*, T.W.; Kobriger, J.M.
Mode of action of air pollutants in injuring horticultural plants (Abstract).
HortScience 17(3): 539, 1982. (GWU 1433)
Tibbitts*, T.W.; Kozlowski, T.T. (Eds.)
Controlled environment guidelines for plant research.

Tibbitts*, T.W.; McSparron, D.A.; Krizek, D.T.
Spectral effects on the use of photon flux sensors for measurement of photon flux in controlled environments.

Tibbitts*, T.W.; Morgan, D.C.; Warrington, I.J.
Growth of lettuce, spinach, mustard, and wheat plants under four combinations of high-pressure sodium, metal halide, and tungsten halogen lamps at equal PPFD.

Tibbitts*, T.W.; Wheeler, R.M.

Tibbitts*, T.W.; Wheeler, R.M.
Potato growth in controlled environments for NASA (Abstract).

Tibbitts*, T.W.; Wheeler, R.M.
Utilization of potatoes in bioregenerative life support systems (Abstract).
In: *Abstracts, Twenty-Sixth Plenary Meeting of the Committee on Space Research*, Toulouse, France, June 30-July 11, 1986, p. 156. (GWU 9418)

Tibbitts*, T.W.; Wheeler, R.M.
Utilization of potatoes in bioregenerative life support systems.

Tibbitts*, T.W.; Wheeler, R.M.
Utilization of white potatoes in CELSS (Abstract).
In: *Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research*, Espoo, Finland, July 18-29, 1988, p. 391. (GWU 10230)

Tibbitts*, T.W.; Wheeler, R.M.; Fitzpatrick, A.H.
Cultural procedures for growing potatoes in space (Abstract).

Tolley, L.C.; Raper*, C.D., Jr.
Cyclic variations in nitrogen uptake rate in soybean plants.

Expansion and photosynthetic rate of leaves of soybean plants during onset of and recovery from nitrogen stress.
Botanical Gazette 147(4): 400-406, 1986. (GWU 8702)

Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress.
Utilization of ammonium as a nitrogen source: Effects of ambient acidity on growth and nitrogen accumulation by soybean.
Plant Physiology 82: 54-60, 1986. (GWU 8701)

Whole plant regulation of nitrogen uptake (Abstract).

Tolley-Henry, L.; Raper*, C.D., Jr.; Granato, T.C.
Cyclic variations in nitrogen uptake rate of soybean plants: Effects of external nitrate concentration.

Growth of plants and plant tissue cultures in simulated lunar soil: Implications for a lunar base CELSS.

Effect of root-zone pH on the uptake on nitrogen from nitrate and ammonium sources by soybean plants in hydroponic culture (Abstract).
Plant Physiology 89(4, Suppl.): 18, 1989. (GWU 11012)

Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial carbon dioxide control.

Volk, T.; Cullingford*, H.
Crop growth and associated life support for a lunar farm (Abstract).
In: Symposium on Lunar Bases and Space Activities in the 21st Century, Houston, TX, April 5-7, 1988, p. 245. (GWU 10507)

Volk*, T.; Rummel, J.D.
The case for cellulose production on Mars.

Volk*, T.; Rummel, J.D.
Transpiration during life cycle in controlled wheat growth.

Wagenet, R.J.; Campbell*, W.F.; Bamatrof, A.M.; Turner, D.L.
Salinity, irrigation frequency, and fertilization effects on barley growth.

Enhancement of nitrate uptake and growth of barley seedlings by calcium under saline conditions.
Plant Physiology 80: 520-524, 1986. (GWU 11019)

Latent nitrate reductase activity is associated with the plasma membrane of corn roots.
Ward, M.R.; Huffaker*, R.C.
Alleviation of ammonium toxicity by nitrate in radish plants (Abstract).
Plant Physiology 72(1, Suppl.): 111, 1983. (GWU 4488)

Inhibition of nitrate transport by anti-nitrate reductase IgG fragments and the identification of plasma membrane associated nitrate reductase in roots of barley seedlings.

Warner, R.L.; Huffaker*, R.C.
Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings.
Plant Physiology 91: 947-953, 1989. (GWU 10973)

Wheeler, R.M. (Tibbits, T.W. = P.I.)
Potato leaf explants as a spaceflight plant test system.

Wheeler, R.M.; Hannapel, D.J.; Tibbits*, T.W.
Comparison of axillary bud growth and patatin accumulation in potato leaf cuttings as assays for tuber induction.

Effects of atmospheric CO₂ on photosynthetic characteristics of soybean leaves (Abstract).

Growth of potatoes in nutrient film technique for use in controlled ecological life support systems (Abstract).
ASGSB Bulletin 2: 37, 1989. (GWU 10421)

Wheeler, R.M.; Schwartzkopf*, S.H.; Tibbits*, T.W.; Langhans, R.W.
Elimination of toxicity from polyurethane foam plugs used for plant culture.

Wheeler, R.M.; Steffen, K.L.; Tibbits*, T.W.; Palta, J.P.
Utilization of potatoes for life support systems. II. The effects of temperature under 24-h and 12-h photoperiods.

Wheeler, R.M.; Tibbits*, T.W.

Wheeler, R.M.; Tibbits*, T.W.
Growth and tuberization of potato (*Solanum tuberosum* L.) under continuous light.
Plant Physiology 80: 801-804, 1986. (GWU 9509)

Wheeler, R.M.; Tibbits*, T.W.
Photoperiod-light level interactions on tuberization of potato (Abstract).
Plant Physiology 75(1, Suppl.): 191, 1984. (GWU 5822)
Wheeler, R.M.; Tibbitts*, T.W.
Potato leaf cuttings as a spaceflight plant test system (Abstract).
Plant Physiology 77(4, Suppl.): 58, 1985. (GWU 10241)

Wheeler, R.M.; Tibbitts*, T.W.
Potato production in controlled environments: Photoperiod effects (Abstract).

Wheeler, R.M.; Tibbitts*, T.W.
Potential spaceflight experiments with potato (Abstract).

Wheeler, R.M.; Tibbitts*, T.W.
Productivity and cost trade-offs of various environments for growing potatoes in a CELSS (Abstract).

Wheeler, R.M.; Tibbitts*, T.W.
Utilization of Plants for Lunar Life Support: A Case for the Potato Plant.

Wheeler, R.M.; Tibbitts*, T.W.
Utilization of potatoes for life support systems in space: I. Cultivar-photoperiod interactions.

Wheeler, R.M.; Tibbitts*, T.W.
Utilization of potatoes for life support systems in space. III. Productivity at successive harvest dates under 12-h and 24-h photoperiods.

Wheeler, R.M.; Tibbitts*, T.W.
Utilization of potatoes for life support systems in space. IV. Effect of CO₂ enrichment.

Wheeler, R.M.; Tibbitts*, T.W.; Fitzpatrick, A.H.
Growth of potatoes under high irradiance levels (Abstract).

Wheeler, R.M.; Tibbitts*, T.W.; Fitzpatrick, A.H.
Potato growth in response to relative humidity.
HortScience 24(3): 482-484, 1989. (GWU 11136)

Wheeler, R.M.; Tibbitts*, T.W.; Fitzpatrick, A.H.
Response of potato cultivars to continuous light environments (Abstract).
American Potato Journal 64: 466, 1987. (GWU 9007)

Wheeler, R.M.; Tibbitts*, T.W.; Fitzpatrick, A.H.; Bennett, S.M.
Effect of changing photoperiod and CO₂ enrichment on growth and tuberization of potato (Abstract).

Wheeler, R.M.; Tibbitts*, T.W.; Najjar, A.
Interactions of irradiance, temperature, and CO₂ in growth and tuberization of potato (Abstract).
Wheeler, R.M.; Tibbitts*, T.W.; Steffen, K.; Palta, J.P.
Effect of temperature on tuberization and plant morphology of 'Norland' potatoes grown under continuous light (Abstract).

Williams, K.M.; Scheld, H.W.; Prince, R.P.; Knott*, W.M.
A computer controlled nutrient delivery system for micro-gravity biosystems (Abstract).
ASGSB Bulletin 2: 35, 1989. (GWU 10426)

Wright, B.D.; Bausch, W.C.; Knott*, W.M.
A hydroponic system for microgravity plant experiments.

Atmosphere exchange system for the plant growth unit (Abstract).
ASGSB Bulletin 2: 37, 1989. (GWU 10424)
FOOD PRODUCTION: Lower Plants
Averner*, M.M.; Karel*, M.; Radmer*, R.

Averner*, M.M.; Moore*, B., III; Bartholomew, I.; Wharton, R.

Avernee, M.M.; Moore*, B., III; Bartholomew, I.; Wharton, R.

Belkin, S.; Mehlhorn, R.J.; Packer*, L.

Belkin, S.; Mehlhorn, R.J.; Packer*, L.

Belkin, S.; Packer*, L.

Bergstrom*, S.L.; Foutch, G.L.

Choi, K.J.; Nakhost, Z.; Barzana, E.; Karel*, M.

Choi, K.J.; Nakhost, Z.; Krukonis, V.J.; Karel*, M.

Fong*, F.; Funkhouser, E.A.

Fong*, F.; Funkhouser, E.A.
Fry, I.; Robinson, A.E.; Spath, S.; Packer*, L.
The role of Na$_2$S in anoxygenic photosynthesis and H$_2$ production in the cyanobacterium *Nostoc muscorum*.
Biochemistry and Biophysical Research Communications 123(3): 1138-1143, 1984. (GWU 9407)

Fry, I.V.; Hrabeta, J.; D'Souza, J.; Packer*, L.
Application of photosynthetic N$_2$-fixing cyanobacteria to the CELSS Program.

Fry, I.V.; Huflejt, M.; Erber, W.W.A.; Peschek, G.A.; Packer*, L.
The role of respiration during adaptation of the freshwater cyanobacterium *Synechococcus* 6311 to salinity.
Archives of Biochemistry and Biophysics 244(2): 686-691, 1986. (GWU 10244)

Fry, I.V.; Lazaroff, N.; Packer*, L.
Sulfate-dependent iron oxidation by *Thiobacillus ferrooxidans*: Characterization of a new EPR detectable electron transport component on the reducing side of rusticyanin.
Archives of Biochemistry and Biophysics 246(2): 650-654, 1986. (GWU 9405)

Fry, I.V.; Packer*, L.
Cyanobacteria in CELSS: Growth strategies for nutritional variation (Abstract).

Fry, I.V.; Perschek, G.A.; Huflejt, M.; Packer*, L.
EPR signals of redox active copper in EDTA washed membranes of the cyanobacterium *Synechococcus* 6311.

Grant, M.A.; Hochstein*, L.I.
A dissimilatory nitrite reductase from *Paracoccus halodenitrificans* (Abstract).
Abstracts of the 83rd Annual Meeting of the American Society for Microbiology 83: 187, 1983. (GWU 6278)

Grant, M.A.; Hochstein*, L.I.
Separation of nitrite and nitric oxide reductase activities in *Paracoccus halodenitrificans* (Abstract).
Abstracts of the 84th Annual Meeting of the American Society for Microbiology 84: 163, 1984. (GWU 6279)

Huflejt, M.E.; Negulescu, P.A.; Machen, T.E.; Packer*, L.
Na$^+$ and light-dependent regulation of cytoplasmic pH in cyanobacterium *Synechococcus* 6311 (Abstract).

Kamarei, A.R.; Nakhost, Z.; Karel*, M.
Potential for utilization of algal biomass for components of the diet in CELSS.

Kamarei, A.R.; Nakhost, Z.; Karel*, M.
Potential for utilization of algal biomass for components of the diet in CELSS.
Karel*, M.; Kamerei, A.R.; Nakhost, Z.

Karel*, M.; Nakhost, Z.
Non-conventional approaches to food processing in CELSS (Abstract).
In: Abstracts, Twenty-Sixth Plenary Meeting of the Committee on Space Research, Toulouse, France, June 30-July 11, 1986, p. 153. (GWU 9420)

Karel*, M.; Nakhost, Z.

Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer*, L.
Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium *Synechococcus* 6311 to salinity.
Plant Physiology 87: 767-775, 1988. (GWU 9606)

Maguire, B., Jr. (MacElroy, R.D. = P.I.)

Mehlhorn, R.J.; Blumwald, E.; Packer*, L.
ESR methods for studies of osmoregulation in the cyanobacterium *Synechococcus* 6311.

Nakhost, Z.; Karel*, M.
Non-conventional approaches to food processing in CELSS. I. Incorporation of isolated algal macronutrients as diet components in CELSS (Abstract).

Nakhost, Z.; Karel*, M.
Potential utilization of algal protein concentrate as a food ingredient in space habitats.

Nakhost, Z.; Karel*, M.; Krukonis, V.J.
Non-conventional approaches to food processing in CELSS. I. Algal proteins; Characterization and process optimization.

Packer*, L.
The bioenergetics of stress responses in cyanobacteria.
In: Papers, Proceedings of the Indo-US Workshop on Applications of Molecular Biology in Bioenergetics of Photosynthesis, New Delhi, India, January 4-8, 1988, 15 p. (GWU 8834)

Packer*, L.; Fry, I.V.
Photosynthate production by cyanobacteria (blue-green algae) (Abstract).
Packer*, L.; Fry, I.; Belkin, S.
Application of photosynthetic N₂-fixing cyanobacteria to the CELSS program.

Packer*, L.; Fry, I.V.; Hrabeta, J.
Strategies for the manipulation of food quality in the blue-green algae: Application to CELSS (Abstract).

Packer*, L.; Spath, S.; Baptiste, J.M.; Robbie, C.; Bligny, R.
Sodium-23 and phosphorus-31 studies of salt stress in the cyanobacterium Synechococcus 6311 (Abstract).

Petersen*, G.R.
Determining a carbohydrate profile for Hansenula polymorpha.
Enzyme and Microbial Technology 7: 339-345, 1985. (GWU 9507)

Petersen*, G.R.
Reproducible analyses of microbial food for advanced life support systems.

Petersen*, G.R.; Baresi, L.
The conversion of lignocellulosics to fermentable sugars for CELSS (Abstract).

Petersen*, G.R.; Nelson, G.A.
Rheological activity of yeast exopolysaccharides and its relation to secondary structure (Abstract).

Petersen*, G.R.; Nelson, G.A.; Cathey, C.A.; Fuller, G.G.
Rheologically interesting polysaccharides from yeasts.

Petersen*, G.R.; Schubert, W.W.; Seshan, P.K.; Dunlop, E.H.
Unconventional food regeneration in space: Opportunities for microbial food production.

Petersen*, G.R.; Schubert, W.W.; Stokes*, B.O.
Applications of mutant yeast strains with low glycogen storage capability.

Petersen*, G.R.; Seshan, P.K.; Dunlop, E.H.
Unconventional food regeneration in space: Requirements for microbial food production (Abstract).
Petersen*, G.R.; Stokes, B.O.
The development of an unconventional food regeneration process: Quantifying the nutritional components of a model methylotrophic yeast.

Petersen*, G.R.; Stokes*, B.O.; Schubert, W.W.; Rodriguez, A.M.
Enhancement of carbohydrates in a methylotrophic yeast.
Enzyme and Microbial Technology 5: 337-341, 1983. (GWU 6239)

Radmer*, R.
Algal studies related to CELSS.

Radmer*, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

Radmer*, R.; Behrens, P.; Cox, J.; Arnett, K.; Lieberman, D.
Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems (Abstract).

Radmer*, R.; Behrens, P.; Fernandez, E.; Arnett, K.
An analysis of the productivity of a CELSS continuous algal culture system.

Radmer*, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.
Algal culture studies related to a closed ecological life support system.
Physiologist 27(6, Suppl.): S25-S28, 1984. (GWU 6201)

Radmer*, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.
Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems.

Radmer*, R.; Ollinger, O.
Do the higher oxidation states of the photosynthetic O₂-evolving system contain bound H₂O?

Radmer*, R.; Ollinger, O.; Venables, A.; Fernandez, E.
Extracellular polysaccharides from diverse genera exhibit the rheological property of drag reduction (Abstract).

Seshan, P.K.; Petersen*, G.R.; Beard, B.; Dunlop, E.H.
Design concepts for bioreactors in space.

Smernoff, D.T. (MacElroy, R.D. = P.I.)

Smernoff, D.T.; Wharton, R.A., Jr.; Averner*, M.M.
Observations on gas exchange and element recycle within a gas-closed algal-mouse system.

Smernoff, D.T.; Wharton, R.A., Jr.; Averner*, M.M.
Operation of an experimental algal gas exchanger for use in a CELSS.

Stephanopoulos*, G.; San, K.-Y.
Data handling for on-line monitoring of growing microbial cultures (Abstract).

Stokes*, B.O.; Petersen*, G.R.
An evaluation of microorganisms for unconventional food regeneration schemes in CELSS: Research recommendations.

Stokes*, B.O.; Petersen*, G.R.
Unconventional food regeneration schemes in CELSS: An overview.

Strayer, R.F.; Garland, J.L. (Knott, W.M. = P.I.)
Effect of inoculum density and induction substrate concentration on cellulase production in co-cultures of Trichoderma reesei QM9414 and Aspergillus phoenicis QM329 (Abstract).

Tel-Or, E.; Huflejt, M.E.; Packer*, L.
Hydroperoxide metabolism in cyanobacteria.
Archives of Biochemistry and Biophysics 246(1): 396-402, 1986. (GWU 9406)

Tel-Or, E.; Spath, S.; Packer*, L.; Mehlhorn, R.J.
Carbon-13 NMR studies of salt shock-induced carbohydrate turnover in the marine cyanobacterium Agmenellum quadruplicatum.
Plant Physiology 82: 646-652, 1986. (GWU 9369)
Thayer, J.R.; Huffaker*, R.C.
Use of 15N-NO$_3^-$ for the analysis of NO$_3^-$ transport in Klebsiella pneumoniae (Abstract).
Abstracts of Papers, American Chemical Society 178(Sept): NUCL-26, 1979. (GWU 3858)

Evidence for a plasma membrane-bound nitrate reductase involved in nitrate uptake of *Chlorella sorokiniana*.
Planta 178: 19-24, 1989. (GWU 11170)

Velasco, P.J.; Tischner, R.; Huffaker*, R.C.; Whitaker, J.R.
Synthesis and degradation of nitrate reductase during the cell cycle of *Chlorella sorokiniana*.

Wharton, R.A., Jr.; Averner*, M.M.
Environmental manipulation of algal assimilatory quotient (AQ) in a gas-closed system (Abstract).
Journal of Phycology 20(Suppl.): 16, 1984. (GWU 11173)

Wharton, R.A., Jr.; Smernoff, D.T.; Averner*, M.M.
Algae in space.
NUTRITIONAL REQUIREMENTS
Dufour, P.A. (Bredt, J. = P.I.)

Dufour, P.A. (Bredt, J. = P.I.)

Dufour, P.A. (Bredt, J. = P.I.)

Glaser, P.E.; Mabel*, J.A.

Karel*, M.

Karel*, M.

Karel*, M.

Karel*, M.

Karel*, M.

Karel*, M.

Karel*, M.; Flink, J.M.

Karel*, M.; Kamarei, A.R.
Karel*, M.; Saguy, I.; Villota, R.; Heidelbaugh, N.D.

Karel*, M.; Villota, R.

Modell*, M.; Miessner, H.; Karel*, M.; Carden*, J.; Lewis, S.
To produce nutrients for plant growth (Abstract).

Smith*, M.C.
CELS human requirements (Abstract).

Smith*, M.C.; Rapp, R.M.
Food and nutrition.

Villota, R.; Saguy, I.; Karel*, M.
An equation correlating shelf life of dehydrated vegetable products with storage conditions.
Journal of Food Science 45: 398-399, 401, 1980. (GWU 1201)

Villota, R.; Saguy, L.; Karel*, M.
Storage stability of dehydrated food. Evaluation of literature data.

Wade, R.C. (Bredt, J. = P.I.)

Weiss, U.; Funes, J.; Karel*, M.
Polymerization of protein within oxidizing lecithin vesicles (Abstract).
WASTE MANAGEMENT
Baird, B.H.; White*, D.C.
Biomass and community structure of the abyssal microbiota determined from the ester-linked phospholipids recovered from Venezuela Basin and Puerto Rico Trench sediments.

Ion-exchange chromatography separation applied to mineral recycle in closed systems.

Ballou*, E.V.

Mineral separation in a CELSS by ion-exchange chromatography.

Ballou*, E.V.; Wood, P.C.; Spitze*, L.A.; Wydeven*, T.; Stein, R.
The preparation of calcium superoxide at subambient temperatures and pressures.

Ballou*, E.V.; Wydeven*, T.; Spitze*, L.A.
Plant growth and mineral recycle trade-offs in different scenarios for a CELSS.

Carden*, J.
Some issues in comparability of results and analytical methodology in CELSS waste processing research.

Carden*, J.L.; Browner, R.

Dreschel, T.W. (Knott, W.M. = P.I.)
Basic programming in water and wastewater analysis.

Findlay, R.H.; Moriarty, D.J.W.; White*, D.C.
Improved method of determining muramic acid from environmental samples.

Findlay, R.H.; Pollard, P.C.; Moriarty, D.J.W.; White*, D.C.
Quantitative determination of microbial activity and community nutritional status in estuarine sediments: Evidence for a disturbance artifact.
Findlay, R.H.; White*, D.C.
The effects of feeding by the sand dollar Mellita quinquiesperforata (Leske) on the Benthic microbial community.

Findlay, R.H.; White*, D.C.
In situ determination of metabolic activity in aquatic environments.
*Microbiological Sciences 1(4): 90-95, 1984. (GWU 6250)

Findlay, R.H.; White*, D.C.
Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium.
*Applied and Environmental Microbiology 45(1): 71-78, 1983. (GWU 4735)

Garavelli, J.S. (MacElroy, R.D. = P.I.)
Airborne trace contaminants of possible interest in CELSS.

Gehron, M.J.; Davis, J.D.; Smith, G.A.; White*, D.C.
Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components.

Gehron, M.J.; White*, D.C.
Sensitive assay of phospholipid glycerol in environmental samples.

Hoshizaki*, T.; Hansen*, B.D., III
Generic waste management requirements for a controlled ecological life support system (CELSS).

Hoshizaki*, T.; Hansen*, B.D., III
Generic waste management requirements for a controlled ecological life support system (CELSS).

Jacquez, R.B.; Smernoff, D. (MacElroy, R.D. = P.I.)
A comparison of waste processing methods for a CELSS: Fate of nitrogen (Abstract).
In: Symposium on Lunar Bases and Space Activities in the 21st Century, Houston, TX, April 5-7, 1988, p. 124. (GWU 10505)

Johnson, C.C.; Wydeven*, T.
Wet oxidation of a spacecraft model waste.

Lee, S.S.; Shuler*, M.L.
Aerobic biological waste treatment in regenerative life support systems.
Lee, S.S.; Shuler*, M.L.
Carbon dioxide evolution rate as a method to monitor and control an aerobic biological waste treatment system.

MacElroy*, R.D.; Wang, D.
Waste recycling issues in bioregenerative life support.

MacElroy*, R.D.; Wang, D.
Waste recycling issues in bioregenerative life support (Abstract).
In: Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research, Espoo, Finland, July 18-29, 1988, p. 394. (GWU 10234)

Martz, R.F.; Sebacher, D.I.; White*, D.C.
Biomass measurement of methane forming bacteria in environmental samples.

Massachusetts Institute of Technology

Meissner*, H.P.; Modell*, M.
Recycling plant, human and animal wastes to plant nutrients in a closed ecological system (Abstract).

Modell*, M.
Reforming of glucose and wood at the critical conditions of water (Abstract).

Modell*, M.
Reforming of organic substances in supercritical water (Abstract).

Modell*, M.
Supercritical waste oxidation of aqueous wastes.

Modell*, M.; deFilippi, R.
Supercritical fluid desorption of phenol from activated carbon (Abstract).
Carbon 18: 48, 1980. (GWU 4475)

Modell*, M.; Meissner*, H.; Karel*, M.; Carden*, J.; Lewis, S.
Treatment of CELSS and PCELSS waste to produce nutrients for plant growth.
Modell*, M.; Spurlock*, J.M.
Closed-ecology life support systems/CELSS/for long-duration, manned missions.

Modell*, M.; Spurlock*, J.M.
Rationale for evaluating a closed food chain for space habitats.

Microbial biomass and productivity in seagrass beds.
Geomicrobiology 4: 21-51, 1985. (GWU 9515)

Moses, W.M.; Rogers, T.D.; Chowdhury, H.; Cullingford*, H.S.
Performance characterization of water recovery and water quality from chemical/organic waste products.

Odham, G.; Tunlid, A.; Valeur, A.; Sundin, P.; White*, D.C.
Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere.

Onisko, B.L.; Wydeven*, T.

Onisko, B.L.; Wydeven*, T.
Wet oxidation as a waste treatment in closed systems.

Onisko, B.L.; Wydeven*, T.
Wet oxidation as a waste treatment method in closed systems.

Parker, J.H.; Smith, G.A.; Fredrickson, H.L.; Vestal, J.R.; White*, D.C.
Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide Lipid A, for gram-negative bacteria in sediments.
Applied and Environmental Microbiology 44: 1170-1177, 1982. (GWU 3432)

Platt, R.M.; Geesey, G.G.; Davis, J.D.; White*, D.C.
Isolation and partial chemical analysis of firmly bound exopolysaccharide from adherent cells of a freshwater sediment bacterium.
Pyne, J.W.; Shuler*, M.L.
Plant Physiology 72(1, Suppl.): 153, 1983. (GWU 4486)

Shuler*, M.L.
Waste treatment options for use in closed systems.

Shuler*, M.L.; Lee, S.; Rollins, S.
The feasibility of an activated sludge-ultrafiltration unit for use in closed ecological life support systems: Experimental system and preliminary results (Abstract).
Abstracts of Papers - American Chemical Society 184: MICR12, 1982. (GWU 6243)

Shuler*, M.L.; Nafis, D.; Sze, E.
The potential role of aerobic biological waste treatment in regenerative life support systems.

Slavin, T.; Liening, F.; Oleson, M.; Olson*, R.L.

Slavin, T.J.; Liening, F.A.; Oleson, M.W. (Olson, R.L. = P.I.)
CELSS waste management systems evaluation.

Takahashi, Y.; Wydeven*, T.; Koo, C.
Subcritical and supercritical water oxidation of CELSS model wastes.

Takahashi, Y.; Wydeven*, T.; Koo, C.
Subcritical and supercritical water oxidation of CELSS model wastes (Abstract).
In: *Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research*, Espoo, Finland, July 18-29, 1988, p. 394. (GWU 10232)

Timberlake, S.H.; Hong, G.T.; Simson, M.; Modell*, M.
Supercritical water oxidation for wastewater treatment: Preliminary study of urea destruction.

Tunlid, A.; Odham, G.; Findlay, R.H.; White*, D.C.
Precision and sensitivity of the measurement of 15N enrichment in D-alanine from bacterial cell walls using positive/negative ion mass spectrometry.

Webster, I.A.; Shuler*, M.L.
Whole-cell hollow-fiber reactor: Transient substrate concentration profiles.
Biotechnology and Bioengineering 23: 447-450, 1981. (GWU 3440)
White*, D.C.
Analysis of microorganisms in terms of quantity and activity in natural environments.

White*, D.C.
Chemical characterization of films.

White*, D.C.
Methods for microbial biomass, community structure and metabolic activities on surfaces.

White*, D.C.
Non-destructive biofilm analysis by Fourier transform spectroscopy (FT/IR).

White*, D.C.
Quantitative physical-chemical characterization of bacterial habitats.

White*, D.C.
Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity.

White*, D.C.; Hirsch, P.
Microbial extraction of hydrogen from lunar dust.

White*, D.C.; Nickels, J.S.; Parker, J.H.; Findlay, R.H.; Gehron, M.J.; Smith, G.A.; Martz, R.F.
Biochemical measures of the biomass, community structure, and metabolic activity of the ground water microbiota.

White*, D.C.; Smith, G.A.; Gehron, M.J.; Parker, J.H.; Findlay, R.H.; Martz, R.F.; Fredrickson, H.L.
The groundwater aquifer microbiota: Biomass, community structure, and nutritional status.
Developments in Industrial Microbiology 24: 201-211, 1983. (GWU 6271)

White*, D.C.; Smith, G.A.; Stanton, G.R.
Biomass, community structure and metabolic activity of the microbiota in Benthic marine sediments and sponge spicule mats.

Wydeven*, T.
Wydeven*, T.; Tremor, J.; Koo, C.; Jacquez, R.
Sources and processing of CELSS wastes.

Wydeven*, T.; Tremor, J.; Jacquez, R.
Sources and processing of CELSS waste (Abstract).
In: Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research, Espoo, Finland, July 18-29, 1988, p. 394. (GWU 10233)
SYSTEMS MANAGEMENT AND CONTROL
Aroeste, H. (MacElroy, R.D. = P.I.)

Auslander*, D.M.
CELSS system control overview.

Auslander*, D.M.
Spatial effects on the stability of a food-limited moth population.

Auslander*, D.M.; Spear, R.C.; Babcock, P.S.; Nadel, M.H.

Auslander*, D.M.; Spear, R.C.; Young, G.E.

Auslander*, D.M.; Spear, R.C.; Young, G.E.
A simulation-based approach to the design of control systems with uncertain parameters.

Avernee, M.M.

Avernee, M.M.
Controlled Ecological Life Support System.

Avernee, M.M.
NASA's program in natural and artificial biospheres (Abstract).
In: Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research, Espoo, Finland, July 18-29, 1988, p. 395. (GWU 10236)

Avernee, M.M.; MacElroy*, R.D.
The CELSS Program: An overview of its structure and use of computer modelling.

Avernee, M.M.; MacElroy*, R.D.
The CELSS Program: An overview of its structure and use of computer modelling.
Babcock, P.S. (Auslander, D.M. = P.I.)

Babcock, P.S.; Auslander*, D.M.; Spear, R.C.
Dynamic considerations for control of closed life support systems.

Blackwell*, A.L.
CELSS control issues (Abstract).

Blackwell*, A.L.; Blackwell, C.C.
A modeling system for control of the thermal and fluid dynamics of the NASA CELSS Crop Growth Research Chamber.

Botkin, D.B.; Golubic, S.; Maguire, B.; Moore*, B.; Morowitz, H.J.; Slobodkin*, L.B.
Closed regenerative life support systems for space travel: Their development poses fundamental questions for ecological science.
Life Sciences and Space Research 17: 3-12, 1979. (GWU 10336)

Buchanan, P.

Colombano*, S.
Control problems in autonomous life support systems.

Cullingford*, H.S.
CELSS emulator development (Abstract).

Cullingford*, H.S.
Development of the CELSS Emulator at NASA JSC.

Cullingford*, H.S.
Lunar base CELSS (Abstract).

Cullingford*, H.S.
Project "Home" (Habitat overmatching the moon environment) (Abstract).
In: Symposium on Lunar Bases and Space Activities in the 21st Century, Houston, TX, April 5-7, 1988, p. 60. (GWU 10502)
Cullingford*, H.S.; Keller, M.D.
Lunar concrete for construction (Abstract).
In: *Symposium on Lunar Bases and Space Activities in the 21st Century*, Houston, TX, April 5-7, 1988, p. 61. (GWU 10503)

Cullingford*, H.S.; Novara, M.
Conceptual design of a piloted Mars sprint life support system.

Gold, H.J.; Raper*, C.D., Jr.
Systems analysis and modeling in extrapolation of controlled environment studies to field conditions.

Gustan, E.; Vinopal, T. (Olson, R.L. = P.I.)

Gustan, E.A.; Vinopal, T.J.; Olson*, R.L.
A near-term mission for CELSS.

Hanson*, J.A.
Workshop on closed system ecology, held at the California Institute of Technology, Pasadena, California, USA, during 18-22 January 1982.

Henninger*, D.L.
Life support systems research at the Johnson Space Center.

Hilding, S.E.; Prince, R.P.; Taylor, E.E.; Knott*, W.M.
Control and data acquisition system design for a scaled biomass production chamber at Kennedy Space Center Florida.

Hornberger, G.M.; Rastetter, E.B. (MacElroy, R.D. = P.I.)

Jet Propulsion Laboratory

Johnson, E.J. (MacElroy, R.D. = P.I.)
Kaufmann, R.K.; Moore*, B., III; Averner*, M.
Modelling gas exchange in closed biological systems.

Knott*, W.M.

Knott*, W.M.
Implementation of the CELSS Breadboard Project (Abstract).

Knott*, W.M.
Plan for CELSS test bed project.

Knott*, W.M.; Sager, J.C.; Prince, R.P.; Jones, J.D.
CELSS Breadboard Project (Abstract).

MacElroy*, R.D.
Current concepts of the CELSS program.

MacElroy*, R.D.
Farming in space.

MacElroy*, R.D.; Bredt*, J.
Current concepts and future directions of CELSS.
Advances in Space Research 4(12): 221-229, 1984. (GWU 10334)

MacElroy*, R.D.; Klein, H.P.; Averner*, M.M.
The evolution of CELSS for lunar bases: Controlled ecological life support systems.

MacElroy*, R.D.; Martello, N.V.; Smernoff, D.T.

MacElroy*, R.D.; Smernoff, D.T.
MacElroy*, R.D.; Smernoff, D.T. (Eds.)
Controlled Ecological Life Support Systems.

MacElroy*, R.D.; Smernoff, D.T.
A review of recent scientific results in the controlled ecological life support system program (Abstract).
In: Abstracts, Twenty-Sixth Plenary Meeting of the Committee on Space Research, Toulouse, France, June 30-July 11, 1986, p. 154. (GWU 9436)

MacElroy*, R.D.; Smernoff, D.T.; Klein, H.P.

MacElroy*, R.D.; Thompson, B.G.; Tibbits*, T.W.; Volk*, T. (Eds.)

MacElroy*, R.D.; Tibbits*, T.W.; Thompson, B.G.; Volk*, T. (Eds.)
Natural and Artificial Ecosystems.

MacElroy*, R.D.; Tremor, J.; Bubenheim*, D.L.; Gale, J.
The CELSS Research Program: A brief review of recent activities.

A review of recent activities in the NASA CELSS Program.

MacElroy*, R.D.; Wydeven*, T., Jr.
Bio-regenerative life support.

Martello, N.V. (MacElroy, R.D. = P.I.)
Development of space technology for ecological habitats.

Mason*, R.M.

Mason*, R.M.; Carden*, J.L. (Eds.)

Moore*, B., III; Kaufmann, R.; Reinhold, G.
Design and control strategies for CELSS: Integrating mechanistic paradigms and biological complexities.
Moore*, B.; MacElroy*, R.D.

National Aeronautics and Space Administration, Jet Propulsion Laboratory.

Novara, M.; Cullingford*, H.S.
Bio-isolation analysis of plants and humans in a piloted Mars sprint.

Oleson, M.; Olson*, R.L.

Oleson, M.W.; Slavin, T.J.; Olson*, R.L.
Lighting considerations in a controlled environmental life support system.

Olsen*, R.L.; Gustan, E.A.; Vinopal, T.J.
CELSS transportation analysis.

Olson*, R.L.; Oleson, M.W.; Slavin, T.J.
CELSS for advanced manned mission.

Petersen*, G.R.; Seshan, P.K.
Phase separated membrane bioreactor: Results from model system studies (Abstract).
In: *Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research,* Espoo, Finland, July 18-29, 1988, p. 393. (GWU 10197)

Petersen*, G.R.; Seshan, P.K.; Dunlop, E.H.
Phase separated membrane bioreactor: Results from model system studies.

Prince, R.P. (Knott, W.M. = P.I.)
Design and engineering the biomass production chamber (Abstract).

Prince, R.P.; Knott*, W.M., III
CELSS Breadboard Project at the Kennedy Space Center.
Prince, R.P.; Knott*, W.M.; Buchanan, P.
Integration, design, and construction of a CELSS Breadboard Facility for bioregenerative life support system research.

Prince, R.P.; Knott*, W.M., III; Hilding, S.E.; Mack, T.L.
A Breadboard Biomass Production Chamber for CELSS.

Prince, R.P.; Knott*, W.M.; Sager, J.C.; Hilding, S.E.
Design and performance of the KSC Biomass Production Chamber.

Prince, R.P.; Knott*, W.M.; Sager, J.C.; Jones, J.D.
Engineering verification of the biomass production chamber (Abstract).
In: Symposium on Lunar Bases and Space Activities in the 21st Century, Houston, TX, April 5-7, 1988, p. 199. (GWU 10506)

Reinhold, C. (Schwartzkopf, S.H. = P.I.)
SOYCHMBR.I: A model designed for the study of plant growth in a closed chamber (Abstract).

Rummel, J.D.
CELSS science needs.

Rummel, J.D.
The NASA-CELSS initial reference configuration (Abstract).
In: Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research, Espoo, Finland, July 18-29, 1988, p. 395. (GWU 10237)

Rummel, J.D.; Volk, T.
A modular BLSS simulation model (Abstract).
In: Abstracts, Twenty-Sixth Plenary Meeting of the Committee on Space Research, Toulouse, France, June 30-July 11, 1986, p. 154. (GWU 9446)

Rummel, J.D.; Volk, T.
Modelling a modular controlled ecological life support system (Abstract).

Rummel, J.D.; Volk, T.
A modular BLSS simulation model.

CELSS atmospheric control system.
Schwartzkopf, S.H.
Design of an elemental analysis system for CELSS research (Abstract).
In: *Abstracts, Twenty-Sixth Plenary Meeting of the Committee on Space Research*, Toulouse, France, June 30-July 11, 1986, p. 156. (GWU 9417)

Schwartzkopf, S.H.
Design of an elemental analysis system for CELSS research.
Advances in Space Research 7(4): 89-93, 1987. (GWU 10033)

Schwartzkopf, S.H.; Stofan, P.E.
A chamber design for closed ecological systems research.

Smernoff, D.T.; MacElroy*, R.D.
Use of Martian resources in a Controlled Ecological Life Support System (CELSS).

Research planning criteria for regenerative life-support systems applicable to space habitats.

Spurlock, J.M.; Modell*, M.

Spurlock, J.M.; Modell*, M.
Systems engineering overview for regenerative life-support systems applicable to space habitats.

Spurlock, J.M.; Modell*, M.
Technology requirements for nonterrestrial ecosystems.

Spurlock, J.M.; Modell*, M.

Spurlock, J.M.; Modell*, M.
Technology requirements for closed-ecology life support systems applicable to space habitats.

Stahr, J.D.; Auslander*, D.M.; Spear, R.C.; Young, G.E.
An approach to the preliminary evaluation of closed-ecology life support system (CELSS) scenarios and control strategies.
Stahr, J.D.; Auslander*, D.M.; Spear, R.C.; Young, G.E.

Tremor, J.W.; MacElroy*, R.D.

Vinopal, T.; Gustan, E.; Olson*, R.
Probable missions and transportation scenarios to use regenerative life support systems.

Volk*, T.
Observations gleaned from modeling controlled ecological life support systems (Abstract).

Volk, T.; Rummel, J.
A simple model for the growth of four candidate crops for space agriculture (Abstract).
In: Abstracts, Twenty-Seventh Plenary Meeting of the Committee on Space Research, Espoo, Finland, July 18-29, 1988, p. 391. (GWU 10229)

Volk, T.; Rummel, J.D.
Mass balances for a biological life support system simulation model.

Volk, T.; Rummel, J.D.
Mass balances for CELSS simulation models (Abstract).

Volk, T.; Rummel, J.D.
The role of reservoir sizes in the maintenance of a stable closed system.
In: Abstracts, Twenty-Sixth Plenary Meeting of the Committee on Space Research, Toulouse, France, June 30-July 11, 1986, p. 157. (GWU 8625)

A dynamic model for plant growth: A simulation of dry matter accumulation for tobacco.

Wann, M.; Raper*, C.D., Jr.
A dynamic model for plant growth: Response to changing temperatures.

Wann, M.; Raper*, C.D., Jr.
A dynamic model for plant growth: Validation study under changing temperatures.
Wann, M.; Raper*, C.D., Jr.
In: Models in Plant Physiology and Biochemistry, Volume III (Newman, D.W., Wilson, K.G., Eds.).

Yandell, B.S.; Najar, A.; Wheeler, R.M.; Tibbits*, T.W.
Modeling the effects of light, carbon dioxide, and temperature on the growth of potato.

Young, G. (Auslander, D.M. = P.I.)

Young, G.E.; Auslander*, D.M.
A design methodology for nonlinear systems containing parameter uncertainty.
CELSS Principal Investigators

David Auslander
Department of Mechanical Engineering
University of California
Berkeley, CA 94720

Maurice M. Averner
Code EBR
NASA Headquarters
Washington, DC 20546

Ann L. Blackwell
Center for Dynamic Systems Control Studies
Department of Mechanical Engineering
University of Texas
Arlington, TX 76019

David L. Bubenheim
Life Sciences Division
NASA, Ames Research Center
Moffett Field, CA 94035

Bruce Bugbee
Plant Science Department
Utah State University
Logan, UT 84322

John Carden
Engineering Experiment Station
Georgia Institute of Technology
Atlanta, GA 30332

Hattice S. Cullingford
NASA, Johnson Space Center
Solar System Exploration Division
Code SN12
Houston, TX 77058

Paul H. Deal
NASA, Ames Research Center
Moffett Field, CA 94035

S. DeStefano
NASA, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Franklin Fong
Department of Plant Sciences
Texas A & M University
College Station, TX 77843

Charles E. Giffin
NASA, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Amitava Gupta
NASA, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Bertle D. Hansen
NASA, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Joe A. Hanson
NASA, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Donald L. Henninger
NASA, Johnson Space Center
Solar System Exploration Division
Houston, TX 77058

Lawrence I. Hochstein
NASA, Ames Research Center
Mail Stop 239-4
Code SSX
Moffett Field, CA 94035

Johan E. Hoff
Purdue University
West Lafayette, IN 47907

Takashi Hoshizaki
NASA, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
CELSS Principal Investigators

J.M. Howe
Purdue University
West Lafayette, IN 47907

Raymond C. Huffaker
Plant Growth Laboratory
University of California, Davis
Davis, CA 95616

Marcus Karel
Department of Food Technology
Massachusetts Institute of Technology
Cambridge, MA 02139

William Knott
NASA, Kennedy Space Center
Life Sciences Office
Code MD-RES
Kennedy Space Center, FL 32899

R.W. Langhans
Department of Floriculture
Cornell University
Ithaca, NY 14853

Robert D. MacElroy
NASA, Ames Research Center
Mail Stop 239-4
Moffett Field, CA 94035

Cary A. Mitchell
Department of Horticulture
Purdue University
West Lafayette, IN 47907

Michael Modell
Modell Development Corporation
23 Fresh Pond Place
Cambridge, MA 02138

Berrien Moore
Complex Systems Research Center
University of New Hampshire
Durham, NH 03824

Richard L. Olson
Boeing Aerospace Co.
Seattle, WA 98124

Lester Packer
Applied Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Gene R. Petersen
NASA, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Richard Radmer
Martin-Marietta Laboratory
1450 South Rolling Road
Baltimore, MD 21227

C. David Raper
Department of Soil Sciences
North Carolina State University
Raleigh, NC 27695

Frank B. Salisbury
Plant Science Department UMC 48
Utah State University
Logan, UT 84322

Steven S. Schwartzkopf
Lockheed Missiles and Space Company
1322 Crossman Avenue
Building 580, Org 53-11
Sunnyvale, CA 94088

Michael L. Shuler
School of Chemical Engineering
Cornell University
Ithaca, NY 14853

Gregory N. Stephanopoulos
Department of Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Theodore W. Tibbitts
Department of Horticulture
University of Wisconsin
1575 Linden Lane
Madison, WI 53706
CELSS Principal Investigators

Tyler Volk
Department of Applied Science
New York University
New York, NY 10003

David C. White
Department of Biological Sciences
Florida State University
Tallahassee, FL 32306

Theodore Wydeven
NASA, Ames Research Center
Mail Stop 239-4
Moffett Field, CA 94035

L. P. Zill
NASA, Ames Research Center
Moffett Field, CA 94035

Janice S. Wallace and Janet V. Powers

Science Communication Studies
George Washington University
Washington, DC 20006

Life Sciences Division, Office of Space Science and Applications
National Aeronautics and Space Administration
Washington, DC 20546

Publications of research sponsored by the NASA CELSS (Controlled Ecological Life Support System) Program from 1979 to 1989 are listed. The CELSS Program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system that continually recycles the solid, liquid, and gaseous materials essential for human life. The bibliography is divided into four major subject areas: food production, nutritional requirements, waste management, and systems management and control.

<table>
<thead>
<tr>
<th>Key Words (Suggested by Author(s))</th>
<th>Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELSS</td>
<td>Unclassified - Unlimited</td>
</tr>
<tr>
<td>bioregenerative life support systems</td>
<td>Subject Category 54</td>
</tr>
<tr>
<td>waste management</td>
<td></td>
</tr>
<tr>
<td>nutrition</td>
<td></td>
</tr>
<tr>
<td>recycling</td>
<td></td>
</tr>
<tr>
<td>food production</td>
<td></td>
</tr>
<tr>
<td>food technology</td>
<td></td>
</tr>
<tr>
<td>plant physiology</td>
<td></td>
</tr>
</tbody>
</table>

Available from the National Technical Information Service, Springfield, VA 22161