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ABSTRACT

The H=, fixed architecture, control problem is a classic LQG problem whose
solution is constrained to be a linear time invariant compensator with

decentralized processing structure. The compensator can be made of p
independent subcontrollers, each of which has a fixed order and connects selected
sensors to selected actuators. The H_, fixed architecture, control problem allows

the design of simplified feedback systems needed to control large scale systems.
Its solution becomes more complicated, however, as more constraints are
introduced. This work derives the necessary conditions for optimality for the

problem and studies their properties. It is found that the filter and control
problems couple when the architecture constraints are introduced, and that the
different subcontrolle'rs must be coordinated in order to achieve global system

performance. The problem requires the simultaneous solution of highly coupled
matrix equations. The use of homotopy is investigated as a numerical tool, and
its convergence properties studied. It is found that the general constrained
problem may have multiple stabilizing solutions, and that these solutions may be
local minima or saddle points for the quadratic cost. The nature of the solution
is not invariant when the parameters of the system are changed. Bifurcations

occur, and a solution may continuously transform into a nonstabilizing
compensator. Using a modified homotopy procedure, fixed architecture
compensators are derived for models of large flexible structures to help
understand the properties of the constrained solutions and compare them to the

corresponding unconstrained ones.
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INTRODUCTION

I.I ON THE CONTROL OF LARGE SCALE SYSTEMS

1.1.1 General

Some physical systems necessitate the use of large dimensional state vectors to

describe their complex dynamics. Economic and ecologic models, power and

communication networks, are examples of such systems and have motivated the

early developments in the study of large scale systems. Another example of such

systems are structures, which "must theoretically be modeled with infinite

dimensional state vectors. Structural modes in a system can be usually ignored if

they are at sufficiently high frequencies and are well damped. This is not the

case for large, flexible, space structures, where a large number of structural

modes have to be actively controlled to reduce vibration levels. The controller

cannot, on the other hand, become too complex because of implementability_

reliability and robustness considerations. The required level of complexity in

wiring, centralized data collecting, and centralized processing may not be

achieved with the existing flight qualified hardware. It may result in an

unacceptable loss of performance due to time delays and the necessity _o

dramatically reduce the sampling frequency. The complexity of the system

makes it prone to more failures. Since vibration suppression on flexible space

structures is the principal motivation of this work, Linear Time Invariant (LTII

systems are considered.

The complexity of the large scale problems influences their study, the

control design procedures and the implementation of the control law. The size _:f
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the model must be chosen in accordance with the numerical tools at hand,

limiting right away the level of details that one can reach. The accuracy of the

model deteriorates, in any case, as it tries to encompass too many effects, and a

larger model may be highly unreliable. The control synthesis techniques that

require a complete model are also limited in the size of problems they can reliably

handle. Finally, the controller must remain simple enough in order to be

implementable. The goal of all the methods developed to handle large scale

problems is to simplify the model, the design method, or the structure of the

compensator [San78]. The trade-off in all design methods is made between

system performance, control feedback complexity, and design procedure

complexity. Better performance usually requires more complex control schemes.

An optimal controller may be, however, more difficult to obtain_ and suboptimal

designs may be preferred since they can be usually found in a simpler way.

Large scale systems can usually be seen as a large number of simpler

interconnected subsystems. This is a result of the modeling process in many

cases, since one can reliably identify the local dynamics and the local interactions

only. Large systems are, thus, generally built from the bottom up. Finite

element methods, for example, model large structures by breaking them down

into smaller rigid elements, and they also require a model of the local interaction

properties. The resulting assembled model has dynamics that approximate

realistically the original structure. Power and communication networks are also

usually modeled as the interconnection of nodes which are characterized by their

own fast internal dynamics and the way they interact with neighboring nodes.

The nature of the connections and of the coupling are paramount properties that

shape the behavior of the overall system [Kok81, Chw82]. The next section

shows how they may influence the choice of a control architecture.

1.1.2 Decentralized versus Hierarchic Control Architectures

[Kok81, Chw82] distinguish two types of large scale systems in power networks

The characterization can be extended to other large interconnected systems

Each type suggests a specific control architecture that provides simpler feedback

systems with high performance [San78].
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The first class of systems is constituted by weakly coupled systems. When

the coupling between subsystems is weak, the internal dyuamics of one subsystem

are only slightly modified when the other subsystems are connected. Hence, the

global dynamics of the interconnected system can be approximated by studying

the internal dynamics of each isolated subsystem.

The architecture of such systems suggests the use of a decentralized

control structure. Each subsystem is provided with its own independent

controller that uses only local information and has only local control authority.

The control structure is much simpler since one does not need to take into

account the overall complexity of the system. The coupling should not change

the performance of the closed loop system more than it affects the open loop

system. For weakly coupled systems, a locally decentralized control architecture

appears therefore to be the natural way to simplify the compensator.

The second class of systems recognized in [Kok81, Chw82] is made of

weakly connected systems. The dynamic matrix of an interconnected LTI system

is assembled using the subsystem dynamic matrices and the interaction matrices.

The diagonal blockmatrices represent the internal dynamics of each subsystem,

and the off-diagonal blocks represent the interconnection. A weakly connected

system is such that the size of the off-diagonal elements are comparable to the

smallest terms of the internal dynamic matrices. The overall dynamics will have

two timescales. Steady disturbances and steady commands will be propagated

throughout the entire system and the connections will make the subsystems act

in a coherent manner, more like a group. Rapidly varying disturbances and

commands introduced locally, on the other hand, will be filtered by the weak

connections and will result in a fast, mostly local, incoherent response of the

subsystems. Coherence and incoherence should be understood, here, as the

possibility or the impossibility to determine and to control the actions of remote

subsystems using local information and local control with a bandwidth

comparable to that of the actions in question.

k natural control architecture appears to be, in the case of weakl;-

connected systems, a multilevel, or hierarchic, control structure. Fast locai

controllers can handle the fast, incoherent dynamics of the system, while an

upper level controller handles the slow coherent motion. At the lower levei

controllers gather information locally and receive directives from the upper level

The information is also condensed and sent to the upper level. The upper level

17



receives the aggregate information from the lower level and estimates the

interaction between the subsystems. In return, it calculates directives to send to

the lower levels. This ensures some degree of cooperation between the

subcontrollers and increases the overall performance of the system.

Weak coupling and weak connections are hard to identify in most cases.

Such properties are asymptotic and, if in the limit the design procedure yielding a

decentralized or a hierarchic control is simplified, this will not be the case in

general. One must therefore find a general design method that can generate

simplified control structures in a systematic way. Optimality based methods

and, especially, Linear Quadratic (LQ) methodologies, have been very successful

at generating complex multiloop controllers in an integrated fashion. The

computation of the controller is automated and the mathematical details of the

procedure are hidden from the designer. The design is therefore performed at the

system level and deals with control issues only.

1.1.3 On Linear Quadratic Control Design Methodologies

Optimal LQ control for linear systems was not originally stated as a feedback

control problem. The LQ control problem consists of driving the states of a

system from an arbitrary initial condition X0 back to zero in a prescribed amount

of time tf, while minimizing the integral over time of a quadratic cost functional

involving the states of the system and the inputs required for control. Such a

cost index is an energy measure for the closed loop system and is therefore an H2

norm. The resolution of the finite time problem is a differential two point

boundary value problem that can be solved even if the system is linear, but time

varying. The control law is an open loop scheme since the solution to the

problem is the time history of the control to be applied. As tf goes to infinity,

and if the system is time invariant, the solution becomes, however, a static

feedback law and is known as the Linear Quadratic Regulator (LQR), [Kwa72b]

The feedback solution has many desirable properties: the first one is that the

closed loop system is guaranteed to be stable under stabilizability and

detectability assumptions [Kwa72b]. The control yields a guaranteed phase

margin of 60 degrees and has a gain margin extending from one half to infinity

The properties of the LQR in terms of classical feedback theory are therefore
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excellent, even though the method was not derived for such a purpose. The

calculation of the gains requires solving a matrix Riccati equation for which very

accurate and reliable software has been developed. Hence, the computation of

the solution is generally not an issue.

The LQR. solution is rather impractical since it requires the knowledge of

all the states of the system. Extending the Kalman-Bucy filter ideas to control.

the LQG methodology generalizes the LQR to the case where only a limited

number of measurements are available. The problem is set in a stochastic

framework. White noise enters the plant and corrupts the measurement. The

cost to be minimized is quadratic, even though it has to be averaged to comply

with the probabilistic approach. The m.ain property of the problem is that it

separates into an LQR. problem and an optimal filtering problem: this is known

as the separation principle [Kwa72b]. The filter and the control problem can be

solved independently without influencing one another. The closed loop system is,

again, guaranteed to be stable under detectability and stabilizability

assumptions. The optimal control and filter gains are found by solving two

independent Riccati equations. The procedure is, therefore, still very easy from a

numerical viewpoint. The compensator has become an LTI dynamic compensator

of finite order. It_ dynamics require as many poles as the plant. The LQG

methodology produces truly multiloop dynamic output feedback compensators

and constitute a very interesting design procedure. The price pa/d by

implementing a filter is that there is no more guarantee of gain and phase

margins [Doy79].

The LQG solution possesses many asymptotic properties which can be

used to obtain feedback performance stated in terms of classical control theory

criteria. The LQG/LTR (Loop Transfer Recovery) methodology is based on

these asymptotic properties lAth86]. The design goals are stated in terms of

sensitivity, disturbance rejection, command following and crossover frequency

The LQG is only a tool and has lost its optimality significance. The cost and the

perturbations have become generic parameters that are used to obtain frequency

domain properties. Classical control design techniques, such as the use ,_f

integrators to fight steady state disturbance and obtain zero tracking error, can

be incorporated. Frequency shaping of the noise and the cost allows one ":.

design, for example, notch filters, and to tailor the sensitivity properties it.

chosen frequency ranges [GupS0].
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In summary, LQ methodologiesprovide a very flexible design tool that

produces multiloop designs as easily as single loop designs in an integrated

fashion. They guarantee closed loop stability, and frequency domain properties

can be obtained by a proper selection of the quadratic cost and of the disturbance

characteristics. Very fast and very reliable software has been developed to solve

the problem numerically. The design can be easily iterated by changing the

parameter of the optimization problem. Even though the optimization procedure

looks at enhancing the nominal performance of the plant, a compensator with

satisfactory robustness characteristics can be found in most cases. The current

LQ designs may not, however, be apphcable to the control of large scale systems

since their use would produce centralized compensators of very large order.

1.1.4 Defining General Architecture Constraints

A generic way for constraining the control architecture must be defined in order

to modify the LQ optimization problem. Locally decentralized control schemes

for weakly coupled systems as well as multilevel schemes for weakly connected

systems should obey these general architecture constraints. The choice made in

this present work is to allow for a decentralized processing structure. The

following will define in more details what a decentralized processing structure is,

and we will try to motivate such a choice.

The decentralized processing structure consists of dividing and

distributing the processing of the data and the control law to several smaller

processors, or subcontrollers. The different processors are not allowed to

communicate. Their control authority and the information they receive may also

be limited. Each subcontroller may be connected to a smaller number of selected

sensors and, similarly, it may be connected to a smaller number of selected

actuators. The complexity of each subcontroller can be reduced and the order of

the transfer function realized by a given processor may be fixed by the designer

Many control architectures follow these general constraints. In particular, the

full order centralized compensator consists only of one full order subcontroUer:

the reduced order centralized compensator consists of one subcontroller with a

number of poles; locally decentralized compensators defined in Section 1.1.2 are

made of many subcontrollers which use local sensors and local actuators.
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Decentralized processing does not mean, however, that all the fixed

architecture compensators in that class will have the characteristics of being

locally decentralized. Compensators with hierarchic characters can be generated

as well. Consider, for example, a flexible beam with many sensors and many

actuators. Assume tha_t some subcontrollers are required to use the signals

coming from closely located sensors and are connected to actuators located in the

same region. These local subcontrollers will have high control authority on the

local dynamics, but poor control authority on the global dynamics of the beam

since they require the beam to propagate information to and from remotely

located points of the structure. On the other hand, aggregate information can be

obtained by merging local sensor information at different location on the beam

and sending it to one subcontroller. This subcontroller can also have high control

authority on the global modes of the structure if it has access to actuators spread

throughout the entire beam. Again, local actuators can be aggregated so that the

subcontroUer can only have a limited control resolution at the local level. Such a

control structure can result in the "local" subcontrollers having a higher

bandwidth than the "global" subcontroller. The actual implementation of such a

scheme may have a multilevel aspect: local computers will have a direct

authority on the local sensors and the local actuators. They gather and merge

the information to send to the global controller and, in return, obtain the

aggregate inputs that can be added to the local control inputs.

The decentralized processing structure appears, therefore, to be a very

general structure that can generate many different control architectures that will

be simpler, and yet have high performances. The H2, fixed architecture control

problem consists of defining an LQ problem and looking for the optimal solution

that belongs to the set of compensators having a required control structure. The

centralized full order compensator as well as the centralized reduced order

compensator can be viewed as special cases of decentralized processing. Hence.

the constrained architecture that is chosen generalizes the compensator structures

that has been already used. The H2 fixed architecture control design prob2em Ls

therefore a generalization of existing LQ design methodologies. This method

should produce controllers of adequate complexity while retaining some of the

properties of the more classic LQ designs,
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1.2 RESEARCH OBJECTIVES AND CONTRIBUTION

As it has already been stated, the purpose of this work is to generalize the LQ

design methodology in order to produce H_ optimal fixed architecture

compensators which will satisfy the implementability requirements for large scale

systems. Constrained techniques have already appeared in the development of

the LQ methodologies [LevT0, Joh70]. They have been principally focused on

reducing the order of the compensator. Reduced order, frequency domain

oriented, designs have been recently considered [Ca189]. More general

architectures have been considered as well [Wen80, Ber87b]. Most of the work

done on constrained LQ techniques has consisted of deriving the optimality

conditions and using some general purpose algorithm to solve the problem. Very

few general properties of the method have been found until [Hy184] which

uncovered some of the structure of the reduced order problem. Simultaneously,

homotopy, or continuation, algorithms have been proposed to solve the reduced

order problem [Ric87, Ric89]. The claim is that such procedures are very good at

solving complex, coupled matrix equations. Convergence appears to be better

than existing procedures, but little has been proved theoretically.

The contribution of this work is to extend the understanding of the

reduced order problem to the fixed architecture case. A structured set of

optimality conditions is derived. It clearly shows the effect of the order and

architecture constraints on the solution: the separation principle does not hold

anymore; the control and filter Riccati equations that appear in the

unconstrained LQG problem are modified and become coupled; some of the

coupling comes from the reduction of the order, as shown in [Hy184]. This work

also shows that the multiple subcontrollers need to be coordinated since the

overall control system must optimize a global cost index.-One must, therefore.

solve simultaneously the filter and control problem, find the optimal couplin_

and the optimal coordination between subcontrollers.

The second contribution of this work is to develop a homotopy algorithm

for solving the fixed architecture problem, to investigate its convergence

properties,and to refinethe procedure to make it more reliableand deal wi'.Y.

singularities.A general understanding of the nature and the number of soluticr,_

to constrained LQG problems is gained in the process, and it is shown, in

22



particular, that the homotopy algorithms do not have global convergence

properties and must therefore allow for noncontinuous behavior of the solution at

some critical points. The study shows that the optimality conditions have many

solutions, some being stabilizing, some being nonstabilizing, and some being local

maxima, minima or saddle points. The number of minima, saddle points and

stabilizing solutions is problem dependent and is not constant when the problem

parameters are changed. The problem loses the central property of having a

unique stabilizing solution as soon as constraints are introduced.

Finally, a third contribution is the derivation of some realistic design

examples. The examples help test the numerical procedure. They also uncover

some of the properties of the _constrained designs and relate them to the

properties of corresponding unconstrained designs. Finally, the examples provide

a partial understanding on how to select the control architecture.

1.3 THESIS OUTLINE

This document is organized in seven chapters, including the present introduction.

Chapter 2 is devoted to reviewing different approaches that have been proposed

for controlling large scale systems. Niany approaches try to utilize the special

properties of the system they try to control and result in simplified design

procedures. Other approaches try to simplify complex controllers obtained

through unconstrained optimization. A constrained optimization procedure will

be more complicated, but it will produce better designs. The review helps put

the present work into perspective.

The optimality conditions for the H= fixed architecture control problem

are derived in Chapter 3. The analytic form of the Hessian is also derived. The

Hessian is the matrix of second derivatives, and it plays a centrM role in the

derivation of a continuous homotopy algorithm. It also allows the determination

of the type of solutions that are obtained, minimum, maximum or saddle point.

and it characterizes critical points whose role is preeminent in homotopy based

techniques.
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Chapter 4 is devoted to the study of the properties of the optimality

conditions. Structured conditions are developed to show how the LQG problem

is modified when order and architecture constraints are introduced. The chapter

also shows that the problem is under-determined: the optimal solution defines

the compensator transfer function and the cost functional is invariant when the

state space realization of the controller is changed. Minimal and reduced sets of

parameters and equations are studied in the chapter.

A continuous homotopy algorithm is developed in Chapter 5 and its

convergence properties studied. The numerical problems that follow from the

under-determination of the state space realization of the controller are resolved.

The number and the nature of the solutions to the fixed architecture control

problem are investigated, and the reliability of the algorithm is improved by

allowing jumps in the solutions when critical points are encountered.

Chapter 6 contains a variety of design examples aimed at testing the

numerical procedure and understanding some of the properties of the constrained

compensators. Two large flexible structures are more particularly investigated.

Chapter 7 ends this document with some conclusions and

recommendations for future work. Five appendices can be found at the end of

the document. They contain technical proofs that have been omitted in the'text

and details of the numerical problems that are treated in the various chapters, as

well as details of the solutions obtained numerically.
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OVERVIEW OF DESIGN APPROACHES

TO THE CONTROL OF LARGE SCALE SYSTEMS

2.1 OVERVIEW

The field of large scale systems has generated many different control approaches

[San78]. The complexity of large scale systems requires that simplifications be

made in many cases. These simplifications concern either the modeling of the

system, the structure and complexity of the controller, or the design procedure

itself. Different methods try to use different properties of the systems to generate

simpler control laws. The simplifications they perform have adverse effects on

the performance of the control system.

Model simplification and design simplification procedures are shown to

work well when the system has specific properties, such as being weakly coupled

or weakly connected [Kok81, Chw82]. These properties ensure that the simplified

designs produced by these methods are near optimal solutions.

When no such asymptotic properties exist, one must use direct

constrained optimization techniques. The constraints that are applied to the

problem ensure that the controller that is generated meets some implementability

requirements. The multiplication of the architecture constraints make the

problem harder to solve, but it yields controllers which perform better.

Higher control layers have been considered to recover some of the

performance lost with simpler design techniques. Multilevel, or hierarchic

control methods separate the control int many levels. Higher levels try _

coordinate the local controllers to increase the global performance of the syste,-._

The structure of the controller gains in complexity, but the overall desi_._
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procedure is simpler. Again, asymptotic properties are required. The following

sections discuss in detail these various control design approaches found in the

literature.

2.2 SIMPLIFICATION METHODS

2.2.1 Aggregation Method

Model simphfication methods were first to appear and were aimed at making the

study of large systems possible. Aggregation techniques, [Aok68, Chi71, Sir?9],

appeared in the field of economy. Economic systems consist of a large number of

agents which act independently and have essentially similar dynamics. Those

agents can be individuals in the economy and the dynamics describe the way they

spend, invest, or save their income. As long as the dynamics are similar and

there is no interaction between the agents, only one average individual is

necessary to describe the behavior of the whole, and the different agents can be

aggregated into one single state, thus reducing tremendously the analysis of

economic equilibria. Some theoretical justifications have been brought to the

original idea. The principle of aggregation has been shown to be a particular

form of contraction [Ike80b]. Its goal is, in fact, to find a reduced order dynamic

system which matches at all time, and for any initial conditions, the projection of

the overall state vector. That is, the trajectory of the aggregate system, for

initial conditions being the projection of the entire initial state vector, will be the

projection of the trajectory of the complete system, when both are driven by the

same inputs. The choice of the projection is the objective of the aggregation

procedure. In the case of redundant states and redundant equations, as it :s the

case when independent agents are acting in a similar fashion, the averaging over

the agents is the same as starting with the initial average and propagating i:

using the common dynamics of the different agents. It was shown in [Sir79] tha_

in order to have an exact match between the projected trajectory and that of th÷

simplified model, one has to select modes of the original system and project their

eigenstructure onto the reduced subspace. The choice of a good aggregate model
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consists, therefore, of selecting the predominant modes of the original system.

The choice in [Sir79] is based on the size of the modal residuals of the plant

transfer function.

Control strategies have been tried using aggregated models for general

linear time invariant systems [Sir79]. Considering the Linear Quadratic

Regulator (LQR) for control purposes, suboptimal control laws can be derived

using the simplified model. The idea is to solve the LQB. problem for the reduced

order system using an aggregated cost functional which is as close as possible to

the cost functional chosen for the complete system. The implementation of the

reduced order control law to the complete system will yield a stable system

whose poles are the modes not retained in the aggregation and the closed loop

poles of the reduced order system. The modes not retained in the aggregate

model do not change since the corresponding states are not contained in the

aggregate state vector which is fed back. A lower bound for the optimal cost that

one would obtain by designing the optimal regulator problem for the overall

system can be evaluated, yielding a measure of suboptimality [Sin78, Ike84 I

LQR is a full state feedback scheme which is very unrealistic for large systems.

Direct output feedback, and modified Linear Quadratic Gaussian (LQG)

techniques using a simplified observer are also investigated in [Sir79]. Spillover

results from feeding back the states which are not modeled but which are present

in the measurement and corrupt the filter. Stability cannot always be

guaranteed and the near optimality of the design cannot be estimated in that

case. Global stability of the complete system can be guaranteed sometimes. The

coupling via the measurements and the feedback law between the modes retained

in the simplified model, and those which were not, must remain in that case

within some bounds which depend on the closed loop dynamics of the aggregate

system.
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2.2.2 Other Forms of Model Reduction

[Hy185] contains a thorough review and an enlightening discussion on order

reduction techniques. The paper recognizes two kinds of approaches, some which

are optimality based approaches and others which rely on system theoretic

arguments. Optimality based methods involve the minimization of the norm in

operator space of the difference between the complete and the approximate

model. The norm considered in [WilT0] is the weighted covariance of the steady

state output error between the outputs of the original and the reduced order

system, with both systems being driven by the same white noise. The norm is

therefore an H2 norm. Necessary conditions for optimality can be obtained and

solved as a parameter optimization problem. The contribution of [Hy185], which

looks at the same problem, is to uncover the structure of the solution. It shows

that one must find two positive semidefinite matrices, called pseudogrammians,

that satisfy modified versions of the Lyapunov equations that yield the

controllabilityand the observability grammian for the original system [Hy185!.

The pseudogrammians are tank deficient,reflectingthe fact that the order of the

approximate model issmaller than that of the originalsystem. The nullspaces of

the pseudogrammians are governed by a projection operator which has to obey

optimality conditions as well. The projection selectsthe part of the state space

that isretained in the reduced order model. It takes into account simultaneously

the three geometries of the problem, the eigenstructure of the system, the

geometry induced by the control matrix and the geometry induced by the

measurement matrix. Such an approach isvery differentfrom selectingmodes.

Other norms have been used in order to evaluate the performance of the

simplified model. [Gio84] uses the Hankel norm [Fra87] of the error between the

outputs of the complete system and of those of the reduced order model, as both

systems are subjected to the same inputs. The choice of the Hankel norm makes

the model reduction problem tractable and solvable, and it also minimizes an

upper bound on the infinitynorm of the error between the impulse responses c,f

the two models. The direct minimization of the infinitynorm of the difference

between the impulse responses makes the solution of the problem much more

difficult to find since it is a constrained model matching problem for which v,....

simple resolution method exists as yet. The optima] reduced order model i._

shown in [Glo84] to match the highest Hankel singular values of the original
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system. The infinity norm of the difference between the frequency responses is

bounded from above by the sum of the smallest Hankel of the system which have

not been matched.

The method of Skelton [Ske80] is guided by optimality consideration as.

well. The method does not however solve any optimization problem, but it

selects states based on their contribution to a quadratic cost. This method

sacrifices optimality for simplicity in the solution procedure. Nevertheless, the

idea of cost component ranking remains very important and has some interesting

applications. Cost component ranking is indeed used in [Hy185] in order to sort

the various solutions to the optimal problem. When incorporated to the

numerical software, it helps the solution converge toward the global minimum

[Hy185].

A second type of approach is based on system theoretic arguments

[MorS1]. The goal of the method is to eliminate subsystems which contribute

little to the impulse response of the system. The method considers the difference

between the weighted impulse response of the complete and the approximate

systems. The error is therefore totally similar to that of the quadratic based

optimality method of [WilT0]. Instead of performing the optimization, however.

the method of [Mor81] considers a state space representation of the original

system such that the controllability grammian is equal to the observability

grammian and both are in diagonal form. Such a state space realization is called

a balanced realization. The representation gives symmetric roles to the control

matrix and to the output matrix of the system. The states that correspond to

the largest eigenvalues of the balanced grammians are then selected to form the

reduced order system. When the original system is composed of weakly coupled

systems, the method produces a near extremal solution for the quadratic cost.

There is no guarantee however that this near extremal point is the global

minimum, or even just a local one. The method can indeed be compared to the

cost component ranking approach since it tends to break up the cost into the sum

of many contributions. The choice of the states in the balancing techniques does

not take into account however the value of the contribution to the cost but a

quantity which is similarity invariant and which, therefore, ignores scaling which

is a central part of any cost functional.

Model reduction techniques work well when the system can be represented

as two weakly coupled subsystems, like weakly connected systems, and when its
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dynamics separate into one slow and one fast part which remain hghtly coupled.

Any type of control design can be attempted on the reduced order model. One

must, of course, keep in mind the existence of the extra dynamics and the

problem of spiUover that might drive the unmodeled part of the system unstable.

Techniques similar to that of [Sir79] can be used in order to guarantee some level

of stability. The model reduction techniques that try to minimize the coupling

yield potentially larger mar&ins of stability, allowing for better control

performance. The performance of designs obtained with a simplified system

remains, however, intrinsically limited since there is no mechanism to reduce the

potentially negative effects of the part of the dynamics that have been ignored in

the design. The procedure will be successful only if the ignored dynamics have an

asymptotically small effect on the dynamics of the system in the control

bandwidth or, conversely, if the control bandwidth is kept low. Model reduction

may therefore be considered for analyzing, the systems but may be a poor

approach to designing simplified controllers.

2.3 PERTURBATION TECHNIQUES

2.3.1 Forewords

Perturbation techniques are based upon asymptotic properties of the systems to

which they apply [San78]. A distinction is made between singular and

nonsingular perturbations, for both types lead to very different developments.

Nonsingular perturbation theory applies to composite systems constituted of

weakly coupled subsystems. As the coupling vanishes, the system becomes a set

of independent subsystems. As long as it remains within certain bounds, the

coupling can be ignored and the control can be designed for each individual parts

Singular perturbation theory applies to systems with slow and fast timescales.

As the fast dynamics become infinitely fast, the corresponding fast states can be

condensed out and the resulting system is made of a slow global dynamics. If the

slow time scale is infinitely slow, the fast modes can be controlled about the

quasi-steady state set by the slow dynamics. Such an approach leads naturally to
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hierarchic control structures.

2.3.2 Nonsingular Perturbations

The nonsingular perturbations occur in the case of weak coupling [San78, KokSl,

Chw82]. The overall system is composed of interconnected dynamic subsystems.

Each subsystem has a proper set of sensors and actuators and a proper dynamics.

The coupling is such that the dynamics of each individual subsystem is only

slightly perturbed when the other systems are connected. In that case, one

intuitive approach is to neglect the interaction and consider each subsystem as

isolated. Local controllers can then be designed and the closed loop

characteristicsof each subsystem should be only slightlychanged when the other

subsystems are connected as long as the coupling remains asymptotically small.

The determination of the magnitude of the couphng is, of course, a

difficulttask, and one main area of research has been to determine bounds below

which the composite system isguaranteed to be stable. A set of interconnected

systems that remains stable as a whole for any value of the coupling, as long as

the coupling stays within a predetermined class,is called connectively stable

[Si173,Si176, Si178, Sin78]. The property is intimately tied to the choice of

coupling that is allowed. One would liketo find control systems that maximize

the class of coupling for which the system remains stable in order to give the

system more robustness. To that effect,[Si173]proposes the following design

procedure: first,solve for each isolated subsystem the LQR problem wi:h

guaranteed degree of stability.The quadratic cost functionalis the integral over

time of the quantity e2at(xTQx + uTRu), where X is the state vector, U the

input vector, Q and R are weighting matrices. This guarantees the closed loop

poles of the isolatedsubsystems to have a realpart below --_. Second, adjust the

parameter a so that the system is connectively stable. The property translatei

into an algebraic criterioninvolving the internaldynamics of the subsystems and

the coupling [Sin78]. Roughly speaking, the system willbe connectively stable !f

the local dynamics is much faster than those of the outer loops, whc.__e

bandwidths are tied to the strength of the connections. The increase in a rnake_

the local dynamics fasterand allows for larger stabilitymargins. Such margin_

are computed in [Si173,Si176,Si178].The computation of the bound as well as _._,_,
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derivation of the connective stability criterion in [Sin78] involve the use of vector

Lyapunov techniques, [Sil?8]. Such techniques consist of building suitable

Lyapunov functions for each independent subsystem. The resulting global

Lyapunov function is th.e sum of the local Lyapunov functions and, whereas it is

difficult to prove that the time derivative of the overall function is negative when

the size of the coupling is not exactly known, an upper bound for that derivative

can be found using the local functions. This bound will be guaranteed to be

negative as long as some simpler inequality conditions are met by the local

Lyapunov functions and which involve the local dynamics as well as some simple

upper bound on the coupling. Vector Lyapunov methods provide, therefore, a

simpler sufficiency test for connective stability. [Ike80a] generalizes the study of

connective stability to time varying systems.

The design obtained by ignoring the coupling results in a decentralized

control scheme where each subsystem is controlled by its local actuators using

local state variables. It yields very good robustness characteristics, since the

system remains stable for a large class of structural changes. This approach can

be qualified as noncooperative since the system is broken down into subsystems

which are made as independent as possible. Hence, the dynamics of the system,

and especially the coupling existing between the subsystems, is not fully used by

the local controllers which only have a limited knowledge of the overall structure.

The subsystems do not cooperate and neither do the controllers. This implies

relying on higher control gains, and it does not consider the fact that the coupling

may actually be beneficial. The two beam example of [BerS?b] shown in Chapter

5 illustrates this phenomenon: the coupling is introduced between two beams via

a increasingly stiffer spring. Each beam has its own controller, and the feedback

implemented is the optimal decentralized controller. As the spring stiffness is

increased, but remains small, the optimal cost decreases. The coupling can.

therefore, have a beneficial effect (Chapter 5, Table 5.5).

A hierarchic control scheme can also be derived using the connective

stability philosophy [Sin?8, Sin80]. Indeed, one can try to actively reduce the

size of the coupling between subsystems. Such a task must be performed at an

upper level since the interaction results in a global effect. The approach _.f

[Sin?8, SinS0] is to design local LQ regulator loops for each isolated subsystem

The perturbation entering each subsystem in the form of coupling is reduced by a

global controller which tries to reduce the interaction as much as possible. In the
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best case, the design decouples the subsystems via the global controller, and then

implements local optimal regulators for each subsystem. Such a controller is of

course suboptimal. Bounds on suboptimality are computed in [Sin78]. The

optimal performance being considered there is however the one obtained with

zero coupling. The approach presents some advantages in the simplicity of the

design: finding the gains that decouple the subsystems is nothing more than an

algebraic manipulation; the remaining task is to solve a number of reduced order

Riccati equations for the subsystems considered as isolated, with order much

smaller than that of the complete system. The robustness is improved and one

does not even require the connection to be linear to ensure the connective

stability. Its drawbacks are the same as with the decentralized structure. The

noncooperation goes even further since some control effort is spent to fight the

coupling.

The cooperation between local controllers can be improved by including

some part of the coupling in the design, [Si179, Hod86]. The idea is to make the

subsystems overlap: the system state variables are partitioned into subsets which

define the state vectors for the subsystems; an overlapping partition will allow for

one state variable to be shared by the state vectors of two or more subsystems

The dynamics of such a variable will therefore be taken into account by many

different local controllers. Based on the results of [Ike84] on system expansion

and system contraction, it is sh._-.vn in [Hod86] that the problem considered is

similar to that of [Si173] and the design procedure is in fact the same: for each

isolated subsystem, the LQI:t problem with guaranteed degree of stability is

solved. The bound for _ is less conservative when an overlapping decomposition

is used [Oth86]. [Ike80b] shows that more freedom exists to build vector

Lyapunov functions with an overlapping decomposition, thus succeeding in

proving stability more often than when the vector Lyapunov functions are based

on a disjoint decomposition of the system.
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2.3.3 Nyquist Array Method _nd Diagonal Dominance

The Nyquist Array Method is a frequency domain method that can be included

in the category of nonsingular perturbation techniques. It can be regarded as an

attempt to generalize to Multi-Input Multi-Output (MIMO) systems design

techniques developed for Single-Input Single-Output (SISO) systems, and which

are based on the Nyquist or the inverse Nyquist diagram [Ros74]. The Nyquist

stability criterion [DazS1] for SISO system is primarily an analysis tool: given a

system, the Nyquist contour will tell whether or not the closed loop system is

stable. The Nyquist contour contains, however, much more information, and it

allows one to understand in more details how stability can be achieved. Bode

design techniques have been derived to that effect and the Nyquist contour has

led to the development of synthesis tools. For a MIMO system, the Nyqu.ist

contour plots the determinant Of the return difference matrix [Mac89]. The

return difference matrix is the loop transfer function ( plant and compensator in

series) plus the identity matrix. The determinant is a complicated function that

makes it impossible, in general, to understand how loops interact and influence

stability. By diagonalizing the matrix at every frequency, one obtains I

eigenvalues, functions of frequency, where I is either the number of inputs or

outputs, depending on where the loop is broken. Each eigenvalue can be plotted

in the Nyquist plane, and it is shown in [Ros74] that the number of encirclements

of the critical point by the product of the eigenvalues is equal to the sum of the

encirclements of that point by each of the eigenvalues. Hence, upon

diagonalization, the stability conditions can be checked by studying the phase

and gain properties of each eigenvalue taken as a SISO system. The Nyquist

Array Method refers to the splitting of the MIMO Nyquist test into a set of

simpler SISO Nyquist tests that can be obtained, for example, by diagonalization

of the return difference matrix. Simpler procedure can, however be found.

Diagonalizing the matrix transfer function at every frequency is

impractical and the Nyquist Array, or an approximation of it, cannot be obta/ned

without some simplifying assumptions. The notion of diagonal dominance

provides a simple measure of how close a matrix is to a diagonal operator. A

matrix is row (column) diagonally dominant if the norm of each diagonal

element is greater than the sum of the norms of the off-diagonal elements located

on the corresponding row (column). The eigenva.lues of a matrix are contained in

34



the Gershgorincircles, [Ros74,Mac89], which arecircles centeredon the diagonal
elements of the matrix and whose radii are the sum of the norms of the off-

diagonal elements. Considering the return difference matrix, and varying the

frequency, the corresponding Gershgorin circles will describebands, and each
Gershgorin band will contain the Nyquist contour of an eigenvalueof the return

differencematrix. The diagonal dominanceproperty ensuresthat the bands will

not contain the origin. Consequently,the number of encirclementsof the origin

by the eigenvaluesof the return difference matrix is equal to the number of

encirclements of the origin by the centers of the circles, which are also the

diagonalentries of the return differencematrix. A simple sufficient condition for

stability can be therefore derived, which does not involve the eigenvalue
decomposition,or the inversion, of the return differencematrix. The first part of

the computation consists of checking for diagonal dominance of the return

differencematrix. This is equivalent to checking the diagonaldominance of the

loop transfer matrix, since the difference between the two matrices is the

identity. The next step consistsof applying the SISO stability criterion to the

diagonal entries of the return difference matrix using the origin as the critical
point. This is also equivalent to applying the criterion to the diagonalentries of

the loop transfer matrix using -1 as the critical point. The inverse Nyquist

Array criterion consists of plotting the inverse of the diagonal entries. This

sometimes results in better graphical appearancesfor the contours, but it is

exactly similar in terms of interpreting the plot [Mac89].

The first step of the designprocedurepresentedin [Ros74]is to tailor the
matrix transfer function. Starting from a physical input output matrix transfer

function, one uses pre and postcompensationas well as recombination of the

physical inputs and outputs to obtain somematrix transfer function asdiagonally

dominant as possible. The inputs to the new system are thus the inputs to the
precompensatorand the outputs are thoseof the postcompensator. Inner loops

can be closedto modify the input output characteristicsof the plant. The who]e

purpose of these operations is to minimize the sum of the norms of the off-

diagonal elementsof the rows (or the columns) of the matrix transfer func_i¢:u

defined between the new inputs and the new outputs to enforce diagonal

dominance. A set of feedbackgains is then chosenso that the Nyquist stabili_,.

criteria are satisfied. The method can handle nonlinearity sincethe Popov circ!c.
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criterion can beextended to the MIMO case the same way the Nyquist criterion

was. The control law is connectively stable, meaning that the actual values of

the off-diagonal elements of the closed loop matrix transfer function are not

important as long as the matrix satisfies the diagonal dominance property. The

main drawback of the method is that there is no really straightforward way to

achieve diagonal dominance. Computer aided tools have been developed to help

obtain diagonal dominance [Mac89]. Pseudo-diagonalization, [Ros74, Mac89],

consists of trying to make the plant transfer function diagonal using

compensation, and it is very similar in essence to the idea of [Sin78] to use a

global controller to decouple the subsystems constituting the overall system, and

the same restrictions apply. Performance, disturbance rejection, control effort

and compensator bandwidth are also difficult to understand, especially if a lot of

pro and postfiltering has been used. The procedure generates potentially

conservative design since it is based on a sufficiency test.

The procedure of [Oth86] is similar to that of [Ros74] but has relaxed

dominance conditions. The property is called quasi-block diagonal dominance. A

diagonally dominant matrix always satisfies the quasi-block diagonal dominance

criterion but the reverse is not true. The methodology presented in [Oht86]

includes the possibihty to decompose the matrix transfer function into

overlapping blocks. The restrictions about the noncooperation of the

conn__fively stable decentralized control applied for the methodology of [Si173].

But, again, benefits are to be expected by making an overlapping decomposition

of the system [Si179]. In that case, the system input vector as well as the output

vector are partitioned into subsets of inputs and subsets of outputs. The reason

for expecting better performance with an overlapping decomposition is similar

whether the approach a frequency domain or a time domain approach: local

controllers are built using more structural information.

The local LQG/LTR design methodology presented in lift87] uses block

diagonal dominance properties even though the problem is presented in a

stability robustness setting. The overall state vector is partitioned into possibly

overlapping subsets to define the subsystems. For every subsystem, the coupling

with the rest of the system is translated in terms of a multiplicative error which

is then bounded by some upper bound function of frequency, e(w). A standard

LQG/LTR procedure is then applied to each subsystem, where e(w) is used fcr

the stability robustness test [Ath86]. The procedure guarantees stability of the
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overall system since the gains have been chosen in such a way that the outer

loops cannot destabilize the local subsystems.

2.3.4 Singular Perturbation Methods: the Multi-Timescale Approach

Singular perturbation theory applies to systems which have well separated

spectra [Sak84]. In that case,systems separate into a distinctslow and fastpart.

When the time constants of the slow and the fast system are well separated,

simplificationsoccur. A global slow system can be built by assuming the fast

dynamics to be infinitelyfast and considering the corresponding dynamic

equations to be algebraic relations between state variables. This produces a

reduced order aggregate model that describesthe slow behavior of the system. A

control system can be derived based on the reduced order model. The resulting

control will have a low bandwidth. Considering the fast dynamics again, a fast

behavior willbe observed on top of the slow dynamics. A fastpart can be added

to the control in order to cancel the fast dynamic effectsrelative to the slow

behavior. [Chw76] applies the singular perturbation techniques to derive a near

optimal two timescale LQR solution in the deterministic case while [Ten7;'!

treatsthe same problem in the stochasticcase. Such composite controllersare,of

course, suboptimal. The degree of suboptimality is estimated in the

deterministic c_.sein [Chw76]. In [Ten77], it is shown that, as the perturbation

tends toward zero, the suboptimal closed loop system tends asymptotically

toward the optimum. The advantage of the muiti-timescale techniques is that

they simplify the design procedure by breaking itinto two simpler steps,one for

the slow part of the control,one for the fast part, and only reduced.order models

need to be considered in each case. The control that resultsfrom this procedure

is naturally hierarchic: The slow modes are controlled with a reduced order

controllerand with a relativelysmall bandwidth. The state of the overall system

is extrapolated from the reduced order model and the lower controller triest,_

reduce the fast errors between the desired trajectory which is the resultof the

extrapolation and the actual trajectory. The two timescale case can be extended

to a multi-timescale case (with more than two timescales)to get more resolution.

as shown in [Ozg79]. The design method can be used iterativelyto design

controllersoperating with differentbandwidths. This should improve the degree
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of suboptimality, as more structural information is used to derive the control

system. More recent developments have considered multi-timescale LQG

controllers (based on multi-timescale state estimators) and multi-timescale filters

[Kha84, Kha87]. Decentralized multi-timescale compensators have also been

investigated [Kha80]. The approach has also received a frequency domain

treatment in [Lus85], leading to a multi-bandwidth design procedure.

Restrictions apply to the use of multi-timescale design techniques. The

closed loop system must be multi-timescale with bandwidths similar to those of

the open loop system. This is not, however, a very limiting restriction in the case

of a large flexible structure since the amount of control one can get from the

actuators is usually limited, and very high gains are not conceivable. The second

problem is to evaluate how suboptimal the design is. This is highly dependent on

the choice of the fast and the slow system and on the bandwidth separation. The

intermediate dynamics can potentially be driven unstable and will generally

result in poor overall performances. One really needs asymptotic separation of

the bandwidths to implement the method successfully.

2.4 SIMPLIFIED COMPENSATOR DESIGN

2.4.1 General

The complexity and size of the problem may dictate the use of simplified

compensator structures, even though the plant does not have any properties

leading naturally to a simpler design. This is the case when the coupling between

subsystems is not weak enough, or when the system does not have two clearly

separated time scales. Nonclassical information pattern in the feedback loop is a

common way of simplifying the controller structure [Chg71 ]. The information

pattern is called nonclassical when the control law that drives a given actuator is

based on a limited knowledge of the outputs of the system and a limited

knowledge of the actions of the remaining actuators. In the decentralized contrc.I

case, the control inputs driving a given subsystem are functions of the outputs ,:f

that subsystem only. The simplification of the controller structure results in a
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tremendouscomplication of the control design procedure. As reported in [San78,

Sin78, SinS0], the optimal LQR. compensator with nonclassical information

pattern is nonlinear. Nonlinear feedback is not a practical solution, and a more

common approach is to consider linear feedback laws with constrained

information structures. Assuming the feedback to be linear does not, however,

solve all the problems since the separation principle does not hold anymore when

the information structure is constrained [ChgT1, Hy184]. The optimization

process is therefore intrinsically more difficult.

2.4.2 Stabilization and Pole Placement

The existence of a centralized stabilizing compensator is guaranteed if the system

under consideration is both detectable and stabilizable. The order of such a

compensator has a lower bound as shown in [BraT0]. The compensator is,

however, centralized: the information coming from all the sensors is

simultaneously processed to generate the input commands for all the actuators.

Stabilizability and detectability do not guarantee that there exists a compensator

with the given constrained architecture that will stabilize the plant. The notion

of fixed poles generalizes the notion of observability and controllability for LTI

systems with fixed architecture controllers [Wan73]. For a given feedback

architecture, the fixed poles are the poles that do not move when.the control loop

is closed. When the feedback is centralized, the fixed poles are just the

uncontrollable and the unobservable poles. One method to determine the fixed

poles is to close the control loops with the required architecture using direct

output feedback with randomly selected gains. The fixed poles will always be left

unchanged. Hence, they have probability one to be detected with such a

procedure [Wan73].

A system-with stable fixed poles can be stabilized by dynamic output

feedback with the chosen architecture. \Vhen the orders of the subcontrollers are

chosen appropriately, the poles of the closed loop system which are not open loop

fixed poles can be freely assigned [WanT3]. These results permit to extend the

robust servomechanism problem [Dav76a] to the robust decentralized

servomechanism problem [Dav76b]. The robustness is defined as the property for

the control system to remain asymptotically stable and regulate with zero steady
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state error in the presence of steady disturbances and steady structural error.

[Wes84] specializes the decentralized servomechanism problem to large

space structures. The results were derived assuming sets of dual sensors and

actuators. Under these conditions, it is shown that the decentralized robust

servomechanism has a solution if and only if the centralized robust

servomechanism has a solution, in other words, if and only if the rigid body

modes are controllable and observable. An other very interesting result is that it

is possible to design a decentralized controller for which the unmodeled higher

order modes will not be destabilized.

The study of [Cor76] gives another complete set of conditions for stability

and pole placement using decentralized control. The approach is to determine

conditions under which a system made of interconnected subsystems can be made

controllable and observable from the inputs and outputs of one particular

subsystem. Loops are closed around the other subsystems in order to modify the

coupling and make the entire system controllable and observable from the

actuators and sensors of the selected subsystem. Once the controllability and

observability conditions are met for the selected set of sensors and actuators,

dynamic compensation can be used to place the closed loop poles.

All the existence theorems proving that pole placement is possible under

certain conditions are very important from a theoretical point of view, but they

have very little applicability when design is concerned: the performance of the

closed loop system is indeed hard to translate in terms of eigenstructure

specifications. The order of the design may also be quite high. Performance

oriented, or optimality based techniques are better suited for design purposes.

2.4.3 Optimality Based Simplified Compensator Design Techniques

One common approach to designing compensators is to define the performance of

the system in terms of a cost index and try to find the compensator minim/zin_

that cost. Linear Quadratic techniques have yielded very powerful MIMO design

tools and the solution procedure has become very efficient. The control they

yield is centralized and the order of the compensator is equal to that of the plan_

and larger is frequency shaping of the cost is used [GupS0]. The resuhin_

controller may be too complex if the plant itself is very complex. The next
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sensible step is to find the best compensator that satisfies the implementation

requirements.

[ChgT1] considers the design of a near optimal decentralized LQG design

by replicating the centralized LQG solution: each compensator runs an unbiased

estimator of the plant state vector and the controls generated by one

subcontroUer are linear combinations of these state estimates. The determination

of the various gains involve solving coupled modified Riccati equations. The only

advantage obtained with the scheme of [Chg71] is that the information pattern is

somewhat simplified. The overall control must however maintain several full

state estimators and cannot be realistically implemented if the order of the plant

is large.

A more general approach consists of fixing the structure of the

compensator as well as its order such that it represents an acceptable level of

complexity, and solve the constrained LQR and LQG problems as a parameter

optimization problem. Reduced order optimal H_ compensators have appeared

early in the literature, [Lev70, Joh70], following the development of the un-

constrained quadratic methods. They have raised the interestof many [And71;

Bas75, Men75, Ly82, Kab83, Hy184, Ly85, Moe85, Kra88, Cal89]. Most of the

work has been centered on finding reduced order compensators. In [Wen80,

Ber87b], however, the information pattern is specified as well. [Wen80] contains

the most general control structure, whereas [Ber87] studies locally decentralized

controllers (no overlapping information allowed). First order necessary

conditions for optimality can be easily derived. Solving them is a very difficult

optimization problem. Few theoretical results have been found to explain the

nature of the solution and the properties of the controllers one can obtained

through these direct methods. Only with the more recent efforts of Hyland and

Bernstein has one tried to explain the structure of the problem and shown how it

is closely related to the full order LQG problem [Hy184]. When the compensator

is full order, the classical LQG problem reduces to solving two uncoupled R_cca'_i

equations of order equal to that of the plant. When the order of the compensator

is smaller than that of the plant, it is shown in [Hy184] that the solution to _he

optimal problem consists of solving two full order modified Riccati equatic, n__

coupled by two modified Lyapunov equations via a projection operator whose

rank is equal to the order of the compensator. The projection tries to determine
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the best subspace in the plant state space where control should be performed.

The determination of the projection is an integral part of the optimization

process [Hy184]. Attempts have been made to use the structure of the equations

and the projection in order to develop better algorithms for solving the

constrained LQG problem [Hy183, R.ic89]. These numerical techniques do not

generalized, however, to the decentralized control case. The results can also be

derived for discrete time systems [Ber86c, Ber86d]. The optimal fixed order

compensator problem can be stated for infinite dimensional plants as well

[Ber86a]. The optimality conditions can be transformed into two modified

R.iccati equations and two modified Lyapunov equations, all coupled through the

optimal projection. Instead of matrices, however, these equations involve infinite

dimensional linear operators. Due to the infinite dimension of the state space,

one needs to call upon properties of linear operators in Hilbert spaces. The proofs

are consequently more involved, and this result of theoretical importance has

little application since a numerical solution requires the discretization of the

problem. Nevertheless, it ensures that, by taking a large but finite dimensional

approximation of the plant, and by solving the optimal projection equations for

this model, one will find a compensator that tends asymptotically to the optimal

solution as the order of the model is increased. The projection method has also

been extended to the filtering problem [Ber85]. A more detailed review of the

direct quadratic optimization approaches will be made in the following chapters.

The numerical difficulties associated with the direct solution .of the

optimization problem have been a deterrence to many, and a simpler approach

has been sought through indirect design methods. A large order compensator is a

large scale system, and an approximate model can be derived for it using

techmques similar to those used for simplifying the plant. Like in the model

reduction case, many different approaches have been studied for reducing the

compensator [Enn84, Liu86, Opdg0]. The rationale behind designing a full order

compensator first, and reducing it next, is that the higher modes of the plant a:e

taken into account in the design process unlike in the case when the controller iz

based on a simplified model of the plant only. As the order of the compensator i_

increased, the optimal performance should be recovered and, by choosing a

reduced order approximation as close as possible to the complete controller, o_c

should limit the performance degradation to a minimum.

Indirect procedures are much easier to implement that the dire¢:
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ones,but they lead to nonstabihzing compensators in many cases and the closed

loop performance may often be unsatisfactory [Liu86]. As pointed out in [Ric87,

Hyl90], designs obtained through direct methods always yield better performance

and always stabilize the plant provided that there exists a stabilizing

compensator in the class of compensators having the required order. The indirect

methods cannot been generalized to the case of constrained information pattern.

2.5 MULTILEVEL TECHNIQUES

2.5.1 GenerM

The multilevel, or hierarchic, architecture appears as a natural way to control

complex systems made of a large number of coupled subsystems. Hierarchies

seem to be the preferred way of evolution for societies. Hierarchic organizations

maximize the welfare of the group by making its constituting elements cooperate.

Furthermore, the seemingly complex control structure breaks the processing

down in such a way that each decision maker (i.e. controller) needs not have a

complete understanding of the global system in all its details but only some

partial knowledge of it [Chg76]. At the subsystem level, local controllers operate

using local information and information supplied by a global controller. They

supply in return the global controller with partial and condensed information

about the local sensor outputs as well as the local actions they are taking. The

global controller has perfect structural information about the system, and knows

in particular how the subsystems interact. Given the information received from

the subsystems, the global controller sends directives to each local controller so

that more cooperation occurs within the system. Each subcontroller, be it at the

local level or at the global level, operates with partial and simplified information.

limiting the complexity of the control task for each decision maker. Such an

architecture is very elegant, but the design procedure must take into account the

entire model in order to distribute the tasks between the subcontrollers. The

constraints on the information pattern will complicate tremendously the design

procedure.
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2.5.2 Periodic Coordination

As argued by Chong and Athans in [Chg76], if the global controller can receive

all the local information, the optimal solution will be for the global controller to

cancel out the local actions and superimpose the centralized optimal solution. As

a result, [Chg?6] considers that the global controller operates at a smaller rate

than the local controllers. Such a structure is called periodic coordination, since

the directives arrive at the local level periodically every I time steps, where l is

the ratio between the global controller sampling time and the local controller

sampling time. Interconnected systems are considered in [Chg?6] and the

optimal Linear Quadratic solution with periodic coordination is studied. The

control structure is as follows: local controllers drive local actuators based upon

local information. The local control law would be LQ optimal if there were no

coupling between the subsystems. At the upper level, the interaction between

the subsystems is estimated, based on a priori information and past

measurements. The update of the estimate of the interactions is done

periodically every I steps. Two kinds of periodic control are developed in

[Chg?6]. The first one is qualified as open loop, meaning that the coordinating

parameters are computed based on past information and without expecting future

information. Thus, the estimate tries to minimize the mean error due to the

interaction for all future times as if no more updates were able to refine the

estimate. The second one is qualified as closed loop, meaning that future

measurements are expected. In that case, the estimate tries to minimize the

mean error due to coupling for the next I steps only, knowing that the estimate

will be refined later on. The closed loop scheme is more complex to solve and its

resolution does not decouple at the subsystem level. It should yield, however, a

better solution. The method appears to be an elegant design method. Still, even

if optimality is reached, little is known about stability.
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2.5.3 Goal Coordination and Interaction Prediction Methods

The problem considered throughout [Sin80]isthe time varying LQR problem for

interconnected systems.. The computation of the optimal control sequence

requires the knowledge of the full state variables. In order to simplify the

computation, [Sin80] considers each individual subsystem separately. For one

particular subsystem, the interaction of the other subsystems is a sequence of

vectors which are linear combinations of the states of the other subsystems.

These vectors can be defined as new variables. Additional variables must also be

defined in that case. They are called coordination variables and are in fact

Lagrange multipliers that are introduced in order to relate the interaction

variables to the statesof the subsystems from where the coupling arise. In the

Goal Coordination Method, [Sin75, Sin80], also referred to as the Interaction

Balance Method, the optimal control sequence is solved at two levels. At the

lower, or subsystem level,one computes the optimal control sequence as if the

subsystems were isolated. The coordination variables are used at the locallevel

as parameters for the local minimization problem that generates the local control

sequence. At the upper level, the coordination variables are updated in order to

optimize the overall cost of the interconnected system. The updating process is

truly a minimization algorithm. The gradient of the cost relative to the

coordination variables is computed at the subsystem level and is used in the

upper level in the optimization procedure. The optimum is found recursively by

first assuming a value for the coordination variables, then by computing the

gradient of the cost at the lower level, solving only reduced order minimization

problems. A different scheme attributed to Takahara is referred to as the

Interaction Prediction Method [Sin75, Sing0]. The method uses both the

aforementioned coordination variables as well as the coupling variables to define

the coordination vector between the local and the global problem. The

computation is carried out like in the Goal Coordination Method by assuming a

value for the coordination vector at the upper level and by computing the

gradient of the cost at the lower level. Convergence properties are enhanced

when the coupling variables are not eliminated in favor of the coordination

variables.

Both multilevel techniques require the iterative computation of a

minimum at each time step. A high rate of convergence isreported using either
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method for fairlycomplicated systems. Both methods are so-calledinfeasible

methods [Sin75,Sing0] since the coupling variablesintroduced in the problem are

equal to the realcoupling only when the solution isreached. The main drawback

of such methods is that suboptimal control sequences cannot be obtained by

relaxing the accuracy on the determination of the minimum at each time step.

Such a control sequence could very well destabilizethe plant and does not satisfy

any of the problem constraints. Therefore, the expected reduction in

computation time due to the breaking down of the large minimization problem

into simpler reduced order problems may very well be overestimated because of

the need to reach accurately a minimum at each time step. The complexity of

the implementation is not addressed either. The time varying problem is solved

as an open loop problem. The feedback problem can also be solved. The same

procedure isused, but the control at the subsystem levelisa function of the local

statesand the coupling variables. The gains are computed in a recursivemanner.

using the coordination technique. The main advantage is that they require the

resolutionof only reduced order Riccati equations, whose calculationgrows much

fasterthan linearlywith the order. The control that comes out of the procedure

is a centralized full state feedback LQR, and is therefore not suitable for

implementation.

2.5.4 Hierarchic Control with Distributed Sensors and Actuators

Hardware and implementation considerationshave led to the development of last

class of controllersreviewed in this chapter. [Hal90, How90] have considered

structures with distributedsensors and actuators. The premise that such sensors

and actuators can be built has been suggested by the advances in piezoelectric

materials. The deformations of a piezoelectric layer transforms the local strain

into a voltage which can be measured. Similarly, a voltage applied locally wilI

produce a force on the structure. Hence, distributed action on the structure can

be obtained. Hierarchic control appears, in that case, to be the only approach

that can utilize the unique possibilities offered by distributed sensing and

actuating capabilities while producing a control structure of acceptable

complexity. The method becomes optimal if there is a frequency gap in the

spectrum of the structure and if the higher modes do not propagate and can be
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controlled optimally with local control only. The method is therefore related to

that of [Ozg79], even if the latter is not developed directly in terms of a

multilevel control. In [HalO0, Howg0], the upper level controller receives

condensed local information from which it estimates the global motion of the

system. Such a global motion is made of the slow modes of the structure. The

upper level controller fights low frequency perturbations that affect the entire

system in a very coherent way. The global level sends back to the local

controllers the global shape of the system. The local controller will then take out

high frequency perturbations that affect the global modes. High frequency

perturbations have a tendency to be localized and be less coherent over the

structure, which is why they can be eliminated by simpler local'controIlers.

Fairly simple proportional plus derivative feedback on the local displacement

variables is used at the lower level. The upper level also coordinates the lower

level controllers and makes sure they do not excite the lower modes by

eliminating the slow coherent residual effects generated by the local control laws.

The control input at each point is the sum of the coherent part coming from the

upper level and the local part that has been cleaned of its residual coherent part.

The drawbacks of the method are the same as those pointed in section 2.3.4:

good control of the slow and fast modes is achieved, but intermediate modes may

be affected adversely. The method will work better if the structure has well

separated slow and fast modes. Nevertheless, the method does take into account

more of the physics of the problem and yields a control law that is implementable

with the type of technology envisioned in [Halg0].
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OPTIMALITY CONDITIONS FOR THE

H2 FIXED ARCHITECTURE CONTROL

3.1 INTRODUCTION

The control design methodology presented in this work is a generalization of the

well known LQG design methodology. The LQG methodology has been

extensively studied and applied to design Multi-Input Multi-Output feedback

regulators. It constitutes a good designtool for the following reasons:

- the optimal solution is a linear time invariant feedback system with a rational

transfer function. Its dynamics happen to have the same order as the plant. The

closed loop system is asymptotically stable under detectability and stabilizability

assumptions.

- the design is a truly Multi-Input Multi-Output feedback system and all sensors

and actuators are included at once in the design procedure.

- the design parameters provided by the designer have physical meanings which

leads to an insightful iteration of the design. These parameters include a model

of the disturbance entering the plant, the definition of the outputs that must be

regulated and a scaling of their respective importance in the overall performance

of the system. It also includes a scaling of the amount of energy one can require

from each actuator and information about the amount of noise that corrupts the

measurements of each sensor. All these design parameters can be related :o

physical data in terms of noise intensities or energies.

- finally, the solution to the problem is unique. One must solve two H.iccati

equations to find the solution and there now exists very reliable algorithms [or

solving such equations. The LQG methodology is therefore very appealing and
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easy to use for designing stabilizing multivariable feedback laws.

The method suffers, however, many drawbacks and has little practical

applicability to the control of large flexible structures for example. One main

drawback is that it may result in feedback systems of very high orders and high

complexity. The data processing capabilities of existing flight qualified

computers will be rapidly exceeded. Furthermore, the wiring might be too

complex and the testing impossible. Finally, such complex control systems are

prone to more failures. A second drawback is that these high order designs may

not be robust since nowhere in the optimization procedure is it stated that the

model may be incorrect. In order to design an LQG compensator for a large

structure, one can include more vibrational modes in the model in order to

encompass potential spiHover problems. The LQG solution must then have more

modes as well, and the design of the controller will rely on modes which are

increasingly more poorly modeled. The result may be a compensator finely tuned

to the wrong model and which in reality misinterprets the information it receives,

thus potentially driving the closed loop system unstable.

The Optimal H2 Fixed Architecture Control Design approach is a direct

attempt to resolve the problem of controller complexity while it tries to retain

some of the best features of the LQG design methodology. The idea of

constraining the order or the structure of the LQG solution has appeared

repeatedly in the literature. The reduced order compensator problem has

received most of the attention [Joh70, Men75, Kab83, Hy184]. Some schemes for

constraining the architecture have, however, also been proposed in [WenS0], and

in a less general way in [Ber87b]. The fixed architecture control design problem

consists of setting the control problem as the optimization of some H2 norm of

the closed loop system similar in every way to the H2 norm considered in the

unconstrained LQG problem. The differenceis that the solution is required to

have a given architecture which is specified in advance. Typically, the feedback

system is made up of p independent processors which cannot communicate

between each other. Each processor has also limited memory and can only realize

a transfer function which has a fixed number of poles. Finally, each processor is

connected to some selected sensors and actuators. The choice of the number c f

processors, number of poles and the selection of the sensors and the actuators is a

trade-off between the simplicity of the feedback system and its performance. The

choice of the architecture will also influence the difficulty of numerically finding a
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solution. The fixed architecture design is a suboptimal solution when one

considers the unconstrained problem. Hence, the solution will not be as highly

tuned to the problem as the overall optimal solution. This may ensure better

robustness properties, even though there is not a guarantee since the robustness

requirements are not included in the optimization procedure. Some attempts

have been made to generalize the LQ methodologies to deal with robustness

issues, IBer86d, Ber87a, Che88], but it is out of the scope of this research whose

principal focus is to understand the effects of imposing architecture constraints

on the controller.

The H2 optimization problem is stated in the first part of the chapter. A

Lagrangian is defined for the problem and the architecture constraints are

incorporated. Tools necessary for the derivation of the optimality conditions are

presented in the following section. These are rules of calculus that apply to

matrix spaces and are used to differentiate the Lagrangian of the problem.

The LQG methodology generates dynamic compensators which are strictly

proper. Hence, the transfer functions always roll off at high frequencies. The

method cannot handle static output feedback since it assumes that each sensor is

corrupted by white noise. The direct feedback of white noise into the system

would make the cost infinite. This forces the sensor outputs to be filtered. The

LQR methodology, on the other hand, does not consider the measurements to be

corrupted by noise and it can be seen as a static output feedback scheme, where

it is assumed that all the states can be independently measured. The

generalization of the method is a fixed architecture, static output feedback

scheme. The H2, Fixed Architecture, Static Output Feedback problem is derived

in the chapter for the sake of completeness. The first and second order

optimality conditions are given in Section 3.4.

Finally, in order to motivate the use of Optimal Fixed Architecture

Control, some examples of possible control architectures are presented in Section

3.5, such as decentralized, hierarchic or fixed dynamics compensation.
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3.2 PROBLEM STATEMENT

3.2.1 The H2 Optimal Control Problem

Consider the n-dimensional linear time invariant plant with m inputs and 1

outputs:

X-AX÷BIuI÷B2u2÷ "'" ÷Bmum÷w

Yt = CIX + vl
y2 = C2X + v2

Yl " Cl X ÷ Vl

where A E _nxn, Bi E [Rn'l, Ci E _l,,n. w E _ is a white process noise vector

whose covariance is a symmetric positive semidefinite matrix V _ _nxn. Each

measurement Yi is corrupted by a white measurement noise vi whose variance is

Vi _ _. Gathering the input signals ul, us,..., u® as well as the measurement

signals y,, y_,..., yl into two vectors u and y, the plant model becomes:

where:

X = AX + Bu + v

y = CX ÷ Vc

B: [B, B2... S.], c :

Clj
VC: vlIV2 , E{vcVcT) = Vc_(t)

In order to modify the closed loop characteristics of the system, one wishes to

implement an LTI feedback loop. The control law has the generic form:
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Xc = Aclc + Ky

u = GXc

where Xc is the compensator state vector, Ac E _nc-nc is the compensator

dynamics; K E _nc,l corresponds to the filter gains; G E IRm"nc corresponds to the

control gains.

The performance of the closed loop system is established by looking at a

quadratic cost J that penalizes both plant states and control effort:

J = lira ½t E{ Itx(r)TRx(r) + u(r)TRcu(r)dr ),
t-+_ 0

where R ¢ IRn"n is symmetric positive semidefinite,Rc E IRm"m is symmetric

positive definite,E{. } is the expectation operator. The same cost J is obtained

when one considers the plant to be subjected to deterministic disturbances, by

integrating the energy X(r)TRx(r) + u(r)TRcu(r) over an infinite period of time

as the perturbations w(t) and v(t) (formerly process and measurement noise) are

two vectors of impulses equal respectively to w(t) -- _/V'6(t) and v(t) -- ,_c_(t).

denotes the square root of the symmetric positive matrix X. J is therefore the

square of an H2 norm defined for the closed loop, and the cost functional is a

general quadratic cost that can have several interpretations. Following the

stochasticinterpretation of the problem, J can equivalently be written as:

J" lira ½E{X(t)TRX(t) +u(t)TRcU(t) }
t-+®

One wishes to find Ac, G and K that minimize the cost J. If no other constraints

are imposed on the control loop and if nc, the number of poles in the

compensator, is free, the problem is the standard LQG problem.
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3.2.2 Constrained Control Architecture

LQG designs are not always satisfactory and cannot be implemented in many

cases. To make the control simpler the following constraints are introduced: the

processing of the control law is distributed among p smaller processors. Each

processor has a limited memory or, in other words, each processor has a limited

number of integrators to realize its transfer function. The order of the ith

processor is denoted ni and is fixed by the designer. The information flow and

the control authority are also limited. Each processor is connected to a selected

set of sensors and actuators. The set _i contains mi elements which are the

indices of the mi actuators that are connected to the ith processor. The number

mi and the indices in l/i are specified by the designer. The set Yi contains li

indices which are the indices of the li sensors connected to the i th processor. The

number li and the indices in Yi are also specified by the designer. The overall

feedback loop will therefore be described as follows:

1) Processor i is described by its own state vector Xi which is ni dimensional.

2) The global compensator is the aggregation of the Xi:

illX_
Xc =

P

3) The matrix Ac is block diagonal:

Ac -- (3.2.1)

.. p

where Ai¢ _nt*n_. describes the internal dynamics of processor i.

4) G and K can be block partitioned in, respectively, m times p row vectors and

p times 1 column vectors:

GII GI_ ... Glpl

G21 G22 G2p [Rl_nj
G- . : • , GijE

La:, G: j
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IKii Ki_...

Kll 1

K K _.i K_2. K_I / , sni,,1= • • Kij (3.2.2)
i

LKpt Kp_ KptJ

where Gij = 01x n. ifi ¢ Z/j(the ithcontrol input ul does not use Xj) and where

Kij = 0nixl ifj _ _i,(Xi isnot driven by the output signalyj).

Define the following matrices Hi and _k:
i

Hi = EOni_nt • • • Onixni. t Ini Onixni, l

a'k = [o ... o 1 o ... o] _ _l_k
i i element

''" 0nixnp] E [Rnixnc

(3.2.3)

Consider a matrix having nc rows partitioned in p blocks of nt, n_,...,np rows.

Premultiplying by Hi isolates the ith set of ni rows. Considering the transposed

matrix and a partitioning of its columns, postmultiplying by Hi T corresponds to

isolating the ith set of ni columns. Premultiplying by irk. provides the ith row of a
1

matrix, postmultiplying by its transposed provides the ith column. Using the

matrices defined above, the architecture conditions can be expressed more simply

as:

_iGHJ T = 01xnj ¢_ i i_//j

IIi K_'IT _=_ j _ 3i
j " 0ntzl

The ith subcontroUer has the following dynamics:

Xi= AiXi+ _ Kijyj

jeYi

The k th control input is a linear combination of the state vectors of the

subcontrollers to which it is connected or, in other words, it is the linear

55



combination of the Xi such that k E Ui:

Uk = _ GkiXi

i:kE_i

Take, for example, a plant with 3 inputs and 3 outputs and assume that the

feedback loop ismade of two second order processors such that:

i) measurements 1 and 2 are availableto processor h Yl = { I, 2}

2) measurements 2 and 3 are availableto processor 2: 3_ = { 2, 3}

3) actuators 1 and 2 are driven by processor I:Ut = { i,2}

4) actuators 2 and 3 are driven by processor 2://_= { 2,3}

usv_ Plant ] * ' Ys

. _-_ Proc. 2

Figure _,I: Examule of Feedback Architecture

The feedback architecture is shown in figure 3.1.

have the following form:

A¢ "

G ..

XO
OX
OX

OX

The corresponding K, Ac and G

where an X denotes a freeentry.
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3.2.3 Lagrangian Formulation and Problem Statement

The cost functional J is a scalar quantity and it is therefore equal to its trace.

Hence:

J - Tr(J)

Defining

=_Tr limE{XTRX+uTRcu}
t-_m

I[Tr It E{ lira XXT}
t-_m

+ RcE{ lim uuT}l
t-_m

Xcl = [Xc]' cl°sed l°°P state vect°r' dimensi°n fi = n + ncX

Q = lira E{XclXclT}, e _fi_fi, steady state, closed loop
t-* ®

covariance matrix,

Acl = [A BG I, E IRfi'fi, closed loop dynamics,

LKC AcJ

Rcl=[0RGTRcG0 l,E_fixfi'symmetricp°sitive'

Vcl = IV KV0cKT], E _ fi'fi, symmetric positive.
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the cost J becomes:

J = ½TrQRcl (3.2.4)

where Q has to satisfy the steady state filter Lyapunov equation:

Ofixzi = AcIQ + QAcl T + Vcl

Eq.(3.2.4)is a much simpler expression of the cost than the integralformulation.

One must, however, include the constraint of Q satisfying Eq.(3.2.5) in the

problem. The triplet( G, Ac, K) isa vector in the product space _mxnc, [Rncznc

, [Rnczl. Adding two vectors in such a space isto add the corresponding matrices,

the multiplication by a scalar is to multiply each matrix. One can verify by

inspection allthe propertiesof a linearspace. Thus, the cost J isa functional on

a vector space. The dependence of J on the control parameters arisesdirectly

from Rc! and indirectlyfrom Q. It is not possibleto solve for Q in dosed form

by solving Eq.(3.2.5). The alternativeis,therefore,to consider Q as a variable

and use Lagrange multipliers.Eq.(3.2.5) appears as a set of fi2constraintson Q,

G, Ac and K. Denoting by the matrix E = AclQ + QAcl T + Vcl, we define

I/2 Pji to be the Lagrange multiplier associated with E U. They correspond to

the sensitivityof the cost to variations in the intensity of the disturbance

affectingthe dosed loop system. The Lagrangian becomes:

L--J+½_ _ PjiEij,

i,lj,l

Regrouping the element Pij into an fizfimatrix P, and recognizing in the double
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summation the trace of a product, the Lagrangian becomes:

L -- ½ Tr(qltcl * P(Aclq + qAclT÷ Vcl))

= ½ Tr(qR¢l+ PVcl+ PqAclT + A¢_qP) (3.2.6)

We can now summarize the H2, Fixed Architecture Optimal Control Problem:

Problem 3.1: Given the LTI plant with m inputs and 1 output:

X = lX + Bu + w

y = CX + vc

where w is a white noise vector with E{ww T} = V6(t), Vc is white noise vector

with E{vcv¢ T} = Vc6(t), and given the controller architecture specified by:

P

ni

Yi

//i

number of subcontroUers

mazimum order of subcontroller i

set of indices of sensors connected to subcontroller i

set of indices of actuators connected to subcontroller i

find G E _mxnc, Ac E _ncx _nc,1nc, K E such that

Ac = blockdiag( AI, A2, "-, Ap),

G = [GiJ]i=l,...,m, Gij E _lxnj

j=l,...,p

K = [KiJ]i=l,.. .,p, Kij e _ni, 1,

j=l,... ,I

Ai E IRnixni

Gij = Qlxnj i/i ¢ _lj

Kij = Oni _ 1 ifj ¢ Yi

and find P, Q e _fi_fi positive semidefinite, where Q is the closed loop covariance

matmz, and P is the sensitivity of the cost to changes in disturbance intensities, to

minimize the quadratic functional:

= -½Tr(qltcx + PVcl + PqAcl T + Ac_qP)L
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where Acb Rcl and Vcz are as before. The solution

( G, Ac, K, P, Q) in the product space _m,nc . [Rnc.nc x _nc,1

The compensator, whose state space representation is

Xc = lcXc + Ky

u = GXc

will minimize the quadratic cost J of Eq.(3.2.4)

is a quintuplet

x _515 , _fi,fi.

As stated in [Hy184], the cost is a positive quantity when there exists a stabilizing

compensator. The optimization problem occurs on an open set and the

Lagrangian is differentiable on this open set. Hence, the minimum of the cost

will be obtained for a set of parameters that make the Lagrangian stationary

[Kir70]. The necessary conditions for optimality are derived in the next section.

3.3 DERIVATION OF THE NECESSARY CONDITIONS FOR OPTIMALITY

3.3.1 Calculus in Matrix Space

3.3.1.1 General on M_,trix Spaces

For any integers r and s, the space of r by s matrices _rxs is a vector space.

Indeed, one can add two matrices, multiply them by a scalar and verify that all

the properties of a linear space are satisfied.

basis of _r=s, where Er,s
kij

0

0
E r's = 0

kij 0

0

are defined by:

...000...0

...000...0

• ..010...0 irow,
...000...0

.-.000...0

j col umn

E r'sform a canonical
The matrices kij

(3.3.1)
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where kij- r (i-I)+ j, 1<_i<_r, 1<_j<.s,

The matrices E_ 's have a single index, kij E IN, which is related to the location
ij

where the matrix has its nonzero element on the ith row and jth column. The

relation that yields kij as a function of the pair ( i, j) consists simply of counting

the elements of the matrix row by row, and it transforms the doubly indexed

sequence ( i, j) into the simple sequence kij. For any M ¢ _rxs, the following

linear combination holds:

F.S

l= I] lijE_ 's
kij= I ij

where Mij is the element of M located on the i th row and jth column. We will

_- _._r,s _ ..., Er's_ the canonical basis on _rxs If thedenote by Er, s t- 1 , E ,s, r.s-

elements of the matrix M are arranged in a rxs column vector m using a single

index, then M is uniquely represented by the vector m which is the vector of

components of M on the basis E. More generally, any vector is uniquely

represented by the vector of its components on a basis which needs not be

canonical. This leads to the following definition:

Definition 3.1: Let S be a subspace of [Rrxs, generated by a family of linearly

independent matrices E S = { El, E_,..., En}, Ej E _rxs, S = span{E1, E2,...,

En}. Then, for any M E S, there ezist.s a unique n-dimensional vector

m = [mr, m2,.-., toni T

n

such that: M = _ mjEj

j-t

We define the law • to relate any matriz M to the vector of its components rn on

the basis E S in which M lies as follows, and write:

m
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When S corresponds to the entire space and when one uses the canonical basis E

defined before, the operation M.E corresponds to taking each row of the matrix

M, transposing it and stacking it into a column vector.

The quintuplet (. G, Ac, K, P, Q) is a vector in the product space S =

_mxnc _ _nc_nc x _nc_l x _ii , _if_ii and constitutes the variable of the

optimization problem. The control architecture defines subspaces on _mznc,

_ncxnc and _nc_l. Indeed, specifying the architecture consists of requiring that

certain entries of G, Ac and K be zero: clearly, if Gt and G_ in [Rm'nc have

common zero entries, so will A tGl + A_G_. G lies therefore in a subspace S G of

_m,nc, and using similar arguments, Ac and K lie respectively in SAc and SK,

subspaces of [Rncxnc and [Rncxl. One can define three bases,

E G = {Egt, Eg_,'",Egng}, Egi E [Rmxnc,

EAc = {Eal, Ea2, ... ,Eana}, Eai e _ne,nc,

EK = {Ek,  nc,l,

for the three subspaces SG, SAc and S K.

represented by three column vectors

g = G*E G

ac = Ac*EAc

k = K*E K

G, Ac and K will then be uniquely

The most obvious basis vectors to consider for spanning SG, SAc and SK are

canonical basis vectors of _m_nc, _nc_nc and _nc_l respectively.- Because the

architecture only imposes zero entries in the different matrices, EG, EAc and E K

can be formed by retaining the canonical matrices that have a 1 at a location i,j
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corresponding to a free entry in G, Ac or K:

Em'nckij E E G _:_ Gij is free

En¢,ncE
kij EA¢ ¢_ Ac.. is freeIj

Enc,l
kij E E K ¢_ Kij is free

g, ac and k are then built by stacking up in a column vector the free entries of the

matrices G, Ac and K. The reverse operation consists of placing the free entries

of G, Ac and K which are stored in a more compact form in g, ac and k at their

correct locations and completing the matrices with zeros. Take, for example, the

control architecture of Section 3.2.2. E G is made of the eight following matrices

and"

li li [i ii [!!I
_: oO_O__ _o __ o_o__ _
i O0 ' 2 O0 ' s O0 ' 4 O0

s O0 ' 6 O0 ' z Ol ' s O0

ooiG= I G2sG24 = E G*9,
G33 G34]

g = [Gu Gl_ G_i Gn Gn G24 G33 Gs4]

3.3.1.2 Reuresentation of the Differential of a Fqnction in Matrix Space

The differential of a function F mapping a vector space V into a vector space W

at a point xo E V is a linear operator from V to W. Consider that V and W are

two matrix spaces, equal to _mzn, and _l,p respectively. The function F from V

to W maps an m=n matrix into an l=p matrix and, for every M E _mm, F(M) is a

matrix in _l,p. F can therefore be split into 1 times p functionals Fij from Rm'n to

JR:

F(W):
F21 F2_(M) F_p(M)
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The differential of Fij taken at a point Mo, if it exists, is a linear form that maps

_m,n into the real line _. Hence, the differential of Fij at M0 is given by m times

n coefficients that uniquely define a linear operator from _,_,n to [R. These mxn

coefficients can be regrouped into a mxn matrix, FijM(M0) E _m,a, that uniquely

represents the differential of Fij at M0 [Ath68]. The matrix FiJM(M0) is, so far,

only a convenient way to represent the differential of Fij, but it can also be used

to calculate the first order variation of Fij about Fij(M0) when the Trace

operator is introduced. Perturbing M0 by _M1, one gets

Fij(10 + Ell1) = Fij(10) + eTrFijE([0)Tll + 0(e 2)

The Trace operator appears naturally in this context, since the bilinear operator

<M,N> ffi Tr(MTN) (3.3.1)

defines an inner product on the matrix space {Rffim [Ath68]. The inner product

confers a Hilbert space structure to _ffi,n and, for any linear form f from [Rm.nto _,

including the differential of Fij, there exists a matrix F E [Rmm that uniquely

represents f which can be written as:

f(M) = <F,M>

= TrFTM

Extendin 8 the notation, one can define the differential of the entire matrix

operator F at M0 in the form of a matrix:

Definition 3.2: Let F E _l_p, be a matrix whose elements Fii are d_fferent_able

functwnals on a rnatriz space _m,n. Denoting by FijM E [Rmm the rnatr_z

representing the differentzal o/Fij with respect to M at M0, the matrix FM,
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[R(l_m)'(p'n), defined in block form as:

IFttM F t2E "i" F IpM1

LFi xFi • Fipnj

uniquely defines the di.t'ferentialof F at Mo. The operator MI -*F M

_m_n, defined as:

"TrY lqi Tit1 TrY1 Tltl "'" TrF lplTIll:

Fli.Mt= TrF.'tll TM' TrF. 22MTIl' "'" TrF. 2PMTM`'

TrFxtlTltt TrFI_MTMt ... TrFIpMTMI '

is a linear map from _m,n to _l,p. To first order in e, the value ofF is:

F(lto+Eltt)= F(lo) + fFli.ll+ 0(62)

•Mr, M1 E

Definition 3.2 gives a representation of the differential of a matrix with respect to

a matrix as well as a means to evaluate the differential for any perturbation.

The differentiation rules, and especially the chain rule can be simply written

using the notation: consider G: _m,n _, IRI'p, and F: _l,p., _r,s, are two

differentiable matrix functions. Then H: [Rmm-, [Rr_s defined as,

H(M) = F(G(lt)) E [Rr_, M E _Rm,n G(M) E [RI_p

isdifferentiablewith respect to M and, for any MI E Olmrn HM.M lisgiven by:

Iilt.llt= FG. (Glt.ltt),OM.ML e _1,p,

This defines the composed operator:

Hit: FG.Glt
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3.3.1.3 Differentiation of a Quadratic Functional

Consider the following quadratic functional f on IR1_p defined by

f (M) - Tr(MTH ÷ sTM ÷ MTs ÷ T)

M, S E IRI_p,R E [RI,I,T E _P_P. Subtracting f(Mo) from f(Mo+_Mx), one gets:

f(Mo+_MI) - f(Mo) = Tr [(M0+Elt) TR(Mo+eMt) ÷ ST(Mo÷EMt) +

+ (Mo+elt)Ts ÷ T)] -Tr(MoTRMo + STMo + MoTS

= 2_Tr(Uo + s)TMI + errr(MxTRMi)

Thus: -2(Uo+s)

+T)

3.3.2 Variation of the Lagrangian with Respect to P, Q, Ac, G and K

The form of Xcl induces the followingpartitioningof P, Q and defining M = PQ:

rPoo Poc] FQoo Qoc] M = FMoo Moc] = pQ (3.3.2)
P = [.PcoPccJ' Q = [.QcoQccJ' [.McoMccJ

where Poo, Qoo, Moo e _n,n, Poc, Qoc, Moc e [Rnxnc, Pco, Qco, Mco e [Rncxn, Pcc,

Qcc, Mcc E _ncxnc. Furthermore,

Moo = PooQoo ÷ PocQco

Moc = PooQoc + PocQcc

Moo = PcoQoo + PccQco

Mcc = PccQcc + PcoQoc
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one can expand the Lagrangian in three different ways:

L= ½TrP(Aclq + qAcxT + Vcl) + ½TrqRcl (3.3.3)

L= ½Trq(AclTP + PAcl + Rcl) ÷ ½TrPVcl

L = _-Tr(GTRcGqcc + 2GTBTMoc) +

+ ½Tr(PccKVcK T + 2McoCTKT) +

+ TrlcTlcc + ½TrRqoo + ½TrPooV +TrlMoo

The variation of the Lagrangian with respect to P, Q, G, Ac, and K can now be

obtained straightforwardly using one of the expressions for L given above and the

differentiation rules of a quadratic functional given in Section 3.3.1.3. When the

derivatives with respect to one of the matrices is taken, the remaining ones are

considered fixed parameters. Vcl and Rcl do not depend on P and Q, and

furthermore they are symmetric. Lp is directly obtained from Eq.(3.3.3). LQ

follows from Eq.(3.3.4). Eq.(3.3.5) splits the Lagrangian into a sum of different

parts, each of which depends only on Ac, G or K. The derivation of LAc, LG and

L K is then obvious. The algebra yields:

Lp = _(Acxq + qAcxT+ Vd) (3.3.6)

Lq= _-(AclTp + PAcl + Rc]) (3.3.7)

LAc= Ice (3.3.8)

LG = RcGqcc + BTloc (3.3.9)

LK = PccKVc + McoCT (3.3.10)

If the parameters G, Ac, K , P and Q are modified by the quantities cG_, Eic_

rKl, cPl and 6Q,, the Lagrangian is, to first order:
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L(G+_G 1, kc+eAcl, K+eK l, P+eP 1, q+eq a) =

L(G,Ac,K,P,q) + ETrLATcAc, + _TrL_GI +

* _TrL_EI + _TrLTpz + _TrL_ql + O(E2)

LG is an mxnc matrix that can be block partitioned like G, Eq.(3.2.2)

LG=

"LG11 LG12 "i" LGlp

LG21 LG_2* .LG_ p
, LGtj 6 [Rl=nj (3.3.12)

Similarly, LK is an nc=l matrix that can be block partitioned like K, Eq.(3.2.2)

LK

"LKtl LK "" LK12 11

LK2_ LK_2 --" LK2 l

LKpl LKp2 "" LKpl

, LKij G _ni_l (3.3.13)

3.3.3 First Order Necessary Conditions for Optimality

The independent variables of the problem are the entries Pij of P, the entries Qij

of q as well as the the entries gi of g, ai of _ and ki of k. The partial derivatives

of P, Q, G, Ac and K with respect to those variables are respectively:

= Eft, fi
PPij ki_'

= En, n
QQij kij'

Gg i = Egi, Egi e E G,

Acai- Eai, Eai E EAc

Kki = Eki, Eki E E K

Because the problem is stated on an open set [Hy184], the first order necessary
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conditions for optimality require that the Lagrangian be stationary for all

admissible perturbations [Kir70]. Hence, the derivative of the Lagrangian with

respect to all free variables is zero:

Lpij -- Lp.Pij -'-0

LQi j = I_Q.Qij - 0

Lg i = LG.Gg i =0

Lai = LAc.Acai = 0

Lki = LK-Kki =0

The stationarityconditions become:

0=Tr(LpTZkfl'ifi), i, j =1,...,fi (3.3.14)

0 = Tr(LqTE_ 'flij), i, j =1,...,fi (3.3.15)

O=Tr(LATcEai), i=l,...,n a (3.3.16)

0=Tr(LGTEgi), i= 1,...,ng (3.3.17)

0=Tr(LKTEki), i= l,...,n k (3.3.18)

Eq.(3.3.14) just states that all entries in Lp must be zero, and similarly,

Eq.(3.3.15) states that LQ must be zero. Eqs.(3.3.15-17) imply that the entries

of LG, LAc and LK corresponding to free entries of G, Ac and K must be zero.

Ac is a block diagonal matrix. Eq.(3.3.16) thus states that the diagonal blocks of

LAc must be zero. Using the block partitioned forms of LG and LK, Eqs.(3.3.17-

18) become:

01xnj = LGi j

-_L GHj T, foriE_j
1

0nixl = LKi j

= Hi LK _r!T, for j E Yi
J

Using the developed forms of Lp, LQ, LAc , L G and LK, Eqs.(3.3.6-10), the

optimality conditions become:
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Proposition 3.1:

Problem 3.1 if _he foUo_ng conditions hold:

Ofixfl =AclTp+PAct+Rct

Ofi,,_ = Act{] + qlct T + Vet

Oni,,ni = Ilii "-IIillccIIi T, 1< i < p

01xnj = _iRcGqccHjT + BiTlloj, i E//j

Oni=l = IIiPccKVcor!T + NioCjT, j E Yi
J

The matrices P, Q, G, Ac and K form a stationary solution of

(3.3.19)

(3.3.20)

(z.3.2z)

(z.3.22)

(3.3.23)

where Poo,Qoo, Moo, Poc,Qoc, Moc, Pco,Qco, Mco, Pcc,Qcc and Met are defined

in Eq.(3.3.2),and where,

Pcc= " " " , Pco = :o

LPpxPp2 PppJ LPpoJ

Poc = EPol Po_ ... Pop]

qcc = • _ " ,qco = .

Lqplqp_ q_pJ LqpoJ

qoc: [qoxqo,"'"qop]

Pij, Qij E [Rnixnj, Pot, Qoi E 0_nxni, Pio, Qio e [Rnixn. Mij is given by:

P

Mij = _ Pikqkj, for i = 0,..., p, j =
k=0

When the matrices P and Q satisfy Eqs.(3.3.19,20), they become, respectively,

the observability and the controllability grammian of the closed loop system,

where the inputs to the dosed loop system are the process noise and the

measurement noise and where the outputs are the controlled variables and the

control inputs. The matrix M becomes the Hankel matrix of the closed loop

system [Gio84, Fra87]. The eigenvalues of the matrix indicates the transmission
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properties between the inputs and the outputs of the system. Hence, Eqs.(3.3.21-

23) try to reduce, in some sense, the eigenvalues of M, either directly,

Eq.(3.3.21), or indirectly by selecting the proper dynamics for the controller and

the proper interaction between the controller and the plant. The architecture

constraints reduce the freedom that one has to shape M.

3.3.4 Second Order Necessary Conditions for Optimality

The second order necessary conditions state that the matrix of second derivatives

of the Lagrangian with respect to the free variables of the problem must form a

positive matrix. This matrix, also known as the Hessian, is always a symmetric

matrix. One can compute it by differentiating the first derivatives of Eqs.(3.3.6-

10). The matrices P and Q can be seen as intermediate variables. If the closed

loop dynamics are strictly stable, then the two Lyapunov equations of

Eqs.(3.3.19,20) have unique solutions that yield P and Q as functions of G, Ac

and K. In order to obtain a Hessian of smaller size we will consider that the free

variables of the problem are the vectors g, ac and k that are grouped in a vector

(3.3.24)

the Hessian matrix is:

L_= [L_i_j] _<i<n_, n_=no_+ng+n k,

or, in partitioned form, using the partitioning of _:

Lacac L ac9 Lack

Lgac L gg L9 k

L kac L k9 L kk

(3.3.25)
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BecauseP and Q have been eliminated, one must use the chain rule in the

differentiation of Lg, Lac and L k in order to account for the fact that P and Q

satisfy Eqs.(3.3.19,20). Lai , the derivative of L with respect to ai, is given

Eq.(3.3.15) by:

Lai = Tr(LATcEai )

LAc, given by Eq.(3.3.6) is a matrix function of P and Q. Hence, the variation of

LAc with respect to _j is:

LAc_j = LAcP.P_j + LAcq'q_j,

where the product composition rule is defined in definition 3.2. Hence, from

Eq.(3.3.15):

: TrEaiT(Llcp.P_j + LAcq.{}_j ) (3.3.26)Lai_j

Similarly, denotin 8 by H the matrices G or K, by LH, LG or LK, and by h the

vectors g or k, the variation of L H with respect to _] is:

LH_j=LH_ j÷LHP'P_j ÷LHQ'q_j

Eqs.(3.3.17,18) yield:

Lhi_j = trEhi T(LH_j+ LHp.P_j + LHq .q_j) (3.3.27)

The matrices

respect to _j.

Pc. and Q¢. are found by differentiating Eqs.(3.3.19,20) with
_J bJ .

P_j and Q(j satisfy:

Ofixfl= AcITp_j + P_jAcI+ lcl_iP+ PAcI_j+ Rcl_j

Ofi,_ - lclq_j * q,_jAclT + ld,_jq + qlcx_j ÷ Vd_j
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where:

Acl_j

On*n Onxnc I Q = ai
LOnc,n Eai

On.n BEgi l _j_ g i

Onc_n Onc xncJ

On.n On.ncl ,j-ki

Ekic OncxncJ

(3.3.28)

=[On,n, On,no ]

L°nc'n GTRcEgi+EgiTRcGj, (j = gi, Oii,fi

otherwise,

(3.3.29)

--[ On'n On'nc ] _j ki,

LOnc,n KVcEk iT+EkiVcKTj ' ---- Ofix fi

otherwise.

(3.3.30)

Defining:

U_j=P_jq + PqQ

and partitioningP_j, Q_j and M_j, according to Eqs.(3.3.2)as:

=LP op cJ'%=LQ oq cJ

LAc_j ,LG_ j and LK_ j axe:

=M t
LAc_j cc

LG_j=RcZgiqc_(g_,_j)+RcGq_¢*BTM_c

LK_j = PccEkiVcS(ki,_j) + P_cKVc + I_oC T

(3.3.31 _

(3.3.3:2

(3.3.33
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where6(hi,_j) -- 1 if hi - _j, 0 otherwise.

Proposition 3.2: A solution to Problem 3.1 makes the cost stationary. I_

corresponds to a local minimum is the Hessian L_ is positive. The condition is

sufficient if the Hessian is not singular, m

Proof

This result is a standard theorem that ensures that the cost can only increase

when the stationary point is submitted to small perturbations, thus making such

a point a minimum locally [Kir70].

3.4 THE FIXED ARCHITECTURE STATIC OUTPUT FEEDBACK

PROBLEM

3.4.1 Problem Statement

The compensators that have been looked into so far are dynamic compensators

whose transfer functions roll off at high frequency. Static Output Feedback on

the other hand yields an all pass transfer function. Consider the n-dimensional

LTI plant with m inputs and 1 noiseless outputs:

X = AX + Bu + w

y=CX

where A E 01nxn, B E 0lnxm, C E _lxn, w E _n white noise, covariance V.

for a feedback law

u = -Fy, F E _mxl

We look
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that minimizes the following quadratic cost:

J = lim ½ E{xTRx + uTRcu)
t-_

Because the control u is directly proportional to the output y, one cannot allow

for white noise to corrupt the measurement: this would make the variance of the

control infinite along with the value of the cost J. Colored noise however can be

accommodated by incorporating the noise dynamics into the plant: the output of

the augmented system becomes a noiseless signal as required. As in Section

3.2.3, the cost can be written as:

where

J = ½ Tr {]Rcl (3.4.1)

q = lim E{XXT}- -
t-_

is the closed loop steady state covariance matrix that satisfies the filter Lyapunov

equation:

and where

On= n = tclq + qlcl T ÷ Vcl (3.4.2)

Acl = A --BFC

Vcl = V

Rcl = 1 + cTFTRcFC.

As in Section 3.2.3, one can define a Lagrangian for the problem in order to

incorporate Eq.(3.4.2) and account for the dependence of Q on the feedback law.

The Lagrangian is:

L = ½ Tr(qRcl + PVcl ÷ AclqP + PqAcl T) (3.4.3)

It is possible to restrict the authority of the sensors and the actuators by insisting

that only certain sensor-actuator pairings be retained in the feedback loop

Define _ as the set of all pairs (i,j) such that sensor i is connected to actuator j

Fij will be nonzero if and only if (i,j) belongs to _. As in Section 3.2.3, one can
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define a basis for the subspace SF of _='! in which F must lie. SF is spanned by

the basis matrices Eli such that:

E/i Em, 1
= k ij ¢=_ Fij is free

Denoting by E F = {Ell, E_,..., Efn_, F can be written in the form:

F= EF*/

where f= F*E F - If1, f2,'", fnf] T

3.4.2 Necessary Conditions for Optimality

The stationarity conditions are obtained using the differentiation rules of Section

The variation of the Lagrangian is:

Lp = _ (Actq + qAct T ÷ V)

Lq = ½ (AcITp+ PAct + Rct)

LF = RcFCqCT - BTpqc T

3.3.1.

(3.4.4)

(S.4.S)

(3.4.6)

The first order optimality conditions become:

= Aclq + qAct T + VOn_n

On. n = AclTp + PAct + RcI

0 = TrEfiT(RcFCqC T - BTpqcT), i = 1,... ,nf

= _. (RcFCqC T - BTpqcT)_. T, ( i, j) ¢
1 J

(3.4.7)

(3.4.8)

(3.4.9)

P and Q can be eliminated from Eqs.(3.4.7,8). The steps for deriving the Hessian

Lf.f are similar to Eqs.(3.3.24-33). In this case, P/i and Q_ satisfy respectively:

Onxn

0
nzn

= Aclqfi + QfiAcIT + Aclfiq+ qAclfTi

= AclTPfi + Pfiicl+ AclfTiP+ PAclfi+ Rclfi
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where

Aclfi = -BEfiC

Rclfi = cTFTRcEfiC + cTEfiTRcFC

LFf i is given by:

LFf i = RcEfiCQC T + RcFCQficT - BT (PfiI]* Pqfi)CT

and finally:

Lf jf i -- TrEfjTLFfi

The second order necessary conditions foroptimality require that Lffbe positive.

3.5 EXAMPLES OF CONTROL ARCHITECTURE

This section is aimed at motivating the use of a fixed architecture control

structure. Indeed, the optimality conditions are rendered more complex by the

introduction of constraints in the feedback loop and one can wonder what are the

benefits one can expect from such compensators. The following subsections

present some potentially useful control structures.

3.5.1 Fixed Order Controller

This constitutesthe simplest constrained control structure:the number of poles

in the feedback loop is limited to nc. There is a singleprocessor connected to

every sensor and every actuator. Such an architecturecorresponds to the fixed

order LQG problem. Ifnc is equal to n, one gets the usual LQG problem. For

large scalesystems, the order of the model can be quite high and there might be a

limit to the order of the compensator one can realize. Instead of reducing the

order of the plant to match that of the compensator, one can solve the reduced

order LQG problem in order to get the best LQG compensator of order nc for the

plant. The optimality conditions of Proposition 3.1 can be put in the classical

form of two uncoupled Riccati equations when nc isequal to n, [Kwa72b], or can

be transformed as an Optimal Projection Equation problem ifnc is strictlyless
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than n [Hy184], as it will be shown in Chapter 4.

3.5.2 Decentralized Fixed Order Controller

The control law is implemented on p separate processors, each of which is limited

in the number of poles it can realize. Each processor receives information from

its own set of sensors and control its own set of actuators. No sensor and no

actuator can be shared by any two loops. The compensator is then a set of p

totally independent loops. With no loss of generality, it can be assumed that the

first It sensors are attributed to compensator 1, the next 12 to compensator 2, etc.,

and that compensator 1 drives the first ml actuators, compensator 2 drives the

next ms etc. G and K are then block diagonal:

G = , Gi E _mi=ni

0 p

'o2.
K = • , Ki E [Rni=li

o

The compensator transfer function TC is _ then _ also block diagonal a

Tc_S5
"O

"G,(sI-A,)'tK, 0 -.] _ "]0. G2(sI_A2)'IK2. .

J0 0 • • Gp(sI-Ap)'lKp

Such a structure can be used for systems made of very weakly coupled

subsystems: on an aircraft for example, the handling qualities and the engine

operations, even though coupled, are very distinct subsystems that can be

controlled separately. On a large structure, one might want to geographically

distribute the computation as well as the information flow. If the structure of
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the plant consists of various modules, itis conceivable that each module has its

own set of sensors, actuators and computation capability and that, because of

wiring and interface complexity, one desires to keep the control loops of each

module independent.

3.5.3 Overlapping Controller

The purpose is still to limit the information flow in the feedback loop and to give

the processors limited information and limited authority. Here, each processor

has its own sensors and actuators but is allowed to receive information from the

sensors of neighboring processors. G is therefore still block diagonal, but K has a

tridiagonal block structure:

G __

(_it 0 0 0...0

i (_2 0 0-.. 0

0 G33 0 ... 0 , Gij E _mixnj,

Z _.=I! :Ki2°°'°K¢2K23 0
K 2KaaKa4" 0 , K U E [Rni'lj

The compensator transfer function T C

inthat case:

Tii(s) = Gii(sI-Ai)'tKii

Tii+l(S) = Gii(SI-Ai)"lKii÷l

Tii-l(S) = Gii(sI-Ai)'lI{ii-t

has the same tridiagonal structure as K

Such an architecture can also appear on a large flexiblestructure that possesses

many distributedsensors and actuators. The dynamics of the structure at one

point depend on the inertiaand external forcesoccurring at that point as well as

the dynamics of the neighboring points. Consequently, it makes sense to obtain
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information about the local dynamics of neighboring elements in order to

attenuate the propagation of vibrations in the structure.

3.5.4 Hierarchic Controller

One way to implement a hierarchic control scheme is to let one of the processors

have more authority than the remaining ones. This means that one of the

processor can receive information from all the sensors and that it will drive all

the actuators. G and K are:

Gl0 • • 0 G_p ]

K _

"Kl 0 ... 0

0 K2... 0

0 0 "-"Kp-i

.Kpl Kp2 Kpp-t

Processor number p plays the role of an upper level or global controller.

Assuming that this processor is of reduced order, and assuming that its dynamics

are much slower than that of the processors i = 1,..., p-l, the compensator

transfer function Tc(S ) will be approximately block diagonal at high frequency,

as in the case of the decentralized architecture, corresponding to high bandwidth,

local control; at low frequency, T C will be a full matrix with interconnection

between every sensor and every actuator, corresponding to global, low bandwidth

control.
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3.5.5 Fixed Dynamics Controller and Frequency Weighted Cost

Assume the dynamic of the controller is the realization of band-pass filters

applied to the outputs of the sensors and that these filters have been designed

before starting the optimization procedure. Ac, and K are therefore fixed, and G

is restricted to be: G - FG0, where Go is chosen such that the triplet ( Go, Ac,

K) realizes the transfer functions of the filters. F is an m _ 1 matrix of free

parameters. If one augments the plant with the dynamics of the various filters,

the problem becomes a Fixed Architecture Static Output Feedback problem.

Other design techniques used to obtain frequency domain results using the LQG

methodology can be used here as well. Integrators can be used in order to

remove steady state tracking error. The cost can be shaped as well [Gup80]. The

procedure is to filter the variables of interest or filter the process noise to make it

colored. The plant must then be augmented with the states of the filter. Any

given fixed architecture LQG problem can then be solved using the modified

plant. The frequency shaping of the cost has the same effect on the full order

LQG problem as on any fixed architecture problem.
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3.6 CONCLUSION

First and second order optimality conditions for two types of H2 Optimal Fixed

Architecture Control problems have been derived in this chapter. The first type

of problem is a constrained LQG problem which results in multiloop dynamic

compensation. The loops are built around parallel processors which dynamically

connect selected sets of sensors to selected sets of actuators. The second type of

problem is a constrained LQI_. problem that yields a static output feedback

compensator. The use of both types of controllers renders possible the design of

compensators such as fixed order, decentralized, overlapping, hierarchic or fixed

dynamics compensators.
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INVESTIGATION OF THE

PROPERTIES OF THE OPTIMALITY CONDITIONS

4.1 INTRODUCTION

The H2 fixed architecture control problem being a generalization of the classical

LQG problem, one would hope for some properties of the unconstrained problem

to extend to the fixed architecture case. One well known property of the

unconstrained LQG problem is the separation principle: its resolution separates

into an optimal full state feedback and an optimal filtering problem. Two

Riccati equations, the Control and the Filter Algebraic R.iccati Equations (CARE

and FARE) are solved to find the control gains and the filter gains. These

equations do not appear immediately, however, when the unconstrained LQG

problem is set as the optimization of the cost over the class of centralized full

order compensators, which is a class of compensators that contains the overall

optimal solution. The CARE and the FARE are hidden in the optimality

conditions Eqs.(3.3.19-23) that hold for this problem. One must, therefore,

transform Eqs.(3.3.19--23) in order to eliminate the matrices G, Ac and K from

the problem and perform some block transformations on the matrices P and Q,

which are 2n-d/mensional, in order to obtain two Riccati equations. Similarly,

the Optimal Projection Equations COPE) that hold in the case of the reduced

order compensator problem, [Hy184], are also hidden in Eqs.(3.3.19-23). The

OPE show that the reduced order compensator problem consists of two coupled

control and filtering problems where the coupling takes the form of an oblique

projection (that is not necessarily orthogonal) [Hy184]. The control gains, filter

gains, and the compensator dynamics depend on the four n-dimensional
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nonnegativesymmetric matrices solutions to the OPE.

The first part of the chapter will be devoted to transforming the

optimality conditions derived in Chapter 3 in order to unveil the structure Of the

Fixed Architecture Control Problem. The structured optimality conditions

become, in particular, the usual CAI_ and FARE when the compensator is

centralized and full order, and they become the OPE in the case of the reduced

order compensator problem. What happens, in that case, is that the control

gains, the filter gains, and the compensator dynamics can be eliminated from the

problem and can be expressed as functions of the matrices P and Q as well as the

parameters of the problem. When the values of G, Ac and K are substituted into

the equations yielding P and Q, one obtains sets of equations which only depend

on P and Q. These equations may be more complex, but they depend on a

smaller number of variables. It will be shown in this chapter that G, Ac and K

can also be found as functions of P and Q, but that one cannot, however, obtain

an analytic expression for G, Ac and K as a function of P and Q, in the case of

the fixed architecture control problem. Hence, one cannot derive equations

yielding P and Q that involve P and Q only, and one must always resort to the

use G, Ac and K as intermediate variables.

The remainder of the chapter focuses on the study of the properties of the

optimality conditions in their original form, since the structured conditions do

not bring any simplification. It will be shown that Eqs.(3.3.19-23) do not define

a well-posed problem. The optimality conditions define the compensator transfer

function, but they do not select any specific realization for that transfer function.

Hence, if ( G, Ac, K) is a particular state space realization of the compensator

transfer function that satisfies the optimality conditions, so will any realization

obtained through a similarity transformation. The solution to the problem is a

class of equivalence, where two triplets ( G, Ac, K) are said to be equivalent if

they realize the same transfer function. The most general problem is, therefore,

singular. The singularity can be removed or reduced in a number of ways...lll

approaches consist of trying to constrain the realization of the compensator

They are of very pratical importance since numerical methods converge faster

when the solution is an isolated point in parameter space.

The last part of the chapter is devoted to showing that the problem can

have solutions which are saddle points. Such an occurrence is very important
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since it shows that the problem is not convex and that the Eqs.(3.3.19-23)may

have more than one solution.

The chapter begins with mathematical preliminaries. They willfocus on

the matrix Lyapunov equation which plays a predominant role in the H_

problem. A theorem about existence and uniqueness of the solution to a linear

system of matrix equations willalso be proven.

4.2 MATHEMATICAL PRELIMINARIES

4.2.1 The Matrix Equation AX - XB - C

Proposition 4.1: Given the matrices A E _{n_ B E _{m_m, X, C E Rn_ the matriz

equation

AX- XB = C

is a linear equation in X. It has a unique solution if and only if A and B have no

common eigenvalues. If A and B share an eigenvalue A, and denoting by ms the

multiplicity of A as a characteristic value of A, and mb the multiplicity of A as a

characteristic value of B, the equation will admit no solution if there e_ists w e

Ker(AI-AT) ma and v E Ker(AI-B) mb such that: wTCv # 0. The equation has an

infinite number of solutions otherwise. •

Proof: The proof can be found in Gantmacher, Chapter VIII [Gan59]. If each

eigenvalue has multiplicity 1, w is a left eigenvector for A and v is a right

eigenvector for B. In the more general case, one has to consider a Jordan

decomposition, and the multiplicity of the eigenvalue has to be taken into

account, z
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Proposition 4.2: The Lyapunov equation:
Rn

0 = AX + XA t + V
nxn (4.2.1)

respectively:

0n, n = ATx + XA + R, (4.2.2)

where A, X, V, R E _a _a, has a unique solution if and only if A does not have any

eigenvalue on the imaginary azia. If V (respectively R) /a symmetric and positive

semidefinite, and _f( A, Vv2)/a stabilizable, (respectively ( R t,'2, A)/_ detectable)

the following statements are equivalent:

i) A U asymptotically stable

ii) X symmetric, and X > 0 •

Proof: The uniqueness of the solution comes directly from Proposition 4.1 for B

= -A T. The proof of the second part of the proposition can be found in [Kai80]

pp 178-179. The present formulation is more general, however, since it does not

insist on X being positive definite. Assume X is singular, and let v be a singular

vector of X. Premultiplying Eq.(4.2.1) by vT and postmultiplying by v yields:

0 = vTVv

V being positive semidefinite, this is is equivalent to:

On = VV'2v (4.2.3)

Postmultiplying Eq.(4.2.1) by v only, one gets:

On = XATv,

implying that the nullspace of X is invariant under A: there must be an

eigenvector of A T, w, associated with an eigenvalue )i , which is in the nullspace

of X. w satisfies Eq.(4.2.3), which implies that the corresponding mode is

uncontrollable. The pair (A,V 1/2) being stabilizable, A is strictly negative. Even

if X is only semidefinite, A is asymptotically stable, c
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4.2.2 Solution to & Linear System of Matrix Equations

Theorem 4.1: Let C, D, X, R be

respectively, C and D symmetric, positive semidefinite.

Ep} be a family of independent matrices on _m_a.

equations:

X = Ex, z, z _ _P

TrEjTcxD = TrEjTR, j = 1,..., p

matrices in _m_n, _,_a, _ffi_a and _mm

Let Ex = { El, E_,...,

Consider the system of

where * follows Definition 3.1, and Ex defines the subspace where X lies.

system is a linear system. It has a unique solution if C and D are definite.

an infinite number of solutions, otherwise, if."

Ker(C) ¢ Ker(K T)

Ker(D) ¢ Ker(R)

Such a

It has

Proof: The proof is deferred to Appendix A.

4.2.3 Generalized Inverses

Definition 4.1:

where U, V E Cam, unitary, Z E _m,_,

elements, r = n-m; Define Xt:

Given X E _in _a, with the following singular value decomposition:

X = U [I] Ore' rl V II

LOr,m 0 r ,r

diagonal, with strictly positive diagonal

[Z-t 0m,r ] U HXt = V[0r, m 0 r,r

Xt is the Moore-Penrose generalized inverse of X [Cam79]. Xt satisfies t,_e
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foUowmg properties:

XXtX = X

(xxt) = (xxt) H
(xtx) = (xtx) H

XtXXt ffi Xt

XtX is an orthogor_l projector parallel to Ker(X), the nu_pace of X.

symmetric, XXt = XtX.

When X is

The properties given in the definition can be obtained simply by inspection using

the singular value decomposition.

Definition 4.2: Consider X E _n,,,, such that X and X2 have the same range.

has then a Jordan decomposition of the following form:

"JlO ...0 O
0 J2""O 0

X=L : ". : L q,

oo°°
where the Ji are nonsingular. Define X # as:

J01"_Oj2-I

X#_.L .

0 0

0 0

X # is the group inverse of X.

x = xx#x

• ..0 O"
• ..0 0

• L. 1

It satisfies:

x # = x#xx #

XX # is an oblique projection on the range of X and parallel to its nullspace.

X
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4.3 STRUCTURED OPTIMALITY CONDITIONS

4.3.1 Eliminating G, Kand Ac from the Optimality Conditions

The resolution of the full order LQG problem can be decomposed into two

successive steps. The first one consists of solving two uncoupled Riccati

equations which can be obtained by simplifying Eqs.(3.3.19-20) and replacing the

compensator gains by their expressions as functions of P and Q. The solutions to

the Riccati equations can then be used to obtain the optimal gains. If one desires

to generalize the procedure to the constrained problem, one must be able to find

analytic expressions of G, Ac and K as functions of P and Q. Sections 4.3.1.1 and

4.3.1.2 show how G, K and Ac are defined, and in most cases uniquely, as

functions of P, Q and the parameters of the problem. A preliminary derivation

consists of partitioning of Eqs.(3.3.19-20). They become:

On= n =qooA T+Aqoo+BGqco+qocGTB T÷V

On=no = qocAcT + Aqoc ÷ BGqcc ÷ qooCTK T

Onc=n = qcoAT + Acqco + KCqoo + qccGTB T

Onc=nc = i]eckc T + Acqcc + KCQoe + QcoCTKT + KVcKT

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)

0
nxll

0
nxn c

0
nc_n

= PooA + ATpoo ÷ PocKC ÷ cTKTpco + R

= PocAc ÷ ATpoc+ PooBG + cTKTpcc

= PcoA ÷ AcTpco ÷ PccKC + GTBTpoo

Onc=nc= PccAc ÷ AcTpcc ÷ PcoBG ÷ GTBTpoc + GTReG

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.s)
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4.3.1.1 $91vinE for _ _md K

Proposition 4.3: The system of equations consisting of the architecture constraints

and the optimality conditions for the control gain G, Eqs.(3.3.17):

G ffi EG.g,

0 = TrEgiT(RcGQcc + BTM0c), i = 1,...,rig

and the system of equations consisting of the architecture constraints and the

optimality conditions .for K, Eqs. (3.3.18):

K-- EX, ,

0 - TrEktT(pccKVc ÷ Mc0cT), i -- 1,...,n k

always admit at least one solution. Given P and Q, it is always possible to find G

and K that satis_ the optimality conditions of Eqs.(3.3.17,18) as well as the

architecture constraintz defined in Section 3.3.1.1. •

Proof: The problems satisfied by G and K are similar to the one covered by

Theorem 4.1. One must check that their right hand sides satisfy the rank

conditions expressed by Eq.(4.2.5). The following lemma must be proven first:

Lemma 4.1: The foUou_ng statements hold as long as P an Q are nonnnegative:

Ker(Pcc) Ls included in Ker(P oc).

Ker(Pcc) is included in Ker(G).

Ker(Pec)/s the unobservable subspace of(G, Ae).

Ker(Qcc) is included in Ker(Qoc).

Ker(Qee) is included in Ker(KT).

Ker(Qee) _ the uncontrollable subspace of(Ae, K).

Proof: Let v E Ker(Pcc): Pccv = 0nc Consider the following vector X:

=f-P0ov1
X L av j,aE_

P being positive, xTpx is always nonnegative. Developing xTpx:

xTpx = vTpocTpooPocv - 2ovTpocTpocv

The expression is positive for all c_ if and only if Pocv = On. Thus v E Ker(Pcc)

and Ker(Pcc) C Ker(Poc).
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Pro and postmultiply now Eq.(4.3.8) by v T and v. Because both Pccv =

0no and P0cv = On, we get that vTGTRcGv = 0. Rc being positive definite, Gv =

0m and v E Ker(G): hence, Ker(Pcc) C Ker(G).

Postmultiply now Eq.(4.3.8) by v. Since Gv = 0, Pccv = 0no, and P0cv =

On, this implies that PccAcv = 0no: Ker(Pcc) is invariant under Ac. Ker(Pcc) is

therefore an invariant subspace of Ac, and every vector in this subspace satisfies

Gv = 0m. Thus Ker(Pcc) is included in the unobservable subspace of the pair

( G, Ac). Similarly, consider v such that Acv = Av and Gv = 0m. Pro and

postmultiplying Eq.(4.3.8) by v T and v yields 2AvTpccv = 0. If A $ 0, Pcc being

positive, Pccv = 0no and the unobservable space of ( G, Ac) is included in

Ker(Pcc). If A = 0, post multiplying Eq.(4.3.6) and Eq.(4.3.8) by v yields:

On = ATp0cv ÷ cTKTpccv

0no" GTBTp0cv + AcTpccv

These last two equalities can be written more succintly as:

01,i_= vT[Pco Pcc]Acl

Acl being assumed strictlystable,this implies that Pccv = 0nc and P0cv = 0z:

Ker(Pcc) isthe unobservable space of (G, Ac). The restof the lemma isobtained

by duality. This ends the proof of Lemma 4.1. []

Checking Eq.(4.2.5) on the two systems is now obvious once M0c and Mc0 have

been developed according to Eqs.(3.3.2). This ends the proof of Proposition 4.3.

4.3.1.2 Solvine for A,

Ac does not appear explicitly in the optimality conditions Eq.(3.3.21). A system

of equations similar to that of Theorem 4.1 can however be obtained. The

combination Eq.(4.3.7)Qoc ÷ Eq.(4.3.8)Qcc yields:

0nc=n c
= PccAcqcc+Pc0Aq0c ÷ PccKC{_0c+ Pc0BGqcc +

+ AcT(Pcoq0c + PccQcc) +

+ GT(RcG{_cc+ BT(Pooqoc + P0cQcc))



or, using Eq.(3.3.2) and Eq.(3.3.9):

Onc,n c = PccAcqcc ÷ PcoAqoc ÷ PccKCqoc + PcoBGqcc ÷

+ ATLAc + GTLG

Similarly,the combination Pc0Eq.(4.3.2) + PccEq.(4.3.4) yields:

Onc.n c PccAcqcc ÷ PcoAqoc + PccKCqoc + PcoBGqcc +

+ LAcAT + LKTK

Ac being block diagonal,itcan be written as:

Ac " _" IIiTAiIIi
i,I

where Hi isdefined in Section 3.2.3. Similarly,G and K can be written as:

P

G = Y, _ ormTGijl"[j

j=1 iEUj '
P

K = P, P. IIiTKij_.

i=ije31 J

Hi and _. satisfythe following properties:
I

IliHjT=0nlxn j if i_j,

= Ini if i = j,

7rk_kT = 0 if i _ j,
i j

=i if i=j, (4.3.11)

Using the expanded forms of Ac, G and K, and using the optimality conditions of

Eqs.(3.3.21-23),one obtains the following expression by pre and postmultiplying

Eq.(4.3.9)by Illand HiT:

- Hi T '
0nixn i- Hi(PccAcQcc + Pc0BGqcc + qccKCP0c) i = I,...,p
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or equivalently:

TrEajTpccAcqcc = -TrEajT (PcoA q oc÷ PccKCq0c + PcoBGqcc)

j ----1," • • ,n a (4.3.12)

The same system is obtained by pre and postmultiplying Eq.(4.3.10)by Hi and

IIiT. This system issimilarto that of Theorem 4.1 and willproduce Ac.

Proposition 4.4: The system of equations consisting of the architecture constraints

and the modified optimality conditions for Ac:

Ac = EAc*aC,

TrEaiT(PccAcqcc) = -TrEaiT(Pcolqoc + PcoBGqcc + PccKCqoc),i = 1,...,n
a

always admits at least one solutior_ Given P, and Q, G and K can be computed

(Proposition 4.3), and, consequently, Ac can always be determined. •

Proof: the proof is exactly similar to that of Proposition 4.3. Lemma 4.1

guarantees that the rank conditions are met. When the compensator is

uncontrollable or unobservable, the dynamics of the corresponding mode is

arbitrary. Its choice must correspond to a stable mode if one wants the overall

closed loop system to be stable.

O
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4.3.2 Structured Optimality Conditions

Proposition 4.5:

stable:

Poc = PocPcJPcc

Pco = PccPcctPco

Qoc = QocQcctQcc

Qco = QccQcctQco

• The following matriz equations hold if Acl /s asymptotically

(4.3.13)
(4.3.14)
(4.3.15)
(4.3.16)

Proof_ From the properties of the generalized inverse seen above, we know that

PcctPcc is an orthogonal projection parallel to Ker(Pcc). Eq(4.3.13) is equivalent

to showing that the nullspace of Pcc is included in that of P0c. This result

follows from Lemma 4.1. Similarly, Eq.(4.3.15) follows from lemma 4.1 and

Eqs.(4.3.14,16) are just transposed forms of Eqs.(4.3.13,15). a

Theorem 4.2: Problem 3.1 has a solution if there ez/sts P, Q, P, (_ E _nxn

symmetric positive, Pcc and Qcc E [Rncrac symmetric positive, as well as _ and

r fi IRn_uc and G, Ac and K such that:

0 n=n = AQ÷qAT÷V_Q÷ ( _KVc_C T) Vcl( _KVc_C T) T (4.3.17)

Onxn

Onxn = ATp÷PA+R-PEP÷(FGItc-PB)Rct(FGTRc-PB)T (4.3.18)

= Aq÷qA T+ @qccGTBT+BG qcc_ T÷ q]_q_ (_KVc_qC T) Vct(CKVc-qCT) T

Onxn = AT_÷_A+FPccKc÷cTKTpccrT÷pzp_(FGTRc_PB)RjI(FGTRc_pB)T

(4.3.19)

(4.3.20)
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Oni=l

0 = (fc+KC_) qcc+qcc(Ac+KC@)T÷KvcKT
nc,,nc

Oncznc = (Ac+FTBG)Tpcc+Pcc(Ac÷rTBG)+GTRcG

Onix -- Inc rT_ ccIIiT ...ni IIiPcc( + )q i=I, ,p

i - l,...,p

= IIiPcc[K¥c+ [(Inc+ FT¢)qcc#T+rTq]cT]Tr!T,jeYiJ

i= 1,...,p

Oni,,ni= IIiPcc(Ac+ FTA@ + FTBG+Kc@)qcJIiT , i= l,...,p

(4.3.21)

(4.3.22)

(4.3.23)

(4,3,24)

Proof: the proofis

P

Q
P

Q

a matter of algebra. Define the followingmatrices,

= Poo - PocPcctPco

- Qoo - QocQcctQco

- PocPcctPco

- QocQcctQco

= QocQcc t

r - PocPcct

(4.3.27)

(4.s.2s)
(4.3.29)
(4.3.30)

(4.3.31)
(4.3.32)

(4.3.33)

(4.3.34)

Eq.(4.3.17) = Zq.(4.3.1)-Zq.(4.3.2){]cctqco- qocQcctEq.(4.3.3), as well as

using Eq. (4.3 _4) to eliminate Ac and Proposition 4.5 to regroup terms.

EQ. (4.3.18) = Eq.(4.Z.5)-EQ. (4.3.6)PcctPc0 - P0cPcctEq. (4.3.7), as well as

using Eq. (4.3.8) to eliminate Ac and Proposition 4.5 to regroup terms.

Eq.(4.3.19) =Eq.(4.3.1)-Eq.(4.3.17).

EQ. (4.3.20) = EQ. (4.3.5) -Eq.(4.3.18).

Eq.(4.3.21,22) = Eq.(4.3.4,8).

Eq.(4.3.23) = Eq.(3.3.21).

EQ. (4.3.24,25) = Eq.(3.3.22,23).

Eq.(4.3.26) = Eq. (4.3.12). o
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The full order LQG problem and the reduced order LQG problem are both

specific cases of the fixed architecture LQG problem, and both satisfy

Eqs.(4.3.17-26). The optimality conditions are not so complicated in those cases:

we shall now show how the increasing specificity of the architecture increases the

coupling between the different optimality conditions.

4.3.2.1 Full Order LOG

The architecture parameters for the full order compensator problem are: p = 1,

nc = n, IIl = In. Eq.(4.3.23) becomes:

In =-rT_

Eq.(4.3.24,25)become:

G = -Rc'IBTp@

K = -rTqCTVc -1

This implies that the two positive terms in Eqs.(4.3.17,18)are zero and the two

Riccati equations decouple. P and Q satisfy:

On,n= AQ+ QAT+ v- q q

On,, n ' ATP + PA + R - PZP

Eq.(4.3.26) becomes:

Ac=-rT(A- BG - ZC)_

The solution is the classicLQG solution with the two independent Control and

FilterRiccati equations. The choice of _ and r such that rT@ = -In correspond

to choosing differentstate space realizationfor the controller. Eqs.(4.3.21,22)

allow one to compute the optimal cost by producing Qcc and Pcc.

4.3.2.20utimal Pro iectionEqu_ttion

The OPE corresponds to p = I and nc < n.

Eq.(4.3.23)becomes:

In ---rT_
C

As shown in [Hy184], Eq.(4.3.23) implies that the matrix r = T e ran..is

idempotent: r2 = r. ris therefore a projection operator. I' and q, being two nxn_.
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matrices, the rank of r is at most no.

G : -itc'lBTp_

K = -FTqcTvc'I

Defining

it follows that:

r =In-r
.£

= In + _r T

Eqs.(4.3.24,25) become:

_,KVc-.._C T- --rqC T

rGRc-PB = --r TpB
2.

The modified Riccati equations Eqs.(4.3.17,18) and

Eqs.(4.3.19,20) become:

On, n = Aq + qAT + V - q_q + r,q_,qr. T

Onl n = ATp + PA + It- PEP + _TpEPr,

Onxn = (A-PZ) q + q(A-Pz)T + q_q _ _q_.qr, T

On,n = (A- q)Te + P(A- q) + PEP-r.TpEPr.

the Lyapunov equations

(4.a.3s)

(4.3.36)

(4.3.3r)

(4.3.38)

The projection operator appears when combining Eq.(4.3.23) and Eqs.(4.3.29,30).

From Eq.(4.3.23) the projection is:

r = --QocQcctPcctPco

The product QPis, Eqs.(4.3.29,30):

QP = QocQcct(QcoP oc)PcctPco

Thus, r can be found using the group inverse of (_{',Definition4.2,

(4.3.39)

By reducing the order of the compensator, one has introduced some coupling

between the control and the filter problem. The separation principle does not

hold anymore and one has to find the optimal oblique projection that couples

control and filtering. Both problems have to be solved simultaneously. The

dynamics of the compensator is simply obtained using Eq.(4.3.26). It yields

simply:

Ac = -FT(A - EP - Q_'_'I, (4.3.40)
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4.3.2.3 The Decentralized Fixed Order Control

We consider here the Decentralized Control Problem where K and G are block

diagonal as defined in Section 3.5.3. This is the simplest form of constrained

architecture in that G and K are block diagonal and can be computed from

Eqs.(4.3.24,25) using simple matrix algebra. Since the control consists of

independent loops, it can be shown, [Ber87b], that one can define p optimal

reduced order problems and p projection operators. Each subcontroller satisfying

the optimality conditions, it is optimal for the system composed of the original

plant with the remaining control subcontrollers closed. Each independent

compensator satisfies therefore the Optimal Projection Equations Eqs.(4.3.35-39)

for the modified plant. Each subcontroller cannot be designed individually since

the system on which the local loop is closed is the original plant with the

remaining subcontrollers closed. There is, therefore, some loop coupling

introduced in the problem. More precisely, Eq.(4.3.23) becomes:

0nixn i = HtPcc(Inc+rT@ ) qccIIi T, i-l,. • .,p

The set of equations is not enough to completely determine r and @. The

optimal gains G and K are block diagonal Eqs.(3.5.1,2), G = blockdiag(Gl,

G_,...,Gp), Gi E _mixni, and K - blockdiag(Kl, K2,...,Kp), Ki E _ nixli

Eqs.(4.3.24,25) can be regrouped and written in matrix form as:

[ ] -Gi =-Ri'IBiT P_ + rPcc(In+ rT#)) qccHiTq_1
C

Zi =-PiiIIIiPcc[rTq + (Inc+ rT@)qcc@T] ciTvi"I

Gi and Ki can be eliminated in that case, but an overlapping decomposition of

the sensors and actuators among processors resultin the more general systems

described by Eqs.(4.3.24,25)whose solutionsrequire the use of Theorem 4.1. The

dynamics of the compensator Ac is found solving Eq.(4.3.26) which cannot be

simplified. All the blocks must be determined at once (Proposition 4.4) unlike in

the centralizedcase which resulted in the simple expression of Eq.(4.3.40). Two

mechanisms couple the problem. The 5rst form of coupling appears between the

modified filterand control Riccati equations as (@KVc-_CT)Vc_(_i_Vc-QCT) T and

(rGTRc-PB)Rc_(rGTRc-PB) T in Eqs.(4.3.17,18). The second form of coupling

appears as loop coupling in the form of Pcc(Inc+rT@)Qcc which arises in
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Eqs.(4.3.24,25). G and K can be solved as functions of P and Q and eliminated,

but this will not result in a simple matrix expression. Pcc and Qcc do not

dissappear as the in previous cases. It indicates the coordinations between the

subcontrollers. Ac is required to solve for Pcc and Qcc. The structured form of

the optimality conditions does not give rise to a decomposition of the optimality

conditions as it was the case for the full order and for the reduced order LQG

problem. One must solve simultaneously two modified Riccati equations coupled

through four Lyapunov equations, and the control parameters must be found as

well.

4.4 PROBLEM SINGULARITY

4.4.1 Cost Invariaace

The necessary conditions for optimality as they appear in Eqs.(3.3.19-23) form a

singular system of equations. In order to prove that fact, it will be shown that

certain transformations on the control variables leave the cost unchanged.

Theorem 4.3: LeG N E [Rnc'nc be block d_agonal

N = blockdiag( N1, N2,..., Np),

where Ni E _nixni, invertible. Also define _q as:

i_ ffi blockdiag(In,N)

The La_ang_an L is inrariant under _he transformation:

G=GN

tc = N'IAcN

K = N'IK
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Proof: Acl and Rcl and Vcl respectivelybecome:

Vcl = N'IVcIN"T

Rcl-  zP,clN

Twice the Lagrangian of Eq.(3.2.6)becomes:

GN, NdAcN, SdK, _Tp_, _.lq_.T) =2 L(

TrI(N'lqN'T) (NTIclN) + (NTpN) (N'IVclN'T)+
t.

_- + Tr( TPV   -T) +

÷ Tr(N'IAclqPN) + Tr(_TAcITpqN "T)

= Tr(NN'lqRcl) . Tr(PVclN'TNT) +

÷ Tr(NN'IAclQP) ÷ Tr(AclTPQN'TN T)

= Tr(qRcl ÷ PVcl ÷ AclqP + PqAclT)

= 2L( G, Ac, K, P, q)

The transformation N consists of changing the internal realization of each

subcontroUer. Theorem 4.3 shows that the cost is invariant under such a

transformation. Consider now that each Ni has the form:

Ni(e) = I + el[i,

where Mi E _ni_ni is any nixni matrix. For e sufficientlysmall Ni isinvertible.

The differentialof Ni with respect to e isNi e = Mi. Hence, N e = blockdiag(M1,

M2,,.. ,Mp) and R e = blockdiag(0nxn,Ne). One can write:

L(e) = L(GN(e),N(e)'IAcNCE),N(e)'IK,Nce)TpN(e),N(e)'lqN(e).T)

Consider further that P, Q, G, Ac, K satisfy the two Lyapunov equations

Eqs.(3.3.19,20). Then, P(e), Q(e), G(E), Ac(E), K(e) satisfyEqs.(3.3.19,20)for

allE. Indeed, pre and postmultiplying Eq.(3.3.19)by I_T:

= _TAcIT(_-T_T)pN _..NTp(_N-_)AcI_ ÷

= Acl(e)TP(e) ÷ P(E)AcI(_) + Rcx(_).

NTRcIN

Hence P(e) satisfiesEq.(3.3.19)forall_. The proof for Q(_) issimilar.

Theorem 4.3 statesthat L(e) isconstant. Expanding L(e) to second order
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and using the matrix differentiation rules, one gets:

O= E[Tr(LTG_) + Tr(LIcAc_) + Tr(LTK_)] +

1T
+ _2ITr(L_G_)+TrlLIclCeE)+Tr(LTKe_)+ _L_I

where _ isdefined by Eq.(3.3.24) and where L_ of Eq.(3.3.25)is the Hessian of

the Lagrangian as calculated in Sect.3.3.4._e is the partialderivativeof _ with

respect to e. The Hessian calculated in Section 3.3.4 iscomputed assuming that

P and Q vary as functions of G, Ac and K such that Eqs.(3.3.19,20)are always

satisfied. Such is the case for P(E) and Q(6), which is the reason why L_ is

used. Expanding to second order,N and N-t become

N = I+_Ne•0(_s)

N-L= I-_N +_2N_+ 0(_)
Expanding G(E), Ac(_) and K(e) next, one obtains the following partial

derivatives:

Ace- AcN_ - N_Ac

_E = -NE£

(_CC= Omxnc

A%E - --NeAcN_+ N_Ac

Kee = N_K

G(_), Ac(_) and K(e) stillsatisfythe architectureconstraints. It follows that the

matrices G_, Ace and K e are in the matrix subspaces defined by the architecture

and one can define a vector _e using the notation of Definition3.1 as:

_ = A%,Sic (4.4.2)

Ke*E K

Hence, to second order:

0= _ [TrLATcIAcN_-N_Ac)+ TrLGTGN_-TrLKTN_K 1 +

T

+ O(e3) (4.4.3)
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where N_ is any block diagonal nc x nc matrix of the form: Nc

particular, this implies that the _ term must be zero, or:

= i!lIIiTNiIIi. In

This actually corresponds to the restriction of the difference Eq.(4.3.9) -

Eq.(4.3.10) to its ith diagonal block. Once Lp and LQ are zero, LG, LAc and L K

satisfy Eq.(4.4.2) which regroups nl _ + n_2 + ... + npS equations: the necessary

conditions Eqs.(3.3.19-23) are therefore singular.

4.4.2 Minimal Set of Variables, Minimal Set of Equations

Singular problems are very difficult to solve numerically. One would like to

reduce the number of variables as well as the number of optimality conditions

such that the new system of equations has isolated solutions. The transformation

should yield the remaining control parameters as a function of the reduced set of

variables and the optimality conditions not retained in the reduced problem

should be satisfied as well.

P and Q should be eliminated since they regroup a large number of

variables - 5(_÷1) variables when one enforces the symmetry of P and Q - and

since they satisfy Lyapunov equations for which reliable numerical methods are

available. One must try to constrain G, Ac and K and eliminate some of the

conditions in Eqs.(3.3.21-23). Eq.(4.4.4) will then be used to check that all

optimality conditions are met. The following subsections present three different

ways of choosing the variables and the optimality conditions to reduce the

singularity of the original formulation.
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4.4.2.1 MIMO Controller Canonical Form

Proposition 4.6: The follo_ng subset of the optimality conditions

05_ii ffi AclTp ÷ PAcl + Rcl

0iixfi = Aclq + qAcl T + Vcl

0ni=l -- Mii _jiT, j -- ni-li+l,...,ni

01xni = X_LGIIi T, j e//i

is equivalent to the full net of conditions Eqs.(3.3.19-23)

subcontroUer is in Controller Canonical Form,

Ac = blockdiag(At, A2,..., Ap),

Ai= L['[AllAl2Iri0rixli]]'AnE_lixri'At2E_li"li'ri ni-li

li= number of sensors aaaoaated with aubcontroUeri,

nat
Ki. = 7r." , ni b_ 1 column vector with all elements zero except the jth

whichJ ia 1, _(ij-" filter gain of the jth sensor aasociated with the i th subcontroller.

provided that each

Proof_ before the main proof is derived, the structure of the ith subcontroller will

be detailed. Regrouping the sensor signals received by the ith subcontroUer into a

li dimensional vector Yt and, similarly, regrouping the corresponding filter gains

Kij into the matrix Ki, the dynamics of the compensator become:

Xi = AiXi + KiYi, Ki E _nixli,Yi E _lixl

The structure of the compensator retained in Proposition 4.6 corresponds to the

MIMO Controller Canonical Form, [Kai80], for the pair (Ai, Ki). Ki and Ai

become:

ri'ri'

li ri li

where I and 0 are the identity and null matrix of suitable dimension. The
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necessary conditions retained for the problem are:

Eqs.(3.3.19,20),

Eqs.(3.3.22), complete set

The lastlicolumns of Eq.(3.3.21)

We must show that:

The ni-lifirstcolumns of Eq.(3.3.21)are satisfied

Eq.(3.3.23)issatisfied

Expanding Eq.(4.4.4),

Onixn t = |iiTAi -- Aillii T , IIiGTLGIIi T -- IIiKLKTIIi T (4.4.5)

Since Eq.(3.3.22) is entirely satisfiedand

term IIiLGTGIIiT drops out.constraints the

being satisfied,Mii is:

since G satisfiesthe architecture

The last li columns of Eq.(3.3.21)

Mu = [M 0ni=li],M e _ni.ri

Regrouping the LKu in a matrix LKi E _nixli likethe Kij were regrouped in [(i,

the term IliKLIIliT becomes simply KiLKTi:thisfollows from the fact that terms

involving elements of LK not associated with sensors used by loop i drop out

since they get multiplied by zero entries of K. Expanding Eq.(4.4.5) in block

form:

T

0nixni-_0 ]
lixni

Ai-

Ir i Ori,1 i

xoTA,l _ FA,,'TIi,<i ,,j- (4.4.6)

Assume li _)ri. Then, the last ri rows of Eq.(4.4.6) directlyyield M = 0ni,ri

Looking back at Eq.(4.4.6),one gets that LKi= 0ni_li.

If li < ri, then define di = ri-li and partition M as M = [Mx Ms], -M1

[Rni'li, Ms E _,ni,,di. The last ri rows of Eq.(4.4.6) become:
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[12T i1 FliT1

Notice that the two matrices in Eq.(4.4.7) do not share the same block

partitioning: the first one has a dixni and a lixni block, the second matrix has a

lixni and a dixni block. If li _> di, then M_ is zero. When li < di, M2 has the

form:

M_ = [ml m_...mj 0ni_li], j = di-ti, mk E _ni, column vector.

The li+l th row of Eq.(4.4.7), counted from the bottom, is simply mj T 01xni"

Hence, Ms becomes:

Ms = [ml m2.'.mj-i 0ni,,li+l ].

Repeating the process, one can show that Ms is zero. Consequently M1 is zero,

and using Eq.(4.4.6), LKt is zero.

Subcontroller i being in MIMO Controller Canonical Form, ni 2 parameters

are fixed: they correspond to the nt-li last rows of the matrix At as well as all

the entries of Ki. Similarly, the number of equations have been reduced:

Eq.(3.3.23) has been completely relaxed and Eq.(3.3.21) has been reduced. These

equations are, however, satisfied as soon as the remaining necessary conditions

are met. Notice, however, that, whereas the last li columns of Mii are set to

zero, some of the first columns of Mii are given as linear combinations of the last

columns, as seen in the proof. The coefficients of the linear combinations are

elements of the matrix Ai. The level of accuracy in setting the first columns of

Mii to zero will, thus, correspond to the level of accuracy to which the last

columns are set to zero, multiplied by a gain which is of the order of the

maximum element of Ai. The level of accuracy at which L K is set to zero will

also be an amphfied version of the accuracy imposed on the last columns of ,_iii

Hence, the values of Ai will be very influential in controlling the overall

numerical accuracy of the solution using the MIMO Controller Canonical Form

A second shortcoming, but less critical, is that it is not possible to accommodate

loops with more sensors than internal states. Indeed, if they are more sensors

105



than they are internal states in the compensator, the matrix Ki will have more

columns than rows and it will not be possible to put it in the canonical form

specified in Proposition 4.6.

4.4.2.2 MIMO Observer Canoni¢_d Form

Propoaition 4.7:

0ii=i i = AclTp * PAcl + Re1

0iixi I = AclQ ÷ QAcl T * Vcl

Ol=ni = Ir_iMil,

Oni=l = IIiLK_jT ,

The follo_ng subsetof the optimalitycondi_o_

is equiraler_ to the full set o/ conditior_ Eqs.(3.3.19--23) prodded that each

subcontroller is in Observer Canonical Form,

Ac = blockdiag(At, A2,..., Ap),

FA,,Ir i
], Au E IRri=mi, A_I E _mi=mi ri = ni--mi

Ai = [1_1 0mi=r i

ml = number o/ actuators azsodated urithsubcontrolleri,

Gij- _t, 1 by ni row rector with all elements zero ezcept the jth which is 1,

Gij- control gain o/the jth actuator associated with the ith subcontroller.

Proofi the proof is the dual of the proof of Proposition 4.6. If we regroup all the

actuator gains in one matrix Gi, then (Gi, Ai) is in MIMO Observer Canonical

Form:

mi ri mi ri

Eq.(3.3.21)isonly partiallyenforced.Mii has the form:

1
Again, ni 2 parameters and ni 2 equations have been eliminated. The parameters
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are the ni-mt last columns of At and all the entries of Gt, and the equations are

the first nt-mt rows of Eq.(3.3.21) and the entire set of Eq.(3.3.22).

The shortcomings of the Observer Canonical Form are similar, or dual, to

those of the Controller Canonical Form. The main one is the sensitivity of the

accuracy which cannot be controlled, and the second one is the fact that one

cannot have subcontrollers with more actuators than internal states.

4.4.2.3 MQdal Form

Proposition 4.8: The fogo_ng subset of the optimality conditions

0ft. fi = AcITP + PAcl + Rcl

0fi.fi= AcIQ + QAd T + Vcl

01xni-- 7r_LGHi T,

Oni.1 = IIiLK_T,

0 = Mii(k,,k2),k_ even, kl= kr--l,k_,

0 - Mii(ni,ni)/fni/s odd

is equivalent _o the full set of conditions Eqs.(3.3.19-23)

subcontroUer u in "real modal form":

Ai = blockdiag(Ait, Ai2, ...,Air, air,l),

Aii E _2=2, air,t E [R ifni odd,

provided that each

Proof: Eqs.(3.3.19,20,22,23) are all satisfied. Ac is almost in modal form: it is in

real modal form if each 2.2 blocks have complex conjugate eigenvalues. Such a

representation will be called the "real modal form" of the compensator. Each Ai

has the form:
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Ai

0
0

0
0

11ajl)] 0 0 ... 0 0 00 0 ...0 0 0

0 rai_lai_2_ 0 0 0
0 [I 0J 0 0 0

o o o
0 0 0 LI oJo
0 0 0 0 0 air,

Repeating the partitioningof Ai on Mii,one gets2_2 blocksalong with 2,1, i_2,

and a 1,.I blockifni isodd:

Mii -

"Xll XI2 "'" Xlr Xlr,l
X_I X_2 '" X_r X2r÷l

Xrl Xr2 "'" Xrr Xrr,l

_r÷llXr,12"" Xr,llXr,lr_:

Expanding Eq.(4.4.5) in block form, the off-diagonal block equations become:

0 -- XkjTAik - AijXkj T, (4.4.8)

where 0 is 2,,2, 2xl or 1,.2 depending on the block being considered. Assuming

that no two blocks Aij and Aik have the same eigenvalues, Proposition 4.1

implies that Xkj ---- 0. Looking now at a diagonal block element, the conditions

satisfiedby Mii statethat ifXkk ----VX11 XL2] then x1_ ffi0,x2_ ffi0. Ifk = r,-1,
LX_l x_j'

they statethatXkk = 0. The kth diagonalblockof Eq.(4.4.5)becomes:

0 = XkkTAik - AikXkk T

Ifk = r÷l,Xkk -" 0. For i _ r÷l:

Looking at the lastrow immediately yieldsx_1--0 and x2_ - 0. Hence, as long

as no two block Ai and Aj share a common eigenvalue,the matrix Mii is

identicallyzero. All the optimality conditions are, therefore,satisfied
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The variables describing Ai correspond to the ones used in [Ly85]. Their

number is ni. The set of variables is not minimal: it is indeed possible to scale G

and K without modifying the cost or changing the structure of Ac. One must fix

the scaling in order to have a unique modal realization. This operation does not

lead to a simple elimination of some elements in G and K and it is not useful at

this stage to go farther. The modal description reduces the number of degrees of

freedom that exist to change the realization of one subcontroUer from ni _, for the

i th subcontroller, down to ni.

Eq.(4.4.8) is obtained from Eq.(4.4.5) by assuming that LG and LK are

equal to zero, or similarly, by assuming that Eqs.(3.3.22,23) are satisfied. Of

course, one cannot satisfy these equations with infinite accuracy and in practice

LG and LK. will not be exactly zero. Hence the left hand side of Eq.(4.4.8) will not

be exactly zero but equal to a residual given by Eq.(4.4.5) and which is

Hi(KLK T - GTLG)Hi T. The accuracy of the error on off-diagonal block elements of

Mii consequently corresponds to the accuracy at which Eqs.(3.3.22,23) are

satisfied, times a gain which depends on the magnitudes of G and K, times a gain

corresponding to the inverse transformation that yields Xjk in Eq.(4.4.8). The

gain corresponding to the invertion of Eq.(4.4.8) can be very important if the

eigenvalues inside one compensator are small, and if their difference is small as

well. When one eliminates the redundant equations, the only means for

controlling the accuracy of the equations that have been eliminated is to tighten

the error on Eqs.(3.3.22,23), but such a process may be unsuccessful if the gains

mentioned above are really large.

4.4.3 Singularity of the Hessian and Existence of Saddle Points

First order necessary conditions only show that a point is stationary: the

variation of the Lagrangian with respect to the problem variables will be zero to

first order at that point. One must look at the second order conditions to

conclude on the nature of the stationary point. In this section, we will first show

that the Hessian is singular if one does not use a minimal set of variables. We

will also show that some solution points can be saddle points. This last

characteristic is linked to the controllability and observability of the controller.
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4.4.3.1 Sin a,ularitv of the Hessian

The first order term in _ in Eq.(4.4.3) is zero at a stationary point.

Eq.(4.4.3) becomes:

O= TrLIc(N_Ac-NeAcN_) - TrN_KLT + _ _eTL_e

Hence,

where N E

to Ac.

structure and constitutes, therefore, an admissible perturbation for Ac.

TrLIc(N_Ac--NeAcNe) is zero. Similar argument shows that TrN_KLT is zero.

stationary point, L_ satisfies:

0 = _ETL_,

and _e are given in Eqs.(4.4.1,2). N e is a block diagonal matrix similar

Hence, the matrix N_Ac-NeAcN ¢ shares the same block diagonal

Thus

At a

where _ is defined by Eq.(4.4.2).

turn implies that:

If the stationary point is a minimum, this in

0 = L_, (4.4.9)

Every _ obtained by changing the realization of the compensator following the

transformation of Theorem 4.3 is in the nuUspace of L_. In order to find a lower

bound on the dimension of Ker(L_), one can count the number of linearly

independent such vectors _ that can be generated using Eq.(4.4.2). The next

theorem shows that they are, in fact, all linearly independent.

Theorem 4.4: Let the compensator (G, Ac, K) be a solution to the optimal fized

architecture control problem (Problem 3.1). The Hessian L_ is singular and its

nullspace has a dimension greater or equal to nl _ + n2 2 + ... +np 2 •

Proof: consider a transformation N(E) as defined in Sect.4.4.1 such that:

N

is only one processor in the feedback loop.

0m,,n c = GNe (4.4.10)

0nc.n c = -N_Ac + AcN_ (4.4.11)

0ncxl = -NK (4.4.12)

is block diagonal. For simplicity sake, it is assumed that p = 1 and that there

If there is more than one processor,
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one can consider one compensator at a time and augment the plant with the

remaining loops. The proof can then be worked out for each compensator

successively.

Let ()_,v) be a pair of eigenvalue and right eigenvector of Ac corresponding

to an observable mode. Eq.(4.4.11) implies that Nev is an eigenvector of Ac as

long as N_v is not zero. Postmultiplying Eq.(4.4.10) by v would imply that

GNev -- 0 and that the mode ()_,Nev) is unobservable, which is contrary to the

hypotheses. Hence, Nev = 0 for every right eigenvector of Ac. If ,_ corresponds

to a Jordan block of size r for Ac, consider v such that (v, Acv,"-,Acr'lv) spans

the invariant space of Ac associated with ,_. Eq.(4.4.11) implies that (N v,

N_Acv,.. ",N_Acr'lv) is an invariant subspace of Ac associated with ,_ and

Eq.(4.4.10) implies that this subspace is unobservable: Nev, NEAcv,.. ",N_Acr'tv

must therefore be zero. If ,_ corresponds to a controllable mode, then, calling w

the left eigenvector associated with ,_ and using Eq.(4.4.12), wN_ = 0. If

corresponds to an irreducible block of size r for Ac, there exists w such that w,

wAc,...,wAc r'L spans the invariant subspace of Ac associated with ,_ such that

wNe, wAcNe,...,wAcr'lN e are all zero. Eq.(4.4.11) implies that N E and Ac share

the same invariant subspaces. It has just been shown that if a mode is either

controllable or observable, N_ is zero on that particular subspace. Therefore, if

each mode is either controllable or observable, N_ is zero. Hence, the vectors _E's

form an independent family of vectors. We have to consider now the

unobservable and uncontrollable modes. A nonzero transformation N such that

N_ satisfies Eqs.(4.4.10-12) has the same invariant subspaces as Ac (Eq.(4.4.11))

Satisfying Eq.(4.4.10) and Eq.(4.4.12) implies that N e corresponds to scaling the

uncontrollable and unobservable states. This means that the corresponding _

vector will be a linear combination of the remaining _'s. However, the

transformation that corresponds to changing the eigenvalues of the uncontrollable

and unobservable modes is one that leaves the cost unchanged. This

transformation is independent from the others and one has a new independent

vector to complete the nullspace of L_. Finally, counting the number of

different possible linearly independent transformations N E, one finds that :he

dimension of the nullspace of L_ is nz 2 * n2 2 + . .- + np 2.
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Theorem 4.3 guarantees that the cost is invariant to all orders when the

realization of the compensator is changed, but its transfer function is conserved.

Hence, the problem is under-determined. +The singularity of the Hessian

uncovered in Theorem 4.4 corresponds only to the freedom of choosing one

representation of te compensator transfer function. The problem is truly

singular, or admits a critical point, when the Hessian has an extra zero eigenvalue

that does not correspond to a change in the compensator realization.

4.4.3.2 Existence of Saddle Pgint0

We consider in the following that there is a single compensator in the feedback

loop and that G, Ac and K are block partitioned as follows:

G = [G, G2], A= = A_J' K "

The triplet of matrices (G, Ac, K) can be expanded on a basis of matrices

(Definition 3.1) and is completely defined by a column vector _ containing the

free entries of G, Ac and K. Assume that _ is formed in the following fashion:

u111

• _ I

y! !

f ffi a2tl (4.4.13)
t;2 I

0,121

Y2 1

. o,221

where all is a column vector containing the free entries in An, kl is a column

vector containing the free entries in K +., etc. The Lagrangian can be partitioned

accordingly:

Lat la_ Latt/c_Lattg t L a__a_ La_ i/c_Lat _a_ Lat _g2La, _a22

Lklall Lklk I Lklg t Lk_a_l Lklk _ Lktal_ Lktg _ Lkta_

L gla_t L gtkt Lgtg_ Lg_a_ Lg_k_ Lg_a_ Lgtg_ L gta_

L a_ _a_1 L a_k_ L a_gt La_ _a_ La_Ik_ La_ _a_ L a_tg_ La_ _a_

Lk_a_ Lk_k_ Lk_g_ Lk_a_t Lk_k_ Lk_a_ Lk2g_ Lk_a_
L

Lambast La_kt La_g_ Lat:a_t La_k_ La_at_ L a_g_ a_a_

Lg_at_ _ g_k: L g_gl Lg_a:t Lg_k _ L g_at_ L g_g_ Lg_a_

Landau La_k_ La_g_ La_a_ La_k_ L a_a_ L a_g_ La_a_
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Assume now that A2, = 0 and K2 = 0. The modes corresponding to An are

uncontrollable from K. The compensator matrices have the form:

The following equations hold in that case:

0 = La.al _ 0 = Lang 2

0 = Lklan 0 = Lktg 2

0 = Lgl,h2 0 = Lgtg _

0 = Lanan 0 =Lal_#_

0 = Lg2a n 0 - Lg2g _

0 = L,_a n 0 = La22g _

The proof is

derivations of

0 = LaI,G22

0 = Lkta2_

0 = Lg,a n

0 = La12a22

0 = Lg_a2_

0 = Lana2 2

deferred to Appendix B. The proof consists of performing the

Eqs.(3.3.24-33)in block form. The Hessian becomes:

L,la n L llk*Lal,g *Lalla21Lattk _ 0 0 0
L 0 0 0

Lkla** Lk,kl Lk,gl Lk,a2, klk2

Lg,a,, Lglk * Lg,gt L91a_ I Lg,k 2 0 0 0
L L L

La2,a,l La_,k, La21gl La2,a2, a_lk2 La2ta,_ a21g2

Lk2at t Lk_k_ Lk2g * Lk2a_ _ Lk_k2 Lk2a, 2 Lk2g 2 L

0 0 0 L a L 0 0 012(_21 _12k2

0 0 0 Lg2a2_ Lg2k2 0 0 0
L 0 0 0

0 0 0 La22a21 a22k2

Such a matrix is not definite. Indeed, L_ can be written as:

FL, L_ 0 1 T (4.4.15)
L_

[o Ln 0

For any _ = [ _2], _TL_ = _ _TLn_ ÷2a_2TLn__" Assuming that L2_ is not
La sJ

and a such that _TL_ < 0. There are alsoidenticallyzero, there exists

and c_ such that _TL_ > O. If L,I is positive,the compensator v-ill

correspond to a saddle point for the cost. o

113



Assume now that G2 = 0 and A_ = 0. The modes corresponding to A22 are now

unobservable from G. The compensator matrices have the form:

The following equations hold in that case:

0 -" L_lltZ2 !

0 = Lk_a_I

0 : Lgla_l

0 -- La21a_l

0 - Lk2a21

O=L
Q22Q21

0 - Lank2

0 : Lklk2

0 : Lglk 2

0 = L aslk2

0 -" L_IlCZ22

0 : Lkta_ _

Of L
glad2

0 = La2_a22

0 = Lk2a_ _

OffiL
Q22Q22

Reordering _ as:

, °

{Zll

kl

gl
a12
g_
as 1

k:

. ¢Z22.

(4.4.17)

L_ becomes:

Lallan Lallkl Latlgl Lal la12 Lallg2 0 0 0

Lklas I Lkzkl Lklg 1 Lk.lal_ Lklg _ 0 0 0

L gla_ "g_k_ Lg_g_ L g_a_ _ L 0 0 0

L a_an L a_2kl L a_2gl La_a_ L a_g_ L a_a_ La_2k_ La_a_2

Lg_a_ ]"g_k L g_g_ Lg_a_ L g_g_ L g_a_ Lg_k _ Lg_a_

0 0 0 La_a_ La_g _ 0 0 0

0 0 0 Lk_a_ _ Lk_g _ 0 0 0
0 0 0 L 0 0 0

a2_a_ La_g_
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Such a matrix is,again, nondefinite.

Theorem 4.5: Any stationary point such that the compensator (or one of the

compensators) has an unobservable or uncontrollable mode is a saddle point. The

Hessian L_ possesses in that case a nonpositive eigenvalue. If the eigenvalue is

zero, its associated eigenvector does not belong to the part of the nullspace that

corresponds to the changing of realization of the compensators. Such saddle points

always exist if there ezists a stabilizing solution for the j_ed architecture problem

obtained by keeping the same control architecture and by reducing the order of the

compensators. •

Proof: the nondefiniteness of LfF has been shown before. The second part of the
'qj_j

theorem consistsof proving that ifthe compensator has an uncontrollable or an

unobservable mode that produces a singular eigenvaiue in the Hessian, its

in compensator

As seen from

associated eigenvector does not correspond to a change

realization. Consider the case where A_ is uncontrollable.

Eq.(4.4.15),the new eigenvector has the form:

,[i:]o
Hence, following Eq.(4.4.13),_ leaves Air, K_ and GI invariant.

transform N satisfyingthe same properties must share

partitionof Ac, Eq.(4.4.14):

A similarity

the block triangular

The first order variation of Ac and K will be such that A21 as well as Ks remain

invariant. This is equivalent to _3 being zero. The form of L_ in Eq.(4.4.15)

guarantees, however, that there is a negative, or a singular, eigenvalue with a

corresponding eigenvector such that _3 is not zero. Thus, the extra zero

eigenvalue has an eigenvector which does not correspond to a change in the

realization of the compensator.

Finally, assume that there is only one compensator (p -- 1) and assume

that we are trying to solve the reduced order problem for the system ( C, A, B).
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weigthing matrices R, V, 1_, Vc, with a compensator of order nc = he0. Further

assume that ( G_, At1, K1) is the realization of a compensator that solves the

reduced order LQG problem for the same plant and for the same weigthing

matrices but with nc = nco-1 and let P l and Q l be the correponding solution to

the associated Lyapunov equations, Pl, QI E Rfll=fll, fll = n + nc0 - 1.

( G1, Acl, Kl, Pl, QI) satisfy the optimality conditions Eqs.(3.3.19-23) with nc =

no0-1. Consider now the compensator given by:

G = [GI 0], G E _mxn¢

Defining the positive semidefinite matrices P and Q as:

It is easy to verify that (G, Ac, K, P, Q) satisfy the optimality conditions

Eqs.(3.3.19--23)for nc = nc0. The compensator has an uncontrollable or

unobservable pole and is thereforea saddle point for nc = nc0. Any solution to

the reduced order control problem where nc = nc0 obtained by appending an

uncontrollable and unobservable mode to a controller that solves the reduced

order control problem where nc = nc0-1 willbe a stationary point which isnot a

local minimum but a saddle point. All the reduced order compensator solutions

can, in particular,be extended by adding unobservable and uncontrollable poles

to become fullorder compensator. These solutions are stationary point of the

LQG problem, but they are saddle points.
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4.5 CONCLUSION

It has been shown in this chapter that it is not possible to reduce the complexity

of the problem by trying to write the optimality conditions in a more structured

way. Two types of coupling occur when one looks at the fixed architecture

problem: the first one is a coupling between the filtering and the control

problems. The separation principle does not hold anymore. Such is already the

case when one looks at the OPE problem. The structured problem consists then

of solving two modified Riccati equations coupled by two Lyapunov equations. A

new source of coupling occurs when one constrains the architecture and splits the

feedback into p separate processors: Each subcontroller being optimal for the

system consisting of the original plant and the remaining loops closed, the gains

and dynamics of each compensator will depend on the gains and dynamics of the

remaining feedback loops. It is not possible, in that case, to decompose the

problem into a series of smaller problems that have to be solved sequentially.

The structured problem consists of two modified R/ccati equations coupled

through four Lyapunov equations which yield the optimal coupling between the

control and the filter problem as well as the optimal coordination between the

various subcontrollers. The gains and dynamics of the compensators cannot be

elim/nated from the problem in a simple fashion.

The study of the optimality conditions derived in Chapter 3 have shown

that the problem is singular. The cost depends only on the compensator transfer

function, independent of the state space realization chosen to represent it. Any

set of gains obtained by a similarity transformation of an optimal solution will,

therefore, satisfy the optimality conditions. It is possible to find a minimum set

of equations and a minimum set of variables that will remove this singularity.

However, such an operation may generate numerical problems, since it is not

possible to control directly the accuracy of the superfluous equations that have

been eliminated. Finally, it was shown that if an optimal compensator has an

unobservable or uncontrollable mode, it will be a saddle point for the cost.

Optimal constrained solutions become, therefore, saddle points when they are

expanded to problems with less stringent constraints that allow for compensators

of higher orders.
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HOMOTOPIC CONTINUATION

5.1 INTRODUCTION

The derivation of the necessary conditions for optimality has a limited value

unless one can find a reliable way to solve for them. It provides an analytic

expression for the gradient of the cost with respect to the free parameters of the

problem. At this point, the use of any unconstrained minimization technique

such as steepest descent, conjugate gradient, quasi-Newton or Newton methods

• should yield solutions corresponding to local minima for the cost. Optimization

techniques are discussed in detail in numerous references such as [Lue69, Sca85].

This direct approach has been taken by many for solving reduced order LQG

control problems [Bas75, Men75, Ly82, Ly85, Moe85, Cal89]. In [Ca189], the

reduced order dynamic compensator problem is written as an optimal

decentralized output feedback problem by adding integrators to the plant in

order to account for the compensator states. The optimum is sought using a

conjugate gradient method. Developed at Stanford University by Uy-Loi Ly, the

program "SANDY" [Ly82] is one that has probably evolved as the most user

oriented software for designing reduced order compensators. It may now include

more constraints such as H sensitivity constraints and it also addresses some

robustness issues in the design. In order to ease the problem of finding an initial

stabilizing reduced order compensator, Ly considers a finite horizon H2 norm

Once a solution is found, the final time is increased in order to obtain the

asymptotic compensator. The minimization is carried out using a first order

method based on the analytic form of the gradient. In [Gra74], Graupe includes

the norm of the cost gradient with respect to the plant parameters in order to

PRECEDING PAGE BLANK NOT FILMED
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obtain an H2 design less sensitive to modeling error. The problem is a different

constrained H_ design, but the derivation of the necessary condition for

optimality is quite similar to the derivations shown in Chapter 3. The numerical

procedure indicated for solving the problem is a steepest descent algorithm.

The efficiency of direct minimization procedures is very problem

dependent. It is usually true that most algorithms need a good starting point in

order to converge. This implies that one must design a near optimal initial

stabilizing multiloop compensator with the appropriate architecture. This task is

not simpler than guessing the optimal solution itself in many cases.

Minimization algorithms have slower rates of convergence when the Hessian is

singular at the optimum. One can choose to use reduced or minimal sets of

parameters to describe the compensator, [Ly85, Cal89]. However, as indicated in

Chapter 4, extreme sensitivity to parameter changes can arise from such a choice.

Finally, one still has to worry about the existence of multiple solutions. The

poor performance and the difficulty to apply a minimization scheme directly has

led to the development of alternate solution techniques.

As indicated in [Hy184], the reduced order compensator problem retains

some structure that is captured by the Optimal Projection Equation formulation.

[Gru86] uses an iterative method for solving the OPE similar to that of [Hy183].

The method is based on successive iterations and reduction of the size of the

eigenvalues of the coupling matrix r. The method can be seen as an

improvement of previously developed substitution algorithms such as the ones

proposed in [Lev70, Joh70, And71] which are already an adaptatior "o the

reduced order compensator problem of iterative methods for solving the full order

compensator problem [Kwa72b]. The coupling matrix is set initially to be the

identity matrix which corresponds to the full order LQG problem. The initial

solution is therefore easy to obtain and, as some of the eigenvalues of r go to

zero, the matrix becomes a projection operator. The main disadvantage of the

technique is that the successive iterations have no guarantee of converging even if

a solution exists: the algorithm can be numerically unstable and can, therefore,

fail to provide any answer at all. Designs similar to those presented in [Ly85] are

reproduced in [Gru86] using the iterative technique. The problem is to optimally

control a 7th order plant corresponding to the longitudinal dynamics of an

aircraft augmented by the wind gust dynamics using a 4th, a 3 rd, and a 1st order
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compensator. The iterative method appears to converge more slowly than the

minimization techniques and to achieve a smaller accuracy, especially when

searching for the 1st order compensator. Moreover, the technique cannot be used

to synthesize a fixed architecture compensator since most of the structure of the

solution has vanished, as shown in Chapter 4. The only obvious substitution

scheme is,in that case, to find P and Q as functions of G, Ac and K by solving

the Lyapunov equations Eqs.(3.3.19,20) and find, next, G, Ac and G as functions

of P and Q by solving the systems of equations of Propositions 4.3 and 4.4. This

approach is almost never successful. Another approach proposed in [Ber87b], and

can only be applied to fullydecentralizedcontrol (no sensoror actuator shared by

any two subcontrollers),is to sucessivelyoptimize each subcontroller. This has

no guarantee of finding the optimal solution,and it may have poor convergence

properties since the optimization of one subcontrollermay have adverse effectson

the optimality of the remaining loops which are kept fixed.

The only method found in the literaturefor solving the fixed architecture

control problem in a global fashion has been that of [Wen80]. It considers the

problem as an optimization problem with equality constraints: instead of looking

for G, Ac and K in matrix spaces of reduced dimensions so that they satisfythe

order and architecture constraints,the constraintsare relaxed and the feedback

may be a centralizedfullorder system. The Lagrangian isthen augmented with

the weighted sum of the squares of the entries in G, Ac and K that should be

zero. The algorithm becomes an unconstrained optimization problem for which a

conjugate gradient method is applied. [Wen80] shows that if a solution to the

constrained architecture problem exists, it will be one minimum of the

augmented problem. A very simple output feedback problem is shown to

illustratethe method. The advantage of this approach is that the initialdesign

can be the fullorder LQG compensator. However, there is no guarantee that

such an initialguess will converge to the minimum corresponding to the fixed

architecture compensator. In the case of the dynamic compensator, the method

may end up finding a specific state space representation of the full order

compensator rather than converging on the fixed architecturecompensator. One

must then iterateon the starting point. Such a task may turn out to be very

difficult.The weighting imposed on the structuralconstraints may then have to

be very large and can make the problem numerically ill-conditioned. These
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problems do not appear, however, in the static output feedback problem treated

in [Wen80].

Continuation, or homotopy methods have appeared to be a very promising

approach for solving complex constrained control synthesis problem. Their

successful use has been reported on many occasions in [Mon69, Lef85, Seb86,

Kab87, Ric87, Ric89, Pet90]. As argued in [Ric89, Hyl90], these methods tend to

be the only ones that work when the problem is numerically ill-conditioned.

The basis for the use of continuation methods is to have a problem that

depends continuously on some design parameters so that the solution can be

continuously differentiated with respect to them. The problem has the generic

form

0v = F(X a) (5.1.1)

where F is a continuously differentiablefunction depending on a parameter {2

Differentiatingmapping a finite dimensional vector X into some vector space V.

Eq.(5.1.1),one gets

0V = F X. X a ÷ Fa (5.1.2)

]Denoting by X0 a solution to Eq.(5.1.1)for a - a0, a solution to Eq.(5.1.1)for {2

= al can be obtained by integratingEq.(5.1.2)

£tl

X(al) = X(ao) - I Fx'IF{2 da

{2O

Eq.(5.1.3) holds as long as the integrand insidethe integralsign isa well defined

quantity, which is equivalent to saying that the Implicit Function Theorem

applies for every a e [a0, ad, [Lio78]. Two solutions X(a0) and X(al) will be

qualitativelyof the same nature ifthere existsa path of solutionsconnecting one

to the other.

The main difficultyin applying homotopy is to be able to determine ifall

the solutionsto the finalproblem can be reached through homotopy by following

the solutions to the simplified problem. An attempt to answer these questions

has been made in [Ric87, Ric89]. The theoreticalbasis to such a problem is

covered by topological degree theory [Lio78, Eav83]. It is shown that under

certain conditions the number of solutions to Eq.(5.1.1) remains constant.

independent of a. The resultclearlyholds for the fullorder LQG problem, but it
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will be shown that a global result cannot be obtained for the more general

constrained problem.

The remainder of this chapter is organized as follows. The next section

shows how to use homotopy to solve the optimal fixed architecture control

problem. The question of choosing a deformed simplified problem is addressed,

the derivative of the optimality equations with respect to the homotopy

parameter is given and it is shown that the singularity of the problem due to the

freedom in choosing the compensator realization does not prevent one from

defining an integrand and computing the integral in Eq.(5.1.3).

Based on these preliminary steps, a continuation algorithm is developed

for solving the Fixed Architecture Control problem. The algorithm combines a

simple Euler forward integration scheme to evaluate the integral and a

minimization scheme using a mixed steepest gradient / Newton-Raphson scheme

in order to control the error.

One can locally track the solution of any control problem using a

continuation method. A more important question is to know if the property is

global. To that effect, one must check that continuous paths connect the

solutions of any two control problems with different design parameters. One

must also be able to find the entire set of solutions for simplified problems.

Finally, one must deal with critical points. Studying the question for the reduced

order problem, which can be stated in the form of the Optimal Projection

Equations [Hy184], original examples are derived in this chapter to show that:

- not every stabilizing solution to the simplified problem connects to a

stabilizing solution to the final problem;

- all solutions to simple diagonal problems cannot be systematically found;

- bifurcations can occur along a solution path;

- the nature of the solution can change along the path. More particularly,

local minima can become saddle points and stabilizing solutions may

become nonstabilizing solution in a continuous manner.

The contribution of this chapter is to characterize the behavior and the nature of

the solutions to the constrained H2 problem. The results derived in the following

sections prove that homotopy cannot be used as a global tool to find all the

solutions to the Fixed Architecture Control Problem and indicate that any

successful numerical procedure must provide ways to abandon a solution which

ceases to correspond to a stabilizing solution and a minimum. A second
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conclusion is that the choice of the initial simplified problem will be very

important. A design example illustrates this fact and shows that, by not

choosing a starting problem close enough to the problem of interest, one may not

find a continuous path of solutions between the two problems. A proper choice of

the initial problem, however, results in a very smooth behavior of the solution

along the path and very good convergence properties.

5.2 HOMOTOPIC CONTINUATION METHOD

5.2.1 Deformed Problem and Initial Solution

In order to use a continuation method, one must find a family of control

problems that depend on a parameter o_ such that _- 0 corresponds to a

problem to which some, or all the solutions are known and a = 1 corresponds to

the control problem one wishes to solve. Consider the Fixed Architecture

Control Problem 3.1 whose design parameters are

(Co,Ao,Bo)

Vo

Vco

Ro

plant Co E _Ixn, Ao E _nxn, Bo E [Rn_m

process noise covariance,Vo E [Rn'n,

measurement noise covariance,Vco E _l,l

penalty matrix on the states,Ro E IRn,n,

penalty on the controlinputs, Rco E _mxm,

along with the specification of the architecture,

P

ni

//i,

Yi,

number of loops,

order of subcontroller i

set of actuator indices belonging to subcontroller i,

set of sensor indices belonging to subcontroUer i,
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The parameters of the problem ate assumed to have the following form:

A0 =

ILIO "" 0 0
0 122 0 0

• + •

0 0 ''' _pp 0
0 0 • • • Ap+lp+l

,Bo=

Btl0 ... 0

0 B_2 0

0 0 .., _p_0 0 .,.

,Co=rc**o0i (322 0
• + • ,) ,

L o ...cpp

Ati E _ni"ni, ni-- order of compensator i, i <_p,

Bit E _nt,,m__t, m_t E _, m_t <_mt number of actuators retained in loop i as specified

by _t

Cti E _i-ni, li E _,l.i < It number of sensors retained in loop i as specified by Yi,

V0 =

Vii0 ." 0 0
0 V22 0 0

0 0 Vpp 0

0 0 ... 0 Vp+Ip+l

,Vco = blockdiag(Vlo, V_o,...,Vpo),

Vii E _ni.ni, positive,Vio E _li.li,positivedefinite,

l_0 =

"R110 ... 0 0

0 R22 0 0

o o ol;po
0 0 "'" Rp+Ip+:

,Rco = blockdiag(R1o, R_o,.-" ,Rpo),

Rii E _ni.nl, positive,Rio E _mi.mi positivedefinite.

The architecture is such that the first ml actuators and 11 sensors are used by

subcontroller 1, the next m2 actuators and 12 sensors are used by subcontroller 2,

etc. This is not a restrictive hypothesis since one can renumber the sensors and

actuators.

Systems for which the design problem simplifies are systems constituted of

completely independent subsystems, each of them having its own sensors_

actuators, independent cost and independent disturbance. The global cost is the

sum of the costs defined for each subsystem. The dynamics of the subsystems are

totally uncontrollable and unobservable from all actuators and sensors except

their own. The fixed architecture problem decouples, in that case, in a number of
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smaller centralized full order control problems. If the architecture allows for a

sensor to be shared by two or more subcontroUers, the shared sensor will affect

only one of the smaller centralized control problems since only one subsystem is

observable from this particular sensor. Hence, the effective number of nonzero

rows h in Cii may be smaller than li, the number of sensors connected to

subcontroUer i. Using a dual argument about controllability, one can see that the

number of nonzero columns mi in Bii may be smaller than mi, number of

actuators used by subcontroUer i.

The simplified system, defined above, is made of the aggregation of p

separate smaller LQG problems. The plant is made of the aggregation of p+l

subsystems, p of which have their own set of sensors and actuators, the last one

being both completely unobservable and completely uncontrollable. Neither the

cost nor the various noises entering the systems couple the different subsystems

together. Hence, for this very specific type of plant, the Fixed Architecture

Control Problem decouples into p unconstrained LQG problems.

Consider, now, Problem 3.1 with the same architecture and same matrix

dimensions, but with design parameters ( C1, Al, B1) for the plant, Vt and Vcl for

the process and measurement noise covariances, R1 and Re1 for the penalty

matrices on the states and the control inputs. Define the intermediate problems

corresponding to the following parameters

A(,,)=
B(o,)=
C((,)=

Ao +f1(e)(AI-Ao)

Bo +f_(a)(Bi-Bo)

Co +f3(a)(CrCo)

v(c,)= Vo,-f,(c,)(vl-Vo)
R(a) ---R0 + fs(a)(R,-Ro)

vo(,:,)= Voo+fo(,2)(Vc,-V¢o)
Rc(a) = Rco + fz(a)(RcrRco)

(5.2.1)
(5.2.2)

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.S)

(5.2.7)

where a e [ 0, 1], and where fi(a) are right differentiable functions such that fi(0)

= 0 and fi(1) = 1. Eqs.(5.2.1-7) define a one-parameter family of problems that

starts as a series of simpler decoupled LQG problems ( a = 0) and continuously"

deforms into the actual control problem ( a = 1). If a continuous path of

solutions exists, one can find solutions to the Fixed Architecture Control

Problem. The simplest choice for fi is to take fi(a) = a. This produces a linear
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deformation of the parameters of the problem. A piecewise linear transformation

can be obtained simply by defining intermediate problems and applying a linear

transformation between them. For each new intermediate problem, the starting

solution is the one obtained from the previous problem. The procedure is started

with a simplified diagonal problem. The numerical procedure inplemented in the

following sections utilizes a linear transformation of the parameters and allows,

as just argued, piecewise linear deformation of the parameters.

5.2.2 sdving a + = 0

5.2.2.1 An_ytical Asuect

Following the notation of Chapter 3, the Lagrangian L depends on a vector

containing the free parameters of the controller gains and dynamics (it is

assumed here that the matrices P and Q have been eliminated by solving

Eqs.(3.3.19,20)). The Lagrangian depends also on the design parameters which

can be represented by a single parameter a if they are given by Eqs.(5.2.1-7). L

can thus be formally written as L(_,a). The optimality condition becomes:

0 - L_(_,_) (5.2.8)

Differentiating Eq.(5.2.8), one obtains the following equation

0 = L_._ + L_
(5.2.9)

where L_ is the Hessian, _ is a vector containing the derivative of _ with

respect to a and L_a is the partial derivative of the optimality conditions with

respect to a. L_a can be obtained following steps similar to Eqs.(3.3.26-33). P_

and Q_ are solutions of the following Lyapunov equations:

Ofl=fl= AclTpa + PaAcl + AcITaP+ PAcla + Rclc_ (5.2.10)

Off,5 = Aclqa + qaAclT ÷ Aclc_Q÷ qAc1_ ÷ Vc1_ (5.2.11)
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where:

Aclc,= I:Cc " BOG1 , Rclc,= I:c, GT:cc,GI' Vclc,= IVOc, KvOcc,KTI,
(5.2.12)

and where Ac,, Bc,, Ca, Rc,, Vc,, Rcc, and Vcc, are obtained by differentiating

Eqs.(5.2.1-7)with respect to c,. Define:

lc, =Pc,{]+ Pqc,

Partition Pc,,Qo and Mc, as:

I P_o P_c1 : I q_° q_c 1 Iiaoo M_oc1

Pc, LPoop_oj,q_, , =c,=- a Lq_oq_J L=_o=_J

Using the chain rule,LAca, LGc, and LKa become:

= Ic,
Lic a cc

LGa=ItcaGqcc+ RcGqacc+ BTlaoc

LKc, = PccKVcc, . PaccKVc . Ic,coCT

Hence:

Lsic, = TrEaTlac c

Lgia = TrEgiT (RcaGqcc + RcG q_cc + BTM_oc)

Lkic,= TrEkiT (PccKVca ÷ PaccKVc + lac0CT)

(5.2.13)

(5.2.14)

(S.2.15)

L_a isthe column vector composed of the elements Lgia ,Laic,and Lkic.

As seen in Sect 4.4, any change in the realizationof the compensator

transferfunction leaves the cost invariant and, consequently, the Hessian Lf_ is

singular. It can be shown, however, that the vector Lfa isalways orthogonal to

the vectors _6' Eq.(4.4.2),that span the nullspace of the Hessian Ker(Lf_)

Eq.(5.2.10) and Eq.(5.2.11) are the differentiatedform of Eq.(3.3.19) and
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Eq.(3.3.20) with respect to a. Because the two equations still hold

differentiation, Eq.(4.4.4) also holds in a differentiated form. Hence,

: L. T

after

G, Ac and K are constant parameters in Eqs.(5.2.10,11) and consequently Ga

Ac_ and K a are zero. Consider now N_ to be the gradient of a similarity

transformation as defined in Theorem 4.3. N_ is block diagonal and therefore,

using the above result, the following holds,

L. LTo0_
or, after rearranging the expression using the properties of the trace,

0-- TrLIca(-NeAc.AcN_) * TrL_aGN e - TrLKTaNEK

The right hand side of the equation corresponds to the matrix formulation,

Eq.(3.3.1), of the inner product between L_a and _, where _ is given in

Eq.(4.4.2). The above formula states therefore that L_ is orthogonal to any of

the basis vectors of Ker(L_) that correspond to a change in the compensator

realization: L_ does not affect the realization of the compensator. As long as

L_ does not have any other singularities, Eq.(5.2.9) will admit at least one

solution. This result means that the real variable is not a vector but an

equivalence class in the vector space of the compensator realizations. Two

compensators are equivalent if they realize the same transfer function. The

solution to the optimal control problem is in fact a transfer function independent

of any particular state space representation. Factoring out the nullspace of L_

in the problem, one removes the singularity and obtains a problem similar to that

of Section 5.1. In practice, the solution obtained by solving Eq.(5.2.9) contain_

two components: _ne is orthogonal to the nullspace of L_, Ker(L_), and

describes the changes in the compensator transfer function. The second

component of _a is parallel to Ker(L_) and describes a change of realization of

the compensator state space description. The freedom resulting from choosing

the component of Ca along Ker(L_) can be used to obtain better numerical

properties.
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5.2.2.2 Practical Asuect

The following methods can be used to find _a numerically:

1) Use of a minimal set of eouations and a minimal set of varsm__et_r_:

As seen in Section 4.4.2.1 and Section 4.4.2.2, one can find a realization for the

compensator such that only a reduced number of variables are needed. Similarly,

only a reduced number of equations need to be satisfied. Calling _0 a vector

made of this reduced set of components, Eq.(5.2.9) becomes:

0 = L_0_0._0a ÷ L_0a

where L_0_0 does not have a nuUspace corresponding to a change in compensator

realization.

2) Minimal set of oarameters, comulete set of eouatio_8:

The compensator is described by a minimal set of parameters _0.

necessary conditions are,however, considered. Eq.(5.2.9)becomes:

All the

This system has more equations than unknowns, but ithas one solution that can

be obtained using a leastsquares method.

3) Nonminimal set of uar_meters, fullset of ecluation$:

The compensator is described by a reduced but not minimal set _I such as the

modal descriptionof Section 4.4.2.3. Eq.(5.2.9)becomes:

0 = L_I. _la + L_

where _i is a reduced vector representing the nonminimal set of variables.

leastsquares solutioncan be obtained numerically.

The
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5.3 A CONTINUATION ALGORITHM

5.3.1 General

The use of homotopy has transformed the resolution of the optimal control

problem into a simple integration problem. Many numerical schemes have been

developed for that purpose [Pre86] and the main difficulty encountered by any

method is to stabilize the scheme and control the size of the error. These

difficulties can be overcome when one uses a continuation scheme, since the

calculated solution _(a) must always satisfy Eq.(5.2.8). It is therefore possible to

monitor the error and take steps to reduce it. Different ways have been proposed

to stabilize the integration. In [Mon69], a descent component is added to the

gradient of the cost with respect to a. The forward step then tracks the solution

path and tries at the same time to reduce the error inherited from the previous

step. [Kab87] remarks a more systematic approach which consists of performing

a minimization step after a forward step has been taken. A very similar

approach is taken in [Ric87, Ric89] where the method relies in fact only on a local

search of the solution: the gradient of the solution with respect to ck is not

calculated, and instead, the homotopy parameter is simply incremented. The

previous solution is then used as the starting point of an iterative approach

similar to [Gru86]. This last procedure suffers, however, the same shortcomings

as the procedure developed in [GruB81 since the local search may itself be

numerically unstable.

5.3.2 Stractum of the Algorithm

The algorithm proposed here is a continuous homotopy algorithm with

minimization steps to stabilize the forward integration. The gradient _ is

calculated and_ is increased until the norm of the gradient ][L_I I is within 10% of

a threshold _2. This step is denoted as the shooting step. The norm of the

gradient is then reduced using a mixed steepest descent / Newton-Raphson

method until the error becomes smaller than a second threshold E0. If the

minimization fails, the shooting step is halved in order to start the minimization
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at a point closer to a solution point. The structure of the algorithm is the

following:

Step 1: 5.----0

Find initial solution to the diagonal problem

or use existing solution of an already

known nondiagonal problem

Step _: Compute the gradient _k

Step _"

Step 4:

SteD _."

Shooting step:

find/Xr_k such that

_k*l _- _k "4" _k

= +
0.9 < < Z.1

Minimize L at ak+_:

Initialize search at _+1"

If a < 1, minimize until IIL_(_k,x)l [ < _0

If a ----1, minimize until IIL_(_k,l)l I < el

If minimization fails,

halve _ak, repeat 4.

If minimization successful, accept _k+_"

Repeat Step 2 through 6 until r_ - 1.

Two thresholds are used for minimization purposes. A coarser _0 is used

throughout the integration. When _ = 1, a smaller threshold _1 is used to

improve on the accuracy of the final solution. The value of _2 drives the size of

the shooting step and should be set as large as possible. If _2 is too large,

however, the minimization may start too far away from a solution and _2 must be

chosen so that one stays in the region of rapid convergence of the minimization
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scheme. The minimization can be started with steepest descent steps which are

more robust far away from a solution,thus allowing largere2. When closerto a

solution,the algorithm takes modified Newton's steps which have a higher rate of

convergence. The Hessian must be calculated and inverted in order to get the

directionin the shooting step and one can thereforeuse the same routine in order

to get the descent directionof the modified Newton step. Figure 5.1 shows how

the error evolves as a function of a. The sizeof the step variesdepending on the

sensitivityof the solution to plant parameter variations and design parameter

variations.

0

I0"1

i0+o

I0"*

I0"2

I0-3

I0"4

I0-5
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Fig-_re5.1: Variation of the Gradient Norm during the Homotoov
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5.3.3 Choice of the Free Parameters

The general structure of the algorithm does not depend on the parameters chosen

to describe the compensator in state space. The details of the calculations are

however dependent on that choice as highlighted in Section 5.2.2.2. The modal

form described in Section 4.4.2.3 appears to be a well conditioned

parameterization that leaves only ni extra degrees of freedom per loop. These

extra degrees of freedom correspond to the possibility to change the scaling of the

various states without modifying the block structure of the realization. Problems

can occur, however, when eigenvalues from two differentblocks merge and form a

complex conjugate pair . The hypothetical root locus of Figure 5.2 illustrates

such a problem. In the example depicted, Ac is four dimensional and has two

diagonal blocks. The complex conjugate eigenvalues I and 2 belonging to one 2x2

block of Ac in modal form merge and then split on the real axis to give

eigenvalues 5 and 6. Similarly the complex conjugate pair 3 and 4 which belongs

to a second 2,,2block merge and spliton the realaxisto give eigenvalues 7 and 8.

Ifthe eigenvalues keep shiftingand 5 and 8 become 9 and 12, and 6 and 7 become

10 and 11, 10 and 11 must then belong to the same 2,2 block in the modal

representationof Ac. These eigenvalues come from two differentblocks,however.

9 5

_X-m,.-._X ,

1

2

I0

6

7

II

3

4

, X , X

8 "12 Real

Fizure 5.2: Hypothetical Root Locus
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This implies that the blocks must be changed in order to allow 6 and 7 to become

a complex conjugate pair of eigenvalues. The root locus cannot, therefore, be

obtained by the continuous deformation of a matrix in modal form. The

discontinuity problem must be overcome by adding some extra degrees of

freedom and letting, for example, the dynamic matrices Ai be tr/d/agonal. Such

a realization allows for 3.ni-2 extra degrees of freedom to realize differently the

transfer function of the ith subcontroller,, versus ni for the modal form, and ni 2

for the most general representation. Let _, Eq.(3.3.24), be the vector of all the

free entries in Ac, G and K that have not been set to zero when fixing the control

architecture. Specifying a tridiagonal form for the Ai results in constraining

some entries in-_ to be zero or, in other words, it constrains _ to lie in a subspace

SD of [Rnp, where np is the dimension of _. Let D be a diagonal matrix of size np

whose diagonal is defined by:

D0,i ) --- i if _i is free

D(i,i) - 0 if _i is constrained to be 0. (5.3.1)

Define the vector _d as

(5.3.2)

_d isthe expanded form of the vector containing the freeparameters of the new

problem. The solution to Eq.(5.2.9)willbe constrained to be in SD. Because the

set of parameters is not minimal, one stillhas some freedom in choosing the

solution in SD. The solution chosen willbe the one of smallest norm in SD. The

advantage in restrictingthe solution to be in SD is that one does not have to

compute the whole Hessian but only the columns corresponding to the treeentries

of _d" This will, first,save computational time and, second, reduce the

dimension of the nuUspace of the Hessian on SD.
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5.3.4 Modified Steepest Descent Step

Denoting by _dk the value of the vector at the kth step of the minimization, and

by gk the error vector equal to

gk= L ( dk)

the cost is to first order:

L(_dk+A_dk ) = L(_dk ) + gTA_dk + 0 ([[/_'_dk I12)

Taking a step _dk equal to

_dk = -- _rkDgk

the cost becomes

L(_ dk+A_dk ) = L(_dk ) - O'kgTkDgk + 0(O'k 2)

and will be locally decreasing for _k sufficientlysmall since D is a symmetric

positive matrix thus making gTDgk a positive quantity. If gTDgk is zero, then

Dgk must be zero and, following the results of Section 4.4.2, the entire error

vector gk must be zero. Hence, the step is similar to a usual steepest descent

step. _rk is found to minimize the cost along the direction -Dgk using a

bracketing technique [Sca85].

5.3.5 Modified Newtou-Raphson Step

Newton's method has a quadratic rate of convergence when the Hessian matrix is

positive definite. L_ is singlflar at any solution point as seen in Chapter 4, but

the cost is invariant to every order in a change in the realization of the

compensator transfer function. Hence, one can expect the convergence rate to

remain quadratic close to the solution. Far away from a stationary point the

Hessian regains its full rank since the gradient vector L_, if it is not zero, will

depend on the realization of the compensator. Some eigenvalues of the Hessian
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must then go to zero as the error is reduced. One cannot rely on the direction

indicated by the eigenvectorsassociatedwith theseeigenvaluesin order to find a
search direction since these eigenvalues may not be positive. The search

direction d_dk is computed as follows. First, one must be sure that the search

direction will be in SD to preserve the type of realization chosen for the

compensator. The following matrix Ldd is used instead of the Hessian:

Ldd = DLffD (5.3.3)

where D is given in Eq.(5.3.1). Ldd maps S D into itself and SD J" into zero. Ldd

is a symmetric matrix, hence diagonalizable, and can be expanded in the

following sum:

Nd

Ldd ---- _ AiUiUi T

i,1

where the ut are the eigenvectors of Ldd belonging to SD, where the Ai's are the

corresponding eigenvalues arranged in decreasing order, taking their sign into

account, and where Nd is the number of free entries in _d" The remaining

eigenvectors span the nullspace of Ldd which coincides with SD _. Define the

matrix Hk as:

NM

Hk = _ _iUiUi T
i.l

where N= is the minimal number of parameters required to fully describe the

compensator's transfer function. As one approaches the solution, the remaining

Nd-N,, smallest eigenvalues of Ldd go tO zero. The search direction d_d k is

defined by:

d_d k = -- Hkgk

The step is admissible since Hk, like Ldd, maps _np into SD" To first order, the
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cost becomes

L (_dk+O'kd_ dk ) = L (_dk) --O'kgTk]Ik_k ÷o(,k2)

and will be locallydecreasing. _rk can be chosen to minimize the cost along the

search direction. The step becomes A_d k = o'kd_dk. The cost isreduced at every

step and, eventually,the step _rkwillconverge to 1,or to a fullNewton step.

5.3.6 Convergence Properties

The minimization procedure used in the algorithm has convergence properties

similar to those of other classic second order methods [Sca85]. When close to a

minimum, the method is guaranteed to converge quadratically. Because a

gradient step is used, and because line searches are performed during the

minimization, the algorithm is guaranteed to provide a minimum. Since the

minimization always start from a stabilizing solution, such a solution must exist.

The convergence properties may be poor if the starting point is close to another

stationary point which isnot the minimum. -,

The shooting procedure guarantees that the starting solution obtained for

the next minimization step willbe close to a localminimum. As long as there is

no criticalpoint along the path, that is, the nullspace of the Hessian remains

limited to those transformations that modify the compensator realization,and as

long as the path connects stabilizingsolutions,the shooting step will always

produce a near optimal solution. The quality of the solution can be controlled

using _2. The following sections study ifthe singular cases just mentioned can

occur, that is, the possibilityfor the closed loop to become unstable, or the

possibilityfor the solution to encounter a criticalpoint. In such occurrences, the

shooting step will tend toward zero, or the initialpoint it provides to the

minimization willcease to be a localminimum.
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5.4 ON THE NUMBER AND NATURE OF THE SOLUTIONS TO THE

CONSTRAINED H2 PROBLEM

5.4.1 General

L_(_,a) is a continuously differentiable function of _ and a. One can therefore

track the solution to Eq.(5.2.8) at least locally, except possibly in some very

pathological case corresponding to critical or bifurcation points. A more

important question is whether or not, and under what assumptions, the property

becomes global. [Ric8?, R.ic89] try to answer such questions using topological

degree theory [Llo?8]. The proof is worked for the full LQG problem, but does

not generalize, however, to the fixed order control problem and, consequently, to

the fixed architecture control problem as the following sections will show. The

question will be examined for the reduced order problem for which the optimality

conditions can be stated in terms of the Optimal Projection Equations (OPE).

The following examples demonstrate that the OPE have possibly many algebraic

• solutions. Some of the solutions do not stabilize the plant while others do, and

some stabilizing solutions can be local minima for the cost or saddle points. A

series of examples will prove that the nature of the solution is not invariant along

a solution path, and that stabilizing solutions can continuously become

nonstabilizing, while minima can become saddles. These results point out that

no global properties exist for the reduced order case, or for the fixed architecture

case, which generalizes it.

5.4.2 Degree Theory

The following section presents the main definitions and results of degree theory

A complete treatment of the subject can be found in [Llo78, Ear83].
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Definition 5.1: Let D be a bounded, open subset olin, p a point olin. _/s the

closure of D, OD its boundary. C1(_') is the space of continuously differentiable

functions defined on an open set containing ]_ that maps I_ in _n Let _b E C t(]3"),

P E [Rn. J_b = det(C_X) is the Jacobian of_. X is said to be a regular point for _ if

J_ _t O. X is a critical point othert_ise. P = _(X) is said to be a critical value if X

is a critical point. The set of critical values is called the crease of the function.

Suppose _ E C I(D'), P t[ _(a_)), P _ crease of _?. Define the degree of _ at P

relative to D to be deg( _b, D, P), where

deg( ¢}, D, P) = _ siga J_(X)

X E _-1(p)

Since ]_ is compact and P is not in the crease of d_, the problem ¢}(X) -P has a

finite number of solutions and the summation is finite. Also, if deg( ¢, D, P) # 0,

(}(X) ffi P has at least one solution in D.

Theorem 5.1: Consider the continuous mapping H: D ,, [0,1] --, _n, ht = H(X,t).

Assume that ht(X) - P has no solution on OD /or any t E [0,1]. Then,

deg( ho, D, P) = deg( ht, D, P).

Let D be an open, bounded set of £n, and _ an holomorphic mapping on f a. If

P _ _(OD), then deg( _b, D, P) > 0. •

Proof: the proof is in [Llo78]. The theorem states that the degree is invariant

under homotopy. This means that, if no solution appeaxs or disappears on the

boundary, new solutions have to appear and disappear in pairs, one satisfying

Jc} > 0, the other J(} < 0. If the degree is nonzero, there is at least one

continuous path of solutions connecting the solution of h0(X) = P to the solutions

of hi(X) "- P. The homotopy invariance is illustrated by Figure 5.3 taken from

[Llo78]. An holomorphic mapping is orientation preserving. Hence, when q_ is
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analytic over the domain, the degree is exactly equal to the number of solutions

of _(X) -- P for P E D. In that case, the only way for a solution to appear or

disappear is to go to infinity.

J

/ \

\
\

Fieure 5.3: Solution Path under Homo_0py

Dashed lines do not exist if decree is constanl;

Closin=r paths do not exist if the function is holomorphjc
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5.4.3 Boundedneu of the Solution along a Path

k

Theorem 5.2: Let G, Ac, K, P, Q, P, Q, r be a solution to the OPE problem,

Eqs.(4.3.35-39), for a plant such that

( C, A, B) is detectable and stabiIizable,

( R v'2, A, Vv2)/3 detec_ble and stabilizable.

Assume that ( G, Ac, K) _ both fully observable and fully controllable. Then, as

the parameters of the problem C, A, B, R, V, 1_ and V¢ are continuously varied

in a compact domain in such a way that the above hypotheses are always satisfied,

and assuming also that r, Pr and r Q remain bounded along the solution path, it
£ .L

is true that P and Q remain bounded along the solution path, and that the

corresponding matrices G, Ac and K remain bounded as well. No mechanism,

however, prevents r, Pr or v Q from going to infinity depending on the
I. .1.

particularity of the problem. •

Proof:

1) P7- and _ remain bounded along the solution Oath

The proof is by contradiction. Assume that there is a sequence of problems

defined by (Cj, Aj, Bj) Rj, Vj, Rcj and Vcj satisfying the detectability and

stabilizability hypotheses converging toward (C, A, B), R, V, Rc and Vc such

that Pi7-J goes to infinity. 7" being assumed bounded, there is a sequence of

unitary vectors uj such that :

O'jVj -- PjUj, vj unitary, o'j -_ _ (5.4.1)

T
Pre and postmultiplying Eq.(4.3.35) by uj

obtain:

and uj, and using Eq.(5.4.1), we

T T
0 = o'jujTAjTvj + o-jvjTljuj + ujTRjuj -o-j2vjTEjvj + uj 7"j_Pj_jPjT"j±uj

T T
uj rj PjZjPjT-jjuj remains bounded since Pr is bounded by assumption. Thus,
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in the limit vTEv = O, or, since E is positive,

0 -'-E V2v (5.4.2)

Dividing Eq.(5.4.1) by _rj and multiplying it by Pit, one gets in the limit:

0 = P_v

where P$ is a generalized inverse defined as:

w[0 '°]wT
W, and D being defined by

Note that P is definite if ( R _'2, A) is completely observable, but it may have a

nullspace if A has a stable mode not weighted by R. PSP is an orthogonal

projection parallel to Ker(P). Any vector v, the limit of a sequence of

eigenvectors vj such that aj -_ ®, satisfies Eq.(5.4.2) and Eq.(5.4.3).

Postmultiplying now Eq.(4.3.35) by ui, premultiplying by Pj$ and dividing by crj:

0 = PjsAjTvj

Pj$ as well as PjSPj are bounded, and in the limit Ejvj goes to zero.

the limit:

0 = p_ATv

q_

+ PjSPjljuj/o'j + PjSRjuj/erj -PjSPj_jvj + Pj$7"j:PjEjPj'rj uj/erj

Hence, in

(5.4.4)

Combining Eq.(5.4.3) and Eq.(5.4.4), Ker(P$) is invariant under A T. A T must

have a mode defined by ( AA, WA) such that w A is the limit of a sequence wj =

Pjuj/o'j where erj goes to infinity, w A satisfies Eq.(5.4.2). Pjwj must also go to

infinity. Pre and postmultiplying Eq.(4.3.35) by wj H and wj, one gets:

0 = wjHAjTwj + wjl]ljwj + wjHRjwj -wjHPjEjPjwj + wjHT"jT±pjEjPj'rjj.wj
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Since Rj is bounded as well as Pjrjz, and since wjHEjwj is positive,

wjHAjTwj + wjHAjwj must be positiveas j goes to infinity.Thus, in the limit,

2Real(AA) _>0

and from Eq.(5.4.2),

0 = E V2w A

Thus, (A, E_2) is not stabilizable. This is contrary to hypothesis. Thus Pr

must remain bounded. The proof for rQ can be obtained by duality.

2) G. Ac. K remain bounded when r, Pr and rQ remain bounded

Pr isbounded. Hence P@ is bounded: indeed, _ = @. This arisesfrom the fact

that r = ---_rT and rT@ = -Inc. Thus G isbounded since

G = -Rc'IBTp'_

Similarly,rQ isbounded and rTr T = -r, thus:

K = -FTqCTVc "l

isbounded. Finally,

Ac - -rT(A - BG - KC)

is obviously bounded. D

The fullorder LQG problem is such that r = I. Theorem 5.2 implies that the

solutionto the problem remains in a compact domain which, in turn, implies that

the number of solutions to the LQG problem is constant, as long as the

detectability and stabilizabilityhypotheses are met, and that the problem

parameters remain bounded as well. As for the reduced order problem, one can

find counterexamples of Pr and r Q being unbounded even though the above
.L t

hypotheses hold. The unboundedness of P and Q always corresponds to a closed

loop pole crossing the imaginary axis. Like the LQG problem, the reduced order

control problem has solutionswhich satisfythe optimality conditions Eqs.(3.3.19-

23) but for which P and Q are not positive,or, in other words, such that the
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dosed loop is unstable. The full order solution guarantees that none of the

unstable solutions will become stable and vice versa. This is not the case with

the reduced order problem.

5.4.4 Unboundedness of P_ and _Q along a Solution Path

This section presents examples of problems for which stabilizability

detectabilityconditions are met and where Pr and _Q are unbounded.

and

5.4.4.1 Examvle 1

Consider the second order SISO system given by:

along with the design cost parameters:

, Rc = Vc = 1.

The compensator is selected to be first order. The plant has two poles at -1 and

+1 and a zero at -2e. Writing the compensator in Controller Canonical form, the

gain K is set to 1. The compensator is completely defined by its pole ac and the

control gain g which are two real numbers. The closed loop dynamic matrix is:

[ ° 1
1/2+e 1/2---e ac

The characteristic polynomial is:

_s) "- s_- acs2- 2gs + ac - 2Eg

The polynomial admits stable roots if and only if:

ac<0

g<0

ac > 2eg

(5.4.,.s)
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Hence, _ must be positive and the system must have a minimum phase zero in

order to be stabilizable by a first order compensator.

Let ac0 and go be an optimal solution for _0 > 0. The corresponding

compensator stabilizes the plant since the zero of the system is minimum phase.

Consider now closing the loop around the system where e =--_0 with a

compensator such that g = go and ac = -ac0. Using Eq.(5.4.5), the closed loop

characteristic polynomial for the first system is:

_s) = sS - a_os2 - 2goS + aco - 2_ogo

and for the second system:

_(s) = s_ + ac0S2- 2g0s - ac0 + 2E0g0

The two polynomials have the same coefficientsfor odd powers of s and

coefficientsof opposite sign for even powers of s: they admit, therefore,similar

roots of opposite sign and the poles of the second system ate the mirror images

about the imaginary axis of the poles of the firstsystem. If

Pll P12 P131
Po = p21 p_ p_

Psx P3_ P33

is the solution to Eq.(3.3.19) for _ = _0,ac = ac0 and g = go, then one can verify

that

Pl-"

--P_2 -p_ p23

-P2, -P11 px3JPs_ P31 -p33

isthe solution to Eq.(3.3.19)for _ = -_0, ac = -ac0, g = go.

Q0-
l qll ql2 q13 I
q21 q_2 q23

q31 q32 qz3

Similarly,if
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is the solution to Eq.(3.3.20) for the first problem,

QI = I-q ,-cll, ql3
L q32 q:l-q3:

is the solution to Eq.(3.3.20) for the second problem. One can ver/fy that if P0,

Q0, ac0, go and k0 = 1 satisfy the optimality conditions Eqs.(3.3.19-23) for e = E0,

Pl, QI, -ac0, go and kl = 1 satisfy Eqs.(3.3.19-23) for e = --e0. The associated

cost Jl= Tr(Q1Rel) is equal to Jl =-J0. The compensator satisfies the

optimality conditions Eqs.(3.3.19-23) but yields a completely unstable closed loop

system. As e crosses the imaginary axis the cost becomes infinite. When the

zero of the plant becomes nonminimum phase the cost J loses its physical

meaning. Figure 5.4 shows the value of Tr(QRcl) as a function of the zero

location. Figure 5.5 shows the control parameters as a function of the zero

location.

As ¢ goes to zero, the best a first order compensator can do is put the

dosed loop poles on the imaginary axis. The cost for such a system becomes

infinite and P and Q are unbounded. There is no solution for E = 0 since P and

Q are infinite, but looking at Figure 5.5, one can define a solution at e = 0 by

continuity. Hence a stabilizing solution may continuously become nonstabilizing,

as the system parameters are changed and the optimal path followed. The open

loop system remains observable and controllable for all e_ between -0.5 and 0.5.

The closed loop poles cannot, however, be arbitrarily assigned.

5.4.4.2 Example 2

In the following example, the poles of the closed loop system can be assigned

arbitrarily. Consider the control problem defined by:

Such a system is made of the aggregation of two completely separate LQG

problems for two independent first order systems. One tries to control both

systems optimally with a single first order compensator.
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The projection has two obvious solutions:

71 =

"/'2=

[_ O], optimal control of the first subsystem,

ignore the second subsystem,

ignore the firstsubsystem.

All the optimality conditions can be satisfiedwith these choices for r. When al

and as are both negative, both solutionsyield a stable dosed loop. When a_ is

positive, the solution r = r2, which corresponds to controlling the second

subsystem only, becomes unstable. Similarly, if as becomes unstable, r - r_

yieldsan unstable closedloop.

Considering the solution r = rs,the compensator obtained in this solution

isindependent of al. As al becomes positive,the solution,which isconstant, will

become a nonstabilizing solution. Note, however, that as long as al _ as, the

dosed loop dynamics can be assigned arbitrarily. Choosing a realizationsuch

that k_ = ks = -i, the closedloop dynamic matrix becomes:

Ac as= gs
-1 ac

The characteristicpolynomial is:

_(s)= s3- (al+a_+ac)s2+ (gl+gs+a_a_+ac(a_+as))s--gla_--g2a_-a_a2ac

Assume we want the characteristicpolynomial to be:

_S) _--"S3 "4"0"2S2 -4-O'iS + 0"0

ac,gl and gs must then satisfythe followinglinearsystem of equations:

(z2 -i 0 ac
a ala2 + (7"I al+a2 1

= gl

-#0 La_a= as a_ g_
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the determinant of the system is equal to at--a1. Hence, as long as the two

subsystems do not have the same dynamics, the poles can be freely assigned using

a first order dynamic compensator. This does not prevent the solution

corresponding to r_ to become an unstable closed loop solution as at becomes

unstable.

5.4.5 Solutions to the Diagonal Problem

It is claimed in [Ric87, Ric89] that all the diagonal solutions to the reduced order

problem can be found for diagonal systems. A diagonal problem is such that:

A - diag(al,a2,... ,an)

B
diag(b,,b,,...,b®)

C = [C10], C1= diag(c_,c2,...,cl)

R - diag(rl,r_,... ,rn)

V = diag(vl,v_,...,vn)

Rc= diag(rcl,rc_,... ,rc_)

V_= diag(vcl,vc_,... ,vd)

The problem consists of controlling n completely decoupled first order SISO

systems with an nc dimensionalcompensator. One obvioussolutionisto selectnc

out of the n subsystems and control them independently using firstorder

controllers.The problem then reducesto solvingnc independentfirstorderLQG

problems. The projectionsr associatedwith such solutionsare diagonal: _ i,

i)ffii ifai isto be controlled,I"(i,i)- 0 otherwise.Such solutionswillbe called

diagonalsolutions.Lettingnu be the number of unstablepoles,one must control

each of thesemodes in order to have a stableclosedloop system, nc-nu modes

can stillbe controlledout of n-nu remainingstablemodes. Ifm and I arelarger

than nc,i.e.therearemore controllableand observablesubsystems than thereare

compensator modes, the number of such possiblesolutionscorrespondsto the

comb ination (inf(1,m)-nu) or I ifthe number isnot defined.
" nc - nu

More solutions may exist, however, even for diagonal problems, as the

following examples will show. These solutions cannot be found systematically.
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The second order system of Section 5.4.4.2 is considered for different pole

locations and for different R and V matrices as well.

First, consider the case where al = 0.0 and as = +0.1. The open loop

system has two unstable poles and cannot be stabilized with a diagonal r. A first

order controller can however stabilize the system. The following optimal solution

is found by direct optimization for 1_ = V = Rc = Vc - Is:

ac = -2.1530

r o.6736]
G = L_1.3294 j

The closed loop poles are:

K = [0.6736 1.3294]

F--0.4504 --0.8082]
r = L 0.8082 1.4504j

A = -0.0450, -1.0038, -1.0042

Consider now the plant poles at a_ = -0.01 and a2 = +0.1. This system

can be obtained by continuously moving the pole al from its previous value of

a_ = 0.0 to its new value of a_ =-0.01. Using the homotopy algorithm shown in

Section 5.3, the new solution for a_ =-0.01 and as = 0.0 is found to be:

ac = -2.1375

F0.5103]
G = L1.2412j

The dosed loop poles are:

K = [0.5103-1.2412]

['-0.2636 -0.5771]
r-" L 0.5771 1.2636J

A = -0.0390, -1.0034, -1.0051

A second solution for that particular value of a_ corresponds to a diagonal

solution where as is the pole being controlled. This yields:

ac = -2.1100 K = [0 -1.0000]

The closed loop poles are:

A = -0.01, -1.0050, -1.0050

Finally, we consider the case where at = -0.01 and a2 = -0.1. The

A nondiagonal solution was obtained numerically for that problem. The control
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parameters and projection are:

a_ = -3.6802

_0.7037_
G = L1.8535j

K ---[-0.7037 -1.6535]

0.1537 -0.3606]
r = [.-0.3606 0.8463J

The open loop system being stable, the two diagonal solutions corresponding to rl

and 7"2are stabilizing solutions as well.

In summary, three examples of diagonal problems have been considered,

one with two unstable poles, one with one stable and one unstable pole and one

with two stable poles. In each case, it was possible to obtain solutions which are

nondiagonal. Hence, even for simp!c problems, one cannot be certain to find all

the solutions to the initial problem in a simple manner. The upper bound

proposed in [1tic89] for the maximum number of diagonal solutions to the OPE

underestimate the maximum number of stabilizing solutions to the problem. The

nondiagonal solutions may also be the only one that connects to a stabilizing

solution when all the plant poles are unstable.

5.4.6 Critical Solutions and Bifurcations

Solutions can appear and disappear when P and Q become infinite and a

nonstabilizing solution becomes stabilizing and vice versa. A second mechanism

for solutions to appear or disappear is when a critical point is encountered along

the solution path. Following Definition 5.1, a critical point for the equation

_(X) - 0 is a point at which CX is singular. In our particular case, this means

that the nnllspace of the Hessian is not composed only of those directions

corresponding to a change in the state space realization of the compensator. If

one uses a minimal set of parameters, the reduced Hessian will be column rank

deficient if the solution is a critical point. Bifurcations can then occur, as

illustrated in the following example.

Consider once more the second order system of Section 5.4.5 with its first

order controller and a_ -- +0.1. Varying the first pole al, we track the diagonal

solution to
parameters ac, g_, g_, k_, k2 and compute the eigenvalues of the Hessian as a
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function of al for the diagonal solution as al moves toward the right half plane.

Table 5.1: Ei_envalues of the Hessian

al

-0. 0300

s_

O. 062

st

3.590

-0.0280 0.000 0.094 0.062 3.590 43.13

0.000 0.062-0.0279 3.590--0.018 43.39

-0.0270 0.000 -1.098 0.062 3.590 45.92

-0.0250 0.000 --4.080 0.0621 3.590 52.48

The first eigenvalue of the Hessian, sl, is always zero. It corresponds to the

freedom in scaling the state variable representing the compensator. The

eigenvalue s2 is positive for a_ -- --0.0280 but becomes negative for al = --0.0279.

The solution starts out as a local minimum but then becomes a saddle point.

The critical solution occurs for a value of alc = --0.02791583. Considering the

nondiagonal solution found in the previous section for al=--0.010 and

integrating backward (i.e. reducing al), one finds that the solution merges with

the diagonal solution at al -- alc. The corresponding derivatives of gl and kl with

respect to al become infinite. Figure 5.6 shows a plot of the control parameters

as a function of al and clearly shows the bifurcation occurring at ai = arc. Figure

5.6a shows the values of G(1) and G(2) as a function of al. The diagonal solution

corresponds to the optimal control of the second subsystem: for this solution

G(1) = 0 and G(2) is constant since the diagonal solution is independent from a_.

As al comes closer to zero the second solution appears. The corresponding G(1)

is not zero anymore and G(2) varies as well since the solution couples both of the

system modes and the variation of al influences now G(2). Figure 5.6b shows the

variations of K(1) and K(2) as a function of al, Figure 5.6c shows the variations

of ac. The behavior of ac and K is similar to that of G. Figure 5.6d shows the

optimal cost for each solution. The cost of the diagonal solution rapidly increases

as at moves toward the right half plane and the closed loop system becomes

unstable.
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5.4.7 Multiple Local Minima

The following example shows multiple stabilizing solutions and, in particular, the

occurrence of multiple local minima. The number of sensors and actuators is

strictly smaller than the order of the compensator in this example, unlike the

examples of multiple solution_previously shown. Consider the fourth order SISO

system:

IoA= -0.I 0
0 0
0 -2 -0!I

S __

c=[io io]

Take the LQG parameters to be:

R = V = I4,

Rc = Vc= 1

A second order compensator is sought for the problem (nc = 2). A solution $0 is

found numerically for a = 0 and a solution 81 is found numerically for a = i.

The solution G0 isintegrated from a = 0 forward and the solution$i isintegrated

from a = I backward. For a = 0.055 two solutionsare found. From the forward

integration, one gets:

F-0.89050.42301
Ac = L_1.3465 -0.6744J,

0 = F0.0621-.0.5307],

F 0.5652]
K = L_O.lOO5j

J = 29.3008

The eigenvalues of the corresponding Hessian are:

46.6288, 13.6840, 1.7978, 0.0771, 0.0, 0.0, 0.0, 0.0,

From the backward integrationone gets the followingsolution:

F-2.2471-095741 [1.27211Ac = L_l.S384_2.1382j, K = 0.1405J

O = [--0.1802 0.1405], J- 29.3030
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The eigenvalues of the corresponding Hessian are:

47.7989, 5.8213, 0.3235, 0.0015, 0.0, 0.0, 0.0, 0.0

Each Hessian has four zero eigenvalues that correspond to the freedom in

selecting the state space representation of a second order transfer function.

Notice also that the fourth eigenvalue becomes very small in both cases. Both

solutions obtained ate local minima.

As a is increased, the solution 30 encounters a critical point and becomes

a saddle point, even though it still is a stabilizing compensator. Similarly, as a is

decreased the solution Gt encounters a criOo_] point and becomes a saddle point.

At c_ = 0.055, two local minima exist. The open loop system is controllable,

observable and stable. Hence, the number of solutions to the OPE exceeds the

upper bound given in [Ric87], even if only the minima are considered. Table 5.2

summarizes the characteristics of the two compensators for a = 0.055.

T_bl¢ 5.2: Comuensat0r Ch_tracteristics. _ - 0.0_

Closed-loop
Poles

Compensator Poles

Compensator Zero

Forward Solution

--0.4769 ± j 0.5188
-0.2509 * j 1.0592
-0.0546 ± j 1.4135

-0.6825 • j 0.7547

-5.2212

Backvard Solution

-3.4983
-0.4864

-0.2450 ± j 1.0053
-0.0554 * j 1.4128

-0.9778

-3.4075

3.8647

Even though the optimal costs are very close, the compensators are of very

different natures. The first one is minimum phase and has two oscillatory poles

close to the first mode of the system. The second compensator has a

nonminimum phase zero, one slow real pole and one fast real pole. As a changes,

one can vary each compensator in order to leave the cost stationary but, as a is

varied, one compensator structure ceases to yield a minimum.
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5.4.8 Accommodating Critical Points: Software Modification

Looking at the example of Section 5.4.6, one can see that the Hessian matrix has

two eigenvalues equal to zero at the critical value al- alc. One of the

eigenvalues is the predicted singularity, the second one however characterizes the

critical solution. The derivatives of the control parameters with respect to a_ are

not well defined at that particular solution. When al is smaller than a_c, the

diagonal solution corresponds to a local minimum. When al is larger than a_c,

however, the diagonal solution is a saddle point and the nondiagonal solution is

the local minimum. If one tries to track the optimal solution as al is varied from

the left to the right of its criticai" value, one can detect the proximity of the

critical point by checking the rank of the Hessian. One can then decide not to

rely on the gradient _a which may be ill-conditioned or not defined at all, and

simply increment the value of al. The minimization step should then find the

solution corresponding to the local minimum and abandon the diagonal solution

to follow the nondiagonal solution. The solution becomes noncontinuous but

remains valid for all values of al. More generally, The modification to the

shooting step is the following:

Step 2.1:
Compute L_ d

Steu 2.2:
IfL_ d has exactly Nd-Nm zero eigenvalues,compute _C_k

Else, set _Ctk-- 0

Nd-Nm isthe number of extra degrees of freedom leftin _d" Whenever a critical

point is encountered along the solution path, the shooting step does not rely on

the gradient _a anymore, for _a may be ill-conditionedor may not exist at all.

In that case,one simply increments the homotopy parameter a and relieson the

minimization routine to find the solution corresponding to a minimum. The

procedure guarantees the convergence toward a minimum.
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5.4.9 Conclusion

The optimality conditions for the LQG problem have multiple algebraic

solutions. When the form of the controller is not constrained, the problem has

the property that only one of the solutions stabilizes the plant and corresponds to

a minimum for the cost. When the order of the compensator is reduced, however,

this section hu shown that the property is not valid anymore. Multiple

stabilizing solutions can occur, corresponding to local minima or saddle points for

the cost. Similarly, cases occur where no stabilizing solution exists. The section

hu also shown that the nature of a solution is not invariant under homotopy:

minima can become saddles, stabilizing solutions can become nonstabilizing.

These changes occur, however, in a smooth continuous fashion. All solutions,

stabilizing, nonstabilizing, minima, saddle points cannot be obtained in any

systematic manner even for simple problems like diagonal problems. Hence, the

homotopy procedure will be guaranteed to track the global optimum only locally.

Any global results require the tracking of all solutions.
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5.5 PRACTICAL APPLICATION OF THE CONTINUATION METHOD

5.5.1 General

We consider in this section a practical application to illustrate the numerical

problems that can arise when using a continuation method. The example is

drawn from [Ber87b]. The system to control is made of a pair of simply

supported Euler-Bernoulli beams connected by a spring. The system is depicted

in Figure 5.7. Each beam has one rate sensor and one force actuator. Two

vibrational modes are retained to describe each beam and the state space

representation of the system is an eighth order interconnected model. The

expression for the A, B and C matrices have been derived in [Ber87b]. There are:

where

F0 4 zl]
rA,, A,,I B,- [B,, l B_- LB22JA = LA_,A.J' Lo4,u'

c,= [c,,o,.],c_= [o,.c_,]

(5.s.I)

Aii "-'

" 0 _i 0 0

---_,i-(k/w,i)(sin_'ci)2 -2Ciw,i-(k/w_i)(sin_ci)(sin2_ci) 0

0 0 0 w_i

-(k/w Ii)(sinTrci)(sin2_rci) 0 ---_2i-(k/w_i)(sin2_'ci)2 -2¢ iw_i

Aij =

0 0 0 0"

(k/_lj)(sin_i)(sin_j) 0 (k/w_j)(sinlrci)(sin2_'cj)0

0 0 0 0

(k/wlj)(sin_rcj)(sin2_'ci)0 (k/w2j)(sin2_'ci)(sin2_'cj)0
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Bii -_

0

-sin_ra i

0

---sin2ra

, Cii = [ 0 sinai 0 sin2_t]

where wij and _'ijare respectivelythe jth modal frequency and damping ratio of

the ithbeam, k isthe spring constant, ciisthe position of the spring attachment,

ai the actuator location and si the sensor location on the ith beam, all distances

being non dimensionalized by the beam length.

!j

Figure 5.7: The two beam System of Bernstein
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The parameters quoted in [Ber87b] are:

wti = i rad/sec, w_i = 4 rad/sec, (i = 0.0050

al = 0.3, s, - 0.65, ci = 0.6

a2=0.8, s2=0.2, c2=0.4

The penalty on the states is given by:

IIi°1Ii0jIi°1Ii°R = blockdiag 1/cot ' 1/cos ' 1/cot ' I/cos_

Re = 0.1 I2, Vc = 0.1 Is

The controller consists of two decentralized 4th order compensators, each of

which uses the sensor and the actuator of one beam only.

5.5.2 Sequential Design

The optimization technique used in [Ber87b] consists of sequentially optimizing

each compensator while the design of the remaining compensator is frozen and

the corresponding loop is dosed. The compensator that is optimized becomes at

each step the optimal reduced order compensator for the system consisting of the

original plant with the remaining compensator loops closed. The initial

controllers are chosen to be the controllers obtained when the interconnection is

ignored, i.e. when k = 0, in which case the problem decouples into two

independent 4th order LQG problems. The results were reproduced using only

the minimization part of the algorithm developed in Section 5.3.2 which yielded

very satisfactory results in that case. Table 5.3 summarizes the results.
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T_ble 5.3: Cost durin_ Seouenti_l 0ptimizatign

Design Cost

Open Loop
Full-0rder LQG
Suboptimal Decentralized

163.2969
ii.0795

assuming k = 0 29.4544
ledesign Subcontroller 1 14.5104
Redesign Subcontroller 2 12.4934

Redesigng Subcontroller 1 12.0204ledesi n Subcontroller 2 11.9641

ledesign $ubcontroller 1 11.9501
Redesign $ubcontroller 2 11.9465
Redesign Suhcontroller 1 11.9455
ledesign Subcontroller 2 11.9452

Note that there is a discrepancy between these results and those of [Ber87b] even

for the full order LQG design. We attribute this to a mismatch between the

parameters and the results quoted in the paper. The conclusions and basic

behavior of the design procedure shown in the paper remain valid, however.

Checking the optimality conditions simultaneously including both controllers,

one finds that the error is equal to 3.9 10 "s after eighth redesigns. The cost,

however, coincides already with the optimal cost to the first five significant

figures.

5.5.3 Using Homotopy: a Continuous Solution Path

The two beams treated in the example are identical and the attachment points of

the spring are symmetric with respect to the middle of each beam since c, = 0.40

(4070 of the length from the left of the first beam) and c_ = 0.60 (6070 of the

length from the left of the second beam) The interconnected system possesses

therefore two modes which are independent of k, the first one at _ = 1 rad/sec

corresponding to the first bending modes of the beams oscillating in phase and

the second one at _ = 4 rad/sec corresponding to the second bending modes of

the beams oscillating with opposite phase so that the spring is not stretched at

any time. The remaining modes of the interconnected system depend strongly on

the value of k. We try to use this property in order to find a simpler problem as
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a starting point. Transforming the system Eq.(5.5.1) in modal form and

transforming accordingly the design parameters of Eq.(5.5.2), the terminal

parameter values to use in the homotopy are:

AI=

"-0.0050 1.0000 0 0 0 0 0 0
-1.0000-0.0050 0 0 0 0 0 0

0 0 -0.0200 3.9999 0 0 0 0
0 0 -3.9999-0.0200 0 0 0 0
0 0 0 0 -0.0112 3.1077 0 0
0 0 0 0 -3.10TT-0.0112 0 0
0 0 0 0 0 0 -0.0138 5.6870
0 0

I _.0001 -0.4523 0.0044 -0.5316 -0.B_= .0001 -0.3286 0.0044 -0.5316 O.

0 0 0 0 -5.6870-0.0138

0009 0.3443 0.1020-0.0035t T

0008-0.2970-0.1730 O.O040j

r-0.00410.79690.0096-0.7236 0.0060_.2850 _.1992-0.01161o

_,I =

1.6001-0.0080 0
-0.0080 1.6000 0

0 0
0 0
0 0
0 0
0 0
0 0

0 0 0 0 0
0 0 0 0 0

1.6001 0.0080 0 0 0 0
0.00800.4001 0 0 0 0

0 0 4.7962-0.0298-0.0002 -1.5047
0 0 -0.0298 4.4039 --1.3293 0.0221
0 0 -0.0002 -1.3293 1.1356-0.0078
0 0 --1.5047 0.0221-0.0078 0.6103

Vl=

0.0000-0.0001
--0.0001 0.6250

0 0
0 0
0 0
0 0
0 0
0 0

0 0 0 0 0 0 7
0 0 0 0 0 0

0.0000-0.0052 0 0 0 0
-0.0052 0.6249 0 0 0 0

0 0 0.0000-0.0003-0.0006 0.0000
0 0 -0.0003 0.1563 0,0000-0.0010
0 0 -0.0006 0.0000 0.4946-0.0057
0 0 0.0000-0.0010-0,0057 0.0001

o° J o? I
In order to get a simple initial solution, we need an initial problem that decouples

into two fourth order LQG problems. Looking at the modal form of the problem,

one can see that the only coupling comes from B_ and C1. In order to split the
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system into two subsystems we choose the following initialparameters:

I 0.0001 -0.4523 0.0044 -0.5316 0 0 0 0 lTB0= 0 0 0 0 0.0008 -0.2970 -0.1730 0.0040 J

A0= AI

R0 = Rx

V0 = VI

Rc0 = Rcl

Vc0 = Vcl

The parameters are then continuously deformed following Eqs.(5.2.1-7)and the

initialsolution isintegrated forward as a function of the homotopy parameter a.

Table 5.4 summarizes the steps ofthe integration.

The shooting accuracy _ is set initiallyto 0.1 When the number of

minimization steps is less than 6 the shooting accuracy is doubled in order to

take largersteps. This strategy allows for large shooting steps. The accuracy on

the solution during the integration has been set to _0 = 10-4. Far better

accuracies are attained,however. This is due to the factthat one extra iteration

during the minimization process can bring the error down by 2 or 3 orders of

magnitude especiallyif one is within the quadratic convergence region. The

optimal cost J variesvery smoothly as a function of _ which explains the success

of the homotopy. The controllersobtained at a = 1 are given in Appendix C.
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T_ble 5.4: Summary of Homotouv Procedure

a Shooting Er. Shooting Cost linim.
|inimized Er. |inieized Cost Steps

0.100000 0.91 10-t 10.2082
0.62 10 -4 10.1979 4

0.287500 0.21 10 "o 10.6929
0.59 10 "5 10.6367 7

0.392969 0.22 10 "o 10.9170
0.53 10 "4 10.9019 5

0.486719 0.38 10 "o 11.1529
0.66 i0 -s 11.1112 6

0.557031 0.39 10 -o 11.3005
0.39 10 -6 11.2694 6

0.609766 0.41 10 .0 11.4083
0.75 10 "4 11.3756 6

0.703516 0.40 I0 -o 11.5967
0.67 10 -4 11.5512 7

0.797266 0.37 10 .0 11.7248
0.19 I0 -6 11.7072 6

0.903696 0.40 i0 -o 11.8683

0.91 10 .7 11.8529 6

1.000000 0.14 10 -0 11.9534
0.18 I0 -6 11.9450 4
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5.5.4 Using Homotopy: a Discontinuous Solution Path

The system formed by the two beams isnaturally decoupled when the stiffnessof

the interconnecting spring is zero, or in other words when the spring is removed.

A very natural approach is to continuously increase the stiffnessof the spring

from k - 0 to k - 10. If one looks at the form of A in Eq.(5.5.1),one can see

that it can be written as:

A - A0 + kAA

where, for the particularparameters chosen,

0 1.0000 0 0

-I.0000-0.0100 0 0
0 0 4.0000

0 -4.0000 -0.0400
Ao= 0 0 0

0

0

0 0

0 0 0 0
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1.0000 0 0

0 0 0 -1.0000-0.0100 0 0

0 0 0 0 0 0 4.0000

0 0 0 0 -4.0000-0.0400

AA =

0 0 0 0 0 0 0 0

-9.0451 0 1.3975 0 9.0451 0 1.3975 0

0 0 0 0 0 0 0 0

5.5902 0 -0.8637 0 -5.5902 0 ---0.8637 0

0 0 0 0 0 0 0 0

9.0451 0 -1.3975 0 -9.0451 0 -1.3975 0

0 0 0 0 0 0 0 0

5.5902 0 -0.8637 0 -5.5902 0 -0.8637 0

The homotopy parameter a defined in Section 5.2.1 simply becomes k/10, where

k is the stiffnessof the currently deformed system. The remaining parameters of

the problem B, C, R, V, Rc and Vc need not be changed since they naturally

have the correctblock diagonal structure.

The initialcompensators are the two fourth order LQG solution to the

problem with k = 0. Freezing the initialcontrollersand varying the stiffnessof

the spring, one finds that they stabilizethe system for 0 <_k < 2.8395 and k _>

7.7310 . They do provide a stabilizingsolution for k = 10 and constitute the

starting point of the sequential design of [Ber87b]. However, the closed loop

system is unstable whenever 2.8395 < k < 7.7310 and the initialcontrollersare

used. This indicates that the solution has a differentcharacter for small and

large k. Starting the homotopy at a = 0 with the initialdecentralized solution
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one doesindeed encounter a criticaluoin_ at a - 0.5724, or k -- 5.724. At that

point the algorithm cannot keep tracking the solution. The minimization step

converges instead toward a very differentsolution. This step consumes most of

the run time since the minimization startswith an initialsolution that may be

quite differentin character to the minimum. Once the software has found a new

local minimum, it can resume the forward integration starting with the new

solution. As k reaches 10 the solution obtained is the same as the one found in

the previous subsection using a differentinitialsimplifiedproblem. The solution

at k - 10 was subsequently used as a startingpoint in order to do the homotopy

backward and reduce the spring constant from 10 to 0. We willcallthe forward

path the path of solutionsobtained from the decoupled solution at k = 0 as k is

increased and the backward path the path of solutionsstarting at k - 10 as k is

decreased. As k keeps decreasing,the backward path also encounters a critical

point: the integration cannot go pass k - 1.795 and the minimization then

converges on the solution that is on the forward path. There is a whole range of

values for k, between 1.795 and 5.724, where the system admits multiple

solutions. The two solutionsobtained for a - 0.57 ( k - 5.7)are as follows:

Comuensators Dynamics from Forward Integration

Acl = 0 0 , KI "

70 2930 -287.3375 -79. 1406 -11 2272

GZ- ['-16.8490 525.6644 -24.1238 27.0323]

I__ ! 1 0 0

0 1 0
Ac_ - 0 0 I

23 9153 -228. 7647 --64. 7072 -11. 8874

G2" [--48.5721 27.0888--66.0029 1.14531

9K2 =

o,,,i 0,,,iG= ,4 G2 J' 04,t K2J

Cost J = 10.4692
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Comuensators Dynamio from Minimization

[ 0 0Act= 0 0 1
0 0

110.3980 -297.0714 -80.6289 -11 4036

GI= [ 36.6532 518.1627-21.6314 26.7397]

,El =

-_c2= 0 0 10 0 0 ,1_=
-8. 1725 -20.2980 -28. 1007 -3 5422

G2 = [-12.0068 9.7086 -12.1283 -3.3435]

Cost J = 10.4459

The compensators are written in Controller Canonical form for easier

comparison. The parameters are quite far apart between the two solutions. Both

solutions satisfy the optimality conditions with an accuracy better than 10 -_0

They yield a stable dosed loop system implying that the matrices P and Q are

non negative and correspond to minima. Figure 5.8 compares the dosed loop

poles obtained with the two different solutions.

Table 5.5 summarizes the results of the forward and backward

integrations. The solution is unique at k = 0 and also appears to be unique at

k = 10, as only one solution was found using either homotopy or direct

minimization. Appendix C regroups the controllers obtained for various values of

k in the forward or the backward integration.
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Table 5.5: Cost on Forward and Backward Inte_ation

0.0000

0.1000

0.1800

0.2000

0.3000

0.4000

Forward

Integration
Cost

Backward

Integration
Cost

7.8926 *.*

7.7483 *.*

8.0781 8.1654

8.1816 8.2587

8.7914

9.4692

0.5000 10.0875

0.5700 10.4692

0.5724 10.4816

8.8221

9.4779

10.0787

10.4459

10.4581

0.6000 *.* 10.5959

0.7000 *.* 11.0844

0.8000 *.* 11.5486

0.9000 *.* 11.8875

1.0000 *.* 11.9450

5.5.5 Dicuuion

When the stiffness of the spring is large enough, one can recognize two types of

modes in the composite system. The first type can be qualified as "group

modes". It corresponds to the displacement in phase of the two beams in such a

way that the spring is never elongated. This is made possible by the fact that

both beams have similar dynamics. The second type of modes can be qualified as

"spring modes". It corresponds to the motion of the two beams that will

elongate the spring. When the spring stiffness is low, the dynamics of the

composite system consist also of two types of modes. The first type, in that case,
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is associatedwith the motion of the first beam, and the second one to that of the

second beam. The nature of the control obtained for small values of k

corresponds mostly to the control of the beam modes since the only solution is a

continuous deformation of the uncoupled solution obtained at k = 0. For large

values of k, however, the control separates into the control of the spring the

group modes since it is found by continuously deforming the compensator

obtained by assuming that the sensors and actuators are such that group and

spring modes can be estimated and controlled separately, while the stiffness k is

unchanged, k = 10 (Section 5.5.3). For intermediate values of k, the situation is

not clear and two types of control subsist, one connecting to the independent

beam control at k = 0 and one connecting to the spring and group mode control

at k = 10. The homotopy provides some insight in the physical meaning of the

controller even when the nature is harder to identify. It appears that the initial

problem must have a controller of the same nature as the final problem if one

wants to track the solution. There may be more than one stabilizing

compensator corresponding to a local minimum, which would mean that one has

not identified the right architecture for the controller.

5.8 CONCLUSION

Continuation methods are reported more successful at solving complex control

design problems than the direct optimization methods [Ric87, Hyl90]. A

continuation algorithm has been derived in this chapter in order to solve the

fixed architecture H2 Optimal Control Problem. The algorithm, combines a

simple integration scheme with a minimization routine in order to control the

error of the solution. The minimization scheme uses modified gradient steps

along with modified Newton-Raphson steps, The modifications of the

minimization methods are necessary in order to deal with the singularityof the

problem since it admits familiesof solutionscorresponding to the differentstate

space realizationsof the same transferfunction.

A central issue in the use of homotopy is to determine the number of

connecting solution paths between two problems as well as the possibilityto find

all solutions to simpler problems. It was found in this chapter that there is no
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systematic way to find all solutions to the constrained LQG problem even for

diagonal problems. It was also found that the control problem admits multiple

solutions of various natures. Some solutions correspond to nonstabilizing

controllers while others yield a stable closed loop. Among the stabilizing

solutions, some correspond to minima whereas others are saddles. Unfortunately,

the nature of a solution is not invariant along a solution path: minima can

become saddles and stabilizing solutions can continuously become nonstabilizing

controllers. One must, therefore, determine all solutions, and not only the

minima, and track all of them in order to have a global tool for solving the

contrained LQG problem. One alternative is to rely on a minimization routine

and follow noncontinuous solution paths when a critical point is found along the

way. The success of the homotopy will strongly depend on how close the initial

and the final problems are related. Take, for example, a system consisting of p

weakly coupled subsystems. A natural architecture for that problem is to control

each subsystem independently. A good starting solution can be obtained by

setting the coupling terms to zero and to solve p independent LQG or reduced

order LQG problems. One can :hen interpret the homotopy parameter a as

being some norm of the coupling terms. Of course, if one keeps increasing the

coupling terms to a point where the subsystems become strongly coupled, the

decoupled solution does not bear any of the characteristics of the solution

corresponding to the strongly coupled solution and one might expect the weak

solution to vanish and a bifurcation to occur. A clear example of such an

occurrence was demonstrated using an increasingly coupled set of beams

controlled independently. Similarly, if the noise and the penalty matrices tend to

couple the subsystems,one can expect to encounterdif_qcultiesin followingthe

solution.

The algorithm can accommodate criticalpoints along the solutionpath

and track solutions corresponding to minima. This property was also

demonstrated on the coupled beam problem. However, the algorithmcan still

failto finda solution,whether itisbecause thereisno solution,or because one

has not found a path that connects to it. The selection of the architecture will

play an important role for the success of the solution algorithm.

172



EXAMPLES OF

FIXED ARCHITECTURE DESIGNS

6.1 INTRODUCTION

Some solutions to the fixed architecture problems have been already shown,

which have been obtained with the numerical algorithm presented in Chapter 5.

A broader validation is proposed in this chapter and consists of deriving reduced

order compensators for the four disk drive system of Enns [Enn84]. This example

was used in [Liu86] as a testbed for different compensator order reduction

techniques, and it was also used in [R.ic8?, Hyl90] to validate the Optimal

Projection Equations approach to find reduced order controllers. Enns' system is

a flexible shaft supporting four dissimilar disks. A torque is applied to the first

disk while the motion of the third disk is measured. Such a system is unstable

and nonminimum phase. Reduced order controllers of order 2 to 6 are to be

generated for increasing level of disturbance noise affecting the plant.

Once the confidence in the software abilities has been raised, more

realistic problems involving decentralized controllers can be tried. Two lightly

damped flexible structures were selected to provide a testbed for the design

method. Both are fully instrumented experimental articles developed at the

NASA Langley Research Center. Models, as well as specifications for the '

hardware components were available for both systems. The designs were.

therefore, based on actual performance considerations and took into account

hardware limitations such as maximum actuator authorities and noise levels, all

given by the component specifications. The first experiment is the Mini-Mast, a

20 meter long truss structure which has been manufactured and assembled with
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spaceflight tolerances. The mast has a triangular section inscribed in a 1.4

meter diameter circle and is cantilevered at its base. Three torque wheels serve

as the principal actuators at the top of the structure. Noncontacting sensors

monitor the displacement of the truss vertices. The structure is an ideal testbed

for performing vibratio,i suppression experiments.

The second experiment is the SCOLE, or Spacecraft Control Laboratory

Experiment. The article duplicates the dynamics of a composite satellite made of

a large mass/inertia module (i.e the space shuttle) connected to a small

mass/inertia module (i.e an antenna reflector) by a long flexible mast. The

shuttle is simulated by a 500 pounds steel plate with appropriately scaled

moments of inertia and is suspended by a single cable mounted to a universal

joint near the center of gravity of the system. The reflector is connected to the

shuttle by a stainless steel, 120 inch long tube and hangs down in order to reduce

unnecessary loads. The reflector is a 24 inch side hexagon and is positioned

horizontally in a nonsymmetric fashion relative to the shuttle. The reflector and

mass both weigh around 5 pounds with no sensor and no actuator. Aircraft

quality rate sensors and accelerometers are located both on the shuttle and on the

reflector. The Line of Sight (LOS) pointing of the reflector is the typical control

problem to investigate, where the flexibility and mass/inertia mismatch will

naturally lead to problems of control/structure interaction.

The models used in the examples capture the main features of the systems

they describe even though they may not represent the most current

configurations of the experiments. The fixed architecture controllers obtained in

the chapter will realistically illustrate the benefits and shortfalls of the approach.

Designs will be compared to the unconstrained full order controllers in order to

understand the implication of reducing the order and constraining the

information flow.
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6.2 DIRECT METHOD VERSUS INDIRECT METHOD: ENNS' EXAMPLE

6.2.1 Enns Four Disk Drive

The four disk system considered by Enns is an experiment originally developed at

Stanford University [EnnS4]. Its purpose was to study robust control designs.

The four disk drive consists of a shaft whose torsional stiffness is small enough so

that the system has slow lightly damped oscillatory poles. The control is

performed by a torque motor connected to the first disk while a tachometer

measures the rotation of the third disk. The system can be modeled with an

eighth order transfer function. The transfer function has two poles at the origin

if one assumes the shaft to be perfectly balanced and the bearings to be

frictionless. The plant is therefore unstable and, because the sensor and the

actuator are not collocated, it also happens to be nonminimum phase. Its

nominal transfer function is:

O. 01 (0.64s 5+0.235s 4+7.13S s. 100.02s 2+10.45s+99.55)
GCs):,

s2(s6+O.161sS,6.004s4"O.5822SS+9.985s2+O.4073s÷3.982)

The uncertainty in the plant is introduced by allowing some mismatch between

the inertia of the disks. Stabil/ty was found to be guaranteed as long as the loop

transfer function had a shape contained in a region shown in Figure 6.1 [Enn84].

The loop transfer function properties can be obtained by using a full order LQG

compensator when the problem parameters are properly chosen. The work

undertook by Enns was to reduce the order of the full order controllers found to

meet the robustness constraints with a compensator reduction technique of his

own. The work presented in [Liu86] was to extend the comparison and,

considering the same full order controllers, reduce their order using various order

reduction techniques, including a method of their own. Such order reduction

methods are indirect since the design procedure always consists of finding a full

order controller first, and then reducing it to meet the order constraints. Indirect

methods are shown to fail to stabilize the plant in many cases [Liu86], especially

when the disturbance entering the plant is high.
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[R.ic87, Hyl90], on the other hand, consider the LQG problems that

generate the full order compensators that meet the robustness requirements and

directly finds the reduced order controllers that solve the optimization problem.

Direct methods were found to provide stabilizing compensators in all cases and

the designs were extended to cases with much higher levels of disturbances

entering the plant. The same reduced order LQG problems are to be solved with

the newly developed software.

30

2O

m 10

0

-lO

._ -20-30

c_ -40

-50

-60

-70
.01

I I

.1 i 10

frequency in rad/sec

Fieure 6.1: Admissible Re¢ion for the Loop Transfer Function

in Enns' Example.
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6.2.2 The LQG Problem

The nominal plant model corresponds to the four disks having the same inertias.

Given the transfer function G(s) given in 6.2.1, a state space model can be

derived. The Observer Canonical Form is chosen in [Liu86]. The A, B and C

matrices are:

-0.1610
--6.0040
-0.5822

A = -9.9850
---0.4073
-3. 9820

0
0

I000000'

0100000

001000_000100

0000100!

0000010

0000001

0000000

c=E 1.ooooo o o o o o o]

B ._

0
0

0 640
0 235
7 130

i00 020
i0 450
99 550

The plant polesand zeros are:

Poles

0.0000

0.0000

--0.0153 * j 0.7648

-0.0282 = j 1.4097

-0.0370 * j 1.8496

Zeros

2.2616, j 5.1916

-0.0199 • j 0.9998

-4.8506

The controlled output z is given by z = Hx, where H is:

tt-[O 0 0 0 0.55 11 1.32 18]

The penalty on the control is one. The quadratic cost is given by R and Rc

respectivdy equal to:

1t =qlHTH, q1-10 "8

1%=1

The disturbance noise is modeled as a white noise being added to the control

signal and the measurement noise has intensity one. V and Vc are therefore:

V = q2BB T

Vc=l
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The robustness guarantees were shown to exist with the full order LQG

compensator for values of q_ ranging from 10 "2 to 10 e [Enn84]. Reduced order

LQG problems of various orders have been derived for q_ between 10 -2 and 2000

by [Liu86], and between 10 "2and l0 s by [PAc87, Hyl90].

6.2.3 Numerical Results using Homotopy

6.2.3.1 Results Summary

The extent of this present comparison is to design reduced order compensator for

nc between 2 and 6 and q2 equal to 10J, j - -2 to 5. Table 6.1 contains the value

of J/q2 for different compensator orders and different q_.

Table 6.1: Values J/a_ with Outimal Comuensators of Incr¢_ing Order

q2 nc

10 -2

I0-I

10o

i0_

10_

103

104

105

2 3 4 5 6 8

.2270_400 .227083971.22708050 .22708050 .22708044 .27080394

.16709687 .16707101 .16678943 .16678943 .16677428 .16677295

.14673280 .14593113 .14378364 .14378357 .14335087 .14330784

.14293114 .14028275 .13662988 .13662986 .13369265!.13336824

.14249519 .13868584 .13505833 .13504924 .12819751 .12727027

.14245084 .13818969 .13475189 .13471420 .12432748 .12280585

.14244839 .13803300 .13470714 .13465987 .12199848 .11923043

.14244595 .13798344 .134702271.13465367 .12064334 .11618572
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Figure 6.2 shows the curves J/q_ for the different compensator orders as a

function of q_. The curve allows an easy comparison with the results of [Eic87,

Hyl901 and shows a close match except maybe for nc = 5.

.24

.22

.2

.18

.14
nc--2

'_nc=3

nc=O
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_'nc=8
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q2

Figure 8.2: Optimal Value of J/q? for various Orders of Compensation
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6.2.3.2 Convereence Prouerties

All designs were started at q2 = 10-2. For each value of nc the LQG problem was

transformed into a suitable diagonal problem and the compensator was tracked

using the homotopy procedure of Chapter 5. Once the compensator for q2 = 10-2

was found, q2 was increased,in powers of ten, to the various desired values while

the solutionjust obtained was being tracked. The new solution was then used as

a new startingpoint and q2 increased again.

The open loop system is both unstable and nonminimum phase. The best

achievable performance is thereforelimited, and it is not possible to obtain zero

error even with a fullorder LQG regulator [Kwa72a]. Consequently, the cost is

insensitive to variation in compensator parameters once a good stabilizing

compensator is found and when the variations only tend to improve the cost.

The cost is, however, extremely sensitive to variations in the compensator

parameters that reduce the stabilitymargins. The problem is,therefore,badly

conditioned, and the use of minimization steps encounters difficultiesfor large

values of q2. Second, fourth and fifthorder compensators were obtained with no

particular numerical difficulties.The fifthorder compensators turn out to be

very close to their fourth order counterparts. The loop transfer functions from

compensator input to plant output are plotted for nc = 4 and nc = 5 and q2 - I

on Figure 6.3a, and for nc - 4 and nc = 5 and q2 = 10_ on Figure 6.3b. For any

given q_, the fifthorder compensator has four poles and three zeros which are

almost the same as that of the fourth order,plus a pole and a zero which almost

but not exactly cancel (Table 6.2). Such a compensator was found to be a

minimum for the cost:the eigenvalues of the Hessian calculated for nc = 5 and q2

= I split into two groups, the firstone containing ten positive eigenvalues

between ÷3.5250 10.4 and ÷1.6573 I0-5,and the second group containing thirteen

positive or negative eigenvalues whose magnitude is below 5.2371 10-9 (Figure

6.4). The tridiagonal realizationof the fifthorder SISO compensator requires

twenty three parameters, a minimal set requiring ten only: one can see that the

Hessian has a nullspace of appropriate dimension, and one can also see that the

condition of the problem isbad, with a factorof i0"9 between the highest nonzero

eigenvalue and the smallest nonzero eigenvalue.
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Tabl_ 6.2: Compensators Poles and Zeros. 4th order v_ 5th Order

q2 = 1

Compensator Poles

Compensator Zeros

q2 = 10,000

Compensator Poles

Compensator Zeros

nc=4

-0.4005 * j0.3254
-0.0649 * j0.8089

-0.0113 * j0.7731
-0.0339

nc=4

-0.3643 * j0.4136
--0.0174 * j0.9667

-0.0138 * j0.7742
-0.0357

nc =5

-0.3999 * j0.3254

-0.0650 * j0.8090
-0.0282

-0.0113 * j0.7731
-0.0345

-0.0276

nc=5

-0.3193 • j0.4740
-0.0150 • j0.9754
-0.2129

-0.0134 • j0.7719
-0.0340

-0.2609

Third and sixth order compensators had some difficultiesto converge forlarge q2.

Minimization steps are usually performed with an accurate line search using a

bracketing scheme. The line searches resultedin a very slow convergence of the

error for large values of q_. The corresponding variationsof the cost were of 10-s

percent decrease per step. The infinitynorm of the gradient (maximum absolute

value of its elements) jumped back and forth between 102 and 10-a. In order to

cope with such a problem the software was modified to perform complete

Newton-Raphson step with no linesearches. The accuracy of the line search is

highly dependent on the accuracy of the Lyapunov equation solverthat eliminate

P and Q. For large q_, Q becomes largerand relativelylessaccurate, resultingin

lessaccuracy on the cost. Similarly,the search directionis highly dependent on

the eigenvectors of the very small eigenvalues and may be lessaccurate. Step 4

of the algorithm shown in Section 5.3.2ismodified as follows:
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Step 4.1

Step 4.2

Step 4._

Compute gk, current gradient value

if [Igkll< stop

Compute Hk

Stev 4.4

SteD 4._

Else

Compute d_k = --Hkgk

If Ilgkll< E,,

= + (Full Modified
Newton Step )

Find _k such that

L(_ k + O'kd_k ) is minimized:

line search via bracketing

_k.l = _k + _kd_k

Go to Step 4.1

The fullNewton step is stilla modified step,likethe one shown in Section 5.3.5,

in order to deal with the singularityof the Hessian. The choice of the threshold

_s below which no line search is performed is highly problem dependent. One

wants to be close enough to the minimum so that the fullstep may converge.

Indeed, a fullstep may increase the cost and resultin a non converging sequence

of steps. The threshold was set low for most of the runs. For large values of q2

however (q2 - 1,000 and above) and for nc = 3 and nc - 6 the threshold was set

to 100. The best accuracy one was able to reach was 6.2 10-s for q2 = 10s and

nc = 6, and 1.9 10-7for the same value of q2 and nc --3.
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(;.2.3.3

The transfer function from the process noise to the output of the system is the

same as the open loop plant transfer function in this particular example. G(s)

has eight poles and fivezeros. As q2 is increased,the poles of the Kalman filter

designed for such a system go towards the minimum phase open loop zeros and

the mirror image of the nonminimum phase zeros while the remaining poles go to

infinityin a Butterworth pattern [Kwa72b]. Because of the separation principle,

poles of the closedloop system with the fullorder LQG controllerwillfollow such

a pattern. This is not the case with reduced order compensators. Only for nc =

3 do we have a closedloop pole going to infinityas ,,/q2.

Tal_l¢6.3: Fa_t Closed-Loou Poles.nr = 3

q_ = 1,000 a = -76.57 a/vr_ = -2.42

q2 = 10,000 a = -241.12 a/V_ = -2.41

q2 = 100,000 a = -761.74 a/,/'q2 : -2.41

Some of the dosed loop poles are near the open loop zeros or the reflections about

the imaginary axis. For q2 = l0 s and nc = 6, a pair of poles is at --0.0154 ± j

0.9978 while another pair is at -1.2138 * j 5.1850. For q_ = 10s and nc = 4 a

pair of closed loop poles is at --0.0186 ± j 0.9657. Looking at the trend, however,

the same pair of poles was at --0.0190 * j 0.9631 nc = 4 and q2 = 104. The real

part does not converge toward --0.0199, the real part of the pair of complex

conjugate open loop zeros. Figure 6.5 shows the root locus of the closed loop

poles as a function of q2 for nc = 4.

Considering its simplicity, the reduced order compensators achieve

performances comparable to the unconstrained optimum for very small orders(nc

= 2, 4). Figure 6.6 shows the impulse response obtained with compensators of

order 2 to 6 and q2 = 1. These various responses are also compared to the full

order response. Figure 6.7 shows a step response obtained with a second and a

fourth order compensator and compares it to the response obtained with the full

order controller for q2 = 1. The impulse response shows that higher modes are

more highly damped as the order of the compensator is increased. The step

response shows however that very good command following can be obtained

already with a second order controller.

185



2

L_

:m
N

1.5

.5

0

-1.5

x

x

_! /_..

X

X
.... I .... I .... I .... 11111

-.4 -.3 -.2 -.1 0

Fieure 6.3: Root Locus of the Closed Loop Poles for nc "- 4

and qo = 1 to 105

186



.03

0

-.03

-.06

-.09

-.t2
0 20 40 60 80 100

time in sec

120

Figure 6.6: Impulse Resuonse.

nr = 2.3.4, 5.6.8

1.5

1.2

.9

.6

.3

0
0

I i m i J

20 40 60 80 tO0

time in sec

t20

Figure _.7: Step Response, nc = 2, 4, 6, 8

187



6.3 THE NASA MINI-MAST

6.3.1 Description

The Mini-Mast [NasS9] is a 20 meter long generic space structure developed at

the Structural Dynamics Research Laboratory at the NASA Langley Research

Center. Its design duplicated except for its length the Mast truss envisioned for

the COFS-I flight experiment. The materials as well as the manufacturing have

flight quality specifications. The Mini-Mast has a three longeron construction

forming a horizontal tnangular cross section inscribed in a 1.4 meter diameter

circle. 1.12 meter long battens connect the vertices of the triangles vertically to

form a bay while diagonal elements provide stiffness in torsion and shear. The

truss contains 18 repeating bays. It is cantilevered to the ground at its bottom.

The structure has different possible configurations and can carry for example a

tip mass to simulate a payload. This present example considers the mast only.

Figure 6.8 shows a generic view of the beam and indicates the X-Y-Z reference

frame that is used. The Z axis is vertical pointing up, while the X and Y axes

are in the horizontal plane, the Y axis being normal to one of the faces of the

triangular section of the beam (Figure 6.8a).

The Mini-Mast is fully instrumented to support active vibration isolation

experiments. The principal actuators are three reaction wheels mounted at the

top of the structure. The spin axes of the wheels are aligned respectively with

the X, Y and Z axes and will be referred to as Wheel X, Wheel Y and Wheel Z.

It also has a dual set of sensors: noncontacting displacement sensors are used to

monitor the motion of the vertices of the truss in the horizontal plane and

normally to the face of the structure (Figure 6.8b). The second set of sensors are

high quality rate sensors and accelerometers.

The 'strawman' experiment proposed by NASA is to design a control

system to minimize the relative deformation between Bay 18 (top) and Bay 10

(mid mast). An available model had been obtained through parameter

identification of the structure using the noncontacting sensors only. Because

accurate optical based sensors can be developed to monitor the relative

deformation of the structure, it is not too unrealistic to use the displacement

sensors located on Bay 10 and 18 as long as they are aggregated to provide three
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relative measurements,the relative torsion between Bay 18 and Bay 10, the

relative displacement in the Y direction between Bay 18 and Bay 10 and the

relative displacement between Bay 18 and Bay 10 in the X direction. A very

simplified control law is sought, consisting of three decentralized second order

compensators, the first one feeding the relative torsion to Wheel Z, the second

one feeding the relative displacement along Y to Wheel X and, finally, the third

one feeding the relative displacement along X to Wheel Y. The decentralized

compensator will then be evaluated against its centralized full order counterpart.

6.3.2 The LQG Problem

6.3.2.1 The Mini-Mast Model

The first two bending modes of the Mini-Mast are at 0.86 Hz. The two modes

are really close because of the symmetry of the beam. The first torsional mode

appears at 4.30 Hz. the second bending modes are at {}.17 Hz. A hun&ed and

_ght modes then duster around 15 Hz and correspond to the bending modes of

the diagonal elements constituting the bays. The model to be used is a tenth

order model that includes the first and second bending modes as well as the first

torsional mode and was obtained through parameter identification on an early

setup of the experiment. The modes and damping ratios are summarized in

Table 6.4.

Table 6.4: freauencies and damuing for the Miai-Ma, st

lode

description

ist bending

Ist bending

ist torsion

2nd bending

2nd bending

Frequency

in rad/sec

5.3778

5.3702

27.0133

38.4440

38.7478

Damping
Ratio

0.0323

0.0213

0.0717

0.0238

0.0100

The main actuators are three reaction wheels mounted at the top of the structure

and driven by DC motors. The dynamics of the motors are important and must
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be included in the model. The motors cannot deliver any DC torque: on the

Mini-Mast, at low frequencies, the transfer functions from voltage to torque are

three high pass filters whose corner frequencies are at 3 rad/sec or 0.48 Hz. At

high frequencies, the transfer function from voltage to torque rolls off like a one

pole system. The second corner frequencies are well above the frequencies of

interest, around 350 rad/sec or 55 Hz, and need not be modeled. The final model

becomes a thirteenth order model that includes the ten original structural poles

of the beam and three poles to describe the dynamics of the wheels. The inputs

are:

u t = uz, command input on wheel Z in Nm

u2 = Ux, command input on wheel X in Nm

us = uy, command input on wheel Y in Nm.

Six noncontacting displacement sensors are considered, the three

mon/tor/ng the displacement of bay 18 (top of the mast) and those monitoring

Bay 10 (mid mast). The information we want to extract are the relative

displacements Xls - Xl0 and Y_s - Y10 as well as the relative angular

deformation about the Z axis 81s - 810. The information of the six sensors is

therefore aggregated to yield only three outputs:

Yt- 8ts- 810 (radian)

Y2 = Yis - Yi0 (meter)

y: - Xis -Xl0 (meter)

The corresponding A, B and C matrices are given in Appendix D.

6.3.2.2 Measurement and Process Noise

The noncontacting sensors have an RMS error value of 10 .3 inch or 2.54 10 .5

meter. After the measurements are aggregated, the measurement noises on y_, y._

and Y3 become:

Vc = diag(4.8092 lO-lO, 8,6021 10 -io, 8.6021 10-Io)

The disturbance noise is chosen as a random voltage driving the three torque
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wheels. The voltage is chosen to yield a 10 Nm RMS excitation:

V - 10s BB T

6.3.2.30uadratic CQ_

The maximum torque the motors can deliver is in the order of 50 Nm. The RMS

value of the torque should not be higher than a third of the maximum torque.

Using Bryson's rule, the weighting matrix 1_ is set to:

Ro= I3

The regulated values are y_ y2 and ys: the control is to minimize the relative

deformation between the top and the middle of the beam. The relative

displacements are to be kept to within a millimeter whereas the angular

displacement is to be kept within one milliradian (0.057 degree). The R matrix

was selected as:

A Reduced Order Decentralized Controller (RODC) consisting of three second

order compensators between yl and ul (Wheel Z), y_ and us and y3 and u3 was

designed. The homotopy procedure was started by canceling any coupling

between the torsionalmode and between the bending modes in the X plane and

the Y plane. The second bending modes were also made unobservable and

uncontrollable. As the coupling was continuously introduced, the solution was

tracked and no singular points were encountered. The decentralized controlleris

given in Appendix D.
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6.3.3 Design Comparison

The performance of the controllerscan be judged on the RMS errors they achieve

and the RMS inputs they required. Table 6.5 summarizes the results. Figure 8.9

shows a close up of the location of the open loop poles and the closed loop poles

obtained with the two designs. The Full Order Centralized Controller (FOCC)

resultsin three poles on the real axis close to the origin: they correspond to the

controllerattempting to invert the zeros of the high pass filterof the wheels

located at the origin. These modes do not contribute to the cost. Notice also

that the FOCC resultsin higher damping of the second bending modes: the

damping ratios of the second bending modes with the FOCC are 0.0416 and

0.0255 respectivelywhereas the RODC can only achieve damping ratiosequal to

0.0262 and 0.0192. Figure 6.10 shows the minimum and maximum singular

values of the plant transferfunction while Figure 6.11 presents a comparison of

the maximum and minimum singular values of loop transferfunctions from the

compensator inputs to the systems outputs with the two compensators. The

RODC follows the shape of the loop transferfunction obtained with the FOCC

but with reduced gains. At low frequenciesthe RODC does not try to invert the

zero of the wheels and behave like a differentiator whereas the FOCC transfer

function is flatter between its slow poles and the pole of the DC motor. The

RODC design also yields smaller gains on the second bending modes, prodding

less damping.

Table 6.5: RM$ Errors and RMS Inputs for the Ouen-Loo

RIS Value
of

Y1s-Yto

lls-X10

Uz

Ux

Uy

0pen-Loop Full-Order
Centralized

).RODC, and FOCC

Reduced--0rder

(rad) 1.3198 I0 -2

9.3478 10 .3

7.9484 I0-3

0

0

0

8.3020 I0 -3

1.425110 "3

1.9466 I0 -3

24.547

22.258

20.041

Decentralized

5.9202 10 -3

1.7618 I0 -3

2.4860 10-3

24.841

26.449

20.087
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The torsional mode is already well damped and its RM5 value falls within the

specifications. The relative displacements between the two bays is reduced by a

significant amount even though the actuators are used above the limit of 50/3

Nm. Hence, the displacement cannot be reduced to within a millimeter RMS.

The designs were not iterated to make the control inputs fall within the

specifications. The torque limitations make it impossible to achieve the required

accuracy. These seeminsly high RMS values are due to the large levels of

excitation used in the problem.

The RODC achieves very good performance given its extreme simplicity.

The performance degradation is 6.8% of the open loop RMS errors while the

control RMS inputs are 18.8 % higher than the FOCC RMS inputs. Notice that

the torsion is kept within a tighter bound. The Y channel also requires much

larger controls from Wheel X. The reason for this is that the centralized

compensator deliberately couples the axes X, Y and Z. It makes use of the fact

that the torsional mode is well damped already so that it can use Wheel Z to get

extra authority on the bending modes. The full order controller has also more

authority on the second bending modes. Figure 6.12 show the transient of Yl and

Y2 with the two different controllers for an initial conditions mostly in bending in

the Y axis. The response of Y2 (Yls - Y10) is very similar with both controllers,

except for more overshoot and a smaller damping of the higher modes with the

decentralized control scheme. The torsional response (Yl) is much different,

however, and the centralized controller gives rise to a much higher transient.

This is due to the fact that the compensator uses Wheel Z in order to damp out

the oscillation in bending as well. When the system has initial conditions mostly

in torsion, the FOCC tends to cancel the coupling between the torsional mode

and the bending modes whereas the RODC lets the Z channel excite the

remaining X and Y channels. Figure 6.13 shows the transient of yl and u: with

the two controllers. The torsional response is almost identical with both

schemes. One can see, however, that the decentralized controller cannot

anticipate the error coming from the coupling which is going to excite the

bending modes on the X and Y channels: the transient of u2 (Y wheel) shows

that the command resulting from the decentralized scheme lags behind the

command of the centralized compensator and requires, therefore, higher torque

levels. One can also see that the RODC has longer residual oscillations.

The controller transfer function relates three inputs to three outputs and
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is therefore made of nine SISO transfer functions: the off-diagonal transfer

functions of the decentralized controller are identically zero. The infinity norms

of the transfer functions give an indication of their relative importance. For the

decentralized compensator, the matrix of infinity norms is

GRODC =10 4

2.2262 0.0000 0.0000"

0.0000 2.6752 0.0000

0.0000 0.0000 0.8026

For the centralized compensator, it is:

GFOCC =I04

3.5326 2.9372 6.30551

2.4415 8.336? 3.9215[

'/.8882 4.3139 6.2498J

The off-diagonal elements of GFOCC are comparable to the diagonal elements.

This dearly illustrates the fact that the centralized controller couples inputs and

outputs in order to obtain the maximum control authority in all three axes. The

matrix GFOCC does not indicate any clear simplification of the control

structure. The performance obtained with the decentralized controller is,

however, very satisfactory.
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6.4 THE SCOLE

6.4.1 Description

The SCOLE was constructed to provide a physical testbed for the investigation

and validation of design techniques considering control structure interaction

[Nas87]. A large plate representing a space shuttle model and weighing 500

pounds issuspended by a singlecable through a universaljointlocated as close as

possible to the center of mass of the entirearticle. A light,hexagonaUy shaped

structure representing an antenna reflectorisattached to the bottom of the plate

by a long flexiblemast. The reflectorand the mast both weigh about 5 pounds.

Figure 6.14 shows the basic SCOLE structural assembly. A reference frame is

defined as follows (Figure 6.14): the Z axis is vertical,positive in the upward

direction; the X axis isaligned with the axis of symmetry of the shuttle; the Y

axis isalong the right wing (assuming the shuttle'sbay is below). The reflector

is not deployed in a symmetric fashion: the reflectoris attached horizontallyto

the mast and rotated to the right so that one of its sides is in the X direction

(Figure 6.14). Aircraftquality rate sensors axe availablein allthree axes both on

the shuttle and at the end of the mast. More sensors,such as accelerometers can

be used but are not considered here. The actuators consistof a Control Moment

Gyros (CMG) on the shuttle and of three orthogonally mounted reaction wheels

at the end of the mast. Torques in allthree axes can be commanded both on the

shuttleand on the reflector.

The experiment proposed here is to control the displacement and attitude

of the reflectorrelative to the shuttle such that, if the control is perfect, the

composite system should act likea rigidbody. Various control architectureswill

be proposed in order to illustratethe effect of reducing the order of the

compensator and constrainingthe information pattern.
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6.4.2 The LQG Problem

6.4.2.1 General

The SCOLE has three marginally stable modes corresponding to the rigid body

attitude motion about the universal joint. A small offset of the CG relative to

the universal joint stabihzes the modes and makes the attitude observable from

the rate sensors. This artifactmakes the use of accelerometers unnecessary. The

system alsohas two global pendulous modes corresponding to the swinging of the

long attachment cable. Such modes are almost totally uncontrollable and

unobservable from the actuators and sensors considered here and will be ignored.

The remaining modes are flexiblemodes. The model used in thisexample utilizes

the two firstbending and the two second bending modes as well as the first

torsional mode. Table 6.6 summarizes the frequencies and damping

characteristics.The damping ratioswere artificiallyset to 10-3.

Table 6.6: Freouencies and Darnuin¢ for the SCOLE

lode

description

Rigid Body

Rigid Body

Frequency
in rad/sec

0.174021

0.627081

Damping
Ratio

0.0010

0.0010

Rigid Body

Ist Bending

Ist Bending

Ist Torsion

2nd Bending

2nd Bending

1.009350

3.554800

4.007660

9.512380

18.496300

27.526200

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

Six actuators are available for control. They are grouped as follows:

ul = Usx,shuttleCMG, X input axis,ib-ft

u_ = umx, mast mounted reaction wheel, X axis,Ib-ft

u3 = us),,shuttleCMG, Y input axis,Ib-ft
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u4 = Usy, mast mounted reaction wheel, Y axis, Ib-ft

u5 = Usz, shuttle CMG, Z input axis, Ib-ft

u6 = uaz, mast mounted reaction wheel, Z axis, Ib-ft

The six rate sensors are divided as follows:

Yx = ysx, shuttle rate sensor, X axis, rad/sec

Y2 = Y-x, mast mounted rate sensor, X axis, rad/sec

Ys = Ysy, shuttle rate sensor, Y axis, rad/sec

Y4 = Ymy, mast mounted rate sensor, Y axis, rad/sec

Y5 --- Ysz, shuttle rate sensor, Z axis, rad/sec

Y6 = Ymz, mast mounted rate sensor, Z axis, rad/sec

The A, B and C matrix are provided in Appendix E.

6.4.2.2 Measurement and PrQC¢_ N0i_e

The noise properties of the various sensors can be found in [Nas87]. All rate

sensors have an RMS noise of 0.005 rad/sec. The matrix Vc is:

Vc = 0.0052 I6

The process noise is taken as a random command on each of the actuators. The

command is taken to be 0.3162 lb-ft RMS on the CMG's and 0.1 lb-ft on the

mast mounted reaction wheels:

V = B diag(O.l,0.01,0.I,0.01,0.I,0.01) B T

6.4.2.30uadratic Cost

The maximum torque the CMG can deliver is on the order of 1.5 lb-ft. The mast

mounted reaction wheels are smaller and can only deliver 0.1042 Ib-ft. Following

Bryson's rule, the matrix 1_: is chosen to be:

Rc = 32 diag( 1.5-2,0.I042-2,1.5"_,0.I042"_,1.5-2,0.i042-_)
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There are five controlled variables to the problem in the vector z = Hx.

Three are the relative attitude between the shuttle and the reflector, the

remaining two are the relative displacements in the X and Y direction between

the shuttle and the center of the reflector. Denoting by 8x, 8y and 8z the rotation

about the X, Y and Z axis respectively, and by attaching a subscript 's' for

quantities relative to the shuttle and by 'r' those relative to the reflector, the

controlled variables are:

zl = 8sx - 8rx, rad

z_ = 8sy - 8ry, rad

zs = 8s,- 8rz, rad

z4 = Xs- Xr, inch

zs = Ys- Yr, inch

z=Hx

The matrix H is given in Appendix E. The design goal is to keep the relative

angles zl, z2 and zs within 0.3000 millirad ( 1 minute of arc). The penalty on the

displacement was chosen to correspond to a 4-minute-of-arc misalignement of the

120 inch long mast, or roughly 0.125 inch. The matrix 1%was chosen as:

1%= HT[ diag( 10-z, 10-z, 10-z, 1.6 10-2, 1.6 10-2)]-t H

6.4.2.4 Control Architecture

The general control structure one wishes to implement consists of three

processors controlling the X, Y and Z axes. The eigenmotions corresponding to

the bending modes were purposely tailored to be skewed at ± 45 degrees in the

X-Y plane (see B and C matrices). This makes the control difficult for the axis

decoupled compensator and uncovers interesting limitations of fixed architecture

controllers. The first architecture is that of a Reduced Order Decentralized

Controller (1%ODC). It can be summarized in the following table:

Processor Order Sensor Actuator

1 4 1, 2 1, 2

2 4 3, 4 3, 4

3 4 5, 6 5, 6
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An improved architecture is sought and an overlapping structure is investigated

next. The compensator is similar to the B.ODC with the modification that

Actuator 4 is now available to Processor 1 and Actuator 2 is available to

Processor 2, thus giving more authority on the reflector in the X and Y axes.

The Reduced Order Overlapping Controller (ROOC) is as follows:

Processor Order Sensor Actuator

i 4 i, 2 I, 2, 4

2 4 3, 4 2, 3, 4

3 4 5, 6 5, 6

The total order of the compensator is still 12. In order to evaluate the effect of

the fixed information structure, the orders of processors 1 and 2 are increased to

(5. The last architecture is that of a Full Order Decentralized Controller (FODC):

Processor Order Sensor Actuator

1 6 I, 2 I, 2

2 6 3, 4 3, 4

3 4 5, 6 5, 6

The solution to the RODC problem was obtained by solving the problem

with the 12th order model first. The initial diagonal system Was obtained by

removing the second bending modes and by decoupling the problem into three

4th order LQG problems. The first torsional mode can easily be identified and

was controlled along with the rigid body mode corresponding to the yaw by the Z

channel. The mode shapes of the two first bending modes are strongly coupled in

the X and Y axes. One was selected to be associated with the pitching mode and

controlled by the Y channel while the last bending mode and the rolling mode

were controlled by the X channel. As the coupling was introduced through the

matrices R, V, B and C, the solution jumped from one path to another, to finally

converge to a 12th order Full Order Decentralized Controller (FODC12) for the

12th order system. The second bending modes were subsequently introduced and

the homotopy procedure used again. Because they are significantly low and

undamped, and because they are strongly coupled in the X and Y direction, the

solution path jumped again from one path to another in order to converge. A low
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accuracy was obtained on the RODC solution. The fact that both second

bending modes are to be controlled forces one controller to have fast poles. This

breaks the symmetry between the first and the second compensator and both

have to be modified so that they jointly take care of the first two and second two

bending modes with only four poles, the remaining poles dealing with the rigid

body motion. The final solution is a 12th order reduced order decentralized

controller (RODC) for the 16th order plant. The solution was used as a starting

point for the ROOC problem and direct minimization without homotopy was

used to obtained the solution. The FODC solution was found also through direct

minimization starting with the FODC12 solution whose dynamics were

augmented to comply with the extra poles introduced in the X and Y

subcontroUers. Convergence on the FODC was extremely good and the accuracy

high. All compensators are in Appendix E.

6.4.3 Design Comparison

The RMS values achieved by the different designs are summarized in Table 6.7.

Table 6.8 summarizes the optimal cost and the minimal damping achieved.

The fixed architecture designs achieve performances very similar to that of

the optimal solution: the worst performance degradation is 2.68 % of the closed

loop RMS of z2 and is obtained with the RODC. The required inputs are

however significantly higher: the RMS of X axis of the CMG with the ROOC is

42.9 % higher than it is with the FOCC. Yet, it is still below 0.5 ib-ft which was

chosen as the baseline. The RMS of u6 (mast mounted reaction wheel, Z axis) is

above the limit of 3.47 10 .2 lb-ft which is a third of the maximum, torque. All

designs require the same amount of RMS torque (within 0.6 %) from this

particular actuator and the weight on u8 should therefore be changed if one wants

to iterate the designs. The overall performances are relatively poor even with the

optimal compensator. The control authority on the CMG is low considering the

large inertia of the system and the time constant of the closed loop rigid body

modes is around one hundred seconds. The compensator must also consider the

fact that the motion of the plate excites the vibrational modes and that the mast

mounted wheels have also limited authority, limiting furthermore the bandwidth

of the design.
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Table 6.7: RMS Errors and RMS Control for the Oven Loov,

the Reduced Order Decentralized. Reduced Order Overlavvin_.

Full Order Decentralized and Full Order Centralized Loops

HS Value

of

S,,-Or.(rad)

8sy--8ry (rad)

Osz-Orz(rad)

Is - Xr (in)

Ys - Yr (in)

Open Loop

Usx

Urx

Usy

Ury

Usz

Urz

2.6153 10-2

2.0418 10"2

6.1452 10 .3

2.8250

3.2883

Reduced Order

Decentralized

(ib-ft) 0

(lb-ft) 0

(ib-_t) o

(lb-ft) 0

(lb-ft) 0
(lb-ft) 0

2.8164 10-3

2.2852 10 -3

9.9307 10 "4

2.9532 I0 -t

3.4182 10"t

5.6159 10"t

3.8562 10-2

3.6412 10-t

3.3221 10 -3

3.7783 10 -l

6.2589 10-_

Reduced Order

Overlapping

2.8169 10-3

2.2761 10 -3

9.9304 i0-_

2.9533 10-t

3.4182 10-t

5.6313 10-t

3.7792 10-2

3.6298 10-t

1.3817 10-2

3.7790 10-I

6.2582 10 -2

Table 6.7: Cont'd

US Value
of

8sx'-_rx (rad)

8sy"_ry (rad)

S,,-_,, (rad)
Is - Xr (in)

Y, - Yr (in)

u,x (ib-ft)

Urx (ib-ft)

Usy (lb-ft)

Ury (lb-ft)

Usz (lb--ft)

Urz (lb-ft)

Full Order
Decentralized

2.7910 10-3

2.2318 10-3

9.9302 10 -4

2.9517 10 -t

3.4175 10-t

4.3049 10-t

2.4743 10 -2

3.7038 10-1

3.2112 10 -2

3.7732 10-t

6.2598 10-2

Full Order

Centralized

2.7848 10-3

2.2254 10-3

9.9144 10 -4

2.9509 lO't

3.4133 lO-t

3.9411 lO-t

2.5987 10-2

3.1835 10"t

2.9442 10-2

2.4051 10-1

6.2283 10 "2
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Tabl_ _.$: Outimal Cost and Minimum Damuin_ for

Different COntrol Architecture

Control " Cost

Architecture

0pen-loop 12,560.89

RODC 161.07

ROOC

FODC

FOCC

160.73

156.78

155.38

linimum Damping

Ratio_ 2nd Bend.

1.0000 10 -3

1.5385 10-I

1.7692 10 -3

4.9231 10 -I

5.7692 10 -3

Figure 6.15 presents a close-up of the closed loop poles and compare then

to the open loop poles. Figure 6.15a shows the dosed loop poles obtained with

the RODC and the ROOC while Figure 6.15b shows the locations of the poles

with the FODC and the FOCC. The rigidbody modes are moved to very similar

locationswith alldesigns with the slowest closed loop pole around -0.03 rad/sec.

All four designs provide similar amounts of damping to the firstbending modes

as well as the firsttorsional mode which does not appear on the figure. A

noticeable differenceoccurs with the second bending modes however. The FODC

achieves 14.6 % lower damping compared to the FOCC. The reduced order

compensators, on the other hand, are unable to provide any significantamount of

damping. Notice that the overlapping architecture provides equivalent damping

of both second bending modes whereas the decentralized architecture resultsin

the highest mode having a smaller damping ratio(Figure 6.15b).

Figure 6.16 shows the locations of the poles and zeros of the different

compensators. All designs yield nonminimum phase zeros,with the fastestzeros

being associated with the reduced order compensators (Figure 6.16c,d). Both full

order compensators have a pair of lightlydamped oscillatorypoles close to the

second bending modes of the plant in order to provide some damping. With a

limited order, the RODC and the ROOC cannot achieve such pole locations

The result is that the bandwidths of Processor i and 2 split: the first

subcontrollerhas two fastrealpoles around -5 and -27, the second subcontroller

having its poles near the firstbending modes. Figure 6.17 shows the minimum

and maximum singular values of the open loop transfer function. Figure 618

shows the maximum singularvalues of the compensator transferfunctions. Both
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fullorder designs have resonances located a the firstand second bending modes as

well as at the firsttorsionalmode. The reduced order compensators, on the other

hand, have a resonant peak at the firsttorsional mode, but must do some

averaging between the first and the second bending modes. The damping

provided by the reduced order controllerwill,therefore,be smaller. Figure 6.19

shows the maximum singular values of the loop transfer function from

compensator inputs to plant outputs with the various controllers.The agreement

of the curves at low frequencies is excellent. The FOCC has deeper valleys

between the resonant peaks of the loop transfer function. The reduced order

compensators, on the other hand, resultin flattercurves.

The absence of symmetry between subcontroUer 1 and 2 may be surprising

since the bending modes have comparable observability and controllability

properties from sensors and actuators in the X and Y directions. The fact that

the second bending modes have to be controlled forces one of the controllerto

have a larger bandwidth, and the coordination between the controllersbecomes

more difficultwhen the architecture is specified, explaining in part the

convergence problems. Because of the relativesymmetry in X and Y, itishighly

probable that a local minimum existscorresponding to Processor 2 having the

highest bandwidth. When the decentralized solution obtained on the 12th order

model is used to start the a directoptimization with the 16th order model, the

successive compensators obtained through the iterations retain comparable

bandwidths in X and Y. The minimization was not .carriedout completely, but

one is confident that a more symmetric solution existsas well. The cost was,

however, largerin that case, at about 164.5.

When the cost is made of several equivalent contributions, the

unconstrained compensator will be able to minimize independently each of the

contributions. When constraints are introduced, these contributions cannot be

minimized independently anymore, which explains why many differenttrade-cffs

may occur and why compensators of very differentcharacter may be produced

All designs may have equivalent performances if one only looks at the value of

the cost.
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6.5 CONCLUSION

6.5.1 On the Performance of the Fixed AIcl_tectm'e Cont_Um

This chapter has shown several examples of reduced order and fixed architecture

control designs for realistic systems. Good performance was achieved by the

constrained compensators. The nominal performance of the dosed loop system is

increased when more poles are added to the subcontrollers and when the

constraints on the information flow and the control authority are relaxed. The

SCOLE example has shown that the order constraints seem to be more important

than the remaining architecture constraints, and more benefit is gained by

increasing the order of the compensator than by letting sensors and actuators be

shared by more than one subcontroUer.

6.5.2 On the Conve_gemce of the Algorithm

Inherent properties of the system can make the convergence of the homotopy

procedure difficult. The four disk system of Enns being both unstable and

nonminimum phase, the problem is numerically badly conditioned. Hence, the

algorithm encounters some difficulties when the design tries to obtain high gain

solutions. Again, the order of the compensator appears to be a very important

parameter for the fast convergence of the algorithm. This was shown both on

Enns' system and on the SCOLE. Problems occur when modes having

comparable effects on the cost have to be controlled using a compensator whose

order is such that it cannot tune itself to both dynamics. This effect was mostly

observed on the SCOLE, where the RODC had to find some average way of

controlling the first and second benching modes of the system. Excellent

convergence properties where found with the Mini-Mast, where no bifurcation or

singular point were found. The choice of the architecture appears to be,

therefore, of paramount importance for a fast convergence of the algorithm.
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6.5.3 On the Choice of the Control Architecture

The SCOLE example has shown that it is possible to obtain subcontrollers with

separate bandwidths. The Mini-Mast example, on the other hand, shows that a

locally decentralized control architecture, where three similar controllers are used

to control three mostly decoupled channels, can also be found. The choice of an

adequate control architecture is very important. The choice concerns both the

order of the subcontrollers and the information flow in the compensator. As

noted in chapter 1 and 2, some systems have asymptotic properties that make

near optimal solutions easy to find, and where simpler control structures appear

naturally. If these control structures are selected, the near optimal solutions can

be improved by solving the constrained optimization problem and the homotopy

algorithm is very likely to converge rapidly, as long as the plant is close enough

to the ideal system for which the simplified controller is optimal. For weakly

coupled systems, a locally decentralized architecture will achieve very high

performance until the coupling reaches a limit for which the nature of the

controller must change. Until this limit is reached, the homotopy procedure will

have a high rate of convergence. For weakly connected systems, a two timescale

control structure is near optimal. The slow control requires information and

control authority on the global dynamics of the system, while the fast control

requires local information and local conrtol authority. If such a structure is

respected, the corresponding optimal H2 fixed architecture controller will

optimize the performance and will be found quite rapidly. As the slow and fast

modes of the system merge, the control structure may have to change and the

homotopy algorithm will encounter numerical difficulties.

A large structure is neither weakly coupled, nor is it weakly connected.

Coherent behavior can be observed at all the resonant frequencies. Locally

decentralized control should not, therefore, be used. A distribution of the control

over the frequencies can, however, be envisioned. Such a scheme appears

naturally in the form of independent modal control [Mei87]. The fixed

architecture design procedure is, however, much more flexible, and potentially

more robust. If the sensors and actuators are grouped in such a way that the

resulting information and control authority is concentrated on one particular

mode, the corresponding compensator will be tuned to that particular mode. The

fact that higher modes are included in the design should prevent spillover.
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The bandwidth separation obtained on the SCOLE resulted in poor convergence

properties because both subcontrollers had similar information and control

authority on the first as well as the second bending modes.

6.5.4 On Robustness

The issue of robustness has not been addressed in the examples. The H2 fixed

architecture control problem does not include any direct attempt at making the

design more robust. Hence, the simplified controllers that have been obtained

cannot be expected to tolerate more disturbance and perform well for larger

uncertainties. An increase in robustness may, however, appear, simply because of

the fact that constrained controllers are overall suboptimal solutions of the LQ

problem. They will be less finely tuned to the model and may, consequently,

tolerate higher level of uncertainties.

A quick assessment of the robustness properties will show, in the case of

the SCOLE, that the RODC becomes unstable before the LQG design when the

first torsional mode is made extremely soft and almost unstable. The unstability

occurs on the second bending modes which are less damped with the RODC. The

first bending and rigid modes will, however, change slightly more with the LQG

controller. This rapid assessment will prove that improvements may occur, but

that, once again, the architecture chosen for the design must be properly chosen,

or the constrained design may be in fact less robust to plant uncertainties.
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CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY

This thesis has extended the Linear Quadratic Gaussian design techniques to

introduce the possibilityto constrain the architectureof the compensator. The

general form of feedback that it allows is a decentralized processing structure

where the controller is made of p subcontrollers having totally uncoupled

dynamics, each of which is connected to selected sensors and selected actuators.

This general architecturecan produce controllersof very differentcharacter. Full

order, dynamic, centralized controllers,reduced order, dynamic, centralized

controllers,decentralized,dynamic, controllers,and multi-timescale controllers

all obey the general rules developed to constrain the control architecture. The

decentralized staticcase has also been considered, but ithas not been studied in

details.

Optimality based techniques, and especially Linear Quadratic, or H2,

techniques, have been very successful at producing Multi-lnput, Multi-Output

compensators. The generalizationof such methods was undertaken to allow the

design of simpler feedback structures that follow hard implementation

requirements such as limitationin the processing capabilities,complexity in the

wiring and in data collecting,or modular assembly necessitating that each

module have itsown controller.

This thesishas posed the H2 fixed architecturecontrol problems (dynamic

and static)and derived the necessary conditions for optimality for them. These

conditions have the form of highly coupled matrix equations. The properties Gf

these equations have been studied and the investigation has focused, in
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particular,on possiblesimplificationsthat could occur because of the structure of

the problem. Such simplificationsoccur in the fullorder centralized problem,

and to a lesserextent,in the reduced order centralizedproblem.

Homotopy methods have been reported successful at solving complex

coupled matrix equations and continuation procedures have been developed to

solve the reduced order control problem. This thesishas considered the use of a

homotopy algorithm to solve the general H2 fixed architecture dynamic control

problem. The convergence propertieshave been studied at length and have led to

a broader understanding of the number and the nature of the solutions to the

constrained problem.

Design examples have shown the performance of simpler controllersfor

flexiblespace structures. The examples have alsohelped understood some of the

issues in choosing the architecture of the controllerand, more particularly,the

effectof limiting the order of the overallcompensator.

7.2 THESIS CONTRIBUTION

The contribution of this work has been to broaden the understanding of the

effects of the architecture constraints on the H_ optimal dynamic control

problem. The structured conditions obtained in Chapter 4 have shown how the

fullorder problem, which necessitatesthe solution of the two uncoupled Control

and FilterAlgebraic _quation (CARE and FARE), becomes more complicated as

the order of the dynamics of the compensator is,first,reduced aad, next, when

the processing is decentralized. The reduction in the order of the compensator

couples the filterand the control problem. This was shown in [Hyl84]. The

optimal coupling requires the computation of a projection operator, and the

CARE and FARE become modified Riccati equations, where the projection

cancels out some part of the quadratic terms entering the equations. This thesis

has shown that the decentralization of the processing also requires that the

differentsubcontroUers be coordinated, so that they, as a whole, minimize the

quadratic cost. The most general fixed architecturecontrol problem requires the

simultaneous solution of modified filterand control Riccati equations coupled
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through four Lyapunov equations which yield the optimal coupling, which is no

longer a projection, and the optimal coordination between the subcontroUers.

This work has also shown that the solution of the optimality conditions

can be decomposed and that the gains and the dynamics _f all the subcontroUers

can be solved as functions of the remaining variables in the problem. It is not

possible, however, to obtain an analytic expression that would allow for a closed

form substitution of these matrices in the remaining equations, in the most

general case. Hence, the structured conditions do not lead to any noticeable

simplification of the problem. The numerical algorithm developed in this work

has, consequently, used the gain and dynamic matrices of the controllers as

parameters and in order to solve a parameter optimization problem.

The H_ fixed architecture control problem has an obvious solution when

the system is made of totally independent subsystems. The motivation for using

homotopy is that it should be possible to start from such simple solutions and

follow the optimal solution as the parameters of the problem are changed from a

simpler decoupled form to their actual values. This approach was suggested in

[Ric87] for solving the reduced order control problem. This work has extended

the idea and developed a procedure for the more general fixed architecture

problem. In the process, one has developed an analytic expression for calculating

the Hessian, or matrix of second derivatives of the cost with respect to the

control parameters, and the nature of the solutions has been studied. The study

has shown that the optimality conditions for the constrained LQG problem have

many solutions. Some of the solutions yield stable closed loops, while others

yield unstable closed loop. Among the stabilizing solutions, which are the only

one of interest, some solutions are local minima and others are saddle points.

The nature of the solution is not invariant under homotopy. When a critical

point is encountered along the solution path, an eigenvalue of the Hessian

becomes zero and may change sign. In that case, a minimum can become a

saddle and a saddle can become a minimum. Bifurcating solutions may also

occur. Another phenomenon is that the optimal solution that initially stabilizes

the plant may become, in a continuous fashion, a nonstabil/zing solution. The

cost goes, in that case, to infinity, but the control parameters remain on a

smooth path. A chosen architecture may not produce any stabilizing controllers

for a particular system. If the unstable poles of such a system are continuously

move in the left hand plane, the problem will then have a stabilizing solution.
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Hence, the tracking of the stabilizing solutions only will not guarantee that a

possibly stabilizing solution will be found. The homotopy must, therefore, track

all the solutions to optimality conditions in order to be a global tool. The

alternative taken in this work is to allow for noncontinuous solution path and let

the algorithm look for local minima when a critical point is found. When the

problem does not have any stabilizingcompensator, the numerical scheme will

stop converging toward the desired problem and the program willthen abort.

The numerical examples have shown that the order constraints are the

most stringent. Ifthe order of the compensator isnot large enough, the solution

cannot tune itselfto the dynamics of the system and triesto find an average that

is hard to find in most cases. In general,the fixed architecturecontrol problem

converges rapidly and produce a high performance feedback ifthe problem admits

near optimal solutions with the particular architecture chosen. For example,

simpler near optimal controllerscan be obtained for weakly coupled subsystems

by ignoring the coupling and solving independent control problems. The

optimization of these decentralizedcontrollerswillresultin better performance of

the closed loop system. The choice of the order of each subcontrollermust leave

enough freedom to let the dynamics of the controllertune itselfto those of the

system. When the architecture of the controllerhas too many constraints,the

optimization produces a solution which tries to have some average action on

differentcontributions to the cost and may result in poor overall performance.

The homotopy is also less likely to converge continuously, since the starting

solution has a character much differentfrom that of the solution to the actual

problem.
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7.3 DIRECTIONS FOR FUTURE WORK

The first important issne to be studied is the choice of the control architecture.

Both the order of the subcontroUers and the sensors and actuators that they use

greatly influence the overall performance of the design. As shown in Chapter 6,

the residual improvement obtained by increasing the order of the compensator

may, however, be minimal above some number. The cost component ranking

method of [Ske80] is a very interesting idea for selecting the order of the

controller, since it breaks up the cost into several contributions from different

part of the dynamics of the system. Hence, it can show what parts of the

dynamics can be ignored, or need not be controlled. As for the choice of the

sensors and actuators, [Ske83] and [Del90] have both proposed some schemes

that, both, rely on weak coupling ideas. These studies can lead to general rules

for choosing the architecture and should be pursued.

Numerical improvements should also result from a better choice of the

architecture. If the unconstrained solution has already a marked decentralized

character, the corresponding constrained solution will converge very rapidly.

More generally, a more careful study on how to choose the inital problem should

be undertaken. Alternate ways of getting the different gradients can also be

studied. The current algorithm cannot handle very high order compensators with

large number of sensors and actuators, since the number of parameters increases

rapidly. The computation is, however, very well suited for parallel processing.

A second important issue that has not been investigated is the issue of

robustness. Simplified controllers are only suboptimal if one considers the

unconstrained LQG problem. If the architecture has been selected so that only

the predominant dynamic effects are controlled, it is possible that the controller

will not try to minimize the residual effects which may be the result of higher

modes in the system, or coupling between subsystems. The constrained

controller will, therefore, be less sensitive to modeling errors which are bound to

be higher on the detailed description of the system. Being less finely tuned, the

constrained controller may be more robust. This is not a guarantee, however

The H_ problem itself has been modified to take robustness into consideration

right away in the optimization. Considering the modified H2 cost functional or"

[Ber87a, Che88], the problem can be generalized with the addit/on of the
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architecture constraints. The Filter Laypunov equation of Chapter 3 will

become, in that case, a modified Riccati equation. The remaining optimality

conditions will be slightly modified, but can still be obtained using matrix

calculus as easily they were in the H2 case.

Finally, the problem can also be extended to the constrained H_/H®

problem. The reduced order case is presented in [Ber89], and the introduction of

architecture constraints can be done in a way very similar to the one used for the

H2 problem, once the new cost functional has been defined. Again, a l_ccati

equation replaces the Filter Lyapunov equation in order to get the H® bound.

The numerical aspects of the robust control methods may, however, reach

another level in complexity, and these methods may not be very pratical.
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APPENDIX A

A.1 Proof of Theorem 4.1

Theorem 4.1: Let C, D, X, R be matrices in _m_m, _nxn, _vam and [Rturn

respectively, C and D symmetric, positive semidefinite. Let Ex = { Et, E2,...,

Ep} be a family of independent matrices on _ra,n. Consider the system of

equations:

X = Ex,z, z E _P

TrEjTcxD = TrEjTR, j = 1,...,p (4.2.4)

where • follows Definition 3.1, and Ex defines the subspace where X lies.

system is a linear system. It has a unique solution if C and D are definite.

an infinite number of solutions, otherwise, if."

Ker(C) C Ker(R T)

Ker(D) C Ker(R)

Such a

It has

Proof: The system of equations defined by Eq.(4.2.4) is clearly a linear system in

the matrix variable X. X is required to be a linear combination of the matrices

El, E2...., Ep. Eq.(4.2.4) requires that the projection on Ej of the product

CXD be equal to some specified value. The proof of the theorem necessitates

some preliminary lemmas.
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A.2 Preliminaries

Lemma A.h Given an nxn matrix X, which is symmetric, positive, semidefinite,

with rank p, there exists an n_p matriz R which is fail column rank, such that:

X = RR T

Proof: X being symmetric, itisdiagonalizable. Itseigenvalue decomposition is:

where T is unitary (TT T = I), and where Ap is a diagonal matrix with strictly

positive entries,[GanS9]. Block partitioning,the firstp columns of T can be

regrouped in a matrix T I. Define the matrix q_p u the p-dimensional diagonal

matrix whose diagonal elements are the square roots of the diagonal elements of

Ap. The matrix R can then be defined as:

R = Tivr,_p (A.I)

R is fullcolumn rank since qTpis nonsingular and since T Iis fullcolumn rank.

Hence, it satisfies Lemma A.1. r_

Lemma A.2: Con,sider two n,,n symmetric matrices X

positive semidefinite and Y is positive definite. Then,

Tr(XY) _) 0,

and Tr(XY) = 0 if and only fiX = On

and Y such that X is

Proof:

nxn matrix S such that:

Y being positive definite, there is, according to Lemma A.1, a nonsingular

Y = SS T

Using Eq.(A.2), we get:

Tr(XY) = Tr(XSS T)

= Tr(sTxs)

(A.2)
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X being positive semidefinite, sTxs is also positive semidefinite. Its trace is

equal to the sum of its eigenvalues. Hence, the trace is strictly positive, unless

all eigenvalues of X are zero. X being symmetric, this would imply that X is

identically zero.
[]

Lemma A.3:

C = CIC1 T, C1E _m,,k

D = DID1 T, DI E [Rnxl

where k and 1 are the respecti1/e ranks of C and D.

matrix. Then, if the following is true,

Ker(C) C Ker(R T)

Ker(D) ¢ Ker(R)

R will satis_

Let C and D be positi1/e, semidefinite, such that:

R = C ,(C 1TC ,)"'C T RD _(D T D 1)"lD 1T

Let R be a generic m_n

(A.3)

(A.4)

Proof: the existence of Cl and DI is guaranteed by Lemma A.1. C_TC_ and

DiTD_ are both invertible since C1 and DI are both full column rank.

CI(cITcI)'tCI T iTsan orthogonal projection parallel to Ker(C); r Indeed, if 1/is in
Ker(C), then C1 1/- 0, and if 1/is perpendicular to Ker(C), Cl 1/-- 1/. Similarly,

DI(D1TDI)'IDt T is an orthogonal projection parallel to Ker(D). Consider a

general vector 1/in _n. 1/can be written as:

1/ _- 111+ I/2_

with Vle Ker(D) J', 1/2 e Ker(D) J'. Since Ker(D) C Ket(R), R1/= R1/v Hence:

R = RDI(DITD0-_D1T (A.5)

Consider now a vector w in [Rm. w can be written as:

W = 101 + W2,

with wl _ Ker(C) _', w2 _ Ker(C) J'. Because Ker(C) C Ker(RT), RTw - RTw and:

R T = RTcI(cITcI)'ICI T
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or: R = C z)' C (A.6)

Combining Eq.(A.5) and Eq.(A.6), we get the desired equality. D

A.3 Uniqueness

The uniqueness of the solution isobtained by looking at the system of equations:

P

X - P,xjEj (A.7)

j*l

0 -- TrEjTcxD, j = i, ..., p (A.8)

(A.7) is the expanded version the expression E_z.

homogeneous part of Eq.(4.2.4). Consider the followinglinearcombination:

P

L - P_xjTrEjTcxD

j=1

P

= Tr( E xjEjTcxD)

j=l

One can recognize that the summation is only Eq.(A.7).

iszero. Hence, Eq.(A.9) yields:

Eqs.(A.7,8) constitute the

(A.9)

Eq.(A.8) implies that L

0 = Tr(xTcxD)

If D ispositive definite,xTcx must be zero (Lemma A.2). If C is also positive

definite,this implies that X must be zero. Hence, the homogeneous part of the

linear system admits zero as its unique solution. The system having as many

equations as unknowns, thisimplies that ithas one and only one solution, o
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A.3 Existence of a Solution when C or D are not Definite

Consider, now, the casewhereC or D are not definite. Assume that C has rank k

and D has rank I. According to Lemma A.1, there e_ists a m.k dimensional

matrix C_ and a n-1 dimensional matrix D_ such that C_ and D_ are both full

column rank, and such that:

D = DID1T

C - CICI T

Eq.(4.2.4) becomes

TrEjT11 - Tr(EjTC 1C ITXD iD zT), j = 1 ,

Tr((C 1TEjD 1)T C ITxD l)

"**, p

Define Xl as: Xl -- CITXDI (A.IO)

and define Ej_ as:

Ejt -- c1TEjDI

The Ejl are k_l matrices. XI is also a k_l matrix. Assume, further, that

Eq.(4.2.5) are satisfied. Lemma A.3 is, therefore satisfied by 1t. Defining RI as:

RI = (CITC1)'IcI'r11DI(D,TDi)"I

R_ isan k,l matrix. X, satisfiesthe followingsystem of equations:

P

XI - E xjEj 1

j.l

TrEjTcIT111DI--- TrEjTcIXID1 T, j = 1, ..., p (A.12)

Using the properties of the trace operator, and using Eqs.(10,11), the system

becomes:

P

X1 = _] xjEj t

j,l

TrEjITRI=TrEjiTxb j= i, ...,p (A.13)
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X_ satisfies a system of equations similar in every way to that defined in Theorem

4.1, where the matrices that play the role of C and D in that new problem are,

respectively, Ik and I1 which are positive definite matrices. The problem defined

by Eq.(A.13) has, therefore, one and only one solution. A general solution to

Eq.(4.2.4) is:

X = CI(cITcI)'IXI(DITDI)'IDI T + C_MD_ T

where M is any m-kxn-1 matrix, and where D_ spans Ker(D) and C_ spans

Ker(C). []
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APPENDIX B

B.I Statement of the Problem

We consider, in the following, that there is a single compensator in the feedback

loop and that G, Ac and K are block partitioned as follows:

The triplet of matrices (G, Ac, ]_) can be expanded on a basis of matrices

(Definition 3.1) and is completely defined by a column vector _ containing the

free entries of G, kc and K. Assume that _ is formed in the following fashion:

a, ll'

kl

gl

a2, (B.2)

g_
g22.

where al_ is a column vector containing the free entries in AI_, k_ is a column

vector containing the free entries in ](_, etc. The Lagrang/an can be partitioned

accordingly:
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Lailau Lallkl Lallgl

Lklalx Lklkl Lklgl

Lgla11 Lglkl L glgl

L a_lau L a_lkl L a21gl

Lk2all Lk_kl Lk_g 1

L al_au L al_kl L al_gl

L g2all Lg_kl Lg2gl

L a_a, La22kl La2_gl

L alla21 Lallk_ Lal lal_

Lkla_ 1 Lklk_ Lklal_

L gla_l L glk2 Lglal_

La_ la_l La_lk2 La_ la12

Lk_a21 Lk2k_ Lk_a1_

Lal_a_l L al_k_ L al_al_

L g_a_ Lg_k_ Lg_a_

La2_a_ 1 L a_k_ L a2_a_

La_ lg_ La_ _a_

Lk_g_ Lk_a_2

L glg_ L g_a_

La_g_ L a_ _a_

Lk_g_ Lk_a_

La_g_ L a_a_

L g_g_ Lg_a_

L a_g_ L a2_a_

B.2 Uncontrollable Compensator

Theorem B.I: Assume that l_ = 0 and K2 = O. The modes corresponding t,o A22

are uncontrollable from £. The compensator matrices have the form:

(B.3)

The following equations hold i_ that case:

0 = Laua_ z 0 = Laug _ 0 = Lauaz 2

0 = Lkta_ _ 0 = Lktg _ 0 = Lkta2 _

0 = Lg_a_ 0 = Lg_g_ 0 = Lg_a_2

0 = La_a_ 0 = La_g _ 0 = La_a_

0=L 0=L 0=L
g_al2 g2g_ g2a_

0=L 0=L 0=L
Q22aI2 a2292 a22a22

Proof: the matrix tc_, P, {] and Vcl have special forms when the compensator is

uncontrollable. Extending the partitioning of Eq.(3.3.2), and using Eq.(B.3), we

get:
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Acl = CAixAi21, Vc1= OKtVzKi T
0 A_2/ 0 0

The corresponding q becomes:

[qooqo,10
(B.5)

Consider, now, a general perturbation of the compensator corresponding to a

variation AAt2 in At2. Every matrix with superscript " t ,, corresponds to the

derivativeof that particularmatrix in the directionAAt2.

00 O]
Acl1= 00AAt , Vcl x=O, Rcl 1=0 (B.6)

O0 0

The matrix

Eq.(3.3.20):

q t satisfies the Lyapunov equation obtained by

0 = Aclqt + qtAcxT + Vclx+ Acltq + qAcxxT

T! +Given the form of q and Acl, the term Acltq qAcl*T is zero.

satisfies:

0 = AclTp x + PtAcl + Rcl I + AclJ.TP + PAclt

RciIiszero (no dependence on At2) and:

I(_ 0 PotAA12 ]Acl!TP + PAclt = OT T PxxaAz_
AAtTpIo AAt2Ptl _Ax_P x_+P2xAAt_

differentiating

(B.7)

Similarly, P t

(B.8)

Because of the form of Ach Eq.(B.4),the corresponding p1 willbe:
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0 0 Po2_p1= 0 0 Pl2[ (B.9)
P2o P21 P22J

Hence q l is zero.

becomes:

lit = ptq + pqt

Using Eqs.(B.5,9) and the fact that ql = 0, the matrix M1

[°°° 1= 0 0

12ol 12t t 0
(n.lO)

Hence, lto I = 0, lot I : 0, In t = 0, Most = 0, 1221 = 0 and lnl : 0 for any

perturbation in An. The matrix equation Llc , LK and LG depend on P, q, G, Ac

and K. Since they are matrix equations, one can look at some blocks only. The

block partitioning follows the same rules as in Eqs.(3.3.8-13) or Proposition 3.1.

When the matrices are varied in only one direction (corresponding, for example,

to a given AAn), the derivatives of LAc, LK and LG are matrices of similar

dimensions that will be denoted by the superscript " 1 .. Using Eq.(3.3.8-10) and

using Eq.(B.10), we get:

L I = Mut = 0
All

LAt = in x = 0
12

L I =I221=0
A22

This being true for any AAn, and writing the various equations in vector form, we

get the following equations:

0-L
_lla12

0 = Lanan

0 = L
a22a12
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G_ is zero (no

Eq.(3.3.9):

dependence on Al2),

LGi = BT|oc 1

= _T!oll BTlo21]

and _t is zero. Hence, differentiating

M01t and M021 being zero, Eq.(B.10), we obtain:

LGt= 0

This being true for any AA_ we have:

0 = Lglal2

0=L
g_al_

Finally, differentiating Eq. (3.3.10):

LKt = PcclKVc + McoCT

:[ Pp:::]
Thus, LKt_ = 0. This holds for any AAI_, therefore:

0 = L/cla12

In summary,

Lalla1_ = O, Lat_al_ = O, La22al_ : O, Lgla12 = O, Lg2a12 = O, Lktaz 2 = O.

Similarly, one can consider a perturbation corresponding to a variation _G:

in G2. Computing Acl t, Vcl L, ILclt, pl, qt, Ill etc. for such a perturbation, and

using the special form of q and Acl, one would obtain the required equalities for
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L_ng_,Lk_g_ etc. Variations in A22 are handled in a similar way. The algebra is

straightforward and the proof is not developed any further, o

B.3 Unobservable Compensator

Theorem B.2: Ass_rae that G2 = 0 and An = O. The modes corresponding to A_2

are no_ _nobservable from G. The compensator matrices have the form:

The foUo_ng efuatWns hold in tAat case:

0 = Lalla21 0 = Lank2 0 = Lana22

0 = Lkla21 0 = Lklk2 0 = Lkta2 _

0 = Lgla21 0 = Lglk 2 0 = Lgla22

0 = La21a21 0 = La2_k 2 0 = La21a22

0 = Lk2a21 0 = Lk2k2 0 = Lk2a22

0 = La22a21 0 = La22k 2 0 = La22a22

Proof: the proof follows the same steps as for the uncontrollable case. The roles

of P and q must however by changed. A rigorous method for obtaining the proof

is to consider the dual problem which is exactly the case treated above. This is

equivalent to exchanging the roles of A12 and A:_, B and C, G and K, P and q.

r_
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APPENDIX C

The Two Coupled Beam Example

ComDensat0r l_¢idization, K = 10.0

Col umnl 1 thru 3

-2. e79e35e735881290-41 !

o. oeeeeeegO_NNlNO_

e. eeeeeeeeeeeeeeeo_e

Col _ne 4 thru 4

e. H_OO_eN_Gq_4m

8.85706067992377_+_

-2. e315e42272562570._0

o.eees:::::::,_,_ ....

-2.3082250758747740+00

e.eeeeeeeeeeeeeeeo,_e

o.eeeeeeeeeeeeeeeo+ee

e._eeNeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-2.e315e8227256257D+ee

-8.857e6e679923778D-_e

Ac2 ,,

Celumne 1 thrv 3

.-9.53447(MI582_15250,.411

-5.529691e195915410-41

e.lHleeqHNNHN_l_10_g

Col wmnl 4 thru 4

8.4eSglNT"711e516D+ee

-2.62884e477846499o+ee

$.529691e19591561o--g_

-9.534676858229525o-el

e.eeeeee_eeeee_lo_qm

e. eeqHleeeeeeeeeeeo+ee

e. eeeeee_meeeeeeo_ee

-2.428844477848499D+_e

--6.4051116eT711 e516O-_e
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Col unne 1 thru 3

-9.OIS_43190196S4_JO,(,G1

o.oooeooI_oooooOIH)_D

Celumne 4 thru 6

-7.e3eso6e36N88390+(H)

e.eeeeeeeeeeeeeeeo+ee

Columna 7 thru 8

o.eeeeeeeoeeeeeeeo_

-1.2s07363503641990._1

7.984149913067382D.t.el

e. eeeeeetH.)oeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-2.1e23259e36528230._2

e.eeeHHeeeeeeeeo.,ee

-1.253602068239188_1

6.271087M3OOTOOOI)+QG

G.oQGGoooooGoooo(K_.c.oo

o.eeeeeeeeeeeeeeeo_e

7.177298S167343330+ei

J( no

S. 9472620214429940-03

6.9192083e341 e2S 10-42

-2.9094626618292800-41

-1 • 2693565315939680,1'4t

e. Oee4HHHNHI_44_IO,_Q

0._

O. e4HHHHHHleOO_HH_

Compensator l:[ea/ization.

o.oe_

e.eeeeeeeeeeeeeeeo_e

e.eeeeeeeeeeeeeeeo+ee

-1.273757948047e70o--42

3.4887987112345300-42

-1.2274o1344698684o-41

6.239o97o3283o571O-Ol

K=5.7

From Forward Integration

At1 I

Columnl 1 thrv 3

-7.e2929e9369161570_41

Col umne 4 thru 4

e._

-I.122716676T71891D'HI1

1,eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeee4_4e
e,eeeeeeeeeeeeeee0+ee

-2.673375e7983s937D+e2

e.eeeeeeeeeeeeeee_e

1._eeeeeeeeeeeeeo+ee

e.oeeeeHeee_ueo+ee

-7.91_UM2S_S??D+el

ORIGINAL PA_ f_

OF POOR QUALI'IW.
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AC2 ,.

Col umno I thru 3

8. eeeeeeeeeeeeeeeoeee

e. eeeoooeoeeoeeeeoe4_

e. eoeeeoeoooeeeNo_e

-2.3915322158181700+01

Col umnl 4 thru 6

e._

o._

1. eooeqmeoeHqNFOqN:._oe

-1 . 1887371402517910+01

Columns 1 thru 3

-1. 8848971873985590+01

9. eeeeoeNeeeHeeo_

Col umno 4 thru 9

2.7032353936899540+01

Columns 7 thru 8

_. 6002928218528380.041

1 . eeeeeeeeeeeeeeeo+e9

e. oeoeeeeee(NNHpeeo+#o

8,9eeeeoeooeeeeeoo+oo

-2.2878247181 g3553084D2

5.2s89439558999980+02

9.9eeeeeeeeeeeeeeo+e9

9. eeeeoeeeeeeeeeeo+eo

-4.8,572110244977280,041

e. eeeeeeeeeeeeeeeo+ee

1 . 145331298,5404360+00

e. 9eeeeeeeeeeeeeeo+ee

f. (Jeeeeo(J(Jeeee(_e(_J,_(J

8. eeeoeoeeHeo_e

-6.470728800941 ,k,340+01

-2.41238378e9899280-0-01

e. eeeeeeeeeeeeeeeo+ee

9. eeeeeeeeeeeeeeeo+ee

2.7988821 407854590+01

0. 0*

0. 0.
0. 0.

1. 0.

0. 0.

0. 0.

O. 9.

0. 1.

/
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From Backward Integration

AC1

Columns 1 thru 3

eoeeesoooooeeeeeeo44e

e.eeeooeH_olD_14m

-1.10398e3322283340_2

Columns 4 thru 4

e. e/H)eeeeeeeee4NmO_

e. eeeeeeeeNee4Hm_ee
1. e_m_eeeeee_N_44

-1 • 1_356634338026D+el

1.eeeeeeeeeeeeeeeo+ee

o.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-2.97e7143965585350+e2

e.eeeeeeeeeeeeeeeo+ee

1.eeeeeeeeeeeeeeeD+ee

e.eeeeeeeeeeeeeeeo+ee

-6.ee28938987359150+el

AC2 ,,

Col umne 1 thru 3

e. eeeeeeeeeeeeeeeo.Nm

e. eeeeeeeeeleeee_41e

e.eeeeeeeeeeeeeeeo+ee

-6. 172_eee206746e9D+ee

Col umne 4 thru 4

e.eeeee_

e.eeeeeeeeeeeeeeeo_e

1.eeeeeeeeeeeeeeeo+_

-3.542222e4e8369eeo+ee

1.eeeeeeeeeN_meo_Q

e.eeeeeee_meeee_m

e.eeeeeeeeeeet_meo+_

-2.e29798525ees422o+el

e. eeeeeeeeeeeeeeeo+ee

1. m_eeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

-2.81 ee76149284834o+e 1

Columns 1 thru 3

3.665326eeesi48e_+el

e.eeeeeeeeeeeeee4m_4m

Columns 4 thru S

2. 673973951 ee4e57D+e 1

e. eeeeeeeeeeeeeeeo+ee

Columns 7 thru 8

e. eeeeeeeeeeeeeeeo+ee

- 1.212832336683966D+e I

5.181627_e219531o+e2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-1.2ee677645ese2740+el

e.eeeeeeeeeeeeeeeo+ee

-3.343454231654758D+ee

-2.16314246295e375D4-el

e.eeeeeee_eeeeeeeo_e

e.eeeeeeeeeeeeeeeD+ee

9.7eee5382ee94518D+ee

Eg0oloo0oi'0000001
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C0moensator Realization. K = 2.0

From Forward Integration

Col umns 1 thru 3

e. oeeeeeeoeeeeeeeo+ee

e. eeeeeeeeeeeoeeeo+ee

e. eeeoeeeeooeeeeeo+ee

-5. 3772400391421 e30+e 1

Columns 4 thru 4

e.eoeeeeeeeee_

e.oeeeeeeeeeeeeeeo+ee

1.eeeeeeeeeeeeeeeo_ee

-1.29378e3228193630+el

AC2 m

Col umne 1 thru 3,

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e,eeeeeeeeeeeeeeeo+ee

-s.le785329486ge85o+el

Col umnl 4 thru 4

e.eeeeeeeeeeeeeee(>+ee
e.eeeeeeeeeeeeeeeo_ee
1.eeeeeeeeeeeeeeeo-_e

-T.7219506297ee886D+el

G

Columns 1 thru 3

--4.4634827272341360+el

e.eeeeeeeeeeeeeeeo+ee

columns 4 thru 6

2.e862e384e235739O+el

e.eeeeeeeeeeeeeeeo+ee

Columns 7 thru 8

e.eeeeeeeeeeeeeeeo+ee

-5.267945784741912D+el

1.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-2.5897614481872180+02

1.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+e®

e.eeeeeeeeeeeeeeeo+ee

-2.5675888308293040+e2

3.5581ees23334868o+e2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-7.375153371612239O+Ol

e.eeeeeoeeeeeeeeeo+ee

1.e8239588597815eo+el

e.eeeeeeeeeeeeeeeo+ee

1.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-6.9274981893387e9o+01

e.eeeeeeeeeeeeeeoo.+oe

1.eeeeeeeeeeeeeeeo.ee

e.eeeeeeeeeeeeeeeo-c-oe

-7.e1227e72s1572e8o+el

-4.135557e38848e34o+el

e.eeeeeeeeeeeeeeoo+oe

e.eeeeeeeeeeeeeeeo+oe

2.5035997542427740+02

0010000] TK= [_0000001
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From Backward Integration

AC1 ,=

Col umnl 1 thru 3

e. eeeeeeeeeee_

e. eeeeeeeeeeeeeeeo+ee

e. eeeee_

-5.582832158e 14938D+el

Columns 4 thru 4

e oeeeeeeeeeeeeeeeo+ee
1. eeeeeeeeeeeeeeeo+ee

- 1 •2771 g I ee3374923o+e 1

AC2

Col umnl 1 thru 3

e oetMH)ee(HHHH_eeeo+ee

e._

e. eeeeee4H)eeeeee4o+ee
-2. 6886812668837170.I.ee

Columns 4 thru 4

e. eeeeeeeeeeeeeeeo_e

e. eeeeeeeeee_meeeo_w
1. eeeeeeeeeeeeeeeo+ee

-2. 74964ee76e 1 ess2D+ee

G

Col unme 1 thru 3

-4.1458523252ge8480+e 1

e. eeeee_

Columns 4 thru 6

2.e99794614e8612eO-_l

e.:::¢::¢:::::::='Or,_¢

Col unlne 7 thru 8

e.eeeeeeeeeeeeeeeo+ee

4.4523245438926580e4_

1.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeee_mee_,ee

e.eeeeeeeeeeeeeeeo+ee

-2.5727365144484330._2

t.eeeeeeeeeeeeeeeo_m

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+N

-g.ss44768282484960.i.ee

3.576144134559132D+e2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-3.g2125gg84394241D+ee

e.eeeeeeeeeeeeeeeo+ee

-1.39612sg177378840._e

e.eeeeeeeeeeeeeeeo_ee

1.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-6.92e39815395eg460._1

e.eeeeeeeeeeeeeeeo+ee

1.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo._e

-1.36535esge976185D+el

-4.eg41e7sgsse86360+el

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

5.40697973984ses4Deee

K i 0010000l'0000001
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OF POOR QUALITY
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APPENDIX D

The Mini-Mast Example

A, B and C Matrice_

A I

Col umnl 1 thru 3

e. eeeeeeeeeeeeeeeo+ee

-7.2971837689eeeeeo+e2

e. _:eeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

o. eeeoeeeeeee_

o. eeeeoeeeeeeeeeeo+ee

e. 0eeeee _,=_,¢¢¢=¢='J+ee

e. oeeeseeeeeeeeeeo_-ee

e. oeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

1.eeeeeeeeeeeeeeeo+ee

-3.8737e722eeeeeeeo+ee

e.eeeeeeeeeeeeeeeo_e

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eoeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

o.oeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

o.ooooeeeoeoooooeo+ee

e.oeoeeoeeoooeooeoeee

o.eeoeeoeeeoeeeoeoeee

e.eeeeeeeeeeeeeee_e

e.eeeeeeeeeeeeeeeo+ee
-5.835eeeeeeeeeeeeo--el
-3.eeeeeeeeeeeeeeeo,_ee

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.oeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeee_+ee
e.oeeeeeeeeeeeeee_+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee

Co I umne 4 thru 8

e. eeeeeeeeeeeee(_M_

e. Heee/H_eeeeeedl_q_

e. eeee_leeeeeee_t_8

e._

-2.8s2e73284eeeeeeO_l

o.oeeeeeeeeeeeeeeo+ee

e.eeee_

o. eeeeee_

e. oeeeeeeeeeeeeeeo._e

e. eeeeeeeeeeeeeeeo+ee

e.eeeeHeee_

e.eeeeeeeeeeeeeHo_e

e.eeeeeeeee(_e4_m,_e

l.eeeeeeeeeeeeeeeo_ee

-3.474e588eeeeeeeeo,.el

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+H

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee
0. eeeeeeeeeeeeeeeo+ee

o. eeeeeeeeeeeoeeeo+ee

0. oeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee
e. eeeeeeeeeeeeeeeo+_e

-I . 477941136eeeeeeo+e._

e.eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo-_e
e. eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+_e

e. eeeeeeeeeeeeeeeo-,-e e
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POOR QUALITY
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Col umne 7 thru 9

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeee_m+ee

e. eeeeeeeeeeeeeeeo_ee

e. eeHeeeeeeeeeeeo.,,ee

1. eeeeoeoeoeeooeeo.4.eo

- 1 •8299344eeeeeeeeo.,,.ee

O. eeeeeeeoeeeeeeeo._o

e._

e. eeeeeeeeeeeeeeeo+ee

e. e_

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

Cotumne 10 thru 12

O. eeeeeeeeeeeeeeeo+ee

o. Heeee4H)eeeeeee_,eQ

o. eeet_4_eeeeo._e
e. eeeeeeeeeeeeeeeo+ee
e. eeeeeeeeeeeeeeeo+ee
O._

1. eeeeee44H)eeeeee_-eo

-2.2877052eeeeeeeeo-el

e. oeeeeeeeeeeeeeeo+ee
e. eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee

Co I unm8 13 thru 13

e. eeeeeeeeeeeeeeeo+ee
e. eeeeeeeeeeeeeeeo+ee
O. eeeeeeee4m4HNHNm_-eo

o. o_

o._

o.ee_

8. t699eeeeeeeeeeeo--e3
e.eeeeeeeeeeeeeeec_4e
e. eeeeeeeeeeeeeeeo+H
1.2388eeee_2
e. eeeeeeeeeHeeeeo_e

-7.64sseeeeeeeeeeeo-e3
-_. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo,_ee

e. eeeeeeeeeeeeeeeo+ee

I • 849eeeeeeeeeeeeo--e2

e. eeeeeeeeeeeeeeeo_e

8.1899e_e_tHK>.,.e3

-,3. eeeeeeeeeeeeee_

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

7. s48seeeeeeeeeeeo-e3

e. eeeeeeeeeeeeeeeD+ee

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
o.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+H
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+H
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+H
e.eeeeeeeeeeeeeeeo+H
e.eeeeeeeeeeeeeeeo+H

-1.se1392ee_4eeeeo+e3
e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
o.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee

-2.ee39e48e_eeeeeD+el
e.eeeeeeeeeeeeeee_+ee

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeD+ee

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo, ee
e.eeeeeeeeeeeeeeeo_e
e.eeeeeeeeeeeeeeeo._e
e.eeeeeeeeeeeeeeeo, ee
e.eeeeeeeeeeeeeeeo._e
e.eeeeeeeeeeeeeee_ee
e.eeeeeeeeeeeeeee(>c-ee
1.eeeeeeeeeeeeeeeo+ee

-7.74958eeeeeeeeeeo-el
e.eeeeeeeeeeeeeeeo+ee
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8

0. eeeeeeeeeeoeee(_+eo

.945eooooee@eeeoD-o T

T . eeeeeeoeeeeeeeol>44)o

e. oeeeeooeeeeeeeel3_)o

o. eeeeoeeeeeeoeeoo+_J

e. eeeeeeoeQeeeeeoo+oo

o. eeeeeoooeeooOOOD44O

O. HOOOOOOOOeOOOOD,0.Oe

e. eeeeeeoeeeeeeeeo+eo

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. oeeoeoeoeeoeoool_H

e. eeeoeooeeoeoeeoD+oo

e. eeeeeeeeeeeoeeeo.4.eo

e. eeeeeeeeeeooeeeo._

o. eeeeeeeoeeoooeeo._

e. eeeeoeeoeeeoHoo._

-e. 166eeeeeeeeeeeeo-4s

0. eeoeooooeeoeeeoD4_o

-2. 7233eeeeeeeeeeeo-e3

1. eeeeeeeeeeeeeeeo+H

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

-2.5,,.eseeeeeeeeeeeo..e3

e. eeeeeeeeeeeeeeeo.+ee

e. eeeeeeeeeeeeeeeD.,_e

e. eeeeeeeeeeeeeeeo+ee

o. eeeeeeeeeeeeeeeo+eo

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeHeeeeeeo._e

e. eeeeeeeeeeeeeeeo+ee

-2. 7233eeeeeeeeeeeo-e3

e. eeeemeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

-4.122eeeeeeeeeeeeo--e3

e. eeeeeeeeeeeeeeeo+ee

2.5,,,sseeeeeeeeeeeo--e3

I. eeeeeeeeeeeeeeeo+ee

C m

Columns 1 thru 3

-5.1557238658711e50-01

1.2173405844598210-4)2

t.32816e88S2112730.-el

Col unme 4 thru 6

-4.837835277e877240--e2

6.8674267490668580-01

1.3106167392326470-.41

Columns 7 thru 9

e.eeee_=========_:>+ee

e.eeeeeeeeee_4_m_

e.eeeeeeeeeeeeeeeo+ee

col umne lO thru 12

e.eeeeeeeeeeeeeeeo+H

e.eeeeeeeeeeeeeHo._D

e.eeeeeeeeeeeeeeeo+ee

Columnl 13 thru 13

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeD+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeee_

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+H

1.73839ee297e6574o-e2

7.225egelgss3s4seo-.el

1.2e87479199ge6679+ee

e.eeeeeeeeeeeeeee_ee
e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeec_e

3.4485689843979TT0--el

7.9800475e26483e6o-el

-1.435335e34713333o-_e

9.479046392193s11D-_2

-4.63e81g18744esg20-el

-7.es789319444_ssTO-el

e.eeeeeeeeeeeeeeeo_e
e.eeeeeeeeeeeeeeeo_e
e.eeeeeeeeeeeeeee_ee
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Compensator Realization

AC i

Columns 1 thru 3

-1.18e454e67738923D+e2

-1.699115055592872D+e2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

Columns 4 thru 6

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

1.oee736e332e6352Dee2

-1.7175455706932790.i.e2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

1.788637842899564o+e2

-1.735127477625835Dee2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-1.320299207529957o+e2

6.e39716036385999o+e2

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee

-1.1676658827447940+e2

1.5055943136845610+02

e.eeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo_e

e.eeeeeeeeeeeeeeeo+ee

1.617572786991442D+e2

-7.557162e19544356Dee2

G I

Col umne 1 thru 3

-1.e42e571e186441830+42

e.eeeeeeee4mme_-_

e._eeeeeeeeeeeeeoeee

Col umne 4 thru 6

e.i)eeeeee_leeee_i4_

1.2354434627802331)+e3

e.eeeeeeeeeeeeeeeo+ee

-5,7151157e857913eo.H)1

e.eeeeeeeeeeeeeeeo_e

e.eeeeeeeeeeeeeeeoeee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeoeee

-2.4881797915112580+e3

e.eeeeeeeeeeeeeeeo+ee

-1.8354345519e4717D+e3

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.oeeeeeeeeeeeeeeo+ee

1.3e85431e3519688D+es

K lib

-7.41591 eSe2774555Dee4

2.176858285e933e40-_4

e. eeeee_l)eeeeeeoeee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo._

e.eeeeeeeeeeeeeeeoeee

e.eeeeeeeeeeeeeeeo+ee

-1.4722712851854e20+e3

4.ese3137e31127eTO+e3

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo_ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

8.1e4e6336923e693D+e2

-3.8994723352645960._3
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APPENDIX E

The SCOLE Example

A, B, C, and H Matrices

A = Blockdiag( AL, A2, A3, At, As, As, Az, A_)

AI

o.eeeeeeeeeeeeeeeo+ee
-3.e2833e8441eeeeeo-e2

A2

e.eeeeeeeeeeeeeeeo+ee
-1.ses133es75seeeeo.,,.el

A3

e.eeeeeeeeeeeeeeeo._e
-3.9323essessleeeeo-el

A4 m

e.eeeeeeeeeeeeeeeo+ee
-1.263ese3e_eeeeeo+el

AS

e.eeeeeeeeeeeeeeeo+ee
-1.e187874225eeeeeo+ee

A8

e.eeeeeeeeeeeeeeeo+ee
-9.e,I.SS3732644eeeeo+el

A7

e.eeeeeeeeeeeeeeeo+ee
-3,42113113egeeeeeo.+e2

A8

e.eeeeeeeeeeeeeeeo._
-7.5769168644eeeeeo+e2

257

1.eeeeeeeeeeeeeeel>+ee
-3._e42eeeeeeeeeeo-.e4

1.eeeeeeeeeeeeeeeo+ee
-s.e1532eeeeeeeeeeo-.e3

1.eeeeeeeeeeeeeeeo+ee
-1.254162eeeeeeeeeo.-e3

1.eeeeeee:¢:¢¢¢¢¢o+ee
-7.1eeseeeeeeeeeeeo--e3

1.eeeeeeeeeeeeeeeo+ee
-2.els7eeeeeeeeeeeo-e3

1.eeeeeeeeeeeeeeeo+ee

-1.ge2476eeeeeeeeeo-e2

1.eeeeeeeeeeeeeeeo+ee
-3.6ss2seeeeeeeeedo-e2

1.eeeeeeeeeeeeeeeo._
-s.ses24eeeeeeeeeeo-e2

0,_ PO0._ QUALITY



B

Col umns 1 thru 3

e. eeeeeeeeeeeeeeeo_oe

1. 952620eeeeeeeeeo-e2

0. eeeeeeeeeeeeeeeo+ee

-3.1946e2eeeeeeeeeo-e2

e. eeeeeeeeeeeeeeeo+ee

-2. e34833eeeeeeeeeo-e2

e. eeeeeeeeeeeeeeeo+ee

T. 1834e7eeeeeeeeeo-e3

e. eeeeeeeeeeeeoeeo+ee

.42e782eeeeeeeeeo.-e2

e. eeeeeeeeeeeeeeeo+ee

-2.945981 oeeeeeoeeo-e4

e. eeeeeeeeeeeeeeeo+ee

-5.629878eeeeeeeeeo-e3

e. eeeeeeeeeeeeeeeo+ee

3.27974eeeeeeeeeeo.-e3

Cel_el 4 thru 6

e. eeeeeeeeeeeeeeeo+ee

5.1 e2775eeeeeeeeeo-e3

e. eeeeeeeeeeeeeeeo+ee

I. 368346eeeeeeeeeo-e3

e. eeeeeeeeeeeeee_eee

9.1928e7eeeeeNeeo-e3

e. eeeeeeeeeeeeeeeoeee

4.581372e4eqH)etlelm-t2

e. eeeNeeeeeeeeeeo+ee

8.18e835H_leeeo-e3

e. eeeeeeeeeeeeeeeo_ee

I. 88486eeeeeeeeeeo-e2

e. eeeeeeeeeeeeeeeo+ee

1. el 8785eeeeeeeeeo-el

e. eeeeeeeeeeeeeeeo+ee

2.413438eeeeeeeeeo-e 1

e.eeeeeeeeeeeeeeeo_ee

7.359277eeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

4.868e63eeeeeeeeeo-e2

e.eeeeeeeeeeeeeeeo+ee

--8.952349eeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

-2.e49821eeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

8.294947eeeeeeeeeo.-e3

e.eeeeeeeeeeeeeeeo+ee

8.194912eeeeeeeeeo..43

e.eeeeeeeeeeeeeeeo+ee

-1.693758eeeeeeeeeo-el

e.eeeeeeeeeeeeeeeo+ee

1.418774eeeeeeeeeO-el

e.eeeeeeeeeeeeeeeo+ee

1.se2747eeeeeeeeeo-e2

e.eeeeeeeeeeeeeeeo+ee

8.e87914eeeeeeeeeo..e4

e.eeeeeeeeeeeeeeeo+ee

-1.241117eeeeeeeeeo.-e3

e.eeeeeeeeeeeeeeeo+ee

1.784269eeeeeeeeeo-e4

e.eeeeeeeeeeeeeeec+ee

-2.488448eeeeeeeeeo..e2

e.eeeeeeeeeeeeeeeo+ee

3.466187eeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

1.223138eeeeeeeeel)-e5

e.eeeeeeeeeeeeeeeo+ee

9.559862eeeeeeeeeo-e5

e.eeeeeeeeeeeeeeeD+ee

1.455784eeeeeeeeeo-e2

o.eeeeeeeeeeeeeeeo+ee

-..e.e35,_eeeeeeeeeec)-.e4

e.eeeeeeeeeeeeeeeo+ee

2.e44872eeeeeeeeeo-e2

e.eeeeeeeeeeeeeeeo+ee

-2.eess®2eeeeeeeeeo-e2

e.eeeeeeeeeeeeeeeo+ee

9.36848,l, eeeeeeeeeo-.e3

e.eeeeeeeeeeeeeeeo+ee

-5.244127eeeeeeeeeo-e4

e.eeeeeeeeeeeeeeeo+ee

1.8227e2eeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

3.e4eTeleeeeeeeeeo.-e3

e.eeeeeeeeeeeeeeeo+ee

1.587412eeeeeeeeeo-e2

e.eeeeeeeeeeeeeeeo+ee

2.128822eeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

-2.4864eseeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

2.524383eeeeeeeeeo-e3

e.eeeeeeeeeeeeeeeo+ee

-2.s949eeeeeeeeeeeo-e2

e.eeeeeeeeeeeeeeeo+ee

-2.727312Neeeeeeeo-el

e.eeeeeeeeeeeeeeeo+ee

-9.534877eeeeeeeeeo-e4

e.eeeeeeeeeeeeeeeoeee

-5.987419eeeeeeeeeo-e3

C = B I
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Columns 1 thru 3

1.2166893eeeeeeeeo-e2

g. 4540750oeeeeeeeo-e3

2.15334eeeeeeeeoeo--03

1.3133ggeeeeeeeeeo_)e

-1.5315g213eeeeeeeo+ee

Columns 4 thru 6
e. eeeeeeeeeeeeeeeo+ee

e. oeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

Col umne 7 thru 9

3.2332330eeeeeeeeo--e3

-6.58687q)eeeeeeeeo-e2

-2.345870eeeeeeeeeo-e3

3.1 _eeesseeeeeeeeo+ee

5. 794685eeeeeeeeeo-e2

Col_nm le thru 12

O. eeeeeeeeeeeeeeeo+oe

o. eoe(H)eoeeeeeeeoo+ee
o. oeeeeeeeeeeeeeeo+ee

e._
e. eeeoeeeeeeee(Nle_-og

Colwane 13 thru 15

1.6374515900000000-01

-9. g8536930eeeeeeeo-e2

9.656gM3eeeeeeeeo.-e4

-7.3661 eeeeeeeeeeeo-.e2

-1.13164780eeeeeeeo-e 1

col umno 16 thru 18

O. eeoeoooeoooeooeo-t-ee

e. eeeeeeeeeeeeeeeo+ee
e. eeeeeeeeeee_

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeoeeoo+ee

e.eooeeeeeeeeeeeeo+ee

o.ooeoeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-1.13g5971eeeeeeeeo--e2

T.1256123eeeeeeeeo-e2

1.245288eeeeeeeeeo-e3

1.4647gg81eeeeeeeo+ee

1.5276gse6eeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo_e

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

..o.4es5101eeoeeeeeo--e3

-1.85730018eeeeeeeo--e2

2.76197189eeeeeeeo-el
,.4.Te5387627eeeeeeo-_e

2.879815417eeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.oeeeeeeeeeeeeeeo+ee

e.eoeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeee_ee

-o.0626610eeeeeeeeo-e2

-2.17188840eeeoeeeo-e3

-1.3220293eeeeeeeeo--e3

1.7691173eeeeeeeeo--el

-2.ee77251oeeeeeoeo+ee

e.eeeeeeeeeeeeeeeo+ee

o.oooeeeeeeeeeeeeo+ee

e.eeoeeeeeeeeeeeoo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+oe

5.9126730eeeoeeeeo-e3

3.1870480eeooeeeeo-e3

2.e$451oeeeeeeeeeo-e3

2.6286583eeeeeeeeo-el

-o.7687583eeeeeeeeo-el

e.oeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.oeeeeeeeeeeeeeeo+ee
e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-1.38397308eeeeoeeO-el

-2.383023e6eeeeeeeo-el
6.e6279196eeeeoeeo-e3

4.5587202eeeeeeeeo-el

-2.soge946oeeeeeeeo--el
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Compensator Realization

ACl

Full Order Decentralized Controller (FODC)

1.

Columns 1 thru 3

-9. 44211180485423eo--el

-1.2g 15282242.1250eD+ee

e. eeeeeeeeeeeeeeeo+ee

e. eoeeeeeeeeeeeeeo+ee

e. ooeeeeeeeeeeeeeo+ee

o. ooeeeeeeee@eeeeD+ee

1.15015624478427@o+ee

-6.32564619781@leeO.-el

1.sg52604165894geo-el

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

1.06066543g191oseD--el

-9.85369156289296eo-el

-4.5786135e315042eE_-ee

o.eeeeeeeeeeeeeeeo+ee

o.eeeeeeeeeeeeeeeo+ee

Columns 4 thru 6

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

3.6o I e 16768ese7$eo+ee

-2.1494748e96e476eO-el

-6.1 o4116706TTe492D-e2

e. eeeeeeeeeeeeeeeo+ee

Ac2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-2.979684296441el(_-.e2

-1.94esg913848631oo-e2

-3.422e799368739eeo+e2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

g.93793egg875998eo--_1

-_.55e553298981e4eo--_1

Columns 1 thru 3

-1.el1286e7395e71oo.t.ee

-1.76235636ee14244Do+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

8.24585741276e27oo-el

.-4.548275274_4419@o.-el

-3.@48697e6342114eO-el

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-1.3125175e55335ego--e2

-3.72667985e54466eo--el

-3.8511528265e386eo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

Columns 4 thru 6

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

3.31618e44887899eo.l.ee

-3.34876325736e61 eo-e 1

I. el 67188ee673e7eo_ 1

e. eeeeeeeeeeeeeeeo+ee

AC3

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-1.484e7483538678go-e2

-1.g3886239317655eo-e2

-7.57733663422675eo+e2

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeec_ee

e.eeeeeeeeeeeeeeeo+ee

1.ee795621943568eo+oe

-1.592322S8157241eCP_e

Col umnl 1 thru 3

-1.21743791195357eo+ee

-6.44737965211e31eo.-el

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

1._el_66@4914453eO-el

-2.513115776e6347eo-,el

4.9993117914@798eO-el

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeD_ee

-1.e2e54846e2268eeo-_

-1.2275818855898eei_e

-9.e652558172454SeD_-_

Col umnl 4 thru 4

e.eeeeec¢¢:¢¢¢ceeo_e

e.eeeeeeeeeeeeeeeo+ee

g.32e7e85e43917oeO-el

-1.18518ggg579974eo+ee

O,_iGIHAL PAGF_ |S
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G 8m

Columns 1 thru ,3

-1. 497S271681375600+00
7.04613918S8965530-02

e. eeeeeeeeeeeeeeeo_ee

0. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

Col umne 4 thru 6

2..37909149735,3870D+01

-2.7840536947822300-01

e. oeeeeeeeeeeeeoeo+oe

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

Col u_ne 7 thru 9

e. eeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo.t.ee

1.0,3516875092883e0+01

1.5103385058183300-4) 1

e. oeeeeeeeeeeeeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

Columne 10 thru 12

0. eeeeooooeeo4)oooo_eo

0. oeoeeo4104HHHNeeo+oe

-2.7807962134058300+01

1.7000144317805500-01

0. eeeeseo44H_eeeeo_4_

e. oeeeeeeeeeeeeeeo+ee

Col_ne 13 thru 15

0. eeeeeeeeee4HH)eeD+ee

o. eeeeeeeeeeeeoeeo+ee

0. seeeeeeeee4)eeeeo+ee

e. eeeeeeeeeeeeeeeo+ee

-2.5512117800555800+e 1

- 1 . 2145724324729300-01

co I umn8 16 thru 16

0. eeeeeeeeeeeeeeeo+eo

e. eeeeeeeeeeeeeeeo+ee

e. eoeeeeeeeeeeeeeo+eo

e. eeeeeeeeeeeeeeeo+ee

-s. s820009638085 Ie0+00

2. e 140230809106400+00

-2.179687253s736300+01

-5.821774018587642D-02

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+eo

-2.4271133323790_e0-H51

1.832s27058947070D--01

e.6000000600006000+eo

e.eeeeeeeeeeeeeee_,ee

9.eeeeeeeeeeeeeeec>+ee

e.eeeeeeeeeeeeeeeo+ee

1.5477894ss7916900+00

-1.s096307921335900+00

e.eeeeeeeeeeeeeeoo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

8.642s6435000s0400+00

|.2s740220s9201200._0

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

e.6000_eQeeeeeeeo+ee

-3.5873222286758000+01

-7.1800079732675sg0--02

e.eeeeeeeeeeeeeeeo+ee

o.eeeeeeeeeeeeeeeo+eo

e,eeeeeeeeeeeeeee_+ee

0.0000000000000000+ee

9.432580s190709800+00

-9.58042675315521sD--_2

e.eeeeeeeeeeeeeeeo+ee

o.eeeeeeeeeeeeeeeo+ee

o.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo+ee

-7.8347602117942s00--01

9.e259400094s4s700.41

e.eeeeeeeeeeeeeeeo+ee

e.®eeeeeeeeeeeeeeo+ee

e.000000000000eeeD+ee

e.eeeeeeeeoeeeeeeo+ee

-2.$52217882497s800-_e

-1.0185242037580400+00

e.eeeeeeeeeeeeeeeo+ee

e.eeeeeeeeeeeeeeeo,_ee

e.eeeeeeeeeeeeee_+eo

e.eeeeeeeeeeeeeeeo+ee

o._eeeeeeeeeeseeeo.t.ee

e.eeeeeeeeeeeeeeeo+ee

-1.2970398034460800+00

1.069008445=89250D+00

e.eeeeeeeeeeeeeeeo+_e

e.eeeeeeeeeeeeeeeD+ee

e.eeeeeeeeeeeee®eo+ee

e.eeooeooeeeoeeeeo-,-e9

-1.7e8111878388788_-e_

8.824425831834928c)-.81
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K m

Col umne 1 thru 3

-1.6759993997729290+00

3.4)499356359 ! 89590+44

2.349473724494)2040-41

- 1.609224)27821921 e0+ee

-2.350279291774)2540-44
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