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THERMAL/STRUCTURAL ANALYSIS OF THE SHAFT
DISK REGION OF A FAN DRIVE SYSTEM 

by Peyton B. Gregory and Anne D. Holland 

Langley Research Center 

INTRODUCTION 

In January 1989, a mishap occurred in the National Transonic Facility wind tunnel at 

NASA Langley Research Center. The most probable cause of this mishap was the 

failure of an insulation retainer, shown in figure 1, which holds the foam insulation 

around the fan drive shaft. Failure of this retainer resulted in the subsequent damage to 

other components in the tunnel. The analysis of the insulation retainer (reference 1) 

indicated that the component was highly stressed which gave it a limited cycle life. The 

purpose of the insulation was to reduce the thermal stresses in the shaft at the 

shaft-disk interface during a cryogenic run. 

The objective of this analysis is to determine the effect of removing this external thermal 

insulation on the stresses in the shaft, disk and bolts holding the two together. To 

accomplish this, a detailed thermal/structural finite element analysis of the shaft-disk 

interface was performed using PATRAN (reference 2) model development and EAL 

(reference 3) analysis software. The maximum stresses on the three components were 

determined for several conditions with and without the external thermal insulation. 

These results were compared to the original analyses to assess the effect based on the 

proposed future operation of the shaft-disk structures of the fan drive system. 
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COMPONENT DESCRIPTION 

The fan drive system assembly in the area of the shaft-disk interface is shown in figure 

1. The disk is a 156.0 inch diameter forging with an 18.0 inch diameter bore hole in the 

center. At the bore hole, it is 8.0 inches thick tapering radially outward to produce a 

constant stress state under centrifugal loads. Twenty-five fiberglass laminated fan 

blades are attached to the disk with 4.87 inch diameter pins. There is a 2 inch by 6 inch 

shear lip where the shaft attaches to the disk. The upstream and downstream fan 

cavities, which surround the disk, are at different temperatures during a cryogenic run. 

The cavity temperatures have been measured, and the differential temperature between 

the two cavities is 1 000F. 

The shaft is a hollow forging of variable thickness and diameter along its length. The 

end of the shaft which connects to the disk has a 48.0 inch outer diameter and a 2.0 

inch thick flange which is bolted to the disk. There are 24 - 2 inch diameter bolts which 

connect the flange to the disk. The shaft has a interference fit with the shear lip on the 

disk. To assemble the shaft and disk, the mating surfaces are first coated with a rust 

preventive lubricant. The coefficient of friction of the lubricant is .09, which enables very 

little friction to build up between the shaft and disk. Then the shaft is heated to 2000F, 

assembled and allowed to cool resulting in a .0035 inch shrink fit between the shaft and 

the shear lip of the disk. The upstream fan cavity environment is contained by a flow 

blocker which encircles the shaft. Between the flange and the flow blocker is the 

external thermal insulation and the internal thermal insulation which secures an internal 

shaft thermal bulkhead. The shaft, disk and bolts are made of 9% Ni with a specified 

yield strength of 75. ksi and a specified ultimate strength of 100. ksi. 
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FINITE ELEMENT MODEL 

The finite element model shown in figure 2 is a one degree wedge segment of the shaft 

and disk with axisymmetnc boundary conditions. There are 2062 nodes and 1218 

elements in the model. Six rod elements connecting the shaft and disk simulate the 

bolted connection. The stiffness of the rod elements is 1/360 of the stiffness of all 24 

bolts. The model is highly detailed in terms of fillets and contours; however, it does not 

contain any local bolt or pin hole details because these areas are far removed from the 

primary area of interest. The shaft portion of the model extends to the center-line of the 

bearing where it is constrained against thrust loading. 

The finite element model has nonlinear contact and shear elements at the shaft-disk 

interface. The nonlinear contact elements are located over the entire contact surface 

between the shaft and the disk including the shear lip. These elements enabled the 

shaft to lift off or separate from the disk. The nonlinear shear elements, located only in 

the area of the bolt, enabled the shaft to lift off the shear lip .0035" before taking a load. 

This accounts for the tolerance between the bolt and the hole and the fact that the 

surfaces are lubricated. Also included was the shaft-to-disk shrink fit of .0035". This 

was accomplished by applying a -25 temperature differential between the shaft and 

the disk. In addition, the bolt preload of 60 ksi was included using a dislocation of .027" 

on the bolt elements. The above conditions can be considered initial conditions used in 

all load cases.

LOADS 

Two basic load cases considered were: (1) a room temperature run with a drive speed 

of 600 rpm and (2) a cryogenic run at 360 rpm. Both cases include their appropriate fan 
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blade aerodynamic loads with a dynamic load factor of 1.25. The aerodynamic loads 

were the same as those used in the original design analysis. The 600 rpm case with its 

aero loads was a case by itself containing no thermal loads. The majority of the 

analysis was done for the 360 rpm case with its various thermal conditions necessary to 

evaluate the effects of retaining or removing the external thermal insulation. 

For the 360 rpm case there were three basic thermal conditions that were considered; 

two transient conditions shown in figure 3 and a steady state condition. Case 1 

transient considers a positive 85 temperature swing, and Case 2 transient considers a 

negative 850 temperature swing. Both cases consider a 1000 temperature differential 

across the disk. The steady state case, as with the end of both transients, considers a 

-1600F upstream fan cavity and a -2600F downstream fan cavity temperature. 

In addition to running the cases with and without external insulation, two other concerns 

were addressed: (1) with and without tip convection and (2) with and without flange 

conduction. Both of these address the extreme conditions for using the appropriate 

thermal boundary conditions. It is unknown whether the sides of the disk where the fan 

blades attach, convect to the free stream temperature or are insulated by the fan 

blades. Therefore, this area was considered with and without tip convection. It is also 

unknown whether the shaft flange thermally conducts to the disk through the lubricant 

where they are in contact. Therefore this area was evaluated for both conditions with 

and without flange conduction. 

The heat transfer coefficients used in the analysis are a function of temperature, fan 

speed, and radial position from the shaft center line. During the cool down of the two 

transients, the coefficients were calculated using a fan speed of 120 rpm. At the 

4



positive or negative 850 temperature swings the coefficients were calculated using a fan 

speed of 360 rpm. This was to simulate the actual cool-down/run process. 

RESULTS 

The results are described in a progressive manner. First, the initial conditions are 

described, then the process of determining which load case yields the maximum stress 

in the disk, shaft and bolts is described. Finally, the maximum stresses are determined 

and then compared to the allowable stresses. All of the stress contour plots are 

Von Mises stresses displayed on exaggerated deformed model geometry. 

Figure 4 shows the effect of the shrink fit by itself and the bolt preload with the shrink fit. 

The stresses in the area of the bolts are local modeling stresses. This is because the 

structure is modeled as a one degree axisymmetric wedge which assumes that a stress 

variation in the circumferential direction is negligible. The shrink fit and bolt preload are 

viewed as initial conditions for the remaining load cases. 

Figure 5 compares a 360 rpm and a 600 rpm run with no thermal load conditions. The 

600 rpm case stands by itself without any thermal loadings and represents the 

maximum stress loading for an air mode operation. The maximum stress is found to 

occur on the downstream corner of the bore hole. The 360 rpm mechanical load case 

is the initial condition for all cryogenic temperature load cases. 

Figure 6 defines the load matrix for all of the 360 rpm cryogenic load cases. The first 

three columns show the different boundary conditions that were considered and the last 

three columns show the thermal conditions that were considered. The goal was to 

determine the maximum stresses without external insulation and then compare these 
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with results from the configuration with external insulation. The numbers in the last 

three columns indicate the order in which the analysis progressed to determine the 

maximum component stresses. For all cases, a thermal analysis model was used to 

determine the temperature distributions which were then used as inputs to the structural 

model. 

The first case considered was a steady state temperature case. The four combinations 

of thermal boundary conditions (with and without tip convection, and with and without 

flange conduction) were used to calculate the steady state temperatures and ultimately 

the stresses associated with them. These results indicated that the worse case stress 

was obtained using the boundary conditions of tip convection and no conduction across 

the flange. 

The next step was to analyze the two transient thermal cases using the above thermal 

boundary conditions from 0 - 27,400 seconds of tunnel operation. Transient 

temperatures were saved every 200 seconds. The nonlinear static solutions (using all 

mechanical and thermal loads) were then calculated for both cases at every tenth time 

step where one time step was 200 seconds. At each solution step, the entire stress 

data set was searched for the maximum effective stress. Once the maximum stress 

from each block of temperatures was determined, the nonlinear static solutions were 

evaluated again, using every block of saved temperatures within a 5 to 10 data block 

bandwidth before and after the data block producing the maximum thermal stress 

identified in the first set of runs. This method pinpointed the actual maximum stress for 

each thermal transient load case. Figure 7 is a plot of the Von Mises stress in the shaft 

vs. time for Case 1 and Case 2. For Case 1 -transient, the maximum stress occurred as 

the structure began to reach steady state. For Case 2-transient the maximum stress 

was much larger and occurred just after the -85 deg. swing in free-stream temperature.



Figure 8 is a contour plot of the maximum stresses for Case 1 at 25,400 seconds and 

for Case 2 at 17,000 seconds. Since Case 2-transient caused significantly higher 

stresses before the structure began to reach steady state, it was necessary to run the 

other three boundary conditions using Case 2-transient conditions to make sure the 

maximum stress had been determined. 

Figure 9 is a temperature plot in degrees Fahrenheit of the four conditions for the Case 

2 transient without external insulation. This plot shows the temperature variations with 

and without tip convection and flange conduction. Figure 10 is the corresponding plot of 

effective stress. The highest shaft stress occurred with tip convection and with flange 

conduction thermal boundary conditions. The highest disk stresses occurred without tip 

convection and without flange conduction. The highest bolt loads occurred with tip 

convection and without flange conduction. These stresses were then compared to the 

original design with external insulation. 

Figure 11 is a plot of the maximum effective stress in the shaft versus time with and 

without external insulation. It shows the transient variation of stress when the external 

insulation is removed. The peak stress occurs at 17000 seconds without external 

insulation. The stress contours are shown in figure 12. Figure 13 shows the case for 

maximum disk stress with and without external insulation. 

The history of the bolt loads was tabulated from all the stress runs from Case 

2-transient conditions. This showed that at 27,400 sec. the bolt loads were still 

increasing and that the highest loads occurred with tip convection and without flange 

conduction. To find the maximum bolt load, the thermal conditions for this case were 

picked up at 27,400 seconds and the analysis was restarted and continued to 50,000 

seconds. Stresses and bolt loads were calculated at numerous time steps until the bolt 
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load approached a steady state condition around 38,000 seconds. For comparison, the 

same procedure was used to trace the bolt loads using Case 1-transient conditions. 

The results of both series of runs are shown on figure 14. Figure 15 is a stress contour 

plot at steady-state thermal conditions giving the maximum bolt loads with and without 

external insulation. 

The summary of results is shown in figure 16. It compares the stresses in the shaft, 

disk, and bolts with and without external insulation. In addition the stresses from the 

original design analysis and the allowable stresses are shown. For the shaft and disk, 

all stresses meet the primary stress criteria. The bolts did not meet the primary stress 

criteria therefore the stresses were separated into primary and secondary components 

and compared with appropriate allowables. The transmission torque was considered a 

primary stress. The preload and the shear from the thermal loads were considered as 

secondary stresses. For the bolt stresses in figure 16, the first stress is primary and the 

second stress is secondary. The bolts meet both primary and secondary stress criteria. 

Therefore, all three components meet the specified stress criteria with and without 

external insulation. 

The peak stresses for each of the three components are plotted on a Modified 

Goodman Diagram for the appropriate material, shown in figure 17, to ensure that all 

components have a infinite design life. All three component stresses fell within the 

constant life curve indicating that the components have infinite life. 

CONCLUDING REMARKS 

A nonlinear finite element analysis of the shaft-disk region of a fan drive system has 

been performed. The analysis used nonlinear features to account for the contact 
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between the shaft and the disk. The analysis loads consisted of aerodynamic and 

centrifugal loads, thermal loads, the effects of the shrink fit between the shaft and disk, 

and bolt preload. Two variables in terms of boundary conditions were considered: with 

and without tip convection and with and without flange conduction. The maximum 

stresses were determined with and without external insulation on the shaft. Although 

the stresses were higher without external insulation, the stresses did meet all stress 

criteria. In addition, all stresses were within the infinite life regime of the Modified 

Goodman diagram. Therefore, the structural integrity of the shaft-disk region is not 

compromised if the external insulation is removed. 
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CASE 1 AND CASE 2 THERMAL TRANSIENTS 
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Figure 7. Effective stress on the shaft vs. time for Case 1 and Case 2 
transients.

17



w 
w 

ci 
-J 
Li.. 

C 
U 

C 
N Z 
Jc 

ci

ORIGINAL PAGE 
COLOR PHOTOGRAPH 

cu 

Lil I

U 
-	 LU 

Cu LO 
LU 

LU '-
w (i) 
ci =	 co 
u N 

II 

I—

U 
.—	 LU 

-	 LO 
LU 

Lo co 
= - 

'  U ci U-) 
ru

N Lo 

 Lo 
(11 
LU 

01 

LLF 
Li'	 ui 

4-IJ

co) C 

cm 

ca 
U) 

0 
D C 

CIS 

1

0 
4-0 
0. 
C 0 
li 
E 
0 
.4-

0
ca
C

F!

a)
ii-

18 



L0 

= 1-w 

= Cr) 

x 
LJ LAJ 

U

3 

Cr) 
LJ 
LO 

U 

cI

z 
LL-

F-

0 
0 L) 
U

0 
\ \

(UW 

Li 

I-

LU 

0 

Li

I-C 
Cl) 
C 
co 
I.-

c%J 

QD 

0 
0 

co 0 

CD 

'I-

C 
&U) 

I-

o 
—o 

0 

I-
0) 

U-

(U 00 
00 

1
I I

(U 
I

(U 
I

CL
= 

al 

I:!) 

D 

U C U 
C

ORIGINAL PAGE
COLOR PHOTOGRAPH 

_ _IJ

	 =LI 

19



L	 J:± 
(ILI a) 1- 1X4 CU 
N n.j 
CU W N U

I
Cu 

r) I-I 

CtJ 1J CiJ

C 

C 
-J 

U-) 
z 

x 
LU 

.' 

-U 
—4 

I) 
I

ORIGINAL PAGE 

COI O P 	 -OTOGRAFI-( 

N 
Cl) i- 	 CC)	 n.j N

U 

C')	 N	 Cu 
N rr

N CL 

U) 

ck 

U-) 
w 

Q..	 .J 
-4 

I— WI

LL 
I—I 

c)  

LL 

 ) 

= = 
CC 
L) L) 

\ \

Im 

= C 
DO 
0

C 
\ \

4-
C 
CD 
Cl) 
C 

CM 

Cl) 
cc 
0 
'I-
0 
4-
0 

O± 

E  
'-0 
0

Cc 

ca o 

V.0 

(0.0 
U)'-

0 

Ii-

LU 
C)-) 
ci 
0 

(I) 
LU 
Cr) 
'I 
0 

-J 
—J 
C

lezel 



CASE 2 THERMAL TRANSIENT 
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Figure 11. Effective stress on the shaft vs. time for Case 2 transient 
with and without external insulation. 
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Figure 14. Effective stress on the bolts vs. time for Case 1 and Case 2 
transients.
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performed. The maximum stresses on the three components were determined for 
several configurations and conditions with and without the external thermal insulation, 
and then these results were compared to the original analyses to access the effect of 
removing the external thermal insulation on the proposed future operation of the 
shaft/disk structures of the fan drive system. Although the stresses were higher without 
the external insulation, the stresses did meet all stress criteria. In addition, all stresses 
were within the infinite life regime of the Modified Goodman diagram. Therefore, it was 
determined that the structural integrity of the shaft-disk region is not compromised if the 
external insulation is removed. 
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