
N90-230 1
A

Frequency Response Modeling and Control

of Flexible Structures: Computational Methods 1

Wilham H. Bennett

TECI-INO-SCIENCES, INC.

7833 Walker Dr. - Suite 620

Greenbelt, MD 20770

ABSTRACT

The dynamics of vibrations in flexible structures can be conveniently modeled in terms of

frequency response models. For structural control such models capture tlle distributed param-

eter dynamics of the elastic structural response as an irrational transfer function. For most

flexible structures arising in aerospace applications the irrational transfer functions which

arise are of a special class of pseudo-meromorphic functions which have only a finite num-

ber of right half plane poles. In this paper, we demonstrate computational algorithms for

design of multiloop control laws for such models based on optimal Wiener-Hopf control of

the frequency responses. The algorithms employ a sampled-data representation of irrational

transfer functions which is novel and particularly attractive for numerical computation. One

key algorithm for the solution of the optimal control problem is the spectral factorization of

an irrational transfer function. We highlight the basis for the spectral factorization algorithm

together with associated computational issues arising in optimal regulator design. We also

highlight options for implementation of wide band vibration control for flexible structures

based on the sampled-data frequency response models. A simple flexible structure control

example is considered to demonstrate the combined frequency response modeling and control

algorithms.

1 Introduction

Frequency response methods offer several advantages for modeling the dynamics of small

amphtude vibrations in flexible structures. Such models capture the distributed parameter

dynamics of the elastic structural response as an irrational transfer function from localized

actuation to localized deformation measurements. Interest in frequency response models can

arise from a desire to predict modM frequencies with increased accuracy over that obtainable

from finite element methods. The frequency domain approach is well suited to optimal control

law synthesis with specific requirements for precision vibration supression and isolation. Most

computational methods for optimal control synthesis available to design engineers focus on

the manipulation of state space models. For flexible structure control, state space models

are problematic since the question of model order required must be resolved as part of the

optimal control computation. This paper reports progress in the development and testing of

computational methods for design of precision control systems for mechanical structures with

1Work supported by SDIO and Air Force Wright Research and Development Center under contract F33615-
88-C-3215.
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H2

RHoo

open right half complex s-plane, Re s > 0

Hardy space of complex functions, analytic and essentially

bounded in C+

Hardy space of complex functions, f(s), analytic in C+and such

that; _--_ffJ_=_¢,__,_ IIf(s)ll' ds] 1/2 < ¢¢ for s _ C+.

rational functions in I-l_

Table 1.1: Notation

elastic effects based on direct frequency response models. The frequency response models

can arise from finite element analysis, transfer function methods, wave propagation models,

and/or empirical measurements. Moreover, the computational approach offers a framework for

integration of frequency response data from various modehng approachs which offer varying

precision in different frequency bands. The current paper extends the efforts reported in [1].

We will use the following notation and conventions in this paper. The transpose of a

column vector will be denoted as z r, Tr X is the trace of the square matrix X, and j =

v/-L-i. A Laplace (resp. z) transform will normally be indicated by dependent variable; z(s)

(resp. x(z)), however, we often drop the explicit dependence where the meaning is clear

from the context. The notation u.(s) = ur(-s) will be frequently used. E{z(t)} indicates

the expectation of the random process z(t). In this work all random processes are assumed

wide sense stationary and ergodic so that expectation can be replaced with ensend)le average

where convenient. The notation contained in Table 1.1 specifies the classes of transfer funct.ion

models considered at various points. A rational function has a (partial fraction) expansion

A(s) = {A(s)}+ + {A(s)}_ + {A(s)}oo where {.}+ (resp. {.}_)is analytic in _es > 0-the

causal part (_es < 0-the anti-causal part) and {.}oo is the part associated with poles at

infinity. Thus the operation {A(s)}+ is causal projection of the frequency response model.

In section 2 we provide an overview of frequency domain models and modern Wiener-Hopf

design of multiloop control systems. We motivate the role of frequency response modeling and

optimal control and identify critical computational steps required for the method. Section 3

discusses a new approach to the required computations for Wiener-Hopf control which extend

the algebraic constructions for rational transfer functions to certain irrational cases. We

highhght the role of coprime factorization in design of distributed systems. Section 4 considers

a simple, but nontrivial distributed parameter system design. Finally, in section 5 we discuss

new options for real time control implementation suggested by the computational approach

of section 3.

2 Optimal Control of Frequency Response Models: Wiener-Hopf

Design

Frequency domain models have been used to articulate the full range of opportunities for

feedback compensation for internal model stabihzation. Algebraic constructions based on

Laplace transform models of hnear, time-invariant system dynamics have been used to describe

alternatives for standard control computations and realizations for stabihzing controllers [2,
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3]. This together with Wiener-Hopf optimization provides a general approach for resolving

tradeoffs in regulator design where natural, frequency domain specifications for model-based,

control performance are available. We remark that restricting attention to rational transfer

function models in computational approachs to flexible structure control has been primarily

motivated by convenience [1]. Specific results which extend the constructions of coprime

factorization and internal stabilization to a certain class of irrational transfer functions have

been obtained [4]. In the present effort we restrict attention to transfer functions in Hooand

meromorphic with the exception of a small number of right half plane poles.

Optimal regulator design via Wiener-Hopf methods. Techniques for the solution of

H2 optimization problems in multiloop feedback systems have received considerable attention

in tile control theory literature for a number of years. A comprehensive approach to Wiener-

Hopf design using transfer function models is given by Youla et al [5].

A general framework for resolution of tradeoffs in multiloop control design was recently

outlined by Park and Bongiorno [6]. In general, control design involves the resolution of

choices in the use of dynamic (feedback) compensation with respect to a nominal dynamic

model of the system response to an n-vector control, u and an m-vector of exogenous system

disturbances, e, as seen by p available sensors, V and g (possibly nonmeasurable) regulated

variables. A frequency domain model for the control design problem (shown in Figure 2.1)

can be expressed using Laplace transforms as,

=
\e(s)/

c,. "

The control architecture is assumed to involve feedback,

(2.1)

u(s) = C(s)y(s). (2.2)

Then the closed loop compensation will alter the response of the system to disturbances as

seen in terms of the regulated variables as 2,

Gze e

= G.,,CSG_e + G_e (2.3)

where the system closed loop sensitivity operator is S = [I + Cu,,C ]-1

A major consideration in the classical methods of frequency domain design is closed loop

stability. In such methods stability considerations must be continually evaluated (using root

locus or Nyquist plots) as performance tradeoffs are evaluated. For single loop designs of rel-

atively low order systems, classical frequency domain methods focus attention on the tradeoff

between stability margins and performance. The modern approach is to use optimization to

2Suppressing dependence on the Laplace variable s.
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Figure 2.1: General Multiloop Control System Design Problem

resolve complicated engineering tradeoffs in multiloop design--subject to the constraint of

system internM stability.

The well known Youla parametrization of all stabilizing feedback controllers C which

stabilize a given plant model was orginMly derived for rational matrix transfer functions

which have coprime factorizations over the ring of polynomials in the Laplace ,-variable [5].

It is now understood that the construction goes through without modification for the ring of

stable rational functions, RHoowhich includes all rational transfer functions analytic in the

closed right half plane including the point at infinity [7]. Thus under the assumption that the

plant transfer function has right and left factorizations,

G_ = ND -1 = D-_I Nt, (2.4)

coprime over RHo., then there exist X, Y, Xt, Yt E RH_o such that

DtXt + NtYt = I, XD + YN = I, (2.5)

and each controller, C, which obtains R = CS with R E RHoo can be parametrized by the

factorization formulae,

C = (X- KNt)-Z(Y + KD,) (2.6)

= (Yt + KD)(Xt - KN)-' (2.7)

for some K E RHo_. The importance of this construction is that optimization procedures can

be applied directly to the choice of K E RHoo without concern for closed loop stability. This

fact was first exploited by Youla et al[5] in the description of Wiener-Hopf optimal control for

frequency response models. More recently, the parametrization has been utilized by Desoer

and his students [8].

Our concern here is with H2 optimization for a certain class of irrational transfer func-

tions which are "pseudo-meromorphic" in the sense stable coprime factorizations exist; i.e.,

the constructions in (2.4)-(2.7) obtain closed loop stability with N, D, Nt, Dr, X, _, Xt, _, K E

Hoo[1, 4]. In the research reported herein we avoid algebraic constructions related to stable,

coprime factorization of irrational transfer functions as considered by Desoer [7] and instead,

focus on the development of numerical algorthims for approximating the frequency response
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of the required objects. Such transfer functions can be adequately approximated over fi-

nite frequency ranges by (rather high order) rational transfer functions. Models of this type

arise in the study of vibrations of multibody systems with flexible interactions [9] and wave

propagation in flexible mechanical structures [10, 11].

PSD modeling of control processes for performance specification. A wide class of

standard control design problems including symultaneous requirements for tracking, distur-

bance rejection and accomodation, etc. can be represented in the form of the general linear,

time-invariant regulator problem of Fig. 2.1 and (2.1)-(2.2) where the objective is to choose

a controller which stabilizes the closed loop system and minimizes a performance criterion in

the form,

1 /_ i°°J- 27rj j Tr[Q(s)Pz(s)] ds, (2.8)

where Pz is an effective Power Spectral Density (PSD) of the regulated variables, z.

The representation of regulation performance in terms of PSD is quite practical for a va-

riety of design problems arising in multiloop systems and provides a frequency dependent

specification of control performance consistent with design requirements for vibration rejec-

tion. One can extend the significance of PSD modeling to include a wide range of practical

design considerations. The regulation PSD, Pz, can be related to modeling assumptions on

the exogenous inputs in terms of the closed loop transfer functions;

P_ = [G,,_R, II P'(Gv_" G_,,). (2.9)

PSD models of exogenous inputs may include deterministic transient effects together with

steady state stochastic PSD, q_,; viz.,

p,(,) = alE{e(,)e.(,)} + (2.10)

Formulation of the performance objective, J, may include real, positive, Ai, i = 1,2 which

permit scaling relative importance of steady state and transient considerations to the com-

posite performance and Q(s) is included to permit frequency weighting. PSD modeling has

recently received increased emphasis in the study of vibration control in acoustic regimes [11].

Park and Bongiorno [6] also highlight the use of PSD models for minimizing closed loop

system sensitivity to model uncertainty. Let the system model uncertainty be given as a

frequency dependent, additive perturbation, G := G+A, which can be expressed in partitioned

form as,

A.,, A._ "

Following [6] an effective model uncertainty PSD, Pa = E{AA.}, can be reflected to the

system regulated outputs, and via superposition, a composite performance objective of the

form,

J- 2_'j i_ q',v _,,
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is obtained for optimal regulator design, where the system model uncertainty can be obtained

conunensurate with the performance specifications as an effective disturbance PSD,

Here the partitioned terms can be expressed in terms of a priori modeling assumptions; [6]

_ = G_P_Gu,, + g(E{Avu(Avu),}E{Av_(A_)-}), (2.12)

Ov, = G_eP_G,¢. + g(E{A_u(A_).}E{Ay_(Aze),})= Oz_,, (2.13)

¢_ = G_P_C_. + tt(E{A_,(A_,).}E{A_(A_).}). (2.14)

It is by now widely recognized that frequency domain response considerations are ex-

tremely important for robust control design and that performance objectives formulated in

the frequency domain are important tools for resolving design tradeoffs of relevance to prac-

tical design problems. However, the common wisdom is that state space modeling offers the

most reliable numericM framework for the computational problems which arise in optimal

regulator design. The Wiener-Hopf approach identifies the solution for the optimal controller

in an explicit form which highlights the role of the algebraic constructions generic to stabiliza-

tion and the quantitative computations required for identifying an optimM controller. Thus

given the system architecture (2.1)-(2.2), appropriately chosen stable coprime factors for the

plant (2.4), a nominal stabilizing controller given in terms of its coprime factors as solutions of

the Diophantine relations (2.5), and performance PSD's (2.12)-(2.14), then an optimal closed

loop system response is obtained (assuming a solution exists) by the formula,

R= DA-' ({AD-1yn}- -{A_'D,C,,,.Q(_,_Dt, a:'}+)_-IDt. (2.15)

The explicit form given here depends on operations of causal projection and the solution of

two causal, spectral factorizations;

D.Gz_,,QG_,D = A,A (2.16)

Dt_,_Dt. = tiff. (2.17)

with A, A -1, _, _-I C H_,. The required controller can then be obtained in the explicit form,

C = (I - RGvu)-lR.

The computational steps required to identify candidate optimal control solutions for the

regulator problem include: 1) stable coprime factorization (as in (2.4), 2) identify candidate

solution to Diophantine relations (2.5), 3) causal spectral factorization, and 4) causal pro-

jection. We contend that such computations can be effectively supported (in finite precision

arithmetic) by obtaining state space realizations [3] only for relatively low order, rational trans-

fer functions. In the sequel, we specifically avoid such an approach since we are ultimately

concerned with the approximate solution of large (or even infinite) dimensional models.

3 Frequency Response Computations for Optimal Control.

Our approach to optimal control computation is motivated by distributed parameter models

which arise in flexible structure control. The approach we have in mind is based on sampling
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and interpolation of the frequency response models for the system. The choice of sampling and

the resulting high order, rational approximations are obtained in the context of the optimal

control problem as summarized above.

A computational approach to spectral factorization. Recall that a transfer function

H(s) C H2 fq Ho_ has a unique spectvalfactorization U(s) = F(s)F.(s) with F C H_ if:

1. H(s) = H(._); i.e., H(s)is the transform of a real-valued function h(t).

2. H(s) = H.(s); i.e., H(s)is "para-hermittian".

3. H(s) is of normal rank; i.e., full rank almost everywhere in C.

4. H(iw) is positive, semi-definite and bounded for w C R.

To see that causal projection is a closely related problem consider the following. If H(s) is

scalar, then with q_(s)= In H(s)we obtain

• (_) = {¢(_)}+ +{¢(_)}-,
= lnF(s)+lnF.(s),

so that the causal, spectral factorization is related to causal projection via the logarithmic

transformation; F(s ) = exp{ln H( s)} +.

Our goal is to obtain numerically stable approximations to these related problems for

transfer functions in Ho_. For application to precision control of flexible structures we require

wide band frequency domain models so that even rational approximations will be of relatively

high order. An approach to model order reduction which has recently received attention in tile

literature is based on Fourier series approximation of irrational frequency responses [12] in Hoo.

Our approach to computations for such models is also based on samphng and interpolation of

the spectrum, but is motivated by computational requirements for Wiener-Hopf optimization.

From the above discussion of causal projection we motivate a class of algorithms of interest

from basic properties of the Hilbert transforms applied to the frequency response (I)(jw). Recall

that the Hilbert transform of a time signal f(t) is defined as a convolution; ](t) = ff-_o_ _ dr,qt-,-)
and it's Fourier transform has the property,

{ -if(w), w>O](w) = if(w), w > 0

The inverse Fourier transform of ¢ is -jsgn(t)¢(t) where ¢(t)is the inverse Fourier transform
of q,(_). A consequence is that the casual projection can be obtained as

= +

In previous studies we reported computational algorithms for causal projection and scalar

spectral factorization by numerical evaluation of the Hilbert transform integral. Computa-

tional cost was high due to the fact that the Hilbert transform integral is convergent only in
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the Cauchy principal value sense [13]. An alternate method for causal projection attd spectral

factorization was considered in [14] based on sampling and interpolation of the system fre-

quency response. The algorithm developed in [14] employs results of Stenger [15] on numerical

solution of Wiener-Hopf integrals by sampling and interpolation. Details of the algoritlun used

for the current studies and computer implenlentation are given in [14].

In the lnultiloop, optimal regulator design problem we require the solution of two matrix

spectral factorization problems (.analogous to the solution of control and filtering Riccati

equations for time domain models). The computational approach exploited in the current

study is based on a Newton-Raphson iteration for the matrix causal spectral factor;

:= {[Fy,(i,o)l-'H(i,o)IF.(i,o)l- }+ (3.3)

The recursion (3.3) can be replaced with a numerically well conditioned problem by iteration

on the inverse spectral factor;

(3.4)

By initializing with F0 (an m × rn diagonal matrix) with diagonal elements equal to the spectral

factors of the diagonal elements of H the second term of (3.4) remains a perturbation of the

identity (since [F_,]-'H[F,,] -1 - I -_ 0) which regularizes the computations. The algorithm

used in this work is based on that reported in [14] and is a modified form of the method

reported in [16].

Computation ofstable coprime factorizations for flexible structure models. Simple

models of structural components with elastic effects typically lead to transfer functions in

Hooonce realistic damping models are included. Linear vibration models of more complex

structures arising in aerospace applications usually will have transfer function models with

only a finite number of poles in the closed right half plane. Restricting attention to such

transfer functions we indicate a simple procedure for coprime factorization over H_o.

Let "5 C_ Hoo be a set of transfer functions analytic in a half plane including C+. Under

the above assumption any such transfer function P(s) can be expressed in the form,

P(s) = Ps(s)+ P,_(s) (3.5)

where Ps E ,5 C_ Hoo and P$ is rational and analytic in the complement of "5 with (a finite

number of) poles outside `5. A stable coprime factorization can be readily obtained for the

(typically low order) transfer function as, P,¢ = N,D_ 1, by well known state space construc-

tions [3]. Then P has stable coprime factorization,

P = N,D;' = [31, - Pab.lb;', (3.6)

where N,, D, are ,5-stable. The separation of terms in (3.5) is readily carried out given P(s)

by computing the residues of the finite number of unstable poles contributing to P,_.
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4 Control Computations for an Elastic Structure

To illustrate the computational approach for a simple elastic structure we consider the simply

supported Euler beam with torque control at one end. The beam lateral deformation is given

by v(t, z) with 0 _< z _< L and has dynamics described by the dimensionless PDE;

892 839 2 8498t 2 - 2_ 8-t-0--z + 8z 4 - 0. (4.1)

with boundary conditions at z = 0,

829] -- 0,9(t, O) = O, 8z---i,=0

and at z = L,

82V I = r,v( t, L) = O, 8z_ ,=L

with the control moment, r, applied at the right hand end of the beam. The transfer function

(r _ V) for beam control is

Gy,,(s,z) = L 2 sin A' sinh A2L- sinA,_sinhA2 (4.2)
(A_2 + A_) sin(A1) sinh(A_) '

where )t_ = (-(, + iv/1 - _2)sL2, )_ = (_ + ix/FZ--_)sL _, L is the beam length, _ is the

damping factor, and z is the observation point to be regulated on the beam. The transfer

function is meromorphic, and G_(s, z) E Hoo for any 0 < z < L.

The regulator problem considered arises from a requirement for asymptotic rejection of

constant load disturbances at a point. _ = 0.7. For the current numerical studies we tkke

L = 10., and the effective damping ratio, _ = 0.01. Stable coprime factorization is trivial

and we take N_ = Nt = G_,, D, = De = 1. Exogenous inputs here include the output

load disturbance d and measurement noise model n and are described by their effective PSD

models representing constant (step) load disturbance and narrowband sensor noise as shown in

Figure 4.2. The frequency response of G_ is shown in Figure 4.1 with 1024 uniform frequency

samples over a bandwidth of 0 < o., < 100. Clearly, the frequency response is irrational and

no obvious rational approximation is evident.

The optimal control design is regulation of the beam deflection at z/L = .7 and the

performance objective is given as,

1 f_ _°_ Tr {0 v + ttq'_} ds
J- 27rj joo

where the tracking cost is modeled by PSD, q_v, and the control saturation PSD is q'u =

E{uu.}. Then given a constraint on the control power the scalar/t > 0 plays the role of a

Lagrange multiplier for the optimal design. In this case the required spectral factors;

(Gw,.Gu,, + ,u) = A.A (4.3)

(G_,dbaPva. + q',) = fill (4.4)
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Figure 4.1: Frequency response for pinned-pinned beam control.

were obtained for # = .1 by the frequency sampled procedure and are displayed in Figure 4.3.

We remark that the computations of the indicated spectral factors effectively replace the com-

putational step of solving a pair Riccati matrix equation for the control (resp. filter) problem

typically encountered in state-space methods for control design. For distributed parameter

systems, solution of the Riccati equation (a PDE) requires discretization which is accom-

plished using the current algorithms by samphng and interpolation of the frequency response.

Thus numerical precision is concentrated over frequency bands significant for the given control

problem and with samphng under direct control of the designer. The solution obtained is ef-

fectively a high order rational approximation of the optimal solution with frequency response

interpolation points chosen by the design engineer. The optimal controller frequency response

thus obtained is shown 'for ft = .1 in Figure 4.4.

5 Frequency Sampling Filters for Real Time Control Implemen-

tation

The frequency response computations for Wiener-Hopf control outlined and illustrated in the

previous sections identify various frequency sampled approximations to the ideal, possible

irrational frequency response for the desired optimal controller. Bandwidth and sampling can

be chosen by the design engineer to represent specific concerns based on models and/or control

performance. The frequency sampled computations obtain a specification for the frequency

response of the ideal (optimal) controller via its sampled representation. The design engineer

now has several options for implementing the controller depending on available hardware. In

contrast to the state space approach for finite dimensional systems, several new realization

opportunities are suggested by the frequency sampling approach.
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Figure 4.2: PSD for disturbance and sensor noise inputs for beam control.

A principal concern in implementation of high precision control laws for flexible structure

control is the order of the reahzation required for the online controller. The controller or-

der is usually taken to mean the dimension of the state variable reahzation of the transfer

function C(s) which will be implemented for realtime control. Implementation using analog

components of high order models is hmited by circuit complexity, reliabihty and cost. As

a result considerable effort has been expended in methods for model order reduction. One

approach to controller realization which follows from the frequency sampled computations of

the previous section is to compute reduced order, continuous time, state space reahzations for

the controller by techniques such as in [12].

Digital computer implementations are primarily bruited by computational speed and al-

gorithm complexity effecting the ultimate obtainable sampling rate and considerations for

reduced order realization of the controller may be required. However, the emergence of special-

ized computer hardware implemented in VLSI single chip circuits for digital signal processing

opens new opportunities for reahzation of realtime control for flexible structures. We prefer

to consider realization options for the optimal controller in discrete time for implemenation

on a digital computer. Realization of the controller specified by its frequency samples can be

obtained using a FIR digital filter implementation.

Given the specified frequency samples obtained for the optimal controller,

Ck = C(jwk ),

at frequencies, w_ = kwew/N, where wBw is bandwidth and N the number of uniformly

spaced frequency samples we describe the digital filter realization using z-transforms. With

discrete time samphng rate w, > 2wBw the frequency samples correspond to interpolation

points in the z-plane given by s, zk = e jk2'_/t¢_, for k = 0,..., N- 1. The z transform which

3Bandwidth and sampling requirements would typically require padding the sequence of frequency samples
of length N with NI - N zero values to avoid alia.sing.
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reMizes the frequency sampling filter is

N-1

C(z)= C,.F,.(z)
k=O

where the interpolating functions are,

1 -- Z -N

Fk(z) - N(1 - eJka"/N z-' )'

with k = 0,..., N - 1. A standard computation shows that the frequency sampling filter has

transfer function

1 - z -N N-I Ch N-,
C(z)- N _ I--eJh2*/Nz -I -'- _ ctz-t (5.1)

k::O= l=O

where the coefficients,
1 N-1

ce- _ _ Ch_ (2,'/'v')_ (5.2)
k----O

for t = 0,..., N - 1, are the Inverse Discrete Fourier Transform ([DFT) of the sequence

Co,..., CN-I. The final form in (5.1) shows that the realization is a FIR realization. Such

realizations are nonrecursive and are efficiently implemented using high speed, single chip DSP

processors which utilize highly pipelined architectures to achieve high throughput.

6 Conclusions and Directions

Wiener-Hopf optimization of frequency domain models has been shown to offer significant

advantages for computation of precision controllers for irrational transfer functions arising

in control of flexible structures• Computational algorithms for causal spectral factorization
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and causal projection can be implemented based on frequency sampled representation of the

model response. Such models can be obtained from transfer function models or from frequency

response measurements of the controlled structure. Computations based on frequency response

sampling have been demonstrated for irrational transfer function models arising in the control

of flexible structures.

Requirements for precision control will involve frequency response models which are char-

acterized by a large number of flexible modes within the control bandwidth. However, for

control of relatively large, flexible space structures control bandwidth and resulting sampling

requirements for discrete time control implementations are well within the state-of-the-art for

high speed digital computers. Frequency sampling filters based on nonrecursive implementa-

tions can be efficiently implemented in modern DSP single chip processors for realtime control

of such systems.

Apphcation of FIR realizations for realtime, closed loop control have not received much

consideration in the hterature primarily due to increased phase lag by comparison with a

recursive realization. However, the rapidly developing technology for realtime DSP using

special purpose architectures offers throughput capabihties which may reduce the achievable

computational delay to within acceptable limits for certain applications. Ill such cases, high

order realizations may be feasible using nonrecursive implemenations which cannot be realized

by recursive methods.
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