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ABSTRACT

The goal of this paper is to attempt to give some insight and guidelines on the

application of nonlinear dynamic theory to the better understanding of steady-state

numerical solutions and nonlinear instability in algorithm development for nonlinear

differential equations that display genuinely nonlinear behavior in computational sci-

ences and, in particular, computational fluid dynamics (CFD). This stems from the

fact that, although the study of nonlinear dynamics and chaotic dynamics for nonlin-

ear differential equations and for discrete maps have independently flourished rapidly

for the last decade, there are very few investigators addressing the issue on the con-

nection between the nonlinear dynamical behavior of the continuous systems and the

corresponding discrete map resulting from finite-difference discretizations. This issue

is especially vital for computational sciences since nonlinear differential equations in

applied sciences can rarely be solved in closed form and it is often necessary to replace

them by finite dimensional nonlinear discrete maps. In addition, it is also important to

realize that these nonlinear discrete maps can exhibit a much richer range of dynamical

behavior than their continuum counterparts.

Furthermore, it is also very important to identify some of the implications of what

happens when linear stability breaks down for problems with genuinely nonlinear behav-

ior. Studies indicate that for relatively simple nonlinear ordinary differential equations
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(ODEs) and well-known time-discretization with modest step-sizes some schemes can

converge to a spurious (false) steady-state solution in a deceptively "smooth" manner.

In some instances, spurious steady states may appear below the linearized stability

limit of the schemes, and consequently computation may lead to erroneous results. Our

preliminary studies on partial differential equations (PDEs) also show that much of

nonlinear dynamic (e.g. chaotic) phenomena have a direct relation for problems con-

tanning nonlinear source terms such as the reaction-diffusion, the reaction-convection or

the reaction-convection-diffusion equations. Here our object is neither to provide the-

ory nor to illustrate with realistic examples the connection of the dynamical behavior

of practical PDEs with their discretized counterparts, but rather to give insight into

the nonlinear features unconventional to this type of study and to concentrate on the

fundamental ideas. Thus, in order to bring out the special properties, the illustrations

center on simple scalar differential equation (DE) examples in which the exact solutions

of the DEs are known.
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I. INTRODUCTION

While the applied computational fluid dynamicists are busy developing numerical

solver computer codes, grid generation codes, three-dimensional graphical stereo dis-

plays, and stretching the limits of the faster supercomputers in the world to numerically

simulate the various 3-D complex aerodynamic configurations [1], there is a group of

applied mathematicians, physicists, chemists, biologists, applied mechanicians, and me-

teorologists who are involved in a new science called "chaotic dynamics" (or nonlinear

dynamics). The science of chaotic dynamics has cut across many traditional scientific

disciplines for the last decade since chaotic dynamics is a science of the everyday world.

It offers a way of seeing order and pattern where formerly only the random, the erratic,

and the unpredictable were present. It explains much of the genuinely nonhnear phe-

nomena that were once unexplainable. See references [2-10] for an introduction to this

subject.

Nonlinear Dynamics £_4Chaotic Dynamics: Before the birth of chaotic dynamical the-

ory, traditional study of nonlinear dynamics belonged to the applied mechanics disci-

plines of mechanical engineering. Modern nonlinear dynamics (since the late seventies)

includes chaotic dynamics. Thus, unless otherwise stated, the term nonhnear dynamics

and chaotic dynamics are used interehangeably. That is, nonlinear dynamics includes

chaotic dynamics and vice versa.

Loosely speaking, the study of asymptotic behavior (steady-state solutions) of non-

linear differential equations (DEs) and nonlinear discrete maps (difference equations)

and how the asymptotes change as parameters of the system are varied is most of-

ten referred to as nonlinear dynamic analysis and chaotic dynamic theory. Topics in

this area include bifurcation theory, period doubling cascades resulting in chaos, etc.

Stable chaotic solutions (chaotic attractors) may be defined loosely and simply as sta-

ble asymptotes that have infinite period and yet are still bounded. It is emphasized

here that unless otherwise stated, all DEs and discrete maps are nonhnear and consist

of system parameters, and the terms discrete maps and difference equations are used

interchangeably.

Types of Dynamical Systems: Consider an ordinary differential equation (ODE) and a

partial differential equation (PDE) of the forms

du

d--i= aS(u), (1.1)

Ou Of(,,)
_- + Ox - eO_ -5 + aS(u), (1.2)

where o and e are parameters and S is a nonlinear function in u and is independent

of a (and e). The function .f(u) can be linear or nonlinear in u. An ODE of this

form in which t does not appear explicitly in S is called an autonomous dynamical
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system. One can also consider a function S which is nonlinear in _t and depends on

_. ODEs of this type are called nonantonomous dynamical systems and they are more

difficult to analyze; see references [5,8] for a discussion. The analysis would be more

complicated if S = S(u, ct) is nonlinear in both u and a. In this case, the DE is not only

nonlinear in the dependent variable u (and independent variable t), but also nonlinear

in the parameter space a. One can also consider systems that depend on more than one

parameter and/or systems of equations of the above type.

Next consider nonlinear discrete maps (nonlinear difference equations) of the forms

u n+1 = u '_ + D(u n, u n-I , r), (1.3)
and

=y+' = u? + a(uy, uj l,r). (1.4)

Here r is a parameter, and D is nonlinear in u '_ and u n-1 and linear or nonlinear

in the parameter space r. The situation is similar for the function G. One can also

consider discrete systems that depend on more than one parameter. A typical example

is a discrete map arising from a finite-difference approximation of DEs such as (1.1) or

(1.2). For the ODE, the resulting discrete maps might be nonlinear in ct as well as the

time step At, depending on the ODE solvers. For the PDE, again depending on the

differencing scheme, the resulting discretized counterparts can be nonlinear in a, At,

the grid spacing Az and the numerical dissipation parameters even though the DEs

consist of only one parameter or none.

One can also consider discrete maps (scalar or system) of the forms

u = u" + D(u "+k, ..., us , ..., us-z , rl, r2, ...,

where k, l, m are positive integers and rl ,r2, ...,r,,_ are parameters, and

(1.5)

u_÷l ,_ ..1, n+k n ,_-I u_+k, n ,_-t• = uj + tJ[uj+ 1 ,...,uj±l,...,uj±l, ...,uj,...,uj ,rl,r2,...,r,,). (1.6)

Again, (1.6) can depend on more than the three indices j,j -4-1. Systems (1.4) and (1.6)

are sometimes referred to as a partial-difference equation. The dynamical behavior of

(1.4) and (1.6) can be many orders of magnitude more difficult than (1.3) and (1.5).

Any of the systems (1.1)-(1.6) are examples of dynamical systems.

Important Consideration: It is emphasized here that discrete maps, regardless of their

origin, are dynamical systems on their own right. It is also important to distinguish the

following five types of discrete maps:

1. Discrete maps arise naturally in physical sciences. They commonly arise through

the inability to measure populations at all points in space and time [5,10,11] in popula-

tion dynamics. They can also arise through the study of periodic excitation of dynamical

systems [12,13] in applied mechanics.



2. Discrete maps arisefrom Poincar6sectionsin ODEs [2].

3. Discrete maps arisefrom discrete approximationsof ODEs.

4. Discrete maps (partial-differenceequations)arisefrom temporal and spatial finite
differenceapproximations of PDEs.

5. Discrete models arise from the "Inverse Problems of Nonlinear Dynamics" in time

series analysis of observable data or experiments [9].

Discrete maps of types 1 and 5 sometimes might not have any relationship with a spe-

cific continuum DE. As a matter of fact, there might be no concrete associated governing

equations (continuum or otherwise) to start with for type 5 except the surrogated dis-

crete map arising from the time series analysis. Type 2 arises naturally from the study

of dynamical behavior of nonlinear ODEs. However, types 3 and 4 have an intimate

link (but with a different tie than type 2) between the original governing continuum

DEs and their discretized counterparts. Furthermore, it is important to distinguish the

complexity involved in the analysis of types 3 and 4. Type 4 involves spatial as well as

temporal dynamical behavior.

Note that for discrete maps of types 3 and 4, even though the DEs might be linear in

the parameter space, depending on the numerical methods, the discretized counterparts

might be linear or nonlinear in that parameter space. In addition, extra parameters

which may be linear or nonlinear can also be introduced by the scheme as noted in

the paragraph after equation (1.4). An important concept is that even though the

DE does not depend on any parameter, its discretized counterpart does depend on at

least one parameter. As can be seen in the subsequent sections, the nature of the

dynamical behavior of these discrete maps is strongly influenced by properties of the

numerical method and the types and forms of nonlinearity on the DEs. Furthermore,

when dealing with nonhnear conservation laws of PDEs, the dynamical behavior of the

discretized counterparts is also strongly influenced by elements such as conservation and

nonlinearity of the schemes, and treatment of the source terms [14-18]. These issues are

very crucial for the existence of spurious steady-state numerical solutions which will be

explained in a later section. Here the term nonlinear scheme refers to a case where the

resulting discrete maps are nonlinear when apphed to scalar constant coefficient linear
DEs.

Objectives: Our ultimate objective is to conduct long term basic research on the inter-

disciplinary field of integrating the theory of nonlinear dynamics with computational

sciences and, in particular, with computational fluid dynamics (CFD). This new ap-

proach to CFD is extremely difficult and complex to analyze. A summary of the diffi-

culty involved was discussed in Yee [14] and will be elaborated in sections IV and V. Our

immediate goal is to study the behavior of spurious steady-state numerical solutions for

nonhnear DEs and the dynamical behavior of this type of numerical solutions. Even

within this frame work, the subject is still very young, board, difficult and unfamihar

to computational scientists as well as researchers working in nonhnear dynamics and



nonlinear physics.

The intent of this paper is to give a flavor of the subject, to familiarize the reader

in computationl sciences with this new and exciting area, and most of all, to explain

through simple illustrations why it is so important for computational scientists to learn

about the subject. Some challenging topics for future research are also proposed.

Because of the complexity involved, there is a vast difference in the degree of difficulty

on the study of the subject between the discretized counterparts of nonlinear ODEs and

the discretized counterparts of nonlinear PDEs. In order to achieve our final goal of

studying the dynamical behavior of numerical methods for nonlinear PDEs that arise

from, e.g., computational fluid dynamics (CFD), we have to first fully understand this

subject on the time discretization and later link this knowledge to the study of both

the temporal and spatial nonlinear dynamical behavior of finite-difference methods for

nonlinear PDEs of the nonhomogeneous hyperbolic and parabolic types.

Therefore, the content of this paper will concentrate on the dynamical behavior of

time discretization for ODEs or systems of ODEs obtained from time-splitting [19]

or method of lines [20] for PDEs, and emphasis will be placed on its implication for

algorithm development in CFD and computational sciences in general. Hopefully this

will be part I of a series of many future research papers to come under the same topic.

Our companion paper [21] studies the dynamical behavior of the class of explidt Runge-

Kutta methods in detail. The intent of this paper is to not only serve as a study

of the state-of-the-art of nonlinear dynamical behavior of ODE solvers, but also more

importantly to serve as an introduction and to present new results to motivate this vast,

new yet unconventional concept. Thus the mission of this paper is no__ttto provide the

answer or theory or to illustrate the connection of dynamical behavior of practical PDEs

to their discretized counterparts, but rather to gain insight into the nonlinear features

unconventionaJ to this type of study and concentrate on the fundamentals. In order

to bring out the new features, the iUustrations concentrate on the simple scalar DEs

examples in which the exact solutions of the DEs are known.

Outline: The outline of the paper is as follows: First, a brief background, motivation and

basic ideas will be given. Then some typical characteristics of dynamical systems with

genuinely nonlinear behavior will be discussed. Next, the dynamical behavior of discrete

maps arising from time discretization of ODEs will be studied and the main results and

their implications for computational sciences will be described. Studies on discrete maps

arising from finite-difference approximations of PDEs will not be elaborated. Rather,

the level of complexity involved and state-of-the-art study on this subject will be briefly

described. The paper will conclude with a few recommendations. Remarks will be given

on the popular misconception of residual test for convergence in steady-state solution via

the "time-dependent" approach and the popular misconception of the use of the "Inverse

Problems of Nonlinear Dynamics" to analyze the dynamical behavior of time series data

from a computer code in an attempt to learn about the true physical solution behavior

of the governing PDEs. This application of time series analysis can be misleading and

a wrong conclusion can be reached if the practitioner does not know by other means
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other than the numerical solutions the exact solution behavior of the PDEs .
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II. MOTIVATION & RELEVANCE

As discussed in the introduction, dynamical systems occur in the form of DEs and

discrete maps. In order to motivate why the study of numerical analysis will not be

complete without the utilization of the nonlinear dynamic approach, and to convey to

practitioners in computational sciences the importance of distinguishing the difference

between weakly nonlinear problems and genuinely nonlinear problems, this section is

devoted to a discussion of the typical behavior of dynamical systems with genuinely non-

linear behavior and the basic characteristic difference in dynamical behavior between

DEs and discrete maps in general. This discussion leads to the key elements of this

paper, namely: (1) to establish the connection between the DEs and their discretized

counterparts and (2) to convey to computational scientists how one should change the

traditional way of thinking and practices when dealing with genuinely nonlinear prob-

lems.

2.1. Typical Characteristics of Dynamical Systems

with Genuinely Nonlinear Behavior

The terms "nonlinear behavior" and "genuinely nonlinear behavior" are used quite

often in the literature and there seems to be no unified exact definition or meaning

[9]. Here these terms are used for nonlinear dynamical systems that exhibit mainly the

following characteristics.

(1) The study of nonlinear dynamics most often emphasizes the importance of ob-

taining a global qualitative understanding of the character of the system's dynamics

since local analysis is not sufficient to give the global behavior of genuinely nonlinear

dynamical systems. As a matter fact, this is one of the major reasons why sometimes

it required orders of magnitude more work than solving their linear counterparts.

(2) Unlike linear or weakly nonlinear problems, the solutions of genuinely nonlinear

DEs and discrete maps are strongly dependent on initial data, boundary conditions and

system parameters.

(3) Only genuinely nonlinear dynamical systems can have chaotic behavior and one

of the striking characteristics of chaotic behavior is sensitivity of the solution to initial

data. This characteristic is independent of whether the dynamical system is a continuum

or a discrete map.

From here on, the terms "dynamical systems with genuinely nonlinear behavior" and

"genuinely nonlinear dynamical systems" are used interchangeably. For convenience,

the word "genuinely" is omitted in most parts of the paper.
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2.2. Typical Difference in Dynamical Behavior of

ODEs and Discrete Maps

The study of discrete maps is the discrete analog to the study of ODEs, as the

study of recursion formulas is a discrete analog to the study of series expansions of

functions. Much of the theory of ODEs can carry over to discrete maps with some

slight modifications. However, there are new phenomena occurring in discrete maps

which are absent in differential systems [22,23,12,13].

With repect to the topographical behavior, there are new kinds of behavior of tra-

jectories in the neighborhood of equilibrium points of discrete maps. The behavior of

separatrices associated with a saddle type of equilibrium point for a nonlinear differ-

ence system is far more complicated than the behavior of separatrices for a differential

system. See Yee, Hsu and Hsu et al. [12,13,24,25] for details and examples.

With respect to similar equation types, the minimum number of first-order nonlinear

autonomous ODEs is three for the existence of chaotic phenomena. However, a simple

scalar first-order difference equation [26-30] like the logistic map

Vl'L

v n+' = ttv'_(1 - -_--), p a parameter, (2.1)

or its piecewise linear approximation [31]

V n+l "- #V n, V n <__ l

= p, 1 -__v '_ < 3 (2.2)

= g(4 - v n) 3 __ v n.

possesses very rich dynamical behavior such as period-doubling cascades resulting in

chaos. Equation (2.2) has the same behavior as (2.1) except that simple closed form

asymptotic solutions of all periods can be obtained. These characteristic trade differ-

ences between ODEs and discrete maps are very general. The discrete maps can arise

from any of the five types as discussed in the introduction. It is in this spirit that we

say that discrete maps can exhibit a much richer range of dynamical behavior than

DEs. The next two sections focus on the typical difference and connection between the

dynamical behavior of ODEs and their discretized counterparts.

2.3. Background and Motivation

Spurious asymptotic numerical solutions such as chaos were observed by Ushike [32]

and Brezzi et al. [33] on the leapfrog method for the logistic ODE

dl/

-- = au(1 - u). (2.3)
dt



In reference [34], Schreiber and Keller discussed the existence of spurious asymptotic

numerical solutions for a driven cavity problem. Some related studies are reported in

[35].

Spurious solutions of Burgers' equation and channel flows have been studied and com-

puted in [36-38]. Many other investigators in the computational sciences (e.g. [39-43])

have observed some kind of strange or chaotic behavior introduced by the numerical

methods but were not able to explain systematically the source, the cause of their

results, or most of all the implication and impact in practical applications in compu-

tational sciences. Due to the popularity of searching for chaotic phenomena, it is very

trendy to relate inaccuracy in numerical methods with the onset of chaos. It is em-

phasized here that inaccuracy in long time integration of discrete maps resulting from

finite discretization of nonlinear DEs comes in other forms prior to the onset of chaotic

phenomena. Stable and unstable spurious steady states and spurious periodic numeri-

cal solutions set in before chaotic behavior occurs. These spurious asymptotes of finite

period are just as inaccurate as chaotic phenomena as far as numerical integration is

concerned. In other words, the prelude to chaotic behavior is the key element that we

want to stress (i.e., before the the onset of chaos or a divergent solution) since the result

of operating the time step beyond the linearized stability limit is not always a divergent

solution in genuinely nonlinear behavior; spurious steady-state solutions can occur. As

can be seen at a later section, this behavior is more difficult to detect than chaotic

phenomena in practical computations.

Recently, it has been realized by numerical analysts that numerical methods for ODEs

and PDEs can be considered as dynamical systems. Several papers [44,45] on numeri-

cal methods as dynamical systems have appeared in recent years. These investigators

studied the dynamical behavior of the different ODE solvers per se without relating its

dose tie with the ODEs themselves. Although the study of chaotic dynamics for non-

linear differential equations and for discrete maps have independently flourished rapidly

for the last decade, there are very few investigators addressing the issue of the con-

nection between the nonlinear dynamical behavior of the continuous systems and the

corresponding discrete map resulting from finite difference discretizations. This issue

is especially vital for computational sciences since nonlinear differential equations in

applied sciences can rarely be solved in closed form and it is often necessary to replace

them by finite dimensional nonlinear discrete maps. Most often, typical apphed scien-

tists rely on numerical methods to give insight into the solution behavior of nonlinear

DEs. It is not always clear how well a numerical solution can mimic the true physics of

problems that possess genuinely nonlinear types of behavior.

Why is there such a need to study the connection between the continuum and its

discretized counterparts for CFD applications? This stems from the fact that current

supercomputer power can perform numerical simulations on virtually any simple 3-D

aerodynamic configuration and, due to the limited available experimental data, the

applied engineers are relying on or trusting the numerical simulations whole heartedly

to help design our next generation aircraft and spacecraft. However, many of these
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applied scientists are still using hneaz analysis as their guide to study highly nonlinear

equations, and most often they are not aware of the limitations and pitfalls of many of

the numerical procedures. Furthermore, most of the numerical algorithms in use operate

under the accuracy and stability limit guidelines of the linearized model equation. It

is only appropriate to analyze nonlinear problems with the nonlinear approach; i.e., by

the nonlinear dynamic approach.

The unique dynamical property of the separate dependence of solutions on initial

data for the individual nonlinear DE and its discretized counterpart is especially impor-

tant for employing a "time-dependent" approach to the steady state with given initial

data in hypersonic CFD. In many CFD computations, the steady-state equations are

PDEs of the mixed type and a time-dependent approach to the steady state can avoid

the comphcation of dealing with elliptic-parabolic or elliptic-hyperbolic types of PDEs.

However, this time-dependent approach has created a new dimension of uncertainty.

This uncertainty stems from the fact that in practical computations, the initial data

are not known and a freestream condition or an intelligent guess for the initial condi-

tions is used. In particular the controversy of the "existence of multiple steady-state

solutions" through numerical experiments will not be exactly resolved until there is a

better understanding of the separate dependence on initial data for both the PDEs and

the discretized equations.

2.4. Connection Between the Dynamical Behavior of the

Continuum and Its Discretized Counterpart

Aside from truncation error and machine round-off error, a more fundamental dis-

tinction between the continuum and its discretized counterparts is new behavior in the

form of spurious stable and unstable asymptotes created by the numerical methods.

This is due to the fact that nonlinear discrete maps can exhibit a much richer range of

dynamical behavior than their continuum counterparts as discussed in section 2.2. Some

instructive examples will be given in section III. These new phenomena were partially

explored by the University of Dundee group [46-54], Sanz Serna [55], Iserles [56,57] and

Stuart [58-62]. Their main emphasis was on phenomena beyond the linearized stability

bruit. The main contribution of our current study is (1) the occurrence of spurious

steady-state numerical solutions below the linearized stability limit of the scheme for

genuinely nonlinear problems, (2) the strong dependence of numerical solutions on the

initial data, as well as other system parameters of the DEs such as boundary conditions

and numerical dissipations terms, and (3) the implications for practical computations

in hypersonic CFD.

Before discussing the numerical examples, the next two subsections will give an overall

summary of our current findings (integrating with other relevant recent results). The

discussion is divided into steady-state solutions and asymptotes of any period, and
transient solutions.
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2.4.1. Steady-state Solutions and Asympotes of Period Higher Than One:

Table 2.1 shows the possible stable asymptotic solution behavior between DEs (ODEs

or PDEs) and their discretized counterparts. Some of the phenomena will be supported

by simple examples in section III. The main connection between the DEs and their

discretized counterparts is that steady-state solutions of the continuum are solutions

of the discretized counterparts but not the reverse. Their main difference is that new

phenomena are introduced by the numerical methods in the form of spurious stable

and unstable asymptotic solutions of any period. In the past, the phenomena of spu-

rious asymptotes were observed largely beyond the linearized stabihty of the schemes.

Some numerical analysts and applied computational scientists were not alarmed and

were skeptical about these phenomena since, theoretically, one is always guided by the

hnearized stabihty limit of the scheme. However, this resaoning is only valid if one is

solving a scalar nonlinear ODE and the initial data are known. Another important

concept is that the result of operating with time steps beyond the hnearized stabihty

limit is not always a divergent solution; spurious steady-state solutions and spurious

asymptotes of higher period can occur.

Our current study also indicated that depending on the form of the nonlinear DEs, all

ODE solvers can introduce spurious asymptotic solutions of some period or all periods.

However, the most striking result is that for certain schemes and depending on the form

of the nonlinear DEs, spurious steady states can occur below the linearized stability

limit. See section III and our companion paper [21] for more details.

Another important factor is that associated with the same (common) steady-state

solution, the basin of attraction (domain of attraction) of the continuum might be

vastly different from the discretized counterparts. This is due entirely to the separate

dependence and sensitivity on initial and boundary conditions for the individual system.

The situation is compounded by the existence of spurious steady states and asymptotes

of period higher than one and possibly chaotic attractors.

Here the basin of attraction of a dynamical system is the domain for which the set of

initial conditions time asymptotically approaches a specific asymptote. Figures 2.1 and

2.2 show the basins of attraction of two popular ODE dynamical systems. Figure 2.1

shows the multiple stable steady states and their basins of attraction for the damped

pendulum equation

du

dt - v, (2.4a)

de

-- = -_v - sin(u) (2Ab)
de

for _ = 0A. Figure 2.2 shows the multiple steady states and their basins of attraction

for the simple predator-prey equation

du

-- = -3u + 4u 2 - uv/2 - u a (2.5a)
de

12



dv

= -2.1v + uv. (2.5b)
d_

where u is the population of the prey and v is the population of the predator. These

figures are taken from Parker and Chua [8] and were generated by the use of a variable

time step Runge-Kutta-Fehlberg method with built in accuracy check (if the numerical

solutions are approximating the true solution of the ODE). See reference [8] for details.

These figures, although generated numerically, with the built in accuracy check the fixed

points and basins of attraction coincide with the ODEs. The stable fixed points of the

damped pendulum equation are 2nr, n = 0, 1, .... The unstable fixed points (saddles)

are (2n + 1)7r. The separatrices of the saddle points divide the phase plane into the

different basins of attraction for the corresponding stable fixed points. The fixed points

of the predator and prey equation are slightly less regular than the damped pendulum

equation. Figure 2.2 shows two saddle points at u = 1, v = 0 and u = 3, v = 0, one

stable focal point at u = 2.1, v = 2 and one stable nodal point at u = 0, v = 0. Again

the separatrices of the saddle points divide the phase plane into the basins of attraction

for the corresponding stable fixed points.

Intuitively, in the presence of spurious asymptotes, the basin of the true steady states

(steady states of the DEs) can be separated by the basins of attraction of the spurious

asymptotes and interwoven by unstable asymptotes, whether due to the physics (i.e.,

present in both the DEs and the dlscretized counterparts) or spurious in nature (i.e.,

introduced by the numerical methods).

For PDEs, another added dimension is that even with the same time discretization

but different spatial discretizations or vice versa, the basins of attraction can also be

extremely different. However, mapping out the basins of attraction for any nonlinear

continuum dynamical system other than the very simple scalar equations relies on nu-

merical methods. The type of nonlinear behavior and the dependence and sensitivity

to initial conditions for both the PDEs and their discretized counterparts make the

understanding of the true physics extremely difficult when numerical methods are the

sole source. Under this situation, how can one delineate the numerical solutions that

approximate the true physics from the numerical solutions that are spurious in nature?

Hopefully, with our simple illustrations in section III, we can demonstrate the impor-

tance of the current subject and, most of all, stress the importance of knowing the

general dynamical behavior of asymptotes of the schemes for genuinely nonlinear scalar

DEs before applying these schemes in practical calculations.

2.4.2. Transienl or Time-Accurate Solutions:

It is a common misconception that inaccuracy in long time behavior poses no conse-

quences on transient or time-accuate solutions. This is not the case when one is dealing

with genuinely noIrlinear DEs. For genuinely nonhnear problems, due to the possible

existence of spurious solutions, larger numerical errors can be introduced by the nu-
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merical methods than one can expect from local linearized analysis or weakly nonlinear

behavior. The situation will get more intensified if the initial data of the DE is in the

basin of attraction of a chaotic transient [63-65] of the discretized counterpart. This is

due to the fact that existence of spurious asymptotes transact wrong behavior in finite

time. In fact, it is possible the whole solution trajectory is likely to be erroneous.

We'd like to end this section with a direct quote from Sanz-Serna and VadiUo's paper

[55]. This quote indicates the danger of relying on linearized stability and convergence

theory in analyzing nonlinear dynamical problems. Reference [55] is one of the few pa-

pers trying to convey to numerical analysts the flavor of the powerful "nonlinear dynamic

approach". Hopefully, with the current discussion, we can convey to computational fluid

dynamicists the flavor of the importance of the "nonlinear dynamic approach" in CFD

analysis.

"Assume that the convergence of a numerical method has been established; it is

still possible that for a given choice of At, or even for any such a choice, the qual-

itative behaviour of the numerical sequence u °, u I , ..., u", ... be competely differ-

ent from that of the theoretical sequence u(to), u(tl), ... u(t,_), ... This discrep-

ancy which refers to n tending to 0% At fixed cannot be ruled out by the conver-

gence requirement, as this involves a different limit process (namely At tending to

0).
The fact that analyses based on linearization cannot ac-

curately predict the qualitative behaviour of u" for fixed At. should not be surprising:

there is a host of nonlinear phenomena (chaos, bifurcations, limit cycles ...) which

cannot possibly be mimicked by a linear model."

14



III. THE ODE CONNECTION

In this section, we review some of the fundamentals and available theory and discuss

our major results. The discussion will have some overlap with our companion paper

[21].

8.1. Preliminaries

Consider an autonomous nonhnear ODE of the form

du

d--_= aS(u), (3.1)

where a is a parameter and S(u) is nonlinear in u. For simplicity of discussion, we

consider only autonomous ODEs where (_ is hnear in (3.1); i.e., a does not appear

explicitly in S.

A fixed point u" of an autonomous system (3.1) is a constant solution of (3.1); that

is

S(u') = 0. (3.2)

Note that the terms "equihbrium points", "critical points", "stationary points",

"asymptotic solutions" (exclude periodic solutions for the current definition), "steady-

state solutions" and "fixed points" are sometimes used with slightly different meanings

in the literature, e.g., in bifurcation theory. For the current discussion and for the ma-

jority of nonlinear dynamic hterature, these terms are used interchangeably. We might

want to mention that certain researchers reserve the term "fixed point" for discrete

maps only.

Consider a nonlinear discrete map from finite discretization of (3.1)

u n+l = u '_ + D(u'_,r), (3.3)

where r = aAt and D(u n, r) is linear or nonlinear in r depending on the ODE solvers.

Here the analysis is similar if D is a nonlinear function of u n+p, p = 0,1, ..., m. Examples

to illustrate the dependence on the numerical schemes for cases where D is hnear or

nonlinear in the parameter space will be given in the subsequent section.

A fixed point u" of (3.3) (or fixed point of period 1) is defined by u '_+3 = u '_, or

u* = u* + D(u',r) (3.4a)

or

D(u',r) =: 0. (3.4b)
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One canalso defineafixed point of period p, where p is a positive integer by requiring

that tt n+p = u n or

u" = EP(u*,r) but u" # Ek(u',r) for 0 < k < p. (3.5)

Here, EP(u',r) means that we apply the difference operator E p times, where

E(un, r) = u n + D(un,r). For example, a fixed point of period 2 means u n+2 = u n or

= (3.6)

In this context, when dealing with discrete systems, the term "fixed point" without

indicating the period means "fixed point of period 1" or the steady-state solution of

(3.3).

In order to illustrate the basic idea, the simplest form of the Ricatti ODE, i.e., the

logistic ODE (2.3) with

S(u)=u(l-u) (3.7)

is considered. For this ODE, the exact solution is

It 0

u(t) = u0 + (1 - u°)e -_''' (3.8)

where u ° is the initial condition. The fixed points of the logistic equation are roots of

u'(1 - u °) = 0; it has two fixed points u" = 1 and u ° = 0.

To study the stability of these fixed points, we perturb the fixed point with a distur-

bance _, and obtain the perturbed equation

/:d
= +

d_

Next, S(u" + _) can be expanded in a Taylor series around u', so that

(3.9)

[ s ,," ]d-_= a S(u') + S,,(u')_+ -_ ,,,,( )_ +... , (3.10)

where S,,(u °) =-_sl=" . Stability can be detected by examining a small neighborhood

of the fixed point provided if for given a, u ° is not a hyperbolic point [3,7,9] (i.e., if the

real part of aS,,(u °) # 0). Under this condition _ can be assumed small, its successive

powers _,_3, ... can normally be neglected and the following hnear perturbed equation

is obtained

d--_= aS=(u')(. (3.11)

The fixed point u ° is asymptotically stable if aS=(u °) < 0 whereas u" is unstable if

aS,,(u') > 0. If aS,,(u') = 0, a higher order perturbation is necessary.
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If weperturb the logistic equation around the fixed point with a > 0, one can find
that u* = I is stable and u" = 0 is unstable. It is well known that the general asymptotic

solution behavior of the logistic ODE is that for any u ° > 0, the solution will eventually

tend to u" = 1. Figure 3.1 shows the solution behavior of the logistic ODE.

Now, let us look at three of the well known ODE solvers. These are exphcit Euler

(Euler, forward Euler), leapfrog and Adam-Bashforth. For the ODE (3.1) with S(u) =

u(1 -u), the dynamical behavior of their corresponding discrete maps is well estabhshed.

The explicit Euler is given by

un+l =u"+,.S(u=), (3.12)

and it is after a linear transformation, the well known logistic map [26-30]. The leapfrog

scheme can be written as

u,,+l : u--1 + 2rS(un),

and it is a form of the H_non map [32]. The Adam-Bashforth method given by

,[=-+, = =- + 3s(=") _ ,

(3.13)

(3.14)

is again a variant of the H_non map and has been discussed by Priiffer [44] in detail.

We can determine fixed points of the discrete maps (3.12)-(3.14) and their stability

properties in a similar manner as for the ODE. It turns out that all three of the discrete

maps have the same fixed points as the ODE (3.1) -- a desired property which is im-

portant for obtaining asymptotes of nonlinear DE numerically. Here we use asymptotes

to mean fixed points of any period.

The corresponding linear perturbed equation for the discrete map (3.3), found by

substituting _'_ = u" + _'_ in (3.3) and ignoring terms higher than _'_ is

+ At)]. (3.15)

Here the parameter a of the ODE has been absorbed in the parameter At due to the

assumption that a does not appear explicitly in S(u). For stability we require

l1 + AtD,,(u',;kt) < 1. (3.16)

Again, for [1 + AtD_(u*, At)[ = 1, higher order perturbation is necessary. For a fixed

point of period p the corresponding hnear perturbed equation and stabihty criterion are

C +p= CE (u',At). (3.17)

and

pIE,, (u , At) l < 1, (3.18a)
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with

d E(,"+,-'At)= g , ... (3.1Sb)

For S(u) = u(1 - u), the stability of the stable fixed points of period 1 and 2 for

discrete maps (3.12)-(3.14) with r = aAt are

Explicit Euler:

Leapfrog:

stable if 0 < r < 2

stable if 2 < r < x/6.

u" = 1 unstable for all r > 0

chaotic solution exist for all r no matter how small

Adam-Bashforth:

u*=l stable if0<r< 1

period 2 stable if 1 < r < v_.

Figure 3.2 shows the stable fixed point diagram of period 1,2,4, 8 by solving numer-

ically the roots of (3.12) for S(u) = u(1 - u). The r axis is divided into 1,000 equal

intervals. The numeric labelling of the branches denotes their period. The subscript E

on the period 1 branch indicates the stable fixed point of the DE.

Two of these three examples serve to illustrate that the result of operating with a

time step beyond the linearized stability limit of the stable fixed points of the nonlinear

ODEs is not always a divergent solution; spurious asymptotes of higher period can

occur. This is in contrast to the ODE solution, where only a single stable asymptotic

value u* = 1 exists for any a > 0 and any initial data u ° > 0. It is emphasized here that

these spurious asymptotes, regardless of the period, stable or unstable, are solutions in

their own right of the discrete maps resulting from a finite discretization of the ODE.

3.2. Spurious Steady-State Numerical Solutions

For the previous three ODE solvers, we purposely picked the type of schemes that do

not exhibit spurious fixed points [56] but allow spurious fixed point of period higher than

1. In this section, we discuss the existence of spurious steady-state numerical solutions.

Again, it is emphasized here that these spurious steady states, stable or unstable, are

solutions in their own right of the resulting discrete maps. Consider two second-order

Runge-Kutta schemes, namely, the modified Euler (R-K 2) and the improved Euler (R-

K 2), the fourth-order Runge-Kutta method (R-K 4), and the second and third-order

predictor-corrector method [66-68] of the forms
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Modified Euler (R-K 2) method:

U n+l -----U n JI- ?'S (U n

Improved Euler (R-K 2) method:

R-K 4 method:

_n+l = U n .+

(3.18)

(3.19)

u '_+1 =u '_+_ kl+..k2+2ka+k4

k I _ S n

1 '
k2 = S u n+ :rkl/_

2 //

1
(3.21)

Predictor-corrector method of order m:

u (°) = u n + rS _

u4k+l) = u_ + _ S_

u'_+a = u" + _ S"

+ S(k)],

+ S('_-1)].

k = 0, 1, ...,rn- 1

(3.22)

Using the same procedures, one can obtain the fixed points for each of the above

schemes (3.18) - (3.22). Figures 3.3 - 3.7 show the stable fixed point diagrams of period

1,2,4 and 8 for these five schemes for S(u) = u(1 - u). Some of the fixed points of lower

period were obtained by closed form analytic solution and/or by a symbolic manipulator

such as MAPLE [69] to check against the computed fixed point. The majority are

computed numerically [2,8]. The stability of these fixed points was examined by checking

the discretized form of the appropriate stability conditions. Again the axis is divided

into 1,000 equal intervals. The numeric labelling of the branches denotes their period,

although some labels for period 4 and 8 are omitted due to the size of the labelling areas.

The subscript E on the main period one branch indicates the stable fixed point of the

DE while the subscript S indicates the spurious fixed points introduced by the numerical

scheme. Spurious fixed points of period higher than one are obvious and are not labeled
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except for special cases.Note that these diagrams, which appear in most parts as solid

lines are actually points, which are only apparent in areas with high gradients.

To contrast the results, similar stable fixed point diagrams are also computed for

S(u) = u(1 - u)(b - u), 0 < b < 1. See figures 3.8 - 3.14. The stable fixed point for

the ODE in this case is u" = b and the unstable ones are u ° = 0 and u* = 1. For any

0 < u ° < 1 and any a > 0, the solution will asymptotically approach the only stable

asymptote of the ODE u* = b.

Note that contrary to the DE, the maximum number of stable and unstable fixed

points (real and complex) for each scheme varied between 4 to 16 for S(u) = u(1 - u)

and 9 to 81 for S(u) = u(1 - u)(b - u), depending on the numerical methods and the r

value. The domains of all of the fixed point diagrams are chosen so that they cover the

most interesting part of the scheme and ODE combinations. Notice that asymptotes

might occur in other parts of the domain as well.

Aside from the striking difference in topography in the stable fixed point diagrams

of the various methods and ODE combinations, all of these diagrams have one similar

feature; i.e., they all exhibit spurious stable fixed points, as well as spurious stable

fixed points of period higher than one. Although in the majority of cases, these occur

for values of r above the hnearized stability bruit, this not always the case, as in the

modified Euler scheme applied to the logistic ODE and du/dt = ctu(1 -u)(b- u),

0 < b < .5, and the R-K 4 apphed to the logistic DE. For these two methods and ODE

combinations, stable spurious fixed points occur below the hnearzed stability limit. In

some of the instances, these spurious fixed points are outside the interval of the stable

and unstable fixed points of the ODEs. Others not only he below the hnearized stability

limit but also in the region between the fixed points of the DEs and so could be very

easily achieved in practice.

One might argue that for the ODEs that we are considering, it is trivial to check

whether an asymptote is spurious or not. For example, if _ is a spurious asymptote of

period one, then S(_) # 0. The main purpose of the current illustration is to set the

baseline dynamical behavior of the scheme so that one can use it wisely in other more

complicated settings such as when nonlinear PDEs are encountered in which the exact

solutions are not known. Under this situation, spurious asymptotes could be computed

and mistaken for the correct steady-state solutions.

Note that fgr the modified Euler method, spurious fixed points of higher periods and

chaotic attractors as well as spurious steady states occur below the linearized stability

bruit. Let Q be the basin of attraction of the fixed point of the ODE and let r* be

the corresponding linearized stability limit value of the scheme. Then there exists a

portion of the basin ft denoted by N c in which Qc C Q and an interval of r with

0 < T < r" which actually belongs to the basin of attraction of the chaotic attractor of

the discretized counterparts. There also exist some other tip C Q and an interval of r

with 0 < r < r ° and p _> 1 an integer, which actually belongs to the basin of attraction

of a stable asymptote of period p of the corresponding discrete map. This leads to the

2O



issueof the dependence of solutions on initial data which will be a subject of the next

subsection.

3.3. Strong Dependence of Solutions on Initial Data

For simple nonlinear ODEs that we are considering, the fixed point diagram is ex-

tremely useful for the understanding of the dynamics of the DEs and their discretized

counterparts. However, when fixed points of higher periods and/or complex nonlinear

equations are sought, searching for the roots and testing for stability of highly compli-

cated nonlinear algebraic equations can be expensive and might lead to inaccuracy.

Equally useful for understanding the dynamics are the bifurcation diagram and basin

of attraction of fixed points for both the DEs and the difference schemes. The bifurcation

diagram for the one-dimensional discrete maps displays the iterated solution u n vs. r

after iterating the discrete map for a given number of iterations with a chosen initial

condition (or multiple initial conditions) for each of the r parameter values.

Bifurcation is broadly used to describe significant qualitative changes that occur in the

orbit structure of a dynamical system as the system parameters are varied. In general,

bifurcation theory can be divided into two general classes, namely, Iocal and global.

Local bifurcation theory is concerned with the bifurcation of fixed points of nonlinear

equations and discrete maps. Global bifurcation studies phenomena away from the fixed

points. It studies the interaction between different types of fixed points. One might

define a bifurcation point as being any dynamical system which is structually unstable

[3,8,9]. A fixed point is structurally stable if nearby solutions have qualitatively the

same dynamics. The linearized stability limit of a fixed point of a scheme is the same as

the bifurcation point in the corresponding bifurcation diagram of the resulting discrete

map.

For the numerical computations of the bifurcation diagrams with a given interval of r

and a chosen initial condition (or multiple initial conditions), the r axis is divided into

500 equal spaces. In each of the computations, the discrete maps were iterated with

600 preiterations and the next 200 iterations were plotted for each of the 500 r values.

The domains of the r and u '_ axes are chosen to coincide with the stable fixed point

diagrams shown previously. For our current interest, it is not necessary to distinguish

the difference between a stable fixed point of period 200 and a chaotic attractor.

Figure 3.15 shows the bifurcation diagram of the Euler scheme applied to the logistic
DE with an initial condition u ° > 0. It is of interest to know that in this case the

bifurcation diagram looks practically the same for any _0 > 0. This is due to the fact

that no spurious fixed points or spurious asymptotes of low periods exist for r < 2.627.

Comparing the bifurcation diagram with figure 3.2, one can see that if we computed all

of the fixed points of period up to 200 for figure 3.2, the resulting fixed point diagram

would look the same as the corresponding bifurcation diagram (assuming 800 iterations
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of the logistic map are sufficient to obtain the converged stable asymptotes of period

upto 200 and a proper set of initial data are chosen to cover the basins of all of the

periods in question). The numeric labelling of the branches in the bifurcation diagram

denote their period, with only the essential ones labelled for identification purposes.

In order to interpret the bifurcation diagram for other ODE and scheme combina-

tions, some knowledge of the fixed point diagram is necessary, at least for the lower

order periods. Otherwise, one cannot identify the exact periodicity of the asymptotes

easily. As can be seen later, a "full" bifurcation diagram cannot be obtained efficiently

without the aid of the stable and unstable fixed point diagram for schemes that exhibit

spurious fixed points of any period, especially lower periods. In most cases, the un-

stable asymptotes divide the domain into the proper basins of attraction for the stable

asymptotes (spurious or otherwise), and at least one initial data point is used from each

of the basins of attraction before a full bifurcation diagram can be obtained.

In all of the fixed point diagrams 3.3 - 3.14, the bifurcation phenomena can be divided

into three kinds. For the first kind, the paths (spurious or otherwise) resemble period

doubling bifurcations (flip bifurcation) [2-5] similar to the logistic map. See figures 3.2,

3.6 and 3.8 for examples. The second kind occurs, most often, at the main branch 1E,

with the spurious paths branching from the correct fixed point as it reaches the linearized

stability bruit, and quite often even bifurcating more than once (pitchfork bifurcation

or supercritical bifurcation [70,7]), as r increases still further before the onset of period

doubling bifurcations. See figures 3.4, 3.7, 3.9 - 3.11 and 3.13 for examples. The

third kind again occurs most often at the main branch 1E. The spurious paths near the

hnearized stabifity limit of IE would experience a transcritical bifurcation [3,7,9,70]. See

figures 3.3, 3.5, 3.7 and 3.14 for examples. Notice that the occurrence of transcritical

and supercritical bifurcations are not limited to the main branch 1E. See figures 3.11

- 3.14 for examples. The other commonly occurring bifurcation phenomenon is the

subcritical bifurcation which was not observed in our two chosen S(u) functions. With

a shght change in the form of our cubic function S(u), a subcritical bifurcation can be

achieved [70,3,7,9]. The consequence of the latter three bifurcation behaviors is that

bifurcation diagrams calculated from a single initial condition tt° will appear to have

missing sections of spurious branches, or even seem to jump between branches. This is

entirely due to the existence of spurious asymptotes of some period or more than one

period, and its dependence on the initial data. This occurs even for the Euler scheme

as depicted in figure 3.8. See section 3.4 for further discussion of these four types of

bifurcation phenomena.

Figures 3.16- 3.18 show the bifurcation diagram by the modified Euler method for the

logistic ODE with three different starting initial conditions. In contrast to the exphct

Euler method, none of these diagrams look alike. One can see the influence and the

strong dependence of the asymptotic solutions on the initial data. Figure 3.19 shows

the corresponding "full" bifurcation diagram, their earlier stages resembling the fixed

point diagram 3.3. Figures 3.20 - 3.22 illustrate similar bifurcation behavior for the

corresponding R-K 4 method. Figure 3.12 serves as an example to illustrate that the

effect of overplotting a number of initial data, but not the appropriate ones, would not
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be sufficient to coverall of the essentialspuriousbranches. Figures 3.23 - 3.25show a
similar illustration for S(u) = u(1 - u)(b - u), 0 < b < .5 by the improved Euler, R-K

4 and the modified Euler method. The strong dependence of solutions on initial data

is evident from the various examples in which this type of behavior is very common for

genuinely nonlinear problems.

In order to compute a "full" bifurcation diagram, we must overplot a number of

diagrams obtained by the guide of the stable and unstable fixed point diagram as an

appropriate set of starting initial data. In the case where the fixed point diagrams are

extremely difficult to compute, a brute force method of simply dividing the domain of

interest of the _t'_ axis into equal increments and using these u '_ values as initial data

is employed. The "full" bifurcation diagram is obtained by simply overplotting all of

these individual diagrams on one.

For completeness, figures 3.26 - 3.38 show the "full" bifurcation diagrams for the

corresponding fixed point diagrams shown previously. Figures 3.36 and 3.37 show a

blow up section of figures 3.34 and 3.35. Notice that the exact values of the initial

data are immaterial as long as these values cover all of the basins of attraction of the

essential lower order periods (i.e., at least one initial data point is used from each of

the basins). Here, we use the term "full" bifurcation diagram to mean just that. No

attempt has been made to compute the true full bifurcation diagram since this is very

costly and involves a complete picture of the basins of attraction for the domain of

interest in question.

3.4. Classification of ODE solvers

(According to the Ezistence of Spurious Fized Points)

In reference [56], lserles studied the stability of ODE solvers for nonlinear autonomous

ODE via the dynamical approach. He proved that linear multistep methods (LMM) [66-

68] that give bounded values at infinity always produce correct asymptotic behavior, but

it is not the case with Runge-Kutta methods and some predictor-corrector methods. He

demonstrated that the Runge-Kutta and predictor-corrector methods may lead to false

asymptotes. However, he did not discuss the possibihty of these spurious asymptotes

existing below the linearized stability limit.

For implicit LMM, he assumed the resulting nonlinear algebraic equations are solved

exactly. He also showed the influence of nonlinear algebraic solvers on the size of stability

regions for implicit LMM. His conclusion wa,; that the standard nonlinear algebraic

solver -- the modified Newton-Raphson method

Ik+l) Ik) ,_+i - u,_ _ (3.23)
u'_+l = u'_+l - 1 - _S,,(u,_) '

can drastically degrade the region of stability lbnit as compared to the Newton-Raphson

method
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_ (k)

Un+ 1 -- Un+ 1

1- )

On the other hand, the direct iteration method

(3.24)

"1

(k+l) r (k) /u.+, = ,,,, + _ S(,,n)+ S(,,.+,) (3.25)
J

converges only if the step sizeis of the same order of magnitude as that required for an

explicit method. Thus the advantage of using an implicit method to enhance stability

is lost. Here for clarity of notation, when iteration procedures are involved, u,_ is used

in place of u n of the previous section.

The implications of behavior detailed in Iserles' work [56] range far beyond pure ODE.

For most CFD application, the use of implicit time discretization to "time" march the

solution to steady state is very common. The resulting nonlinear algebraic systems

are solved by either noniterative linearization [71,14] or by some kind of iterative or

relaxation procedures. Very often, applied computational fluid dynamicists experience

a non-convergent solution where the residual will decrease only so far before reaching

a plateau with a time step larger than the explicit method. Therefore the behavior

observed in Iserles' work could explain the degradation in the stability of the implicit

scheme in practice. Indeed, even though the mechanisms involved are far more compli-

cated than those studied here, elements such as spatial discretization dynamical behavior

and nonlinear coupling effect for systems, could well be an explanation.

More recently, ]series and Sanz-Serna [57] established conditions for using a variable

step size analysis to avoid spurious fixed points in a class of Runge-Kutta methods.

Looking at the problem from another perspective, it is very useful to find the cause

of the existence of spurious asymptotes by looking at the form and properties of the

resulting discrete maps, regardless of the methods. We have the following two observa-

tions.

(1) Assume that the only parameter that was introduced by a numerical method

is At. Then from Iserles results and our current investigation, one obvious necessary

condition for the existence of spurious steady states of ODE solvers for (3.1) is the intro-

duction of nonlinearity in the parameter space At. This is evident from our examples

and general analysis. For example, if At (or r) is linear in (3.3), then (3.3) can be
written as

u n+l = a n + crS(un), c a constant of the scheme. (3.26)

Therefore any fixed point of (3.3) is a fixed point of (3.1). Without lost of generality, a

similar proof applies to the resulting difference operator D from a p time level scheme.

(2) The second observation is that one can classify the types of spurious steady

state in the form of bifurcation theory near a bifurcation point or a bifurcation limit
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point. Figures 3.39 and 3.40 show the definition of the various types of branching

points and the stability of solution in the neighborhood of branch points. In other

words, the classification is according to the onset of spurious asymptotes of subcritical,

supercritical or transcritical bifurcations. See figure 3.41 for the definition of the three

types of phenomena.

Assume an ODE solver introduces nonlinearity in the parameter space At for (3.1).

Then a necessary and sufficient condition for the occurrence of spurious steady states

below the linearized stabihty limit on the main branch 1E (stable fixed points of the

DE) is that a transcritical or subcritical bifurcation of the types shown in figures 3.42

and 3.43 exist at the bifurcation point or near st bifurcation hmit point. It is emphasized

here that the existence of spurious fixed points of higher period can be independent of

the existence of spurious steady states (fixed points of period 1).

A detailed analytical analysis on the existence of transcritical, subcritical and super-

critical bifurcations for the class of Runge-Kutta methods can be found in our com-

panion paper [21]. Figures 3.44 - 3.54 illustrate the onset of different types of spurious

steady states by showing the stable and unstable fixed points of periods 1 and 2, and

the types of bifurcation phenomena for the modified Euler, Improved Euler and R-

K 4 and the predictor-corrector schemes of order 2 and 3 for S(u) = u(1 - u) and

S(u) = u(1 - u)(b - u), 0 < b < .5. In order to illustrate the different behavior in

an uncluster fashion, not all of the periods 1, 2 and branching points are labeled. It is

interesting to see the manner in which the onset of the different types of bifurcations

occur, in particular, the birth of the different types of bifurcations away from the 1E

branches.

3.5. Basins of Attraction

Due to the separate dependence and sensitivity on initial data for the individual

DEs and the discretized counterparts, in conjunction with the existence of spurious

steady states and asymptotes of higher periods, even associated with the same (common)

steady-state solution, the basin of attraction of the continuum might be vastly different

from the discretized counterparts.

Take for example, S(u) = u(1 - u). The only stable fixed point of the logistic ODE

is = = 1. The entire domain of the real u'_-axis is divided into two basins of attraction

for the ODE independent of any positive a. Now if one numerically integrates the ODE

by the modified Euler method, extra stable and unstable fixed points can be introduced

by the scheme depending on the value of r. That is for certain ranges of the 7" values,

the u'_-axis is divided into four basins of attraction. But of course for other ranges of r,

higher period spurious numerical solutions exist, more basins of attraction are created

within the same u'_-axis range, etc. Stable and unstable fixed point diagrams such as

figures 3.44 - 3.54 are very useful in the division of the u'_-axis into different basins of

lower periods.
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3.6. Systems of ODEs

As can be seen from the previous sections, the rich and complicated dynamical be-

havior of discrete maps resulting from finite discretization of simple nonlinear scalar

autonomous ODEs is very enlightening, educational and useful in giving some indica-

tions of the strange behavior encountered in practice. One would naturally ask how

highly coupled nonlinear first-order autonomous systems complicate the issue. After

all, these types of systems occur naturally in physical science and engineering fields.

Examples are

(1) second or higher order nonlinear scalar autonomous or nonautonomous ODEs

arising from mechanical systems,

(2) meteorology,

(3) chemical reaction equations arising from chemistry,

(4) system of ODEs arising from the method of fines approach in reaction-diffusion,

reaction-convection and reaction-convection-diffusion equations.

Future work will be directed towards investigation into the nonlinear dynamical effect

of using ODE solvers for nonlinear system of ODEs. Here, we do not attempt to give

a detailed discussion on this subject, but rather indicate some of the implications from

our experience as well as what is availiable in the literature.

First, the coupling of first-order nonlinear systems arising from a higher-order scalar

nonlinear ODE is very different from the truly nonlinear coupling on systems of first-

order ODEs. This difference carries over to their discretized couterparts. Second, due

to the nonlinear coupling effect, whatever is observed in the nonlinear scalar case will

definitely exists in the coupled system case in a more complex manner. Even with the

help of the center manifold theorem [2-5], nonlinear systems of higher than three first-

order ODEs are still extremely difficult to analyze. One major factor in analyzing the

associated discrete maps from finite discretization of the continuum is that when three

or more time levels of ODE solvers are used, even though the continuum is a first-order

scalar autonomous ODE, the resulting discrete maps are (p - 1)th-order, where p is the

time level. One can extrapolate the complexity involved if nonhnear coupled systems of

higher-order ODEs were discretized by p-time levels of ODEs solvers. Some aspects and

implications of numerical integration of second- and third-order ODEs are discussed in

references [39,40,72]. Some of our preliminary numerical experiments agree with the

above general conclusion.

3.7. Suitability to the Type of Computational Environment

The main approach that we use in this paper is to establish the necessary mathemati-

cal reasoning and then to support this reasoning with extensive numerical experiments.
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Our current study on one-dimensional scalar nonlinear dynamical equations which con-

sist of a single parameter indicates that the understanding of the nonlinear effects en-

countered when applying finite-difference schemes to nonhnear differential equations is

greatly aided by the analysis of bifurcation diagrams which record the values of succes-

sive iterations for a range of parameters. Equally useful are diagrams showing the basins

of attraction of equilibria, both those of the differential equations and the spurious at-

tractors generated by the difference scheme. The generation of such diagrams, however,

is computationally expensive, especially for the basins of attraction where each point

on the diagram represents a different choice of parameters for which many iterations of

the scheme must be performed to determine its significance.

In all the bifurcation diagrams, the computations were performed on the VMS VAX

in double precision. Take for example, figure 3.34. Each dot on the plot represents a

solution obtained by integrating the discretized equation 800 times with each of the 20

prescribed initial data and each of the 500 equally space values of r = aAt. In other

words, we are integrating the same equation for 10,00(l different values of r and initial

data combinations, and also iterating the same equation for each of these combinations

with 800 iterations. The task can therefore be greatly enhanced by parallel computation,

since essentially the same process needs to be applied to each point in a fine two- or

three-dimensional array, each element representing a pixel on a high resolution screen or

plotter. It is therefore a task highly suited to machines, such as the Connection machine,

which have large numbers of processors enabling the entire region or subregions of the

problem to be analysed in one pass rather than in a sequential point-by-point approach.

The intensity of (repetitive) computing involw_d is too great to gain major benefit from

machines such as the CRAY.

For multidimensional systems consisting of several parameters, we envision that the

intensity of repetitive computing to obtain a bifurcation diagram or a basin of attraction

cannot be realized if it is not performed on a massively parallel computer such as the

Connection machine.
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IV. LEVEL OF COMPLEXITY FOR PDEs

In order to systematically approach the subject of studying spurious steady-state

numerical solutions of nonlinear nonhomogeneous hyperbolic and parabolic PDEs via

the nonlinear dynamic approach, we propose to pursue the subject in three stages. First,

we will attempt to obtain a full understanding of the subject for time discretization of

ODEs. The investigation can give insight into numerical methods employing the Strang

type of operator splittings or methods of lines approach for nonhomogeneous hyperbolic

and parabolic PDEs. The second stage will involve the study of the discrete travelling

wave solutions of the reaction-convection and reaction-convection-diffusion equations.

The third stage will involve the study of the complete temporal-spatial discretizations

of the reaction-convection and reaction-convection-diffusion equations. The last stage of

the proposed plan is extremely difficult to analyze. Some aspects of full discretizations

and discrete travelling wave solutions were investigated by [46-54, 58-62,73,74,10].

The question now is in what specific area will this approach advance the state-of-the-

art in CFD. Our preliminary study indicated that many existing results for nonlinear

dynamical systems such as chaos, bifurcations, and limit cycles (closed periodic or-

bits [5]) have a direct application to problems containing nonlinear source terms such

as the reaction-diffusion, reaction-convection or the reaction-convection-diffusion equa-

tions. Also they have a direct application to most of the nonlinear shock-capturing

methods such as the total variation diminishing (TVD) schemes [14,75-78]. With the

advent of increasing demand for numerical accuracy, stability, efficiency, and uniqueness

of numerical solutions in modeling such equations, an interdisciplinary approach for the

analysis of these systems and schemes is needed. Besides it is a common practice in CFD

to employ a time-dependent approach to achieve steady state. The separate dependence

of solutions on initial data and system parameters for the individual PDE and its finite-

difference equations is the crucial element in determining how well a numerical solution

can mimic the true physics of the problem.

The following is an attempt to give a flavor of the subject and at the same time provide

a justification for the importance of this subject area in CFD algorithm development

for our next generation aerodynamics needs.

4.1. Model Equations

One of the recent areas of emphasis in CFD has been the development of appropri-

ate finite-difference methods for nonequilibrium gas dynamics in the hypersonic range

[14,78-81]. A nonlinear scalar reaction-diffusion model equation would be of the form

81/ 821/

8--t = ¢_z 2 + aS(u), ¢,a system parameters, (4.1)

a nonlinear scalar reaction-convection model equation would be of the form
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0-7+ - (4.2)

and a nonlinear scalar reaction-convection-diffusion model equation would be of the
form

Ou Of(u) 02u

o-7+ - + (4.3)

Here f(u) a linear or nonlinear function of u. The nonlinear source term (or the reaction

term) S(u) can be very stiff. Note that phenomena such as chaos, bifurcations and limit

cycles only relate to source terms S(u) which are nonlinear in u. Equation (4.3) can be

viewed as a model equation in combustion or as one of the species continuity equations in

nonequilibrium flows (except in this case, the source term is coupled with other species

mass fractions).

The above mode] equations are good starting points in the investigation of correlation

between the theory of chaotic dynamical systems and uniqueness, stability, accuracy and

convergence rate of finite-difference methods for CFD.

4.2. Level of Complexity

The main interest is to investigate what types of new phenomena arise from the

numerical methods that are not present in the original nonlinear PDE, as a function

of the stiff coefficient a, the diffusion coefficient e, and the time step At with a fixed

(or variable) grid spacing As. The time step can vary greatly depending on whether

the time discretization is explicit or implicit. More precisely, one wants to weed out all

undesirable phenomena due to the numerical method (e.g., additional equilibrium points

introduced by the time as well as spatial discretizations, degradation of the domain of

attraction, etc.) and to identify whether the numerical method really describes the true

solution of the PDE under prescribed initial and boundary conditions with a, e, the

time step At and the grid spacing Az being parameters. The study can be divided into

steady and unsteady behavior with or without shock waves.

The major stumbling block is that combustion-related and high speed hypersonic flow

problems usually contain multiple equilibrium states and shock waves that are inherent

in the governing equations. Furthermore, spurious equilibrium states can be introduced

by the time differencing and/or the spatial differencing. In many instances the stable

and unstable equilibrium states, whether due to the physics or spurious in nature, are

interwoven over the domain of interest and are usually very sensitive to the initial

conditions and the time steps (even when the chosen time step is within the hnearized

stability limit as indicated in our study) as well as variation of parameters such as angle

of attack, Reynolds number and coefficients of physical and numerical dissipations and

physical and numerical boundary conditions.
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The sensitivity of numerical solutions to coefficients of physical and numerical dissipa-

tions is evident from the study of Mitchell and Bruch on the reaction-diffusion equation.

Their main result is that diffusion, which is usually perceived as having a stabihzing

effect, is able to produce chaotic as well as divergent numerical solutions. Another in-

teresting result due to Mitchell and Bruch was the production of chaos by decreasing

the space increment or increasing the time increment. They showed that the addition of

diffusion poses severe problems unless waves of constant speed c are assumed, in which

case it reverts to an ODE with z + c/, as the independent variable. The sensitivity

of numerical solutions to numerical boundary condition procedures was discussed in

[82,83].

On the subject of sensitivity and dependence of solutions on initial data, the basin

of attraction might be very different between the PDE and the discretized counterpart.

The basin of attraction might contract or be very different from the basin of attraction

for the original PDEs depending on the numerical methods. In many instances, even

with the same spatial discretization but different time discretizations, the basins of

attraction can also be extremely different. One can extrapolate the complexity involved

when the influence of the various temporal as well as spatial discretizations are sought

on the basins of attractivity.

Table 4.1 summarizes the level of complexity for a systematic approach to these types

of PDE. The check mark on each type of PDE and approach indicate the ones where

some work has been done on this subject. The majority are credited to the University

of Dundee group [46-54] and some related theory by A. Stuart [58-82].

4.3. Involvement in the Study of Full Discretization of PDE

Consider a three-level explicit time differencing and a three-point spatial differencing

of the reaction-convection-diffusion equation (4.3) of the form

u" _ u" .-1 .-1 .-1 cAt, Ax),u_ +1 =u_ +t1( j_l,uj, j+l,uj_a,uj ,u_+l,a, (4.4)

where u_ is the numerical solution at / = nat and z = jAz. Then the study of the

asymptotes of (4.4) amounts to the study of fixed point behavior of period p in time and

period q in space, denoted by (p, q), where p and q are integers. Here the fixed point of

the partial-difference equation (4.4) is defined in a slightly more complicated way than

for the ODE.

,,+1 " and a fixed pointFor example, a fixed point of period (1,1) is defined as uj+ 1 = uj

_ n+2 " However, a fixed point of period (1,2) is definedof period (2,1) is defined as u i+1 = uj.
. n+p n

as uj+_-,.,+1 = ujn. Thus, in general a fixed point of period (p,q) is defined as =j+q = uj.
One can see that for p, q > 3, solving the resulting nonlinear algebraic equation is very

involved, especially when physical boundary conditions and physical dissipation terms

as well as numerical boundary conditions [82,83,34] and numerical dissipation [47] are
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additional dimensionsof consideration. Current available work involved the studies
beyond the linearized stability limit of the schemes,and assumedthe nonexistenceof
spuriousfixed points of period (1,1). Seereferences[46-54]for details.

4.4. Influence in Dynamical Behavior by Property of the PDEs

and Schemes, and Treatment of the Source Terms

Although the general study of the dynamical behavior of partial-difference equations

for the conservation law [84,85] of (4.3) is an enormous task, if we can isolate certain

restricted subsets of the PDEs and schemes in hand which are immune to the type of

phenomena discussed in section III for time discretization as well as spatial discretiza-

tion, then we can concentrate on the rest of the unknowns.

As can be seen in section III, the nature of the dynamical behavior of the discretized

counterparts is strongly influenced by properties of the numerical method and the types

and form of nonlinear DEs. Here we want to study the influence on the dynamical be-

havior of elements such as conservation and nonlinearity of the schemes, and treatment

of the source terms [14-17,78-81] when nonlinear conservation laws of PDEs are sought.

First, take the convection equation (4.2) with S(u) = 0 and consider a conservative

explicit scheme [76,14] which is consistent with the conservation law of the form

'_ Ah 1-
u_ +1 = ttj +_ 3-

where A = At/Az and h_.+} are the numerical flux functions. For a two-time level and

five-point spatial scheme, hj_ ½ = h(u'), uj_l , wj_2).

We also can consider a two-parameter family of scheme

-- hi+½u}'+l -+- 1 + _o .7__ = u., 0) [h. .1 +w j+½ -- hj_}

rt--1

+1--77 - ). (4.6)

where 0 < 0 < 1. When 0 = 0, the scheme is explicit and when 0 = w + 1/2, the scheme

is temporally secorJd-order accurate. One can obtain (4.5) from (4.6) by setting 0 = 0

and w = 0. The time differencing belongs to the class of LMM. Under the assumption

that this scheme is conservative and consistent with the conservation law, discrete map

(4.6) will have no spurious steady-state numerical solution since consistency means

= I(='). (4.7)

Thus any steady-state solutions of (4.6) are steady-state solutions of the original PDE.
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Now the situation is different when S(u) # O. Under this situation, even if the

same time and spatial discretization are employed, one still has to evaluate S properly.

Here S is the function S evaluated at some proper average state _ [14-17] for the

full discretization that is consistent with the scheme [18], and achieves conservation at

jumps. For a discussion on this subject, see references [78, 15-17] for details. The other

crucial aspect is that when S(u) # 0, a full investigation on the dynamical behavior

of the temporal and spatial discretization is necessary. The knowledge gained from the

finite-difference methods analysis for S(u) = 0 does not carry over to the S(u) # 0 case.

4.5. Discrete travelling Waves

Analysis of the dynamical behavior of the full discretization of nonlinear nonhomo-

geneous PDEs of the hyperbolic and parabolic types is very involved. In this section,

we look at a more restricted class of solutions -- the discrete travelling wave solutions.

Consider a reaction-diffusion equation

Ou 02 _t

& Oz 2
+ (4.8)

Solution u(z,t) depend on the space variable z and on the time t. Every zero of S(u)

constitutes an equilibrium of the PDE. Then a travelling wave solution is a profile U(z)

that travels along the z-axis with propagation speed X. Neither the shape of the wave

nor the speed of propagation changes. To find travelling waves, we seek solutions

resulting in an ODE

=(x,t) = u(x - it), (4.9)

u" + Xu' + = 0. (4.1o)

By solving this ODE, one can calculate asymptotic states for the PDE. Let U1 and

U2 be roots of ,_(u) and hence equilibrium solutions for both the PDE and ODE. The

asymptotic behavior of solution U for x _ 4-oo determines the type of travelling wave.

Every solution with

U(c_) = ul (4.11a)

U(-oo) = u2, (4.11b)

with ul # us, is a front wave of the ODE. This corresponds to a heterochnic orbit

[3] of the ODE, connecting the two stationary points ul and u2. Here for a second-

order autonomous ODE (4.10), when distinct saddles are connected, one encounters

a heteroclinic orbit; also a heteroclinic orbit may also join a saddle to a node or vice

versa. Another type of special orbit is a homoclinic orbit. A homoclinic orbit connects a

saddle point to itself and such orbits have an infinite period. Several heteroclinic orbits
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may form a closedpath called a homoclinic cycle. Both the heteroclinic and homoclinic

orbits are of great interest in applications because they form the profiles of travelling

wave solutions of many reaction-diffusion problems. See references [3,10,73,74] for a
discussion.

Similarly, one can study discrete travelling wave solutions for the finite discretization

of (4.8). See references [73,74] for a discussion. Understanding of the discrete traveling

wave solutions of the corresponding PDEs only gives insight into a very small subset of

the dynamics of the PDEs. In most cases, it provides no information at all for the fully

discretized equation.
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V. IMPLICATIONS & RECOMMENDATIONS

Due to the complexity of the large increase in system dimension and the involvement

of multiple floating parameters for finite difference methods in PDEs, we are not certain

that a similar systematic general result can be arrived at for more complex nonlinear

systems. The main indication at this point is from our time discretization study.

5.1. Results Drawn from the ODE Connection Study

Our study illustrates a few very important implications which are very fundamental

in explaining what happens when linear stability breaks down for truly nonlinear prob-

lems; i.e., equations that display genuinely nonlinear types of behavior. The important

points are as follows:

(1) There is sensitivity to initial data and strong dependence on discretization pa-

rameters such as the time step and the grid spacing Az. Dependence of solutions on

initial condition is important for employing a time-dependent approach to the steady-

state with a given initial condition and boundary conditions in hypersonic or combustion

flows, especially when initial data of the governing PDE are not known.

(2) Associated with the same (common) steady-state solution the basin of attraction

of the DEs might be vastly different from the discretized counterparts. This is mainly

due to the dependence and sensitivity on initial conditions and boundary conditions

for the individual systems. In the absence of the influence of the initial and boundary

conditions, the difference in the basins of attraction between the continuum and its

discretized counterparts occurs even when an implicit LMM type of method is used

unless the resulting nonlinear algebraic equations are solved exactly.

(3) Nonunique steady-state solutions can be introduced by the spatial discretization

even though the original PDEs might possess only an unique steady-state solution and a

LMM type of time discretization is used so that no spurious steady-state exists in time.

The tie between temporal and spatial dynamical behavior is more severe when one is

dealing with the nonseparable temporal and spatial finite-difference discretization such

as the Lax-Wendroff type, where the time and spatial difference cannot be separated

from each other. The situation would be more complicated if the governing nonlinear

PDE possesses more than one steady-state solution as well as the spurious ones that

are purely due to the numerical method.

(4) For certain time discretizations, spurious steady-state solutions may occur below

the linearized stability limit of the scheme.

(5) The result of operating with a time step beyond the linearized stability limit is

not always a divergent solution; spurious steady-state solutions can occur.
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(6) There is a nfisconceptionthat computational instability or inaccuracy can often
becured simply by making Ai smaller. Other elementssuchas(1) - (5) aboveaswell as
the variation of the grid spacings,numerical dissipation terms and system parameters
other than the time stepscan interfere with the dynamical behavior.

(7) When linearized stability limits are usedas a guide for a time step constraint
for highly couplednonlinear system problems, this time step might exceedthe actual
linearized stability limit of the coupled equations. Therefore all of the situations in
(1) - (6) canoccur. In particular, whenone tries to stretch the maximum limit of the
linearized allowabletime stepfor highly coupledsystems,most likely all of the different
type of spuriousbranchesof supercritical, subcritical and trancritical bifurcations can
be achievedin practice dependingon the initial conditions. That is why the occurrence

of spurious steady-state solutions beyond the linearized stability limit is not just sec-

ondary but might be as important as the occurrence of spurious steady states below the

hnearized stability limit.

5.2. Recommendations

II is of utmost importance to know the nonlinear dynamical behavior of the various

schemes before their actual use for practical applications. Otherwise, it might be very

difficult to asses the accuracy (spurious or otherwise) of the solution when the numerical

method is the sole source of the understanding of the physical solutions. When in doubt,

it is always safer to use schemes that do not produce spurious steady-state solutions for

the nonlinear scalar case. Some examples of methods of this type in time discretization
can be listed:

(1) LMM [56] ODE solvers such as the exphcit, implicit Euler, three-point backward

differentation, etc. can be used.

(2) One can use the "Regular" Runge-Kutta methods [57].

(3) Solving the nonlinear algebraic systems arising from implicit LMM method ex-

actly would avoid spurious steady state numerical solutions. Otherwise, the type of

iteration method in solving nonlinear algebraic systems can degrade the basin of attrac-

tivity of imphcit LMM [57].

The insight gained from time discretization will only give an indication in separable

schemes or method of lines approaches. Also, the commonly used residual test [86-88]

in the time-dependent approach to the steady state might be misleading. This is the

direct consequence of what was indicated in section 5.1. The popular misconception of

using the inverse problem of nonlinear dynamics to analyze a time series data from a

finite difference method computer code in an attempt to learn about the true physical

solution behavior of the continuum governing PDEs without knowing by other means

the exact solution behavior of the PDEs other than the numerical solutions can also be

misleading. These will be discussed in the next two sections.
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5.3. Residual Test

Consider a quasilinear PDE of the form

Ou

N = (5.1)

where G is nonllnear in u, u_ and uzz and a and _ are system parameters. For simphcity,

consider a two time level and a (p + q) point grid stencil of the form

_+1 n n _ rt= u) -- H(uj+q,..., uj,..., uj_p, a, e, At, Az) (5.2)

for the PDE (5.1). Let U*, a vector representing (u_+q, ..., u_, ..., u__p) be a steady-state

numerical solution of (5.2). It is a common practice in CFD to use a time dependent

approach such as (5.2) to solve the steady-state equation G(u, u,, u,,,a, e) = 0. The

iteration is stopped when the residual H or some L2 norm of the dependent variable u

between two successive iterates is less than a pre-selected level.

Aside from the various standard numerical error such as truncation error, machine

round-off error, etc. [89], there is a more fundamental question on the validity of the

residual test and/or L2 norm test. If the scheme happens to produce spurious steady-

state numerical solutions, these spurious solutions would still satisfy the residual and L2

norm tests in a deceptively smooth manner. Moreover, aside from the spurious solutions

issue, depending on the combination of time as well as spatial discretizations, it is not

easy to check whether G(u*,u_,u*_,_,c) _ 0 even though H(U*,a,c, At, Az) ---, O.

This is contrary to the ODE case, where if u* is spurious in (1.1) then S(u*) _ O.

Among other factors, this is one of the contributing factors in the increase in magnitude

of difficulty for analyzing the dynamical behavior of numerical methods for hyperbolic

and parabolic PDEs.

One might argue that one can judge the accuracy of the scheme by comparing the

numerical solutions with more than one numerical methods and by doing a sequence of

grid refinement and time step reductions. The latter approach might not be feasible at

an acceptable cost. The former might not be foolproof if one does not know the dynam-

ical behavior of the finite difference schemes being used. One important contributing

factor on the use of the Lax-Wendroff types of schemes [90,91] is that these schemes

are more accurate and sometimes more stable when operated on or near the linearized

stability limit.

5.4. The Inverse Problems of Nonlinear Dynamics

The use of the inverse problem of nonlinear dynamics to analyze the dynamical behav-

ior of time series data arising from experimental or observable data has received much

attention in nonlinear physics as well as in many of the engineering disciplines. The

approach is very useful for gaining some insights into the nonlinear dynamical behavior
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in problems where experimental or observabledata are the main source of informa-
tion. Often the associated governing equations (continuum or otherwise) do not exist

to start with. There has been an explosion of theory, numerical procedures and com-

puter software addressing this rapidly growing direction [92-95]. There also has been

much recent interest in forecasting algorithms that attempt to analyze a time series

by fitting nonlinear models. The attractive feature of this approach is that when used

correctly on the correct problems one can reduce the complexity of the problem from

un-manageable higher dimensions to a very low dimension. It is therefore a natural

tendency for practioners in computational sciences to apply this approach to analyze

the dynamical behavior of time series data from a finite difference method computer

code in an attempt to learn about the true physical solution behavior of the governing

PDEs. This application of time series analysis can be misleading and can lead to a

wrong conclusion if the practitioner does not know by other means the exact solution

behavior of the PDEs other than from the numerical solutions. Examples of the use of

this type of approach in CFD computations have been presented in references [96-98].

It can be seen from our study that the conclusions drawn from this type of time series

analysis provide very little information, but rather can actually mislead one as to the

true physics of the problem.

VI. CONCLUDING REMARKS

Spurious stable as well as unstable steady-state numerical solutions, spurious asymp-

totic numerical solutions of higher period, and even stable chaotic behavior can occur

when finite-difference methods are used to solve nonlinear DEs numerically. The oc-

currence of spurious asymptotes is independent of whether the DE posseses a unique

steady state or has additional periodic solutions and/or exhibits chaotic phenomena.

The form of the nonlinear DEs and the type of numerical schemes are the determining

factor. In addition, the occurrence of spurious steady states is not restricted to the time

steps that are beyond the linearized stabihty limit of the scheme. In many instances,

it can occur below the linearized stability lirrdt. Therefore, it is essential for practi-

tioners in computational sciences to be knowledgeable aboul the dynamical behavior of

finite-difference methods for nonlinear scalar DEs before the actual application of these

methods to practical computations. It is also important to change the traditional way

of thinking and practices when dealing with genuinely nonlinear problems.

In the past, spurious asymptotes were obserw_d in numerical computations but tended

to be ignored because they all were assumed to lie beyond the hnearized stabihty hm-

its of the time step parameter At. As can be seen from our study, bifurcations to and

from spurious asymptotic solutions and transitions to computational instability not only

are highly scheme dependent and problem dependent, but also initial data and bound-

ary condition dependent, and not limited to time steps that are beyond the linearized

stability limit.

The symbiotic relation among all of these various factors makes this topic fascinating
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and yet extremely complex. The main fundamental conclusion is that, in the absence of

truncation and machine round-off errors, there are qualitative features of the nonlinear

DE which cannot be adequately represented by the finite-difference methods and vice

versa. The major feature is that convergence in practical calculations involved fixed At

as n _ oo rather than At _ 0 as n _ c¢. It should be emphasized that the resulting

discrete maps from finite discretizations can exhibit a much richer range of dynami-

cal behavior than their continuum counterparts. A typical feature is the existence of

spurious numerical asymptotes that can interfere with stability, accuracy and basins of

attraction of the true physics of the continuum.
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Figure Captions

Table 2.1 Possible stable asymptotic solution behavior for DEs and their discretized

counterparts.

Fig. 2.1 Phase portrait and basins of attraction of the damped pendulum equation

(this figure is taken from reference [8]).

Fig. 2.2 Phase portrait and basins of attraction of the predator-prey equation (this

figure is taken from reference [8]).

Fig. 3.1 Asymptotic solution behavior of the logistic ODE du/dt = au(1 - u) for

a>0.

Fig. 3.2 Stable fixed points of periods 1,2,4,8 of the explicit Euler scheme for the

logistic ODE du/dt = au(1 - u).

Fig. 3.3 Stable fixed points of periods 1,2,4,8 of the modified Euler (R-K 2) scheme

for the logistic ODE du/dt = au(1 - u).

Fig. 3.4 Stable fixed points of periods 1,2,4,8 of the improved Euler (R-K 2) scheme

for the logistic ODE du/dt = au(1 - u).

Fig. 3.5 Stable fixed points of periods 1,2,4,8 of the Runge-Kutta 4th-order (R-K 4)

scheme for the logistic ODE du/dt = au(1 - u).

Fig. 3.6 Stable fixed points of periods 1,2,4,8 of the predictor-corrector scheme of

order 2 for the logistic ODE du/dt = au(1 - u).

Fig. 3.7 Stable fixed points of periods 1,2,4,8 of the predictor-corrector scheme of

order 3 for the logistic ODE du/dt = au(1 - u).

Fig. 3.8 Stable fixed points of periods 1,2,4,8 of the explicit Euler scheme for the

ODE du/df = au(1 - u)(0.5- u).

Fig. 3.9 Stable fixed points of periods 1,2,4,8 of the modified Euler (R-K 2) scheme

for the ODE du/dt = au(1 - u)(0.5- u).

Fig. 3.10 Stable fixed points of periods 1,2,4,8 of the improved Euler (R-K 2) scheme

for the ODE du/dt = au(1 - u)(0.5- u).

Fig. 3.11 Stable fixed points of periods 1,2,4,8 of the Runge-Kutta 4th-order (R-K 4)

scheme for the ODE du/dt = au(1 - u)(0.5 - u).
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Fig. 3.12

Fig. 3.13

Fig. 3.14

Fig. 3.15

Fig. 3.16

Fig. 3.17

Fig. 3.18

Fig. 3.19

Fig. 3.20

Fig. 3.21

Fig. 3.22

Fig. 3.23

Fig. 3.24

Fig. 3.25

Fig. 3.26

Stable fixed points of periods 1,2,,i,8 of the predictor-corrector scheme of

order 2 for the ODE du/df = au(1 - u)(0.5 - u).

Stable fixed points of periods 1,2,,1,8 of the predictor-corrector scheme of

order 3 for the ODE du/dl = au(1 - zt)(0.5 - u).

Stable fixed points of periods 1,2,4.8 of the modified Euler (R-K 2) scheme

for the ()DE du/dt = au(1 - u)(b -u), b = 0.1, 0.2, 0.3, 0.4.

Bifurcation diagram of the explicit Euler scheme for the logistic ODE du/dt_ =

au(l- ,,).

Bifurcation diagram of the modified Euler (R-K 2) scheme for the logistic

ODE du/dt = au(1 - u) with u ° = 2.7.

Bifurcation diagram of the modified Euler (R-K 2) scheme for the logistic

ODE dzL/dt = au(1 - u) with u ° = 1.5.

Bifurcation diagram of the modified Euler (R-K 2) scheme for the logistic

ODE du/dt = au(1 - u) with u ° = 0.25.

"Full" bifurcation diagram

logistic ODE du/dt = au(1

Bifurcation diagram of the

logistic ODE du/dt = au(1

Bifurcation diagram of the

logistic ()DE du/dt = au(1

of the modified Euler (R-K 2) scheme for the

--It).

Runge-Kutta 4th-order (R-K 4) scheme for the

- u) with u ° = 0.5.

Runge-Kutta 4th-order (R-K 4) scheme for the

- u) with multiple initial data.

"Full" bifurcation diagram of the Runge-Kutta 4th-order (R-K 4) scheme for

the logislic ODE du/dt = au(1 - u).

Bifurcation diagrams of the improved Euler (R-K 2) scheme for the ODE

du/dt = ,_u(1 - u)(0.5 - u) for four different sets of initial input data.

Bifurcation diagrams of the Runge-Kutta 4th-order (R-K 4) scheme for the

ODE du/dt = au(1 - u)(0.5 - u) for four different sets of initial input data.

Bifurcation diagrams of the modified Euler (R-K 2) scheme for the ODE

du/dÂ = t,u(1 - u)(0.4 - u) for four different sets of initial input data.

"Full" bifurcation diagram of the improved Euler (R-K 2) scheme for the

logistic ODE du/dt = au(1 - u).
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Fig. 3.27 "Full" bifurcation diagram of the Adam-Bashforth schemefor the logistic
ODE du/dt = au(1 - u).

Fig. 3.28 "Full" bifurcation diagram of the predictor-corrector scheme of order 2 for

the logistic ODE du/dt = au(1 - u).

Fig. 3.29 "Full" bifurcation diagram of the predictor-corrector scheme of order 3 for

the logistic ODE du/dt = au(1 - u).

Fig. 3.30 "Full" bifurcation diagrams of the modified Euler (R-K 2) scheme for the

ODE du/dt = au(1 - u)(b- u), b = 0.1, 0.2, 0.3, 0.4.

Fig. 3.31 "Full" bifurcation diagrams of the exphct Euler scheme for the ODE du/dt =

,_u(1 - u)(0.5 - _,).

Fig. 3.32 "Full" bifurcation diagram of the modified Euler (R-K 2) scheme for the

ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.33 "Full" bifurcation diagram of the Adam-Bashforth scheme for the ODE

du / dt = au(1 - u)(0.5 - u).

Fig. 3.34 "Full" bifurcation diagram of the improved Euler (R-K 2) scheme for the

ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.35 "Full" bifurcation diagram of the Runge-Kutta 4th-order (R-K 4) scheme for

the ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.36 "Full" bifurcation diagram of the improved Euler (R-K 2) scheme for the

ODE du/dt = au(1 - u)(0.5- u) (enlarged).

Fig. 3.37 "Full" bifurcation diagram of the Runge-Kutta 4th-order (R-K 4) scheme for

the ODE du/dt = au(1 - u)(0.5- u) (enlarged).

Fig. 3.38 "Full" bifurcation diagram of the predictor-corrector scheme of order 2 for

the ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.39 Types of branching points.

Fig. 3.40 Stabihty of solutions in the neighborhood of branch points, one-dimensional

case. -- stable, - - - unstable a,b,c,d: limit (regular turning) point;

e,f,g,h: bifurcation (double) points; i_j,k,l: bifurcation-limit (singular turn-

ing) points; m,n,o,p,q: additional possible cases when the dimension of u is

greater than one (this figure is taken from reference [7]).
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Fig. 3.41 Stability of steady-statesolutions arising through three types of bifurcation
phenomena(-- stable, - - - unstable).

Fig. 3.42 Spuriousfixed points arising from transcritical bifurcations.

Fig. 3.43 Spuriousfixed points arising from subcritical bifurcation.

Fig. 3.44 Stable and unstable fixed points of periods 1,2 of the modified Euler (R-K
2) schemefor the logistic ODE du/dt = c_u(1 - u).

Fig. 3.45 Stable and unstable fixed points of periods 1,2 of the improved Euler (R-K

2) scheme for the logistic ODE du/dt = au(1 - u).

Fig. 3.46 Stable and unstable fixed points of periods 1,2 of the Runge-Kutta 4th-order

(R-K 4) scheme for the logistic ODE du/dt = au(1 - u).

Fig. 3.47 Stable and unstable fixed points of periods 1,2 of the predictor-corrector

scheme of order 2 for the logistic ODE du/dt = au(1 - u).

Fig. 3.48 Stable and unstable fixed points of periods 1,2 of the predictor-corrector

scheme of order 3 for the logistic ODE du/dt = au(1 - u).

Fig. 3.49 Stable and unstable fixed points of periods 1,2 of the modified Euler (R-K

2) scheme for the ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.50 Stable and unstable fixed points of periods 1,2 of the improved Euler (R-K

2) scheme for the ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.51 Stable and unstable fixed points of periods 1,2 of the Runge-Kutta 4th-order

(R-K 4) scheme for the ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.52 Stable and unstable fixed points of periods 1,2 of the predictor-corrector

scheme of order 2 for the ODE du/d_ = au(1 - u)(0.5- u).

Fig. 3.53 Stable and unstable fixed points of periods 1,2 of the predictor-corrector

scheme of order 3 for the ODE du/dt = au(1 - u)(0.5 - u).

Fig. 3.54 Stable and unstable fixed points of periods 1,2 of the modified Euler (R-K

2) scheme for the ODE du/dt = c_u(1 - u)(0.2 - u).

Table 4.1 Systematic approach - level of complexity.

49



SOLUTION
TYPE

# OF
ASYMPTOTES

OR
STEADY-STATE

SOLUTIONS

PERIODIC
SOLUTIONS

1

CHAOS

ODEsORPDEs

SINGLE

SINGLE

MULTIPLE

MULTIPLE

NO

YES
i

NO

YES

DISCRETIZEDCOUNTERPARTS

SINGLE

MULTIPLE

SAME# OF MULTIPLE

ADDITIONAL# OF MULTIPLE

YES

YES (+ EXTRA)
i i

YES

YES (+ EXTRA)

Table 2.1 Possible stable asymptotic solution behavior for DEs and their discretized

counterparts.
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ODE CONNECTION: GAIN INSIGHT INTO TIME DISCRETIZATIONOF PDEs

SCALAR
SYSTEM -- TIME SPLrI'riNGORMETHODOF LINES

I1. DISCRETE TRAVELUNGWAVE: au au a2U
,, _- + C _ = _ E_ + .S(u)

iREACTION-DIFFUSION

SCALAR: |REACTION-CONVECTION

[REACTION-CONVECTION-DIFFUSION

III. FULL DISCRETIZATION(TEMPORAL AND SPATIAL):

SCALAR:{ _'](S_O) " LINEARSCHEMEFORSPATIALDISCRETIZATION

SCALAR:

IS=O) { NONLINEARSCHEMEFORSPATIALDISCRETIZATION

SCALAR:

(S_O) { NONLINEARSCHEMEFORSPATIALDISCRETIZATION

Table 4.1 Systematic approach - level of complexity.
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