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TECHNICAL MEMORANDUM

GEOMETRIC PROGRAMMING PREDICTION OF DESIGN TRENDS

FOR OMV PROTECTIVE STRUCTURES

I. INTRODUCTION

The orbital maneuvering vehicle (OMV) design activity presents many challenges to the

design engineer. The OMV will be used to transfer Earth-orbiting satellites to different orbits and

will then be returned to Earth aboard the space shuttle orbiter. The design of an optimized protec-

tive shield which can prevent orbital debris particles from impacting and damaging the OMV could

be a major design and development effort. Thousands of large orbiting man-made particles are

being tracked each year by the space science community; many more smaller untrackable particles

are known to exist from evidence of impact damage on returned satellites. The OMV, with

exposed high-pressure fuel bottles, must be adequately protected for its average orbital lifetime of 7

days to prevent possible penetration and catastrophic rupture of the bottles.

As for any launched space vehicle, weight is a primary structural concern. The geometric

programming optimization technique has been employed to optimize the metallic honeycomb struc-

ture, which is currently required as a stiffening panel on the OMV configuration. This technique

determines the facing sheet and core areal densities needed to meet a protection requirement at the

minimum structural weight.

This report covers the first step in using geometric programming to optimize the honeycomb

panel configuration. By parametrically relating the material design variables in model forms

indicated from past experience, general trends can be predicted for the honeycomb panel as an

optimized protective structure. This information can then be used as a stepping stone for further

work in this area by providing researchers with clearer insight into the relationships of the design

parameters.

II. PROBLEM FORMULATION

The fornmlation of the protective structures design optimization problem begins with the

specification of an objective function in the form of engineering models and the statement of

applicable constraints in terms of the design variables. For the minimization of protective structures

weight, it has been shown that an objective function in the form of structural mass per unit area is

sufficiently representative, provided the spacecraft configuration to be protected is not dominated by

high curvature surfaces [1,2,3]. This requirement is met by OMV. For the honeycomb configura-

tion shown in figure 1, the system mass per unit area is given by

W = p,q + p2t2 + p_t_ ( I )
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Figure I. Notation for honeycomb structure configuration.
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The wall thickness required to resist penetration/spallation is a function of the impact parameters,

structural material properties, and structural configuration [I,3]. For the purposes of this develop-

ment, we assume a single term posynomial (or monornial) relationship given by

_. a| a2 a3 a4 a _ %. ,aT. .^..% al0
t2=/_-lPl tl Pc tc a 9 v (tanto)) P2 (2)

We will see later that this assumption is not particularly restrictive and can be greatly generalized

with equivalent results. Five different problem formulations are considered by substituting equation

(2) into equaiion (i). These formulations involve different combinations of independent variables.

Case (i) considers Ti and t,, as independent variables. Case (ii) also includes the material densities

of the facing sheets and core. Case (iii) is the same as case (ii) but without the second facing sheet

material density as an independent variable. Case (iv) is the same as case (iii) with some dimen-

sional analysis considerations to reduce the number of required estimated parameters. Finally, case

(v) is the same as case (iv) with the second facing sheet material density independent.

III. STRUCTURAL OPTIMIZATION USING GEOMETRIC PROGRAMMING

The five cases are solved by maximizing the corresponding dual problem subject to the

derived linear:constraints. The dual objective function takes the product form as Specified by the

arithmeticCgeometric inequality [4-7]. The linear constraints include normality as well as orthog-

onality constraints. The normality constraint merely specifies that the dual variables sum to 1. This

is a required Condition for tile application of the arithmetic-geometric inequality. The orthogonaiity

conditions specify for each independent variable that the product of the appropriate dual variable

with the independent variable's exponent summed over all of the terms in the primal posynomial be

m
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equal to 0. The main reason for transforming the problem to a dual form is to take advantage of

the linear constraints in a low degree of difficulty problem. Additionally, the dual problem results

in analytic solutions for zero degree of difficulty problems as given here. Finally, geometric

programming provides globally optimal solutions for problems in posynomial form [4-7]. For case

(i), the dual problem is given by

( _ _6,( K,91z+.,Op_d.,9.T_(tan(O)). ' ]_2( pc _
max v(_)

t ,Jt, Jt J '
(3)

subject to

A! _- 0 4

1

(4)

(5)

The solution is given by

a2

a2 + a4 - l

-I

a2 + a4- 1

a4

a2 + a4 - 1

(6)

Since the dual variables must all be positive, we have

a2<O a4_<O (7)

Objective function solution and conversion to the primal variabIes will be deferred until case (v).

For ease (ii), the linear constraints are given by

"0"

0

A2_= 0
0 '

0

1

(8)



where

This systemis inconsistentunless

A2=

r 1

0

1

0

0

1

a2

a4

a,

1 + at0

a 3

1

_

1

0

0

1

1

(9)

(110 = --] (10)

If condition (10) did not hold, then each of the dual variables would be identically zero. This

would contradict the normality condition that the dual variables must sum to I. If condition (10)

holds then

al = ae a3 = a4 , (11)

and (6) again provides the solution for the dual variables.

Case (iii) results in the same solution as case (ii) without requirement (10). in case (iv), the

structural mass per unit areas are normalized by the projectile diameter density product to assure

dimensionless variables and reduce the amount of regression required. The functional relationship is

given by

- K ( pit, "]9( Pctc f'V,_(tan(0)),_p;,O
'=- 'Lpa ) t,pa ) (12)

with the dual problem given by

maxv(8)=(N )

K' Pl2+_'°V'(tan---_(0))_' 1' ( 1 "]g

(p<o'+% ) ts,)
(13)



subjectto

A4_ =

(

(14)

A 4

"I a 2 0"

0 a4 1

1 a 2 0

0 a4 1

1 1 1

(15)

The dual variable solution is again given by (6). Case (v) includes second facing sheet density as

an independent variable. The results are identical to case (iv) with requirement (10) included. The

minimum system mass per unit area for the structure is found by substituting (6) into (13) and is

given by

a 2 -1

Wo=(a2+a_-l]°:*'-'(-K(a2+_al4-1))°2_°'-' (
k, a2

a2 + a4 - 1

a4

a 4

a2 + a4 - 1

(16)

where

_ KlV_(tan(0)) "" (I 7)
K=

(pd)'_ *",

Additionally, the optimal mass per unit areas for the first facing sheet, the second facing sheet, and

the honeycomb core are found by multiplying the minimum system mass per unit area by the

corresponding dual variable. These values are given by

1 -a 4 _| '14

_ ).a2 + a2 - 1 K (a2 + a4 - 1)
Pl.q0 = k, a2 -1 k, a4

(18)



a2 _ a4

1p_t_ = a2 (_-)._*-,--, a2 + a4 - 1 a2 4-a4 - 1
-1 a4

(19)

a2 -I ! -a2

G°t_° = a2 a4 (20)

IV. PARAMETRIC DESIGN TRENDS

This section gives parametric trends for solutions (16) to (20) in terms of the impact system

constant, aw (=a2) and a3 (--a4). Figure 2 shows the optimal mass per unit areas as functions of

the impact system constant for a2 = -0.5 and a 4 = -0.5. The first sheet and honeycomb core

lines are equal and bounded above by the second sheet mass per unit area.

Figure 3 shows the decreasing relationship between minimum system mass per unit area and

an, the honeycomb core mass per unit area exponent. Several curves are shown, corresponding to

different values of a_ (=a2). The case a_ =0 corresponds to a hypothetical structural configuration

without a first sheet material. As the honeycomb core exponent increases, the core is less effective

in terms of penetration resistance, and the structural configuration increasingly becomes a bumper/

wall situation. The crossings of the a_ = -0.75 and a_ = -1.0 lines represent a relative tradeoff

in the utility of the honeycomb core and the penalty imposed by its weight.

Figure 4 (fig. 6) shows the nonmonotonic relationship between optimal first (second) sheet

mass per unit area and a4 for various values of a2. Increases in a4 imply a decreasing role in the

honeycomb core, which requires increases in the first and second sheet mass per unit areas, to a

point. Beyond that point (corresponding to an ---- -0.25), the honeycomb structure becomes increas-

ingly inefficient relative to a bumper/wall configuration. At this point, decreases in first and second

sheet mass per unit areas are in order.
7 .....

Figure 5 shows the sharp decreases in optimal honeycomb core mass per unit area as a

function of a4. Note that the anomalous curve al = 0 is bounded by al = -0.75 and al = -1.0.

Figures 7, 8, and 9 show the relationships of optimal ratios for the first, second, and

honeycomb core materials as a function of a4 for various values of a_. This ratio is defined as the

optimal mass per unit area of the material divided by the minimum system mass per unit area and

is given by the dual variable values given by equation (6). Note that for the first and second

sheets, this ratio is monotonically increasing, while for the honeycomb core, the ratio is monotoni-

cally decreasing.
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V. CONCLUSIONS

Using the geometric programming optimization technique, the following conclusions can be

drawn for a honeycomb-type panel:

1. Optimal ratios are monotonically increasing for the first and second facing sheets and

monotonically decreasing for the honeycomb core.

2. Optimal mass per unit areas are unimodal for the first and second facing sheets and

monotonically decreasing for the honeycomb core.

3. The numerator of the impact system constant is not restricted to equation (17). Any form

for the numerator will result in identical results for the parametric trends given in figures 1 to 8

and equations (16), (18), (19), and (20).

4. The minimum system mass per unit area is an essentially monotonically decreasing func-

tion of honeycomb core mass per unit area exponent.

5. The optimal mass per unit area of the facing sheets, honeycomb core, and system are

monotonically increasing functions of the impact system constant.

In addition to these conclusions, one more point should be made. Geometrical con-

siderations, particularly involving honeycomb cell size and shape, have been purposely omitted to

reduce the number of estimated parameters required for model development. Certainly, equation

(17) can be generalized to include these parameters, provided the impact test database supports this

development. An interesting tradeoff involving cell size, penetration resistance, and cell density

could result.

The conclusions from this study indicate that the geometric programming method can aid

the designer of a honeycomb panel for optimal protection from particle impacts while minimizing

weight. Additionally, an important conclusion is that the geometric programming method of

optimization can be helpful in many fields of design engineering where optimal solutions may

involve tens or hundreds of independent variables and design parameters. These design problems

may be solved with geometric programming more efficiently than with other methods, and result in

globally optimal, rather than locally optimal, solutions.
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