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ABSTRACT

The propagation of power flow through a dynamically
loaded beam model with 90 degree bends is investigated using
NASTRAN and McPOW. The transitioning of power jiow
types (axial, torsional, and flexural) is observed throughout
the structure. To get accurate calculations of the torsional
response of beams using NASTRAN, torsional inertia effects
had to be added to the mass matrix calculation section of the
program. Also, mass effects were included in the calculation
of BAR forces to improve the continuity of power [low
benveen eclemnents. The importance of including all types of
power flow in an analysis, rather than only flexural power, is
indicated by the example. Tryving to interpret power flow
results that only consider [lexural components in even a
moderately complex problem will  result in  incorrect
conclusions concerning the total power flow field.

INTRODUCTION

Methods for calculating power [lows in dynamically loaded finite
element models using NASTRAN (Rigid Tormat 8 - Direct Irequency
Response) and McPOW (Mechanical POWer) were developed previously.!
The power flow equations for beam clements derived in that paper included all
forms of dynamic energy propagation: {lexural, longitudinal (or axial), and
torsional. The flexural waves were split into shear and moment components.

The majority of procedures employed in other studies (sec the list of
references in Hambric!) only consider flexural vibration in their calculations of
power flow. This can be dangerous if an analyst is investigating the cnergy
propagation characteristics ol a complex structure. Though llexural vibration
is in most cases the dominant response in a dynamically excited beam,
different kinds of propagation will occur in structures with even a small degree
ol complexity, such as a simple beam model with 90-degree bends.
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Such a model is tested here using a frequency range spanning several
resonances and types of motion. Plots showing the contributions of the
different forms of power flow to the total power travelling through the system
are shown, and illustrate the importance of all types of energy propagation to
the power flow method.

To improve the accuracy of both the finite clement solution and the
power llow solution of the problem, a few modifications were made to
NASTRAN and McPOW. First, o show the importance of torsional powcer
flow, a capability to calculate dynamic torsional forces and corresponding
angular velocities 1s required. Thercfore, torsional inertias were added to the
coupled mass matrix formulation of the BAR clement.  Also, since the beam
clement force calculation algorithm in NASTRAN considers only stillness
cltects, mass and damping cffects had to be added to McPOW to modily the
clement forces.

METHODOLOGY

The procedure for solving for the power flow field i a finite element
model using NASTRAN and McPOW is:

1. Run Rigid Format 8 (Direct Frequency Response) on a NASTRAN data
deck (using the ALTER statements shown in Ref. 1 to output force and
velocity data blocks to the OUTPUTR file). Coupled mass formulations
should always be usced.

2. Run McPOW using the binary data in the OUTPUT?2 Gle as input.
General Methods

A typical power flow cycle is shown in Iig. 1. The figure shows an
arbitrary structure mounted to a connecting structure by a spring and damper
couphing. A dynamic load is applied, and cnergy flows into the structure at the
load point. The input power then flows through the structure along multiple
flow paths denoted by arrows whose lengths represent power tflow magnitudes.
As the energy flows toward the mounting, it is dissipated by material damping
and sound radhation into a surrounding medium, and the flow arrows shorten.
The flow and dissipation processes continue until the remaining cnergy exits
the structure through the mounting and flows nto the connecting structure.
Though only one power centry pomt and one exit pomt are shown in this
drawing, multiple loads and mountings may exist. A classic text which
desceribes the fow of structure-borne sound is the book by Cremer, ITeckl, and
Ungar.®

The structural dynamics problem may be solved using NASTRAN. The
structure may be modeled with various element types; mountings arc modeled
with scalar spring, damping, and mass clements. Constraints and loads arc
dircctly applied. The steady-state responsc for the model 1s solved for a given
excitation frequency, and the power flow variables arc calculated.
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Power I'low
Power Dissipation

Fig. 1. Samplc Power Flow Diagram.

Power is defined as the timc-averaged product of a force with the n-
phase component of velocity in the direction of the force. Tor time-harmonic
analysis, where complex numbers are used, this calculation may be visualized
as taking the dot product of the force and velocity phasors. (There is no factor
1/2 in the following power cquations if the assumption that forces and
velocities are "effective” values rather than amplitudes is made. With this
assumption, consistency is maintained, and there is no mixing of cffective and
peak quantities in this formulation.)

Multiplying one complex number by the in-phase part of another
complex number is the same operation as multiplying the first number by the
complex conjugate of the other number and taking the real part of the result.
Therefore a general formula for power llow in a structurce is

Power = Real [I'V'], (1)

where
IF = lorce, and
v = complex conjugate of velocity.
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Power Flow Equations

The equations for power flows in BAR elements are repeated here. A
diagram of the BAR element and its NASTRAN force output conventions is
shown in I'ig. 2, where Plane 1 is vertical and Plane 2 is horizontal.
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Fig. 2. The BAR Element

Since a beam is a one-dimensional clement, energy flows in only one direction:
in the local x direction, or along the length of the beam. The total power flow
for a beam element is

Py = Real [ — (Fyvs+V, vy +Vavs +T0,—Ma0; +M; )], (2)

where
F, = axial force,
V = shear force i y direction,
V, = shear torce in z direction,
T = torsion about x,
M, = bending moment about vy,
M; = bending moment about z,
v; = translational velocities in direction i, and
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0; = rotational velocities about axis 1.

The negative sign on the result comes from force and displacement direction
conventions for the element. The negative sign on the M, term reflects the
NASTRAN force output convention. In Fig. 2, M, is shown as positive in the
opposite sense to d,. Therefore, MQO; i1s opposite in sign to the other power
flow components.

NASTRAN Modifications
Torsional Inertias

NASTRAN currently does not consider torsional inertias i its beam
element formulation. Thercfore, all torsional results (angular displacements
and torques) are based on stiffness only, and are essentially those ol a static
problem solution. To remedy this, torsional inertias were added to the
coupled mass formulation. At the point in NASTRAN where the basic
element mass matrix is formed, no consideration is given to beam oilsets or
beam orientation; all mass coefficients (as well as stiffness) are calculated in
the local beam coordinate systecm.

The torsional mass moment of inertia of a beam is p L J /2, where p 1s
the mass density, I, is the beam length, and J, 1s the polar area moment of
inertia. In the standard consistent mass matrix for a beam,> this value is
broken up into 2/3 and 1/3 components; 2/3 of the value 1s placed at the
diagonal, and 1/3 is placed at the coupled degree of freedom (the node on the
other end of the beam). The same fractions are used for the translational, or
axial masses. In NASTRAN, however, the coupled mass formulation uses an
average of lumped and consistent formulations to reduce error. This average
changes the components to 5/6 and 1/6 of the total value. Since thesc values
are currently used for the axial masses in NASTRAN, they were also used for
the torsional inertias.

Element Force Calculations

NASTRAN element forces are currently calculated by multiplying
clement stiffness matrices by element displacement vectors. Both damping
and mass effects are ignored. The damping in a stiffness element is actually in
the form of a loss factor, which generates a complex stiffness matrix. All
stiffness terms are multiplied by 1.0 +1i7y. For most dynamic analyses,
neglecting the iy term is acceptable since it is generally small. I'or a power
flow analysis of a highly reverberant structure, however, ignoring the loss
factor is disastrous. In a highly reverberant structure, the force and velocity at
a given point are close to 90 degrees out of phase. Since power flow is defined
as the dot product of these two components, a small change in the phase of
the force has large effects on the calculated element powers.

Neglecting the element mass matrices, whose components arc scveral
orders of magnitude less than those of the stiffness matrices, has less drastic
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ctfcets on the power flow solution, since at low frequencies the masses will
have little effect on the force calculations (the clement mass matrix 1s
multiplied by —w ? to take the sccond time derivative of the corresponding
displaccments). However, when high frequency analyses are performed on a
model, the —w ? multiplying factor becomes morc significant, and neglecting
the mass contributions will cause some error in the force calculations. Errors
in element forces causc errors in clement power flows.

Including these missing elfects in NASTRAN i1s complicated by the fact
that the element force calculation algorithm splits the problem into real and
imaginary parts. The clement stiffness matrices are multiplied by the real
parts of the displacement vectors to calculate real force components, and the
process is repeated for the imaginary components. Adding an imaginary term
to the stiffness matrices causes new terms to be generated in the multiphication
(imaginary stiffness x imaginary displacement and imaginary stiffness x real
displacement). There is also no frequency dependence in the current
algorithm, since stiffness are frequency independent. Mass matrices, however,
must be multiplied by the —w? term mentioned above, so they must be
recaleulated for every frequency.

To avoid these complications, the clement force calculations were
temporarily moved to McPOW. The element mass and complex stiffness
matrices are recalculated on a local clement level, and combined with local
clement displacements to solve for clement forces. A force vector with 12
cntries is the result; shears in the local y and z directions, moments about the
local y and z directions, axial forces, and torques arc solved for at each grid
point. In NASTRAN only cight forces are calculated, because only moments
arc calculated at both ends of a beam clement. Beam power flows arc
therefore calculated at cach end of the element using only the forces at that
end and the corresponding grid velocities. The average of the powers at the
ends 1s taken to find an clement power llow.

TEST PROBLEM
Problem Statement

The beam model that was analyzed is shown n Fig. 3. All three
scctions have the same cross scction and material properties.  Dashpots
(DAMP2 clements) of value 10° were applicd at the model’s end in all six
degrees of freedom. A unit Joad was applied at the top end of the model in
the longitudinal direction (along the - z axis) over a frequency range ol 1 to 250
Hz swept in 1 Hz increments. 'The finite element model consists of 152
clements and 153 grid points. Grid and element numbering starts at the left
end of Link 1 and proceeds up to the end of Link 3.

Using the local beam clement coordinate systems shown i Ifig. 3, the
following table of force balances at the corners (Link 3 to Link 2, Link 2 to
Link 1) was gencrated.
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Each link 10 m long — 3
Cross Section Diameter = 0.5 m
Link 3
Link 2
Feiu!t X
"7"“—‘ X1 I — 75
g Link 1 ¥2
y E = 2.074 x 10! N/m?
l x =03
= 0.02

Fig. 3. Test Problem Geometry

Link3 | Link 2 | Link 1
F, Vi Vi
T M, M,
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M] rlﬁ Ml
M, M; T

The subscripts on the shears and moments refer to the plane in which the
forces occur (sec Fig. 2). This table can be used to track the propagation of
power flow through the structure. For example, the longitudinal power iput
to Link 3 will travel down the beam in axial waves to the first bend and
become shear power flow i the z dircetion in Link 2. This shear power will
interchange with moment power along the beam (the sum of the shear and
moment components is the total flexural power flow in the beam). Any shear
power that exists at the fower end of Link 2 will transition to more shear
power in Link 1.
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Results and Discussion

The computed power input curve over the excitation frequency range is
shown in Iig. 4. The power input peaks correspond to various resonances in
the structure. Most are flexural, but some axial and torsional modes influence
the power input curve. The longitudinal modes of Link 3 cause power iput
peaks (at 190 Hz and above), as well as the torsional modes of Link 1 (at 151
Iz and above).

In this modecl, the power flow path is independent of {requency. The
total power must always flow from the input point at the end of Link 3 to the
dampers at the beginning of Link 1. This simplifies the interpretation of the
results, since the directions of total power flow are established.

The types of power llow in a given link are not so well-defined.
Whether the dominant path in a link is flexural, axial, or torsional, depends on
the motion of the structure. Fig. 5 shows the two most common types of
motion paths for this problem. The displacement fickd of Diagram 1 occurs
most often. The axial load applicd to Link 3 drives the entire structure
forward and backward over a frequency cycle. The dominant power flow n
Link 3 is axial; the dominant power flow in Link 2 is flexural; and torsional
and flexural power flows are dominant in Link 1, since the input load applies
both a torque and bending moment to the link.

In Diagram 2 of Fig. 5 a different type of motion is shown. The axial
load still drives the upper half of the structure in the same direction, but the
lower half moves in the opposite direction. This type of motion is not what
one would expect in a static problem, but the dynamic characteristics of the
structure produce this type of motion in various [requency ranges.

Due to this motion path, the axial power {low travelling down Link 3
becomes flexural, torsional, and axial in Link 2. The torsional and axial
components appear because the link is twisted and stretched by the opposite
directions of motion of the two ends. The torsional power in Link 2 becomes
flexural power in Plane 1 in Link 1, and the axial power in Link 2 turns into
flexural power in Plane 2 in Link 1. The flexural power in Link 2 becomes
torsional and flexural power in Link 1 as before (Diagram 1).

Considering these modes of power transitioning, the power flow plots in
Iigs. 6-8 may be interpreted. Lach plot shows the contributions of flexural,
torsional, and axial power flow as a percentage of the total power flow m the
center of cach link.

Iig. 8 shows the power components in Link 3. Since the input power is
in the longitudinal direction, the majority of the power in this link is axial. At
certain frequencics, the percentage of axial power is greater than 100 percent.
The large axial percentage arises because at certain frequencies, reflected
waves carry power in the opposite direction (toward the load). Three flexural
resonances in the structure cause reflected power just before 50 Hz, along with
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Diagram 1 Diagram 2

Fig. 5. Dominant motion paths for test problem

five others right after 100 Hz. Between 200 and 250 Hz, some flexural and
torsional resonances cause more reflected powers.

Fig. 7 shows the power components in Link 2. The dominant type of
power 1s the flexural component in Plane 1, and is denoted by the solid curvec.
This type of power field corresponds to the motion type shown in Diagram 1 in
Fig. 5. However at certain frequencies, the power flow pattern of Diagram 2
becomes dominant, and axial and torsional power become important. In most
cases, the axial power flows forward (away from the load point), and the
torsional power is backward (reflected toward the load point). These
tendencies occur at the same frequencies as the reflected power waves do in
Link 3 (shown in Fig. 8). This behavior indicates that the flexural power in
Plane 1 and the torsional power cause reflected flexural powers in Planes 2 and
1 respectively in Link 3.

Fig. 6 shows the power distribution in Link 1. In this case, all power
components are positive, implying that the rcflected power waves in Links 2
and 3 originate from the joint connecting Links 1 and 2. In Link 1, flexure in
Plane 1 and torsion are the dominant components of power flow. Ilexural
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motion in Plane 2 and axial motion cause power peaks at the same frequencies
observed in Iigs. 7 and 8, indicating the type of motion shown in Diagram 2
in Iig. 5. A torsional mode in Link 1 accounts for the peak in the torsion
curve at 150 Hz, along with an input power peak at the samc frequency (sce
Fig. 4).

In spite of the large variation in percentages of power types in the plots,
all the power curves add up to 100 percent, as expected. In addition, the total
power flow in the structure at all {requencies is at a maximum at the load
poumt, and smoothly decreases to a minimum at the conncction pomt to the
dampers. The steady decrease in power is duc to structural damping. The
remaining power is all dissipated by the connected dampers.

This cxample illustrates  the importance of all types of power
components in a power flow analysis. Imagine trying to discern a mecaningful
power flow ficld from only flexural powers in this example. The detected
powers i Link 3, which is adjacent to the input load, are all in the oposite
airection, or toward the load. In Link 2, the analyst would sce a sudden jump
m power to values that are higher than that of the input power. I'mally, in
Link 1, sporadic power curves with values near the input power at requencies
below 100 11z and values near zero after 100 Hz would be found. Confusion
would surely result, with erroncous conclusions soon following. Difficulties
like these would be compounded in a real application with some degree ol
complexity.

CONCLUSIONS

The modifications made to NASTRAN and McPOW are critical to the
power flow method. Without torsional inertias applied to the beam element
mass matrices, any torsional effects in a dynamic problem are static. None of
the torsional power flows present in the example problem would exist, causing
meorreet total power flow ficlds. Adding mass and damping cifects to the
clement foree calculation algorithm is also important. In a reverberant
structure where forces and velocities are nearly 90 degrees out of phase with
cach other, accurate calculations are necessary to guarantec good power flow
results. A small change in the phase of an element force, causcd by neglecting
the matcerial loss factor, could cause large errors in clement power flows.
Also, at higher frequencies, element mass terms can become significant and
alfect the element force magnitudes, and hence the element power magnitudes.

The addition of torsional inertia to the beam clement mass matrix
tormulation was straight-forward. The addition of damping and mass effects to
the clement force calculation routines, however, was almost impossible. In
fact, the changes had to be made to McPOW instead of NASTRAN. The
implementation difficultics were duc to the way NASTRAN handles complex
analysis:  the solutions are broken into real and imaginary parts. When the
program was in its formative stages, UNIVAC computers were supported.
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The UNIVAC, unfortunately, had no way of handling double precision
complex arithmetic. Therefore, no complex numbers or FORTRAN complex
functions arc used in the element force calculation sections of the program.
With this approach, a simple complex calculation like
[—o? [M]e + (1 + in)[K].] {d}. must be split up into four calculations. Also,
since the calculation is frequency-dependent, the NASTRAN element force
subroutines are not currently able to handle it. Since the UNIVAC has all but
disappeared from the COSMIC NASTRAN computing arena and most
modern computers support double precision complex arithmetic, perhaps the
way NASTRAN handles complex problems should be modified.

The importance of including longitudinal and torsional components with
flexural ones in a power flow analysis was shown in the example problem.
Measuring tlexural power alone will not give an accurate indication of the total
power flow field in even a marginally complex problem. In the case of the
example problem, reflected flexural waves actually indicated a reversal of
power flow in the model, where the direction of flexural power was i the
opposite dircction of the input power. Trying to interpret power flow results
that only consider flexural components will result in incorrect conclusions
concerning the total power flow field.
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