
N90-22304

MANAGING TEMPORAL RELATIONS

Daniel L. Britt

Amy L. Geoffroy

John R. Gohring

Martin Marietta Information Systems Group
P.O. Box 1260

Denver, CO 80201-1260

ABSTRACT

In this paper we will describe

various temporal constraints on

the execution of activities, and

discuss their representation in

the scheduling system

MAESTRO* Initial examples

will be presented using a

sample activity to be described.

We will then expand upon

those examples to include a

second activity, and explore the

types of temporal constraints
that can obtain between two

activities. Soft constraints, or

preferences, in activity

placement will be discussed.

Multiple performances of

activities will be considered,

with respect to both hard and

soft constraints. The primary
methods used in MAESTRO to

handle temporal constraints
will be described as will certain

aspects of contingency handling

with respect to temporal
constraints. We will conclude

with a discussion of the overall

approach, with indications of

MAESTRO is a proprietary product of

Martin Marietta Corporation.

future directions for this

research.

INTRODUCTION

In order to describe temporal

constraint handling in the

scheduling system MAESTRO, it

will be helpful to first discuss

in general what MAESTRO

schedules, what a schedule is

and how it's built.

The basic schedulable entity
MAESTRO deals with is called

an ACTIVITY. An activity is a

set of actions which, when

successfully completed,

accomplishes some desired

goal. We call these actions

SUBTASKS, and specify that an

activity is an ordered sequence

of non-overlapping subtasks.

For example, suppose we wish

to perform a spectral analysis

of a portion of the upper

atmosphere using a satellite-

born instrument. We could call

this activity ATMOS. The

sequence of subtasks which

make up ATMOS are listed in

table 1. We must power up the

instrument, perform a self-test

123

on its electronics, calibrate it

using a known light source,

repoint it, collect the data we're

interested in, and then put the

instrument back in stand-by

mode.

Table 1. Activity ATMOS.

Subtask

1

2

3

4

5

6

Name

Power Up

Self Test

Calibrate

Repoint

Collect Data

Power Down

In addition to descriptions of

activities such as the one

above, we need profiles of

available resources used by the

activities as well as profiles of

ambient environmental

conditions in order to schedule

these activities. These profiles

describe the state of each

resource or condition as a

function of time. Figure 1

shows an electrical power

availability profile.

lO(

P
O
W
E
R

(%}

0

0 Time (minutes) 1440

Figure 1. Electrical power

availability as a function of time.

Given a set of activity

descriptions and resource and

conditions profiles, MAESTRO

schedules by repeatedly

executing what we call a select-

place-update cycle. An activity

is selected from among all

activities requested to be

scheduled. It is then placed on

the schedule such that it can be

executed as placed. Finally, its

proposed use of satellite

resources is noted on the

appropriate resource

availability profiles, and a

calculation is performed to

determine, within these new

profiles, where on the schedule

each remaining activity

requested can be placed.

MAESTRO will continue to

execute these three steps,

select, place and update, until
there are no more activities

requested to be scheduled

which can be placed.

CONSTRAINTS ON SUBTASK

EXECUTION WITHIN AN

ACTIVITY

We will now begin to explore

the various types of constraints

which dictate where on the

schedule our sample activity

can be placed. Each of the

subtasks making up the

activity has certain resource

and conditions requirements

which must be met for the

entire duration of the subtask

in order for that subtask to

124

execute. For example, the data

collection subtask requires that
the instrument be available,

with enough electrical power to

operate it in the proper mode,

and that the instrument be

pointed at the right area of the

atmosphere, while not being

pointed too near the sun. The
instrument must also be in the

right temperature range, and

the platform must not be

subject to too much vibration.
Table 2 outlines these

requirements for this subtask.

Table 2. Resources and conditions

needed by ATMOS subtask 5.

Resource/Condition Amount/Value

Instrument available

Power

Target

Sun Exclusion Angle

Temperature Min & Max

Max Vibration

Yes

400 watts

Earth Limb

32 degrees

10 - 36 deg. C

650 micro-g

Each of the resources and

conditions listed above has an

associated availability profile

maintained by the scheduler.

These can be used to generate

lists of time windows during

which a subtask can be running

with respect to each

requirement. The intersection
of these windows determines

when all resource and

conditions requirements for the

subtask are simultaneously met

(see figure 2). In the MAESTRO

system this is known as

opportunity calculation. Since

any number of lists of windows

can be intersected, no limit is

placed on the number of
resources and conditions

considered. Further, these lists

of windows can come from any

source, so a scientist can

specify all those time windows

during which he wants each

subtask to be running. The
user can restrict the

performance of the whole

activity to certain time
windows as well.

I I I I
Power (watts)

I I
Sun Exclusion Angle

ITemperature Min & Max

I I I
IMax Vibration (micro-g)

i I I I
Intersection

Figure 2. Time windows wherein a

subtask can be "on" with respect

each of four requirements, and
their intersection.

The above calculation results in

a clear picture of when each

subtask in the activity can be

running in isolation, but doesn't

go far enough. Typically there

are strict requirements on
when each subtask can start

and end relative to the

placement of the others. The
calibration subtask in the

ATMOS activity, for example,

125

must begin no later than 5
minutes after the self test

subtask, which itself must

immediately follow the power

up subtask. In addition, each
subtask has minimum and

maximum durations specified

by the scientist. The constraints
listed above which determine

the structure of the activity are
constraints not on when each

subtask can be running, but
rather on when each can start

and end. The two constraints

used within an activity are the
PRECEDES constraint and the

FOLLOWS constraint. The end

of the calibration subtask must

follow its start by between 4

and 6, and must precede the

start of the repointing subtask

by at least 0 and no more than

10, for example. The complete
list of these constraints is

shown in Table 3.

Table 3. Subtask durations and

delays for activity ATMOS.

Subtask

1

2

3

4

5

6

Duration
min max

3 3

1 1

4 6

1 10

18 36

3 3

Delay
min max

0 0

0 5

0 10

0 0

0 0

The precedes and follows

constraints need not be applied

only to adjacent subtask start

and end points, but can

constrain any two. Thus we

can specify that the data
collection subtask follow the

calibration subtask by between
X and Y. We can also limit the

duration of the whole activity

by placing precedes and follows

constraints between the start of

the first subtask and the end of

the last.

CONSTRAINTS

ACTIVITIES

BETWEEN

Thus far we have considered

only the constraints on a single

activity, those which dictate its

placement relative to resources,

conditions and time windows,

or its internal structure.

Suppose, however, that in order

to understand the data coming
back from ATMOS in our

example, the scientist needs to

also get data from another

instrument, in this case a solar

spectrometer. This data must

be taken at the same time that

the ATMOS data is taken in

order to correlate the results.

We can describe the second

activity, called SOLAR, much

the way we did the first (see

Table 4), but we also must

specify the timing constraints

between the two. We specify
that the data collection subtask

in the ATMOS activity must
start and end at the same time

as the data collection subtask in

the SOLAR activity. These two

new constraints, STARTS and

ENDS, are similar to the

126

PRECEDES and FOLLOWS

constraints referred to

previously, and like those can
have variable offsets. For

example, we could specify that
subtask 5 of ATMOS start

between 2 and 5 minutes after

the start of subtask 4 of SOLAR.

Figure 3 shows the relationship
between ATMOS and SOLAR.

Table 4.

Subtask

1

2

3

4

5

Activity Solar.

Name

Power Up

Self Test

Repoint

Collect Data

Power Down

I
SOLAR subtask 4

2

5
I.... I
ATMOS subtask 5

Figure 3. Temporal
between ATMOS

SOLAR subtask 4.

relationship
subtask 5 and

So far we have identified four

temporal constraints

PRECEDES, FOLLOWS, STARTS,

and ENDS. These dictate a

relationship between a

constrained entity and a

constraining entity. The fifth
subtask of ATMOS was the

constrained entity in the

example above. Specifically,

the start of that subtask was

constrained by the start of

subtask 4 of SOLAR. All

STARTS constraints will be of

this nature. Similarly, all
PRECEDES constraints will

dictate a relationship between
the end of the constrained

entity and the start of the

constraining entity. Table 5

shows the complete list of

relationships specifiable with

these four constraints.

Table 5. Relationships between
constrained and constraining

entities.

Constraint

PRECEDES

FOLLOWS

STARTS

ENDS

Boundary of
Constrained

Entity

end

start

start

end

Boundary of
Constraining
Entity

start

end

start

end

A fifth constraint type is

necessary to fully specify

possible relationships between

constraining and constrained

entities, the CONFLICTS

constraint. Suppose we wish to

specify that the calibration
subtask of ATMOS will be

disrupted if we try to perform

the repointing subtask of

SOLAR at the same time. We

can indirectly represent this by

causing SOLAR's subtask 3 to

produce a condition, say

vibration, which subtask 3 of

ATMOS cannot tolerate,

tracking vibration along with

temperature and other
conditions. More

straightforwardly, we could

127

specify that subtask 3 of

ATMOS conflicts with subtask 3

of SOLAR. Like the others, this

constraint can include variable

offsets, allowing the

constraining entity to block the

constrained entity outside its
duration.

It should be noted that the five

constraint types listed above,

with variable offsets, can singly

or in combination express all of

the relationships specified by

Allen in his work on temporal

constraint representation [Allen

1981]. We use a uniform

interpretation of the meaning

of positive and negative offsets
on the constraints in MAESTRO

such that a single algorithm can

correctly propagate all of these

constraints. An algorithm used

for constraint propagation in

scene understanding developed

by Waltz [Winston 1984] has
been modified for use in the

scheduler. Given lists of time

windows wherein each subtask

can be running, it finds all and

only those places on the

schedule where each can start

and end.

Notice that while the placement

of ATMOS depends upon that of

SOLAR, the reverse is not true.

SOLAR can happen without

regard to where or whether

ATMOS is placed in order to

achieve its own objectives.

This is called a ONE-WAY or

unidirectional constraint. If we

wish to only perform SOLAR

when it can support ATMOS, we

can specify that it be a TWO-

WAY or bidirectional

constraint. A two-way

constraint specifies a temporal

relationship between two

activities, and requires that

neither can be scheduled

without the other. Two-way
constraints are more difficult to

deal with than one-way
constraints in MAESTRO. The

select-place-update cycle

described previously is

designed to place a single

activity, given complete

knowledge (through

opportunity calculation and

temporal constraint

propagation) of all possible

placement options for that

activity with respect to the

current partial schedule. The

existence of a two-way

constraint precludes knowing

all possible placements, since

for each activity the position on

the schedule of its constraining

entity is not fixed. In

MAESTRO we deal with this by

placing more than a single

activity on the schedule on

each scheduling cycle. We

calculate opportunity

individually for each activity in

a set of mutually related
activities, then allow the

constraint propagation

algorithm to run on all

activities in that set

simultaneously. We call the set

128

of mutually related activities a
related set.

If the activities in the related

set are independent of one

another except for the temporal

constraints putting them in the

same set, the constraint

propagation algorithm again

finds all and only those places
on the schedule where each

subtask can start or end.

However, if the activities share

resource use or produce
conditions which affect one

another, this knowledge cannot
be obtained with this

algorithm. This allows the

possibility that the placement

of a related set will fail,

necessitating backtracking. We

have ruled out many placement

possibilities that won't work

and so can try various choices

within those placements we

think might work, and can

apply various heuristics which

are aimed at making sure each

placement is significantly

different from the last, but trial
and error is involved if the

activities share resources or

have a producer-consumer

relationship.

The use of related sets has

been expanded in MAESTRO to

include more than dealing with

two-way temporal constraints.

In our example involving

ATMOS and SOLAR, we may

have only a one-way constraint

(ATMOS constrained by

SOLAR), but may consider it

much more important to
schedule ATMOS than to

schedule SOLAR. In this case

we would like the two to be

considered as both being

important, and further would

like the scheduler to only place

SOLAR where it can support
ATMOS. The related sets

facility allows us to do this.

To this point we have

considered only those
situations wherein the

placement of a subtask in one

activity dictates where on the
schedule a subtask in another

activity can be placed. It is

often desirable to specify an
absolute time which constrains

the start or end of a subtask in

an activity. We also may wish

to relate subtask placement to
that of some event which will

happen at various times but is
not under control of the

scheduler. Both these

situations are handled in

MAESTRO the same way we

deal with one-way constraints

between activities not in the

same related set. Thus while

constrained entities are always

subtasks, constraining entities

can be subtasks, events or

absolute times. A constraint on

an activity is represented as a
constraint on the first or last

subtask of that activity.

129

SOFT CONSTRAINTS

All of the constraints dealt with

previously have been hard

constraints, which must be

satisfied in order for the

constrained activity to execute.

Another class of temporal

constraints are soft constraints,

or preferences. These guide

the scheduler in placing
activities on the schedule

where it is most desirable,

according to a scientist,

platform manager, etc. Unlike
hard constraints, however,

these can be ignored if

necessary to get things done.

For example, it may be

desirable to get data from

ATMOS as near to noon, GMT,

as possible, but not really

necessary.

In MAESTRO, several types of

soft constraints are

representable. There are soft

constraints which guide

placement of a whole activity,

called general preferences.

Loading strategies are a type of

general preference which guide

placement of the activity with

respect to the time period

being scheduled. Front-loading,

getting things done as early as

possible, is a particularly

attractive loading strategy in
that activities scheduled earlier

have a better chance of

completing before something

happens that might interfere

with their completion. Various

other loading preferences are

supported. Other general

preferences guide the

structuring of the activity when
there are variable durations for

subtasks and/or variable

delays between them. We can,

for example, request

maximizing durations and

minimizing delays within the

context of the loading strategy

used for the activity being
scheduled.

There are times when we wish

to specify a preference which

overrides these general

preferences. We can, for

example, ask the scheduler to

place an activity where a

particular subtask duration is

maximized, regardless of where

on the timeline that placement
is found. This is called a

specific preference, and is
attended to in MAESTRO before

any general preferences.

Another type of specific

preference guides the

scheduler in placing activities
either near to or far from other

activities, events, or timepoints.

Currently MAESTRO allows the

specification of only one

specific preference per activity,
as the simultaneous satisfaction

of two or more specific

preferences is ambiguously
defined.

Occasionally it happens that

soft constraints on activity

placement are at odds with the

130

allowable placements as

dictated by hard constraints,

and these can interact in

interesting ways. If a user

requests that subtask 2 of

ATMOS be placed as early as
possible but the data collection

subtask can only be placed late,

the effect will be to stretch the

activity out, maximizing delays
between subtasks. In order to

avoid this the scheduler under

certain conditions will ignore

general loading preferences

and will intelligently order the

application of general duration

and delay preferences when

one or more subtasks in the

activity are highly constrained.

The approach taken in

MAESTRO to scheduling

typically yields "good"
schedules, those which adhere

to all hard constraints, pay
attention to soft constraints

when possible, and "get a lot
done" It is sometimes

desirable to ignore all

preferences and just place

activities randomly in an

attempt to find a better

schedule by generating several

and choosing the best one, so

MAESTRO has a random

placement option. Using this
option all hard constraints are

still met, but a different

schedule is generated each time

the scheduler is run, allowing

various activity placement

combinations to be explored.

Also, a user may wish to

personally place some or all of

the subtasks making up an

activity, and this option is

under implementation.

MULTIPLE PERFORMANCES

So far in this paper we have

treated activities as if they

were designed, scheduled,

performed once and then

forgotten. Typically, however,

a user will want an activity to

be performed many times. It

can be the case that if an

activity is not performed at

least N times, it is not worth

doing at all. Thus in MAESTRO

a user can specify a minimum

success criterion, a least

number of performances
acceptable to him. The

scheduler uses these criteria in

deciding which activity or
related set to schedule next.

The requirement to schedule

multiple performances of

activities makes scheduling

more complex with respect to

temporal constraints. If two

temporally related activities

each request several

performances, and if there are

variable offsets between them,

it may be ambiguous which

performances constrain which

(see figure 4). MAESTRO

maintains an interpretation of

the relationships between
performances such that

constraints are never violated.

131

Constraint: B must start 0-30 after A starts.

A1 A2

-_°l''! 1

"'1 i
B

0 20 4O

Figure 4. Multiple performances

which may constrain others

ambiguously.

A user may dictate that his

experiment not be repeated

more often than once every

four hours, which introduces

the idea of minimum

performance separation. This
is treated in MAESTRO

somewhat like a one-way

constraint. It is worthy of note

that a negative performance

separation, or overlap, is

allowed by MAESTRO. A

crewman performing an

experiment in the lab module

on Space Station Freedom may

wish to begin preparation of a

second sample before finishing

the data analysis on the first,

for example.

Typically when two activities

are related by a temporal

constraint it is required that

one performance of the

constraining activity be
scheduled with one

performance of the constrained

activity. It may, however, be

desirable to perform an activity

once each third (nth) time that

another is performed. This

requirement is called a

constraint arity. Facilities in

MAESTRO for dealing with
constraint arities other than

one-to-one are not yet

complete.

CONTINGENCY HANDLING

We have discussed a number of

issues dealing with the

generation of a schedule and

the management of temporal
relations involved. This

scheduling is part of an ongoing

operations environment

wherein the assumptions upon

which a completed schedule

was based can change at any

time, making the schedule

invalid. It is preferable in most

cases to alter the existing
schedule rather than

generating a whole new

schedule for the time period

encompassing the changes.

Making changes to an existing

schedule in response to changes

in requirements, resource

availabilities, etc., is known as

contingency handling. One

requirement levied on

contingency handling processes

is that they produce a modified

schedule in which no temporal
constraints are violated.

There are three aspects to

contingency handling. One is

simply scheduling; a late-

arriving request to schedule an

activity may only require that

the activity be scheduled, with

no other schedule changes. We

have previously explored many

132

aspects of temporal relations in

scheduling. Another aspect is

unscheduling, wherein a

performance of an activity is
removed from the schedule

entirely in order to reduce

resource usage, allow another

activity to fit, or because a user

no longer wishes to perform

the activity. If an activity
which constrains others is

unscheduled, those others must

be unscheduled as well.

The third aspect of contingency

handling involves activities

which have already begun to
be executed but which cannot

complete as scheduled. This

may happen as a result of

resource or conditions changes

which become known only

after the activity has begun, or

in order to fit a high-priority

activity on the schedule in

response to a last-minute

request. In this case it is
desirable to make use of

various characteristics of the

activity to be interrupted and

attempt to find a way to

continue the activity. It may

be possible to switch to usage
of a resource other than that

which was preempted by the

contingency, leaving the

activity structured the same as

before. The subtask which was

interrupted may be such that it
can be continued after a short

interruption with no ill effect,

or it may be possible to begin
at the start of that or an earlier

subtask again after a pause, not

beginning the whole activity

again. Also, the rest of that

subtask may not be necessary,
as would be the case with a

long data collection subtask

during which more data was

collected than required,

allowing the activity to be

continued by going

immediately to the next
subtask.

In each of these cases any

temporal constraints between

interrupted activities must be

satisfied, possibly causing other

activities to be interrupted,

which may themselves allow

restructuring. MAESTRO

handles these situations by

automatically generating

activity descriptions which

vary from the initial

descriptions in ways allowed

by the activity definition.
These variant activities are

called alternate models. It is

assumed in MAESTRO that

these alternates will satisfy the

same temporal constraints as

the initial model would, though
in the real world that would

not always be the case. Several
versions of the MAESTRO

scheduling system exist, and

the facilities for handling these
realtime schedule alterations in

the ways explained above do
not exist as described in all

versions. For a more complete

discussion of issues related to

133

contingency handling, see Britt

[1988a] and [1988b].

CONCLUSION

As is readily apparent from the

preceding discussion, the

handling of temporal

constraints in scheduling is a

formidable task. We have in

this paper examined the ways
in which the MAESTRO

scheduling system deals with

various types of constraints.
These include resource and

conditions constraints, windows

during which subtasks can be

running, constraints on the
internal structure of activities,

hard constraints between

activities and other schedule

entities, soft constraints or

preferences in activity

placement, and constraints

between performances of the

same activity. We briefly

touched upon issues regarding

contingency handling.

The approach taken by the

designers of MAESTRO is to

design solutions specifically for

the problems in the domain,

rather than trying to fit a

predetermined solution

paradigm to these problems.

This results in a hybrid system

making use of various methods

and techniques as they are

proven to work [Geoffroy

1990]. Proven techniques

include object-oriented design,

use of opportunity-calculation

and constraint propagation

algorithms to minimize

backtracking (by getting

optimal solutions to relevant

subproblems at each step), use
of user-derived heuristics such

as front-loading, and a control

structure that allows dealing
with a related set of activities

when appropriate. This

approach to scheduling
research is made feasible at

least in part by use by the

design team of a powerful and

flexible software development

environment supported by the

Symbolics LISP Machine.

There is much yet to be done to

complete the temporal

constraint handling facilities in
MAESTRO. Constraint arities

other than one-to-one need to

be dealt with more completely.
The scheduler can be enhanced

with the addition of smarter

selection, placement and

contingency heuristics. There

are ways not yet implemented

to deal with multiple specific

preferences. User selection of

the placement of individual

subtasks is not complete, and
the creation of alternate models

of the same activity, which one

version of MAESTRO performs,

must be incorporated with the

other capabilities previously

described. This is by no means

a complete list of scheduler
enhancements that could be

undertaken.

134

One effort that is anticipated to

have enormous payoff, if it can

be done, involves changes to

the temporal constraint

propagation algorithm itself.

As explained above,

backtracking is currently

necessary in those cases where

subtasks which can overlap

also share use of constraining

resources, as the scheduler

cannot determine how those

overlaps will affect resource

availabilities given the

variations possible in subtask

placement. We hope soon to

implement an algorithm similar

to that which currently exists

but with a major difference.

The new algorithm will make
use of information about

possible subtask overlaps, and
the increased resource use

incurred, as well as the

information we now use

concerning when individual

subtasks can be running, to

find all and only those times

when each of a group of

possibly overlapping subtasks

can start and end. The existing

algorithm gives us this
information for non-

overlapping subtasks. Given
this information about

overlapping subtasks, the

scheduler will be capable of

scheduling sets of related

activities without backtracking

(trial and error). It will

thereby be able to make full

use of preferences in activity

placement as well. Though it is

not certain as yet that this

calculation is possible, or

computationally feasible, our

experience with the current

algorithm suggests that it is
both. We intend that this and

other new capabilities be
installed in MAESTRO in the

near future.

REFERENCF_S

Allen, J.F., (1983). "Maintaining

Knowledge About Temporal

Intervals." Communications of

the ACM, 26(11), 832-843

Winston, P.H., (1984). Artificial

Intelligence, pp 66-72. Reading,

MA: Addison-Wesly

Britt, D.L., Geoffroy, A.L., &

Gohring, J.R. (1988a).

"Contingency Rescheduling of

Spacecraft Operations."

Telematics and lnformatics,

5(3), 187-195.

Britt, D.L., Geoffroy, A.L., &

Gohring, J.R. (1988b). "The

Impact of the Utility Power

System Concept on Spacecraft

Activity Scheduling." The

Proceedings of the 23rd

lntersociety Energy Conversion

Engineering Conference, v. III.

Geoffroy, A.L., Gohring, J.R. &

Britt, D.L. (1990). "The Role of

Artificial Intelligence in

Scheduling Systems." (In

preparation).

135

Diagnosis�Monitoring

