
N90-23006

p/L@&r.r.Rr. PROCRSSII[6 OF RllbL--Tll_g DYMJ_IC SYSTEMS 51MUIATIOM 01

OSCAR (Optimally SCheduled Advanced aultiprocessoR)

Hironori Kasahara*, Hiroki Honda and 5einosuke Narita

Dept. of Electrical Engineering, Waseda Oniversity

3-4-10hkubo Shinjuktt-ku, Tokyo, 169, Japan

Abstract

This paper presents parallel processing of real-time dynamic systems

simulation on a multiprocessor system named OSCAR. In the simulation of

dynamic systems, generally, the same calculation are repeated every time

step. However, we cannot apply the Do-all or the Do-across techniques for
parallel processing of the simulation since there exist data dependencies
from the end of an iteration to the beginning of the next iteration and

furthermore data-input and data-output are required every sampling time

period. Therefore, parallelism inside the calculation required for a

single time step, or a large basic block which consists of arithmetic
assignment statements, must be used. In the proposed method, near fine

grain tasks, each of which consists of one or more floating point

operations, are generated to extract the parallelism from the calculation

and assigned to processors by using optimal static scheduling at compile

time in order to reduce large run time overhead caused by the use of near

fine grain tasks. The practicality of the scheme is demonstrated on OSCAR

(Optimally Scheduled Advanced mnltiprocessoR) which has been developed to

extract advantageous features of static scheduling algorithms to the

maximum extent.

I. IUrl110D_10m

High speed dynamic systems simulation, or solution of ordinary

differential equations, has been required to simulate dynamic behaviors of

various systems such as airplanes, missiles, nuclear reactors and robots,

in real-time. So far, the dynamic systems simulation has generally been

performed on traditional analog or hybrid computers or on general-purpose

digital computers by using a simulation language like CSMP (Continuous

Systems Modeling Program). However, these approaches have several

problems, for example, operational accuracy and realization of non-linear

functions for the analog computers and high processing cost and real-time

input-output for the general purpose main-frame computers.

In an attempt to resolve these problems, the use of parallel

processing techniques[13-14] has attracted much attention. In fact,

various parallel processing schemes, especially parallel processing using

Prof. Kasahara is also a Visiting Research Scholar of Center for

Supercomputing R & D, Univ. of Illinois at Urbana-Champaign, 305 Talbot

Laboratory, 104 South Wright Street, Urbana, IL 61801.

170

Figure 5

OPTIMUM SHAPES

IMPULSE

HUI

R= 10"1/

R=IO 4

Jx(d3,d4) SURFACE NEAR THE MINIMUM, _. = 0.7

d_

.07

"'.1,\!1 I I_"'-
15.16 .10 .12 14

.011

d4

169

multiprocessor systems[14-15], have been so far proposed[l-4]. The

differences among the schemes lie in the choice of task granularity and

task scheduling. For example, Korn [1] and Koyama [4] employed a large

task size (coarse task-grain) approach where the computation for the
numerical integration of each equation in a set of first-order

simultaneous differential equations was selected as a task. The generated

tasks are assigned properly by the user to a relatively small number of

processors. The functional distribution approach by Gilbert, et al[2],

dealt with each fundamental operation (four fundamental arithmetic

operations, integration and so on) as a task to be assigned to a dedicated
hardware operational unit. Yoshikawa, et al[3], also adopted an approach

where each fundamental arithmetic operation was assigned to one processor.

The common problem left unsolved to these approaches was poor parallel

processing efficiency stemming from the lack of efficient methods which

allocate the generated tasks onto an arbitrary number of parallel
processors in an optimal manner. This paper proposes a parallel

processing scheme for the solution of the above-mentioned problem by using

static minimum execution time multiprocessor scheduling algorithms[5][lO]
already developed by the authors for optimum task allocation. The

proposed parallelizing compilation scheme consists of the following

processes: task generation, optimal task scheduling, and generation of

machine codes to be executed on respective processor element.

The effectiveness and practicality of the proposed scheme are
demonstrated on OSCAR's processor cluster with sixteen 32-bit RISC-like

processor elements which has been designed to extract advantageous

features of static scheduling at compile time to the maximum extent.

II. A PARALLEL PROCESSING SCHEME USII_ STATIC SCag_LI_

Generally, dynamics of most continuous-time systems can be modeled by

the following explicit first-order simultaneous ordinary differential
equations:

dxi/dt=fi(t,xl,x 2 xm) (i=1,2 m)

Therefore, the dynamics systems simulation can be regarded as the

solution of the ordinary differential equations. Hence, this paper

handles parallel solution of the equations using various numerical

integration formulae such as Euler, Trapezoidal, 3rd- and 4th-order Adams
Bashforth, 4th-order Runge Kutta and 4th-order Adams Noulton (predictor-

corrector method) listed in Table 1. In applying these integration

formulae, the computation required for each integration step consists of

arithmetic assignment statements to evaluate the derivative of each
equation and to perform numerical integration. Between consecutive

iterations, there exist data dependencies[16-17] from the end of an

iteration to the beginning of the next iteration. Furthermore, for real-

time simulation, data input and data output are required every iteration
or few iterations, namely every sampling period. Therefore, we cannot

apply Do-all and Do-across techniques to parallel processing of the

dynamic systems simulation which are popular parallel processing schemes

for a Do loop on a multiprocessor system[1B][19].
Taking into consideration these facts, in order to realize efficient

parallel processing of the simulation, we must parallel process a block of

arithmetic assignment statements, or a basic block, in each iteration.

171

However, the parallel processing of the basic block on a multiprocessor

system has been thought to be very difficult since data transfer overhead
and synchronization overhead are relatively large. The proposed scheme
allows us to minimize these overheads and to realize efficient processing

by generating optimized machine codes based on the static schedule at

compilation time.

A. Task Generation

As mentioned before, in the dynamic systems simulation, we must

process each iteration in parallel though we can sometimes unroll a few
iterations if data input and output should be made every few iterations.

In order to process the iteration in parallel, first of all, we must

generate tasks with suitable granularity, which are basic units assigned
to processors. As for the task granularity, several levels may be

perceived: equation level, operation element level, and intermediate

level. In the case of equation level granularity, the computation related

to each subscript i for each numerical integration formula listed in TABLE

1 (the computation of a derivative and that of numerical integration

corresponding to each formula for each variable X i) is considered to be a
task. When operation element level granularity is adopted, the computation
for each derivative or for each numerical integration is subdivided into

finer fundamental operation elements such as the four arithmetic

operations and trigonometric functions, each of which is taken as a task

and allocated to the processors (fine granularity). In the intermediate

task granularity, several floating point operations are combined to form a
task. For instance, when Van der Pol's equations

dxl/dt = x2 2. - x
dx2/dt CX2-Xl _x2- 1

is decomposed into fairly small intermediate-level tasks, three

multiplication tasks, two subtraction tasks, and two integration tasks

(including several floating point operations) are generated. Fig. 1

depicts the block diagram representation of the seven tasks, with data

dependencies explicitly shown.

There exists no general rule for determining the best task

granularity applicable to all kinds of dynamic systems. When parallel

processing is performed on a multiprocessor system with little data

transfer and synchronization overheads among processor elements, the

operation element level granularity is known to be most advantageous to

achieve minimum processing time because parallelism can be exploited to

the maximum extent. For a large-scale problem (the order of simultaneous

equations is very high) or a multiprocessor system with poor data transfer

capabilities, however, the operation element level granularity does not

always give the best performance. In other words, much attention must be

paid to such factors as processor speed, interprocessor data transfer

speed, size and parallelism inherent to the problem in hand, and

complexities of scheduling mechanisms (both software and hardware) [7].

Namely, we must choose the best granularity for each problem and each

multiprocessor system. For this reason, the proposed parallel processing

scheme provides with two methods for the input of simulation source

programs. The first method employs a simplified simulation language shown

in Fig.2, which allows direct input of mathematical equations. The user

can specify arbitrary task granularity from the operation element level to

172

OR;G_NAL PAGE IS

OF POOR QUALITY

the equation level. The second method facilitates the input of block

diagral representations such as those employed for analog colputer. As

shown in Fig.l, each operational element of analog computer (adder,

integrator, etc.) can be taken as a task, to realize near fine

granularity. Medium granularity can also be dealt with by combining
automatically several tasks with near fine granularity. (This process is

referred to as task fusion). In what follows, emphasis will be placed on

the case of near fine granularity, namely the finest granularity that can

be treated by use of the proposed scheme on a Bultiprocessor system named
OSCAR nentioned later.

Next, the proposed parallel processing scheme analyzes precedence

relations caused by data dependencies among the generated tasks and

represents the task precedence relations by a task graph like Fig. 3 which

is a directed acyclic graph (DAG). The precedence constraints represent

the restrictions existing among tasks regarding the execution order of

tasks. The existence of task i precedent to task j means that the
execution of task j cannot be initiated before the conpletion of task i.

The precedence relation can be examined by the data flow analysis among

tasks. Nhen the data flow analysis is made, the output variable of each
integration task is treated as an initial value. Each node in the task

graph stands for a task and an arc between a pair of nodes for the
precedence constraint. Nodes 0 and 8 are not actual nodes but dummy nodes

introduced for the sake of convenience. They represent.the entry node and
the exit node, respectively. The figure beside each node represents the

estimated processing time of the corresponding task. Since the actual
processing tine does not usually take on a fixed value but varies with the

data to be processed, the average value or the worst-case value is

employed as the input[7], which is used in the scheduling algorithms to

be described in the subsequent section. When the average value is used for

each task, the resultant schedule gives the minimum value of the average
processing time of the task set. Similarly, when the worst-case value is

used, the worst-case processing time is minimized. However, OSCAR, which

is a target nachiue in this paper, can execute all instructions including

a few floating point operations in one clock by employing RISC like

processor. Therefore, we don't have the above mentioned problem on OSCAR,
a compiler can estimate accurate processing time of each task.

Once a task graph is generated, the minimum possible processing time
achieved by parallel processing of the tasks can be estimated as the

critical path length tcr of the task graph. In Fig. 3, the critical path is
shown by double-line segments.

An unique task graph can also be generated by following simple

procedures in the case of the block diagram input Bode. The task graph

shown in Fig.3 represents the computation in one integration step when
the tasks are generated in the size of near fine granularity and the

numerical integration method employed is Euler, Trapezoidal or 3rd- or

4th-order Adams Bashforth. The integration task involves computation

specific to each numerical integration method. Nhen the 4th-order Runge-

Kutta method is employed, k 1 through k 4 need to be evaluated, and the
computation described by this task graph is repeated four times or the

expanded task graph involving the computation repeated four times is
processed for each integration step. In the former case, the content of

each integration task to be processed differs with the iteration count in

order to evaluate k 1 through k 4 and their weighted average. Similarly,
when a predictor-corrector method such as the 4th-order Adams-Roulton is

used, the task graph is computed twice or the expanded task graph to

173

OF POOR QUALITY

represent the unrollc_ computation is processed for each integration step.
In the former case, the computation corresponding to the predictor of the

integration task is performed first, followed by the computation for the

corrector.
As mentioned earlier, the task graph shown in Fig.3 represents the

case where the tasks are generated in the size of near fine granularity.

When coarse granularity at the equation level is employed for task

generation, the portion surrounded by the dashed lines becomes a task.
Also, in the case of fine granularity, the portion of each integration

task is replaced by a subgraph generated by subdividing it into the

operation element level.
It should be mentioned here that parallel processing scheme proposed

in this paper is so designed that the tasks generated in either fine or
near fine granularity level can be fused automatically without sacrificing

much parallelism. As a simple example, when there exist a pair of
successor task (son node) with only in-edge and the predecessor task

(father node) with only one out-edge, the two tasks are fused into a

single task. Even such an easy task fusion technique allows the

optimization of resister utilization and avoids unnecessary data transfer
for more efficient parallel processing.

B. Scheduling Algorithms

In order to process the set of tasks on a multiprocessor system

efficiently, the assig_nt of tasks onto the parallel processors aml the
execution order among the tasks assigned to the same processor must be

determined optimally. The problem which determines the optimal assignment
and execution order can be treated as the traditional mu]tiprocessor

scheduling problem of which the objective function is the minimization of

the parallel processing time or schedule length [5][8]. To state fomlly,
the scheduling problem is to determine such a nonpreemptive schedule that
the execution time or the scheduling length be minimum, given a set of n

computational tasks T=(TI Tn), precedence constraints among the
tasks and n processors with the same processing capability. This problem,

however, has been known as a "strong" NP-hard problem [9]. In other

words, unless P=NP, it is impossible to construct not only a pseudo-

polynomial time optimization algorithm but also a fully po]]momial time

approximation scheme. With this fact in mind, the authors have
successfully constructed a heuristic algorithm named CP/NISF and an

efficient practical algorithm called DF/IHS [5]. The former algorithm can

provide very precise approximate solutions quite rapidly because of its

very low time complexity. The latter algorithm can obtain optimal
solutions or approximate solutions with guaranteed accuracies from optimal

solutions by combining CP/NISF and depth-first search. In what follows,

the two algorithms are explained very briefly. For further details, the
reader is referred to the literature [5].

1) CP/NISF(Critical Path/Nost Immediate Successors First) Nethod
This method essentially is a kind of list scheduling algorithms.

step.1 Determine the level 1 i for each task. The I i is the longest path

from N i to the exit node.
step.2 Construct the priority list in the descending order of l i and

the number of immediately successive tasks.

step.3 Execute list scheduling [8] on the basis of the priority list.
Since the list scheduling may be regarded as a method to construct the

174

schedule for the case where a set of tasks are processed in parallel in
the data-driven manner considering the priority assigned to each task, it

can be easily extended to dynamic scheduling at run time.
Furthermore, the list scheduling can be also modified to eliminate

unnecessary data transfer among processors. In the modified algorithm

CP/DT/HISF method[lO], when the tasks with the same priority are allocated

to a processor, a task is allocated to the processor which needs the
minimum data transfer to execute the task. This simple modification

significantly decreases the data transfer overhead for the multiprocessor
system with poor data transfer performance.

Its average performance was evaluated for a total of over nine

thousand test cases by comparing the CP/NISF solutions with the lower

bound fnnction[11]. Optimal solutions were obtained for 67 percent of the

cases tested. Approximate solutions with errors of less than 5 percent
were obtained for 87 percent of the cases and those with errors of 10

percent for 98.5 percent of the cases. The worst-case performance of

CP/MISF, i.e., the error of the worst-case solution t obtained by

CP/NISF from the true optimal solution top t is given by

(t-topt)/topt_l/m [5].

In addition, the time complexity of CP/NISF is O(n2+mn). For problems with

about one thousand tasks, it only takes a few ten seconds on a HITACIq280H

system. In summary, CP/NISF is suitable for the solution of very large
problels with hundreds or even thousands of tasks.

2) DF/IHS (Depth First/Implicit Heuristic Search) Method
DF/IHS is an optimization/approximation algorithm to determine schedules

(solutions) which are always more precise than those by CP/MISF. The

method combines CP/HISF and depth-first search in a special manner and

reduces markedly space complexity (memory requirements) and average

computation (search) time. It is so practical and powerful that optimal

schedules for most large-scale problems involving a few hundred tasks for
a total of some ten parallel processors can be determined in several

seconds to one hundred seconds on an H280H. Optimal solutions could be

obtained for 75_ of the test problems where the upper limit of search time

was set to 180 seconds [5]. The effectiveness of DF/IHS may be recognized

by considering the fact that use of dynamic programming could provide
optimal solutions for small problems with less than 40 tasks even for two

parallel processors. In the case of parallel processing on a limited

number of processors, it is known that there exist such task graphs that
the minimum processing time cannot be attained by data driven execution or

the list scheduling [12]. For these task graphs, use of DF/IHS can

determine the optimal schedule that gives rise to the minimum processing

time by forcing some processors to be idle for a certain time period. This

fact implies the possibility of more efficient parallel processing than
data flow machines. In summary DF/IHS is very useful when CP/MISF fails
to obtain an accurate solution for problems with several hundred tasks.

C. Nachime Code Generatiom

For the efficient execution on an actual multiprocessor system, the

optimal machine codes tailored to the given system must be generated by
using the scheduled results. The scheduled results give us the informmtiom

about tasks to be executed on each processor element, the execution order

175

ORIGIHAL PAGE IS

OF POOR QUALITY

of tasks on the same processor element, the rough estimates of miting

time of the tasks which wait for the data from other tasks assigned to

other processors, the tasks to be synchronized and so on. Therefore, we

can generate the machine codes for each processor by putting together the

codes for the tasks assigned to the processor and attaching the codes for

synchronization and data transfer among processors. The "version nmmber"

method is used for the synchronization among tasks. The version number

corresponds to the number of times of iterations or integration steps.

Each "writer" task updates the version number on the common memory to the

number of current integration step for itself after it finishes writing

the shared data. And each "reader" task checks the version number if the

number is the same as the number of current integration step to the reader

task. All processor elements (FE's) have the same version nembers during

one integration step and update or increase the number at the end of the

integration step. Updating the version number on each PE by respective

PE's allows us to eliminate the need to update the version nmeber (or to

reset a flag used in test & set or semaphore) attached to each shared data

on a common memory when the next integration step is started. Therefore,

the version number method can minimize the frequency of access to the

common memory for task slmchronizatioe in this application.

He can also optimize the codes to minimize various processing

overheads by making full use of all information which is obtained as the

result of static scheduling. For example, the information about task

assignment and execution order allows the optimized use of the registers

of the processor when the tasks allocated to the same processor eachange

data. The optimal use of registers reduces the processing time markedly.

The knowledge about the estimated waiting time helps prevent the

degradation of data transfer performance caused by frequent bus access to
check the existence of the required data (data level s_achronizatiom) by

the waiting task. In other words, if it is estimated that the task nest

wait the data for a long time, the frequency to check a flag on a commma

memory is reduced. In addition, we can minimize the synchronization

overhead by carefully taking into consideration the information aboet the

tasks to be synchronized, the task assignment and the execution order. For

example, let tasks A, B and C be allocated to processor 1 and tasks D and

E to processors 2 and 3 respectively as shown in Fig.4 and data amee_ the

tasks be transferred via a common memory. Then task B does not need to

check the flag which shows the completion of task A because both tasks are

allocated to the same processor. Task E has no need to check the flag

which indicates the completion of task D because the termination of task D

has already been confirmed by task C or B.

In the parallel processing scheme, the transfer of output data of

integration tasks is not represented on a task graph since data flow

analysis is performed on the assumption that output data of the

integration tasks has been given as initial values. In actual processing,

however, those data must be transferred to several tasks allocated on

other PE's between the end of an integration step and the belgimaimg of the

next integration step since, during one integration step, all the tasks

except the integration tasks use the output data of the integration tasks

g_nerated in the previous integration step. The data transfer at ome time

causes bus congestion. In order to prevent the bus congestion, two copies

of machine c_xles for each FE which are assigned different data storages

are generated and executed alternatively for every integration step.

Generating the two copies of codes allows each integration task in a copy

of codes to write or transfer its output data, as soon as it completes

176

ORIQiFV_L T._C_VE"IS

OF. POOR QUALJTY

execution, onto a data storage assigned for the next integration step or

another copy of codes. In other words, it allows distributed bus access

and also to eliminate data synchronization to check the completion of the

integration tasks because the output data of the integration tasks has

already been transferred before the end of each integration step.
The optimal machine codes for each PE generated in the way mentioned

above are loaded to the local instruction memory of each processor element

and executed asynchronously. The four steps of the proposed parallel

processing scheme described in this section can be performed automatically

by a special purpose compiler.

IIl. PEigigOI_qU_EV_I_ATIONON_

This section discusses the performance evaluation of the proposed

parallel processing scheme on a prototype multiprocessor supercomputing

system named OSCAR being developed by the authors.

In the following, as an example of parallel processing of the

practical dynamic systems simulation for evaluating the performance of the

proposed scheme on OSCAR, dynamics simulation of a hot strip mill control

in a steel making plant is treated. The simulation program can be

represented by a block diagram shown in Fig. 5. In this example, near

fine task granularity has been chosen in which each integration task

consists of several floating point operations and the other tasks consist

of only one floating point operation. By the task generation method nsimg

near fine granularity, fifty-one tasks involving nine integration tasks

were generated. Fig. 6 is a task graph generated from Fig.5 automatically

by a special purpose compiler.

OSCAR is a hierarchical multiprocessor system which has a plurality

of processor clusters as shown in Fig.7. Its goal is to realize, by the

combined use of static scheduling and dynamic scheduling, efficient

parallel processing of Fortran programs and a variety of applications

including those which have so far been difficult to process efficiently

because of a lot of scalar assignments involved.

One processor cluster(PC) hardware has already been completed. On

the PC, various parallel processing application will be implemented. Tke

PC involves sixteen processor elements, three common memories, a local

control processor and three shared buses. Each PE consists of a 32-bit

custom-made RlSC-like processor with 64 general purpose registers which

executes all instructions including a few floating point operations in one

clock (clock:2OOns), a 256-IM local data m_mory, a 2-I_ two-port memory to

communicate with other PE's, two banks of 128-KW instruction _17 and a

DHA controller. The DMA controller realizes high-speed transfer of a block

of data to the common memories and the two-port memories of other FE's and

dynamic loading of a set of instruction codes from the cemmommemories to

one of the instruction memory banks during execution. The redmced
instruction set and the one-clock-execution of the all instructions mike

the estimation of task processing time for the scheduling easy and

accurate. For interprocessor communication, three types of data tramsfer

modes are provided such as broadcast mode, direct data transfer mode to

the two-port memory of another PE or indirect data transfer mode via a

common memory. Each mode can be used for both single word data transfer

and block data transfer. Each common memory accepts simultaneous accesses

from three buses. The data transfer speed of the three buses totals to

60MByte/s.

177

ORIGI:_AL PAGE IS

OF POOR QUALITY

k_hen we operate one PC of OSCAR, a Unix.-based workstation is used as

the host computer which generates machine codes for each PE by using

static schedule providing the minimal processing time and downloads the
codes to each PE. In the generated codes, bus access timing by PE's, data

transfer modes and use of 64 registers employed to exchange data among

tasks assigned on the sae PE are optimized. In addition, redundant task
synchronization is also eliminated as mentioned before. An timing chart

representing execution of the machine codes is shown Fig.8. This chart can

be regarded as a precise simulated result of actual parallel processing on
OSCAR. In the figure, for PE3, characters such as "LD30",'251_',"wait","
PE5" and so on are written. These characters mean to load input data for

task 30 from a local data memory to registers, execute task 30 and keep

its result in rcgisters, and wait for a while to directly transfer the

output data of task 30 to PE5. At that time, PE3 waits for bus access
since PE1 is accessing bus for data broadcasting. In OSCAR, another PE
cannot access the busses while a PE is broadcasting data. Furthermore "U26

51", " PE2","K_IT",'FC44 _ and "381¢" represent to execute task 51 by using

output data of task 26 on registers, transfer it_ output data to PE2, wait

for output data of task 44 from PE5. check a flag showing completion of
data transfer frow task 44, execute task 38 and keep its output data on a

register.
Fig.9 shows the measured parallel processing time on OSCAR (solid

lines) and simulated parallel processing time (dotted lines and chained

lines) of 51 tasks in Fig.6. In this ex_pie, 4th-order Adams-Bashforth
method was used. The measured processing time on OSCAR of the near fine

granularity tasks was reduced from 108.7 llS for one PE to 37.2 us (1/2.92)

for seven PE's. Next, the task fusion technique which generates a coarser

grant, larity task by coRbining several tasks in order to reduce data
transfer overhead with the minimum loss of parallelism is evaluated. As a

simple example, those tasks surrounded by dotted lines in Fig. 6 can be

fused and twenty-two medium granularity tesks are generated automatically.

Processing time of the medium granularity tasks (after task fusion)
decreases froB 105.8 us for one PE to ,36.8 us (1/3.01) for seven PE's.

From the results, it has been confirmed that the determination of the most

suitable task granularity is very important and that the automatic task
fusion is useful.

The two dotted lines show the simulated processing time. It is clear

from the figure that there exists little difference between the measured

processing time and the simulated processing time or an execution image of

machine codes generatt_l by using static scheduling. In the light of this
fact, we can conclude that the generation of the precisely optimized

machine code using st,_tic scheduling is very useful for OSCAR.
The processing time shown above, however, represents the degraded

performance of OSCAR since OSCAR is still in a stage of operation testing.

Though OSCAR can normally transfer two words data in 5 clocks, the
processing time were measured in a degraded operating condition where two
words data transfer takes 9 clocks. Therefore data transfer overhead will

be reduced by half in the normal operating condition. The chained lines in
Fig.9 show the precisely _imulated processing times in the normal

condition for the near fine granularity before task fusion and the ledim

granularity after task fusion. The processing time after task fusion

decreases from 104.8 us for one PE to 28.8 us for seven PE's (1/3.64).

From the experiment mentioned above, it has been confirmed that OSCAR's

architecture, especially one clock execution of all instructions and three
types of data transfer modes, allo_s _s to efficiently parallel process

178

OF F_'O_I _UALITY

the dynamic syst'ems simulation by extracting the advantageous features of

static scheduling to the maximum| extent.

V. CONCLOSIONS

In this paper, the authors have proposed a parallel processing scheme

of the dynamic systems simulation using static optimal multiprocessor

scheduling algorithms and shown that the scheme allows us to realize

efficient parallel processing on OSCAR which has been designed to extract

the advantageous features of static scheduling to the maximum extent.

More precisely speaking, the special purpose compiler for OSCAR using the

proposed scheme can generate suitable granularity tasks, the minimal

execution time schedule and optimized machine codes for each processor in

which data transfer and synchronization overheads are minimized and the

registers on each processor are used optimally.

Furthermore, it has been confirmed that the architectural support in

OSCAR for a parallelizing compiler using static scheduling is very

useful. The authors are planning to develop a practical dynamic systems

simulator using OSCAR which can simulate dynamics of flying objects like

airplanes and missiles, nuclear reactors, robot systems and various

industrial plants.

_ES

[I] G. A. Korn, "Back to Parallel Computation:Proposal for a

Completely New On-line Simulation System Using Standard

Minicomputers for Low-cast _altiprocessing," Simulation , Vol.19, pp.

37--44 (Aug.1972).

[2] E. O. Gilbert, and R. H. Howe, "Design Consideration in a

Multiprocessor Computer for Continuous System Simulation," Proc.

National Computer Conf., pp. 385-393, AFIP Press, Reston (1978).

[3] R. Yoshikawa, T. Kimura, Y. Nara and H. Also, "A l_alti-microprocessor

Approach to a High-speed and Low-cast Continuous-system Simulation,"

Proc. National Computer Conf., pp. 931-936, AFIP Press, Restou

(1977).
[4] S. Koyama, K. Hakino, N. Niki, Y. Iino and Y. lseki, "On the Parallel

Processor Array of Hokkaido Oniversity High-speed System Smlator

"Hoss'," Proc. 8th IFAC World Cong., pp. 1715-1720, Pergamon Press,

Oxford (1981).
[5] ft. Kasahara and S. Narita, "Practical Nultiprocessor Scheduling

Algoritlms for Efficient Parallel Processing," IEEE Trams. C0mi_t.,

Vol.c-33, pp. 1023-I029 (Nov. 1984).

[6] H. Kasahara and S. Narita, "Parallel Processing of P_bot-arm Control
Computation on a l_ultimicroprocessor System," IEEE J. of Robotics add

Automation, Vol.RA-1, pp. 104-113 (June 1985).

[7] H. Kasahara and S. Narita, "An Approach to Supercomputimg Using

Nultiprocessor Scheduling Algorithms," Proc. IEEE First Internatiomal

Conf. on Supercomputing Systems, pp. 139-148 (Dec.1985).

[B] E. G. Coffman, "Computer and Job-shop Scheduling Theory," Hiley, New

York (1976).

[9] N. R. Garey and D. S. Jonson, "Computers and Intractability : A Guide

to the Theory of NP-Completeness," Freeman, San Francisco (1979).

[10] H. Kasahara and S. Narita, "Load Distribution among Real-time Control

Computers Connected via Communication Nedia," Proc. IFAC 9th

179

Triennial World Congress, pp. 2695-2700 (1984).
[11] E. B. Fernardez and B. Bussel, "Bound on the number of processors and

time for multiprocessor optimal schedules," IEEE Trans. comput.,

Vol.c-22, pp. 745-751, (Aug. 1973).
[12] C. V. Ramamoothy, K. M. Chandy and M. J. Gonzalez Jr., "Optimal

scheduling strategies in a multiprocessor system," IEEE Trans.

comput., Vol.c-21, pp. 137-146, (Feb.1972).

[13] R.W. Hockney and C.R. Josshope,"Parallel Computers 2: Architecture,

Programming and Algorithms," Adam Hilger, 1988.

[14] K.Hwang and F.A.Briggs, "Computer Architecture and Parallel

Processing," McGRAW-HILL, 1984.
[15] D.D.Gajski and Peir,"Essential Issues in Multiprocessor Systems,"

IEEE Computers,Vol.C-18,No.6,pp.9-27,Jun.1985.

[16] U.Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic
Publisher, 1988

[17] D.A.Padua,D.J.Kuck and D.H.Lawrie,"Highspeed Nultiprocessors and

Compilation Techniques,"IEEE Trans. Comput. Vol.29,No.9,Sep.,1980.

[18] D.J.Padua, and M.J.Wolfe,"Advanced Compiler Optimizations for

Supercomputers," C.ACM, Vol.29.No.12,pp.1184-1201,Dec.1986.
[19] C. Polychronopoulos,"Parallel Programming and Compilers," Kluwer

Academic Publishers, 1988.

TABLE I. NUMERICAL INTEGRATION METHODS

Trapezoidal Xi.,.,=X,._+h (3XI.,-X_..-,) /2

Where X4.,=f_ (t,, X,.., • • • , X...)

4 th..Orcler
l_mge Kutta

4 th-Orde r
Adam HouI ton

X_.,.,=Xi.,+ (k,.a+2 ka._
+2 k,.,+k,.i) /6

k,.,=h f, (t, X,.., X,.., -- -, X...)
k,._=hf_ (t+h/2, Xt..+k,.,/2,

X2.n+k,._/2, • •., X..,+ki../2)
k,.,=h fl (t+h/2, X,..+k2.,/2,

X2..+k2.,/2, - - -, X...+k2../2)
k4.,=h f_ (t, X,.._+k,.,,

X2._+k,.,, • • ", X...+k,../2)

X'4._.n=Xe_.,+h (55Xc;.,-59_c;.,.t

+37_ c,...;-9 _c...,) /24
X¢_ ..,=Xc,..+h (gxP:...,+lgX¢_..

--5 Xc,...,+ _c,.,.,) /24

180

Fig.l Block diagram for Van der P01

eq..

begin

a=lntegtal (b,0. 01) ; (1)

b=integral(c,0. 0I) ; {21

c=d-a; (3)

d=g-e; {4)

e=t*g; (5|

f=a*a; (G)

g=b*l (7}

end.

Fig.2 Assignment statements for Van

der Pol eq..

Fig.3 Task graph for Van der Pol eq.

P1 P2 P3

)
Precedence
relations

FS Flag set

FC Flag check

(_ Unnecessary

Fig.4 Hinimization of synchronization
overhead.

181

Fig.5 An example of block diagram-

t Sj _

,_.,_,_- ',:
il '_ , '*1

I I i

'N ,e
I I II

! I !I

l I !

! !

I I

J")
i I i
I !

_ '- j

Fig.6 Task graph for Fig.5.

!= IPROCESSOR

I

SNFLOPS

PC : Proceiiol Cluitti
CH : Common Kemor_
PZ : Processor Element

Fig.7 OSCAR (Optimally SCheduled
Advanced lult iprocessoR)

182

CLOCK
0

10

15

PEt

L02

IR

WAIT

20 "*_

LD31

2 5 UT-_'_"

U47 43R

30

::_I.T.::

'35 "_PES

L033

45:
- u28 23R

50:

" Lr23 19R

5 5 U)7

"Ui'_"TSR"

6 0 : UlS IIR

PE2

1.037

4_q

U48 45R

U4S 4lR

!.932

U22 24R

WAlT

FCSl

LD31

U41 35R

PE3 PE4

1.930 LOS

2SR 4

WAIT

WAIT

--* PES

U25 26R
•-+ PE:S

m

_6 St

_PE2
14R

WAlT FCI7

laR
F'C44 __

............ U14 IOR

38R LDI

LD3

LD37

_ U9 Sg

Fig.8 Execution image of
codes on OSCAR.

PE5

°[....;+;;......

_PE41

WAIT

!
IJ)3 ;

...............

FC4 :
!

................ i

_P_3 1
4

____.,_J

FCI

20R

U44 40R

FC25

Bach ine

10C

r_, 8(

"_.

c=mr

o

I'J
i-

o..

2O

__.,--..-- Measured processing time

........ Simutated processing time

(9 clock data transfer)

..... Simulated processing time

_. (5 clock data transfer)

_ _ Before task fusion

" "'--_ 35.2

28.8

o _ _ 4 _ _
Number of processors

Fig.9 Parallel processing time
measured on OSCAR and simulated

parallel processing time.

183

