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THERMAL/STRUCTURAL ANALYSIS OF THE SHAFT
DISK REGION OF A FAN DRIVE SYSTEM

by Peyton B. Gregory and Anne D. Holland

Langley Research Center
INTRODUCTION

In January 1989, a mishap occurred in the National Transonic Facility wind tunnel at
NASA Langley Research Center. The most probable cause of this mishap was the
failure of an insulation retainer, shown in figure 1, which holds the foam insulation
around the fan drive shaft. Failure of this retainer resulted in the subsequent damage to
other components in the tunnel. The analysis of the insulation retainer (reference 1)
indicated that the component was highly stressed which gave it a limited cycle life. The
purpose of the insulation was to reduce the thermal stresses in the shaft at the

shaft-disk interface during a cryogenic run.

The objective of this analysis is to determine the effect of removing this external thermal
insulation on the stresses in the shaft, disk and bolts holding the two together. To
accomplish this, a detailed thermal/structural finite element analysis of the shaft-disk
interface was performed using PATRAN (reference 2) model development and EAL
(reference 3) analysis software. The maximum stresses on the three components were
determined for several conditions with and without the external thermal insulation.
These results were compared to the original analyses to assess the effect based on the

proposed future operation of the shaft-disk structures of the fan drive system.



COMPONENT DESCRIPTION

The fan drive system assembly in the area of the shaft-disk interface is shown in figure
1. The disk is a 156.0 inch diameter forging with an 18.0 inch diameter bore hole in the.
center. At the bore hole, it is 8.0 inches thick tapering radially 6utward to produce a
constant stress state under centrifugal loads. Twenty-five fiberglass laminated fan
blades are attached to the disk with 4.87 inch diameter pins. There is a 2 inch by 6 inch
shear lip where the shaft attaches to the disk. The upstream and downstream fan
cavities, which surround the disk, are at different temperatures during a cryogenic run.
The cavity temperatures have been measured, and the differential temperature betWeen

the two cavities is 100°F.

The shaft is a hollow forging of variable thickness and diameter along its length. The
end of the shaft which connects to the disk has a 48.0 inch outer diameter and a 2.0
inch thick flange which is bolted to the disk. There are 24 - 2 inch diameter bolts which
connect the flange to the disk. The shaft has a interference fit with the shear lip on the
disk. To assemble the shaft and disk, the mating surfaces are first coated with a rust
preventive lubricant. The coefficient of friction of the lubricant is .09, which enables very
little friction to build up between the shaft and disk. Then the shaft is heated to 200°F,
assembled and allowed to cool resulting in a .0035 inch shrink fit between the shaft and
the shear lip of the disk. The upstream fan cavity environment is contained by a flow
blocker which encircles the shaft. Between the flange and the flow blocker is the
external thermal insulation and the internal thermal insulation which secures an internal
shaft thermal bulkhead. The shaft, disk and bolts are made of 9% Ni with a specified
yield strength of 75. ksi and a specified ultimate strength of 100. ksi. |



FINITE ELEMENT MODEL

The finite element model shown in figure 2 is a one degree wedge segment of the shaft
and disk with axisymmetric boundary conditions. There are 2062 nodes and 1218
elements in the model. Six rod elements connecting the shaft and disk simulate the
bolted connection. The stiffness of the rod elements is 1/360 of the stiffness of all 24
bolts. The model is highly detailed in terms of fillets and contours; however, it does not
contain any local bolt or pin hole details because these areas are far removed from the
primary area of interest. The shaft portion of the model extends to the center-line of the

bearing where it is constrained against thrust loading.

The finite element model has nonlinear contact and shear elements at the shaft-disk
interface. The nonlinear contact elements are located over the entire contact surface
between the shaft and the disk including the shear lip. These elements enabled the
shatt to lift off or separate from the disk. The nonlinear shear elements, located only in
the area of the bolt, enabled the shaft to lift off the shear lip .0035" before taking a load.
This accounts for the tolerance between the bolt and the hole and the fact that the
surfaces are lubricated. Also included was the shaft-to-disk shrink fit of .0035". This
was accomplished by applying a -25% temperature differential between the shaft and
the disk. In addition, the bolt preload of 60 ksi was included using a dislocation of .027"
on the bolt elements. The above conditions can be considered initial conditions used in

all load cases.
LOADS

Two basic load cases considered were: (1) a room temperature run with a drive speed

of 600 rpm and (2) a cryogenic run at 360 rpm. Both cases include their appropriate fan



blade aerodynamic loads with a dynamic load factor of 1.25. The aerodynamic loads
were the same as those used in the original design analysis. The 600 rpm case with its
aero loads was a case by itself containing no thermal loads. The majority of the
analysis was done for the 360 rpm case with its various thermal conditions necessary to

evaluate the effects of retaining or removing the external thermal insulation.

For the 360 rpm case there were three basic thermal conditions that were considered:;
two transient conditions shown in figure 3 and a steady state condition. Case 1
transient considers a positive 85° temperature swing, and Case 2 transient considers a
negative 85° temperature swing. Both cases consider a 100° temperature differential
across the disk. The steady state case, as with the end of both transients, considers a

-160°F upstream fan cavity and a -260°F downstream fan cavity temperature.

In addition to running the cases with and without external insulation, two other concerns
were addressed: (1) with and without tip convection and (2) with and without flange
conduction. Both of these address the extreme conditions for using the appropriate
thermal boundary conditions. It is unknown whether the sides of the disk where the fan
blades attach, convect to the free stream temperature or are insulated by the fan
blades. Therefore, this area was considered with and without tip convection. It is also
unknown whether the shaft flange thermally conducts to the disk through the lubricant
where they are in contact. Therefore this area was evaluated for both conditions with

and without flange conduction.

The heat transfer coefficients used in the analysis are a function of temperature, fan
speed, and radial position from the shaft center line. During the cool down of the two

transients, the coefficients were calculated using a fan speed of 120 rpm. At the



positive or negative 85° temperature swings the coefficients were calculated using a fan

speed of 360 rpm. This was to simulate the actual cool-down/run process.
RESULTS

- The results aré described in a progressive manner. First, the initial conditions are
described, then the process of determining which load case yields the maximum stress
in the disk, shaft and bolts is described. Finally, the maximum stresses are determined
and then compared to the allowable stresses. All of the stress contour plots are

Von Mises stresses displayed on exaggerated deformed model geometry.

Figure 4 shows the effect of the shrink fit by itself and the bolt preload with the shrink fit.
The stresses in the area of the bolts are local modeling stresses. This is because the
structure is modeled as a one degree axisymmetric wedge which assumes that a stress
variation in the circumferential direction is negligible . The shrink fit and bolt preload are

viewed as initial conditions for the remaining load cases.

Figure 5 compares a 360 rpm and a 600 rpm run with no thermal load conditions. The
600 rpm case stands by itself without any thermal loadings and represents the
maximum stress loading for an air mode operation. The maximum stress is found to
occur on the downstream corner of the bore hole. The 360 rpm mechanical load case

is the initial condition for all cryogenic temperature load cases.

Figure 6 defines the load matrix for all of the 360 rpm cryogenic load cases. The first
three columns show the different boundary conditions that were considered and the last
three columns show the thermal conditions that were considered. The goal was to

determine the maximum stresses without external insulation and then compare these



with results from the configuration with external insulation. The numbers in the last
three columns indicate the order in which the analysis progressed to determine the
maximum component stresses. For all cases, a thermal analysis model was used to
determine the temperature distributions which were then used as inputs to the structural

model.

The first case considered was a steady state temperature case. The four combinations
of thermal boundary conditions (with and without tip convection, and with and without
flange conduction) were used to calculate the steady state temperatures and ultimately
the stresses associated with them. These results indicated that the worse case stress
was obtained using the boundary conditions of tip convection and no conduction across

the flange.

The next step was to analyze the two transient thermal cases using the above thermal
boundary 6onditions from 0 - 27,400 seconds of tunnel operation. Transient
temperatures were saved every 200 seconds. The nonlinear static solutions (using all
mechanical and thermal loads) were then calculated for both cases at every tenth time
step where one time step was 200 seconds. At each solution step, the entire stress
data set was searched for the maximum effective stress. Once the maximum stress
from each block of temperatures was determined, the nonlinear static solutions were
evaluated again, using every block of saved temperatures within a 5 to 10 data block
bandwidth before and after the data block producing the maximum thermal stress
identified in the first set of runs. This method pinpointed the actual maximum stress for
each thermal transient load case. Figure 7 is a plot of the Von Mises stress in the shaft
vs. time for Case 1 and Case 2. For Case 1-transient, the maximum stress occurred as
the structure began to reach steady state. For Case 2-transient the maximum stress

was much larger and occurred just after the -85 deg. swing in free-stream temperature.



Figure 8 is a contour plot'of the maximum stresses for Case 1 at 25,400 seconds and
for Case 2 at 17,000 seconds. Since Case 2-transient caused significantly higher
stresses before the structure began to reach steady state, it was necessary to run the
other three boundary conditions using Case 2-transient conditions to make sure the

maximum stress had been determined.

Figure 9 is a temperature plbt in degrees Fahrenheit of the four conditions for the Case
2 transient without external insulation. This plot shows the temperature variations with
and without tip convection and flange conduction. Figure 10 is the corresponding plot of
effective stress. The highest shaft stress occurred with tip convection and with flange
conduction thermal boundary conditions. The highest disk stresses occurred without tip
convection and without flange conduction. The highest bolt loads occurred with tip
convection and without flange conduction. These stresses were then compared to the

original design with external insulation.

Figure 11 is a plot of the maximum effective stress in the shaft versus time with and
without external insulation. It shows the transient variation of stress when the external
insulation is removed. The peak stress occurs at 17000 seconds without external
insulation. The stress contours are shown in figure 12. Figure 13 shows the case for

maximum disk stress with and without external insulation.

The history of the bolt loads was tabulated from all the stress runs from Case
2-transient conditions. This showed that at 27,400 sec. the bolt loads were still
increasing and that the highest loads occurred with tip convection and without flange
conduction. To find the maximum bolt load, the thermal conditions for this case were
picked up at 27,400 seconds and the analysis was restarted and continued to 50,000

seconds. Stresses and bolt loads were calculated at numerous time steps until the bolt



load approached a steady state condition around 38,000 seconds. For comparison, the
same procedure was used to trace the bolt loads using Case 1-transient conditions.
The results of both series of runs are shown on figure 14. Figure 15 is a stress contour
plot at steady-state thermal conditions giving the maximum bolt loads with and without

external insulation.

The summary of results is shown in figure 16. It compares the stresses in the shaft,
disk, and bolts with and without external insulation. In addition the stresses from the
original design analysis and the allowable stresses are shown. For the shaft and disk,
all stresses meet the primary stress criteria. The bolts did not meet the primary stress
criteria therefore the stresses were separated into primary and secondary components
and compared with appropriate allowables. The transmission torque was considered a
primary stress. The preload and the shear from the thermal loads were considered as
secondary stresses. For the bolt stresses in figure 16, the first stress is primary and the
second stress is secondary. The bolts meet both primary and secondary stress criteria.
Therefore, all three components meet the specified stress criteria with and without

external insulation.

The peak stresses for each of the three components are plotted on a Modified
Goodman Diagram for the appropriate material, shown in figure 17, to ensure that all
components have a infinite design life. All three component stresses fell within the

constant life curve indicating that the components have infinite life.
CONCLUDING REMARKS

A nonlinear finite element analysis of the shaft-disk region of a fan drive system has

been performed. The analysis used nonlinear features to account for the contact



between the shaft and the disk. The analysis loads consisted of aerodynamic and
centrifugal loads, thermal loads, the effects of the shrink fit between the shaft and diék,
and bolt preload. Two variables in terms of boundary conditions were considered: with
and without tip convection and with and without flénge conduction. The maximum
stresses were determined with and without external insulation on the shaft. Although
the stresses were higher without external insulation, the stresses did meet all stress
criteria. In addition, all stresses were within the infinite life regime of the Modified
Goodman diagram. Therefore, the structural integrity of the shaft-disk region is not

compromised if the external insulation is removed.
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