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ABSTRACT

This paper describes an expert system which tunes a Proportional-Integral-Derivative

(PID) controller on-line for a single-input-single-output multiple-lag process with dead

time.

The expert system examines features of the previous transient responses and their

corresponding sets of controller parameters. It determines a new set of controller gains

to obtain a more desirable time response. This technique can be used to determine and

implement a different set of PID gains for each operating regime and, once in steady

state, the system can be used to find optimal parameters for load disturbance rejection.

The expert system can be applied to any system of the specified form (aerospace,

industrial, etc.) and can be expanded to include additional process models.

INTRODUCTION

Proportional-Integral-Derivative, Three-Mode, or Three-Term Controllers are an

extremely popular form of controller. PID controllers or controllers made up of a

subset of the terms (P, PI, PD) are used in most industrial (classical) applications [1]

and, in some form, in many multivariable (modem) applications (for instance, see [2]

or [3]).

The PID controller has no standard form and it can be represented in several ways [4].

For this work, a form common in industrial applications,

(' )Gc(s)= Kc T_s + 1 + Tos (1)

was used. In (1), Kc represents the proportional term, T I is the reset time (reciprocal

of the integral), and To is the rate time or derivative term.

In many circumstances, the ability to tune a controller to meet closed loop time

domain specifications is considered more of an art than a science. In situations where

the controlled system is hard to model accurately or is unmodeled as in many

industrial settings, the tuning might be done by someone with an intuitive feel for the

process and not necessarily a theoretical understanding of it. It is common for each

plant operator to have his own preference for the best type of transient response and



operators will often changeeach other's controller settings from shift to shift. In such
situations, one speaks of the optimal responseas the transient which looks the best to
the operator. The operatorsconsider such features as rise time and overshoot to be the
determining factors in an acceptableresponse. This is strictly a time domain approach.
In industrial applications, the dissatisfaction with controller performance is so high
among plant operators that over 50% of process control loops are run in manual (open
loop) mode [5]. In modem control applications, many of which are optimal designs
using frequency domain techniques, tuning is still a concern even though it is often
described as an iterative design approach (for example, see [6] or [7]). There are still
cases,however, where the classical terminology is applied to modem problems (see for
instance [8] or [9]).

The work described in this paper was inspired by the tuning maps of Doris Wills [10].

Wills' original work addressed the tuning of a PID controller for a 'process described

by

e-T$

H(s) = (2)
(xls+l)(x2s+l)

with xt='t;2=10T. A process with dead time using the appropriate proportional-only

control will respond to a step input with a sustained oscillation [11]. The period of

this oscillation is known as the Ultimate Period, Pu, and Wills used it as a normalizing

factor in her tuning maps. A desired transient response was chosen for each map

based on such features as quarter-decay response [12], critical damping, or minimum

Integral Time Absolute Error (ITAE) [13]. For given values of T_ and To, the

transient of the desired form (quarter-decay response, etc.) along with the value of Kc

which achieved it were plotted in the appropriate region of the To/PwPJT I plane. The

normalization of the axes by Pt_ made them dimensionless and therefore general to a

class of systems of the type in (2). Given a plant which may be approximated by (2),

and its experimentally-determined ultimate period, the PID parameters for the desired

response can be selected directly off the appropriate map.

THE EXPERT SYSTEM

In this work the tuning map idea was extended from specified response curves plotted

in the TdPtr-Pt]Tt plane to response surfaces plotted in the Tt,/Pu-Pu/Tt-Kc space (figure

1). Each set of transients in the figure consists of ten responses with Tt and To fixed

while Kc varies from 1.0 to 19.0 in increments of 2.0. The transient sets are displayed

obliquely with K c increasing from top to bottom. The horizontal axis for each set is

marked in intervals of Pu seconds. The sets of responses are positioned appropriately

in the To/l:'tj-PtjTt plane, presented on a log-log scale.

Tuning rules were extracted directly from this three-dimensional map. These rules,

which are used with a forward-chaining inference engine, tune the PID controller
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Figure 1. Three-dimensional tuning map.

parameters based on the important features of the response. The expert system looks

at the following features: 1) percent overshoot, 2) ratio of the overshoot of the second

peak to that of the first, 3) period of oscillation, 4) rise time, and 5) damping. The

features' names are self-explanatory except for damping which has a nonstandard
definition of the form

P2-VI

damping -
P1-VI

where P_ is the overshoot of the first peak of the step response, 1'2 is the overshoot of

the second peak, and V_ is the undershoot of the first valley. The damping is larger if

the response is highly oscillatory and smaller if the response settles quickly. This is

the opposite of the usual definition but similar to the definitions used in [14] and [15].

The process model used here is of the form in (2) with "r_=x2=10 and T=I.
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Looking at the map in figure 1, one can infer general rules about how the changesin
the controller parametersaffect the features of the response. The observations are as
follows:

lo

2.

3.

4.

5.

6.

7.

8.

9.

10.

Increasing Kc

Increasing Kc

Increasmg Kc

Increasing Kc

Decreasing T 1

Decreasing T_

decreases

increases

decreases

increases

increases

increases

period and vice versa.
overshoot and vice versa.

rise time and vice versa.

damping and vice versa.
overshoot ratio and vice versa.

damping and vice versa.

Decreasing TI decreases stability and vice versa.

Increasing TI decreases overshoot and vice versa.

Increasing TD increases stability and vice versa.

Increasmg TD decreases rise time and vice versa.

The inputs to the expert system are 1) a desired numeric value for each of the features

(for instance, desired overshoot is 10%, desired damping is 0.5, etc.), 2) a numeric

weight for each feature indicating relative importance to the user, 3) maximum

acceptable overshoot, and 4) initial PID values. Each transient is given a n_meric

score which is the sum of the normalized error in each feature multiplied by the

feature's respective weight as introduced in [16]. The normalized error, he, is

computed as

I actual feature value - desired feature value I
ne = (3)

desired feature value

Thus, the error in each feature is scaled so an error of +100% has a value of 1.0

independent of units.

Based on the errors in the features, the expert system determines which way the tuning

parameters must be altered. Since there will almost always be a conflict with respect

to the direction of parameter adjustment when tuning to attain several desired features

at once, the PID terms are modified in the direction which will have the most impact.

To determine which direction this is, the score for each feature is multiplied by +1

or -1 to indicate an increase or decrease in the value of the particular tuning term.

The signed scores associated with each controller term are then added and the sign of

the sum determines the direction of change for that term. In the situations where more

than one tuning parameter affects a feature, the feature's entire weighted error is

assigned to the term which, in order of importance, will
1. Reduce overshoot if overshoot is close to or above the maximum allowed.

2. Have the smallest impact on other features.

3. Improve stability.

Once the direction of adjustment for each term is inferred, the change is implemented.
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A fibonacci sequence is used to determine the amount of change. A fibonacci
sequence is an ordered set of numbers defined recursively as f(n)=f(n-1)+f(n-2) for
n__.>3.An example is {f(n)}={ 1, 1, 2, 3, 5, 8, 13, ...}. The amount of change in each
controller parameter is the reciprocal of f(n) times the value of the term times the sign
of the sum of weighted errors associatedwith that controller parameter. The general
equation for updating a term is

I 1 ))term(n) = term(n-l) 1 + _ sgn _--I_s_w_nel (4)

-1 x<0where sgn(x)= 0 x = 0
1 x >0

R is the number of features assigned to the particular term, sl is the sign of the

weighted error for the ith feature determined by the expert system, wl is the weight

assigned by the user to the ith feature, and ne_ is the normalized error of the feature

defined in (3). Each of the three terms uses its own fibonacci sequence so, since all

three tuning parameters might not be updated on each iteration, the value of n in (4)

can be different for each term. This technique of adjusting the controller gains will

never allow the values to become negative and will cause the values to converge after
a finite number of trials.

The feature values and weighted errors, total score, and PID parameters for each

response are stored in a frame [17]. A frame is a data structure which consists of

slots, facets, and values. Each frame represents one transient and the slots it contains

each represent an important piece of information about the transient such as a feature.

Each slot has associated facets which contain the name of a specific piece of

information describing the slot and a value corresponding the it. Figure 2 shows a

frame with all of the slots, facets, and values filled.

The transient which receives the lowest score is considered the best by the expert

system. This information is not used until the controller terms have converged,

however. Since the expert system is emulating a human tuner, it bases its adjustments

on differences between the most recent achieved response and the desired response.

The justification for this strategy is that the rules contain the information needed to

achieve a minimum score and they will find it after enough iterations. Thus, it is

possible that tuning may actually cause a higher score from one transient to the next

by making too large a change and overshooting the optimal set of parameters in the

(Ko Ti, TD) space, for instance. Since the step size is successively reduced, the rules

should cause the score to approach a minimum in the long run. If the change in the

value of each PID gain is small compared to the respective gain's total value and the
score is relatively constant, the expert system will invoke rules which consider the total



TRANSIENT#0001

percent
overshoot

value 16.38

weighted error 5.43

period

overshoot
ratio

value 0.086
damping

weighted error 16.56

value 1.87
dse time

weighted error 0.63

value 8.31

weighted error 2.92
value -0.118

weighted error 29.43

total score value 54.97

Kc value 20.0

T, value 50.0

TD value 4.0

Figure 2. Example of a frame used to store transient data.

score of the transient. Once the values of the parameters and the score have

converged, if the overshoot error of the most recent response is significantly above the

desired value and it is weighed heavily in the scoring, a rule is fired which decreases

Ko increases TI, and resets the fibonacci sequences to the beginning. If the overshoot

error is not large enough to trigger this rule, the parameters are set to those of the

lowest-scoring transient and the tuning process terminates.

EXAMPLE

The open-loop system used in the example was of the type in (2) with x,=x_=10.0

seconds and the dead time approximated by a first order lag with a time constant of
1.0 second. Euler integration with a time step of 0.01 seconds was used to evolve the

system through time. These two approximations (a lag to represent dead time and

numerical integration) introduce small differences between the simulation and the ideal

system in (2) which help verify the robustness of the rules. In the example, a quarter-

decay response was desired. Thus the desired feature values and their weights were
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Figure 3a. First 25 step responsesfrom example.

Figure 3b. 26th through 52nd step responsefrom example.
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specified as in Table I with a maximum overshoot value of 45% allowed.

FEATURE DESIRED VALUE WEIGHT

percent overshoot 20 30.0
overshoot ratio 0.25 20.0

period 20.0 seconds 5.0
rise time 5.0 seconds 1.0

damping 0.5 20.0

Table I

It can be seen from the weights associated with rise time and period that these features

were not considered significant in the quality of the response. The initial controller

values were given as Kc=20.0, TI=50.0, TD=4.0. Table II lists the transients

chronologically along with their respective PID parameters, feature values, and score.

Figures 3a and 3b show all of the step responses listed in Table II with transient

number increasing as the starting points move from upper left to lower right.

The first ten transients were the result of the standard tuning rules applied to the errors

in the features. The parameters converged with the score hovering around 41. At that

point, the large error in the overshoot prompted the expert system to take more drastic

action by significantly decreasing Kc and increasing Tx.

The score of the eleventh response was much lower than those of the previous

transients, about 33. Percent overshoot and damping were fairly close to desired but

there was a large error in overshoot ratio. This was the major contributor to the score.

Unfortunately, damping and overshoot ratio, which were both too small, were working

against percent overshoot, which was too big. In an attempt to fix the three errors

simultaneously, the expert system slowly decreased both Kc and TI. This resulted in

the score rising, however, because percent overshoot increased even more. After nine

more transients, when the parameters converged, the score had risen to almost 45.

Since percent overshoot was quite high again, Kc was decreased and T I was increased

again.

Even though the twenty-first response was very different from the previous few, by

coincidence the score was still about 45. This time, however, the three main features

were all too small. Based on this, the expert system was able to tune so that the

scores for the twenty-second through the twenty-ninth response went down slowly to a

low of about 39. The damping and overshoot were almost exactly the values desired

but percent overshoot was very high so Kc and Tt were respectively decreased and

increased again.

The thirtieth step response had a very high score, over 68. The overshoot error was

small but there was no second peak so damping and overshoot ratio were both zero,

and period was given its maximum value, 100.00, which contributed 20 points to the



Transient
Number

.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

I%

20.00
13.33
16.00
14.00
12.92
12.31
11.95
11.73
11.60
11.52
7.64
5.10
4.08
3.57
3.29
3.14
3.04
2.99
2.96
2.93
1.95
2.60
2.08
1.82
1.96
1.86
1.81
1.78
1.80
1.19
1.59
1.90
1.67
1.54
1.61
1.56
1.53
1.52
1.02
1.36
1.63
1.83
1.97
2.07
2.13
2.17
2.19
2.21
1.53
1.53
1.53

1.53

T!

50.00
33.33
26.67
23.33
21.54
20.51
19.91
19.55
19.33
19.19
25.48
16.99
13.59
11.89
10.98
10.45
10.15
9.96
9.85
9.78

12.99
8.66
6.93
6.06
6.53
6.22
6.03
5.92
5.99
7.93
5.29
6.34
5.55
5.12
5.37
5.21
5.12
5.06
6.79
4.53
5.43
4.75
4.39
4.18
4.06
3.98
3.94
3.91
5.12
5.12
5.12
5.12

T D

4.00
2.67
2.13
1.87
1.72
1.64
1.59
1.56
1.55
1.54
1.53
1.02
1.22
1.38
1.48
1.55
1.60
1.63
1.65
1.66
1.66
2.22
2.66
3.00
3.23
3.38
3.48
3.54
3.58
3.61
4.81
5.77
6.49
6.99
7.32
7.54
7.68
7.76
7.82

10.42
12.51
14.07
15.15
15.87
16.34
16.64
16.82
16.94

7.68
7.68
7.68
7.68

Percent
Overshoot

16.38
17.89
27.15
30.28
32.33
33.63
34.45
34.95
35.26
35.45
25.11
31.91
31.57
32.28
33.02
33.57
33.95
34.19
34.35
34.45
17.37
33.78
38.98
42.38
38.06
39.23
39.95
40.40
39.72
24.37
39.44
28.22
31.35
33.18
30.32
30.96
31.35
31.59
21.78
30.10
20.52
20.45
19.98
19.53
19.21
19.00
18.86
18.77
31.35
31.35
31.35
31.35

Damping

0.09
0.00
0.22
0.27
0.30
0.32
0.33
0.34
0.34
0.35
0.31
0.36
0.32
0.31
0.32
0.33
0.33
0.34
0.34
0.34
0.17
0.35
0.45
0.51
0.46
0.48
0.50
0.51
0.50
0.00
0.53
0.41
0.47
0.51
0.48
0.49
0.50
0.50
0.00
0.53
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.50
0.50
0.50
0.50

Table II

Rise
Time

1.87
3.07
2.82
3.17
3.38
3.50
3.57
3.62
3.65
3.66
4.93
6.19
7.01
7.52
7.83
8.03
8.14
8.21
8.25
8.28

12.07
8.91
9.70

10.15
10.08
10.25
10.35
10.42
10.41
15.34
11.09
11,02
11.54
11.82
11.84
11.95
12.02
12.07
18.25
12.93
13.48
11.91
11.01
10.48
10.15
9.96
9.84
9.77

12.02
12.02
12.02
12.02

Period

8.31
100.00

16.00
17.43
18.27
18.79
19.11
19.31
19.43
19.50
24.29
29.86
34.48
37.69
39.67
40.86
41.56
41.99
42.24
42.40
55.37
46.23
49.41
50.83
51.18
51.68
51.96
52.13
52.22

100.00
54.79
58.02
58.59
58.94
60.04
60.17
60.24
60.29

100.00
63.56

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

6O.24
6O.24
60.24
60.24

Overshoot
Ratio

-0.12
0.00
0.00
0.05
0.07
0.09
0.09
0.10
0.10
0.11
0.04
0.12
0.10
0.10
0.10
0.11
0.11
0.11
0.12
0.12
0.03
0.12
0.20
0.26
0.21
0.23
0.25
0.26
0.25
0.00
0.29
0.17
0.22
0.26
0.23
0.24
0.25
0.25
0.00
0.28
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.25
0.25
0.25
0.25

Score

54.97
63.56
43.17
41.88
41.43
41.28
41.24
41.22
41.22
41.23
33.19
36.99
40.54
42.84
43.93
44.43
44.66
44.78
44.84
44.87
44.98
43.87
42.32
44.09
40.36
39.65
39.18
40.54
38.85
68.62
43.25
33.25
31.32
31.74
29.50
29.00
28.68
29.26
65.33
31.40
62.48
62.06
61.24
61.79
62.21
62.50
62.68
62.80
28.68
28.68
28.68
28.68
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score. The expert system immediately went to work on making the response more

oscillatory. Over the next eight transients, the damping and overshoot ratio values

were returned to their desired levels while overshoot was kept to about 31%. The
score achieved was just below 29.

Since the overshoot error was still too large, Kc and T_ were adjusted again and the

thirty-ninth response had no second peak and a score of about 65. The tuning process
produced a score of about 31 for the fortieth transient but the excessive overshoot

caused the parameters to be adjusted such that again there was no second peak. The

result was scores in the neighborhood of 62 for the forty-first through forty-eighth
transients even though their overshoot was very close to the desired value. Once the

parameters converged, the tuning stopped because the error in overshoot was small.

Since the thirty-seventh response had produced the lowest score, less than 29, those

PID parameters became the permanent ones and were used for the remaining transients.

CONCLUSIONS

The expert PID tuner is able to emulate a human PID tuner using strictly a classical,

time domain approach. It works well for the examples tried including the example

presented here although it may take many transients to converge. The rules are

purposely vague enough that they do not fully model every nuance of the tuning map.

This allows the rules to work reasonably well with systems similar to but not exactly

of the form used to develop the map. In this way the expert system has wider
applicability and is thus more useful.

In this heuristic approach to tuning, there is no guarantee that the parameters will

converge such that the score is a global minimum. The tuning can be only as good as

the rules and knowledge about the system being controlled. The expert system would

benefit from the addition of rules for taking the parameters out of the area of a local

minimum if it suspected that one was found. This does not imply that a more

complete mapping of the (Kc, %, TD) space is required, rather it points out that the
current stopping criterion is too superficial.

FUTURE WORK

Fuzzy algorithms [18] are not used here but controller tuning is an excellent

application for them. The convergence of the tuning parameters could be speeded up

significantly if rules were included which determine how much to adjust the value of a
term based on the magnitude of the error in the feature.

An on-line transient stability check such as in [19] or [20] is also an extremely

important addition. Were the expert tuner to be implemented on a real process, even

though the tuning is done so as to improve stability whenever possible, an on-line

stability monitor is an invaluable safety feature.
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One reason that plant operators find dissatisfaction with closed-loop control is that on

their highly nonlinear processes, a set of PID gains, optimal in one operating range,

produces an unacceptable response in another. This expert system can be easily

extended to find different sets of PID gains for different operating regimes. The only

change required is that all transient data must be grouped according to operating region

so that there will be many small groups of frames rather than one large one. As long

as the rules, which are general to begin with, are fairly accurate over the whole

operating range, the only time the grouping would even come into play is when the

lowest-scoring transient for a particular region is required. This is essentially the idea

behind gain scheduling in many modem applications.

Once a process is in steady state, closed loop control is used to provide disturbance

rejection. Tuning maps have been developed for this application [21]. The procedure

used to determine the rules for this expert system could be easily utilized to find rules

for tuning PID controllers to handle loads.

The normalization of the error, although intended as an equalizing device, can cause

problems in certain cases. If a 1% overshoot is requested and 2% is attained, the

score for the error is the same as in the case where a 20% overshoot is requested and

a 40% overshoot results. It is unlikely that a 100% error in the first case would be

considered significant. This sensitivity issue should be addressed.

The reciprocated fibonacci sequence which was used to adjust the controller parameters

was chosen arbitrarily because it is a convenient, convergent sequence. It is not the

only sequence that could have been used. The implication of using a sequence of this

kind, however, is that it causes the PID parameters to converge after a certain number

of iterations rather that at a point of minimum score for the transient. Often the two

correspond but sometimes they do not, witness the example. The results might be

improved if the step size were decreased based on the change in the score, as in a

gradient algorithm.
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