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Abstract

In a Sikivie-type cosmic-axion detector, both the width and position of the microwave

signal due to axion-photon conversion depend upon the motions of the earth. Due to

the orbital and rotational motions of the earth they will be modulated with periods of

1 sidereal day and 1 sidereal year,, with amplitudes of about 0.1% and 5% respectively.

Because of the intrinsically-high energy resolution of Sikivie-type detectors such periodic

variations should be detectable. Such modulations would not only aid in confirming the

detection of cosmic axions, but, if found, would also provide important information about

the distribution of axions in the halo.
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The axion is a very attractive dark-matter candidate. Moreover:, at present here are

several ongoing experiments 1 to detect cosmic axions in our halo by the process proposed

by Sikivie: 2 Resonant conversion of axions into microwave photons in the presence of a

strong magnetic field. In addition, a second generation experiment that is abdut 300 times

more sensitive is being planned. 3 The characteristic energy of the photons produced in a"

Sikivie detector is E. r = mac 2 + mafJ2/2 where m= is the axion mass and _ is the velocity

dispersion of axions in the halo (we will be much more precise later). For closure density,

rn= is expected to be in the range 10 -6 eV to 10 -4 eV (Refs. 4); the velocity dispersion of

our halo is about 300 km sec -_ __ 10:3c, so that m,_2/2 ,'., 10-_rn_. The frequency of the

axion microwave line is 2.4 GHz(rn=/10-SeV), while the width corresponds to a frequency

of about (m=/10-SeV)kHz. Because resonant-cavity experiments have very good energy

resolution--Q's in excess of 10S--both the position and the shape of the microwave line

are potentially observable.

Since the earth is in motion with respect to the halo--its motion as part of the solar

system, its orbital motion, and its rotational motion--the position and width of the mi-

crowave line expected from axion-photon conversion will depend upon these velocities and

will be periodically modulated. (We will neglect the very small motion of the earth about

the earth-moon barycenter, v _ 1.3 x 10 -2 km sec -1 and period 27.32 sidereal days.) The

periodic modulations due to the earth's orbital and rotational motions may prove crucial in

confirming the detection of cosmic axions and, if detected, in determining the distribution

of axions in the halo.

It is usually assumed that the distribution of matter in the halo can be described

by an isothermal phase-space distribution in the rest frame of the galaxy--not so much

because of any hard evidence, rather for simplicity and the lack of a more compelling

mode!. In fact, there is essentially no evidence to preclude the possibility that the halo is

rotating with respect to the galaxy. In any case, such a phase-space distribution is a very

reasonable starting point and will serve to illustrate the periodic effects of interest. In the

non-rotating, inertial rest frame of the galaxy (in astrophysical parlance, the Fundamental

Standard of Rest) the local phase-space distribution of axions is given by

fd3v = no exp(-t_v2)d3v, (1)

where no --- 3 x 1013 cm-3/(rna/lO -5 eV) is the local number density of axions (to within a

factor of about 2; see Turner in Ref. 4) and h = ks = c = 1 throughout. In all that follows

we will ignore the factor of no, so that f fd3v = 1; we will also be cavalier in not relabeling

the distribution function f when we change its argument. The quantity/_ corresponds to
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=rna/2T where T is the "halo temperature" and dete_nes the velocity dispersion of the

halo. It is very simple to carry out the angular integrations and write the distribution in

its familiar Maxwellian form:

. 3/_ "

fdv = 4r (_) v2 exp(-/3v2)dv. (2)

From this expression one can compute {v2} and {v4}:

3 -1(v 2) - v2 f d3 v = -_/3 15 ;__2(v 4} = v4fd3v = T,_ ;

based upon the dynamics of our galaxy 5 fi = (v2} a/2 has been determined to be about

270 km sec -1, which implies that/3 = 1.5_ -_ _ (220kmsec-1) -2. The uncertainty in the

quantity/3 is probably 10% or so.

(Because the galaxy has an escape velocity, thought to be about 650 km sec -1, the

axion distribution should be truncated at this velocity. For our purposes this fact is not

significant. In addition, Griest 6 has pointed out that owing to the gravitational effects of

the sun there is a minimum axion velocity, the escape velocity from the solar system, locally

about 42 km see -1, and a small additional modulation--due to focusing by the sun--that

is orthogonal to the one discussed here. We will also ignore the small gravitational effects

of the sun.)

The earth is not at rest with respect to the galaxy; its velocity can be written as

VE =VS+VO+VR_

where vs is the velocity of the sun with respect to the galaxy, vo is the orbital velocity of

the earth around the sun, and vR is the rotational velocity of the position on earth where

the axion detector is. To orient one, the velocity of the sun has a magnitude of about

230 km sec -a and is in a direction that is about a -- 60 ° above (north of) the ecliptic

(plane of the earth's orbit); when projected down onto the ecliptic, it intersects the earth's

orbit at a point that is about 19 days before the autumnal equinox, i.e., near the earth's

position on 4 September. (The uncertainties in these numbers correspond to a few days, a

few degrees and about 20 km sec-1; see Refs. 5) The angle between vs and the equatorial

plane is about ¢ = 47 °, and at local midnight, 19 days before the summer solstice (2 June)

the projection of vs onto the equatorial plane and vR are parallel. The magnitude of the

earth's mean orbital velocity is vo "_ 29.8 km sec -1, while that of its rotational velocity at

the equator is vR = 0.465km sec -1. Of course at latitude l, the rotational speed is smaller

by a factor of cos I.
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What is of interest to the experimenter on earth are the velocities of halo axions with

respect to the experiment. Let v be the velocity of an axion in the galactic rest frame,

then its velocity with respect to the experiment is

Va = V--VE.

In the earth frame, the phase-space distribution of axions is given by

f d3v, = exp(-flv_)dSv=, (3a)

fdv. = 2 v--_texp(-flv_ - _V2E)sinh(2_vEv,)dv=, (3b)
VE

2 v 2 2VE v + v_, and Eq. (3b) follows from Eq. (3a) by carryingwhere of course v a - - •

out the angular integrations. The square of the earth's velocity is

= (vs + vo + vn)2,

v_ __ v2s l + 2 V° f;o . fis + 2-fin . fJs , (4b)
vS VS

where in Eq. (4b) we have dropped all terms that are quadratic in vo and VR since

vo _-- 0.13vs and vR _ 0.002vs. (Formally, the v_ term is larger than the term involving

vSvn; however, we are interested only in the periodic terms, and v_ is constant. If one

wishes to, it is straightforward to retain all the terms in v_:.)

It is of some use to rewrite the distribution function in terms of the axion kinetic

energy, E = rn=v_/2:

fdE = 2 _ exp(-Zv_- 2j3E/m,)sinh[2Z(2E/rna)l/2VE]; (5a)
rlXa V E

fdu - d..___uexp[_l.5(r 2 -t- u)] sin.h(3r v/-_); (5b)
r

where r - vs/_ -_ 0.85 and the kinetic energy of the axion E = (m,fi2/2)u, which

corresponds to a frequency of 980 Hz(m,/lO-SeV)u. The distribution function for VE = O,

i.e., that in the rest frame of the galaxy, as well as those for 2 June (rE is maximum) and

for 2 December (rE is _nimum) are shown in Fig. 1. The large effect of the motion of the

solar system on the distribution function is apparent, as is the smaller effect of the earth's

orbital motion (no attempt was made to show the even smaller effect of the rotational

motion of the earth).



From the distribution function we may comput_-Kfiy and all quantities of interest.

Moreover, we canuse the distribution function in any of its forms, cf. Eqs. (1), (2), (3a),

(3b), and (5). It will be most convenientto use the distribution function in the rest frame
of the galaxy, Eq. (2). Rememberingthat v,2 = v 2 - 2v. vE + v_ it is simple to compute

t) 2( a/ and (v 4) (and higher moments if wanted)i

f 3 __ _2(v_) = v_f d3v = V2E + _fl = v2E + ;

] 2,[4-nv} 5+ 1+ •<(_- (_))_>= _n _+ 3 = _ j'

(6a)

(6b)

(6c)

Substituting in numbers, and for the moment neglecting the small contributions of the

orbital and rotational velocities to rE, we find that

va - (v2) 112 _- 355km sec-1,

t,,]i, - ((v_ - (v_))2) '/2 __ (305kmsec-') 2,

,-.:+:_/2 _:,.,_./2 ]
mac 2 _ 7x 10 -7 ' m,c 2 -- 1.9x106.

Note that because of the motion of the solar system relative to the galaxy the rm, velocity

of axions as seen on earth is about 355 km sec -1, compared to about 270 km sec -1 as

seen in the galactic rest frame. Since the energy of the axion-microwave line is about rna c2

and its width is m,v2di,/2, the final expression corresponds to 1/Qa--the axion line is very

narrow indeed.

Now consider the average axion kinetic energy (E_ = m_2a/2) and the dispersion in

the axion kinetic energy (AEa = mav2di,/2), taking into account the orbital and rotational

motions of the earth:

[ v. )]Ro-- rn_v2(l+r 2) 1+ cosacoswot+--coslcos¢coswRt ," (7a)
2 1 + r 2 vs

AEa- rn'v2 [2(1+ 2r2)] 1/223

4r 2 vo vR cos I cos ¢ cos _oRt ; (7b)
x 1 + 1 + 2r----------_ cos a cos wot + vs

where wo - 2rr/sidereal year = 1.991 x 10 .7 rad see -1 is the earth's orbital angular velocity,

a_R - 27r/sidereal day = 7.292 x 10 -s rad sec -1 is the earth's rotational angular velocity,
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and time t is measured from local midnight on 2 June. The prefactors in expressions (7a,b),

expressed as frequencies, are: ma_2(1 + r2)/2 __ 1.70kHz(ma/10-%V) and ma_212(1 +

2r2)/311/2/2 _ 1.25 kSz(m,/10-%V).

The (relative) amplitude of the sinusoidal variation of/_, is: 2r2(vo/vs)cos a/(1 +

r 2) _'2 5.5% (orbital) and 2r2(vn/vs)cos/cos _b/(1 + r 2) _'2 0.093% (rotational for a lat-

itude of 37.5°). The periods are 1 sidereal year (3.1558 x 107 sec) and 1 sidereal day

(86,164.091 sec) respectively. The (relative) amplitude of the sinusoidal variation of ZXEa is:

2r2(vo/vs)cosa/(1 + 2r 2) "_ 3.9% (orbital) and 2r2(vn/vS)cosd;cosl/(1 + 2r 2) _'2 0.066%

(rotational for a latitude of 37.5°). The maxima of the orbital variations occur about 19

days before the summer solstice (2 June) and the minimum about 19 days before the winter

solstice (2 December).

(Because the earth's orbit is not circular, orbital eccentricity e = 0.016750, there are

higher harmonics in the moduations of E, and AE_, proportional to e N-1 cos Nwot. To

order e, the orbital velocity of the earth is vo = awo[-(sinwot + e sin 2wot)i + (cos wot +

ecos2wot)_'], where a = 1AU = 1.496 x 1013 cm is the semi-major axis of the earth's

orbit, time is measured from perihelion (approximately 3 January), and at perihelion the

earth is located on the positive x-axis. 7 The sinusoidal variation of E, at frequency 2wo is

2er2(vo/vs) cos a cos 2_ot'/(1 + r 2) and that of AEa is 2er2(vo/vs) cos a cos 2wot'/(1 +

2r2); each smaller than that at frequency wo by a factor of e __ 0.017. Here time t' is

measured since 20 March.)

Note that the amplitudes of the periodic variations of/_. and AEa depend upon the

astronomical parameters vo/Vs, vn/vs, _, ¢, l, and r = vs/_. Moreover, the functional

dependences of the modulation factors for E_ and AE, are different. Thus, if these effects

are measured, they will prove extremely useful in probing the distribution of axions in

the halo. For example, the periodic orbital variations of E_ and AE, differ by a factor

of (1 + 2r2)/(1 + r2), a fact which could be used to infer _ and therefore ft. In addition,

the phases of the modulations can be used to infer the direction of the sun's velocity, as

projected onto the ecliptic.

The importance of the yearly modulation due to the earth's orbital motion in bolo-

metric dark matter detection experiments has been previously emphasized. 8 There, the

modulation is typically expected to be of order 10% and is crucial to identifying the

signal--in that case energy-deposition rate---as being due to dark matter interactions in

the detector. Whether such detectors can achieve the required sensitivity and energy reso-

lution to observe periodic varitations remains to be seen. While the yearly modulations in

an axion detector are slightly smaller, owing to the excellent intrinsic energy resolution of
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Sikivie-type detectors these variatibns should be easily detectable, and can be used both

to confirm that the signal is associated with cosmic axions and to probe the halo distribu-

tion of axions. 9 It may even be possible to detect the daily variations due to the earth's

rotation.

This work was supported in part by the DOE through grant FG02 90ER40560 at

Chicago.
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FIGURE CAPTION

Fig. 1. Local phase-space distribution function df/du for cosmic axions. The axion kinetic

energy Ea = u(ma_2/2), which corresponds to a frequency of 980u(m,,/lO-SeV)Hz.

The distribution function in the rest frame of the galaxy (tallest and narrowest), in

the laboratory frame in June (shortest mad broadest), and in the laboratory frame in

December are shown.
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