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ABSTRACT

The status of the verification (comparisons of predictions with experimen-
tal data) of the METCAN (METal-matrix Composite ANalyzer) code at high tempera-
ture is summarized. Verification includes select available room temperature
properties of W/Cu composites for different fiber volume ratios. It also

includes high temperature comparisons for thermal expansion, moduli, strength
and stress/strain behavior for SiC/Ti composites. Furthermore, it includes

limited cases for thermal fatigue strength degradation. The verification
results summarized, herein, indicate that METCAN simulates complex high temper-
ature metal matrix composite behavior with reasonable accuracy and that it can
be used with confidence to identify in-situ nonlinear behavior that influences
composite properties.

INTRODUCTION

The nonlinear behavior of high temperature metal matrix composites
(HT-_C) has been investigated at NASA Lewis Research Center during the past
decade. The investigation focused on the development of computational simula-
tion procedures and attendant computer codes. One unique aspect of the inves-
tigation is that the computational simulation represents the fabrication
process which is schematically depicted in figure 1. The investigation culmi-
nated in the development of a computer code identified as METCAN (METal-matrix
Composite ANalyzer). The simulation capability in METCAN is depicted schemati-
cally in figure 2. METCAN has the capability to predict all aspects of HT-MMC
behavior, including the fabrication process by using only room temperature
properties for the fiber and matrix. The formalism embedded in it, an initial
version, and concept demonstration are described in reference 1. A detailed
description of the micromechanics to represent the simulation at the constitu-
ent materials level is provided in reference 2.

Another unique feature of the computational simulation in METCAN is the
introduction of the multifactor interaction model (MFIM) to represent the vari-
ous nonlinearities and their mutual interactions in the constituents. The

equation form of the MFIM and reasons for its selection are summarized in fig-
ure 3. A discussion on its ability to represent constituent material behavior
and the subsequent influence of this behavior on the response of structural
components from HT-MMC is presented in reference 3. METCAN simulation of the
cyclic behavior of HT-MMC is described in reference 4, where the influence of

the interphase and limited comparisons with room temperature data are also
described. METCAN simulation of in-situ behavior and how this can be used to

interpret composite measured behavior are described in reference 5.



The cumulative effort invested in the development of METCANhas been sub-
stantial, primarily supported by research and technology programs. The support
from focused programs (High Temperature Materials, e.g.) is limited to a sys-
tematic verification of _ETCAN including nonlinearities and their mutual inter-
actions. The objective of the present report is to describe the status of this
systematic verification of METCAN.

VERIFICATION

The current METCAN verification effort includes: (1) additional room tem-
perature data on tungsten-fiber/copper-matrix (W/Cu) composites for longitudi-
nal tension at three different fiber volume ratios; (2) thermal expansion of

SiC/Ti laminates, (3) high temperature strength for a Ti matrix only; (4) high
temperature strengths and moduli for SiC/Ti composites, and (5) thermal cyclic
loading data (thermal fatigue). Respective values for the room temperature
constituent materials properties used as input in the MFIM are summarized in

tables I and II. The METCAN simulation begins with the processing and pro-
ceeds to cool-down and subsequent loading as is illustrated schematically in
figure 4.

Additional Room Temperature Data

METCAN predicted results are compared with W/Cu experimental data

(ref. 6). Stress/strain curves in longitudinal tension are shown in figure 5
for a 0.28 FVR composite. METC&N slightly underpredicts the stress/strain

curve compared to the experimental data. One reason for this slight underpre-
diction is that the exponent (m) in the stress term in the MFIM (fig. 3) needs
a slight adjustment. The adjustment of this exponent consists of arbitrary
perturbations until the predicted curve shape matches the measured shape. Sim-
ilar comparisons are shown in figure 6 for 0.536 FVR and in figure 7 for 0.674
FVR. METCAN consistently underpredicts the experimental data in the middle
part which can be remedied by adjusting the stress-term exponent (m) in the
MFIM as was already mentioned. In the absence of experimental data the expo-
nents of 0.25 for fiber properties and 0.5 for matrix properties are suggested
based on experience to date.

Collectively, the comparisons in figures 5 to 7 lend credence to the use

of the MFIM to represent nonlinear stress strain behavior using only room tem-
perature data for fibers and matrix. In addition, METCAN predictions are in
good agreement with measured data, especially for composite strengths.

It is worth noting that the in-situ fiber tensile strength for the tung-
sten fibers in table I is only approximately known. For the comparisons pre-
sented in figures 5 to 7, the in-situ tensile strength was estimated using the
measured strength for the 0.536 FVR composite. This value was then used to
predict the stress/strain curves for the other two composites. This can be
used as a guideline for selecting in-situ values for the primitive variables in
the MFIM.



Thermal Expansion Coefficients

METCAN predictions for (0/90/0) SiC/Ti laminates are compared with experi-
mental data (ref. 7) in figure 8 for thermal expansion along the 0 ° ply direc-
tion and in figure 9 for thermal expansion along the 90 ° ply direction. The
predictions are almost identical with the data except above 1000 °F for the
expansion along the 90 ° ply direction, where the data indicate a rapid jump.
Assuming the data are correct, then, two probable causes may have contributed
to this jump. The first is probable interfacial damage in the 90 ° ply and the
second is probable interply layer damage between the 0 ° plies and the 90 ° ply.
Both of these phenomena are presently being investigated with METCAN by adjust-

ing the properties of the interphase. Data to be generated from the planned
experimental program (described later) will further clarify the cause for this
rapid jump.

High-Temperature Stress-Strain Behavior

METCAN predicted stress/strain behavior for Til5 matrix, only (using the
default value 0.5) is compared with bulk-matrix measured data in figure 10.
The data were obtained at 1022 °F (ref. 8). METCAN overpredicts the stress
beyond 0.5 percent strain and the stress at fracture by about 10 percent. The
comparison can be improved by adjusting the stress term exponent (m). METCAN
predictions for Ti-3A1 alloy matrix tensile strength at temperature are com-
pared with data (ref. 9) in figure 11. The comparison is very good except at
800 °F. The data at this temperature are suspect for this discrepancy. These

comparisons are considered to be remarkable since nominal, room temperature
data available in the databank of METCAN were used in the predictions.

METCAN predictions are compared with measured data (ref. 10) in figure 12
for transverse tensile stress/strain behavior. The composite, the fiber volume

ratio, and the temperature are shown in the figure. The comparisons are
acceptable considering the relatively large strains to fracture (about
3 percent). The primitive variables for in-situ matrix strength need some
readjustment to obtain better comparisons; however that was not done in this
investigation. This is consistent with the discussion in the last section for
the Ti matrix stress/strain behavior comparisons.

Moduli and Strengths

METCAN predicted longitudinal (11) and transverse (22) moduli (E) for
SCS-6/Ti15 at 0.33 FVR are compared with measured data (ref. 11) in figure 13
for two different temperatures. Note that the METCAN predictions are for a

composite with n__qinterphase and one with a carbon-rich interphase, with a
thickness equal to about 1 percent of the fiber diameter (approximate size
from metallographic studies). The predicted values with the interphase are in
excellent agreement with the measured data for the transverse modulus while
those without interphase are in better agreement with the measured data for the
longitudinal modulus. Apparently the interphase contributes significantly to
transverse properties and has negligible effect on longitudinal properties.

The comparisons with no interphase are considered to be in good agreement
for both moduli at both temperatures. Inclusion of the interphase improves the



comparisons for the transverse modulus while it worsens, somewhat, those for
the longitudinal modulus. In either case, the conclusion is that METCAN can be
used to predict high temperature moduli with confidence.

Similar comparisons are shown in figure 14 for longitudinal and trans-
verse tensile strengths. For these strengths the METCAN predictions with the

interphase are in excellent agreement with the measured data (ref. 11}. The
comparisons, therefore, indicate: (1) an interphase is likely to develop in
SCS-6/Ti composites due to interdiffusion; (2) this interphase must be included
in the computational simulation; and (3) METCAN can be used to simulate this

complex behavior with the type of data readily available from material
suppliers.

Thermal Cycling

Verification for thermal cycling (thermal fatigue) requires reasonably
good estimates of the primitive variable NTF in the MFIM. The preferred pro-
cedure to estimate this primitive variable is from available composite thermal
fatigue data. In the absence of these data, two alternatives are recommended.

The first alternative is suitable when the composite has not yet been made but

the candidate matrix material is available for which an S/N curve can be gener-
ated. Values for NTF and NMF can be estimated from this curve as is shown
in figure 15. The second alternative is recommended when composites from the

candidate fiber/matrix constituents can be made. This alternative requires the
cyclic testing of [O/90]s composites as is depicted schematically in figure 16.
The number of cycles accumulated when the first transply crack develops in the
90 ° plies is used in the MFIM together with the stress range and temperature
range to back calculate NTF and NMF. These values are then used to generate
thermal/mechanical fatigue strength, or any other property, degradation curves
that can be compared with data for different conditions.

METCAN predicted thermal fatigue degradation effects on longitudinal ten-
sile strength are compared with measured data (ref. 9) in figure 17. For
these comparisons NTF was estimated to be about 3000 cycles from the avail-
able measured data. The comparisons are excellent in view of the fact that

this is a relatively complex thermal cycle. The comparisons further confirm
that METCAN has the versatility to accurately simulate the complex nonlinear
behavior of high temperature metal matrix composites.

FUTURE PLANS

The future plans for METCAN verification include continuous checking with
any high temperature data that become available as well as data from a planned
experimental program. The planned experimental program is a grant with North-
western University. The number of tests and types to be performed are summar-
ized in table III. These specimens were mainly selected to provide sufficient

data to verify the MFIM in figure 3. This program has been slow in getting
started due to delays in material delivery and delivery of suitable high-
temperature specimen grips.



SUMMARY

The METCAN verification status for high temperature metal matrix compos-
ites is as follows:

1. Room temperature - satisfactory
2. Thermal expansion - satisfactory
3. Longitudinal and transverse moduli at high temperature - satisfactory
4. Longitudinal and transverse tensile strengths at high temperature -

satisfactory
5. Stress-strain curves at high temperatures - adequate
6. Thermal fatigue - satisfactory

CONCLUSION

METCAN successfully simulates the complex behavior of high temperature
metal matrix composites. Continuing use and familiarity will enhance its cred-

ibility to the point where it can be used with more confidence.
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TABLE I. - FIBER PROPERTIES FROM METCAN DATABANK

Property

Of, mils
Rhof, lb/in. 3

Tempmf, °F

SiCI a

5.700
0.108

4500.000

Fiber code names

SiC2 b

5. 700
O. 108

4500.000

SiC3 c

5.700
0.110

4870.000

Efll, Mpsi
Ef22, Mpsi
Nuf12, in./in.
Nuf23, in./in.
Gf12, Mpsi

Gf23, Mpsi
Alfaf11, ppm/°F
Alfaf22, ppm/°F
Kf11, Btu/hr/in./°F
Kf22, Btu/hr/in./°F
Cf, Btu/lb
SfllT, ksi
SfllC, ksi
Sf22T, ksi
Sf22C, ksi
Sf12S, ksi
Sf23S, ksi

50.700

50.700

0.190
0.190

21.300

21.300

1.200

1.200

0.806
0.806
0.300

486.000
486.000
486.000
486.000
243.000
243.000

50.800
50.800

0.250
0.250

20.300

20.300
2.720
2.720
0.806
0.806
0.300

500.000
500.000
500.000
500.000

250.000

250.000

60.000
60.000

0.300
0.300

23.100

23.100
2.700
2.700
0.806
0.806
0.300

500.000
650.000

500.000

650.000
300.000
300.000

Tung d

10.0
0.683

6170.0
59.0
59.0
0.29
0.29
22.7
22.7

2.5
2.5

8.28
8.28

0.024
350.0
350.0
350.0
350.0
236.0
236.0

aReference 9.
bReference 8.

CReference 10.
dReference 6.



TABLEII. - MATRIXPROPERTIESFROMMETC&NDATABANK

Property

Rhom, lb/in. 3
Em, Mpsi
Num, in./in.

Alfam, ppm/°F
Kin, Btu/hr/in./°F
Cm, Btu/lb
SmT, ksi
SmC, ksi
SmS, ksi

EpsmT, percent
EpsmC, percent
EpsmS, percent
EpsmTOR, percent
Kvoid, Btu/hr/in./°F

Tempmm, °F

Matrix code name

TiA1 a

0.170
11.600

0.260
5
0
0

65
65
52

Ti52 b

0.172
14.700

0.350
.000 5.000
•347 0.390
.100 0.120
.000 144.000
•000 144.000
.000 90.000

Ti6A c

0.170
16.500

0.300
5.240

0.390
0.120

144.000
144.000

90.000

Copr d

0.32
17.7

0.3
9.8

19.3
0.09

15.0
15.0

9.0
2.000 12
3. 000 12
3. 000 12
3. 000 12
0.019 0

2730.000 3000

•000
.000
.000
•000
.019
.000

2.000
2. 000
2.000
2.000
0.019

3000.000

35.0
35.0
35.0
35.0

0.019
1980.0

Carb e

O. 172
2.5

0.22
2.12
0.39
0.12
10.0
10.0
10.0
12.0
12.0
12.0
12.0
0.19

3000.0

aReference 9.
bReference 8.
CReference 10.
dReference 6.

eLerch, Brad.
discussions.

Structures Oivision, Lewis Research Center: SCS6 Private

TABLE III. - TEST MATRIX FOR CHARACTERIZATION OF METAL MATRIX COMPOSITE

Test type

Physical/thermal

Microscopy
Monotonic UDa

Fractographic
Tension-compression
Cyclic (mechanical,

thermal)
Monotonic MDb
Thermal MDb

Combined loading
Loading/temp/time

Properties determined

a, n, C, Vf,
Interphase (R)
E, v, G, F, c u

Fracture morphology
Monoresidual stresses

NM, NT, E, R

E, v, F, cu

a,n,C
E, F, ¢u

E, _, n, C

Variables

T a ¢ NM NT

X X
X X
X X
X X

X X X

X
X

X

Total

t

X
X

X

X

Number
of

tests

90
27

135
45

6
36

81
81

75
135

711

aUD = unidirectional.
bMD = multidirectional.
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