TRENDS: The Aeronautical Post-Test Database Management System

W. S. Bjorkman, Analytical Mechanics Associates, Inc., Mountain View, California
M. J. Bondi, Ames Research Center, Moffett Field, California

January 1990
TRENDS: THE AERONAUTICAL POST-TEST DATABASE MANAGEMENT SYSTEM

Table of Contents

Section I
SUMMARY AND INTRODUCTION

1.0 SUMMARY

1.1 INTRODUCTION
1.1.1 Users:
1.1.2 Features

1.2 REPORT STRUCTURE

Section II
TRENDS OVERVIEW

2.0 TRENDS OVERVIEW

2.1 TRENDS CONCEPT
2.1.1 Interactive
2.1.2 On-line Database
2.1.3 Multi-Rotorcraft
2.1.4 User-friendliness
2.1.4.1 Main Menu Layout
2.1.4.2 Supporting Narrative
2.1.4.3 Plot-specification Dialogue
2.1.4.4 Input Error Checking
2.1.4.5 On-line Analysis
2.1.5 System Speed
2.1.6 User Software Exclusion
2.1.7 Documentation

2.2 TRENDS DATABASES
2.2.1 Test Points
2.2.2 Data Types
2.2.2.1 Min/Max
2.2.2.2 Time-History
2.2.2.3 Narrative
2.2.3 Database Management

2.3 DATABASES AT AMES
2.3.1 XV-15 Database
2.3.2 UH-60 Database
2.3.3 Wind Tunnel Databases
2.3.4 Simulation
Section III
MAJOR HIGHLIGHTS OF TRENDS

3.0 HIGHLIGHTS SYNOPSIS 3-1

3.1 TRENDS MENU 3-1
3.1.1 Brief Description of Menu Items 3-2
3.1.2 TRENDS-User Dialogue 3-3

3.2 PLOTTING 3-5
3.2.1 Time-History Data 3-5
3.2.1.1 Functions 3-7
3.2.1.2 Labels and Scales 3-7
3.2.1.3 Editing 3-7
3.2.1.4 Storing 3-7
3.2.1.5 Help 3-8
3.2.2 Data Snapshot of Test Point 3-8
3.2.3 Strip Chart Plots for Multiple Test Points 3-10
3.2.4 Frequency Data Plots 3-11
3.2.5 Statistical Data Plots 3-12
3.2.6 Histogram Data Plots 3-16

3.3 DATA SEARCHING AND PSEUDO-FLIGHT GENERATION 3-17
3.3.1 Scanning Numerical Data 3-17
3.3.1.1 Example of SEARCH 3-17
3.3.2 Scanning Narrative Data 3-18
3.3.2.1 Example of WORDSCAN 3-19
3.3.3 Pseudo-Flight Generation Function 3-20
3.3.3.1 Recall of Pseudo-Flights 3-20

3.4 ANALYSIS 3-21
3.4.1 In-line Analysis Tools 3-21
3.4.1.1 Formula Evaluation 3-21
3.4.1.2 Derivatives and Integrals 3-21
3.4.1.3 Fast Fourier Transforms 3-22
3.4.1.4 Regression 3-22
3.4.1.5 Convolution Filter 3-22
3.4.1.6 Cycle Averaging 3-22
3.4.2 Simulation 3-23
3.4.2.1 GTRSIM 3-23
3.4.3 DATAMAP 3-24
3.4.3.1 Capabilities of DATAMAP 3-24
4.0 DATABASE MANAGEMENT INTRODUCTION

4.1 DATABASE MANAGEMENT MENUS
4.1.1 XV-15 Database Management Menu
 4.1.1.1 Menu Items
4.1.2 UF-60 Database Management Menu
 4.1.2.1 Menu Items

4.2 INSTALLING DATA INTO TRENDS
4.2.1 Formats and Media
 4.2.1.1 Reformatting Programs
 4.2.1.2 Processing Time
 4.2.1.3 Prompting Programs
4.2.2 Data Storage Capacity Considerations
 4.2.2.1 Counter Selection
 4.2.2.2 Groups
 4.2.2.3 Integer Storage
 4.2.2.4 Filtering and Decimation
 4.2.2.5 Series Truncation
 4.2.2.6 Rotor Rev Averaging
4.2.3 Data Quality
 4.2.3.1 Checking Bad Data
 4.2.3.2 Despiking Data
 4.2.3.3 Data Credibility
 4.2.3.4 Time Code Problems
 4.2.3.5 Check Programs
4.2.4 Data Derivations
 4.2.4.1 Min/Max Statistics
 4.2.4.2 Derived Parameters
 4.2.4.3 Harmonic Amplitude and Phase
4.2.5 Automatic Updating
4.2.6 Record Overflow
Section V
TRENDS DESIGN/DEVELOPMENT CONSIDERATIONS

5.0 TRENDS DESIGN/DEVELOPMENT
5.1 TRENDS DEVELOPMENT PHILOSOPHY
 5.1.1 User's Manual
 5.1.2 Initial System Software Attributes
 5.1.3 Incremental Development Concept
 5.1.3.1 Min/Max Plotting
 5.1.3.2 Narrative
 5.1.3.3 Pseudo-Flight Creation
 5.1.3.4 Time-History Plotting
 5.1.3.5 Formula Evaluation
 5.1.3.6 User-Friendly Autoplot Setup
 5.1.4 TRENDX

5.2 DATA PHILOSOPHY
 5.2.1 On-Line Data
 5.2.2 Database Management Considerations
 5.2.2.1 System Readiness
 5.2.2.2 Data Deletion
 5.2.3 Multiple Databases
 5.2.4 Database Structures
 5.2.4.1 Keyed Access
 5.2.4.2 TRENDS File Structures
 5.2.4.3 Supporting Files

5.3 USER-FRIENDLINESS
5.4 USER FEEDBACK
5.5 ANALYSIS TOOLSET
5.6 INSTALLATION OF TRENDS
Section VI
SUMMARY AND CONCLUSIONS

6.0 CONCLUDING REMARKS 6-1

6.1 LESSONS LEARNED 6-1
 6.1.1 User Impact on the Development of TRENDS 6-1
 6.1.2 Database Evaluation Criteria 6-1
 6.1.3 Access to Calibrations 6-2
 6.1.4 Generic Code 6-3
 6.1.4.1 Database Vectors 6-3
 6.1.4.2 Parameter Names 6-3
 6.1.4.3 Symbol Table 6-3
 6.1.4.4 Help Files 6-3
 6.1.4.5 File Structure 6-3
 6.1.4.6 Data Types 6-4
 6.1.5 Plotting Generality 6-4
 6.1.6 System Response Speed 6-4
 6.1.7 Database Management (DBM) Menu 6-4
 6.1.8 Flight-Test Support 6-5
 6.1.9 Data Quality Considerations 6-5
 6.1.10 Data Storage Considerations 6-5
 6.1.11 Time and Time Offset 6-6

6.2 LASER JUKEBOX CONSIDERATIONS 6-6

6.3 FUTURE TRENDS FEATURES 6-6

6.4 FUTURE OF TRENDS 6-6

GLOSSARY G-1

REFERENCES R-1

APPENDIX A INCREMENTAL DEVELOPMENT TASKS IN CHRONOLOGICAL ORDER A-1
APPENDIX B SYNTAX FOR FORMULA SPECIFICATION B-1
APPENDIX C PERFORMANCE GROUPS, XV-15 AND UH-60 C-1
APPENDIX D FILE STRUCTURE CONSIDERATIONS D-1
APPENDIX E TRENDS PROGRAM TREE E-1
APPENDIX F DATABASE VECTORING F-1

INDEX I-1
TRENDS, THE AERONAUTICAL POST-TEST DATABASE SYSTEM

Section I

SUMMARY AND INTRODUCTION

1.0 SUMMARY

This report describes TRENDS, an engineering database operating system developed by NASA to support rotorcraft flight tests. The history, concept, structure, usage, and features of the system are discussed. The purpose of this report is not to give instruction in the use of TRENDS (user manuals are available for that purpose), but rather to document the system's capabilities, structure, features and reasons for being. The report shows that this system is able to support most aeronautical database test and analysis requirements including rotorcraft, fixed-wing aircraft, wind tunnel data, and simulation.

1.1 INTRODUCTION

TRENDS is an interactive Database Operating System developed by NASA to support rotorcraft research studies for NASA and for other government and non-government agencies. TRENDS offers a major breakthrough as an engineering database management system for rotorcraft research groups, because it can service both project management and engineering personnel through the use of both narrative and numerical data access and analysis. TRENDS could be considered as the LOTUS 1-2-3 for the aeronautical engineer who would like to do research and data analysis on rotorcraft. The system is fast, powerful, robust, and user-friendly, and has a multidisciplined user interface which allows the user to easily access and plot the data.

This report is written primarily for someone considering TRENDS as a solution to the problem of storing and accessing engineering test data. This does not exclude those interested users or database managers who are already using TRENDS. The report attempts to describe what TRENDS is and what it can do. TRENDS offers the Database Manager a database operating system which may fully meet his needs or may serve as the basis for one which could be developed with only minor modifications.

The acronym TRENDS was derived from Tilt Rotor Engineering Database System because the system was originally developed (beginning about 1982) to support flight testing of the XV-15 tilt-rotor aircraft. The system has been extended to support flight and wind tunnel tests of other rotorcraft, but the name is still appropriate to the system's function and has been retained. Before TRENDS, NASA engineers had only limited capabilities for displaying XV-15 data, and could not cope with the large volume of test data. TRENDS was developed to meet the needs of the engineers and coordinate the data. Appendix A contains a chronology of TRENDS' development.
1.1.1 Users

TRENDS is primarily built as a tool for the nonprogramming aeronautical engineer, but it is also used by individuals of other disciplines with or without computer backgrounds. The system supports a wide variety of engineering disciplines from rotorcraft performance and handling qualities, aeroelastics, dynamics, flight control, and loads to tilt-rotor transitions and simulations. Narrative data complement the numerical data, identifying data items and databased flight segments. The system is designed to provide all of the project information a user needs without having to contact the flight-test engineer. Users can access any of the multiple TRENDS databases with the same software, as shown in figure 1.1. TRENDS currently runs on a VAX computer at Ames; hence, it has all of the advantages of the DEC/VMS operating system, including full networking and remote user support.

New 4th-level programming languages can nowadays provide general capabilities for the creation of computerized databases and displays, but in spite of their generality, they fail to provide what is needed by engineers -- a fully pre-defined engineering interface to the data. These new languages still require the research engineer to configure software calls to obtain the data displays he wants, thereby providing user flexibility, but also requiring him to be a programmer and systems designer. The aeronautical engineer who is interested in viewing and analyzing test data is seldom interested in programming. TRENDS was developed to provide the user with a complete system without requiring him to write software or to locate and mount data tapes.

1.1.2 Features

TRENDS has been configured to be a complete database system which serves a variety of users. Among the features which make TRENDS useful are:

1. Capabilities for multiple users and multiple databases.
2. A flexible, prompt-driven interface with easy defaults.
3. Capabilities for searching and plotting statistical data.
4. Narrative storage and searching features.
5. Support for many different graphics devices.
6. Flexible and capable time-history plotting.
7. Pseudo-flight creation.
8. In-line formula specification and evaluation.
10. Database installation and error-checking tools.

These features will be described in some detail in the following sections of this report.
Figure 1.1 Basic TRENDS
Multiple Users of Multiple Databases.
1.2 REPORT STRUCTURE

The structure of the remainder of this report is as follows:

Section 2: TRENDS OVERVIEW
Section 3: TRENDS HIGHLIGHTS
Section 4: DATABASE MANAGEMENT
Section 5: TRENDS DEVELOPMENT
Section 6: CONCLUSIONS

Note: The conclusions presented in Section 6 include a list and discussions of the lessons we have learned as well as our plans for the future expansion of TRENDS.
Section II

TRENDS OVERVIEW

2.0 TRENDS OVERVIEW

This section discusses the TRENDS concept and the considerations which have shaped the system. An overview of the TRENDS database structure is presented. A summary of the TRENDS capabilities is shown in Figure 2.1.

2.1 TRENDS CONCEPT

The initial requirements were to provide a software system to access flight data via a search option and to be able to display statistical min/max data graphically and in tabular printed form. The final product was an interactive, full-blow, menu-driven database operating system. The uniqueness of the concept was that the database was to be immediately accessible to the rotorcraft engineering community and not just to the flight-test engineer who, in the past, would have been responsible for disseminating what he or she concluded were the salient results of the flight test some time (perhaps years) later.

2.1.1 Interactive

The interactive nature of TRENDS is key to the system. The user must be able to interrogate the database directly rather than have to submit a batch job or wait for a data-processing person to generate it. Batch action has a purpose, as does the delegation of tasks to support personnel, but only by hands-on interaction can the serious user most efficiently exercise the tools and the database to solve his problems. On the other hand, the interaction must be simple, robust, and rapid so that senior engineers and managers (or any other users) don't get frustrated by complicated and arcane commands and slow response. The emphasis in the design and development of TRENDS has been to provide an interactive tool which is not only capable, but which can be easily learned and easily used, and which is robust and efficient.

2.1.2 On-line Database

TRENDS was designed to utilize an on-line database in the interests of interaction and efficiency. That is, the information is always accessible, with no requirements for tape-mounts, disk-mounts, or special programs to be run each time to properly install the data in the database. Users can also get immediate access to the flight-test data without having to go through the effort of devising a structure and filling their own databases.
USAGE:

- MENU DRIVEN
- USER-FRIENDLY
- QUICK RESPONSE

- INTERACTIVE
- MULTIPLE USERS
- SELF-CONTAINED HELP
- REMOTE USERS
- GRAPHIC TERMINAL SUPPORT

USER PSEUDO FLIGHT GENERATION

FROM:

DATA SEARCHING
NARRATIVE SEARCHING
DATABASE SEARCHING

DATABASES:

- MULTIPLE FLIGHTS
- MULTIPLE ROTORCRAFT
- XV-15(702 & 703)
- UH-60

ON-LINE

MULTIPLE DATABASE TYPES
- FLIGHT, WINDTUNNEL, MATH MODEL
- MULTIPLE DATA TYPES
- TIME HISTORY, MIN/MAX, NARRATIVE

PLOTTING TYPES

TIME HISTORY
MULTI-FAMILY
MULTI-PLOTS/Page
SNAPSHOTS

AMPLITUDE SPECTRA
HISTOGRAM
MULTI-TEST PTS/Page
DATABASE COMPARISON

PLOTTING ATTRIBUTES

- user friendliness
- automatic labeling

Easy to change Scales & Labels
Easy Filtering & Storing of data
Easy Access to Help Features

Easy Plotting of User Defined Functions
Easy Plotting from 1 --> 16 plots/page
Easy Editing/Saving/Recalling of Plot Setups

Transparent cross plotting of parameters having different data rates

PRINTOUTS & VIEWING

STATISTICS (EACH PARAMETER)
DERIVED PARAMETERS
USER DEFINED FORMATS
FUNCTIONS (USER DEFINED)

STATISTICS - KEY PARAMETER GROUPS
PARAMETER DEFINITIONS/PARAMETER GROUPS
HARMONICS
ALL NARRATIVE, NUMERICAL & HELP DATA

DATA SCANNING/SEARCHING

FLIGHT LOGS
PROJECT LOGS
FLIGHT DESCRIPTIONS

NUMERICAL DATA (Multi-Parameter)
NARRATIVE DATA (Multi test points)
PARAMETER NAMES/DEFINITIONS

ANALYSIS/In-line Analysis Tools:

FORMULA EVALUATION
REGRESSION
CONVOLUTION FILTER
CYCLE AVERAGING

DERIVATIVE & INTEGRALS EVALUATION
FAST FOURIER TRANSFORMS(FFT)
SIMULATION/GTRSIM/Gateway
DATAMAP/Gateway

Figure 2.1 TRENDS CAPABILITIES
The developers of TRENDS feel that nowadays the only data that will ever be looked at by most users are the data that are on line. The ease with which archived data can be accessed, manipulated, plotted and analyzed during an interactive session has caused users to ask for new TRENDS databases to be established for old test data residing on tapes or disks in various formats.

2.1.3 Multi-Rotorcraft

TRENDS has the ability to move from database to database (e.g., from XV-15 to UH-60 to BV-360 windtunnel data) within a single working session. The commands and tools are the same (or very similar), although names of variables change and counters are numbered differently. This feature gives the potential for comparisons.

2.1.4 User-friendliness

User-friendliness is difficult to define explicitly, but easy to spot when it is absent. Great concern has been given to the user-friendliness of TRENDS during design and development. Each change to the user interface is considered carefully as to the logic of prompts, the user's workload, the frustration it is likely to cause, and the input mistakes which may have to be handled. A main menu that shows all of the main options as logical functions is felt to be a good first step toward user-friendliness. Descriptions and supporting narrative to accompany the numerical data are also user-friendly.

2.1.4.1 Main Menu Layout. A concise, well-planned visible menu, in conjunction with patterned prompts and on-line help, is a requirement for user-friendliness. In the TRENDS menu, all major choices available to the user are presented at once without having to branch into an unknown tree type of menu. Brief or detailed on-line help is easily available for each menu item. The TRENDS main menu is column-oriented by logical function. The six column headers, which categorize the listed menu items are:

CONTROL ----> database selection; terminal type; hardcopy option; user functions available; exit from TRENDS

DESCRIPTIVE --> project description; database summary; flight log; flight descriptions; search on narrative; calibration data

DATA-SCAN --> search on numerical data; show key-parameter data; view parameter statistics; customized printout; locate available time-history data

PLOTTING ---> time-history plotting; group plots of performance parameters; plotting of statistical data; time-history plotting of one parameter for many counters; families of plots for statistics
ANALYSIS ----> gateway to analysis programs DATAMAP and GTRSIM;
plotting and printing of harmonic amplitudes;
derivation and plotting of amplitude spectra;
histogram plotting of loads data;

USAGE ----> help; parameter definitions; derived parameters;
user-generated file treatment; time-history groups

The order of features within the menu is a matter of concern and is frequently reviewed. Patterned dialog is used to effect the user-computer interface once an option has been selected from the main menu. Because not all users prefer the same option names or orders within the menu or the same dialog, certain compromises have been incorporated to please a broad range of users.

The combination of a menu with prompting inside the menu items is considered by the authors to be the best user-friendly user-interface format. Forms or pull-down menus and icons have aesthetic appeal, but require very specific terminals, mice, joy-sticks, etc. TRENDS serves a wide variety of interface hardware with a standard scrolling menu, but also provides a screen-managed version of its menu for particular terminals to enable menu-item selection by means of keyboard arrows.

2.1.4.2 **Supporting Narrative.** A database operating system for test data must include narrative to support the numerical data if is to be considered user-friendly. TRENDS includes data item descriptions, flight and test descriptions and project information among its available narrative data. Test descriptions are related to numerical data by flight and test-point numbers.

2.1.4.3 **Plot-specification Dialogue.** One of the most user-friendly features of TRENDS is the simple-yet-powerful, flexible, plot-specification dialogue. The user may specify as little as the names of the parameters used for abscissa and ordinate. TRENDS will then provide scales, labels, headers and plots. The user may, alternatively, specify everything through a straightforward, logical entry syntax. On-line help is available at every step of the dialogue.

2.1.4.4 **Input Error Checking.** It is not necessary to crash the system to find whether a user's input is proper or if a parameter exists, provided the software performs suitable checks. TRENDS checks every character input by the user which could be either a parameter or a function of parameters and determines whether there are any illegal entries. Certain checks are made immediately to determine whether requested data exist in the database. In the name of user-friendliness we are able to eliminate many crashes for incorrect parameter names which might crash the system and frustrate the user if not screened out.

2.1.4.5 **On-line Analysis.** TRENDS lets the user specify formulas involving stored parameters and evaluates these formulas immediately for plotting, searching or listing. In addition, many standard analyses are provided within the system. It is not necessary to program other software or to
2.1.5 System Speed

Great concern has been given to computational efficiency. The chosen VAX-specific file structure enables direct (i.e., keyed) access to the information of interest without extra searching or data-reading. Opening of extra files has been regarded as a time-consuming overhead item and has been held to a minimum. The result of the effort and concern is a system which can search and display large databases rapidly, thereby minimizing the user's effort and frustration.

2.1.6 User Software Exclusion

Potential users of the data often ask how to get the archived data into their own favorite analysis programs or plotting packages. Modules have been supplied for some users to take data, but this is not standard. The choice was made to provide the tools most needed (e.g., plotting routines, spectral analysis) along with the data, so that engineers don't have to devise, interface, and check out tools to do their jobs. This method of operation has been happily accepted by most of the engineering users of TRENDS. Additional requested features and capabilities have been developed and incorporated into the system when they have been judged to have general interest or application. A provision has also been made to access certain other software tools (i.e., DATAHAP and GTRSIM) through TRENDS and to enable them to use data from TRENDS' databases.

2.1.7 Documentation

Users can usually find all the help they need in TRENDS during a working session. User help includes brief descriptions of each menu item and general hints on the use of the system. It also includes detailed help and examples for each program feature. The user can also call up information concerning the database, the project, and the stored variables as part of the normal access of narrative data.

In addition TRENDS is supported by several manuals:

1. TRENDS User's Manual
2. TRENDS User's Reference
3. TRENDS Procedures Manual

Copies of these manuals may be obtained by calling Mike Bondi at NASA Ames, code FAF, (415) 604-6341 or Bill Bjorkman at AMA (415) 964-1844.
2.2 TRENDS DATABASES

Engineering tests, be they flight tests, wind tunnel tests, simulations, or any other tests during which experimental data are collected, have common characteristics. The way that TRENDS accommodates test data from multiple sources, multiple sensors, and multiple test points is to

1. Assign a separate directory for the test data for each vehicle (e.g., segregate XV-15 data from UH-60 data)
2. Assign a unique index to each test point
3. Assign a mnemonic to each sensor and store all of the data for that sensor in a file named for the mnemonic (exceptions will be discussed later)

The path to a test data point is thus given by specifying the test vehicle (which leads to the directory), the sensor mnemonic (which leads to the file), and the test-point index (which leads to the record of interest).

2.2.1 Test Points

The test-point index is commonly called a "counter" in TRENDS because there is a physical counting device in the XV-15 by which the pilot increments the counter for each new test point. This counter is recorded with the other test-point data. XV-15 counters are not reset between flights and thus continue to increase. The counter indices for XV-15 aircraft 703 are now around 14500 for flight 234 (they are also incremented during ground and hangar runs). Counters for UH-60 tests are constructed from flight and run numbers to create a unique test-point index, since run numbers are reset for each flight. Wind tunnel counters are also constructed to give the uniqueness TRENDS requires for rapid record access. The term counter is often used to mean the test-point event as well as the index of that event. Thus "counter duration" means the recorded length of the test-point event.

Each test point of a well-planned engineering test project serves a planned purpose. That purpose or the specific conditions for the test point can usually be described in a few key words of narrative. TRENDS stores and enables a search on these short test-point descriptions as part of the database information. This description, together with recorded and derived data from all of the sensors, completes the information stored for each test point and is indexed (i.e., related and located) by the counter number.

2.2.2 Data Types

Most of the numerical data recorded during engineering tests is in the form of time-histories which consist of a time-series of samples of the measured output from each sensor. Many of the rotorcraft test points are taken at a trimmed or steady condition where many time-histories are basically constant and where the mean values of such parameters are just as useful as the time-histories and are much more economically 2-6
stored. Other statistics besides the mean are also useful (especially per-rev statistics for rotorcraft), so TRENDS precomputes some of them. Such statistical measures (some of which are listed in paragraph 3.2.5) are sometimes called Min/Max data. In the case of wind tunnel data, time histories are usually not available and only the mean values are recorded. As noted earlier, a TRENDS database is completed by adding narrative information in support of the numerical data.

2.2.2.1 Min/Max. This terminology came about because of a digitizing process in which only the minimum and maximum values of the time during each rotor revolution were stored as digital values. These were then used to derive single statistical values for each sensor over the time span of the counter for (1) the average "steady" value over all revs in the counter, (2) the average oscillatory value, and (3) the maximum oscillatory value.

The steady value for one rev is the average of the minimum and maximum values, while the oscillatory value is half of the difference between the maximum and minimum values. Such measures are only meaningful for an engineering test which is influenced by a cyclic phenomenon such as a turning rotor, but statistical measures of some kind (at least the mean value) serve well in any engineering database system to describe the "big picture" covering a collection of different test points. The term "Min/Max" is often used to refer to all such statistical measures in TRENDS.

TRENDS stores a set of statistical measures (Min/Max data) for each parameter and counter of each database. The particular statistics are customized for the particular database (see paragraph 3.2.5). TRENDS has many features for searching, listing, and plotting Min/Max data.

2.2.2.2 Time-History. TRENDS accommodates parameters collected at different data rates with total user transparency when plotting and/or cross-plotting. The requirements for storage and use of time-history data differ between sensors or parameters. For example, altitude or airspeed data are of interest only at a low sampling rate, but must span the duration of the counter. On the other hand, bending moment data for a blade element must be sampled at a high rate to be useful, but need not necessarily span the full counter duration. TRENDS treats several types of time-history data and several "groups". Groups combine several test-data parameters of similar type (e.g., loads, performance, aeroelastics). Some types of time-history data are filtered and decimated before being stored in the database. Not all groups of time-history data are stored for a given counter because of storage limitations. The decision of whether to store certain groups is made by project engineers, as is the decision about appropriate filtering and decimation rates.
2.2.2.3 Narrative. The numerical information stored in a TRENDS database is supported by extensive narrative (textual) information, including

1. Test-point descriptions
2. Detailed flight descriptions
3. Flight logs (brief descriptions)
4. Project data on the aircraft and test program
5. Parameter (data-item) descriptions
6. On-line help for the user

The test-point, flight, and parameter descriptions may be searched by the user. That is, the user can specify character strings (words or phrases) to be used in locating certain stored information. The set of related test points resulting from a text search may be stored and used to identify the data region for subsequent plots or searches. Stored narrative information for flights and counters is used for automatic labeling and headers on plots.

2.2.3 Database Management

The tasks of database management are not given to the general user, according to the TRENDS operational philosophy, but to a database manager. The manager is responsible for filling and editing the database and for monitoring the quality of the data. The manager must find enough disk space, reduce and store the data, assess and fix or report bad data, and process requests from users. Most database managers to date have been support personnel, but selected engineers were given the responsibility for managing the UH-60 flight-test database.

Menus are provided for the database managers to integrate the processes and help in the filling and editing tasks. Supporting files are updated automatically in most cases as part of the filling process. Programs for assisting in the structuring and entry of narrative data are provided as part of the management software. Database management considerations will be discussed in Section IV.

2.3 DATABASES AT AMES

Several rotorcraft test and simulation databases are maintained at Ames. Many similarities may be observed among them. They are all characterized by having multiple parameters and data regions (i.e., runs or test points) and they all have some narrative descriptions to support the numerical results. Databases differ, however, because not all objectives are the same and not all instrumentation systems and data-reduction systems are the same. Each of the current databases at Ames has its own unique aspects.
2.3.1 XV-15 Database

TRENDS was developed to treat XV-15 data; hence, most of the current storage is devoted to the XV-15. Among the unique aspects of the XV-15 database are the following:

1. The counter sequence is not reset for each flight.
2. Four-character itemcodes are used to identify the parameters.
3. Time-history data are categorized into groups.
4. Slopes are calculated and stored for some items.
5. Calibrations are included in the database.
6. There are two XV-15 databases, one for each aircraft.

2.3.2 UH-60 Database

TRENDS was used to support the Phase I NASA/Army flight test of the highly instrumented UH-60 at AEFA and has become a basic tool of the flight-test engineers associated with the project. Some unique aspects of the UH-60 database are the following:

1. Appointed user-engineers, not support personnel, are the Database Managers.
2. Counters are composed of flight and run numbers.
3. Both mnemonics and itemcodes identify data items.
4. Three databases, representing different data releases, are currently accessible.

2.3.3 Wind Tunnel Databases

The TRENDS databases at Ames include wind tunnel databases for HARP and BV360. These were built from input formatted disk files made from data recorded at the DNW facility in The Netherlands. Counter numbers were derived from non-numeric run numbers. "Flight" numbers were derived from the test date. Only run descriptions and mean values of parameters are stored in the database because neither time-histories nor statistics other than the mean were recorded.

2.3.4 Simulation

Results from the tilt-rotor mathematical model simulation, GTRSIM, (see Section 3.4.2) are stored in the user's directory as a database which may be accessed by the GTRSIM/TRENDS interface software for listing, plotting, or comparisons. Counter numbers for simulation runs are supplied by the user or, if inputs to GTRSIM have been taken from the flight-test database, are automatically supplied (as the flight-test counter number). The form in which simulation results are stored differs from the form used in the aeronautical test databases. Future efforts will change the form of the database for simulation results to bring it into agreement with the flight-test databases.
Section III
MAJOR HIGHLIGHTS OF TRENDS

3.0 HIGHLIGHTS SYNOPSIS

This section presents the major highlights of the use of TRENDS to access engineering test databases. These highlights are the menu, the plotting features, the searching capabilities, and the analysis tools. This presentation is not an exhaustive compilation of the capabilities of the system, but rather a representative demonstration (mostly by means of examples) of some of its most powerful and useful features. Many of the system's good features are subtle, user-friendly implementations which can be appreciated only by using the system.

Not all of the capabilities of TRENDS will be addressed here, but the menu and the plotting and searching features and the analysis tools will each be discussed in some detail because these features illustrate the full power of TRENDS.

3.1 TRENDS MENU

The layout and presentation of the main menu have been carefully designed to provide access to the various capabilities of TRENDS in a logical and easy-to-use way. The main menu of TRENDS is shown below.

<table>
<thead>
<tr>
<th>Control</th>
<th>Descriptive Data-scan</th>
<th>Plotting</th>
<th>Analysis</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>703>TAIL NO.</td>
<td>PROJECT SEARCH TIMEHIST DATAMAP HELP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR>TERMINAL</td>
<td>DATABASE KEYS PEPFLOT HARMONIC ITEMDEFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO>PILOTDCPY</td>
<td>LOGSCAN VIEW MINMAX SPECTRA DERIVED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUNCTION</td>
<td>FLIGHTS CPRINT QUIKSELECT LOADS FILES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXIT</td>
<td>WORDSCAN FIND MULTISELECT SIMULATE GROUPS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIBSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The menu shown is for XV-15 databases. The column headings express the general function of the menu items shown below them. This categorization is frequently reviewed to make it as helpful as possible to the user. Each menu item corresponds to a program feature (i.e., program, subroutine, or process) which will, upon invocation, prompt users for further specifications of what they want, through other menus or specific questions. Some minor differences will be seen in the UH-60 menu because some of these menu items are not applicable to the UH-60 database. A program feature is invoked by typing the name of that feature in response to the prompt "YOUR CHOICE:" A user need not type the whole name, but only enough of it to make the choice unique. This ability to abbreviate helps avoid typographical errors and is especially favored by poor typists. When the program feature has been completed or purposely interrupted, TRENDS always returns to this main menu unless the choice is "EXIT".

3-1
3.1.1 Brief Description of Menu Items

When the menu item "HELP" is chosen, the following brief descriptions of the menu items and other help-options are shown.

DATABASE ACCESS OPTIONS

<table>
<thead>
<tr>
<th>DATABASE ACCESS OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAIL NO.</td>
</tr>
<tr>
<td>TERMINAL</td>
</tr>
<tr>
<td>PLTHDCPY</td>
</tr>
<tr>
<td>FUNCTION</td>
</tr>
<tr>
<td>EXIT</td>
</tr>
<tr>
<td>PROJECT</td>
</tr>
<tr>
<td>DATABASE</td>
</tr>
<tr>
<td>LOGSCAN</td>
</tr>
<tr>
<td>FLIGHTS</td>
</tr>
<tr>
<td>WORDSCAN</td>
</tr>
<tr>
<td>CALIBS</td>
</tr>
<tr>
<td>SEARCH</td>
</tr>
<tr>
<td>KEYS</td>
</tr>
<tr>
<td>VIEW</td>
</tr>
<tr>
<td>CPRINT</td>
</tr>
<tr>
<td>FIND</td>
</tr>
<tr>
<td>TIMEHIST</td>
</tr>
<tr>
<td>PERFPLOT</td>
</tr>
<tr>
<td>MINMAX</td>
</tr>
<tr>
<td>QWIKPLOT</td>
</tr>
<tr>
<td>MULTIPLY</td>
</tr>
<tr>
<td>COMPARE</td>
</tr>
<tr>
<td>DATAMAP</td>
</tr>
<tr>
<td>HARMONIC</td>
</tr>
<tr>
<td>SPECTRA</td>
</tr>
<tr>
<td>LOADS</td>
</tr>
<tr>
<td>SIMULATE</td>
</tr>
<tr>
<td>HELP</td>
</tr>
<tr>
<td>ITEMDEFS</td>
</tr>
<tr>
<td>DERIVED</td>
</tr>
<tr>
<td>FILES</td>
</tr>
<tr>
<td>GROUPS</td>
</tr>
</tbody>
</table>

Further, more-detailed descriptions of each of the program features and their use may be called up by the user.
3.1.2 TRENDS-User Dialogue

Once the user has selected a menu item, TRENDS will prompt for the rest of the information which must be specified to find, print, or plot data from the database. Figure 3.1 illustrates the dialogue and the action taken by TRENDS in producing a printout or plot of Min/Max statistical data. A similar dialogue serves users in specifying time-history data. Figure 3.1 shows that for menu selections VIEW, SEARCH, MINMAX, or MULTIPLT the user would first be prompted for an itemcode. In most cases, a mathematical expression can be specified as well as a simple itemcode at this point. There may be more prompts for itemcode, as in SEARCH, where the user sets up a condition template for defining success. The prompt may not specifically ask for itemcode, as in MINMAX, where the user is actually prompted for abscissae and ordinates to set up the plot format. In any case, having specified the itemcode, the user is prompted for a data region (e.g., the flight number). TRENDS then reads a supporting file, FLTCTRMAP.KEY, to find which counters are in the specified flight, opens the itemcode files (files in the database, containing the Min/Max statistical values for each data item) and reads in the data for the requested counters. Then, if the selected menu item was MINMAX or MULTIPLT, TRENDS proceeds to produce plots; otherwise, the information is displayed in printed form.
Figure 3.1 Dialog and Action Taken by TRENDS to Produce Min/Max Statistical Data
3.2 PLOTTING

Another highlight of TRENDS is its plotting capability. The best characteristic of TRENDS' plotting implementation is the ease with which a particular plot may be requested and produced. If users want a time-history or Min/Max plot, they need to specify only the abscissa, ordinate, and counter(s). TRENDS will scale and label the axes and write titles automatically. The user may optionally specify the scales, labels, and titles by means of a simple and logical input syntax.

TRENDS' plotting features are not completely general, but still provide considerable structured flexibility. Complete generality requires too much effort from the engineering user who usually just wants to see the data displayed usefully on a well-labeled, well-scaled plot.

The various plotting features which will be described are

1. TIMEHIST: TRENDS' primary time-history display feature
2. PERFPLP: A time-history snapshot of performance items
3. QWIKPLOT: A "strip-chart" plot for multiple test points
4. SPECTRA: Spectral analysis plots of amplitude vs. frequency
5. MINMAX: Cross-plots of Min/Max statistical measures
6. HARMONIC: Plots of harmonic amplitudes versus Min/Max values
7. LOADS: Frequency distribution histograms of per-rev samples versus load range.

Many different graphics terminals are served by TRENDS. A low-resolution printer-plot capability is available for nongraphic terminals. Hard copies of the plots may be generated in addition to (or instead of) screen plots. The hard-copy plots can be routed to laser or Versatek printers at Ames via dialogue supplied at exit from TRENDS.

3.2.1 Time-History Data

Several menu items or program features may be used to plot time-history data. The most used and most flexible of these is TIMEHIST. It is capable of plotting from one to three plots per page with one or two curves per plot. Each plot page may thus contain from one to six curves. The curves may represent evaluations of formulas involving recorded time-histories. They may also be polynomials resulting from regressor computations on the ordinate as a function of the abscissa (which need not be time, but which may also be another formula involving recorded time-histories). The curves may be filtered versions of recorded time-histories or evaluated formulas or a variety of other quantities. The abscissa may be rotor azimuth (derived) as well as a time-history function. Time shifts for the curves may be specified by the user. Examples of time-history plots are shown in figure 3.2.
FIGURE 3.2 TIMEHIST plotting examples

3-6
3.2.1.1 Functions. The abscissa and ordinates may be specified as formulas as well as simple time-histories. They may also be specified as the names of pre-stored formulas. The following valid examples show some of the formula-evaluation capability of TRENDS.

Prompt

```
PLOT 1 X-AXIS : (M143 + M107) / 2
Y-CURVE 1 : (M143 - M107) / 2
or --> Y-CURVE 1 : POLY(CF+SIN(ALPHA),3)
or --> Y-CURVE 1 : -.5 * SFUNC * GTABLE(VT)
```

Response

```

These examples show algebraic combination of parameters, a third-order polynomial (POLY) of a formula involving parameters and the use of a stored formula (SFUNC) in a formula involving a table lookup (GTABLE). TRENDS parses the inputs to test their syntactical correctness and disallows the entry if it is improper. This formula-evaluation feature is available for use with Min/Max plots and for searches as well as for time-history data combination. Other available functions include integrals and derivatives and a digital (convolution) filter in combination with formulas. The syntax for formula entry is described in Appendix B.

3.2.1.2 Labels and Scales. The examples shown above would all result in automatic scaling and labeling by TRENDS. If users want to specify these, they would enter (for example):

```
PLOT 1 X-AXIS : AVERAGE TORQUE = (M143+M107)/2, -50000, 100000, 25000
```

This specification gives "AVERAGE TORQUE" as the abscissa label and scales the abscissa from -50,000 to +100,000 in grid increments of 25,000. Plot headers (titles) are usually automatic (showing flight and counter descriptions along with aircraft name), but may be overridden completely or in part with user-specified titles.

3.2.1.3 Editing. TRENDS contains an editing feature for recalling and (optionally) changing previously entered plot setups. This feature lets the user save a complex plot specification for later use on another flight or counter. It also lets the user easily change one line (ordinate or abscissa) without having to reenter the rest of the setup specification.

3.2.1.4 Storing. TRENDS has a provision for storing time-histories in the user's directory for later recall. This is particularly useful for storing derived time-histories such as filtered time-series, complex formulas or polynomial regressions. Such stored time-series may be recalled by name for use in formulas. One might store the filtered version of a parameter's time-history, then recall it to use in a
formula for the residual (difference) between the "raw" (unfiltered) and filtered representation of the parameter's behavior. This type of storing is different from storing formulas, because the actual data values for each sample point are stored by the counter for which the function is evaluated, while stored formulas are reevaluated from the database and from previously stored time-histories.

Another useful means of storing time-histories is available in TRENDS. This feature permits writing raw or derived time-histories to an output file in ASCII format for transmittal to another computer, such as a PC. This operation is implemented by use of the PRINT command in TIMEHIST.

3.2.1.5 Help. TRENDS provides help menus for all of the various plotting questions one might have while using TIMEHIST or MINMAX (the most-used plotting features in TRENDS). These menus are called out by the user by typing a "?" at any prompt. The help-menu items include provisions for examining the available database entries as well as instructions and examples. The TIMEHIST help-menus are

```
TIMEHIST SETUP HELP TOPICS

AZIMUTH COMSCALE CVF DERIV EDIT EXAMPLES FORMULAS
FREQ GENERAL INTEG INTERVAL MATHLIB MNEMONIC POLY
PRINT RECALL REPEAT SORT STORE SYNTAX UNSTORE
* or ALL
```

```
TIMEHIST DATA-REGION HELP TOPICS

DATABASE EDIT EXAMPLES FINDCTRS HARDCOPY INTERVAL MVDCS
PRINT RESCALE SAVE SYNTAX TERMINAL TITLE TSHIFT
```

3.2.2 Data Snapshot of Test Point

PERF PLOT provides a means for drawing 4, 9, or 16 time-history plots of different parameters on the same page in a square array. This feature is useful for grouping flight-performance parameters for a visual quick look at a counter. The current implementation permits no formula evaluation or scale or label specification and permits only time as the abscissa. Only one curve is allowed per plot. On the side of flexibility, the user is provided with a capability for specifying which parameters are to be plotted and where they will appear on the page. When one of the specified parameters is not available for the specified counter, its plot space is left blank except for the parameter's name. The user may save plot setups in named files for later recall and modification. Examples of performance plots are shown in figure 3.3.
Figure 3.3. Performance Plots
3.2.3 Strip-Chart Plots for Multiple Test Points

QWIKPLOT provides the means for plotting time-histories of a data item's behavior versus time with up to five test points represented per page. The plot setup process is extremely simple, and the special plotting features such as scaling, labeling, and formula evaluation are precluded. TRENDS will take a specified flight or set of counters, divide the counters up into groups of five, and quickly display the strip charts with a time-scale which is common for all plots of a page. This feature gives a "quick look" at the time histories so that the analyst can rapidly scan the data for anomalies or notable behavior for further detailed study. QWIKPLOT examples are shown in figure 3.4.

Figure 3.4 QWIKPLOT Example
3.2.4 Frequency Data Plots

TRENDS' analytical capabilities include Fast Fourier Transform (FFT) analyses of specified time-histories. The specified time-histories may be formulas involving several stored time-histories or functions of time-histories such as stored filtered functions. TRENDS plots the amplitude spectra versus frequency, one curve per plot, but up to three plots per page. This type of plot may be produced by specifying the abscissa to be FREQ in TIMEHIST or (in simplified form) by using the menu item SPECTRA. Examples of frequency data plots are shown in figure 3.5.

![Figure 3.5. Spectral Examples](image_url)
3.2.5 Statistical Data Plots

Statistical data (Min/Max and harmonic) are plotted by MINMAX, MULTIPLT and HARMONIC. Specification syntax of MINMAX is very similar to that of TIMEHIST and all of the rules for scaling, labeling, and formula evaluation are identical. The data region for one MINMAX plot is a set of counters (e.g., a flight or a pseudo-flight) for which points are to be plotted. As with TIMEHIST, each plot page may contain up to three plots and one or two "curves" of discrete points per plot. MULTIPLT differs from MINMAX in that each MULTIPLT "curve" represents the same ordinate expression (e.g., formula) for a different set of counters while each MINMAX curve represents a different ordinate expression for the same set of counters. HARMONIC plots prestored harmonic amplitudes of data items computed from the one-per-rev versus Min/Max statistics or expressions involving Min/Max statistics. HARMONIC also lists amplitude and phase versus harmonic number.

The prestored statistics for the XV-15 and UH-60 databases are

**XV-15 Tilt Rotor**

- AVS: Average steady (average of per-rev (max+min)/2) DEFAULT
- OSC: Average oscillatory (average of per-rev (max-min)/2)
- MAX: Maximum oscillatory (max-min)/2 encountered on all revs
- SMO: Steady value when maximum oscillatory value occurred
- CMN: Algebraic minimum of all raw data samples in the counter
- CMX: Algebraic maximum of all raw data samples in the counter
- FSC: Full-scale value used (corresponds to 126 byte-counts)
- HN: nth harmonic amplitude (n between 0 and 6, inclusive)

**UH-60 Blackhawk**

- AVG: Average or mean of all of the recorded samples DEFAULT
- MAX: Algebraic maximum of all of the recorded samples
- MIN: Algebraic minimum of all of the recorded samples
- SDEV: Standard deviation of all samples about the mean
- AVS: Average steady (average of per-rev (max+min)/2)
- AVO: Average oscillatory (average of per-rev (max-min)/2)
- V95: 95th-percentile vibratory (95% vibs below this)
- MXV: Maximum vibratory (oscillatory) value encountered
- SMXV: Steady value when MXV occurred
- HN: nth harmonic amplitude (n between 0 and 15, inclusive)

MINMAX permits the plotting of functions of any of these statistics against functions of any others. Examples of MINMAX, MULTIPLT and HARMONIC plots are shown in figures 3.6, 3.7, and 3.8.
Figure 3.6. MINMAX Plots
Figure 3.7. MULTIPLT Multifamily Plots
Figure 3.8. HARMONIC Plot and Print Examples
3.2.6 Histogram Data Plots

TRENDS contains a capability for conducting some elementary loads analysis through the menu-item LOADS. This program feature uses a compressed data form called "minmax-per-rev" (MMR) data, sorted for certain vibrational data items to derive a frequency distribution. This frequency distribution is displayed as a printer-plot histogram showing the number of samples in each load range for the full range of oscillations measured over the counter. LOADS also shows the MMR data values plotted versus rev number for each counter. Plots produced by LOADS are shown in figure 3.9.

Figure 3.9 Load Plot Examples
3.3 DATA SEARCHING AND PSEUDO-FLIGHT GENERATION

TRENDS databases may contain thousands of test points or counters, representing many test conditions and test results. If the database were very small, users could just scan their notes or a listing to find what they wanted. With a large database, users must search the database for those conditions in which they are interested. TRENDS provides several ways of searching the database. A search on numerical data values (i.e., Min/Max statistics or harmonics) may be conducted with SEARCH. A search on text strings in the test-point descriptions is enabled through WORDSCAN. Flight descriptions may be searched using FLIGHTS or LOGSCAN. Availability of time-history data in the database may be determined through menu-item FIND. These search features produce a set of "success" counters when the search process finds the condition, text string, or available time-history data for which the user was looking. The set of "success" counters is often called a "pseudo-flight" or a "derived counter-set." Such a set of counters may be saved in the user's directory by name and then recalled to initiate another search (with different conditions), or a plot or tabulation. This search feature is one of TRENDS' most powerful and useful attributes.

3.3.1 Scanning Numerical Data

Numerical condition searches are carried out in TRENDS by SEARCH. This program feature lets the searcher define a "condition mask" or success template which defines a successful condition, then applies the condition mask to a specified data region (which may be the entire database, one or more flights, or a pseudo-flight) to locate counters which satisfy the desired conditions. The conditions are specified by defining allowable bounds (i.e., a success-range of values) for each test function. The test function is an expression in the Min/Max statistics or harmonic amplitudes (see 3.2.5). Of course, the test function may just be a simple statistic such as the mean value of airspeed. As many as 50 test functions are allowed for one search, but most searches use three or fewer. Condition masks may be saved by name for recall and (optionally) editing and application to another data region at a later date.

3.3.1.1 Example of SEARCH. The following is an example of a numerical search in TRENDS. In this example we will search the XV-15 (A/C 703) database for helicopter-mode test points for which the total average oscillatory mast torque exceeds 5% of the total average steady mast torque. Helicopter mode is signified by the pylon angle (D186) being above 85 degrees.

\[ 85 < D186 < \text{no upper bound} \]

The mast torque condition is

\[ 0 < (H143.0SC+H107.0SC)-(.05*A\text{BS}(H143+H107)) < \text{no upper bound} \]
The itemcode (e.g., D186) when written without an extension defaults to the average steady value. This example illustrates the use of functions of parameter statistics in defining the condition mask. Both of the conditions must be met for a successful search. A search initiated with this condition mask over flights 180 through 230 found 284 test points (counters) out of several thousand for which data were available for those flights in the A/C 703 database. This set of counters was then saved under the name OSCGT5PCT (along with a user-supplied description) for later recall as a data-region specification for plotting or further searching.

3.3.2 Scanning Narrative Data

TRENDS provides a capability for computer-aided scanning of flight and test-point descriptions as a means of locating data regions of interest for further exploitation.

Menu items FLIGHTS and LOGSCAN are used to scan flight descriptions. Flight descriptions include brief titles for each flight (e.g., "FERRY TO DRYDEN," "TRACK & BALANCE," "AERORELASTICS," "MANEUVERING FLIGHT") as well as structured ("PILOTS: DUGAN AND HARDY," "WEATHER: GUSTY") and unstructured ("NOTED OIL LEAK," "PILOTS LIKED THE NEW SIDEARM CONTROLLER") descriptive information. The following lines show some output from FLIGHTS.

AIRCRAFT: 703  
H/Q AND PILOT TRAINING  
T/O GW: 13656

FLIGHT: 180 (G217)  
LOCATION: ARC

FLT DATE: 8 FEB 84  
COUNTERS: 10254-10324  
HRS TO INSPI: 8.2

DIRECTOR: SCHROERS  
PILOTS: GERDES/TUCKER/WILSON

FLT TIME: 2.0

FLIGHT INFO:  
SCAS /H/Q EVALUATION - PILOT TRAINING (WILSON)

WIND: CALM  
TEMP: 51' F  
BARO: 30.06/-175

CONFIGURATION: NORMAL PREFLIGHT

RH FUEL GAUGE CHECKED ON BENCH

TAIL CAMERA INSTALLED

FLIGHT NOTES:  
DIFFICULT TO TRIM WITH SCAS OFF

PILOTS COULD NOT HOLD A/C IN 3/4" STEPS - 1/2" WERE OK

A/C ROLLED TO THE LEFT IN LT&RT PEDAL STEPS

A/C NOT HARD TO FLY WITH SCAS OFF - EASIER WITH SCAS ON

Users who are unfamiliar with the flight-test projects can use TRENDS' searching features to locate flights of interest; flight-test engineers at Ames who use TRENDS do not often use this searching feature because they remember the flights when certain key events took place. TRENDS does provide a depository for all of the flight-descriptive narrative data, however, so that project managers and other investigators have a readily available source of this information even when the flight-test engineer is unavailable.
The most useful descriptive-data search capability has proven to be the program feature called WORDSCAN, which searches the test-point descriptions for key words or groups of words such as "HOVER, " "LEVEL, " "STEP" or "SCAS." WORDSCAN shows the test-point's time-duration and the types of time-history data available in the database as well as the description. The test-point descriptions for the XV-15 database are taken from the brief notes on the pilot's card. They were not composed as structured strings with set keywords or codes to help in a computerized search, but they are very useful nevertheless for locating counters of interest because they are usually phrased or abbreviated in the flight-test vernacular. UH-60 test-point descriptions are somewhat better structured for computerized scanning. An example of WORDSCAN is given below.

Another type of narrative data which may be searched by the TRENDS user is the parameter-descriptive type. The menu-item called ITEMDEFS provides a capability for locating the itemcodes or mnemonics for the sensors of interest. A search for "ANGLE OF ATTACK," for example, would locate itemcode D008 for the XV-15 databases and mnemonic ALPHA for the UH-60 database. Users may also use ITEMDEFS to list all of the "CONTROL POSITION" itemcodes and their descriptions for XV-15 or "ROTOR PARAMETER" names for UH-60.

3.3.2.1 Example of WORDSCAN. This program feature enables the computer-aided search for particular words (i.e., character strings) in the database test-point descriptions. Users may look for test points whose descriptions contain any of several specified words (an OR search) or all of several words (an AND search) or they may look for test points whose descriptions do not contain specified words (NEITHER and NOR searches). A search for "LEVEL" might miss descriptions for which "LEVEL" was abbreviated by "LVL," so the user might ask TRENDS to look for "LEV" or "LVL." As an example of the use of WORDSCAN, we will look for either "AFT," "FWD," or "F/A" in the test-point descriptions of flights 225 through 228 of the XV-15 (A/C 703) database. WORDSCAN prompts "Look for:" and we respond with "AFT,FWD,F/A." (Note the implied OR.) Then WORDSCAN prompts "Flights:" to which we respond "225-228." WORDSCAN finds 28 test points, some of which are

<table>
<thead>
<tr>
<th>Flight</th>
<th>Itemcode</th>
<th>Description</th>
<th>Duration</th>
<th>T-H Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flt 228 CTR 13072</td>
<td>SLOW FWD ACCEL</td>
<td>52.849</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13073</td>
<td>SLOW FWD DECEL</td>
<td>33.933</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13090</td>
<td>1&quot; AFT STEP</td>
<td>9.805</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13091</td>
<td>1&quot; AFT STEP</td>
<td>13.064</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13092</td>
<td>1&quot; FWD STEP</td>
<td>7.518</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13093</td>
<td>1&quot; FWD STEP</td>
<td>11.172</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13094</td>
<td>2&quot; AFT STEP</td>
<td>14.950</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13096</td>
<td>1.5&quot; AFT STEP</td>
<td>9.912</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13097</td>
<td>1.5&quot; FWD STEP</td>
<td>18.092</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13098</td>
<td>3/4&quot; AFT STEP SCAS OFF</td>
<td>12.032</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13099</td>
<td>3/4&quot; FWD STEP SCAS OFF</td>
<td>13.726</td>
<td>HQ</td>
<td></td>
</tr>
<tr>
<td>Flt 228 CTR 13108</td>
<td>3/4&quot; AFT STEP</td>
<td>12.809</td>
<td>HQ</td>
<td></td>
</tr>
</tbody>
</table>
We save the counter numbers of these test points as pseudo-flight or derived counter-set FASTEPS. We then search this pseudo-flight for "SCAS OFF" and find five counters, which we save as FASTPSOFF for later control response investigations in TIMEHIST. (See the example in paragraph 3.3.3.1 below.)

3.3.3 Pseudo-Flight Generation Function

As seen from the preceding examples, the results of searches may be saved by name as pseudo-flights which may be used again to specify the set of counters on which to do further searches. Pseudo-flights derived from numerical-condition searches (SEARCH) are of exactly the same form as those derived from narrative searches (WORDSCAN). A pseudo-flight derived in SEARCH may be used to specify the counters to be used in searching for a particular text string in WORDSCAN and vice-versa. Each pseudo-flight is saved in the user's directory and is self-documented (i.e., the information is included along with the counters) by its creation date and a user-supplied description. Pseudo-flights may be concatenated or appended and stored under another name. A list of the user's stored pseudo-flights may be obtained using program-feature FILES. This program feature also enables deletion of pseudo-flights from the user's directory and copying of pseudo-flights from another user's directory.

3.3.3.1 Recall of Pseudo-Flights. The principal application of pseudo-flights is for plotting Min/Max statistics or harmonics (MINMAX, MULTIPLT, HARMONIC) for a set of related test points. TRENDS accepts pseudo-flights by name in response to the prompt for data region in any of the plotting, listing, or searching program features. For example, the prompt-response dialogue for data region in MINMAX might be

Enter flights: ALLHOVERS

where ALLHOVERS is the name of a set of counters whose test-point descriptions included the word "HOVER." Pseudo-flights may be used to specify the families of points for each curve in MULTIPLT. For example, one might use SEARCH to define pseudo-flights "PYLON30," "PYLON60" and "PYLON75" for families of test points flown at several different pylon angles, then use MULTIPLT to plot mast torque versus airspeed for those families.

Another application of pseudo-flights is as a series of counters for sequential time-history plotting applications. The data-region prompt-response dialogue in TIMEHIST might be

Enter counters: FASTPSOFF

where FASTPSOFF is the name of a pseudo-flight of longitudinal steps with SCAS off, derived by use of WORDSCAN. TIMEHIST would show the plots for each counter of the pseudo-flight one by one. If the "hardcopy-only" plotting option is selected, no user intervention is required to produce time-history plots for the entire pseudo-flight.

3-20
3.4 ANALYSIS

TRENDS could have been designed as a tool for simply storing, retrieving and displaying flight-test data, leaving the task of interfacing the data with analysis tools to the individual user. Some TRENDS users with specialized analysis tools prefer that mode of operation, but most appreciate having analysis tools integrated into the system. Some of the analytical capabilities of TRENDS are in-line functions (e.g., derivatives, filters, polynomial fits, formula evaluation), and others are expressed as gateways to other tools (e.g., DATAMAP, GTRSIM). Analytical capabilities have developed according to the needs of users and will probably increase in the future as other needs are recognized.

3.4.1 In-line Analysis Tools

Most of the in-line analysis tools provided with TRENDS are for operations on time-history data (e.g., derivatives, integrals, filters, spectral analysis, cycle averaging), but some (formula evaluation, polynomial regression) are applicable to either time-history or statistical (i.e., scalar) data. Each of these in-line tools is called out by the user via a structured syntax and/or keywords, with no requirement for recompiling the program or passing the data to another program.

3.4.1.1 Formula Evaluation. This extremely powerful and useful capability enables the plotting or searching of functions not explicitly stored in the database, but that are derivable from stored numerical data. The formulas may contain derivatives and integrals as well as library functions such as trigonometric functions, square roots, or table lookups. Users may simply want to rescale or bias a variable or change its units (to metric, for example) for plotting, or they may want to root-sum-square several parameters. These and many more possibilities exist within TRENDS under the category of formula evaluation. TRENDS contains a program feature (menu-item FUNCTION) for storing often-used or complicated formulas or expressions by name. These formulas may be used alone or within other in-line or stored formulas for plotting or searching applications.

3.4.1.2 Derivatives and Integrals. These calculus operations are among the operations permitted on time-series in TRENDS. These are useful for deriving rates or for integrating rates when the desired quantities have not been recorded in the test or for comparisons when both rates and position or angle data have been recorded. One use of the derivative has been to derive ground speed from recorded radar tracking position data during XV-15 acoustics tests. Integrals have been used to compare measured angular data with that obtained by integration of angular rate data. Implementation of these operations in TRENDS is as simple sums and differences of time-series, scaled appropriately by the time increment between samples. These operations may be used in conjunction with any of the other in-line operations with very few exceptions. One of the exceptions is that differentiation of an amplitude spectrum is not allowed, but an FFT of the derivative of a time
history is legitimate. Derivatives and integrals are generally allowed in expressions and may operate on mathematical expressions as well.

3.4.1.3 Fast Fourier Transforms. The FFT is available as an analysis tool in SPECTRA and TIMEHIST for analyzing the frequency content of a given time-series. The FFT analysis may operate on formulas or expressions involving several time-series as well as on individual recorded parameter time-histories. The algorithm used in TRENDS was taken from DATAMAP.

3.4.1.4 Regression. Univariate polynomial regressions (i.e., polynomial fits) up to third order are available in both TIMEHIST and MINMAX. Regression is also automatically used to provide reference curves in HARMONIC. The polynomial least-squares fit uses the abscissa expression as its independent variable and fits the ordinate expression to it. The polynomial is evaluated for each abscissa point and line-plotted. The coefficients are not stored, but are displayed in the plot legends.

3.4.1.5 Convolution Filter. This digital low-pass filter may be used in TIMEHIST to remove unwanted high-frequency components from a time series. The convolution filter is not recursive, but operates with the entire time-series, using a window (selectable as either Hanning or half-cosine) to produce a result which exhibits no appreciable lag. The time-series upon which the filter operates may be an expression involving several time-series. The filtered result cannot be used in a formula or expression directly, but may be stored by name and counter for recall and potential use in formulas.

3.4.1.6 Cycle Averaging. Rotorcraft analysts are frequently interested in the behavior of some parameter as a function of rotor azimuth. TRENDS provides a capability (adapted from DATAMAP) for displaying rotor azimuth as the abscissa in TIMEHIST plots, using a technique known as cycle averaging. The averaging comes about because the time-histories differ somewhat from cycle to cycle (i.e., from one rotor rev to the next) and the analyst is usually more interested in the commonality than the differences, so the data from a specified number of cycles are averaged together for display. Each cycle is broken into equal increments of azimuth and then the measured data are interpolated to the times which correspond to each discrete azimuthal value. Neither the XV-15 nor the UH-60 instrumentation systems actually measures rotor azimuth, but rather provide a blipper or trigger (i.e., a bit in a code word) to signal when the rotor passes a certain point in its cycle. Rotor azimuth is derived from the blipper signal under the assumption that azimuth angle is a linear function of time over each cycle.
3.4.2 Simulation

Aircraft simulations are usually not integrated with flight-test analysis tools such as TRENDS and it is a major job to make other than gross comparisons of simulation and flight-test results. One non-real-time (i.e., off-line, strictly numerical) simulation, GTRSIM (Ref. 1), has been integrated with TRENDS. This "Generic Tilt-Rotor Simulation" is an Ames-developed derivative of a program originally developed at Bell Helicopter Textron (BHT). It models the XV-15 and could be made to model the V-22 and other tilt-rotorcraft as well. Future effort will be directed toward integrating other simulations with TRENDS.

3.4.2.1 GTRSIM. This simulation is capable of finding trim conditions and displaying control responses (among other things) as functions of specified model parameters, control inputs, and flight conditions for the XV-15. An interface has been made with TRENDS so that the analyst can conveniently access flight conditions and control-position time-histories from the XV-15 database to use as inputs to GTRSIM. The analyst may then run GTRSIM and store the results for comparison with flight-test results. A correspondence has been made between simulation-variable mnemonics and flight-test itemcodes, including differences in units between the two data sources.
3.4.3 DATAMAP

DATAMAP, "Data from Aeromechanics Test and Analysis--Management and Analysis Package," (Ref. 2) is a powerful and elegant tool for analyzing rotorcraft test time-history data. Originally developed for the Army by BHT, DATAMAP has been modified and improved at Ames. Some of its capabilities are duplicated in TRENDS (e.g., spectral analysis, convolution filtering, cycle averaging), but it has many more analytical capabilities. An interface has been provided between TRENDS and DATAMAP to enable DATAMAP to access data from TRENDS databases so that serious analysts can use TRENDS to locate data regions of interest, then move to DATAMAP for detailed investigations.

3.4.3.1 Capabilities of DATAMAP. A brief list of DATAMAP's features follows.

**ANALYSIS OPTIONS**

<table>
<thead>
<tr>
<th>Amplitude Spectra</th>
<th>Stochastic Process Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic Analysis</td>
<td>Frequency Response Function</td>
</tr>
<tr>
<td>Digital Filtering</td>
<td>Coherence Function</td>
</tr>
<tr>
<td>Moving-Block Damping</td>
<td>Auto-spectral Density</td>
</tr>
<tr>
<td>Cycle Averaging</td>
<td>Auto-correlation</td>
</tr>
<tr>
<td>Min/Max Analysis</td>
<td>Cross-correlation</td>
</tr>
<tr>
<td>Acoustic Analyses</td>
<td>Cross-spectral Density</td>
</tr>
<tr>
<td>Perceived Noise-Level</td>
<td>Basic Statistical Analyses</td>
</tr>
<tr>
<td>Narrow-band Analysis</td>
<td>Mean</td>
</tr>
<tr>
<td>Octave Analysis</td>
<td>Variance</td>
</tr>
<tr>
<td>Third-Octave Analysis</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>A,B,C,D Network Integration</td>
<td>Chi-square Test for Normal</td>
</tr>
</tbody>
</table>

**DERIVED PARAMETERS**

<table>
<thead>
<tr>
<th>True Airspeed</th>
<th>Blade Static Pressure Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Azimuth</td>
<td>Blade Normal Force Coefficient</td>
</tr>
<tr>
<td>Rotor RPM</td>
<td>Blade Chordwise Force Coefficient</td>
</tr>
<tr>
<td>Shaft Horsepower</td>
<td>Blade Pitching Moment Coefficient</td>
</tr>
<tr>
<td>Shaft Thrust Coefficient</td>
<td>Blade Displacement</td>
</tr>
<tr>
<td>Shaft Torque Coefficient</td>
<td>Blade Local Flow Magnitude</td>
</tr>
<tr>
<td>Density Altitude</td>
<td>Blade Local Flow Direction</td>
</tr>
</tbody>
</table>

**GRAPHICAL FEATURES**

<table>
<thead>
<tr>
<th>X-Y Plots:</th>
<th>Multiple curves on one plot (see figure 3.10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear or log scales in either direction</td>
<td>Small data windows can be selected</td>
</tr>
<tr>
<td>Small data windows can be selected</td>
<td>Tektronix cursor can be accessed to measure points</td>
</tr>
<tr>
<td>Contour Plots:</td>
<td>Rectangular or cylindrical format</td>
</tr>
<tr>
<td>Interval, initial level, density are all selectable</td>
<td></td>
</tr>
<tr>
<td>Surface Plots:</td>
<td>Rectangular or cylindrical format</td>
</tr>
<tr>
<td>Surface may be viewed from any angle</td>
<td>Conversion of dependent variable units</td>
</tr>
<tr>
<td>General:</td>
<td></td>
</tr>
</tbody>
</table>

3-24
Figure 3.10  Plot Examples from DATAMAP.

3-25
Section IV

DATABASE MANAGEMENT

4.0 DATABASE MANAGEMENT INTRODUCTION

This section deals with acquiring, storing and maintaining flight data in the TRENDS database. The TRENDS philosophy is that the Database Manager is in charge of these tasks, so that the flight test engineer, analyst, or project manager is free of these responsibilities.

In our system the Database Manager is tasked to gather the preprocessed digital tapes from the flight-test center; input the correct parameters per test point for filtering and decimation; enter and reformat the data into the TRENDS format; compute the derived parameter quantities and check the data validity. These steps are semiautomatically performed by using the database management menu; once the parameter sets and counters have been decided upon, most of the processing is automatic. Validity checks are automatic, but if bad data shows up, the Database Manager must look at the data plots individually. The connection between the database management software and the accessing software of TRENDS is illustrated in figure 4.1. Descriptions of menus, menu items and solutions to problems involving database management will be addressed in this section.

4.1 DATABASE MANAGEMENT MENUS

Database management menus, similar to the data-accessing menu of TRENDS have been developed to integrate the database management tasks. Separate menus exist for the XV-15 and UH-60 database management functions because the procedures differ significantly. Future efforts will be undertaken to investigate commonalities in the processes and to develop an integrated database management menu.
Figure 4.1 Relationship Between Database Managing Software and Accessing Software
4.1.1 XV-15 Database Management Menu

The database management menu for the XV-15 database is

<table>
<thead>
<tr>
<th>Flight Data Input</th>
<th>Display Files</th>
<th>Summarize</th>
<th>Data Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT DESCRIPTIONS</td>
<td>CHECK T-H</td>
<td>FSTATUS</td>
<td>COPY</td>
</tr>
<tr>
<td>TEST-POINT NARRATIVE</td>
<td>VIEW T-H</td>
<td>CONSISTENCY</td>
<td>REPAIR</td>
</tr>
<tr>
<td>DATA REQUEST</td>
<td>KEY FILE</td>
<td>SUMMARIZE</td>
<td>DELETE</td>
</tr>
<tr>
<td>MINMAX DATA</td>
<td>CTRCAT</td>
<td>BATCH CHECK</td>
<td>INPUT LIST</td>
</tr>
<tr>
<td>DERIVED DATA</td>
<td>THFCAT</td>
<td>REPORT</td>
<td>TAPE LIST</td>
</tr>
<tr>
<td>GROSS WEIGHTS</td>
<td>ICS BY CTR</td>
<td>VALIDITY CHECKS</td>
<td>DESPIKE</td>
</tr>
<tr>
<td>TIME-HISTORY DATA</td>
<td>WORDSCAN</td>
<td>SCREEN</td>
<td>FILTER</td>
</tr>
<tr>
<td>SET DIRECTORY</td>
<td>ITEMDEFS</td>
<td>TRENDS</td>
<td>GROUPS</td>
</tr>
<tr>
<td>HELP</td>
<td>SEARCH</td>
<td>TMPTRENDS</td>
<td>NOMINALS</td>
</tr>
<tr>
<td>EXIT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.1.1 Menu Items. The functions of the menu items are

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description of Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT DESCRIPTIONS</td>
<td>Enter descriptions for each flight</td>
</tr>
<tr>
<td>TEST-POINT NARRATIVE</td>
<td>Enter a short description for each test-point</td>
</tr>
<tr>
<td>DATA REQUEST</td>
<td>Display or enter requests for T-H data by flight</td>
</tr>
<tr>
<td>MINMAX DATA</td>
<td>Reformat the Min/Max list file produced on FOX VAX</td>
</tr>
<tr>
<td>DERIVED DATA</td>
<td>Calculate and store additional Min/Max data</td>
</tr>
<tr>
<td>GROSS WEIGHTS</td>
<td>Enter initial gross weight and center of gravity</td>
</tr>
<tr>
<td>TIME-HISTORY DATA</td>
<td>Process data from FOX-produced compressor tapes</td>
</tr>
<tr>
<td>SET DIRECTORY</td>
<td>Set aircraft tail number; change file locations</td>
</tr>
<tr>
<td>HELP</td>
<td>Display purpose of menu items</td>
</tr>
<tr>
<td>EXIT</td>
<td>Return to VHS</td>
</tr>
</tbody>
</table>

Display File Contents

| CHECK T-H | Display contents of individual T-H files--one line/ctr |
| VIEW T-H | Display contents of Min/Max files--one line/counter |
| KEY FILE | Display contents of FLTCTRxxxx.KEY files |
| CTRCAT | Display contents of COUNTER.CAT--one line/counter |
| THFCAT | Display contents of THFILES.CAT |
| ICS BY CTR | Display contents of COUNTERS.xxx files |
| WORDSCAN | Call WORDSCAN to search/display counter descriptions |
| ITEMDEFS | Call GROUPITEM to display/search item definitions |
| SEARCH | Search values in Min/Max files |
Summarize
---
FSTATUS

CONSISTENCY
SUMMARIZE

BATCH CHECK
REPORT

VALIDITY CHECKS

SCREEN

TRENDS

THPTRENDS

Data Handling
---
COPY
REPAIR
DELETE
INPUT LIST

TAPE LIST
DESPIKE

FILTER
GROUPS
NOMINALS

Display by flight total counters by data group
Tally and display counters per group for all flights

Tally and display status of data and support files by flight
Summarize the available data in the database for a given flight
Create and submit command file to check database status
Produce a printable report file
Include summary of contents and storage of the database
Compile and process "Summary of Data Spikes"
Compile and process "Summary of Data Spikes"
Test the value of data points (from Min/Max files)
against a standard list of boundary values (NOMINALS)
Call TRENDS and leave this utility, pointing
to data in the XV-15 TRENDS database
Call TRENDS and leave this utility, pointing to
processing location of the data

Copy T-H counters from elsewhere by flight or counter
Correct or alter values for data in the database
Delete T-H flights or counters from the database
Display/edit itemcode lists + filter freq. + decimation
Read and modify files used by the DCMPRS program
Display/edit list of tapes with CCF Library VSNs
Perform search for spikes on raw data files
Replace data values and write to another file
Use the convolution filter on specified files of data
Display/search items by groups
Display, search, or modify a standard list of normal
limits of valid data values for selected itemcodes
4.1.2 UH-60 Database Management Menu

The database management menu for the UH-60 database is

<table>
<thead>
<tr>
<th>Flight Data Input</th>
<th>Control/Edit</th>
<th>Database</th>
<th>Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT DESCRIPTIONS</td>
<td>HOT LIST</td>
<td>FSTATUS</td>
<td>SCAN</td>
</tr>
<tr>
<td>TEST-POINT NARRATIVE</td>
<td>DEFINE ITEMS</td>
<td>ITEMDEFS</td>
<td>COPY</td>
</tr>
<tr>
<td>NUMERICAL DATA</td>
<td>HELP</td>
<td>WORDSCAN</td>
<td>DELETE</td>
</tr>
<tr>
<td>TAPE-READ</td>
<td>COMPRESS</td>
<td>TRENDS</td>
<td>MASK</td>
</tr>
<tr>
<td>LIST MES,EU FILES</td>
<td>EXIT</td>
<td>INSPECT</td>
<td></td>
</tr>
</tbody>
</table>

### 4.1.2.1 Menu Items. The purpose of each of these menu items is

- **FLIGHT DESCRIPTIONS**: Enter flight description data (BASKER)
- **TEST-POINT NARRATIVE**: Enter test-point descriptions (INPCOM)
- **NUMERICAL DATA**: Run FILLER to reformat AEFA data for TRENDS
- **TAPE-READ**: Tape-to-disk commands to load AEFA data on NEP
- **LIST MES,EU FILES**: Display contents of MES748fff.DAT and EUfff.DAT
- **HOT LIST**: Enter items, filter, decimation for T-H storage
- **DEFINE ITEMS**: Enter item-descriptive data (FILLDINFO)
- **HELP**: Display purpose of menu items
- **COMPRESS**: Compress the ITH files
- **EXIT**: Return to VMS
- **FSTATUS**: Display status of support files in the database
- **ITEMDEFS**: Call ITEMDEFS to display/search item definitions
- **WORDSCAN**: Call WORDSCAN to search/display counter descriptions
- **TRENDS**: Call TRENDS and leave this utility
- **INSPECT**: Display contents of specified *.TIM files
- **SCAN**: Display T-H counters stored for a flight or counter
- **COPY**: Copy T-H counters elsewhere for a flight or counter
- **DELETE**: Delete T-H flights or counters from the database
- **MASK**: Comment out specified T-H flights or counters
4.2 INSTALLING DATA INTO TRENDS

TRENDS databases are made up of selected groups of parameters on the basis of each test point. Decisions have to be made by the Flight Test Director or his assistants as to which data (of those available) are to be included in the database. It is during this selection process that the first major data compression is performed. The quality of the data has to be monitored and steps have to be taken to correct problems where possible and exclude bad or misleading information from the database. Derived data to be accessed from TRENDS (e.g., Min/Max statistics, nonrecorded-but-derivable standard measures, harmonics) must be computed and stored. All of these tasks fall under the function of installing data into the database.

4.2.1 Formats and Media

The media on which data come to TRENDS include magnetic tapes, disk files, and printouts (or typed or handwritten pages). The most common source is magnetic tape. Tapes come in several formats, among which the following have been used:

1. Compressor tapes from ARC (tagged integers)
2. Compressor tapes from AEFA (tagged floating point)
3. RTM 45 tapes from Crows Landing (positional integers)
4. Bell Standard-label (positional integers)
   a. time-histories
   b. harmonic time-histories
   c. Min/Max-per-rev
5. Ames/Bell flight logs (ASCII descriptions).

Some of the data arrive as disk files:

1. Engineering Data Files (EDFs) (positional floating point)
2. Min/Max listing files from OFI (formatted floating point)
3. Wind tunnel data for HARP and BV360 (formatted floating point)

4.2.1.1 Reformattting Programs. A generic program for reformattting has not yet been implemented for all data formats, although this is desirable. In addition to reformattting the time-history data, reformattting programs perform other auxiliary tasks, such as deriving unmeasured parameters, filtering, decimating, computing Min/Max statistics, etc. Many of the processes are duplicated for each reformattting program, which in hindsight is a poor practice because of the upkeep required for one program versus that for many, but the programmer is sometimes seduced into nonoptimal choices when trying to develop software rapidly.

4.2.1.2 Processing Time. Compressor-tape processing time, even on a VAX 8650, is significant. The following computation is a guide for the XV-15:

\[ \text{CPU time (sec)} = (10 + 1.5 \times \text{items}) \times \text{counters} \]

or

1 hour of CPU time ---> for 90 parameters and 25 counters
where the counters are from 15-20 sec long, the average sample rate is 100 samples/sec and where “items” represents the number of parameters selected for storage as time-histories.

4.2.1.3 Prompting Programs. Some portions of a TRENDS database (in particular, the narrative portions) are entered from printed sheets by someone who types the data in at a keyboard. The data are stored in TRENDS in binary, keyed-access files which cannot be changed with the system editor. Prompting programs (in particular, BASKER for detailed flight data and INPCOM for test-point descriptions) are provided via database management menus to assist the data-entry person in the task of filling each field in the proper format. Narrative information is important in the TRENDS database; hence, good tools for data entry increase the likelihood that the narrative information will be entered properly.

4.2.2 Data Storage Capacity Considerations

An important practice that not only improves data compression, but is implicit in the rapid processing of flight data, is the use of the prime-data bit and counter reference point in aircraft data acquisition systems. Implemented in the cockpit of each XV-15 aircraft is a push-button which the pilot presses when he is ready to take his test-point data. Upon pushing the button, a bit (the “prime-data” bit) is set high in the data stream. When the button is pressed again the prime-data bit drops low and a test point counter (CNTR), which is a separate digital word in the data stream, is incremented. Hence, onboard the aircraft in real time both the prime test period and counter numbers are automatically recorded in the data stream. The counter number thus identifies the prime-data time interval of interest. This interval, called a burst, run, maneuver, or test point by different people, is usually called a counter in TRENDS vernacular. The flight data, including the prime-data bit and counter number, are telemetered down to the ground test facility and output to stripchart time-tick per recorders, where test engineers monitor the test's progress. If the test director feels that a test-point is unsatisfactory, he can ask that it be repeated, identifying it by the counter number. The counter number and the prime-data bit are both used in post-flight processing to locate intervals of interest in the data stream. When the prime data bit and counter number are available, time-of-day bounds do not have to be specified to identify the data interval of interest. A list of bad test points to be skipped during post-flight processing is given to the ground data center immediately after each flight. TRENDS uses the counter number to key all of its test-point data, thereby relating test-point narrative to all types of numerical data.

Not all of the flight-test data from a large project can be stored for access by TRENDS users. Bad counters and non-prime data have not been included, for example. Because of the high data-acquisition rates (up to 500 samples/sec for the XV-15 and 2000 samples/sec for upcoming UH-60 tests), the additional measures discussed below are taken to further reduce data-storage requirements.
4.2.2.1 Counter Selection. Not all of the counters (test points) which are recorded in tests are included in the databases. If problems arise in instrumentation, data reduction, or test procedures to negate the value of a test point, or if a test point is judged to have no value relative to test objectives, it will not be included in the database. Decisions about what is to be included are made by flight-test engineers who are familiar with the test objectives and test results. For the XV-15 case, these engineers are provided with a list of the counters (with descriptions) as a file on the VAX. They edit the file to form a request specifying which counters and time-history groups are to be included in the base. Database management personnel then fill the database according to the request.

4.2.2.2 Groups. One means of reducing storage requirements is by definition and selective storage of time-history groups. Of the 350-odd parameters usually recorded for XV-15 tests at Ames, only about 90 are of general interest as accessible time-histories in TRENDS. These are the "performance" or "handling qualities" parameters such as airspeed, stick positions, etc. For some test points, not even these need be stored as time-histories because the Min/Max statistics provide enough information to satisfy the test objectives. For other test points, different groups of parameters are important to save, depending on the particular objectives associated with the flight and test point. The research engineers were consulted to determine which groups should be established, the data items making up each group, and appropriate filter cutoff frequencies and sampling (decimation) rates.

The following groupings have been defined for the XV-15 database:

<table>
<thead>
<tr>
<th>ITEM CODE GROUPS</th>
<th>time-history FILE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEREOELASTIC</td>
<td>FILTERED, FULL CNTR, 26 items</td>
</tr>
<tr>
<td>CONVERSION</td>
<td>UNFILTERED, FULL CNTR, 23 items</td>
</tr>
<tr>
<td>HANDLING QUALITIES</td>
<td>FILTERED, FULL CNTR, 70 items</td>
</tr>
<tr>
<td>HARMONICS</td>
<td>UNFILTERED, 1000 PTS/CNTR, ABFMS</td>
</tr>
<tr>
<td>MANEUVERS</td>
<td>FILTERED, FULL CNTR, 88 items</td>
</tr>
<tr>
<td>SPECIAL AEREOELASTIC</td>
<td>UNFILTERED, FULL CNTR, 10 items</td>
</tr>
<tr>
<td>SPECTRALS</td>
<td>UNFILTERED, 1000 PTS/CNTR, ABFMS</td>
</tr>
<tr>
<td>TRANSFER FUNCTION</td>
<td>UNFILTERED, FULL CNTR, 13 items</td>
</tr>
</tbody>
</table>

The XV-15 groups are defined in greater detail in appendix C.

A new concept, the "HOT-LIST" concept, was implemented in February 1987 to enable the flight-test director to change the parameters to be stored, their filter cutoff frequencies, and their sampling rates on a flight-by-flight or counter-by-counter basis as the database is filled. This concept has been implemented only for use with the UH-60 database.

4.2.2.3 Integer Storage. One means of data compression used by TRENDS is to store all time-history data as scaled 2-byte (16-bit) integers as opposed to 4-byte floating-point engineering-unit values. Most
of the data are acquired with only 12 bits (or fewer) of precision anyway, so no information is lost by limiting the stored precision to 16 bits. Engineering-unit scaling is applied when the information is retrieved for use in TRENDS. Scales and biases are stored along with the integer data. This storage technique essentially doubles the storage capacity of the given disk space over that of floating-point storage. The trade-off is a small penalty in computer time to float and scale the data. When the input source is in calibrated floating-point form, as it is with UH-60 data from AEFA, TRENDS determines the range of data for each sensor and counter, then derives scales and biases which will serve to rescale the data when they are stored as 2-byte integers.

4.2.2.4 Filtering and Decimation. Another method of data compression used by TRENDS is the filtering and decimation of some time-histories before they are stored in the database. The convolution filter is applied to specified parameter time-histories, then only every nth sample of the filtered time-history is stored. The determination of needed bandwidth and sampling rate is made by knowledgeable engineers. The lower plot in figure 4.2 shows the filtered representation of the raw data shown in the upper plot. The effective time interval between samples is stored as part of the data. Synchronization of the data for two or more time-series being cross-plotted or used together in formulas is accomplished in TIMEHIST by interpolation of less-frequently sampled series to the sample times of more-frequently sampled data.

4.2.2.5 Series Truncation. Still another means of compression used by TRENDS is the truncation of certain time-series before they are stored in the database. The primary use of many recorded parameters (e.g., acceleration or bending moment) is to measure their frequency content. The analyst wants to know this information relative to an interval of steady flight at some particular flight condition, so it is useless to store the data across a transient part of the test point. A short burst of data is all the analyst wants, so it is both economical and reasonable to truncate the data to a short time interval. In the case of UH-60 data, a "cut-and-save" process is used to extract a short interval of the most useful data from the longer recorded test point for which data are available. This interval is determined by looking at TRENDS plots of certain low-frequency parameters temporarily stored for the full counter.

4.2.2.6 Rotor Rev Averaging. Pressure data from upcoming UH-60 tests will be recorded at 2000 samples per second, generating big storage problems. It is anticipated that these data will be compressed by averaging three or more rotor revs together to generate one averaged rotor rev of pressure data, hence significantly compressing the data to be stored.
4.2.3 Data Quality

There are always problems with real test data. Instrumentation is imperfect. Measurements are imperfect. Time-code data often contain anomalies which affect the processing of all test data. Data reduction is prone to errors. Good data differ from bad data only in the degree of imperfection. To avoid including "bad" data in the database, either the computer or a knowledgeable engineer must make a judgement. The problems of database management concerning the quality of test data are

1. How can bad data be detected?
2. How can bad time code data be detected?
3. Once detected, how can bad data be corrected?

4.2.3.1 Checking Bad Data. Given the time, tools, and interest, a knowledgeable aeronautical engineer can look through flight-test results and locate most of the problems with the data. We would like to have computer software which could do the same thing, but we have not yet succeeded. Users are encouraged to report suspicious data to the Database Manager so that it can be corrected, flagged, or deleted. Users are also reminded that they are looking at real test data in TRENDS.

Certain gross checks are made automatically by the database management software of TRENDS. For example, the XV-15 pylon angle is limited to the range of about 0 to about 95 degrees, so software can flag a problem if this parameter measures, say, 234 degrees. If the problem turns out to be a bad bias value, this can be corrected. Such checks are not generic, but are application-specific. Another check made by TRENDS is to monitor the change between time-history samples (a slope check) and report instances when such changes exceed preset bounds. When the bounds are exceeded, raw data are stored (even if storage of raw data had not been requested) for later plotting and investigation. Band-edge problems can also be detected and flagged automatically. Problems which persist are brought to the attention of the flight-test and instrumentation engineers.

The band-edge problem shown in the upper plot of figure 4.2 was caused by an improper transducer bias on the pilot's g-load signal (XV-15 itemcode A019). The problem was detected during automatic data processing and reported to instrumentation personnel for correction. The lower plot shows the filtered version of the data in the upper plot. This version, derived using the convolution filter and a cut-off frequency of 2 Hz, does not exhibit the band-edge problem.

4.2.3.2 Despiking Data. TRENDS' database management software includes provision for despiking time-histories and then for recomputing derived statistics and filtered-decimated time-histories from the despiked data. Single-point spikes (i.e., wild points, outliers) and some other errors which can be detected can be replaced by interpolating between the wild point's neighbors. Figure 4.3 illustrates a time-series with spikes (the upper plot, autoscaled) and the same time-series with the spikes removed automatically.
Figure 4.2 Band-Edging and Filtering Example
Figure 4-3. Example of Despike Program
4.2.3.3 Data Credibility. In the early days of TRENDS' development, users and potential users were not confident that the database would give them correct answers. Those XV-15 engineers had some degree of confidence (justified or not) in the printed Min/Max statistical reports provided to them by the Ames Ground Data Center (Code OF1), because the reports compared adequately with stripcharts which were generated during the flight. The statistical reports were ASCII files from which data could be extracted for inclusion in the database and the reports were usually available before time-history tapes could be obtained and processed to derive the Min/Max statistics. These ASCII files were selected as the source of Min/Max statistical data for TRENDS primarily because of their availability. However, a side benefit of their use was soon realized by the TRENDS managers when we saw the user community confidence in TRENDS rapidly increase because the TRENDS values were indeed the same as in the original printouts.

4.2.3.4 Time Code Problems. Although the aircraft time code generator is not a prime consideration in the way that TRENDS stores and accesses data, it cannot be neglected. In our data-acquisition system at Ames, that part of the time code which should logically contain days contains the counter number instead. Although it is less likely to happen than a glitch in the seconds word (which changes more rapidly), an incorrect counter sequence number caused by a time anomaly affects the unpacking of all data. This can cause data to be stored in the wrong location and it can wreak havoc with any automatic-processing logic. We have no general solution to this problem, but it is mentioned here because a significant effort can be required to solve such problems as they come along. It is useful to have counter number imbedded in the time code, because time code is telemetered to the ground and the counter number can then be used to identify data regions on the strip charts. It may be noted that data are stored not on the basis of time, but on the basis of sample rate in the data-acquisition system, since the rate is more reliable. Parameter files in TRENDS define what the sample rate is for each parameter (e.g., 251 samples/sec), so samples are separated in time by the reciprocal of the sample rate. Time is not stored per se in TRENDS files, except for the time of the first sample of each parameter. This initial time may differ between parameters (i.e., time skew), so it is recorded to enable the synchronization needed for cross-plotting or parameter combination in formulas.

4.2.3.5 Check Programs. As the size of a database increases, it becomes increasingly important to have tools which will automatically perform all of the checks which can be made automatically. Inconsistencies creep into the database unavoidably through software oversights, source-data problems, etc. It is necessary to have software which will locate inconsistencies and other problems so that they may be corrected. In particular, summary files must truly summarize, must be complete, and must not indicate data which do not exist. Several check programs (e.g., CONSISTNC) are used in managing TRENDS databases. These are documented in the TRENDS Procedures Manual, available from either of the authors of this report.
4.2.4 Data Derivations

A TRENDS database includes scalar numerical data of several types as well as time-history data. These types include Min/Max statistics, parameters derived from those statistics, parameters derived from time-histories (e.g., slopes), and harmonic amplitudes and phases. To derive these in line as the user runs TRENDS is computationally inefficient and impossible if the needed time-histories are not stored. In addition to the scalars, some time histories are derived for UH-60 storage and Min/Max-per-rev data are derived for loads parameters.

4.2.4.1 Min/Max Statistics. The Min/Max statistical measures for the XV-15 and UH-60 databases were listed in paragraph 3.2.5. The values for these measures are obtained by processing time-history data, using algorithms which are generally specific to the project and database. Sometimes the Min/Max source is an ASCII file of preprocessed values rather than a time history.

4.2.4.2 Derived Parameters. The derived parameters for the XV-15 are

<table>
<thead>
<tr>
<th>Itemcode</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AILD</td>
<td>RT AILERON RATE (SLOPE D645)</td>
<td>DEG/S</td>
</tr>
<tr>
<td>ALFD</td>
<td>ANGLE OF ATTACK (D008) RATE</td>
<td>DEG/S</td>
</tr>
<tr>
<td>BETD</td>
<td>SIDESLIP RATE (SLOPE D007)</td>
<td>DEG/S</td>
</tr>
<tr>
<td>CIDR</td>
<td>COUNTER DURATION</td>
<td>SECOND</td>
</tr>
<tr>
<td>CPXX</td>
<td>POWER COEFFICIENT</td>
<td></td>
</tr>
<tr>
<td>CRPM</td>
<td>COMPUTED RPM</td>
<td>RPM</td>
</tr>
<tr>
<td>CTXX</td>
<td>THRUST COEFFICIENT</td>
<td></td>
</tr>
<tr>
<td>DNLD</td>
<td>DOWNLOAD COEFFICIENT</td>
<td></td>
</tr>
<tr>
<td>ETIM</td>
<td>ELAPSED TIME SINCE ENGINES ON</td>
<td>MINUTE</td>
</tr>
<tr>
<td>FLPD</td>
<td>FLAP ANGLE RATE (SLOPE D617)</td>
<td>DEG/S</td>
</tr>
<tr>
<td>GOVD</td>
<td>GOV. LVDT RATE (SLOPE E719)</td>
<td>%/S</td>
</tr>
<tr>
<td>GWJW</td>
<td>GROSS WT USING ADJ FUEL WEIGHT</td>
<td>LBS</td>
</tr>
<tr>
<td>GWT0</td>
<td>RAMP GROSS WEIGHT</td>
<td>LBS</td>
</tr>
<tr>
<td>GWT1</td>
<td>GROSS WEIGHT, FUEL WT METHOD</td>
<td>LBS</td>
</tr>
<tr>
<td>GWT2</td>
<td>GROSS WEIGHT, FUEL FLOW METHOD</td>
<td>LBS</td>
</tr>
<tr>
<td>HDFT</td>
<td>DENSITY ALTITUDE</td>
<td>FEET</td>
</tr>
<tr>
<td>HNAT</td>
<td>CLIMB/DESCENT RATE (SLOPE P342)</td>
<td>FT/SEC</td>
</tr>
<tr>
<td>IASD</td>
<td>AIRSPEED RATE (SLOPE P002)</td>
<td>KNOTS</td>
</tr>
<tr>
<td>KCAS</td>
<td>CALIBRATED AIRSPEED</td>
<td>KNOTS</td>
</tr>
<tr>
<td>KTAS</td>
<td>TRUE AIRSPEED</td>
<td>KNOTS</td>
</tr>
<tr>
<td>OATC</td>
<td>CORRECTED TEMPERATURE</td>
<td>DEG</td>
</tr>
<tr>
<td>PWX</td>
<td>ADJUSTED HORSEPOWER</td>
<td>HP</td>
</tr>
<tr>
<td>PCAD</td>
<td>PYLON CONVERSION RATE</td>
<td>DEG/S</td>
</tr>
<tr>
<td>PHID</td>
<td>ROLL ANGLE RATE (SLOPE D009)</td>
<td>DEG/S</td>
</tr>
<tr>
<td>RHPN</td>
<td>NORMALIZED HP (RSHP/SIGP)</td>
<td>HP</td>
</tr>
<tr>
<td>RSHP</td>
<td>ROTOR SHAFT HORSEPOWER</td>
<td>HP</td>
</tr>
<tr>
<td>SIGP</td>
<td>DENSITY RATIO</td>
<td></td>
</tr>
<tr>
<td>TDAY</td>
<td>COUNTER START TIME OF DAY</td>
<td>MINUTE</td>
</tr>
<tr>
<td>THTD</td>
<td>PITCH ANGLE RATE (SLOPE D010)</td>
<td>DEG/S</td>
</tr>
<tr>
<td>TOCG</td>
<td>C.G. FOR RAMP GW</td>
<td>INCHES</td>
</tr>
</tbody>
</table>
The derived parameters for the UH-60 are

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th>Itemcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU</td>
<td>Advance ratio, derived</td>
<td>VOMU</td>
</tr>
<tr>
<td>CP</td>
<td>Power coef. (eng. q), derived</td>
<td>CP00</td>
</tr>
<tr>
<td>CPROTOR</td>
<td>MR power coef. (QMR), derived</td>
<td>CPHR</td>
</tr>
<tr>
<td>CT</td>
<td>MR thrust coef., derived</td>
<td>CT00</td>
</tr>
<tr>
<td>FLAP</td>
<td>Corrected blade flapping (Deg)</td>
<td>FLAP</td>
</tr>
<tr>
<td>FSCG</td>
<td>A/C longitudinal c.g., derived (Inches)</td>
<td>FSCG</td>
</tr>
<tr>
<td>GW</td>
<td>A/C gross weight, derived (Lb)</td>
<td>FSGW</td>
</tr>
<tr>
<td>HDB</td>
<td>Boom density altitude, derived (Ft)</td>
<td>HDB0</td>
</tr>
<tr>
<td>HPB</td>
<td>Boom press. alt. corrected (Ft)</td>
<td>HPR0</td>
</tr>
<tr>
<td>HPS</td>
<td>Ship press. alt. corrected (Ft)</td>
<td>HPSC</td>
</tr>
<tr>
<td>LEADLAG</td>
<td>Corrected blade lead-lag (Deg)</td>
<td>LLAG</td>
</tr>
<tr>
<td>MT1P</td>
<td>Advancing tip Mach number</td>
<td>VTIP</td>
</tr>
<tr>
<td>PITCHC</td>
<td>Corrected blade pitch (Deg)</td>
<td>PTCH</td>
</tr>
<tr>
<td>REFVRPM</td>
<td>Referred main rotor speed (RPM)</td>
<td>VRMR</td>
</tr>
<tr>
<td>SHPT</td>
<td>Combined engine shaft Hp (Hp)</td>
<td>ESHP</td>
</tr>
<tr>
<td>VCALB</td>
<td>Boom calibrated airspeed (Kts)</td>
<td>VCAS</td>
</tr>
<tr>
<td>VT</td>
<td>Corrected compiled TAS (Kts)</td>
<td>VTRU</td>
</tr>
<tr>
<td>VTB</td>
<td>Boom true airspeed (Kts)</td>
<td>VTAS</td>
</tr>
</tbody>
</table>

4.2.4.3 Harmonic Amplitude and Phase. The rotorcraft blipper pulse (R018 for the XV-15 and HRTRAZ1 for the UH-60) is used to define the fundamental rotor cycle frequency, then harmonics (6 for XV-15, 15 for UH-60) are derived for selected parameters, using software borrowed from DATAMAP. The harmonic amplitudes and phases are then stored for access in TRENDS via program features HARMONIC, MINMAX, and SEARCH.

4.2.5 Automatic Updating

Supporting and summary files, i.e., files which contain summary lists of all of the counters, itemcodes, and datatypes available for each itemcode, need to be updated as the data are input into the database. Because this was not done in the original TRENDS system, a check of all data in the base was required (as a separate step) each time the database was modified. As the size of the database increased, this step became very time-intensive. Therefore, it soon became necessary to implement routines and procedures for automatically updating the summary and supporting files during the tape- and list-processing operations. These routines are documented in a Procedures Manual which is available from either of the authors.

4-15
4.2.6 Record Overflow

The problem of record overflow in a file (because of a fixed maximum allowable record length in the computer operating system for keyed-access files) made it necessary to have a continuation index indicator to connect multiple-record counters. Specifically, only 16,380 bytes may be written to one keyed-access record on the VAX/VMS computer system, which translates to 8150 integer*2 samples/record (part of the record is taken up by overhead; e.g., counter number, scale, bias, start time, samples/sec, number of points). Hence, storage for any mainframe parameters (which are sampled at 251 samples/sec) for any counter longer than 33 sec requires multiple records.
Section V
TRENDS DESIGN/DEVELOPMENT CONSIDERATIONS

5.0 TRENDS DESIGN/DEVELOPMENT

This section addresses some of the design considerations and technical details of the development of TRENDS and gives some of the reasons for decisions which were made.

5.1 TRENDS DEVELOPMENT PHILOSOPHY

The initial philosophy was that the TRENDS system was to enable nonprogrammers and noncomputer people to selectively access and see all data involved with rotorcraft flight testing. The basic goal was to provide not only a user-friendly system, but a complete system.

5.1.1 User's Manual

TRENDS was initially designed NOT to require a user's manual; hence, in-line help was a requirement. It is now recommended that the new user start with narrative information menu items and then work into the plot options. Our advice to the user is, when in doubt, try it. The user can't hurt the system. The user's manual can be useful when looking up parameter names or when running sophisticated applications available in the system. Note that full documentation of this system results in a large user's manual which is believed to act as a deterrent to using TRENDS for the new user. Most of the key features of TRENDS need little or no documentation.

5.1.2 Initial System Software Attributes

Early versions of TRENDS contained most of the basic plotting and searching capabilities of the present version, but the user interface was less formal. Unique special features were imbedded into the syntax of the system initially; however, because of the pressure from the younger engineers, who wanted everything clearly defined, most of this kind of input has been formalized. It appeared that senior engineers were happy to have any means at all for displaying the test data and didn't mind a trial-and-error approach in interfacing with TRENDS. The basic problem was in providing the new user with a user-friendly system while providing the experienced user with special capabilities, yet not complicating the syntax of the input prompts.
5.1.3 Incremental Development Concept

TRENDS' development was user-driven from its initial conception. The priority for work on the DBMS was to

1. Get it working, albeit crudely or incompletely;
2. Respond to users' gravest complaints or requirements;
3. Work on extending/improving system features with user-friendliness always in mind.

As simplistic as this approach appears, it succeeded in making progress while maintaining a useful tool. Fortunately, the initial user group was small and was tasked to solve real problems, not hypothetical ones; hence, only minimal time was spent in trying to justify actions taken during the development of TRENDS. Also, the development of this system involved only four people, including the authors of this report; hence, system direction and continuity have never been sacrificed during the seven years of TRENDS development. The following paragraphs follow the chronological order of system development, as driven by user requirements. For a chronological summary, see Appendix A.

5.1.3.1 Min/Max Plotting. The first plotting capability required for TRENDS was that of plotting one Min/Max item versus another for a specified range of counters. To satisfy the requirement without a detailed design effort, a somewhat general-purpose plot package was provided which allowed the users to input any comments or have any setup that they wanted. Plots were tedious to set up with this package. An early decision was made to sacrifice the general options a user might request and to provide a user-friendly program which would provide labeled, scaled plots on the screen within seconds and require minimal input specifications. Provision was then made to let the user override the labels and scales. Later in the development, the ability for the users to put their own titles and comments on the plot was provided for, but the great majority of the users were and still are satisfied with the titles and scaling that TRENDS provides automatically. It has been found that engineers who are actually doing research are primarily interested in getting results simply and quickly. However, new features for the TRENDS system are given consideration if they don't in any way complicate the input syntax.

5.1.3.2 Narrative. TRENDS represented a major break with respect to existing engineering databases of the time, circa 1982, with the inclusion of as much narrative data into the base as possible along with numerical data. The intent was to allow a user of the system to know what the test was about, and its results, by reading the flight notes and looking at numerical or plotted data. In the design of TRENDS, it was felt that having narrative data in the system would be very useful; however, an appropriate technique for integrating numerical and narrative data was not clear initially. It was the decision to use the test-point number (counter) along with derived counter sets (pseudo-flights) which cemented that integration.
5.1.3.3 Pseudo-Flight Creation. Providing the user with the ability to search through all types of data is normally a standard capability in most databases; however, the ability to search and save test points which satisfy the user's narrative and/or numerical templates semiautomatically on the computer in the user's home directory was the feature which validated the pseudo-flight/derived-flight concept. This concept is crucial to TRENDS and its users, since it allows one to do extensive research on multiple flights easily. Also, pseudo-flight generation by the user personalizes the database to each user's needs: the users in effect build their own databases, but with the unique aspect that they need to save only the test-point numbers in their directories and not the actual data, thereby not increasing storage requirements to any significant extent.

5.1.3.4 Time-History Plotting. This menu option is the most powerful one in the TRENDS system, because most analysis involves plotting of time-histories. TIMEHIST became the home for many options which could be thought of as separate functions except for the fact that they are all involved with the plotting of data. TIMEHIST allows users to input their own functions or to use predefined ones found in a function file. It allows all of the mathematical functions, including table lookups, to be used by simply typing them in the prompt line. It allows iterative processing of time-history data by executing a process and saving the results of that process with a user-defined file name to be used again. The data in each case are shown on the screen of the user's terminal. Although the integration of so many capabilities into one menu item has at times been challenged, most users generally like the power this single menu item gives them because the prompts can be as simplistic or as complicated as the user requires.

5.1.3.5 Formula Evaluation. It was obvious that an analysis system would have to have the ability to combine data through mathematical operations. Except for spread-sheet programs, this usually requires that a program be modified, recompiled, and relinked each time a new function (or subroutine) is to be included. TRENDS was required to supply users with any functions they wanted and to be able to generate them without having to compile the program. This development was a major effort which required formula-parsing and evaluation techniques in line with searching and plotting procedures to evaluate the functions without compiling. The end result of this software capability allows users to not only generate functions (i.e., formulas) and save them, but also allows users to specify the functions interactively without having previously defined the functions. Most user-generated functions can be used on either statistical or time-history data with no distinction. The function specification and evaluation capability of TRENDS possesses most of the capabilities of FORTRAN formula specification. Conditional statements have not yet been enabled.
5.1.3.6 User-Friendly Autoplot Setup. Autoplot setup, as mentioned previously, is a way to significantly reduce the number of user prompts required to produce a finished-looking plot on the screen. This is accomplished by having special files which are automatically accessed each time a plot is required. These special files supply project titles, test-point descriptions, flight descriptions, and full descriptions of the parameters for the axis labels. Also included in the autoplot setup is an automatic scaling algorithm which provides reasonable scales. Although any part of the automatic information can easily be overridden by the user, most users find the automatic provisions of the MINMAX and TIMEHIST plot features to be assets which reduce the time required to get meaningful plots. Other features in this autoplot setup allow the user to recall previous plot setups which were saved under supplied file names, modify those setups if desired, or if it is found that a mistake has been made in a difficult setup, to easily recall the entire plot setup while still within the plot-dialogue logic (even if the setup hasn't been explicitly saved).

5.1.4 TRENDX

It was found necessary to generate two versions of the TRENDS database operating system in order not to interfere with the user community as modification work was being done on the working software. TRENDS became the released version while TRENDX was the version of TRENDS containing the latest modifications (and made available for acceptance testing by some experienced users).

5.2 DATA PHILOSOPHY

In TRENDS, data reliability imposes a requirement on the user as well as on the database manager. Our aim is to do our best to check the data before they are installed in the base, but speed is of the essence in this decision; hence, if users find data they think are bad, they should notify NASA. Not all databases are handled in the same manner and there is disagreement among the NASA engineers as to the extent to which flight data must be certified before making them available to the public. In real data systems, errors occur due to bad instrumentation, improper calibrations, bad sensors, broken wires, etc; hence, these types of problems must be considered when using any database. It is extremely difficult and expensive to check the validity of all of the data in a database consisting of billions of bytes, yet there is concern that to make uncertified data available might result in some users writing reports which are invalid and for which NASA could be blamed.

Certain checks are made for obvious errors on all data as they come in; however, subtle errors may not be found in the data unless the user recognizes them. This is where engineering experience is invaluable on the part of the user. One must pay a price to allow data to become immediately available, and that price is the guaranteed reliability of the data. Unlike the XV-15 database, the UH-60 database has been reviewed by knowledgeable engineers specifically to remove bad data.
5.2.1 On-Line Data

System speed of response has always been an important consideration in determining user acceptance of a system; hence, there has always been a requirement to provide all data on line within TRENDS (as opposed to having to have tapes or disks mounted in order to access data of interest). Although we still have storage problems, technological improvements in storage, along with data compression, have allowed us to achieve a system capability where all pertinent data are on line via disk storage. Total TRENDS database storage is currently about 5 gigabytes. In an attempt to maintain this on-line capability in a limited floor space and with limited funding available for storage media, NASA has chosen to go to a write-once-read-many (WORM) optical disk storage jukebox system to bring on line another 80 gigabytes of storage. Although there will be slight delays in the new system as compared to the old, it is still expected to be able to provide on-line storage of all data.

5.2.2 Database Management Considerations

The details of creating and maintaining a flight-test database are many and varied. Logistics of acquiring the data from the source must be considered, as must such details as the operational status (and operating system) of the computer that hosts the databases. Most of these details are abhorrent to aeronautical engineers and not of much interest to programmers. Software and procedures must be developed to automate the process as much as possible. Resource contention and database cleanup are examples of the details of maintaining a database.

5.2.2.1 System Readiness. The activity of filling the database can block the use of the system from the accessing community if some care is not taken to avoid this problem. Special measures are taken to avoid interference with active users during database management operations by copying database files to temporary files, modifying the temporary files, and then recopying them back into the main database. Changes
in file formats must also be made in such a way that the users are not taken off line during modification and checkout.

5.2.2.2 Data Deletion. User-friendly data-deletion features which allow new data to overwrite old data are important to the database manager. Inevitably, some existing data in the database will be found to be incorrect. The keyed-access file structure has provided a fairly simple means for manipulation (i.e., filling, deleting) of the data in the base on a nonchronological (i.e., nonsequential) basis. That is, records may be added, modified, or deleted at any time, without concern for which records precede or follow them in the files, thus permitting the processing of current flights of interest first, then using a back-and-fill procedure to complete the database.

5.2.3 Multiple Databases

The TRENDS system was initially designed to support two separate though similar databases for two tilt-rotor flight-test programs. Both of the databases used the same set of itemcodes and the same conventions for test-point specification, although data-source formats were different. The database set was expanded for a short period of time to incorporate some data from the RSRA helicopter program. Support of RSRA by TRENDS was the first attempt to create and access a completely different database. A copy of the existing XV-15 TRENDS code was made and modified to support the RSRA database. This method was quick and led to results in a very short time, but it proved to be a mistake. It would have been better to have taken the time to develop the generic software which would treat the peculiar characteristics of all of the databases with the same generalized code. The fourth database was for the Phase I UH-60 flight-test program. This ushered in the first attempt to solidify TRENDS into a generic code. A wind tunnel database was also added to the system; however, its impact on the original code was minimal. Note that the integration of new databases into the TRENDS domain has helped to improve TRENDS by making more demands on the system, from which new capabilities become available to all users of the system for all databases supported by TRENDS.

5.2.4 Database Structures

TRENDS is firmly based on the keyed-access file structure and operating method. Most of the numerical data reside in files named by the parameter's itemcode or mnemonic and keyed by counter number. These files reside in directories named for the specific data type they contain. For example, the Min/Max statistics for itemcode D186 are found in a file named D186.MMC which is found (for A/C 703) in a directory named [DBT03.MMC]. The record in which the Min/Max statistics for counter 14500 are found is keyed by the integer 14500. The VMS operating system performs most of the overhead in locating the record. This ties TRENDS to the operating system, but it takes advantage of system efficiencies and offers the potential for improvement with system upgrades.
5.2.4.1 Keyed Access. The keyed-access file capability provided by DEC under the VAX/VMS operating system is perfect for a database management system such as TRENDS. If this capability were not available, it would have to be synthesized. The keyed-access capability lets one retrieve a record from a random-access (i.e., disk) storage device by specifying a NAME or NUMERICAL LABEL for the record. For example, the descriptive information for item M143 in keyed-access file ITEMINFO.DAT is retrieved by asking for and reading the record named M143. It is not necessary to read each of the records in the file and to test if the record which was read was for M143 (a process which would be the only recourse if ITEMINFO.DAT were of SEQUENTIAL organization). In the past, when databases were stored on magnetic tapes, leading files and records had to be read (or, with a priori knowledge of the sought data, skipped over) to get to the information of interest. If ITEMINFO.DAT were of indexed-sequential (direct-access) organization, one would have to keep a catalog which associated M143's record with a sequence number, search that catalog to find the appropriate number, and then ask for the record by sequence number. This process would get very complex when new records were added or old ones deleted. With keyed-access organization, the VAX/VMS operating system does the bookkeeping for you, simplifying the programming of deletions, additions, or replacement of records.

It might be argued that direct access should be considered over keyed access for data records for which the key is a positive integer such as counter number. Not only is this a restrictive condition, but direct-access files are observed to have two fundamental problems: (1) they require fixed-length records (and are, therefore, wasteful for variable-length such as time-histories) and (2) empty records take up just as much space as full records, so databases with sparse counter sequences are very wasteful of space. Keyed-access files can handle variable-length records and they do not leave space-holders for empty counters.

Keyed access is operationally convenient for filling and managing a database because the order of filling is of no consequence. That is, later (i.e., higher-numbered) counters may be processed prior to earlier (i.e., lower-numbered) counters.

A very useful feature of keyed-access files in VAX/VMS is that they may also be read sequentially, if desired. In this case, the results are ordered in ascending order of the keys (i.e., numerically or alphabetically ascending), providing a simple means for producing a sorted
list. A variation of this feature lets you first read a particular named record and then read sequentially (i.e., ordered) from that record onward. This method of reading in data has been used in parts of TRENDS to optimize the access in the presence of "look-ahead" system disk-reading procedures.

5.2.4.2 TRENDS File Structures. One must consider many factors when choosing a file structure for a database. Some of these factors are:

1. How will the information from the database be used?
2. How much data must be archived?
3. What are the procedural limitations and constraints?

The basic keys for database numerical (e.g., Min/Max or time-history) records are (1) item name (itemcode, mnemonic, etc.) and (2) counter (test-point identifier). That is, given the data item and test-point index, the data record should be identified for retrieval. Of course, we assume that the database is given and that item and counter are unique within that database. Given the requirements for basic keys, there are still many ways to structure files in a database. Choices for file structures and formats were made early in the design of TRENDS and most of those choices have proven to be good. A detailed discussion of the options may be found in Appendix D.

5.2.4.3 Supporting Files. The bulk of TRENDS' stored information is numerical test data from sensors, but a TRENDS database is completed by another kind of information: that found in supporting files. Supporting files come in two categories: (1) descriptive files and (2) summary files.

Descriptive files augment the numerical test data by providing narrative support such as item descriptions or project, flight and test-point descriptions. Summary files enable efficient searching and use of the counter-keyed numerical and descriptive files in the base by providing precompiled, categorized lists of counters for which data exist in the base. Figure 5.1 illustrates the function of these supporting files in exercising some key menu items.

1. Descriptive Files. These files add information to enhance the use of the numerical data in TRENDS. They include

   a. CTRDESC.A/C, the counter-description catalog file, keyed by counter and containing other counter-reference information such as start/stop times, rotor revs, flight number, and data-group availability

   b. ITEMINFO.A/C, the item-information file for each database, keyed by data-item mnemonic and itemcode, containing item descriptions, data units, mnemonic/itemcode correspondence, and data-group codes

5-8
Figure 5.1 Supporting Files & Interfaces
c. FLIGHTS.A/C, the flight-description file, keyed by flight number, containing categorized flight-descriptive narrative information

2. Summary Files. These files contain information which allows efficient access to the database and which enables display of current database status. They include

a. FLTCTRMAP.A/C, the file which contains the catalog of counters for each flight, keyed by flight number and used to pull up a set of counters when the user asks for a flight

b. THFILES.A/C, the file which contains the summary of time-history data available in the database for a given parameter keyed by itemcode or mnemonic and containing a list of the counters for which data are stored for each time-history data type or group

c. COUNTERS.XXX, the files for each data type (XXX), keyed by counter number and containing a list of the names of the parameters for which data are stored for the specified counter and data type

5.3 USER-FRIENDLINESS

User-friendliness was a strong guideline in TRENDS program development. Any new program feature was always designed for robustness and ease of use. Prompts and required responses were studied carefully to make sure they were logical and simple. Because the intended TRENDS users are engineers, rather than programmers who can modify software to get the desired result (given the time to do it), the user interface had to be complete. For example, prompting capabilities had to be included for creation of some user-files (e.g., files for PERFPLT and CPRINT setups), while programmers could be given the format and asked to write their own.

Among the user-friendly features of TRENDS are (1) the capability for entry of data-manipulative formulas (functions) in plot and search dialogues, (2) a very simple plot-specification syntax, together with the ability to recall and edit stored plot setups, and (3) integration of narrative data to support the stored numerical data.

5.4 USER FEEDBACK

It has been observed that no two users have the same requirements or preferences with respect to database or system operations. We have tried to satisfy a broad range of users by making studied judgements of what is essential, user-friendly and logical. By presenting a system which performs useful services with little effort on the part of the user, TRENDS has attracted a large community of users. If we
had catered to a few particular users, TRENDS would probably not have the following it has. User comments and suggestions are solicited and evaluated, but not necessarily followed (or at least not with the priority the user might give the suggestion). Every effort is made to provide special software for special requests for capabilities or data which are not available in TRENDS or its databases.

5.5 ANALYSIS TOOLSET

The accessing part of TRENDS currently consists more than 20,000 lines of executable code and over 200 modules (exclusive of DISSPLA, DATAMAP, GTRSIM, command files, help-files, pointer data, etc.), so it has become necessary to develop and use computerized tools to keep track of software details and dependencies. The use of FORTRAN-source-scanning tools and keyed-access sorting techniques to analyze and summarize the use of subroutines, commons, files and variables is very advantageous when trying to maintain the software of a program the size of TRENDS. Appendix E contains a hierarchy chart or calling tree of the TRENDS accessing software, produced by the toolset.

5.6 INSTALLATION OF TRENDS

TRENDS can be installed on any VAX/VMS system which has the DISSPLA graphics package available. It has been installed at AEFA (with the Megatek graphics package) and at MDHC (on a MicroVAX), as well as on several different VAX nodes at Ames. The source code is written entirely in DEC-extended FORTRAN. The disk storage requirements for TRENDS (i.e., for the accessing program -- not including the database management software) are:

- Source 2000 blocks (1 block = 512 bytes)
- Object 1400 blocks
- Executable 1600 blocks
- Help files 1000 blocks

TRENDS requires a virtual page count of at least 50,000 to run.

TRENDS also provides gateways to the DATAMAP and GTRSIM programs. DATAMAP's executable module occupies about 800 blocks, but the program requires about 6000 blocks of user disk space to execute when scratch-file storage is included. GTRSIM's executable module occupies less than 600 blocks, but the TRENDS interface routines require another 3500 blocks (which requirement could be reduced to about 2000 blocks with more efficient coding).

Any questions regarding access to TRENDS or installation at your facility can be addressed to the authors (Bondi at (415) 604-6341 or Bjorkman at (415) 964-1844).
Section VI

CONCLUSIONS

6.0 CONCLUDING REMARKS

TRENDS has been used within the FA division at Ames for almost seven years as the primary means of archiving and accessing flight test data for rotorcraft. It has recently begun to be more widely applied and used by other Ames organizations and by industry as well. Its capabilities and potential for extension to a wide variety of test data make TRENDS a valuable tool.

This section concludes with a summary of some of the lessons which have been learned during TRENDS' development and an indication of the direction TRENDS might take in the future.

6.1 LESSONS LEARNED

In the development of a large database operating system, one hopes to learn important lessons which might help someone else in development of other database systems. The following items are some we believe to be worthy of mention.

6.1.1 User Impact on the Development of TRENDS

It has been observed that no two users have quite the same requirements or preferences with respect to database or system operations. We have tried to satisfy a broad range of users by making studied judgments of what is essential, user-friendly and logical.

You can never satisfy all of your users; therefore, let only the mature users drive your software system development. Software development to solve hypothetical problems only buys unnecessary complexity and produces essentially no useful output for most of the user community.

It has been found in working with aeronautical engineers that ALMOST meeting the requirement is NOT acceptable to some users. Such users turn off the entire system, not just the part where there is a problem. All of the extras on the system will not bring them back to it unless their essential requirements in ALL areas are met. The lesson is that you can't please all of the people all of the time, nor some of them any time.

6.1.2 Database Evaluation Criteria

TRENDS has been compared to a file cabinet full of reports and plots. It was judged to be valuable only when it could replace most functions of the cabinet. TRENDS was accepted by one "hard-sell" engineer because:
1. TRENDS not only has all of the plots and narrative information available, but it allows the user to search through both narrative and/or numerical data to group it into data sets (pseudo or derived flights). This is not simple with a cabinet system.

2. Accessing miscellaneous plots from different flights with TRENDS is faster with the computer than with a manual system, and the presentation of the parameters on the plot can easily be altered (unlike the file cabinet plots).

3. Mathematical functions can be easily and rapidly applied to parameters through TRENDS, but hardcopy plots never change.

4. When any other (including remote) aeronautical engineers need to see flight data, TRENDS is available to provide it, unlike the file cabinet which requires that the cognizant flight-test engineer always be available.

Note: The ability to store the contents of a file cabinet in a computer system and provide access to that information as readily as one might use a file cabinet is a significant challenge to any systems designer and could be considered as a good benchmark of the performance of any database system.

6.1.3 Access to Calibrations

TRENDS provides access to parameter calibration information (for the XV-15 database) as a main-menu item, CALIBS. Even though the test data are presented to the user in engineering units, access to the calibrations through TRENDS has proven to be a useful capability for many users, especially when trying to determine data validity and causes of some anomalies.

6.1.4 Generic Code

Generic code development is important to the task of maintaining system software. This was not appreciated until the complexity of the TRENDS code increased to the point where it was impractical to maintain three systems which were similar but not identical.

When generic software was initially implemented into TRENDS for the integration of multiple databases on different rotorcraft, it was done very late (about 4 yr into the system design). A significant part of the problem for the generic code was to accommodate the handling of new and longer parameter names, specifically the eight-character parameter names used on the UH-60 versus the four-character ones initially used on the XV-15. Each reference to parameter name information had to be revamped. It is felt that many bugs in the system which had already been corrected resurfaced because of this necessary code change. A ripple effect of system crashes seemed to enter into the TRENDS software as a result of this late generic modification. Current thinking is to try to keep all software generic.
from the outset: that is, one fix fixes the same problem for all databases. Special code development should be negated. In the long run this special code will generate more problems than it is worth. If at all possible, do not let the code split.

The following are some areas where generic code development should be considered:

6.1.4.1 Database Vectors. Do not have the location of the database embedded in the code, but rather get it as an input to the program. Initially the path name for the data was embedded in the code, but this created two problems; namely, the program had to be changed if the data were relocated, and when software was put on another computer and had to be modified and recompiled.

Appendix I presents the method used in TRENDS for vectoring to a database.

6.1.4.2 Parameter Names. The logic in a system should not assume a fixed length for parameter names, but should treat variable-length names in a field long enough to take care of all likely mnemonic lengths. To date, a maximum length of eight characters has proven to be sufficient for any TRENDS database.

6.1.4.3 Symbol Table. Symbols for the data parameters should be input from an external file rather than be compiled into the software. This permits flexibility in choosing names, modification of the parameter descriptions, and moving from one database to another without compiling. TRENDS uses a file named ITEMINFO which contains one record for each item. Records are keyed by the item's mnemonic (or itemcode) and contain descriptions, units, instrumentation group and other data.

6.1.4.4 Help Files. The help which is displayed in response to a query by the user should come from input data files created via the system editor, as opposed to being compiled into data statements in the program. This gives flexibility and reduces the effort required when the information changes.

6.1.4.5 File Structure. Make common file structures for similar files in each database, e.g., Min/Max statistics files for XV-15 and UH-60 are structurally identical even though the UH-60 has more statistical measures in each data record. Time-history file structures are identical for all TRENDS databases.

6.1.4.6 Data Types. TRENDS' time-histories were categorized into data types (e.g., *.raw; *.spc; *.aer) for accounting purposes. This proved fortunate because it simplified the dispersion of data files onto different disks when we ran out of storage on the original disks. The initial time-history file format in TRENDS was one file per parameter for all flights; the ultimate limitation of such a system would be one file filling an entire disk. Before that occurred, however, it would be necessary to migrate parameter files onto other disks transparently.
A different file format, the DATAMAP and TRENDS (DAT-TH) format, will be used in the future to help to alleviate the problem.

6.1.5 Plotting Generality

It is better to provide a specialized plotting format which is easy to specify than to provide great generality and graphics capability. The types of plots enabled by TRENDS cover most of the needs of Ames engineers. Users can specify non-default labels, scales and titles with a little extra effort and can store/recall plot setups to avoid re-entering specifications. TRENDS works with a variety of different terminals.

6.1.6 System Response Speed

User acceptance does depend on the system's response and system response is therefore a key consideration when writing code. Two of the techniques used in TRENDS to achieve better response times are

1. Summary support files, updated automatically during data-fill, to eliminate the need to query the whole database to see which counters and itemcodes and data types exist

2. Keyed access to locate the first data in a requested sequence and then sequential reads with tests (uses efficiency of system look-ahead algorithms)

Note: Summary support files are in fact data-redundant; however, the increase in file storage is insignificant relative to the improved response of the system. These summary files must be automatically updated every time the main database is updated.

6.1.7 Database Management (DBM) Menu

Getting data into any database system is not a trivial task; the TRENDS system manager therefore decided to approach the problem formally by creating a data input menu system by which all data are input into the database. To a minor extent, each DBM menu is tailored to each rotorcraft's database. The current TRENDS DBM menu is not complete; however, it is being used by database management personnel at Ames and it is felt by the authors to be an asset. Although there was disagreement about the need for such a menu and its development was given a low priority, this type of software is important, and can be critical if the program is transferred from one contractor or management team to another. This software provides the TRENDS manager with better control for supporting his system if he has to introduce a new team to a TRENDS data-input task. Finally, this type of software helps experienced users avoid mistakes.

6.1.8 Flight-Test Support

TRENDS can be used as a flight-test-support tool, as it was in
the Phase I JH-60 tests at AEFA. In this role, the narrative stored in TRENDS can be fresh and accurate and used to document the tests. Data anomalies can be spotted and instrumentation/reduction errors can be corrected before they permeate the entire test series. Data requirements (such as the need for measured rotor azimuth) can be noted and possibly satisfied during the testing.

6.1.9 Data Quality Considerations

Concern for data quality imposes a requirement on the user as well as on the database manager. Automatic and spot checks will not identify all of the of the errors in the stored data. Users must report problems to the database manager for resolution. It is felt that users who must have completely certified data should use only NASA reports and that TRENDS users, while they can be reasonably confident in the data stored in the base, should be realistic and watchful.

6.1.10 Data Storage Considerations

Disk storage is probably the most important of all considerations for flight-test databases. If there are trade-offs between execution time, convenience etc. and storage in the design of a system, the edge must be given to minimizing storage. One significant decision in this regard led to the storing of all time-history data as two-byte integers rather than as floating-point numbers in engineering units; another was to store only start-time and time increments between samples rather than to store time with each measured data sample.

6.1.11 Time and Time Offset

Data samples recorded in a flight-test system are usually recorded at regular intervals of time. This makes it acceptable to archive only the starting time and the time increment (or equivalently, the sampling rate) with each time-history record. Not all time-series begin at the same instant, however, and not all time-series for a specific aircraft, instrumentation system, and test point have the same sampling rate. Therefore, to enable detailed analyses, great care must be taken to gather and store the time parameters in the right way. In particular, mainframe and subframe offsets must be obtained and stored so that relative phasing of flight parameters is preserved. The starting time for XV-15 data was stored in single-precision, floating-point seconds for the tens of thousands of test points in the database. The significance of the mantissa in the VAX floating-point word is only about 6+ decimal digits, so the resolution of the starting time is only about 0.1 sec and therefore not very useful in rotor phasing calculations. It would have been much better, in retrospect, to have stored the starting time in four-byte integer milliseconds or to have stored seconds modulo 100 for example. To correct this problem now would require reprocessing thousands of magnetic tapes.
In 1990 the TRENDS system will incorporate a 90-gigabyte laser-optical jukebox system because of anticipated requirements for flight-test data storage. The time required to access time-history data will increase from what it is currently (on fixed, magnetic disks), especially when the jukebox must change platters (i.e., optical disks) to get to the data. It is uncertain at this point whether or not some sort of caching scheme will have to be implemented in order to adequately support multiple users and/or to improve time-history viewing performance. A 5 1/4" (disk-diameter) system was selected because it appeared to be much more cost-effective (both system and media-wise), than a 12" system. The 5 1/4" system requires much less room (less than one standard five-drawer file cabinet), uses standard 15-amp, 110-volt power, and appears to be less complicated (hence, more reliable, we hope) than 12" systems. The use of WORM rather than erasable optical disks is based on the archival character of the data to be stored and the WORM’s high reliability, which does not require tape backup.

The system being acquired is a 90-gigabyte Mitsubishi Laser Optical Jukebox library system (Model MW-5G1-B4) with four (4) optical drives (model MW5D1), and two (2) KOM SCSI/UNIBUS controllers interfacing with KOM Optiserver (Version 2.x) and Optifile II software for the VAX computer.

One piece of information which is not included in TRENDS (but which would be helpful) is the location of all transducers (i.e. sensors) on the rotorcraft. To provide an accurate computer-graphic picture is complex and in some instances would require a number of drawings with enlarged sections. This feature is being considered as an additional desirable capability.

The further integration of mathematical model simulations into TRENDS is high on the priority list for future expansion. Some of the simulations being considered for integration are CAMRAD, CL81, GENHEL, T1LTWING and NASTRAN.

Finally, the biggest concern is how to support TRENDS through the years as NASA organizations change, user support changes, funding shortages occur, computer operating systems change, and computer mainframes change. Maintenance of such a system requires perseverance, vigilance, and concern, but its value as a tool for the engineer is well worth the effort required to provide it.
<table>
<thead>
<tr>
<th>Glossary</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C</td>
<td>Aircraft</td>
</tr>
<tr>
<td>A/C 702,703</td>
<td>The two XV-15 aircraft (702 and 703 are the tail numbers)</td>
</tr>
<tr>
<td>AEFA</td>
<td>Aviation Engineering Flight Agency, U.S. Army flight-test facility at Edwards AFB, CA</td>
</tr>
<tr>
<td>AMA</td>
<td>Analytical Mechanics Associates, Inc., Mountain View, CA</td>
</tr>
<tr>
<td>Ames</td>
<td>NASA Ames Research Center, Moffett Field, CA</td>
</tr>
<tr>
<td>ARC</td>
<td>Acronym for Ames Research Center</td>
</tr>
<tr>
<td>Bell, BHT</td>
<td>Bell Helicopter Textron</td>
</tr>
<tr>
<td>BV-360</td>
<td>A helicopter made by Boeing-Vertol of Philadelphia, PA</td>
</tr>
<tr>
<td>CCF</td>
<td>Central Computer Facility at Ames</td>
</tr>
<tr>
<td>CDC</td>
<td>Control Data Corporation, computer manufacturer</td>
</tr>
<tr>
<td>Compressor tape</td>
<td>A digital test-data tape format used at Ames</td>
</tr>
<tr>
<td>Counter</td>
<td>A number which identifies a specific test point (sometimes used to mean the test point itself)</td>
</tr>
<tr>
<td>Crows Landing</td>
<td>NASA flight-test facility at the Crows Landing Naval Auxiliary Landing Field</td>
</tr>
<tr>
<td>Data item</td>
<td>A parameter, variable or channel for which data may exist in a database</td>
</tr>
<tr>
<td>Database</td>
<td>A collection of numerical and descriptive information accessible via TRENDS</td>
</tr>
<tr>
<td>Data region</td>
<td>The flights, pseudo-flights or counters of interest when exercising a TRENDS search or display feature</td>
</tr>
<tr>
<td>DATAMAP</td>
<td>A rotorcraft-data analysis program built for the Army by Bell Helicopter Textron (Data from Aeromechanics Test and Analytics -- Management and Analysis Package)</td>
</tr>
<tr>
<td>DAT-TH</td>
<td>New DATAMAP and TRENDS time-history file format</td>
</tr>
<tr>
<td>DBMS</td>
<td>Database Management System</td>
</tr>
<tr>
<td>DCMPRS</td>
<td>A TRENDS database management program for reformatting compressor-format tapes or disks</td>
</tr>
</tbody>
</table>
DCS  Derived Counter Set (See Pseudo-flight)

DEC  Digital Equipment Corporation of Maynard, Mass., maker of the VAX computers

Derived items  Data items not directly measured, but derived from other data items for storage in a TRENDS database

DISSPLA  A graphics package, product of ISSCO, Inc. of San Diego, CA and widely used on VAXs at Ames

DNW  Deutsch/Nederland Windtunnel facility in The Netherlands

DTF  Data Transfer File format acceptable to DATAMAP

EDF  Engineering Data File, a data format produced by the Ground Data Center at Ames

FA  Aircraft Technology Division at Ames (FAF and FAR branches are principal TRENDS users)

FFT  Fast Fourier Transform, a method for determining the spectral (frequency) characteristics of a signal from a time series representation

Flight  An identifiable portion of a test project, such as one day's test results or a run (batch) of windtunnel test points

FOX,FOX4  VAX computers at the Ground Data Center at Ames

Generic code  TRENDS software which applies to all TRENDS databases

Gigabyte  One billion bytes

GTRSI The Generic Tilt-Rotor Simulation program, developed by Bell Helicopter Textron and modified by STI

Harmonics  Fourier coefficients which synthesize a signal's frequency characteristics at multiples of a fundamental frequency (i.e., the rotor rev rate)

HARP  A wind-tunnel database for the Hughes Advanced Rotor Program (now an MDHC program)

In-line function  A defined formula or function evaluated during execution of TRENDS

Itemcode  A 4-character code which identifies a data item or parameter (the original XV-15 itemcodes had one letter and three numbers such as M143 or P002) (See also Mnemonic)
Keyed access: A file-access attribute, available on VAX/VMS, by which a record of data is identified by name (as opposed to direct access, where the record is identified by sequence number).

Laser-optical: A new technology for data storage.

LOTUS 1-2-3: A software product (spreadsheet) of Lotus Development Corporation of Cambridge, MA.

MDHC: McDonnell-Douglas Helicopter Company in Mesa, AZ.

Menu item: One of the TRENDS features invocable via the TRENDS menu.

Min/Max: Data-item statistics based on the minimum and maximum values observed on each rotor revolution (sometimes used generically to mean scalar or non-time-history measures).

MMC, MMR: Min/Max per counter, Min/Max per rev data types.

Mnemonic: A brief name for a data item, such as LONGSTK, limited in TRENDS to 8 characters (See also Itemcode).

NEP: Designation for the Neptune VAX computer at Ames.

OFI: The branch for the Ground Data Center at Ames.

On-line: Ready for immediate access (an on-line database requires no special tape mounts or special processing to enable access to stored data by the user).

PC: Personal computer (as opposed to a mainframe computer).

Performance: Data items or test results relating to the performance of the test vehicle.

Pseudo-flight: A collection of related test points constructed by the user.

Rev: One revolution of the rotor of a rotorcraft.

RSRA: Rotor Systems Research Aircraft, a modifiable rotocraft built by Sikorsky Helicopter of Stratford, CT and operated by Ames.

RTM tapes: Real-Time-Merge digital data tape format used at Ames.

STI: Systems Technology, Inc. of Mountain View, CA.

Supporting files: Elements of a TRENDS database which do not contain recorded or derived test data, but aid in the implementation of the system.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary files</td>
<td>Elements of a TRENDS database which summarize various aspects of the database</td>
</tr>
<tr>
<td>FIELDS</td>
<td>The name of a Tektronix (and later VAX) Basic program which was used at Ames before TRENDS to plot and list XV-15 Min/Max data</td>
</tr>
<tr>
<td>Test point</td>
<td>An identified portion of a test for which data are collected</td>
</tr>
<tr>
<td>Test-point index</td>
<td>A number which identifies a specific test point</td>
</tr>
<tr>
<td>Time-history</td>
<td>A set of data sampled at a series of sequential time points to show time variation</td>
</tr>
<tr>
<td>T-H</td>
<td>Abbreviation for time-history</td>
</tr>
<tr>
<td>TRENDS</td>
<td>The TRENDS interactive database operating system (the acronym originated from Tilt Rotor Engineering Database System)</td>
</tr>
<tr>
<td>AH-60</td>
<td>The Blackhawk helicopter, built by Sikorsky Helicopter of Stratford, CN</td>
</tr>
<tr>
<td>VAX</td>
<td>Class of virtual-memory mainframe computers, product of Digital Equipment Corp. (DEC)</td>
</tr>
<tr>
<td>VMS</td>
<td>Computer operating system used on the VAX computers</td>
</tr>
<tr>
<td>VSN</td>
<td>Volume serial number (identification for magnetic tapes)</td>
</tr>
<tr>
<td>FORM</td>
<td>Write-Once-Read-Many attribute of laser-optical disk storage</td>
</tr>
<tr>
<td>XV-15</td>
<td>Experimental tilt-rotor aircraft built by Bell Helicopter Textron, Inc. of Ft. Worth, TX</td>
</tr>
</tbody>
</table>
REFERENCES

1. GENERIC TILT-ROTOR SIMULATION (GTRSIM)
   NASA CR-166536: A MATHEMATICAL MODEL FOR REAL TIME FLIGHT SIMULATION OF A GENERIC TILT-ROTOR AIRCRAFT, SEPTEMBER, 1988
   NASA CR-166537: DEVELOPMENT AND VALIDATION OF A SIMULATION FOR A GENERIC TILT-ROTOR AIRCRAFT, APRIL 1989

2. THE DATA FROM AEROMECHANICS TEST AND ANALYTICS - MANAGEMENT AND ANALYSIS PACKAGE (DATAMAP)
       (RICHARD B. PHILBRICK, BHT)
   USAAVRADCOM-TR-80-D-30B: SYSTEMS MANUAL, DECEMBER 1980
       (RICHARD B. PHILBRICK, BHT)
   NASA TM 10093: DATAMAP UPGRADE VERSION 4.0, MARCH 1989
       (MICHAEL E. WATTS AND SHABOB R. DEJPOUR)
APPENDIX A

TRENDS Development Tasks Listed in Chronological Order

November 1982
Fatigue analysis at BHT

December 1982
Design initiated
Data entry
Use of TABLES software

January 1983
Minmax reformatting
Hard-copy plots or the CDC 7600 computer
Database summary
Flight descriptions
Search on numerical data
Display of itemcode information
Quasi-operational ACCESS (TRENDS)
Study of DATAMAP

February 1983
Operational ACCESS (TRENDS) software
User help on line
Instrumentation groups in ITEMDEFS
Derived parameters (initial set)
Reading 702 descriptive data
TABLES: 2nd-level tables, absolute value, other terminals accommodated

March 1983
Store/recall condition masks in SEARCH
Show user's DCS and MSK files
Narrative categories in FLIGHTS
CHARSORT for listing counter keywords
Start/stop time added to counter information
VIEW reproduces listings from stored data
Time-history storage, harmonic analysis

April 1983
Manual entry of and access to user's MMC values
CNTR as MINMAX abscissa or SEARCH variable
News available to system users
Extraction of and access to multiplexed temperatures
Selective data-copying, batch reformatting
Databasing of one-line flight descriptions for 702
May 1983
Plot setup files saved/recalled
LOGSCAN implemented
CTRL-C interrupts treated internally
Bending moments displayed vs. blade station
BHT minmax and time-history tapes processed
RESCALE option for plots
Determining column selects points to plot

June 1983
Time-history plotting
Minmax-per-rev plotting
Specific counters excludable from plots
Plot-data tabulated to a file (PRINT)
Itemcode descriptions searchable in ITEMDEFS
Strings of numbers may be input for data region
Database summaries from database, not canned files

July 1983
Plotting: 5 plots/page
dual, independent plot y-scales
single label for multiple same abscissae
determining column for single-curve plots
choice of curve symbols
Checks on user-response validity (user-friendliness)
Reformatting Tektronix data back into VAX for database

August 1983
Derived parameters include counter duration,
computed rpm, gross weight
Filling database with narrative and data
Weiberg's gross-weight-by-counter entered into database
Conversion of hard-copy plots from 7600 to Cray

November 1983
Initial interface of DATAMAP with XV-15 database
Summary-file generation (FLTCTRMAP.KEY)

December 1983
Early work on database-to-DTF for DATAMAP
Ground-run numbers accepted as well as flights

January 1984
BHT standard-label to DTF reformatting
DATAMAP file-creation and processing integrated
DCMFRS selects items to store and decimates
Prompting program for flight-log entry
February 1984
Rotor-blipper extracted from control word, stored
DCMPRS reads directly from tape, bypassing MTREAD
Work toward command files for DCMPRS, BELMNMX
Database status-monitoring efforts
Backup procedure for database established

March 1984
Filtering of time-histories in DCMPRS
Truncated time-histories in DCMPRS

April 1984
BELBAT for filtering, decimation, selectivity
in processing 702 time-history tapes
Filtering algorithms and convolution
implemented and tested
Separation into separate databases (disks, directories)
and separation of software from data

May 1984
Subdirectories by data type (e.g. [DB703.MMR])
MMR plotting
Manual entry of list of counters to usable DCS
Deletion, replacement, edition, addition of flights
in BASKER
Hangar runs accepted as well as ground and flight
Experimental (ACCESSX) software used in development

June 1984
Acceptance of group names (e.g. AER) in DTF creation
program for DATAMAP
Cross condition checks made on MMC database
Database-management tools improved
Numeric listing in ITEMDEFS as well as alphabetical
ADDCOM tool for data-entry by NASA personnel
July 1984
Comparisons of MMC from DCMPRS with those from FOX
COPYFLTS minimizes file interference with users
Maintenance program integrated into DATAMAP
PRINT with options in TIMEHIST
FILLMAT3 off-line database-access routine supplied
Cross-checks for MMR, MMC vs. time-histories made

August 1984
New plotting dialogue in TIMEHIST
Creation of SPC, RAW directories
New flight-counter-key files created for summaries
Automatic updating of summary files in DCMPRS
Special keys devised for long time-history records
to handle the record-size limitation

September 1984
Math operations enabled in TIMEHIST
Either-or and neither-nor enabled in WORDSCAN
Interpolation to constant sample rate in DTF allows
cross-plot and frequency response in DATAMAP
Time-history group availability shown in WORDSCAN

October 1984
Min/Max plotting dialogue updated to match TIMEHIST's

December 1984
Reverse-chronological listing in LOGSCAN
Show HQ, AER, etc. in WORDSCAN
Interrupt WORDSCAN to show items stored for each group
Utility routine, WHATDATA, scans any TRENDS item-file

January 1985
Utility software for database review
Database management procedure automation
Filtering of time-histories before storing in DCMPRS
New ACCESS (TRENDS) menu
TABLES and DATAMAP available via ACCESS (TRENDS)
HELP capability added
TERMINAL capability added
FLIGHTS gives one-liners as well as full descriptions
FINDTHC reads and produces derived counter-sets
DCS and F+number accepted at data-region prompts
Multiple counters recognized for TIMEHIST data region
MMR data plotted in TIMEHIST
Polynomials calculated and plotted in TIMEHIST
Time-to-next-inspection included in 703 one-line flight descriptions
February 1985
New dialogue for MINMAX, including formulas, like TIMEHIST
Functions (formulas) in SEARCH
Pre-defined FUNCTIONS feature, evaluation
Use of derived pseudo-items in MINMAX functions
Math-library routines (e.g. SIN) in functions
KEYS, VIEW, WORDSCAN updated to use DCS, :+cntr, etc.

March 1985
Change aircraft-of-interest at any data-region prompt
SEARCH efficiency improved with file re-use
Climb-rate derived and stored for all P342 time-histories
Harmonics studied, computed, stored, accessed

April 1985
702 harmonics tapes processed/analyzed
Setup files developed for re-processing old PCH tapes
requested by RH
Derived items in DCMPRS
Hardcopy print in DATAMAP
K notation (for 1000s) for plot scales implemented
Harmonic MMC type used in expressions
HARMONIC menu-item for plotting harmonics vs. MMC expressions
OSC and MAX statistics made usable in formulas
Comparison of MMC measures from various processing sources

May 1985
Systematic procedure developed for processing requests
Plotting of amplitude spectra in TRENDS
REVDATA menu-item for loads display
FINDTHUC uses THFILES.CAT to display summary of available
counters for time-history groups
Printing of amplitudes/phases in HARMONIC
M-scaling (for 1,000,000s) implemented for plots

June 1985
Hardcopy plots available as option
"Groups" specified by name (previously by number)

July 1985
New database/disk configuration (FHT2 for 702, FHT3 for 703)
QWIKPLOT completed
Automation of production of THFILES.CAT, harmonics, slopes
Accessing of some RSRA data

August 1985
RSRA TRENDS
September 1985
Gross weights reviewed/improved/used in deriving parameters
SEARCH and MINMAX recognize .SMO, .CMN, .CMX, .FSC measures
Label, decimal places, units specifiable in SEARCH
DATAMAP cross-hair feature activated
Stanford seminar preparation and presentation

October 1985
MULTIPLT added to menu
GTRSIM integrated with TRENDS
ITEMDEFS expanded to include pseudo-items

November and December 1985, January 1986
INTERVAL in TIMEHIST
New-version *.LIS files with automatic purging
HELP/ALL for printable help
REPORTX developed for scanning/plotting ACSYNT
(aircraft synthesis program) data, including
contour and families of plots

February 1986
FILES added, with keyed-access, reserved-name files
replacing multiple user-files
Temperature-scan 703 data available for MINMAX & SEARCH
Elimination of the DTF step for DATAMAP from TRENDS
RSRA time-history data available/plottable
Generalization of software for multiple databases
Interface between TRENDS databases and Tischler's software

March 1986
CONVERT (VMS) used to compress databases
Integration, differentiation, convolution filtering enabled
PRINT in TIMEHIST generalized to produce ASCII files
SAVE (now STORE) for saving/recalling derived time-histories
Table lookup entry and use enabled in formulas
Modularizing of TIMEHIST for better configuration management
New RSRA minmax format treated
User's Reference Manual delivered

April 1986
Scanned temperature data stored like other MMC data,
 eliminating the need for a special TEMP file
FLIGHTS.IND (keyed-access) replaces six direct-access files
and extra processing steps
POLY coefficients displayed in plot legends
Command file for routing hardcopy plots to plotting devices
FINDTHC (*) lists all stored items of specified type
Modularization of subroutine LABELS
May 1986
TIME accepted in formulas in TIMEHIST
Blanks and E-notation enabled in formulas
ITEMDEFS allows backing up to earlier prompts
RESCALE at data-region prompt in MINMAX and TIMEHIST
Preparation of off-line module for directly accessing
TRENDS time-history data by an external program
Radar tracking position and velocity data processed from
RTM tapes for 703 and accessible in TIMEHIST

June 1986
CALIBS accesses based calibration data for 703
BASKER modified for new FLIGHTS.IND format and to accept
sequential-formatted ASCII as input
Support of laser-optical disk demonstration
Search of full text in FLIGHTS, storage and use of DCS
Simulation of frequency sweeps for TIMEHIST and SPECTRA
NOTCH filter implemented in TIMEHIST

July 1986
FILES accesses other users' files with DIR, TYPE, COPY
Simulation (GTRSIM) plotting brought into correspondence
with other TRENDS (formulas, POLY, scaling, PRINT)
Key numbers assigned to GTRSIM run results for databasing

August 1986
Modularization of DISPLT, preparation for TEMPLATE
Processing of sample AEFA compressor data

September 1986
ITEMDEFS groups expanded to include temperatures, radar,
sidestick controller
Adaptation of DISPLT to TEMPLATE at AEFA (beginning)
Updating of RSRA TRENDS

October 1986
NORMALIZE option, work with TEMPLATE and AEFA

November 1986
RAW data moved to a different disk from TIM for 703
(first segmentation of a TRENDS database)
Accommodation of AEFA formats, procedures, computers

December 1986
Procedures and User's Manuals delivered
January 1987
Utility software for correcting bad data in support files
Radar data from RTM tapes compared with same from EDF
EDIT capability developed for MINMAX and TIMEHIST

February 1987
SAVE/RECALL of plot setups with EDIT
On-site flight-test support for UH-60 at AEFA
Rev-data processing installed for UH-60
Software for comparing TRENDS stats with AEFA’s
BIT10 (Boolean) added to library functions
Database management (filling) tasks performed by NASA
(first database management by other than AMA)
UH-60 data accessible at ARC with TRENDS (as well as AEFA)

March 1987
GTRSIM updated to latest standalone
GTRSIM/TRENDS user documentation written as appendix to
TRENDS User’s Manual
Software analysis toolset applied to GTRSIM
DATAMAP accepts UH-60 data

April 1987
GTRSIM interface modified
Trip to Boeing-Vertol to demonstrate TRENDS
Database management procedures and programs developed for
handling dual AEFA/ARC software and data for UH-60

May 1987
Reading and storing of weather variables from Crow’s RTM
tapes of radar and XV-15 data
Cross-hair point-saving and storing to a file
TITLE override of plot headers enabled
GTRSIM: maneuver simulation interfaced/checked
better entry format for control positions
printing and plotting of aerodynamic tables
Time-jump accommodation work on UH-60 data
TSHIFT capability for shifting time-histories relatively

June 1987
Move TRENDS database to new NEP computer
New calculations for gross weight
GTRSIM’s aero tables labeled, plotted, hardcopies delivered
DATAMAP modified to use UH-60 blipper, enabling harmonic
analyses and display vs. rotor azimuth
July 1987

Accommodate new derived-parameter routing at AEFA
Compute and store loads data for UH-60
PERFPLOT developed
Database-management menu developed for UH-60
HARMONICS activated for UH-60
LOGSCAN, DERIVED enabled for UH-60 TRENDS

August 1987

Efforts towards generic TRENDS
Crow's landing weather data added to 703 database
FILLER-NEP (UH-60) modified to store harmonic data
New time-history format designed and tested for counter-based files rather than item-based files
Cross-hairs pickling in MINMAX as well as in TIMEHIST
Expression ditto (¥ or #X) to replicate complicated entries
Scale ditto (") to force same scale for two y-curves
INFOPFILE specification prompt for TRENDS' DATAMAP
GTRSIM operational on new NEP
Contour plots enabled off-line for GTRSIM

September 1987

TRENDS demo at BH'
Laser juke-box tests carried out at Perceptics
USAGE developed for logging/displaying TRENDS usage
Menu for GTRSIM rather than list of two-character keys
Pickling of control histories to be accepted by GTRSIM

October 1987

Consolidated TRENDS software on NFPl disk
Gross-weight-by-counter investigation
Spike corrections
Comparison utilities developed for UH-60
TRENDS/TRENX experimental version and procedures used
Saving/recall of an editable ASCII mask in SEARCH for XV15
MULTIPLT in UH60 "TRENDS menu
GTRSIM: COMPARE to superimpose time histories
PERFPLOT
Inputs from flight data
Correspondence list of flight/sim mnemonics
OUTSUB modularizes output statements in GTRSIM
November 1987
Monitoring and summary of spiky or hand-edging data
Increase SPC time-history samples stored to 1024
FILTER/DERIVE modified for better gross reasonableness checks
on numbers used in derivations
FINDTHC: HAP added, question mark enabled for all items
SELECT option added to WORDSCAN
BENDING reactivated off line for ATB and pre-ATB data
TRMP option in GTRSIM (series of trims from flight DCS)
Minmax comparison (printed) for GTRSIM flight/sim
Databasing of minmax and time-history GTRSIM results

December 1987
Spike-removal efforts, de-spiked raw-data storage/access
De-spike routine developed
AND and NOT.AND enabled in WORDSCAN
TRENDS' GTRSIM matches results of standalone version
Graphical comparison of trim solutions for GTRSIM flight/sim
Automatic, overridable collection of flight data for input to GTRSIM

January 1988
HARP wind-tunnel database added
Comparison of short/long/old/new UH-60 minmax stats enabled
Software analysis tools extended/updated and applied to TRENDS, GTRSIM and DATAMAP
Database management menu for XV-15 begun
Database location for TRENDS comes from a file at run time rather than being hard-coded

February 1988
Work toward automatic production of database status report
TIMEHIST help menus and help text-files developed
Utility developed to compute minmax stats from time-histories
SUBINFO summary added to software analysis toolset

March 1988
BV-360 wind-tunnel database added
SEQN (sequential abscissa) enabled for MINMAX plots
List-file logging and printing option at exit from TRENDS
Modularization of production of list files in TRENDS
New time-history format and special TRENDS to read it
Detailed HELP menus for MINMAX, like TIMEHIST's
April 1988
Revision of 703 instrumentation groups
Specification of source and destination for UH-60 FILLER
to alleviate storage problems
Derived rotor parameters at mainframe rate for UH-60
NUKER tool for UH-60 database managers to excise counters

May 1988
MOVER, FLAGGER tools developed for UH-60 database management
PROJECT menu-item and information in database
Testing of a laser optical disk with TRENDS

June 1988
EDF format converted TRENDS format
User's Reference Manual (slanted to UH-60) delivered
Presentation and participation at UH-60 Workshop

July 1988
HP2623 terminal use enabled
CPRINT (custom print) added
XV-15 project information accessed by PROJECT
Main-rotor azimuth available as abscissa in TIMEHIST
TRENDS access on a PC-AT (via modem) enabled

August 1988
New time-history format devised, tested
and accessing modules written

September 1988
Time-skew investigations/solutions for 703 data
Wild-card (*) responses accepted for most data regions
Generic KEYS with custom KEYITEMS for XV-15
Condition mask file extended by tail number

October 1988
XV-15 item groups expanded to include new blade parameters (ATB)
Accommodation of Cobra data
BASECOM distributes database parameters, relieves hard-coding
Demonstration of TRENDS/GTRSIH interface to NASA personnel

November 1988
Chinook and Apache databases on FSD VAX

December 1988
Test version of unified TRENDS is operational
User-generated files (e.g., FUNCTIONS) uniquely identified by database
Prototype screen-managed menu developed

January 1989
Formatting of MDHC test tape to TRENDS format
Training and instruction for wind-tunnel software developer
Database filling for Cobra data
Release of unified TRENDS

Release of TRENDSX with a screen-managed menu

Development of a UH-60 database in counter-file format, access by TRENDS

Development of a utility for page-numbering the TRENDS Report and concurrently updating a table of contents with the page numbers

February and March 1989

Delivery and installation of TRENDS at MDHC and the 40 x 80 wind tunnel

Training/presentation of TRENDS at MDHC and the wind tunnel

Moving of database management software from DBMGR data disk

V22 database installed (project data only)

XV-15 engine model data reformat ted and printed

BO-105 database installed on FSD VAX

Unification and improvement of the database management software

Identification (date, time, name) included in user-generated files

Project information enabled for all databases

TRENDS generalized to access either old or new time-history formats

April 1989

Correction of switched (and correspondingly miscalibrated) data items

in the UH-60 database

Tagging of user-generated files with database extension

Rotor-blipper signal synthesized for UH-60 flight 25

Unification of ITEMINFO treatment, improvement of wild-card in ITEMDEFS

Improvement of wild-card selection of data items in VIEW

COMPARE improved and enabled for time-history comparisons between databases

Plot titles and database symbols moved to the descriptor file

Apache database on NER written in new counterfile format on laser disk

Extension of counterfile format to treat floating-point e.u. data

Improvement of the GTRSIM interface, including s/w configuration control

May 1989

TRENDS installed on KRY VAX, along with the HARP database

Itemcode, as well as mnemonic, recognized in FIND

Scanning and display of contour and family plots for CAMRAD

June 1989

Upgrading of TRENDS on MAR for quick-looking at XV-15 data

FREQN installed to enable "per-rev" as abscissa in spectral plots

Improvement of the software analysis toolset, FATS

Initial steps for accessing Phase II Blackhawk data on FOX4

July 1989

Efforts toward processing new ("bad") XV-15 ground-test data on MAR

Development and test of database filling and management software on FOX4

TRENDS installed on FOX4 (required linking to accommodate new DISSPLA)

Paper prepared and presented at Measurement & Instrumentation Workshop

Work toward unification of the counter-description file throughout TRENDS
APPENDIX B

SYNTAX FOR FORMULAS IN TRENDS

TRENDS provides the user with a capability for combining the stored numerical data according to his own formulas for the purpose of searching or plotting. These formulas may be entered at prompt-time or stored as named "functions" and recalled by name (see menu-item FUNCTION). They may be applied to either Min/Max (scalar) data or to time-histories. The general form of the mathematical expressions understood by TRENDS is:

\[ \text{operand (operation operand) (operation ... operand)} \]

where the operations are any of +, -, *, /, ^ (\(^\) is exponentiation). The operands are either:

- itemcodes or derived itemcodes (with extensions, for minmax),
- literal numbers (E-notation accepted),
- names of previously defined formulas (functions),
- library functions with math-expression arguments,
- previously defined univariate table name with math-expression argument
- "TIME" (for time-history plotting only)

Parentheses may be used in the mathematical expressions to clarify the computational order. The default order of computation is left-to-right as encountered (reverse Polish notation). For example,

\[ M143+M10^/2 \]

is equivalent to \( (M143+M10)/2 \)
rather than to \( M143+(M107/2) \) as it would be in FORTRAN.
All literal numbers are used as REAL*4 floating-point, whether or not the decimal point is specified.

It is important to note that the first field MUST be an OPERAND and NOT an operation. Therefore,

\[ -M143 \]

is invalid, while

\[ -1*M143 \] or \( 0-M143 \)

are valid expressions.
Library functions

The available library functions are REAL*4 functions of a single REAL*4 argument, X, which may itself be a mathematical expression.

- \( \text{SIN}(X) \) - sine of angle X in degrees
- \( \text{COS}(X) \) - cosine of angle X in degrees
- \( \text{TAN}(X) \) - tangent of angle X in degrees
- \( \text{ASIN}(X) \) - arcsine of X, returned in degrees (-90, 90)
- \( \text{ACOS}(X) \) - arccosine of X, returned in degrees (0, 180)
- \( \text{ATAN}(X) \) - arctangent of X, returned in degrees (-90, 90)
- \( \text{SQRT}(X) \) - square root of (absolute value of) X
- \( \text{EXP}(X) \) - exponential of X
- \( \text{LOG}(X) \) - logarithm (base 10) of (absolute value of) X
- \( \text{LOGE}(X) \) - natural logarithm of (absolute value of) X
- \( \text{ABS}(X) \) - absolute value of X
- \( \text{DERIV}(X) \) - first time derivative of X (time-history only)
- \( \text{INTEGR}(X) \) - integral of X (time-history only)
- \( \text{BIT10}(X) \) - Boolean AND with the UH60 tail-rotor bit

Univariate Table Look-up

Univariate table look-up is also available in TRENDS. The table must be entered as a number of x,y pairs in your user-defined functions file, FUNCTIONS.A/C. If the table is called VGAIN, for example, VGAIN(X) may be used in any mathematical expression as an operand, where the argument X may also be an expression. Linear interpolation is used between table-points when X lies within the table's independent-variable bounds. When X lies outside the bounds, the end-point y-value is returned.

Valid Examples

(Entries in user's FUNCTIONS.703)

- \( \text{AVGTORK} = (M143 + M107) / 2 \)  
  named formula
- \( \text{DATA VGAIN (0,23, 45,62.5, 100,83.7, 200,0, 300,-5)} \)  
  look-up table

(In-line responses to plotting "Y-CURVE" prompt)

- \( \text{SHAFT TORQUE} = M143 \)  
  itemcode
- \( \text{STORE RSSTORK} = M143^2 + (M107^2)^.5 \)  
  formula
- \( \text{TRIG FN} = \text{ATAN(SIN(D186)/COS(D186))}-D161 \)  
  library functions
- \( \text{PSEUDOS} = \text{RSHP} * \text{SQRT(SIGP^3)} \)  
  pseudo-items
- \( \text{TABLE VAL} = 1.5 * \text{VGAIN(.67*P002)} \)  
  table look-up
- \( \text{FN_OF_STORED_VAL} = \text{LOG(RSSTORK)} \)  
  stored formula
- \( \text{SCIENT NOTATION TIME} = M143*1.E-5*TIME} \)  
  E-notation, TIME
- \( \text{AVG_VIB_TORK (FT-LB)} = M143.0SC/12 \)  
  non-default measure
- \( \text{CLIMB_RATE (FT/MIN)} = \text{DERIV(P342)} * 60 \)  
  calculus operations
- \( \text{AVERAGE TORQUE} = \text{AVGTORK/12} \)  
  use of named formula

In-line responses for MINMAX also apply to SEARCH responses.
APPENDIX C

PERFORMANCE GROUPS, XV-15 AND UH-60

XV-15 TILTROTOR TIME-HISTORY GROUPS

<table>
<thead>
<tr>
<th>ITEM CODE GROUPS</th>
<th>FILE TYPE</th>
<th>TIME HISTORY FILE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROELASTIC</td>
<td>*.TIM</td>
<td>FILTERED, FULL CNTR, 26 I.C.s</td>
</tr>
<tr>
<td>ARO: AEROELASTIC</td>
<td>*.RAW</td>
<td>UNFILTERED, FULL CNTR, 20 I.C.s</td>
</tr>
<tr>
<td>BLADE</td>
<td>*.RAW</td>
<td>UNFILTERED, FULL CNTR, 50 I.C.s</td>
</tr>
<tr>
<td>CONVERSION</td>
<td>*.TML</td>
<td>UNFILTERED, FULL CNTR, 23 I.C.s</td>
</tr>
<tr>
<td>HANDLING QUALITIES</td>
<td>*.SFC</td>
<td>FILTERED, FULL CNTR, 108 I.C.s</td>
</tr>
<tr>
<td>HARMONICS</td>
<td>*.TML</td>
<td>UNFILTERED, 1025 PTS/CNTR, ABFMS</td>
</tr>
<tr>
<td>MANEUVERS</td>
<td>*.RAW</td>
<td>FILTERED, FULL CNTR, 88 I.C.s</td>
</tr>
<tr>
<td>RADAR</td>
<td>*.SFC</td>
<td>FILTERED, FULL CNTR, 19 I.C.s</td>
</tr>
<tr>
<td>RAW WING AEROELASTIC</td>
<td>*.RAW</td>
<td>UNFILTERED, FULL CNTR, 9 I.C.s</td>
</tr>
<tr>
<td>SPECTRALS</td>
<td></td>
<td>UNFILTERED, 1025 PTS/CNTR, ABFMS</td>
</tr>
<tr>
<td>TRANSFER FUNCTION</td>
<td></td>
<td>UNFILTERED, FULL CNTR, 13 I.C.s</td>
</tr>
<tr>
<td>Item Code</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>A005</td>
<td>C.G. VERT VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>A019</td>
<td>PILOT SEAT VERT VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>A020</td>
<td>COPILOT SEAT VERT VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>A300</td>
<td>C.G. LAT VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>A301</td>
<td>C.G. F/A VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>A302</td>
<td>PILOT SEAT LAT VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>A304</td>
<td>COPILOT SEAT LAT VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>A352</td>
<td>C.G. VERT VIBR (SERVO)</td>
<td>G'S</td>
</tr>
<tr>
<td>A380</td>
<td>PILOT SEAT F/A VIBR</td>
<td>G'S</td>
</tr>
<tr>
<td>D007</td>
<td>ANGLE OF SIDESLIP</td>
<td>DEG</td>
</tr>
<tr>
<td>D008</td>
<td>ANGLE OF ATTACK</td>
<td>DEG</td>
</tr>
<tr>
<td>D009</td>
<td>ROLL ATTITUDE - CABIN</td>
<td>DEG</td>
</tr>
<tr>
<td>D010</td>
<td>PITCH ATTITUDE - CABIN</td>
<td>DEG</td>
</tr>
<tr>
<td>D011</td>
<td>YAW ATTITUDE - CABIN</td>
<td>DEG</td>
</tr>
<tr>
<td>D021</td>
<td>F/A STICK POSITION</td>
<td>%</td>
</tr>
<tr>
<td>D022</td>
<td>LAT STICK POSITION</td>
<td>%</td>
</tr>
<tr>
<td>D023</td>
<td>POWER LEVER POSITION</td>
<td>%</td>
</tr>
<tr>
<td>D024</td>
<td>PEDAL POSITION</td>
<td>%</td>
</tr>
<tr>
<td>D025</td>
<td>FFS F/A CYCLIC STICK POSITION</td>
<td>%</td>
</tr>
<tr>
<td>D026</td>
<td>FFS LAT STICK POSITION</td>
<td>%</td>
</tr>
<tr>
<td>D027</td>
<td>FFS RUDDER PEDAL POSITION</td>
<td>%</td>
</tr>
<tr>
<td>D156</td>
<td>RT PYLON HUB SPRING F/A POS</td>
<td>DEG</td>
</tr>
<tr>
<td>D157</td>
<td>RT PYLON HUB SPRING LAT POS</td>
<td>DEG</td>
</tr>
<tr>
<td>D158</td>
<td>RT PYLON COLL. ACTUATOR POS</td>
<td>DEG</td>
</tr>
<tr>
<td>D159</td>
<td>RT PYLON S/PLATE F/A POSITION</td>
<td>DEG</td>
</tr>
<tr>
<td>D160</td>
<td>RT PYLON S/PLATE LAT POSITION</td>
<td>DEG</td>
</tr>
<tr>
<td>D161</td>
<td>RT Pylon Conversion Position</td>
<td>DEG</td>
</tr>
<tr>
<td>D181</td>
<td>LT PYLON HUB SPRING F/A POS</td>
<td>DEG</td>
</tr>
<tr>
<td>D182</td>
<td>LT Pylon HUB SPRING LAT POS</td>
<td>DEG</td>
</tr>
<tr>
<td>D183</td>
<td>LT Pylon COLL. ACTUATOR POS</td>
<td>DEG</td>
</tr>
<tr>
<td>D184</td>
<td>LT Pylon S/PLATE F/A POSITION</td>
<td>DEG</td>
</tr>
<tr>
<td>D185</td>
<td>LT Pylon S/PLATE LAT POSITION</td>
<td>DEG</td>
</tr>
<tr>
<td>D186</td>
<td>LT Pylon Conversion Position</td>
<td>DEG</td>
</tr>
<tr>
<td>D281</td>
<td>ELEVATOR POSITION</td>
<td>DEG</td>
</tr>
<tr>
<td>D284</td>
<td>RUDDER POSITION</td>
<td>DEG</td>
</tr>
<tr>
<td>D305</td>
<td>RT MAIN LDG GEAR OLEO EXT POS</td>
<td>INCHES</td>
</tr>
</tbody>
</table>

**Notes:**
- The table includes various handling qualities item codes for XV-15 aircraft, detailing parameters such as roll, pitch, and yaw attitudes, stick positions, lever positions, and more.
- The codes represent different aspects of aircraft control and performance.
- The units for different parameters are specified, such as G'S for accelerometers, DEG for degrees, and INCHES for inches.
- The filter values, S rate, and in rate are provided for each parameter, indicating the sensitivity and response rates.
| 44 | D318 | DIFF.CYC/LIC WASHER ACT.POS | INCHES | 3.0 | 15.7 | 31.4 |
| 45 | D327 | ALTITUDE - RADAR ALTIMETER | FEET   | 1.0 | 5.2 | 31.4 |
| 46 | D349 | NOSE LOG GEAR OLEO EXT POS | INCHES | 1.0 | 5.0 | 125.5 |
| 47 | D509 | RT THROTTLE POSITION | DEG | 3.0 | 15.7 | 31.4 |
| 48 | D510 | LT THROTTLE POSITION | DEG | 3.0 | 15.7 | 31.4 |
| 49 | D617 | FLAP POSITION | DEG | 3.0 | 15.7 | 31.4 |
| 50 | D645 | RT WING AILERON POSITION | DEG | 3.0 | 15.7 | 125.5 |
| 51 | D646 | LT WING AILERON POSITION | DEG | 3.0 | 15.7 | 125.5 |
| 52 | D746 | RT COLLECTIVE LVDT | % | 10.0 | 31.4 | 125.5 |
| 53 | D747 | RT FLAPERON LVDT | % | 10.0 | 31.4 | 125.5 |
| 54 | D776 | S/S LONG STICK COMMAND | INCHES | 3.0 | 15.7 | 31.4 |

| 55 | D777 | S/S PITCH ATTITUDE COMMAND | DEG | 3.0 | 15.7 | 31.4 |
| 56 | D779 | S/S LAT STICK COMMAND | INCHES | 3.0 | 15.7 | 31.4 |
| 57 | D780 | S/S ROLL ATTITUDE COMMAND | DEG | 3.0 | 15.7 | 31.4 |
| 58 | D792 | S/S PEDAL COMMAND | INCHES | 3.0 | 15.7 | 125.5 |
| 59 | D799 | LT COLLECTIVE LVDT | % | 10.0 | 31.4 | 125.5 |
| 60 | D800 | LT FLAPERON LVDT | % | 10.0 | 31.4 | 125.5 |
| 61 | E069 | RPM CND | MAMPS | 3.0 | 15.7 | 125.5 |
| 62 | E070 | STEY-NA | ± | 3.0 | 15.7 | 31.4 |
| 63 | E717 | PRIMARY GOV SERVO VALVE | % | 10.0 | 31.4 | 125.5 |
| 64 | E718 | PRIMARY GOV RPM ERROR | % | 3.0 | 15.7 | 125.5 |
| 65 | E719 | PRIMARY GOV #1 LVDT | D/SEC | 3.0 | 15.7 | 125.5 |
| 66 | E720 | PRIMARY GOV ACT. VELOCITY | % | 3.0 | 15.7 | 31.4 |
| 67 | E721 | PRIMARY GOV COMMAND RPM | % | 3.0 | 15.7 | 31.4 |
| 68 | E722 | PRIMARY MONITOR COMMAND RPM | % | 10.0 | 31.4 | 125.5 |
| 69 | E723 | PRIMARY MONITOR RPM ERROR | % | 10.0 | 31.4 | 31.4 |
| 70 | E724 | STANDBY GOVERNOR RPM ERROR | VOLTS | 10.0 | 31.4 | 31.4 |
| 71 | E748 | RT COLLECTIVE EXCITER SOLENOID | VOLTS | 10.0 | 31.4 | 31.4 |
| 72 | E749 | RT FLAPERON EXCITER SOLENOID | VOLTS | 10.0 | 31.4 | 31.4 |

<p>| 73 | E750 | LT COLLECTIVE EXCITER SOLENOID | VOLTS | 10.0 | 31.4 | 31.4 |
| 74 | E751 | LT FLAPERON EXCITER SOLENOID | VOLTS | 10.0 | 31.4 | 31.4 |
| 75 | F030 | FFS F/A CYCLIC STICK FORCE | LBS | 3.0 | 15.7 | 31.4 |
| 76 | F031 | FFS LATERAL STICK FORCE | LBS | 3.0 | 15.7 | 31.4 |
| 77 | F033 | FFS RUDDER PEDAL FORCE | LBS | 3.0 | 15.7 | 31.4 |
| 78 | F162 | RT F/A CYCLIC ACTUATOR FORCE | LBS | 3.0 | 15.7 | 251 |
| 79 | F163 | LT LAT STICK ACTUATOR FORCE | LBS | 3.0 | 15.7 | 251 |
| 80 | F164 | RT COLLECTIVE ACTUATOR FORCE | LBS | 3.0 | 15.7 | 251 |
| 81 | F187 | LT F/A CYCLIC ACTUATOR FORCE | LBS | 3.0 | 15.7 | 251 |
| 82 | F188 | LT LAT STICK ACTUATOR FORCE | LBS | 3.0 | 15.7 | 251 |
| 83 | F189 | LT COLLECTIVE ACTUATOR FORCE | LBS | 3.0 | 15.7 | 251 |
| 84 | F330 | F/A CYCLIC STICK FORCE | LBS | 3.0 | 15.7 | 125.5 |
| 85 | F331 | LATERAL STICK FORCE | LBS | 3.0 | 15.7 | 125.5 |
| 86 | F333 | RT RUDDER PEDAL FORCE | LBS | 3.0 | 15.7 | 125.5 |
| 87 | F334 | LT RUDDER PEDAL FORCE | LBS | 3.0 | 15.7 | 125.5 |
| 88 | F775 | S/S LONG FORCE | LBS | 3.0 | 15.7 | 125.5 |
| 89 | F778 | S/S LAT FORCE | LBS | 3.0 | 15.7 | 125.5 |
| 90 | H107 | RT ROTOR MAST TORQUE | IN LB | 3.0 | 15.7 | 251 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>FILTER</th>
<th>RATE</th>
<th>IN RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>MI43</td>
<td>LT ROTOR MAST TORQUE</td>
<td>12</td>
<td>IN LB</td>
</tr>
<tr>
<td>92</td>
<td>M791</td>
<td>S/S TORQUE</td>
<td></td>
<td>IN LB</td>
</tr>
<tr>
<td>93</td>
<td>P002</td>
<td>AIRSPEED - NOSE BOOM</td>
<td></td>
<td>KNOTS</td>
</tr>
<tr>
<td>94</td>
<td>P342</td>
<td>ALTITUDE - NOSE BOOM</td>
<td></td>
<td>FEET</td>
</tr>
<tr>
<td>95</td>
<td>R106</td>
<td>ROTOR RPM</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>96</td>
<td>R328</td>
<td>RT ENGINE FUEL FLOW RATE</td>
<td></td>
<td>LB/HR</td>
</tr>
<tr>
<td>97</td>
<td>R329</td>
<td>LT ENGINE FUEL FLOW RATE</td>
<td></td>
<td>LB/HR</td>
</tr>
<tr>
<td>98</td>
<td>R338</td>
<td>RT ENGINE N2 RPM</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>99</td>
<td>R339</td>
<td>LT ENGINE N2 RPM</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>100</td>
<td>R503</td>
<td>RT ENGINE N1 RPM</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>101</td>
<td>R515</td>
<td>LT ENGINE N1 RPM</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>102</td>
<td>T322</td>
<td>OAT (ROSEMONT)</td>
<td></td>
<td>DEG C</td>
</tr>
<tr>
<td>103</td>
<td>V012</td>
<td>ROLL RATE - CABIN (INCOMPLETE)</td>
<td></td>
<td>D/SEC</td>
</tr>
<tr>
<td>104</td>
<td>V013</td>
<td>PITCH RATE - CABIN (INCOMPLETE)</td>
<td></td>
<td>D/SEC</td>
</tr>
<tr>
<td>105</td>
<td>V014</td>
<td>YAW RATE - CABIN (INCOMPLETE)</td>
<td></td>
<td>D/SEC</td>
</tr>
<tr>
<td>106</td>
<td>V015</td>
<td>ROLL RATE - SCAS</td>
<td></td>
<td>D/SEC</td>
</tr>
<tr>
<td>107</td>
<td>V016</td>
<td>PITCH RATE - SCAS</td>
<td></td>
<td>D/SEC</td>
</tr>
<tr>
<td>108</td>
<td>V017</td>
<td>YAW RATE - SCAS</td>
<td></td>
<td>D/SEC</td>
</tr>
</tbody>
</table>
**JH-60 BLACKHAWK INSTRUMENTATION GROUPS**

- TC Test Conditions
- AP Aircraft Parameters
- RP Rotor Parameters
- VP Vibration Parameters
- EP Engine Parameters
- DP Derived Parameters

**JH-60 BLACKHAWK TEST-CONDITION ITEMS**

<table>
<thead>
<tr>
<th>Seq</th>
<th>Item</th>
<th>Description</th>
<th>Units</th>
<th>I Code</th>
<th>Freq</th>
<th>Rate/Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALPHA</td>
<td>Angle of attack</td>
<td>Degr</td>
<td>DA00</td>
<td>321</td>
<td>129/4</td>
</tr>
<tr>
<td>2</td>
<td>AXCG</td>
<td>Linear accel CG, longitudinal</td>
<td>G's</td>
<td>DL00</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>3</td>
<td>AYCG</td>
<td>Linear accel CG, lateral</td>
<td>G's</td>
<td>DL01</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>4</td>
<td>AYCGSENS</td>
<td>Sensitive lateral acceleration</td>
<td>G's</td>
<td>AF00</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>5</td>
<td>AZCG</td>
<td>Linear accel CG, normal</td>
<td>G's</td>
<td>DL02</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>6</td>
<td>BETA</td>
<td>Angle of sideslip</td>
<td>Degr</td>
<td>DSS0</td>
<td>321</td>
<td>129/4</td>
</tr>
<tr>
<td>7</td>
<td>HEADIN</td>
<td>Aircraft Heading @25sps</td>
<td>Degr</td>
<td>DA12</td>
<td>321</td>
<td>129/4</td>
</tr>
<tr>
<td>8</td>
<td>HEADINC</td>
<td>Aircraft Heading</td>
<td>Degr</td>
<td>DA02</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>9</td>
<td>LSSX</td>
<td>Raw Airspeed (LASSIE) Long</td>
<td>Kts</td>
<td>VX03</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>10</td>
<td>LSSY</td>
<td>Raw Airspeed (LASSIE) Lateral</td>
<td>Kts</td>
<td>XV03</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>11</td>
<td>LSSZ</td>
<td>Raw Airspeed (LASSIE) Vertical</td>
<td>Ft/Min</td>
<td>V03</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>12</td>
<td>PAICB</td>
<td>Boom altitude</td>
<td>inHg</td>
<td>H001</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>13</td>
<td>PAICS</td>
<td>Ship's altitude</td>
<td>inHg</td>
<td>H002</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>14</td>
<td>PITCHAT</td>
<td>Pitch attitude @ 25 sps</td>
<td>Degr</td>
<td>DA10</td>
<td>321</td>
<td>129/4</td>
</tr>
<tr>
<td>15</td>
<td>PITCHATT</td>
<td>Attitude, pitch angle</td>
<td>Degr</td>
<td>DA00</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>16</td>
<td>PITCHACC</td>
<td>Pitch acceleration</td>
<td>Deg/s2</td>
<td>DAC0</td>
<td>2.</td>
<td>129/8</td>
</tr>
<tr>
<td>17</td>
<td>PITCHRATE</td>
<td>Angular rate, pitch</td>
<td>Deg/s</td>
<td>DR00</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>18</td>
<td>QCICB</td>
<td>Boom airspeed</td>
<td>inHg</td>
<td>V001</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>19</td>
<td>QCICS</td>
<td>Ship's airspeed</td>
<td>inHg</td>
<td>V002</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>20</td>
<td>RADALT</td>
<td>Altitude (Radar Range)</td>
<td>Feet</td>
<td>H003</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>21</td>
<td>RECORD</td>
<td>Record number</td>
<td>Index</td>
<td></td>
<td>321</td>
<td>129/6</td>
</tr>
<tr>
<td>22</td>
<td>ROLLACC</td>
<td>Roll acceleration</td>
<td>Deg/s2</td>
<td>DAC1</td>
<td>2.</td>
<td>129/8</td>
</tr>
<tr>
<td>23</td>
<td>ROLLAT</td>
<td>Roll attitude @ 25 sps</td>
<td>Degr</td>
<td>DA11</td>
<td>129/8</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>ROLLATT</td>
<td>Attitude, roll angle</td>
<td>Degr</td>
<td>DA01</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>25</td>
<td>ROLLRATE</td>
<td>Angular rate, roll</td>
<td>Deg/s</td>
<td>DR01</td>
<td>5.</td>
<td>129/4</td>
</tr>
<tr>
<td>26</td>
<td>TTIC</td>
<td>OAT Outside Air Temperature</td>
<td>Deg/C</td>
<td>T100</td>
<td>1.</td>
<td>32/6</td>
</tr>
<tr>
<td>27</td>
<td>YAWACC</td>
<td>Yaw acceleration</td>
<td>Deg/s2</td>
<td>DAC2</td>
<td>2.</td>
<td>129/8</td>
</tr>
<tr>
<td>28</td>
<td>YAWATT</td>
<td>Alternate for heading</td>
<td>Deg</td>
<td>DA22</td>
<td>129/8</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>YAWRATE</td>
<td>Angular rate, yaw</td>
<td>Deg/s</td>
<td>DR02</td>
<td>5.</td>
<td>129/4</td>
</tr>
</tbody>
</table>
FILE STRUCTURE CONSIDERATIONS

One must consider many factors when choosing a file structure for a database. Some of these factors are:

1. How will the information from the database be used?
2. How much data must be archived?
3. What are the procedural limitations and constraints?

The basic keys for databased numerical (e.g., Min/Max or time-history) records are (1) item name (itemcode, mnemonic, etc.) and (2) counter (test-point identifier). That is, given the data item and test-point index, the data record should be identified for retrieval. Of course, we are assuming that the database is given and that item and counter are unique within that database. Such attributes as data type or repeated records will be ignored for now. There are many file and record structures one could propose for numerical records:

Option 1: All of the item/counter data might be in one file keyed either by a composite item/counter code or by primary (e.g., item) and secondary (e.g., counter) keys.

Option 2: All of the data in the base for one item might be in one file (one file per item) and be keyed by counter.

Option 3: All of the data in the base for one counter might be in one file (one file per counter) and be keyed by item.

Option 4: Each item/counter pair might be a separate file (name code specifies item and counter, no keying necessary).

The following FORTRAN code shows how Option 2 is implemented in TRENDS.

```
OPEN (UNIT=2, NAME=FILENAME, STATUS='OLD',
1 ORGANIZATION='INDEXED', ACCESS='KEYED',
2 KEY=(1:4:INTEGER), READONLY, SHARED,
3 RECORDTYPE='VARIABLE', FORM='UNFORMATTED')

JCTR = 14502 ! Counter number

READ (2,KEY=JCTR, FPR=350) ICTR, SCALE, BIAS, START, SAMPSEC,
1 NPTS, (I2DAT(I), I=1,NPTS)

DO 20 I=1,NPTS
200 EU(I) = SCALE * FLOAT(I2DAT(I)) + BIAS
```
This example reads time-history data in integer counts into an array, 12DAT, then converts the data into an array, EU, in floating-point engineering units for plotting or math operations. Notice that the key is the counter number, an integer. For Option 3, the record key would be the itemcode, a character variable. The choice among the many options is made by considering the likely use of the data, the ease of programming the access, database management requirements (e.g., deleting, copying the stored data), resultant file size, traceability through modularity, etc.

Option 2 was originally selected for TRENDS for storing both Min/Max and time-history data. Reconsideration of the usage requirements and constraints of the system has led to a decision to change time-history file structures to Option 3 in the future. Option 1 was ruled out because it implies one gigantic file for each data type (or worse, for ALL data types, such as Min/Max-per-counter, filtered time-histories, etc.). This file would be too unwieldy for database management operations where special techniques are required to avoid locking up files while filling and where smaller files are better procedurally for accommodating such problems as computer crashes. Option 2 implies a fairly fixed number of files (one for each item), each of which grows as new counters are added to the database. Option 3 implies a fairly fixed number of records in each file (file size depending on test-point duration and sampling rate), where the number of files grows as new counters are added to the database. Option 4 would result in a ridiculous proliferation of files (the number being the product of the number of items and the number of counters for each data type) and in too much opening and closing of files during access. Time-frame format storage is not even considered, because it takes too much work and time to extract the information to be displayed or searched.

The multiflight requirement is currently impacting the time-history data format as the system goes from 5 to 80 gigabytes via the use of a laser-disk jukebox. The original file format (Option 2) was multiflight-oriented by allowing each parameter to have a single file and by keying the records in it to the test-point numbers. New higher data sampling rates (for multiple flights) are forcing NASA to go to a multidisk storage system to handle the high volume of data, where the time-history data for one parameter might well span more than one disk if kept in the original format. Option 3, which has one file per test point (the file data for all parameters for that test point) is better for this situation because each disk could be made to hold an integral number of test points. This format may not be as efficient in execution as that of Option 2, but has logistical advantages because of the laser disk medium and the need to migrate data.

A version of the Option 3 format has been adopted at Ames to serve as the standard database time-history format serving both DATAMAP and TRENDS. This format is called the DAT-TH format.

The format requirements for Min/Max data are different from those
for time-history data. Let us consider the advantages and disadvantages of using Option 2 (one file per item, keyed by counter) for Min/Max operations. The two most frequent uses of Min/Max data in TRENDS are (1) searching for conditions on a few items across a possibly large range of counters, and (2) displaying one item's Min/Max statistics versus another's for a range of counters. To search one item's values across the entire database (perhaps thousands of counters) requires opening only one file. To display one item's values against another's for a large number of counters requires opening and reading only two files. If the files were counter-named and item-keyed (Option 3), a new file would have to be opened, read, and closed for each different counter in the specified data region. A disadvantage of Option 2 is seen in block-prints (snapshots displaying multiple items or expressions involving multiple items) of many items together for a few counters. Another difficulty comes in deleting (or migrating) one counter or flight or segment from the database. Each item-file must then be specified, opened, treated, and closed separately. On the other hand, the item-file for a completely dead or faulty sensor can simply be deleted and full database information for a single item can be copied with VMS system commands.
APPENDIX E
HIERARCHY CHART FOR TRENDS

The subroutines are:

AMPSET  AMPSCIC  ASKFILE  AVECYC  AZTMUTH
BANK    BILDFORMAT  BLOCKOUT  BUZZER  CAST
CHANGE  CHANGE_SETUP  CHERFUNC  CKDATNAM  COMPARE
COMPHDR CONTENTS  CREATION  CRSHAR  CUBFIT
CURVEFIT CVFILTER  CVGEN  CVTPC  CYAVST
CYCLEAVG DCSREAD  DCSSAVE  DERIVED  DISPLAY
DRCRV    ECR  EDITP  ENABLE  EQUATION
EQUATIONF EVALUATE  EXPOSE  FLAGCHEK  FFT
FILTAT   FILTER  FINDTHC  FILE  FILTER
FLTLOG   FNMAX  FNRATE  FNKSHN  GETHELP
FRFILL   FRMAT  FUNC  GETNPL  GETNPLTF
GETERN   GETFTS  GETHIC  HELP  HELPER
GLSUB    GRPLST  HANDLER  INFUNC  INREAD
HELPDCPY INDATA  INFILS  INTMU  LABELS
INVERT   ITEMCODE  ITMEMFS  LOADSIV  LOGOUT
LEGENDS  LIBBD  LOAUDSH  NSFILE  MULTIPL
MENU     MINMAX  PLOTS  ONELIN  OFFNUTR
NIER    NORMALIZE  NOTCHF  PFRPLOT  PICTR
OPENFILE OPNSHS  PARSER  PFRPLOT  PIWTR
PLTHDR   PLTBLDS  PLTSRT  READUP  REDNOSE
PREPLOT  PREPLOTF  QVIKPILOT  RHSRR  ROTCOR
RFFT     RNHMB  RNMB  SCRO_Menu  SEARCHH
ROOTLOG  ROTOPL  SCILALEP  SETBASE  SETERM
SEARCHXV SEGYX  SETACSN  SETBAS  SHOCAL
SETSCF   SETUP  SETUP  SHUFF  SHOSUM
SHOPFL   SHOWKEY  SHOWMNX  SHONARTV  SHOSUM
SHOWDCS SHOWFILE  SHOWFM  SHOWIV  SHOWVAR
SIMSIGNAL SIMSPEC  SHM MENU  SORTIV  SORTX
SPECTRAL STRINGS  SUBMENU  TEKVIV  TERNITY
THOPEN   THETMNS  TFRNT  TINEHIST  TIEOUT
TREND98  UPPSTATS  USERFILES  WHATFILES  WHATSAVE
WORDDSCAN XAXIS  XHISCL  YAXIS  YHISCL

In the following hierarchy chart, "*" means "not in the list of subroutines" and "line n" means "lower branches already expanded above, line n."

```
Level Level Level Level Level
0 1 2 3 4
1 TREND98
2 > CHANNEL *
3 > ENABLE
4 > > LIB'SSTOP *
6 > LOGOUT
7 > > DATE *
8 > > TIME *
10 > SETACSN
```

(TRENDS Main Program)
11 > > READUPC
12 > > INFUNCS
13 > > > CVTUPC
14 > > > PARSER
15 > > SETBASE
16 > > > STRINGS
17 > SET_TERM_HCPY *
18 > ECR
19 > INFUNCS `line 12
20 > INFUNCS
21 > INFUNCS
22 > MENU
23 > INFUNCS
24 > READUPC
25 > SCRO_MENU
26 > READUPC
28 > SMG_MENU
29 > OPSHMS
30 > CVTUPC
31 > CHANGE_SETUP
32 > SUBMENU
33 > SETACSN `line 10
34 > GENHELP
35 > READUPC
36 > HELP
37 > HELPER
38 > READUPC
39 > ITEMDEFS
40 > READUPC
41 > LOGOUT `line 6
42 > ITEMDEFS
43 > LOGOUT `line 6
44 > FOPEN
45 > READUPC
46 > CVTUPC
47 > FHTRATE
48 > HELP
49 > SHOWFORM
50 > WHATSAVE
51 > READUPC
52 > HELP
53 > HELP
54 > HELP
55 > HELP
56 > SHOWTH
57 > FINDTHC (FIND Menu Item)
58 > LOGOUT `line 6
59 > READUPC
60 > CONTENTS
61 > FOPEN
62 > THITEMS
63 > READUPC (Number entry parser)
64 > REDNOSE
65 > READUPC
66 > READUPC
67 > CHANGE
68 > PARSER
69 > SETACSN `line 10
70 > GETERM
71 > READUPC
73 > > > > > > > > GETHCOPY *
74 > > > > > > > > THPRNT
75 > > > > > > > > HELP
76 > > > > > > > > EDITPP
77 > > > > > > > > WHATFILES
78 > > > > > > > > READUPC
79 > > > > > > > > PARSER
80 > > > > > > > > READUPC
81 > > > > > > > > RNUMBR
82 > > > > > > > > RNUMB
83 > > > > > > > > DCSREAD
84 > > > > > > > > ASKFILE
85 > > > > > > > > READUPC
86 > > > > > > > > SORTI4
87 > > > > > > > > DCSSAVE
88 > > > > > > > > READUPC
89 > > > > > > > > ASKFILE
90 > > > > > > > > READUPC
91 > > > > > > > > DCSSAVE
92 > > > > > > > > ASKFILE ^line 88
93 > > > > > > > > CREATION
94 > > > > > > > > DATE *
95 > > > > > > > > TIME *
96 > > > > > > > > STRINGS
97 > > > > > > > > FOPEN
98 > > > > > > > > REDNOSE ^line 65
99 > > > > > > > > THFOPEN
100 > > > > > > > > SHOWTH
101 > > > > > > > > SHOWDCS
102 > > > > > > > > FLT2CTR
103 > > > > > > > > LOGOUT ^line 94
104 > > > > > > > > ASKFILE
105 > > > > > > > > RNUMBR
106 > > > > > > > > RNUMBR
107 > > > > > > > > RNUMB
108 > > > > > > > > SHOWDCS
109 > > > > > > > > DCSREAD
110 > > > > > > > > IMREAD
111 > > > > > > > > SHOWTH
112 > > > > > > > > SHONMMX
113 > > > > > > > > SHONMMX
114 > > > > > > > > SHONMMX
115 > > > > > > > > SHONMMX
116 > > > > > > > > SHONMMX
117 > > > > > > > > SHONMMX
118 > > > > > > > > SHONMMX
119 > > > > > > > > SHONMMX
120 > > > > > > > > SHONMMX
121 > > > > > > > > SHONMMX
122 > > > > > > > > SHONMMX
123 > > > > > > > > SHONMMX
124 > > > > > > > > SHONMMX
125 > > > > > > > > SHONMMX
126 > > > > > > > > SHONMMX
127 > > > > > > > > SHONMMX
128 > > > > > > > > SHONMMX
129 > > > > > > > > SHONMMX
130 > > > > > > > > SHONMMX
131 > > > > > > > > SHONMMX
132 > > > > > > > > SHONMMX
133 > > > > > > > > SHONMMX
134 > > > > > > > > SHONMMX
135 > > > > > > > > SHONMMX
136 > > > > > > > > SHONMMX
137 > > > > > > > > SHONMMX
138 > > > > > > > > SHONMMX
139 > > > > > > > > SHONMMX
140 > > > > > > > > SHONMMX
141 > > > > > > > > SHONMMX
142 > > > > > > > > SHONMMX

(HELP Menu Item)

(DATABASE Menu Item)

(FLIGHTS Menu Item)
143 > > READUPC
144 > > DCSREAD ^line 87
145 > > FOPEN
146 > > PARSER
147 > > SHONARTV
148 > > SORT14
149 > > DCSSAVF *
151 > FLTLOG
152 > > LOGOUT ^line 6
153 > > READUPC
155 > SHOKEY
156 > > LOGOUT ^line 6
157 > > FOPEN
158 > > REDNOSE ^line 65
159 > > SHOWDCS
160 > > FLT2CTR ^line 109
161 > > FLAGCHEK
163 > ITEMVU
164 > > LOGOUT ^line 6
165 > > FOPEN
166 > > REDNOSE ^line 65
167 > > SHOMNNX
168 > > SHOWDCS
169 > > FLT2CTR ^line 109
170 > > READUPC
171 > > HELP
172 > > DEFITEMSNUH *
173 > > FLAGCHEK
175 > BLOCKOUT
176 > > LOGOUT ^line 6
177 > > READUPC
178 > > BLUFORMAT
179 > > > READUPC
181 > > STRINGs
182 > > REDNOSE ^line 65
183 > > FLT2CTR ^line 109
184 > > EVALUATE
185 > > > EQUATION
186 > > > > FOPEN
188 > > > FUNC
191 > SEARCHXV
192 > > LOGOUT ^line 6
193 > > DATE *
194 > > TIME *
195 > > FOPEN
196 > > READUPC
197 > > MSKFILE
198 > > > READUPC
200 > > HELP
201 > > EQUATION ^line 185
202 > > RNUMBA
203 > > > RNUMB

E-4
205 > CREATION \line 97
206 > REDNOSE \line 65
207 > SHOWDCS
208 > FUNC
209 > FRMAT
210 > UPDSTATS
211 > SORT14
212 > DCSSAVE \line 94
214 > SEARCH
215 > FOPEN \line 6
216 > LOGOUT \line 197
217 > DATE *
218 > TIME *
219 > READUPC
220 > MSKFILE \line 197
221 > HELP
222 > RNUMBA \line 202
223 > EQUATION \line 185
224 > CREATION \line 97
225 > REDNOSE \line 65
226 > SHOWDCS
227 > FLAGCHEK
228 > FUNC
229 > FRMAT
230 > UPDSTATS
231 > SORT14
232 > DCSSAVE \line 94
234 > WORDSCAN \line 6
235 > LOGOUT \line 6
236 > READUPC
237 > HELP
238 > REDNOSE \line 65
239 > HANDLER
240 > THITEMS \line 63
242 > SHOWDCS
243 > FLT2CTR \line 109
244 > TIMEOUT
245 > SORT14
246 > DCSSAVE \line 94
248 > SHOCAL \line 6
249 > LOGOUT \line 6
250 > READUPC
251 > HELP
252 > REDNOSE \line 65
253 > GETFLTS
255 > MINMAX \line 6
256 > HELP
257 > TERM TYPE
258 > READUPC
260 > READUPC
261 > EDITPP \line 77
262 > HELPER \line 39

E-5

(SEARCH Menu Item, not XV-15)

(WORDSCAN Menu Item)

(CALIBS Menu Item)

(MINMAX Menu Item)
263 > > LOGOUT ^line 6
264 > > EQUATION ^line 185
265 > > PARSER
266 > > SCLAREP
267 > > SIMSPEC
268 > > > READUPC
269 > > REDNOSE ^line 65
270 > > FLTZCTR ^line 109
271 > > FLAGCHEK
272 > > LABELS
273 > > > PLTHDR
274 > > > > FOPEN
275 > > > > COMPHDR
276 > > > > > SETBASE ^line 16
277 > > > > > XAXIS
278 > > > > > > FOPEN
279 > > > > > > YAXIS
280 > > > > > > > LABELS
281 > > > > > > > > LEGENDS
282 > > > > > > > > > FUNC
283 > > > > > > > > > > SORTX
284 > > > > > > > > > > > PREPLOT
285 > > > > > > > > > > > > SPECTRAL
286 > > > > > > > > > > > > > AMPSET
287 > > > > > > > > > > > > > > AMPSPC
288 > > > > > > > > > > > > > > > RFFT
289 > > > > > > > > > > > > > > > > FFT
290 > > > > > > > > > > > > > > > > > GETMMIC
291 > > > > > > > > > > > > > CYCLAVG
292 > > > > > > > > > > > > > > AZIMUTH
293 > > > > > > > > > > > > > > > OPENFILE
294 > > > > > > > > > > > > > > > > THFOPEN
295 > > > > > > > > > > > > > > > > > INREAD
296 > > > > > > > > > > > > > > > > > > OPENCNTRF ^line 112
297 > > > > > > > > > > > > > > > > > > > INDATA
298 > > > > > > > > > > > > > > > > > > > > OPENCNTRF
299 > > > > > > > > > > > > > > > > > > > > > INREAD
300 > > > > > > > > > > > > > > > > > > > > > > INREAD
301 > > > > > > > > > > > > > > > > > > > > > > > INREAD
302 > > > > > > > > > > > > > > > > > > > > > > > > INREAD
303 > > > > > > > > > > > > > > > > > > > > > > > > > INREAD
304 > > > > > > > > > > > > > > > > > > > > > > > > > > INREAD
305 > > > > > > > > > > > > > > > > > > > > > > > > > > > INREAD
306 > > > > > > > > > > > > > > > > > > > > > > > > > > > > INREAD
307 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > INREAD
308 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > INREAD
309 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > INREAD
310 > > > > > > > > > > > > > > CYAVST
311 > > > > > > > > > > > > > > > > AVECYC
312 > > > > > > > > > > > > > > > > CUBFIT
313 > > > > > > > > > > > > > > SETSCL
314 > > > > > > > > > > > > > > > CURVEFIT
315 > > > > > > > > > > > > > > > > INVERT
316 > > > > > > > > > > > > > > > > > PLTSET
317 > > > > > > > > > > > > > > > > > > DISPLT
318 > > > > > > > > > > > > > > > > > > > FORPIC
319 > > > > > > > > > > > > > > > > > > > > RNUMBR ^line 83
320 > > > > > > > > > > > > > > > > > > > > > FRFILL
321 > > > > > > > > > > > > > > > > > > > > > > SORTEX
322 > > > > > > > > > > > > > > > > > > > > > > > SORTEX
323 > > > > > > > > > > > > > > > > > > > > > > > > PICTR

E-6
BUZZER
BUZZER
BUZZER

SETPRJ

SETTERM

REGIS

REGNOM

TK4052

TK4014

TK4010

TRNOM

TRKVT

10MGR

HP2623

H26NOM

DEVVT

DIP

D1COMD

COMPRES

SETDEV

SETUP1

RESET

NOBRDR

PAGE

H2ROT

LEGLIN

GRACE

INTAXS

XREVTK

YREVTK

XTICKS

YTICKS

FRFILL

SETUP2

PHYSOR

AREA2D

HEIGHT

LINESP

LINES

RESET

SEGREG

FLTLABS

HEADIN

ENDGR

PHYSOR

AREA2D

HEIGHT

XNAME

XNONUM

XTICKS

YNAME

RESET

YNONUM

GRAF

E-7
447 > > > DEFERL *  
448 > > > SEGDEL *  
449 > > > ENDPL *  
450 > > > TEKVT  
453 > QWIKPLOT  
454 > > TERMTYPE  
455 > > READUPC  
456 > > HELP  
457 > > FOPEN  
458 > > FEDNOSE  
459 > > SHOWTH  
460 > > SHOWDGS  
461 > > OPENFILE  
462 > > OPENCNTRF  
463 > > PARSER  
464 > > FLGSCHEK  
465 > > UNREAD  
466 > > LABELS  
467 > > FUNC  
468 > > PREPLOT  
469 > > PLTSET  
470 > > FORPIC  
471 > > DISPLT  
472 > HARMONIC  
473 >  MULTIPLT  
474 > > HELP  
475 > > TERMTYPE  
476 > > READUPC  
477 > > EQUATION  
478 > > PARSER  
479 > > REDNOSE  
480 > > SHOWDGS  
481 > > FLT2CTR  
482 > > FLGSCHEK  
483 > > LABELS  
484 > > FUNC  
485 > > SORTX  
486 > > PREPLOT  
487 > > PLTSET  
488 > > RNUMBA  
489 > > DISPLT  
490 > > FORPIC  
492 > NORMA LIZE  
493 > > TERMTYPE  
494 > > PLTSETUPF  
495 > > INFUNCS  
496 > > READUPC  
497 > > HELP  
498 > > WHATFILES  
499 > > THPRNT  
500 > > PARSER  
501 > > EQUATIONF  
502 > > >> FOPEN

(QWIKPLOT Menu Item)

(HARMONIC Menu Item, in MINMAX)
(MULTIPLT Menu Item)

(NORMALIZ Menu Item)

E-9
ITEMDEFS Menu Item
SPECTRAL Menu Item, in TIMEHIST
COMPARE Menu Item
LOADS Menu Item, for XV-15
LOADS Menu Item, not XV-15
TIMEHIST
HELP
TERMTYP
PLTSETUP
READUPC
EDITPP
UNSAVE
WHATSAVE
HELP
HELPER
THPRNT
PARSER
EQUATION
FOPEN
BANK
SCLAREP
GETNPLT
SIMSIGNAL
REDNOSE
HELPER
FLAGCHEK
SETBASE
BANK
OPENCNTRF
OPENFILE
INREAD
EXPOSE
FNC
FILTER
NOTCHF
SHFTY
PREPLOT
BANK
LABELS
PLTSET
DISPLOT
USERFILES
DATE
HELP
READUPC
CKDATNAM
FINDTFC
FUNKSFN
CVTUPC
(FIND Menu Item)
(FUNCTION Menu Item)

(FILI Menu Item)
EQUATION \line 185
READUPC
CHECKFUNC
INFUNC
CVTUPC
EQUATION \line 185
REVDATA
PERFPLT
READUPC
SHOWVAR
SHOWFILE
STRINGS
REDNOSE \line 65
READUPC
ITEMCODE
> FOPEN
TERMTYPE \line 257
SHOWFILE
SHOWVAR1 *
REDNOSE \line 65
SHOWTH
SHOWDCS
OPENCHTRF \line 112
FILDAT
FLAGCHK
OPENCHTRF \line 112
INREAD
THFOPEN
BUZZER
SETTERM \line 336
MPLOTS
PLTHDR \line 274
RESET *
MORRDR *
PAG *
HWROT *
HEIGHT *
LEGLIN *
INTAXS *
XREVTK *
YREVTK *
XTICKS *
YTICKS *
PHYSOR *
AREA2D *
HEADIN *
ENUGR *
FILDAT \line 651
MESSAG *
ITEMCODE \line 640
ITEMCODE
SETSCL
XNAME *

E-12
681 > > > YNAME *
682 > > > GRAF *
683 > > > DOT *
684 > > > GRID *
685 > > > CURVE *
686 > > > ENDPPL *
687 > > > TEKV

690 > GRPLIST
691 > > IOPEN
692 > > LOGOUT ^line 6
693 > > READUPC
694 > > TICSUB
696 > DERIVED
697 > > FOPEN
698 > > LOGOUT ^line 6
699 > > READUPC
700 > > HELP
701 > > HELPDCPY
703 > DONEPL *
704 > LIBUO ^line 129

(GROUPS Menu Item)

(DERIVED Menu Item)
APPENDIX F

DATABASE VECTORING

Current NASA Procedures for Data Access: Commands are currently constructed in TRENDS, running under VMS, to allow the user to access any database which can be stored on one of five different disk drives. In the following example, a path vector is constructed, then used to retrieve file data off a magnetic disk farm.

\$ ASSIGN NEP1:[TRENDS]DBASE.RUN FOR098
\$ RUN NEP1:[TRENDS]XVTRENDS

Note: In the above assignment NEP1 = TRENDS = DBASE.RUN = FOR098 = XVTRENDS = disk name (NEPT.NE), main TRENDS directory (DB Op. Sys), database pointer file, logical unit 98, executable TRENDS program.

Note: When the user enters into TRENDS, he is requested to select his database, e.g. 748, 702, 702, etc. (various rotorcraft databases). His selection determines the path (drive name and directory) to the database as follows:

1. \$ Read unit 98

   Note: Different sections (files) of a database can be on different disks for the same rotorcraft. Contents of file 98 are identified by key words, e.g. DRIVER, DOC, DATA, etc.

2. \$ Construct Filename

   e.g.
   
   \$ FILENAME = 'N:3P3:[DB703]'/'C703_13258.225'
   
   (from unit 098) (file name)

3. \$ Open Filename

   Note: OPEN (UNIT=1, NAME=FILENAME, -)

4. \$ Read Data

   e.g. READ (1) data

   - - - - - - - - - > Contents of file 98: (abbreviated example)

   | Rotorcraft #748 -------------------------------
   | 748%DRIVER %NEP1:[TRENDS.UH60] | Unique code for rotorcraft
   | 748%DOC %NEP1:[TRENDS] | Generic help files
   | 748%DATA %NEP2:[DB748] | rotorcraft data

   | Rotorcraft #703 -------------------------------
   | 703%DRIVER %NEP1:[TRENDS.XV15] | NEP1: Neptune 1 disk drive
   | 703%DOC %NEP1:[TRENDS] | NEP1: Neptune 1 disk drive
   | 703%DATA %NEP3:[DB703] | NEP3: Neptune 3 disk drive

F-1
INDEX

--- A ---

Acceptance of TRENDS 4.2.3.3, 6.1.6
Access to archived data 2.1.6
Access to calibrations 6.1.3
Acoustic analyses 3.4.3.1
Acquiring data 4.0
Additional features: 2.1.6
Aircraft-of-interest 3.1.1
Ames databases 2.3
Amplitude spectra 3.2.4
Analysis 2.1.6
Analysis programs 3.4, 3.4.2, 3.4.3, 5.5
Analysis tools 3.4
Analytical capabilities 3.2.4
AND search 3.3.2.1
ASCII file 3.2.1.4
Auto-correlation 3.4.3.1
Automatic checks 4.2.3.5
Automatic labeling 2.2.2.3, 3.2.1.2
Automatic processing 4.0, 4.2.3.4
Automatic scaling 3.2.1.2, 5.1.3.6
Automatic titles 3.2, 3.2.1.2
Automatic updating 4.2.5, 6.1.6
Availability of time history data 3.3
Available information 6.1.2
Average-oscillatory 2.2.2.1, 3.3.1.1
Average-steady 2.2.2.1, 3.3.1.1

--- B ---

Bad data 4.2.3, 5.2
Band-edge problems 4.2.3.1
Bell Standard-Label tapes 4.2.1
Brief description of menu items 3.1.1

--- C ---

Calculus operations 3.4.1.2, app B
Calibrations 2.1.4.1, 2.3.1, 3.1.1, 6.1.3
CALIBS in menu 3.1.1, 6.1.3
Capabilities of DATAMAP 3.4.3.1
Checking bad data 4.2.3.1
Check programs 4.2.3.5
Chronology of development app A
Coherence function 3.4.3.1
Common file structures 6.1.4.5
COMPARE in menu 3.1.1
Comparison with flight test 3.4.2.1
Composite counters 2.3.2
Compressor tapes 4.2.1

I-1
Computational efficiency 2.1.5
Conclusions 6.0
Condition mask 3.3.1, 3.3.1.1
Condition search 3.3, 3.3.1, 3.3.1.1
Consistency of the database 4.1.1.1, 4.2.3.5
Contour plots 3.4.3.1
Convolution filter 3.2.1.1, 3.4.1.5, 3.4.3, 4.1.1.1, 4.2.2.4
Correction of data 4.2.3.5
COUNTERS XXX 5.2.4.3
Counters of interest 3.3.2
Counters with data 3.1.1
Counter defined 2.2.1
Counter descriptions 3.1.1, 3.2.1.2
Counter duration 2.2.1
Counter number 2.2.1, 3.3.2.1, 5.2.4, 5.2.4.3
Counter selection 4.2.2.1
CPRIHT in menu 3.1.1
Cross-correlation 3.4.3.1
Cross-spectral density 3.4.3.1
CTRDS/ESC A/C 5.2.4.3
Customized statistics 2.2.2.1
Cycle averaging 3.4.1, 3.4.1.6, 3.4.3, 3.4.3.1

--- D ---
DAT-TH format 6.1.4.6, app D
Data-acquisition rates 4.2.2
Data-region help 3.2.1.5
Data-region specification 3.3.1.1
Data-storage considerations 6.1.10
Databases at Ames 2.3
Database evaluation criteria 6.1.2
DATABASE in menu 3.1.1
Database management 2.2.3, 4.0, 5.2.2
Database management menu 4.1, 6.1.7
Database manager 2.2.3, 2.3.2, 4.0, 4.2.3.1, 5.2.2.2
Database selection 2.1.4.1
Database similarities 2.3
Database structures 5.2.4
Database vectoring app F
Database vectors 6.1.4.1
DATANAP's features 3.4.3.1
DATANAP gateway 2.1.4.1, 3.1.1, 3.4.3
Data anomalies 3.2.3
Data calibrations/menu access 6.1.13
Data compression 4.2.2.3, 4.2.2.6
Data correction 4.2.3.5
Data credibility 4.2.3.3
Data deletion 5.2.2.2
Data derivatives 4.2.4
Data errors 2.2.3, 3.2.3, 4.2, 4.2.3, 4.2.3.3, 4.2.3.5, 6.1.9
Data error checking 2.2.3, 4.1.1.1, 4.2, 4.2.3, 4.2.3.1, 4.2.3.5,
Data philosophy
Data quality
Data rates
Data region
Data reliability
Data searching
Data snapshot of test point
Data spikes
Data storage
Data storage decisions
Data tape formats
Data types
Decimation
Defined-function
Derivatives
Derived counterset
Derived data
DERIVED in menu
Derived items
Derived parameters for UH60
Derived parameters for XV15
Derived pseudo-item
Derived time histories
Descriptive files
Design considerations
Despiking data
Detailed help
Development history
Development of TRENDS
Dialogue
Digital filter
Dispersion of files
Displaying numerical data
DISPLA graphics package
Documentation

--- E ---

Ease of requesting plots
Editing plot setups
Editing the data
Engineering disciplines
Engineering interface
Engineering tests
Entry errors
Entry of narrative
Entry syntax
Error checking
Evaluation of formulas
Examples of TIMEHIST

5.2
2.2.3, 4.2, 4.2.3, 6.1.9
2.2.2.2
2.2.2.3, 3.1.2, 3.2.5, 3.3.1, 3.3.1.1, 3.3.2, 3.3.3.1, 3.4.3
5.2, 6.1.9
3.3
3.2.2
4.1.1.1, 4.2.3.2
4.2.2
2.2.2.2
4.2.1
2.2.2, 6.1.4.6
2.2.2.2, 4.2.1.1, 4.2.2.4
3.1.1
3.2.1.1, 3.4, 3.4.1, 3.4.1.1, 3.4.1.2
3.3, 3.3.2.1, 5.1.3.2
4.2, 4.2.1.1
3.1.1
4.2.4
4.2.4.2
4.2.4.2
3.1.1
3.2.1.4
5.2.4.3
5.0
4.2.3.2
2.1.7
app A
5.1.3
3.1.2
3.4.1.5
6.1.4.6
3.2
5.6
2.1.7
5.1.3.1
3.2.1.3, 5.1.3.6
2.2.3
1.1.1
1.1.1
2.2
2.1.4.4
2.2.3
2.1.4.3, 3.1.2, app B
2.2.3, 4.1.1.1, 4.2, 4.2.3, 4.2.3.1, 4.2.3.5, 6.1.8, 6.1.9
3.2.1
3.2.1
I-3
| Example of SEARCH | 3.3.1.1 |
| Example of WORDSCAN | 3.3.2.1 |

--- F ---

| Families of points | 3.3.3.1 |
| Features of TRENDS | 1.1.2 |
| FFT analysis | 3.2.4, 3.4.1.2, 3.4.1.3 |
| FILES in menu | 3.1.1, 3.3.3 |
| File access | app F |
| File structure | 6.1.4.5 |
| File structure considerations | 5.2.4.2, app D |
| Filling the database | 2.2.3, 5.2.4.1 |
| Filtering | 2.2.2.2, 3.4, 3.4.1, 4.2.1.1, 4.2.2.4 |
| Filter syntax | 3.4.1.5 |
| FIND in menu | 3.1.1, 3.3 |
| Flexibility | 6.1.4.4 |
| Flight-condition search | 3.1.1 |
| Flight-test database | 2.3.4 |
| Flight-test support | 6.1.8 |
| FLIGHTS.A/C | 5.2.4.3 |
| FLIGHTS in menu | 3.1.1, 3.3, 3.3.2 |
| Flight description | 2.1.4.1, 3.3, 3.3.2, 4.1.1.1, 4.1.2.1, 4.2.1.3, 5.2.4.3 |
| FLTCTRMAP.A/C | 5.2.4.3 |
| Formats and media | 4.2.1 |
| Formulas | 3.2.1, 3.2.1.1, 3.2.1.4, 3.2.4 |
| Formula evaluation | 3.2.1, 3.2.1.1, 3.2.5, 3.4, 3.4.1, 3.4.1.1, 5.1.3.5 |
| Formula specification | 3.2.1.1, 3.4.1.1, app B |
| Frequency data plots | 3.2.4 |
| Frequency distribution | 3.2, 3.2.6 |
| Functions | 3.2.1.1, 3.3.1.1, app B |
| FUNCTION in menu | 3.1.1, 3.4.1.1 |
| Future expansion | 6.3 |

--- G ---

| Gateway to DATAMAP | 3.4.3 |
| Gateway to GTRSIM | 3.4.2.1 |
| Generic software | 5.2.3, 6.1.4 |
| Graphics terminals | 3.2 |
| Groups | 2.2.2.2, 2.3.1, 4.1.1.1, 4.2.2.2, app C |
| GROUPS in menu | 3.1.1 |
| Group plots | 2.1.4.1 |
| GTRSIM | 2.1.4.1, 2.3.4, 3.4, 3.4.2, 3.4.2.1 |

--- H ---

| Hardcopy plots | 2.1.4.1, 3.2, 3.3.3.1 |
| Harmonics | 3.1.1 |
| Harmonic amplitudes | 3.3.1, 4.2.4, 4.2.4.3 |
| HARMONIC in menu | 3.1.1, 3.2, 3.2.5, 3.3.3.1, 3.4.1.4, 4.2.4.3 |
| Harmonic phases | 4.2.4, 4.2.4.3 |
| Harmonic plots | 3.2.5 |

I-4
Harmonic print
Help files
HELP in menu
Help menus
Hierarchy chart
Highlights synopsis
Histogram data plots
History of development
Hot list

--- I ---
Immediate access
In-line analysis tools
In-line help
Incremental development
Initial design
Initial system software attributes
Inline functions
Input error checking
Installation of TRENDS
Installing data into TRENDS
Instrumentation errors
Integer storage
Integrals
Interactive system
Interface hardware
Interface to analysis programs
Interface to GTRESIM
Interface with GTRSIM
Interpolation
Item code
ITEMDEFS in menu
ITEMINFO.A/C
Item definitions
Item description

--- K ---
Keyed-access example
Keyed access
KEYS in menu
Keywords

--- L ---
Labels and scales
Laser-optical disk
Laser jukebox
Lessons learned
Library functions
Loads
LOADS in menu
Logical input syntax
LOGSCAN in menu 3.1.1, 3.3, 3.3.2
Low-pass filter 3.4.1.5

--- M ---

Maintaining data 4.0
Main menu 3.1
Main menu layout 2.1.4.1
Managing a database 5.2.4.1
Manuals 2.1.7
Mathematical functions 6.1.2
Math model 2.3.4, 3.1.1, 6.3
Maximum-oscillatory 2.2.2.1
Mean value 2.2.2, 3.3.1
Menus for database management 2.2.3
Menu item 3.1, 3.1.1, 3.3.2, 4.1.1.1, 4.1.2.1, 5.1.1,
                     5.1.3.4
Menu order 2.1.4.1
Min/Max 2.2.2.1
Min/Max/rev 3.1.1, 3.2.6
Min/Max data 2.2.2
Min/Max plotting 3.2.5, 5.1.3.1
Min/Max statistics 3.1.2, 3.3.1, 4.2.1.1, 4.2.3.3, 4.2.4, 4.2.4.1
MINMAX in menu 3.1.1, 3.1.2, 3.2, 3.2.1.5, 3.2.5, 3.3.3.1,
                     3.4.1.4, 4.2.4.3
MMR data type 3.2.6
Mnemonic 2.3.2, 3.3.2, 3.4.2.1, 5.2.4, 5.2.4.3,
             6.1.4.3
Moving-block damping 3.4.3.1
Multifamily plotting 3.2.5
Multiple counters 3.1.1
Multiple databases 1.1.1, 5.2.3
Multiple TRENDS databases 1.1.1
MULTIPLT in menu 3.1.1, 3.1.2, 3.2.5, 3.3.3.1
Multirotocraft 2.1.3

--- N ---

Narrative 1.1.1, 2.2.2.3, 5.1.3.2
Narrative information 4.2.1.3
Narrative search 2.1.4.1, 3.3, 3.3.2, 3.3.3
Needs of users 3.4
NEITHER/NOR search 3.3.2.1
Nongraphic terminals 3.2
Numerical condition search 3.3, 3.3.1, 3.3.3

--- O ---

On-line analysis 2.1.4.5
On-line help 2.1.4.3
Online database 2.1.2, 5.2.1, 6.2
Optical disk 5.2.1, 6.2
OR search 3.3.2.1
--- P ---

Parameter definitions
Parameter names
Parameter statistics
Path to test data
Patterned dialog
Performance benchmark
Performance parameters
Performance plots
PERFPLOT in menu
Personalized database
Plotting capabilities
Plotting generality
Plot example from DATAMAP gateway
Plot families
Plot hardcopy
Plot Min/Max
Plot performance items
Plot setup
Plot time histories
PLTHDCPY in menu
Polynomial regression
Power of TRENDS
Prestored formulas
Prestored statistics
Prime data
Printer plots
Processing time
Project information
PROJECT in menu
Project titles
Prompt-response dialogue
Prompting programs
Pseudo-flight

Quality monitoring;
QWIKPLOT in menu

--- Q ---

Raw time histories;
Real-data problem;
Recalling plot set-ups
Recall of Pseudo-flights
Recompiling
Record overflow
Reformatting programs
Regression
Relating narrative
Reliability of data
Remote users

--- R ---

3.2.1.4
4.2.3.4
3.2.1.3, 3.2.2, 5.1.3.6
3.3.3.1
3.4.1
4.2.6
4.2.1.1
3.4.1.4
2.1.4.2
6.1.9
6.1.2
1-7
Report structure 1.2
Requirements for TRENDS 2.1
Rotor-rev averaging 4.2.2.6
Rotor azimuth 3.2.1, 3.4.1.6

--- S ---

Sampling rates 2.2.2.2
Saving plot setups 3.2.1.3
Scanning narrative 3.3.2
Scanning numerical data 3.3.1
Scan test-point descriptions 3.3.2
Screen-managed menu 2.1.4.1
Search 3.3
SEARCH in menu 3.1.1, 3.1.2, 3.3, 3.3.1, 3.3.3, 4.1.1.1, 4.2.4.3
Series truncation 4.2.2.5
Setup help 3.2.1.5
SIMULATE in menu 3.1.1
Simulation 2.3.4, 3.4.2
Simulation interface 2.3.4
Size of DATAMAP 5.6
Size of GTRSIM 5.6
Size of TRENDS 5.6
Slopes 4.2.4
Slope check 4.2.3.1
Source of narrative 3.3.2
Spectral analysis 3.1.1, 3.2.4, 3.4.1, 3.4.3, 4.2.2.5
SPECTRA in menu 3.1.1, 3.2, 3.2.4, 3.4.1.3
Statistical data plots 3.2.5
Statistical measures 2.2.2, 2.2.2.1, 3.2.5
Statistics 2.2.2, 3.1.1
Storage capacity 4.2.2
Storage requirements 5.6
Storing data 4.0
Storing formulas 3.2.1.1, 3.4.1.1
Storing time histories 3.2.1.4, 3.2.4
Strip-chart plots 3.2.3
Structured processing 6.1.7
Structured syntax 3.4.1
Success template 3.3.1
Summary files 4.2.3.5, 4.2.5, 5.2.4.3, 6.1.6
Supporting files 2.2.3, 4.2.5, 5.2.4, 5.2.4.3, 6.1.6
Supporting narrative 2.1.4.2
Surface plots 3.4.3.1
Symbol table 6.1.4.3
Synchronization 4.2.2.4
Syntax 3.4.1.1
Syntax checking 2.1.4.4
Syntax for formulas app B
Syntax for plot setup 3.2.1, 3.2.1.5
System design 6.1.4
System maintenance 6.3
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>System readiness</td>
<td>5.2.2.1</td>
</tr>
<tr>
<td>System response speed</td>
<td>6.1.6</td>
</tr>
<tr>
<td>System speed</td>
<td>2.1.5</td>
</tr>
<tr>
<td>Table lookups</td>
<td>3.4.1.1, app B</td>
</tr>
<tr>
<td>TAIL NO in menu</td>
<td>3.1.1</td>
</tr>
<tr>
<td>Tail number</td>
<td>4.1.1.1</td>
</tr>
<tr>
<td>Terminal characteristics</td>
<td>3.1.1</td>
</tr>
<tr>
<td>TERMINAL in menu</td>
<td>3.1.1</td>
</tr>
<tr>
<td>Terminal types</td>
<td>2.1.4.1</td>
</tr>
<tr>
<td>Test-point index</td>
<td>2.2, 2.2.1</td>
</tr>
<tr>
<td>Test conditions</td>
<td>3.3</td>
</tr>
<tr>
<td>Test point</td>
<td>2.2.1</td>
</tr>
<tr>
<td>Test results</td>
<td>3.3</td>
</tr>
<tr>
<td>Text search</td>
<td>2.2.2.3</td>
</tr>
<tr>
<td>TTPL1ES.A/C</td>
<td>5.24.3</td>
</tr>
<tr>
<td>Tiltrotor math model</td>
<td>2.3.4</td>
</tr>
<tr>
<td>Time-code anomalies</td>
<td>4.2.3.4</td>
</tr>
<tr>
<td>Time-history groups</td>
<td>app C</td>
</tr>
<tr>
<td>Time-tagged data</td>
<td>6.1.11</td>
</tr>
<tr>
<td>TIMEHIST in menu</td>
<td>3.1.1, 3.2, 3.2.1, 3.2.1.5, 3.2.4, 3.3.3.1, 3.4.1.3, 3.4.1.4, 3.4.1.5, 3.4.1.6, 5.1.3.4, 2.2.2, 2.2.2.2</td>
</tr>
<tr>
<td>Time histories</td>
<td>3.2.1, 3.4.1</td>
</tr>
<tr>
<td>Time history data</td>
<td>3.3.2</td>
</tr>
<tr>
<td>Time history data types</td>
<td>2.1.4.1, 3.1.1, 4.2.2.2</td>
</tr>
<tr>
<td>Time history groups</td>
<td>2.1.4.1, 3.2.3, 5.1.3.4</td>
</tr>
<tr>
<td>Time history plotting</td>
<td>3.2.1.4</td>
</tr>
<tr>
<td>Time history transmitting</td>
<td>6.1.11</td>
</tr>
<tr>
<td>Time increment</td>
<td>6.1.11</td>
</tr>
<tr>
<td>Time offset</td>
<td>6.1.11</td>
</tr>
<tr>
<td>Time shifts</td>
<td>3.2.1</td>
</tr>
<tr>
<td>TRENDS-user dialogue</td>
<td>3.1.2</td>
</tr>
<tr>
<td>TRENDS acronym</td>
<td>1.1</td>
</tr>
<tr>
<td>TRENDS concept</td>
<td>2.1</td>
</tr>
<tr>
<td>TRENDS databases</td>
<td>2.2</td>
</tr>
<tr>
<td>TRENDS design/development</td>
<td>5.0</td>
</tr>
<tr>
<td>TRENDS development philosophy</td>
<td>5.1</td>
</tr>
<tr>
<td>TRENDS features</td>
<td>1.1.2</td>
</tr>
<tr>
<td>TRENDS overview</td>
<td>2.0</td>
</tr>
<tr>
<td>TRENDS software</td>
<td>5.6, app E</td>
</tr>
<tr>
<td>TRENDX</td>
<td>5.1.4</td>
</tr>
<tr>
<td>Trig functions</td>
<td>3.4.1.1</td>
</tr>
<tr>
<td>UH60 database</td>
<td>2.3.2</td>
</tr>
<tr>
<td>UH60 database management menu</td>
<td>4.1.2</td>
</tr>
<tr>
<td>UH60 statistics</td>
<td>3.2.5</td>
</tr>
<tr>
<td>Unique aspects of databases</td>
<td>2.3</td>
</tr>
</tbody>
</table>
User's database 5.1.3.3
User's directory 5.1.3.3
User's manual 5.1.1
User-created files 3.1.1
User-defined functions 5.1.3.4
User-driven development 5.1.3
User-friendliness 2.1.4, 5.1.3, 5.3
User-friendly 3.0, 5.1, 5.1.3.1
User-friendly auto plot setup 5.1.3.6
User-generated functions 5.1.3.5
User-software exclusion 2.1.6
User-specified titles 3.2.1.2
Users 1.1.1
User acceptance 5.2.1, 6.1.6
User confidence 4.2.3.3, 6.1.9
User feedback 5.4, 6.1.11
User help 2.1.7
User impact on development 6.1.1
User requirements 5.4

--- V ---
Validity checks 4.0
VIEW in menu 3.1.1, 3.1.2

--- W ---
Wind tunnel databases 2.3.3
WORDSCAN in menu 3.1.1, 3.3, 3.3.2, 3.3.2.1, 3.3.3, 4.1.1.1, 4.1.2.1
WORM 5.2.1, 6.2

--- X ---
XV15 database 2.3.1
XV15 database management menu 4.1.1
XV15 statistics 3.2.5
TRENDS, an engineering-test database operating system developed by NASA to support rotorcraft flight tests, is described. Capabilities and characteristics of the system are presented, with examples of its use in recalling and analyzing rotorcraft flight-test data from a TRENDS database. The importance of system user-friendliness in gaining users' acceptance is stressed, as is the importance of integrating supporting narrative data with numerical data in engineering-test databases.

Considerations relevant to the creation and maintenance of flight-test databases are discussed and TRENDS' solutions to database management problems are described.

Requirements, constraints, and other considerations which led to the system's configuration are discussed and some of the lessons learned during TRENDS' development are presented. Potential applications of TRENDS to a wide range of aeronautical and other engineering tests are pointed out.