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ABSTRACT 

The effect of suction on controlling the three-dimensional secondary insta-

bility is investigated for a boundary layer with pressure gradient in the pres-

ence of small but finite amplitude Tollmien-Schlichting wave. The focus is on 

principal parametric resonance responsible for strong growth of subharmonics 

in low disturbance environment. Calculations are presented for the effect of 

suction on the onset and amplification of the secondary instability in Blasius 

and Falkner-Skan flows, as well as its effect on controlling the production of 

the vortical structure. 
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1. INTRODUCTION 

Laminarization of the flow by suction, and subsequent viscous drag reduction, is the prin

cipal and most effective means used for laminar flow control (LFC) [1]. Excessive suction 

increases suction drag and reduces the overall efficiency of an aircraft with LFC. Moreover, 

the over-thinned boundary layer is over-sensitive to surface irregularities. Hence, it is neces

sary to keep the boundary layer laminar with the least possible suction. For this purpose, the 

stability characteristics of the flow need to be accurately calculated, and the laminar-turbulent 

transition process must be well understood. Moreover, the effect of suction control on some of 

the early stages to transition need to be assessed. 

The nonlinear process of the flow once initiated becomes violent and lead rapidly to tran-

sition, and it is then extremely difficult to control the flow field. Hence, suction control in 

LFC systems is preferred to be in the linear range. For these systems to be efficient, some dis-

turbance growth should be allowed, and linear primary stability theory in conjunction with the 

e" method were relied on for such predictions [2]. A linear growth of a primary two

dimensional (20) Tollmien-Schlichting (TS) wave may parametrically excite a linear secondary 

growth with three-dimensional (3~) character. This secondary instability may not lead to tran

sition by itself, but a~ it grows, it interacts with both the mean flow and the TS wave leading 

rapidly to transition. The effect of suction on the primary TS wave is well established and 

known to be drastic [3]. While, in this paper, we are concerned with the effect of suction on 

controlling the onset and growth of the secondary 3D instability. 
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Following the growth of the primary 2D wave, the flow takes on an increasingly three

dimensional (3D) behavior [4] with explosive growth rates. In this early stage of transition, 

the 3D phenomenon is characterized by a strong secondary instability with respect to 3D dis

turbances in the presence of small but finite amplitude primary 2D waves [5,6]. Primary 3D 

disturbances might be stable or very slowly growing in the absence of the 2D waves. This 

secondary instability has been recognized experimentally (Refs. 7-12) and observed numerically 

(Refs. 13-18) in the uncontrolled boundary layer (Refs. 7-15) as well as the controlled boun

dary layer (Refs. 16-18). 

Two major types of breakdown have been identified, a fundamental breakdown (K-type) 

and a subharmonic breakdown (HIe-type). The experiments indicate that the subharmonic 

breakdown occurs when the amplitude of the primary TS wave is low or moderate, while the 

fundamental breakdown occurs for higher amplitudes. However, one type or a mixture of both 

will appear depending largely on the spectrum of the background disturbances [19]. The linear 

secondary instability theory formulated by Herbert [20] can predict the increasingly 3D 

behavior with large growth rates that occur in both the fundamental and subharmonic types of 

breakdown, while Craik's resonant triad model [21] predicts an instability of the subharmonic 

type. Craik's mechanism (referred to as C-type) is thought to dominate at low amplitude of 

the TS wave, while Herbert's subharmonic mechanism (referred to as H-type) reflects the situa

tion at moderate amplitudes of the TS wave. A recent review on the subject of secondary ins

tability has been provided by Herbert [22] and Bayly et al. [23]. 

The 3D subharmonic instability which characterizes the road to transition initiated from a 

low disturbance background appears to be more realistic in flight applications. Hence, in this 

paper we investigate the development of the subharmonic secondary instability in a boundary 

layer with pressure gradients controlled by suction. Our objective is to evaluate the effect of 

suction control on this early stage leading to transition. Several questions need to be answered, 

Does suction delay the onset of the secondary instability? How sensitive is the growth of the 

secondary instability to the intensity of suction? What is the effect of the initial amplitude of 
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the primary wave on this sensitivity? Does the effectiveness of suction as a method for delay-

ing transition depend on where it is applied, or on its intensity? Finally, if the boundary layer 

would be kept laminar with the least possible suction, then should one allow for a limited 

growth of the secondary disturbance, or should one increase suction to fully stabilize the secon

dary disturbance? The focus of this paper is to answer these questions as well as to shed 

some light on the mechanism by which the suction control the production of the vortical struc

ture of the secondary instability. 

2. ANALYSIS 

2.1. The Mean Flow 

We consider a 2D boundary-layer flow of an incompressible fluid with inviscid flow field 

given by U=U(x) and distributed suction given by v=vw(x) at the wall, where x is the stream

wise direction and y is the normal direction. The flow is governed by the non similar 

boundary-layer equation 

(1) 

with boundary conditions 

(2) 

given in the Gortler variables 

(3) 

Then the velocity components u and v in terms of the new variables are 

u=U.J Tl (4) 

(5) 

where the suction and pressure gradient functions r and ~ respectively are defined as 

(6) 

-. --~ 
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(7) 

Note that negative r indicates suction, while negative ~ indicates unfavorable pressure gra

dient. If both the suction and pressure gradient functions are constant (equal to ro and ~o 

respectively), then f (~,Tl) is a function of Tl only and we have a similar boundary-layer profile 

governed by 

fTiTiTi+ffT]ll+~o(1-f~)-rafTiTi == 0 

f (0) = f Ti(O) = 0, f Ti~l asTl~oo 

(8) 

(9) 

where the condition ro==constant demands that Vw be proportional to UelffE:,. On a flat plate, Vw is 

proportional to 1I1X . 

2.2. The Primary Instability 

We consider the primary instability of the calculated mean flow with respect to 2D quasi

parallel spatially growing TS ~aves . Dimensionless quantities are introduced to the governing 

incompressible Navier-Stokes equations by using the reference velocity U. and the reference 

length L==(v.xlU.)1/2 so that Reynolds number is given by R==(U.xIVe )1/2 where x measures the 

distance from the leading edge, and v is the fluid kinematic viscosity. The primary TS wave is 

assumed to take the traveling form 

q(X,y,t)==A[ql(Y) exp(i JUrdx-ioot)+cc. ] + o (A 2) (10) 

where 

A == A (x) == Ao expC-JUi dx), (11) 

and q 1 stands for the velocities uland v 1> and the pressure PI of the primary wave, and cc 

denotes complex conjugate. The spatial stability analysis is chosen for being more appropriate 

for this study. Hence, the wavenumber is complex and given by a;=Ur+iUi and the disturbance 

frequency 00 is real. The linearized incompressible Navier-Stokes equations reduce to a 

fourth-order system of ordinary differential equations with homogeneous boundary conditions 
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in U I and VI' These equations may be combined to yield the well known Orr-Sommerfeld 

equation. The eigensolutions of the primary wave are normalized such that the amplitude A 

measures directly the maximum root mean square value of the disturbance velocity in the flow 

direction. For the purpose of comparison we follow Herbert [20] and let 

max2[u 1(Y )]2 = 1 
OSySoo 

(12) 

The linear stability theory of the primary wave provides a for a given (J) and R. Then the 

integration of the growth rate -aj gives the amplification factor in (A/Ao), where Ao is an arbi

trary initial amplitude at the onset of the primary instability. 

2.3. The Secondary Instability 

We consider a basic state q (x ,Y ,f) which consists of a 2D quasi-parallel boundary layer 

with pressure gradient and suction modulated by a periodic component of the linear primary 

instability problem, 

q (x ,Y ,f) = q o(x ,y)+A q 1 (x ,y ,f) (13) 

To study the linear 3D instability of the basic state q (x ,y ,f), we superpose a small 

unsteady disturbance on each flow quantity of the basic state, that is 

q (x ,y ,Z ,f) = q (x ,y ,f) + B q 2(X ,y ,Z ,f) (14) 

where q2 is a secondary disturbance eigenfunction that stands for velocities U2, V2, W2, and pres

sure P2, they are normalized ' such that the amplitude B measures the maximum root mean 

square value of Uz. The amplitude B is assumed small compared to the primary amplitude A, 

such that the primary' instability will influence the secondary instability but not vice versa. 

Herbert [22] has pointed out that the 3D secondary instability occurs at small amplitudes 

of the primary wave where the nonlinear distortion is weak. This instability is of vortical 

nature and originates from a strong mechanism of combined tilting and stretching of the vor

tices [5], leading to large growth rates when compared with those for the primary wave. In 
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view of that. we neglect in this analysis the nonlinear distortion of the eigensolutions ql at 

finite amplitude of the primary wave. Also, the growth of the primary TS wave which occurs 

on viscous scales can be considered weak, and the variation of the primary amplitude A can be 

assumed locally constant. 

Equation (14) is substituted into the dimensionless Navier-Stokes equations. The basic 

state is subtracted, and the resulting equations are linearized with respect to the secondary 

amplitude B. We end up with four coupled partial differential equations for the secondary 3D 

instability. The coefficients of these equations are function of the basic state, they are indepen

dent of the coordinate z, and periodic in x and t. Hence, the z -variation can be separated, and 

Ploquet theory of differential equations with periodic coefficients can be applied to give a solu

tion in the form 

( t) - ')'.t -HJt j ~Z A.( t) qzX,Y,Z, -e e ,+,X,Y, (15) 

where p is a real spanwise wavenumber of the secondary disturbance. l-Yr+iYj and cr=or+i OJ 

are two complex characteristic exponents, and $(x,y ,t) is a periodic function of (x-wt /0.), the 

same as the period of the basic state. We express $ in terms of Fourier series to obtain the fol

lowing expression for q 2 

-qz(x,y,z,t) == e')'.t-+<J1ejllz L q,It(Y) ejltoi.x-{i)lla) (16) 
It=--

Equation (16) represent the general Ploquet form for the eigenmodes of a periodic basic 

state, where both the fundamental and subharmonic modes are special cases. Only two of the 

four real exponents YnYj, On and OJ, are determined as a solution of the eigenvalue problem, 

others must be given. For the purpose of our study of the spatial instability of subharmonic 

modes, we let Yr represent the growth rate of the secondary instability, or==O (no temporal 

growth), OJ=-roI2 for pure subharmonic mode, and let Yj represent the shift in the streamwise 

wavenumber of the secondary disturbance with respect to the primary one. yj==O means that the 

secondary disturbance is perfectly synchronized with the basic state. 



- 7 -

We use the lowest truncation of the Fourier series for the subhannonic mode (n~l) in Eq 

(16), to derive four coupled ordinary differential equations for U2, Y2, W2' and P2. These equa

tions when supplemented with homogeneous boundary conditions, they constitute an eigenvalue 

problem 

'Y = T'(a, p, R; A) (17) 

for a given boundary-layer velocity profile with pressure gradient and suction. The eigenvalue 

problem (17) of the secondary instability provides 'Y for a given p and R. Then the integration 

of the growth rate 'Yr gives the amplification factor In (B IB 0), where Bois an arbitrary initial 

amplitude at the onset of the secondary instability. 

3. NUMERICAL TREATMENT 

Similar boundary layer profiles were calculated using Eqs (8)-(9). These equations were 

numerically integrated by using a shooting technique with fourth-order Runge-Kutta and 

Adams-Moulton integrator. In cases of continuous suction, where Yw= constant, similar solu-

tions do not exist, and Eqs (1)-(2) were numerically integrated by using a step by step pro-

cedure in the streamwise direction. A three-point implicit finite difference technique was used 

to reduce them to a set of simultaneous tridiagonal equations. These equations were linearized 

and then solved using the algorithm of Thomas. The method of solution closely parallel that 

of Price and Harris [24]. 

The primary instability which modulate the 2D boundary layer is governed by a fourth

order system of equations. While the eigenvalue problem (17) describing the secondary distur-

bance, is governed by a sixth-order system of equations. Both can be written as complex sys

tem of linear first-order ordinary differential equations in the form 

Primary 

4 

DZ1n - I,anmZlm = 0, n=1,2 . .4 (18) 
m=l 
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Zl1 == Z13 == 0 at y==O (19) 

(20) 

where ZI11 are defined by 

Secondary 

6 6 
DZ2n - L b"",Z2m == A L C"",Z2m. n==1,2 •• 6 (21) 

m=1 m=1 

Z21 == Z23 = Z25 == 0 at y==O (22) 

(23) 

where Z2n are defined by 

and the overbar denotes a complex conjugate. The anm are the elements of 4x4 variable 

coefficient matrix of the primary eigenvalue problem, while b"", and c"'" are the elements of 

6x6 variable coefficient matrices of the secondary eigenvalue problem. These elements are 

given in the Appendix. Note that in case of no modulation of the mean flow by a primary 

wave (i.e. A==O), then the system of equations (21)-(23) will govern the stability of a primary 

subhannonic 3D wave. 

Both the primary and secondary system of equations are numerically integrated as initial 

value problem using a freestream solution as initial condition. For the secondary eigenvalue 

problem, we assume that the amplitude of the primary vanishes far in the free stream at y ~ Ye 

(e denotes the edge of the boundary layer). Then the system (21) will have constant 

coefficients and can be solved analytically producing three linearly independent exponentially 

decaying solutions to conform with the boundary condition (23). With the freestream solution 

as initial condition, Eqs (21) are integrated from y==y. to y==O at the wall, using a variable step-

~---.----
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size algorithm [25], based on the Runge-Kutta-Fehlburg fifth-order formulas. The solution is 

orthonormalized at a preselected set of points using a modified Gram-Schmidt procedure. A 

Newton-Raphson technique is used to iterate on the eigenvalue to satisfy the last wall boundary 

condition within a specified accuracy of 0 (10-5). 

4. RESUL TS AND DISCUSSION 

For the Blasius and Falkner-Skan profiles, our results were checked with that of Bertolotti 

[26], and found to be in full agreement. 

All results reported here are for the nondimensional frequency F=106
(J) IR =60, that remains 

fixed as a wave with fixed physical frequency travels downstream. For Blasius flow, a primary 

TS wave with this frequency grows between R/::::554 and RI/::::1052 (first and second neutral sta-

bility points), reaching a maximum amplification factor of AIAo::::42. Also in this region, primary 

3D subharmonic waves are subject to amplification for a broad band of span wise 

wavenumbers, but the time and length scales of these instabilities are too small to compare 

with experimentally observed transition. A strong growth of secondary 3D subharmonics can 

be due to parametric excitation by the finite amplitude primary TS wave [20]. 

4.1. Flat Plate Boundary Layer Controlled by Suction 

At R=1050 ( almost at RJl for Blasius flow), Fig (1) shows the growth rates of the secon-

dary 3D subharmonic disturbances as · function of the spanwise wavenumber parameter b and 

for various amplitudes A of the primary wave. The parameter b defined as b=103!i'R 

represents a fixed physical spanwise wavenumber for a wave traveling downstream. Figure (1) 

compares the results of a flat plate boundary layer with suction (r 0=-.1) and with no suction. 

At fixed r o, the figure indicates a stabilizing effect on the secondary instability as the primary 

amplitude A decreases. When the amplitude is very small, considerable growth rates exist in a 

small band of spanwise wavenumbers. The maximum growth occurs for a wave wiL.1. slightly 

lower span wise wavenumber as the amplitude A decreases. This shift to lower spanwise 

L _____ _ 

-l 
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wavenumber is more noticeable with the increase of suction parameter. As Reynolds number 

increases, the growth rates of the secondary disturbances increase at fixed F and A . 

The application of active control by suction in LFC systems restrains both the mean-flow 

profile and the primary wave. We find that the prime influence of suction on the secondary 

instability is due to the appreciable decay of the amplitude of the primary wave. This conclu

sion is explained next with the use of Fig. (2). In Blasius flow, a primary wave with initial 

amplitude Ao =0.00025 at R/ grows such that at R =1050 downstream its amplitude reaches a 

value of om. Figure (2), curve a, shows a wide band of 3D subharmonics amplifying at that 

location with the most unstable at b = 0.17. The influence of a modified mean flow can be 

demonstrated by applying suction at R = 1050 with fixed A=O.Ol. This decreases the growth rate 

of the subharmonic and slightly limit the band of amplified spanwise wavenumbers (curves b 

and c), while the most unstable wavenumber is not affected by suction. When suction is 

applied ( ro = -0.05) starting upstream at R/, the mean flow is modified and the growth of the 

primary wave is slowed down, such that at R = 1050 downstream the amplitude of the primary 

wave reaches a value of 0.0015. Calculations, curve d, indicate a strong stabilizing effect on 

the secondary instability with the most unstable 3D subharmonic occurring at a lower span wise 

wavenumber. 

Previous results may be viewed as local, they only reflect the stability characteristics of 

the secondary subharmonic disturbance at a fixed Reynolds number. To model the experiment 

and evaluate the overall effect of suction on the onset, growth rate, and amplification factor of 

the secondary 3D subharmonic, we should combine the effect of increasing the amplitude A of 

the primary TS wave as well as increasing R as the disturbance moves downstream. In Fig 

(3), we do that and show the variation with R of the growth rates of the secondary subhar-

monic wave. In these calculations, the initial amplitude of the primary wave is assumed 

A 0=.001, and the spanwise wavenumber b=.15 which is an average value of the most unstable 

wavenumbers for the parameters under investigation. The growth rates of the corresponding 

primary waves are also included in the figure for comparison. 
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The micro-events which lead to the secondary 3D instability go as follows. Initially, the 

primary instability sets in at R[ on the primary neutral curve, and -aj starts to grow. At a cer

tain value of the primary amplitude, a secondary 3D mode is induced and sets in at R[ on a 

secondary neutral curve. 'Yr starts to grow strongly due to the increase in both A and R. Ulti

mately, -aj begins to decay, and the primary amplitude reaches a maximum when -aj=O. 

Shortly downstream, 'Yr reaches a maximum and then starts to decay with the secondary ampli

tude reaching its maximum when 'Yr=O. The overall effect of small suction rates is to delay the 

onset of the secondary instability (occurs later downstream), and to decrease significantly its 

growth rate. Calculated amplification factors for the secondary disturbance (not shown) indi

cate 71 % reduction due to the increase of ro from 0 to -.05. Increasing ro to -.1 dampened 

completely the subharmonic secondary disturbance in spite of considerable growth shown by 

the primary wave. We know from the experiment [9] that the secondary instability depends on 

the primary wave amplitude as well as on the wave fetch. In a fixed disturbance environment, 

small suction rates may not affect the initial amplitude of the primary wave but certainly will 

influence its growth. Our calculations in Fig (3) indicate a delay in the onset of the secondary 

instability due to suction. This delay is accompanied by a slight decrease in the primary thres

hold amplitude (equal to .0029 at r 0=0 and .0024 at r 0=-.05). However, at r 0=-.1, the primary 

amplitude reaches a maximum of only .0014 which is apparently below the value needed to 

induce a secondary subharmonic instability. Notice that the initial amplitude of the primary 

wave is fixed in all cases and equal to .001. 

Figure (4), a case of suction rate ro=-.05, shows a primary instability that sets in at R=650. 

The onset of the sub harmonic instability occurs at R=850 when Ao=,(X)l, at R=775 when Ao='()()2, 

and at R=635 when Ao=.OO66 (which is well before the onset of the primary wave), reaching 

maximum amplification factors of 8, 15, and 30 respectively. Note that when the initial ampli

tude Ao is large enough, the induced instability can be so strong and secondary instability 

occurs directly by-passing the usual growth of the primary wave. In a situation like this, tran

sition prediction schemes based on linear primary theory fail completely. 
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In boundary-layer flows, the onset of the secondary 3D instability is known to be an 

important feature of the early stages leading to transition. For LFC purposes, one might try to 

completely avoid or delay this instability by using suction. Then, one faces questions like 

where to apply suction, and whether it should start before or after the onset of the secondary 

instability, and what is the optimum suction needed to keep the flow laminar. To answer these 

questions, calculations were made to compare the stability characteristics of different cases of 

Blasius flow with continuously applied suction starting at five different locations. These results 

are reported in Fig (5) which shows the variation with R of the growth rates of both the pri

mary and secondary disturbances at fixed initial amplitude of the primary wave (Ao=().()Ol). 

Calculations show that in order to control the secondary 3D instability, suction should be 

applied further upstream near RJ of the primary wave and not to apply it near the onset of the 

secondary instability. While investigatIng the effect of suction on primary TS waves, Reed and 

N ayfeh [27] and Saric and Reed [28] reached similar conclusions that suction should be con

centrated not in the region of maximum growth but near its first neutral stability. 

Figure (6) shows the variation with suction parameter ro of the maximum growth rates 

with respect to R of both the primary wave and secondary subharmonic disturbance for Ao=.OOl 

and b=.15. Point P indicates a suction level that completely stabilizes the primary wave, while 

point S indicates a suction level that allows for a limited primary growth but completely stabil

izes the secondary disturbance ( point S is extrapolated due to doubtful Floquet theory results 

when the secondary growth rates are small). An optimum suction requirements for an LFC 

system may be located somewhere upstream of point S allowing for a considerable growth of 

the most unstable primary wave, as well as a limited growth of the secondary disturbance as 

long as the primary amplitude is small and the induced secondary disturbance is not strong 

enough for nonlinear self- and cross-interaction with the primary wave. As Ao increases, point 

S is expected to move towards point P and cross it over for high enough primary initial ampli

tudes. In such situation, suction level required to fully stabilize the primary wave may not 

control the amplification of the secondary disturbance, and very high suction levels are needed 
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to control the flow. 

4.2. Falkner-Skan Flow Controlled by Suction 

The need to control the secondary instability in a boundary layer with pressure gradient is 

more realistic such as the case of flow on airfoils. Herbert and Bertolotti [29] studied the 

secondary instability of Falkner-Skan flows and found that favorable pressure gradient limits 

the band of unstable spanwise wavenumbers, while small adverse pressure gradient is strongly 

destabilizing. This means that larger suction rates are needed to control the boundary layer in 

these cases. For a boundary· layer with pressure gradient and suction, the variation of the 

growth rates of the secondary 3D subharmonic with the spanwise wavenumber parameter b 

exhibits the same features given before in Fig(1). 

Figure (7) gives an overall view of the effect of both pressure gradient and suction param

eters on the secondary 3D subharmonic at fixed Ao using the maximum amplification factor as 

a basis for comparison. As adverse pressure gradient increases, the secondary subharmonic 

disturbance becomes more unstable. With the suction parameter increasing, the curves con

verge rapidly to lower amplification factors indicating that the secondary instability is more 

sensitive to suction as adverse pressure gradient increases. Figure (7) shows also the increase 

in the maximum amplification factors for different values of Ao at ~o=O. The sensitivity of the 

secondary instability to suction appears to be higher with the increase in adverse pressure gra

dient than the increase in A o. 

4.3. Mean Profile, Mode Shape, and Vortical Structure 

Modifications to the Blasius profile due to suction and adverse pressure gradient are 

shown in Fig (8). Suction leads to a fuller mean u -velocity profile and decrease in the magni

tude of the v -velocity. While adverse pressure gradient makes the u -velocity profile more 

inflectional. At fixed amplitude of the primary wave, these modifications have moderate effect 

on the secondary instability, see Fig (2) for the case of suction, and Ref. 27 for the case of 
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pressure gradient. 

Figure (9) gives a comparison of the mode shapes of the U-, v-, and w-velocity com

ponents of the secondary disturbance at different suction and pressure gradient parameters. 

The v -component is small and is slightly affected by suction or pressure gradient. The 

corresponding mode shapes of the u,. and v-velocity components of the primary wave are 

shown in Fig (10) for comparIson. Suction tends to move the critical layer closer to the wall 

with the maximum of the primary wave velocity components and the maximum of the secon

dary disturbance velocity components following it. The location of the critical layer on the T\

axis is marked in both figures. By increasing suction, the thickness of the boundary layer 

decreases, and the disturbance is confined to a region closer to the wall where dissipative 

action is strong, thereby increasing the stability of the flow. As adverse pressure gradient 

increases, the opposite occurs and a change over from viscous to inflectional instability takes 

place [29]. 

A more detailed description of the physics of the process of suction control can be 

obtained from contour plots of the vorticity components. Figures (11)-(14) give contours of 

vorticity components in a wave-fixed coordinate system for different cases of suction and pres

sure gradients at R =1050. In each figure, frames (a)-(d) show the effect of the mean-flow 

modification on the vorticity contours (A=O.04 and B=l are fixed), while frame (e) shows the 

total effect of the suction on the vorticity contours due to modifications in the mean flow and 

the reduction in the primary amplitude (A =0.006 and B =0.(05). These values of A and B are cal

culated at R=1050 assuming Ao=O.OOI at the onset of the primary wave, and Bo=lxIO~ at the 

onset of the secondary subharmonic. Comparison of frames (a) and (d) in each figure shows 

that suction with r 0=-.2 applied to an inflectional profile with ~o=.19 qualitatively produces the 

same vorticity contour plots as for a blasius profile. 

An array of streamwise-periodic concentrations of vorticity is established by the primary 

viscous instability. The strength of the vorticity intensifies with the increase of the amplitude of 

the primary wave. Figure (11) shows plots of the initial 2D vorticity contours of the basic 
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flow ( only spanwise component exist). which peaks near the wall, and extends to the critical 

layer. The location of the critical layer is defined by tick marks on the ll-axis. 

With the onset of the secondary instability, 3D vortical structure is induced by the defor

mation of the initial 2D vorticity. Figure (12) shows plots of the spanwise vorticity ~t-contours 

in the x-y plane at z=O for different cases of suction and pressure gradient. The figure that is 

plotted over four primary wavelengths (Ax =27t1a), indicates that regions of concentrated span

wise vorticity are convected downstream, pulled towards the wall as suction increases, and 

lifted away from the wall as adverse pressure gradient increases. In both situations, the con

centrated vorticity follows the critical layer as the suction and/or pressure gradient changes. 

The spanwise-velocity variations produce streamwise vorticity ~ that is contoured in Fig 

(13). The figure is plotted in the z-y plane at x=O over two spanwise wavelengths of the 

secondary disturbance (A.=27t1~). It shows an array of counter-rotating vortices extending away 

from the wall as adverse pressure gradient increases, and pulled towards the wall as suction 

increases. 

Following the onset of the secondary instability, spanwise and streamwise vortices experi

ence a process of stretching and tilting as they move downstream. Together, they form a 

large scale 3D structure ( A-shaped) which was observed experimentally and numerically. For 

different suction and pressure gradient parameters, Fig (14) shows the deformation in the total 

vorticity (vrJ'+rJ') in an x-z plane almost at the ll-location of the critical layer. 

5. CONCLUDING REMARKS 

Calculations show that the secondary 3D subharmonic instability is very sensitive to and 

can be controlled by suction. Meaning, the onset of the instability is delayed, the growth rates 

and amplification factors are reduced, the unstable band of spanwise wavelengths is limited, 

and the vortical structure is closer to the walL As adverse pressure gradient increases, the sen

sitivity to suction increases. For higher initial amplitude of the primary wave, suction is less 

effective in controlling the secondary 3D subharmonic instability. 
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Calculations show that elimination of the primary wave by suction at an arbitrary stag~ of 

its growth might not delay or eliminate the secondary instability specially if it has already 

taken place. The suction need be applied near RJ of the primary wave to gain more control on 

the secondary growth. An optimum suction amount may be lower or higher than the suction 

needed to fully eliminate the primary wave. This is very much dependent on the initial ampli

tude of the primary wave. 

Application of suction influences both the mean profile and the primary wave. The effect 

of a modified mean profile on the secondary 3D instability is moderate, while the main effect 

is due to enhancing the growth of the primary wave. By applying suction and including both 

effects, calculations indicate that the most unstable secondary subharmonic disturbance occurs 

at lower span wise wavenumber. Then, at certain downstream location, an observed flow struc

ture of the H-type might be altered to C-type with larger spanwise wavelength or might com

pletely disappear as suction increases. 

Evaluation of the effect of suction on the subharmonic secondary instability is a step 

towards the goal of optimizing an LFC system. The idea of monotoring the 3D A-shaped 

structure as its spanwise wavelength changes with suction may be used for that purpose. 
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APPENDIX: Nonzero Elements of the Coefficient Matrices all/ll' bll/ll' and CII/II of Eqs (18) 

and (21) : 

al2= 1, a21=iR(aU-ro)+a2, a23=R DU, a24=iaR, 

a31 = -i a , a42 = -i oJR, a43 = -i (aU -ro)-o?IR 

b l2 = 1, b 21 = 1, b 23 =RDU, b26=(yt~ia,)R, 
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b 31 = -buJR, b34 = -~ , b4S = 1 

bS4 = (yt ~ icxr)U- ~ ioo)R - (yt ~ icxrf + ~2 

b S6 = -R ~ , b 62 = b31/R, b63 = -bsJR, b 6S = -~/R , 

C21 = (yt ~ icxr)Rul , C22 = RVI , c23 = R DUI ,C54 = (y- ~ iUr)Rul , 

Css = R VI, C6! = (y-; icxr)v!, C63 = -csJR-Dvl , C64 = ~VI 
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Fig. 1 Effect of the amplitude A of the primary wave on the growth rate of the 

secondary 3D subharmonic at different suction parameters, R = 1050, and F=60. 
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Fig. 3 Effect of suction parameter .on the onset and growth rates of the 

primary wave and secondary 3D subharmonic, Ao= ·OOl, /J= .15, and F=60 . 
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Fig. 5 Continuous suction starting at different locations and its effect on the onset and 

growth rate of both the primary wave and the secondary 3D subharmonic, A 0= .001, 

b= .1S, and constant suction level (corresponding to ro=-.os at R=1(00). 
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Fig. 12 Span wise vorticity con tours of the 3D flow in the x - y plane at z= 0 for different 

suction and pressure gradient parameters. R = 1050, b= .15, and F=60. 
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Fig. 13 Streamwise vorticity contours of the 3D flow in the z-y plane at x=O for 

different suction and pressure gradient parameters. R = 1050, b= .15, and /=60. 
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Fig. 14 Total vorticity contours of the 3D flow in the x-z plane almost at the y_ 

location of the critical layer for different suction and pressure gradient parameters. 
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