
Ng()- 23064

A New Second-order Integration Algorithm for Simulating Mechanical Dynamic

Systems

R.M. Howe

Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan

and

Applied Dynamics International, Ann Arbor, Michigan

ABSTRACT

A new integration algorithm which has the simplicity of Euler integration but exhibits

second-order accuracy is described. In fLxed-step numerical integration of differential equations

for mechanical dynamic systems the method represents displacement and acceleration variables

at integer step times and velocity variables at half-integer step times. Asymptotic accuracy of the

algorithm is twice that of trapezoidal integration and ten times that of second-order Adams-

Bashforth integration. The algorithm is also compatible with real-time inputs when used for a

real-time simulation. It can be used to produce simulation outputs at double the integration

frame rate, i.e., at both half-integer and integer frame times, even though it requires only one

evaluation of state-variable derivatives per integration step. The new algorithm is shown to be

especially effective in the simulation of lightly-damped structural modes. Both time-domain and

frequency-domain accuracy comparisons with traditional integration methods are presented.

Stability of the new algorithm is also examined.

I. Introduction

In the simulation of mechanical dynamic systems described by ordinary differential

equations the required dynamic accuracy is often modest, especially when the real-time

computation is utilized as part of a hardware-in-the-loop simulation. Accuracies ranging

between 0. i and 1 percent are considered adequate in many cases. For this reason, lower-order

numerical integration algorithms are often employed. Also, fixed integration time steps are

invariably used in real-time simulations in order to assure that the simulation outputs for each

integration step occur at a fixed rate that can be synchronized with real time. In fact, the Adams-

Bashforth second-order predictor algorithm, hereafter referred to as AB-2, is perhaps the most

widely used method for real-time simulation.

In this paper we consider a modified form of Euler integration which is well suited to the

dynamic simulation of mechanical systems. It is especially effective in the simulation of

systems with lightly-damped oscillatory modes, such as flexible structures. The method has the

simplicity of conventional Euler integration but exhibits dynamic errors that are second order

rather than first order in the integration step size h. Also, the dynamic error coefficients

associated with the method are smaller than those for any other second-order method. In the

next section we introduce the basic concept behind the modified Euler method as it is used in the

dynamic simulation of mechanical systems. This is followed by a discussion of dynamic error
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measures with emphasis on the frequency domain. Several example simulations are then

introduced to demonstrate the accuracy improvement achieved when using the modifed Euler

method instead of conventional algorithms. The stability boundaries for different versions of

the modified Euler method are also compared with those for conventional methods.

2. The Modified-Euler Method

The simulation of mechanical dynamic systems normally requires the integration of a

time-dependent acceleration A(t) to obtain a velocity V, followed by a second integration to

obtain a displacement D. This is illustrated diagramatically in Figure 1 One method for

implementing the required integrations is to use the forward Euler formula for the first

integration and the backward Euler formula for the second integration. The required difference

equations are the following:

Vn+l = Vn + hA n , Dn+ I = D n+ h Vn+l (I)

Here h is the integration step size and An, Vn and Dn represent the respective variables at the

time t = nh, where n is an integer. Eq. (1) has been used in real-time simulation to achieve

dynamic accuracy improvement over that obtained when using the forward Euler formula for

both integrations. In Eq. (1) the first-order error associated with the forward Euler formula

cancels the equal and opposite first-order error associated with the backward Euler formula. As

a result the displacement D exhibits second-order accuracy with respect to the input acceleration

A.

Acceleration

A(O [ 1 ] Vel°city [T v(t)

1

$

Displacement

D(0

Figure 1. Paired integration to obtain velocity and displacement from acceleration.

Both integrations become second order if we consider the velocity to be represented at a

half-integer frame. In this case the difference equations become

Vn+irz = Vn_,rz+ hA n , Dn+I = Dn + h Vn+_ (2)

The acceleration A will, of course, usually be a function of both velocity V and displacement D,

as well as an explicit time-dependent input U(t). In this case we can write the system state

equations as

_' = A[D,V,U(t)] , i) = V (3)
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where in general the variables will be vectors rather than scalars. In Eq. (3) we see that the

acceleration An at the nth frame depends on the velocity Vn at the nth frame, which is not

available in the half-integer representation for V as utilized in Eq. (2). The best we can do is to

employ an estimate _'n for Vn based on half-integer values Vn-m, Vn-m, etc. Then the modified

Euler difference equations are given by

A

Vn+m = V,z.1a + hA (Dn,Vn,U n ) , Dn+1 = Dn + h Vn+m (4)

Table 1 lists some possible candidate formulas for estimating Vn. In the first formula in Table 1

we let f_n = Vn-ll2. This is equivalent to using conventional Euler integration rather than

modified Euler integration for the V dependent portion of A(D,V,U), with the corresponding

dynamic error proportional to h. The second formula for _zn uses a linear extrapolation based on

Vn-l_ and Vn-3/2. It is equivalent to using AB-2 integration for the V dependent portion of A,
with the corresponding dynamic error proportional to h 2. In the third formula Vn is derived from

averaging Vn+l/2 and Vn-l/2. It is equivalent to trapezoidal integration for the V dependent

portion of A and represents an implicit formulation, since Vn+m now appears on both sides of

the left equation in (4). Later in this section we will see how this can be turned into an explicit

formulation in many cases. Finally, the last formula in Table 1 uses a second-order predictor

integration method to obtain _Zn from Vn.ll2 and the derivatives i/n-1 and _Zn.2. It produces a

local truncation error in _n proportional to h 3 and therefore permits the full accuracy of the

modified Euler method to be realized.

A A

Table 1. Methods for Estimating Vn in A(Dn,Vn,U n)

A

Euler V,, = V__t_

AB-2

Trapezoidal

Predictor

Integrator

^ 3 v 1
= 2 -

^ +
V_= 2

Before considering some examples of the application of the modified-Euler methods

described here, we consider some dynamic error measures for examining comparitive accuracy

of different integration algorithms.
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3. Integrator Error Measures

Consider the solution of the state equation dy/dt =f(t) using a numerical integration formula

for Yn+l in terms ofyn and the derivativef. Furthermore, let y[(n+l)h] and y[nh] represent the

exact solution of the continuous system at the times t = (n+l)h and nh, respectively. Then we
can then write

,,(k).k+l
Y,,+I - Yn = Y [(n+ 1)hi - y [nh] - et:;, n (5)

Here the term -e/f_)h k+l, represents the local truncation error associated with the integration

method of order k and f(k) is the kth time derivative of fat t = nh [1]. For example, k = 1 and e1

= 1/2 for Euler integration; for AB-2 integration k = 2 and e I = 5/12. We now take the Z

transform of Eq. (5) and divide by z- 1 to obtain

e/h k+l F (k)* (z)

Y*(z) --- Ye_(Z) - z- 1 (6)

Here Yref*(z) is the Z transform of the exact solution, y[nh]. Next we consider the case of
sinusoidal data sequences by replacing z with eJ c°h. We also note that F(k)*(eJ c°h) =

(jco)kF*(ejC°h), i.e., the Fourier transform of the kth derivative of a function is equal to the

Fourier transform of the function multiplied by qco)k. After dividing the resulting expression by

F*, we have

Y*(e j°_) _ Ye_ (ej_) eth (jcoh) k

F*(d '_) F*(ej'°h ) ej°_- 1
(7)

The term Y*/F* is simply the sinusoidal transfer function, Hl*(eja_h), of the numerical integrator.

The term Yre_/F* = I/jco, the transfer function of an ideal integrator. If we now approximate

eJ °_h - 1 by jcoh, Eq. (7) becomes the following:

1 - el(Jcoh) k 1
"o_) _ , wh<< 1 (8)

Hl*(el -'- Jco = jco[l + el(Jcoh) to]

Here eI is the integrator error coefficient and k is the algorithm order. To illustrate the application

of our integrator transfer function model, we consider the simulation of a linearized dynamic

system with transfer function H(s). For the case of sinusoidal inputs of frequency co, the

transfer function becomes HQco). When the continuous system is simulated with a single-pass

integration method, the sinusoidal transfer function of the digital simulation is simply given by

H(1/H/*), where/4/* is the transfer function of the digital integrator. For coh << 1, 1/Hi* can be

approximated byjco[1 + e1(jcoh)kl in accordance with the integrator model of Eq. (8). Thus the

formula for the transfer function of the digital system in simulating the linear system with transfer

function H(s) is given by

H*(d _) = H(1/HI*) --- H{jco[l+e/(jcoh)k]} , coh<< 1 (9)
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For example, consider a f'trst-order linear system with eigenvalue 2 and transfer function given

by H(s) = 1/(s - 2). The transfer function for sinusoidaI inputs becomes

H(]co) = 1 (10)
ja_- 2

Then the digital system transfer function for sinusoidal input data sequences is given approxi-

mately by

1
n*(e j_) =- , yo_ << I (11)

j_[1 + et(jogh) k] - 2

We note that the characteristic root (eigenvalue) 2 for the continuous system is given by the value

ofjo_ in Eq. (10) which makes the denominator vanish. It follows that the equivalent

characteristic root 2* for the digital system is given by the value of jo_ which makes the

denominator of Eq. 11) vanish.

equal to zero, we can write

Replacing jto by 2* in Eq. (11) and setting the denominator

2" ---2- k

For IMd << 1, 2* -7.2 to order hk. Then we can replace 2* by 2 on the right side of the equation

and obtain

2* - _et(Zh)ke;t = )- --- , IRhl << 1 (12)

Here ez represents the fractional error in the digital system characteristic root. We recall that the

transfer function for any finite order linear system with distinct roots can be represented as the

sum of fh'st-order transfer functions of the form 1/(s - 2), where the charcteristic roots may be

real or complex. It follows that Eq. (12) can be used to estimate the error in each characteristic

root in the digital system simulation of any order linear system.

From the digital transfer function formula in Eq. 11) we can write

from which

1 H(/to)
H,(d _- = =

elja_jcoh) t-

yeo-2

H*(eJ°_)- H(]oo) = . elJ°_°._) k

Hqeo) - ja_- /1,

efia q )k
1-_

jco- /I,

toh << 1 (13)

Here (H* - H)/H represents the fractional error in digital system transfer function. For (.oh << 1

it is evident that this fractional error will be small in magnitude compared with unity. In this case

it can be shown that the real part of (H* - H)/H is approximately equal to the fractional gain error
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of the digital transfer function and the imaginary part is approximately equal to the phase error

[2]. We note that the transfer function for any finite-order linear system can be written as the

product of individual pole and zero factors of the form (s - ;I,), where again/, can be either real or

complex. It is then straightforward to show that the fractional error in the overall digital transfer

function is approximately the sum of the individual errors given by Eq. (13) for each factor [2].

It follows that both gain and phase errors of the overall digital system transfer function for

sinusoidal inputs are proportional to el(io)h)k.

Thus for single-pass integration methods Eq. (12) and (13) represent simple approximate
formulas for both characteristic root and transfer function errors. For a given integration

algorithm the errors are directly proportional to the integrator error coefficient e t for that

algorithm. Table 2 lists e t and k for the algorithms considered in this paper, including the

modified-Euler method, which has the smallest error coefficient (e t = 1/24).

Table 2. Error Coefficients for Integration Methods

1
Integrator transfer function = Ht*(e y_) =

jc0[1 + et(jo)h)k] '

eI k

1
Euler _- 1

5
AB-2 _ 2

1
Trapezoidal - _ 2

1
Modified Euler _ 2

ogh<< 1

All of the above algorithms in Table 2 are explicit except trapezoidal, which is implicit.

An explicit method with the same asymptotic accuracy can, however, be realized with the two-

pass Adams-Moulton (AM-2) algorithm. In this method the first pass employs AB-2 integration

to obtain an estimate _n+l of the next state. This is then used in the trapezoidal formula to

compute the corrected Yn+l. The local truncation error associated with 9n+1 is of order h 3,

which ensures that the asymptotic accuracy of order h 2 for the corrected Yn+l will be the same as

that for implicit trapezoidal integration.

4. Specific Examples

We now turn to some specific examples to compare the accuracy of modified Euler

integration with traditional algorithms of second order. We consider first a simple linear

dependence of the acceleration A in Eq. (3) on the displacement D and velocity V. This leads to
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the following state equations, which for convenience have been written in terms of the undamped

natural frequency ton and damping ration (of the second-order system:

(I = o)2n(Un-Dn)- 2(a_hV , i) = V (14)

From Eqs. (2) and (4), with the trapezoidal formula from Table 1 used for _n+l, we obtain the

following difference equations for the modified Euler formulation:

After solving the first equation for Vn+ll2, we have the following explicit equations:

where

Vn+m = C1Vn_la +C2(Un-Dn) , On+ 1 = Dn+hVn+ m (15)

1-¢o,,,h
C1 = 1 + _'¢onh ' 6'2 = 1 + (¢onh (16)

Here the constants C1 and C2 can be precomputed. From Eq. (15) it follows that the ongoing

simulation run then requires only 3 adds and 3 multiples per integration step.

Figure 2 shows plots of the solution error when using modified Euler integration to

compute the response of a second-order system with _"= 0.25 to a unit step input. The initial

conditions are given by x(0) = y(0) = 0. Shown in the figure are error plots for three of the

damping methods listed in Table 1, including the trapezoidal damping used to derive Eqs. (15)

and (16). For comparison Figure 2 also shows the step-response errors when AB-2 integration

is used. In all cases the step size is given by ¢onh = 0.25. The startup problem associated with

AB-2 integration (the initial states at t = -h are not specified) is solved by using Euler integration

for the first step. In the case of modified Euler integration the first step which computes Yl/2

from Yo uses a step equal to h/2. The figure clearly shows the superior accuracy of the modified

Euler method, with the scheme using second-order predictor integration to estimate _n producing
the smallest errors.

The second example considered in this section is the simulation Of the full nonlinear flight

equations of an aircraft. Since the largest characteristic roots for the rigid airframe are normally

those associated with the short-period pitching motion, we will only consider symmetric flight,

i.e., the longitudinal equations of motion, in our example simulation. The conclusions regarding

dynamic errors can be safely extrapolated to the full six-degree-of-freedom case. For this

simulation the translational equations of motion are written _th respect to flight-path axes, while

the rotational equations of motion are written with respect to body axes [3]. Then the velocity

state variables become total aircraft velocity Vp, angle of attack a, and pitch rate Q. The

displacement state variables are altitude H, pitch angle @, and horizontal distance X. The

velocity state equations are given by

Fwx Fwz M_ (17)
s=Q+.,,---ff. Q=x,,
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Figure 2. Unit step response errors in simulating second-order system, _"= 0.25, ognh = 0.25.

and the displacement state equations by

= Q , // = Vt, sin(O- a) , J_ = Vvcos(_9- a) (18)

Here Fwx and Fwz are the external force components along the x and z flight-path axes,

respectively, and M is the moment about the y body axis; m and lyy represent, respectively, the

aircraft mass and pitch-axis moment of inertia. The following formulas were used to represent

the external forces and moment:

Fwx =-qS (Coo+ C3c _ C_ )- gsin(_9-a) +Tc°sam (19)

Fwz =" qS (EL+ CL, t5e ) + gcos ( O- tz)- I-sinm a (20)

where

and

+ _ c •
M = qcS(CMo+CMaOt CMo. 2Vp Q+ CMe"2-_p a + CM86 e)

(21)

1 2
q = dynamic pressure = -_pV_ (22)

CL = lift coefficient = C_ + Ct, _ a (23)
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In these equations S is the aircraft wing area, g is the gravity acceleration, T is powerplant thrust,

Se is elevator displacement, and c is the mean aerodynamic chord. The various C's represent

aerodynamic coefficients and stability derivatives in accordance with the subscripts. In a full

flight-envelope simulation these will be nonlinear functions of other variables such as Vp

(through Mach number dependence), a, Be, and h.

Based on the way in which modified-Euler integration was introduced in Section 2, the

velocity states Vp, ot and Q in Eq. (17) would be represented at half-integer frames, with the

position states (9, H and X represented at integer frames. For the nth integration frame this

results in the computation of the n+l/'2 velocity state from the n-I/2 velocity state, followed by

computation of the n+l position state from the n position state using the n+l/'2 velocity state just

obtained. However, from Eq. (17) it is apparent that it would be better to represent the angle of

attack _x at integrer frames, even though it is derived from a velocity state equation. This is

because the dominant term on the right side of Eq. (17) affecting the high-speed dynamics is the

pitch-rate Q, which is represented at half-integer frames. The other term in Eq. (24), Fwz/mVp,

is the negative of the flight-path,axis pitch rate, and is generally much smaller in magnitude than

Q. For this reason we have chosen to represent (x at integer frames in the modified Euler

mechanization of the flight equations. Since the force (and hence acceleration) term Fwz is

computed and therefore represented at integer frames, it is necessary to compute an estimate of

Fwz at the n+l/2 frame in the modified Euler integration of c_n to obtain crn+l. This is easily

accomplished using the fast-order extrapolation formula Fwzn+ll2 = (3/2)Fwzn - (1/2)Fwzn.1. The
actual difference equations used to solve (17) through (23) with modified Euler integration are

presented in a previous paper by the author [4].

As a specific example we consider a business jet flying at 40,000 feet at a speed of Mach

0.7 [5]. For the above flight condition the undamped natural frequency of the short-period mode

is about 3 rad/sec and the damping ratio is 0.4. In the example simulation we let the step size h =

0.1 second. This makes conh = 0.3 for the short-period motion, which should yield the moderate

accuracies normally associated with a real-time simulation. We consider the aircraft response to

the input function shown in Figure 3, which is a step elevator displacement with a one second

rise time. Use of this input function tends to reduce the large transient errors caused by step

inputs when predictor integration algorithms are used. It is also probably more typical of an

actual transient input. The simulation is started at t -- 0 with the aircraft in level equilibrium

flight. In order to make the example more representative of an ongoing simulation, the step input

0 0.3 1.3 Time(seconds)

Figure 3. Delayed, finite rise-time step input.
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is delayedfor 0.3 seconds(threeintegrationstepsfor h = 0.1) after the initial time t = 0. Figure

4 shows the error in pitch angle versus time for AB-2 integration and for modified Euler

integration using the predictor integration of Table 1 for the integer velocity estimate. We note

that the modified Euler method is an order of magnitude more accurate.

Pitch angle

error (deg.)
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0.01

0.00
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Figure 4. Aircraft pitch angle error for the input function of Figure 3; h - 0.1 seconds.

5. Stability Considerations

In addition to considering the dynamic accuracy associated with different numerical

integration methods, it is important to consider the stability of the methods. This is usually done

by considering the stability boundary in the complex Zh plane. These boundaries are shown in

Figure 5 for modified Euler inte_gration used to solve Eq. (14) with the various methods for
computing the velocity estimate, Vn, as presented in Table 1. Also shown in Figure 5 is the

stability boundary for the AB-2 predictor method, as well as that for the AM-2 predictor-

corrector method. In the latter case the stability region has been reduced by a factor of two to

take into account that AM-2 is a two-pass method. Any values of Ah lying outside the boundary

shown for a given method (the boundaries are symmetric with respect to the real axis) will lead to

instability. From the figure it is evident that the modified Euler method with trapezoidal

integration for the damping term exhibits the largest stability boundary. Note also that the
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stability boundaryfor all of themodifiedEulermethodslieson the imaginary axis. This means

that modified Euler integration, when used to simulate systems with pure imaginary roots, as in

the case of undamped oscillatory modes, will also exhibit pure imaginary roots corresponding to

zero damping. This is true regardless of the integration step size h and is the reason why the

modified Euler method is especially effective in simulating lightly-damped dynamic systems.

j2.o

_,... L._.. j1.5

...... Jl.0

,.. Ijo s

jo.o
-2.o -1.5 =i.o -o.5 o.o

Figure 5. Stability boundaries for modified Euler and other second-order integration methods.

In the second-order system example considered in Section 4 we were able to use

trapezoidal integration for the damping term in the modified Euler mechanization because the

damping was linear. This in turn permitted us to construct an explicit, single-step formulation

represented by Eqs. (15) and (16). When the the dependence of acceleration on velocity is

nonlinear, this is no longer possible. Yet it would be advantageous for stability reasons to still

use a trapezoidal implementation.

The nonlinear dependence of the acceleration A on the velocity V in Eq. (3) can often be

expressed in terms of VOA/3V, where _A/_V is not a function of V, or at worst is only slightly

dependent on V. For example if A represents dQ/dt, the time derivative of pitch rate Q in the

flight equations, then _A/3Q is proportional to the aerodynamic stability dericvative CMQ, i.e.,
the dimensionless pitching moment due to dimensionless pitch rate. CMQ is normally

independent of Q, although it may be dependent on other variables such as Mach number. Also,

the overall 3A/_Q in this case will be independent of Q. Letting V be a scalar which represents

the angular velocity Q, we can rewrite Eq. (14) as follows:
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_' = C O[D, U(t)] + C 1[D, U(t)] V (24)

where CO + C1V = A and Cl =3A/_V. Now, when mechanizing the modified-Euler difference
equations (4) we can compute Vn, the estimate of V at the nth flame, by the formula

A

Vn = ½ (Vn+ m + Vn.ta ) (25)

From Eqs. (24) and (25) the difference equation for Vn+It2 in Eq. (4) then becomes

= + h[Co(Dn,Un) ] (26)

With respect to the velocity state V this equation clearly represents implicit trapezoidal

integration. However it can be solved to obtain the following explicit formula for Vn+l_:

(1 +hC1/2)V_l _ + hC o

Vn+u2 - 1 - hC1/2
(27)

This formulation, i.e., the use of trapezoidal integration for the damping term, expands very

sub_antially the stability region in the ;th plane compared with the use of the predictor formula
for Vn, as we have seen in Figure 5. It can also reduce appreciably the dynamic errors

following transient inputs. The extra required computation is modest and consists mainly of an
additional division.

In deriving Eq. (27) we have assumed that V is a scalar, whereas V will in general be a

vector. In this case OA/OV will be a matrix, which must be inverted to obtain the explicit formula

for Vn+l/'2. Fortunately, the critical terms in this matrix in the case of the flight equations are the

diagonal terms, in which case simple formulas similar to Eq. (27) involving only the diagonal

terms can be derived. In the longitudinal flight equations (17) through (23), for example, an

equation similar to (27) can be written for Qn+l/2, where C1 is proportional to the stability

derivative CMQ.

6. Conclusions

We have shown that mechanical dynamic systems are well suited to a modified Euler

integration method which computes displacement and acceleration variables at integer frame times

and velocity variables at half-integer frame times. Examination of asymptotic formulas for

characteristic root and transfer function errors associated with a linearized version of any

nonlinear mechanics problem shows that the modified Euler method is at least twice as accurate

as any other known second-order algorithm. For the usual case where the acceleration is a

function of velocity, there are a number of candidate methods for computing the required velocity

estimates at integer frames from the velocity as computed at half-integer frames. A second-order

predictor integration formula produces the most accurate integer-frame velocity estimate; an

estimate based on the equivalent of trapezoidal integration produces the most stable simulation.

Neither estimate requires any additional derivative evaluations, and the predictor formula can be
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usedto produce output displacements at half-integer as well as integer frame times in a real-time

simulation, i.e., at double the integration frame rate. The modified Euler method is particularly

effective in simulating systems with lightly damped modes, since modes with zero damping in a

continuous system generate modes with zero damping in the modified Euler mechanization,

regardless of the integration step size. The modified Euler method also has a simple and accurate

startup procedure and is completely compatible with real-time inputs. Two examples, a second-

order linear system and a sixth-order nonlinear flight simulation, have been used to demonstrate

the superior accuracy of the modified Euler method.
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