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ABSTRACT 

DEVELOPMENT OF A COMPUTER MODEL TO PREDICT 

PLATFORM STATION KEEPING REQUIREMENTS IN THE

GULF OF MEXICO USING REMOTE SENSING DATA 

Offshore operations such as oil drilling and radar monitoring 

require semisubmersible platforms to remain stationary at specific 

locations in the Gulf of Mexico. Ocean currents, wind, and waves in 

the Gulf of Mexico tend to move platforms away from their desired 

locations. The team has created a computer model to predict the 

station keeping requirements of a platform. The computer 

simulation uses remote sensing data from satellites and buoys as 

input.	 A background of the project, alternate approaches to the 

project, and the details of the simulation are presented 4n-this paper. 

Bryan Barber, Team Leader 
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INTRODUCTION	 1 

The Universities Space Research Association (USRA) coordinates 

a group of universities cooperating in the exploration and 

development of space. USRA was formed in 1969 by the National 

Academy of Sciences to further space research and technology. 

Based in Houston, USRA works under the guidance of the U.S. 

National Aeronautics and Space Administration (NASA), a national 

space and aeronautics agency established by the federal government 

in 1957.[1] These organizations sponsor space related research 

projects at The University of Texas at Austin (UT/Austin). USRA is 

interested in using remote sensing data to model the conditions in 

the Gulf of Mexico and has sponsored this project at the UT/Austin 

Mechanical Engineering Department. 

Background 

Ocean circulation in the Gulf of Mexico is important to a wide 

range of industries including shipping, deep water exploration and 

production of oil and gas, and commercial fishing. Industries such as 

shipping and fishing require ships to move through the water, while 

oil drilling and drug interdiction efforts (such as the United States 

Navy's Deep Ocean Research Island (DORI) Project) require a 

dynamically positioned vessel to remain stationary. Dynamically 

positioned vessels (for example, semisubmersible platforms) are not 

anchored, but rather depend on positioning motors to keep them 

stationary. 

Oil drilling efforts require a dynamically positioned vessel to 

maintain station in the deep waters of the Gulf of Mexico. The rate of



2 
ocean drilling depends largely on sea wave height and currents, 

which interfere with the vessel's ability to maintain station. Wave 

height varies with wind velocity. 	 Ocean waves cause vertical 

translation, or heave, of the vessel. Because the drill pipe is 

connected to the sea floor, the vertical movement of the vessel can 

create a tension strong enough to break the pipe connections. The 

vessel's lateral movement must be maintained within three percent 

of the vertical distance to the ocean floor. [2] Excessive lateral 

movement of the vessel leads to horizontal shear forces in the pipe 

which can damage or break the connections. 

The U.S. Navy also requires stationary vessels. The U.S. Navy 

proposes (in the DORI Project) to set radar balloons (Aerostats) in 

the Gulf of Mexico. These Aerostats will track low flying aircraft 

suspected of transporting drugs. These radar balloons will be 

tethered to a stationary vessel positioned for maximum radar 

coverage of the Gulf of Mexico.[3] 

Ocean currents tend to move these vessels off station. The 

waters in the currents in the Gulf of Mexico can travel as fast as four 

knots. The Gulf Stream is the large scale ocean current which 

transports warm equatorial water through the Gulf and up the 

Eastern seaboard. The Gulf Stream is called the Loop Current within 

the Gulf of Mexico. Eddies are massive bowl shaped columns of 

rotating water spawned by the Gulf Stream which can also affect the 

vessel's ability to maintain station. These eddies can be up to 400 

kilometers across and 500 meters deep.[3] 

The water in the currents and warm core eddies is typically 

warmer than the surrounding water. 	 The height differential
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between the warm and cool water can be as much as a meter, with 

the warmer water being higher. Both their temperature and height 

characteristics can be used to track the currents and eddies. 

Temperature readings are collected by U.S. National Oceanic and 

Atmospheric Administration (NOAA) satellites using Advanced Very 

High Resolution Radiometers (AVHRR). Figure 1 shows a NOAA 

satellite.

FIGURE 1: A NOAA SATELLITE 

The most recent sea height readings were compiled by the GEOSAT 

mission. The GEOSAT mission ran from 1986 to January, 1990. This
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satellite mission carried a radar altimeter, which measured time for a 

transmitted radar pulse to travel from the satellite to the surface of 

the ocean and back. This time is used to measure the distance from 

satellite to surface, which can be used to calculate sea height if the 

satellite's position is known. No satellites with altimeters are 

currently in operation; therefore, the team will use previously 

compiled sea height data.	 Sea height measures include significant 

wave height, which can be used to estimate wind speed and ocean 

topography.	 Buoy transmissions will also be used to track the 

movements of the Gulf Stream eddies. [4] 

Because current and eddy phenomena have not been 

accurately modeled, station keeping requirements (fuel, resupply, 

etc) cannot be reliably forecasted. A dependable simulation model is 

needed to predict the vessel station keeping requirements. The 

purpose of this project is to develop such a model. 

The results of this project are important to USRA/NASA, the 

U.S. Navy, and various companies involved in offshore oil drilling 

operations. This project is a good example of how USRA/NASA's 

satellite remote sensing capabilities can be applied. The simulation's 

application of remote sensing is especially appropriate since NASA is 

interested in directing more of its efforts towards inner space 

(Mission to Planet Earth) rather than outer space. The U.S. Navy's 

interest in this project relates to the maintaining of a stationary 

platform in the Gulf of Mexico. The recently canceled Deep Ocean 

Research Island (DORI) project [5] was the original basis of this 

project, and any future radar surveillance projects will be able to use 

the results of the simulation. Oil companies interested in drilling in
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very deep water in the Gulf of Mexico can use the simulation's 

results to determine the viability of specific locations in the Gulf of 

Mexico for petroleum production. 

Project Requirements 

The computer simulation model was developed from an 

existing FORTRAN code for Arctic Ocean drilling vessel simulations. 

The data input and parameters for the model were thermal data and 

altimeter readings from remote sensing satellites and flow vector 

information from buoys in the Gulf of Mexico. The thermal data was 

ocean surface temperature readings of the Gulf from Advanced Very 

High Resolution Rdiometers (AVHRR) mounted on U.S. National 

Oceanic and Atmospheric Administration (NOAA) Satellites 9, 10 and 

11. These radiometers sense the temperature of the top millimeter 

of the water. These NOAA satellites cover every point on the earth 

twice per day. Theoretically, this allows six images of a particular 

point (like the Gulf of Mexico) per day. Commonly, only three of the 

images are not overly distorted by the curvature of the earth's 

surface. The buoy transmissions were also collected by the NOAA 

satellites. 

The team used the surface temperature readings to calculate 

temperature gradients.	 These gradients were used to locate the 

eddies and currents. The team then tracked the changes of these 

gradients over time to determine current movement. The team also 

correlated the temperature readings with spatially interpolated 

altimeter data in an effort to gain more accurate insight into patterns 

of currents and weather conditions. 	 The altimeter readings were
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only taken	 directly	 under	 the	 satellite	 and	 the	 successive passes 

were far	 enough	 apart	 that	 they required	 interpolation to show a 

trend. A model was developed for wave conditions and another 

model was developed to predict storm arrival	 and severity. These 

models were used to generate data for the	 simulation. Development 

of an accurate computer simulation model was the final goal of this 

project. 

Project Criterion 

The project criterion	 was	 to	 develop a	 working	 computer 

simulation model for a dynamically positioned vessel in the Gulf of 

Mexico. 

The simulation model was to be tested by comparing its results 

for a previous time period to actual data from that period. 

Methodology 

The design team proposed to address the Gulf of Mexico station 

keeping simulation project in four stages: general research, collection 

and processing of remote sensing data, modification of existing 

computer simulation model, and final compilation of input data to 

implement a working simulation model. The time available dictated 

the size of the data base which the team used as input for the 

computer simulation model. 

In addition to written sources of information, each team 

member consulted closely with experts in his	 or her respective area 

of research.	 Dr. Melba Crawford, who helped to write the original

computer simulation model, assisted in new program development
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and modification of the existing FORTRAN code for the model.	 The

remote sensing data was comprised of surface temperature readings 

and sea height measurements from orbiting satellites. 	 In addition, 

current movements were tracked by buoy transmissions. Mr. 

Thomas Suniga aided in the preparation of the thermal imaging data. 

Mr. Suniga is a research assistant in the Mechanical Engineering 

remote sensing lab. Dr. John Lundberg, of the Aerospace Department 

at UT/Austin, supplied sea height readings and wind speed estimates 

from the GEOSAT mission. All remote sensing data was taken from 

the time period of Spring 1989 because the weather conditions of 

that period allowed exceptionally clear thermal images to be 

obtained. 

The thermal imaging data was used to track the Loop Current 

and the eddies it spawns in the Gulf of Mexico. Successive images 

were correlated using a program available at UT/Austin. [6] This 

program connects individual points on the images to their positions 

on subsequent images, giving the vectors necessary to calculate 

velocity and direction of current and eddy movements. Buoy 

transmissions were used to confirm these calculations by smoothing 

buoy point locations into trajectories. This "smoothing" was 

accomplished with appropriate curve fitting techniques. 

Sea height data from the GEOSAT altimeter was used to 

calculate wave height and wind speed. Wave height is important 

because it causes the vertical motion, or heave, of the vessel. Wind 

speed is both an indicator of weather conditions (storms are 

classified by wind speed) and a contributor to wave height. 

Macroscopic sea height trends were also used to track the loop
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current, as the warm water in the current can be as high as a meter 

above cooler surrounding water. Spatial interpolation of these large 

scale readings was performed to track the movements of currents 

and eddies in addition to the thermal imaging and buoy tracking 

results. 

The computer simulation model was based on an Arctic Ocean 

oil drilling simulation developed for ARCO by Susan Hoffman and Dr. 

Melba Crawford, both of UT/Austin. The new model incorporated 

subroutines from the Arctic model with new code developed 

specifically for the Gulf of Mexico. Initially, the computer simulation 

model only describes the vessel's station keeping requirements. This 

applies to any vessel attempting to keep station in the Gulf of Mexico. 

In continuing projects, drilling operations (with respect to time, 

resupply, weather, etc.) will also be included in the computer 

simulation model. This will expand the usefulness of the computer 

simulation model to oil drilling and exploration operations as well. 

The remote sensing data in its processed form was used to generate 

input data for the simulation. 

Throughout the project, the team periodically consulted with 

Dr. Melba Crawford, Dr. John Lundberg, and Mr. Rick Connell to assist 

the team in meeting the project requirements. The team gave 

several practice presentations in order to gain a familiarity of the 

project material and speaking for an audience.



ALTERNATE APPROACHES 

This chapter presents three areas of flexibility in the team's 

computer simulation model process. These areas are: 

1. Use of the existing model 

2. Inputs to the model 

3. Smoothing techniques for input data. 

The team used an existing computer simulation model as specified by 

the team's project contact, Dr. Melba Crawford. The specific use of 

the model was flexible with respect to the inclusion of oil drilling 

operations and movement due to currents. Weather and time period 

were option areas to be considered for the data inputs. Finally, 

various curve fitting techniques were evaluated for use in fitting 

continuous functions to discrete data points. 

Use of the Existing Model 

Dr. Melba Crawford specified the use of the existing model 

developed for the Arctic Ocean for the Gulf of Mexico simulation. The 

model consists of three main parts: the network model, the 

continuous event segment, and the discrete event segment. 

The network model tracks the operations of the stationary 

vessel and the supply ships. This network model was written in 

SLAM, a simulation language. The network interacts with the 

discrete event segment over simulated time to process the activities 

of the simulated vessels as events occur. [2] 

The continuous event segment models continuous functions 

such as weather, supply ship trips, and effective time spent on
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operations. This segment runs concurrently with the discrete event 

segment and the network. The continuous segment updates the state 

variables (such as supply levels and weather conditions) at the end 

of each time step. [2] 

The discrete event segment updates discrete events as time or 

supply levels cross threshold values in the continuous segment. The 

discrete events modeled include beginning and ending of storms, 

supply ship arrival, and the end of the simulation. This segment 

stops the simulation when the ending time of the simulation has 

been reached or when there are no events remaining on the event 

calendar. [2] 

The team determined how much of the original code was 

applicable to the new simulation. Subroutines directly related to oil 

drilling operations were either deleted from the program entirely, 

rewritten to include only station keeping activities, or included in 

original form. 

The effects of ocean currents on a vessel trying to keep station 

required new simulation code. The team decided which computer 

programming language best met the requirements of the simulation. 

FORTRAN and SLAM were the two languages considered. FORTRAN is 

a readily known, all purpose programming language but lacks 

features such as discrete event simulation. SLAM is a self 

documenting and flexible language developed specifically for 

simulation purposes.
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Inputs to the Model 

Weather conditions and time period were two areas of 

simulation input which could be approached in more than one way. 

The weather conditions in the Gulf of Mexico could be estimated with 

data taken from Cape Hatteras, North Carolina, GEOSAT altimeter 

readings, National Weather Service and United States Navy 

barometric charts, or a combination of these three sources. 

ARCO Oil and Gas Company has documented weather conditions 

in the waters off Cape Hatteras, North Carolina. [7] Cape Hatteras 

weather conditions are fairly similar to weather conditions in the 

Gulf of Mexico. If weather information for the Gulf of Mexico was not 

adequate for the simulation, the Cape Hatteras information could be 

used to predict the Gulf of Mexico weather in the simulation. [3] 

Gulf of Mexico weather conditions could also be predicted by 

hindcasting wind speed from significant wave height readings taken 

by GEOSAT. If the wave height readings proved to be an accurate 

predictor of wind speed, then actual Gulf of Mexico weather 

conditions could be used in the model. These GEOSAT predictions 

could be checked for accuracy by comparing them to records of 

actual weather conditions at the time of the altimeter readings. [4] 

Finally, barometric charts available from the National Weather 

Service and the U.S. Navy show the passage of weather fronts, which 

indicate wind direction and speed. [8] These charts could be an 

excellent source of information on the Gulf of Mexico weather 

conditions and could be used in conjunction with the altimeter data. 

The time period of the simulation could range from two months 

to all twelve months of the year. The shorter period was required if
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the simulation proved too lengthy and complex. A lengthier 

simulation period included more seasonal changes in weather 

conditions. These seasonal changes increased the complexity of the 

weather forecasting required for the simulation. 

The summer season brings uniformly warm temperatures and 

humid atmospheric conditions to the Gulf of Mexico, which lead to 

poor resolution in the thermal images. Spring, fall, and winter bring 

greater contrast in temperature between the Gulf of Mexico and the 

Loop Current.	 This increased temperature contrast allows much 

clearer thermal images to be obtained. If altimeter readings of 

macroscopic sea height proved unreliable in tracking the movement 

of the Loop Current, the simulation was to be restricted to seasons 

with clear thermal images. Altimeter tracking of the Loop Current 

was compared to the thermal images during the cooler seasons to 

determine its accuracy. 

Smoothing Techniques for Input Data 

Input data from buoys, altimeter, and AVHRR are in the form 

of discrete data points. The simulation model required continuous 

input functions to drive the simulation. Therefore, continuous curve 

functions must be fit to the input data points. The team had to 

choose from several interpolation and forecasting techniques such as 

simple regression, Box - Jenkins techniques, and spline fits. 

Second and third order regression fits were considered. These 

methods are easily implemented but cannot predict closed form 

curves such as eddy paths.	 The team also investigated elliptical
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curve fits. Elliptical fits have been fit to the Loop Current previously, 

and were well suited to the computer simulation model. 

A combination of the autoregressive (AR) and moving average 

(MA) techniques were the Box - Jenkins method reviewed. This type 

of 
I 
combination (ARMA) was already implemented in the existing 

computer simulation model to predict wave motion. Ideally, this 

existing algorithm would have been easily adapted to process the 

input data. [9,10] 

Finally, a spline curve fit was considered. A spline method fits 

lower order curves to successive subsets of data points, which allows 

prediction of curves which do not have one to one correspondence 

between x and y coordinates. The Loop Current is such a curve. A 

spline fit required more processing of the data than other fitting 

techniques because some data points are processed more than once. 

In the next chapter, the team will discuss the final design 

solution developed from the alternate approaches discussed in this 

chapter.
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PROGRAM MODEL AND METHODOLOGY 

The team's goal was to develop a computer simulation model to 

predict the station keeping requirements of a semisubmersible 

platform in water deeper than 300 feet. Figure 2 shows an example 

platform. The team assumed that the platform is not anchored to the 

sea floor. Because the platform must remain relatively stationary for 

typical applications such as oil drilling, its engines, rather than 

anchors, must provide the station keeping forces necessary to hold 

the platform in place. This type of active station keeping is called 

dynamic positioning.

, 

I

- 

FIGURE 2: AN EXAMPLE PLATFORM
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Several factors affect the platform's station keeping abilities. 

These factors are wind, waves, and currents. Wind causes an 

aerodynamic drag force on the superstructure of the platform. The 

wind drag force can cause significant drift in an unsecured platform. 

Waves cause the platform to translate vertically (heave). Waves can 

also have a directional effect, causing the platform to drift in the 

direction of the waves. Ocean currents create a hydrodynamic drag 

force on the hull of the platform. This hull force also causes the 

platform to move off station in the direction of the current. 

All of these effects were simulated by the model in order to 

determine the requirements of the platform to maintain station. The 

requirements considered were engine power output and fuel supply. 

The simulated forces from the wind, waves, and currents were used 

in the model to calculate a net external force on the platform. This 

net external force was used to determine the power output required 

from the platform's engines in order to maintain station. 

Inputs to the Model 

There were three areas of input to the model.	 The first area of 

input was	 magnitude and direction of ocean	 currents.	 The second 

area	 of input	 was	 weather conditions, which	 included	 wind speed 

and	 direction,	 wave	 height and wave period.	 Finally,	 the input 

parameters	 for	 simulation functions were	 platform	 response 

amplitude	 operators	 (RAO), ARMA model parameters,	 and event 

probability	 thresholds.
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Ocean Currents. Magnitude and direction of ocean currents 

were determined from the advanced very high resolution radiometer 

(AVHRR) and buoy data. This radiometer is carried by the orbiting 

NOAA 9, 10 and 11 satellites. These satellites transmit AVHRR data 

to The University of Texas at Austin in the form of color images 

showing temperature distributions. Figure 3 shows a sample thermal 

image of the Gulf of Mexico. The AVHRR data was input for program 

developed to calculate velocities of currents. [6] This program 

models the shape of the current by drawing a series of connecting 

lines along the current's path. The points where the lines connect 

form distinct corners which mark specific locations in the current. 

As the current moves in successive images, the lines and corners are 

redrawn to reflect the new location. This program fits a vector from 

a corner point in one image to the next corner point in a successive 

image. This vector indicates the movement of a specific feature of the 

current. Figure 4 shows the linear image created by the program and 

the final vectors superimposed on a thermal image. By determining 

the distance traveled by a specific feature and the time to travel that 

distance, the velocities were calculated.



FIGURE 3: SAMPLE THERMAL IMAGE

OF THE GULF OF MEXICO 

PICTURED ON NEXT PAGE (Page 18) 

This cover page has been used to avoid

degrading the quality of the thermal image.
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FIGURE 4: FINAL VELOCITY VECTORS SUPERIMPOSED 

ON A THERMAL IMAGE OF THE GULF OF MEXICO

PICTURED ON NEXT PAGE (Page 20) 

Frame A: Initial Image 
Frame B: Line Plot 
Frame C: Velocity Vectors 
Frame D: Successive Vectors 

This cover page has been used to avoid

degrading the quality of the thermal image.
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The buoy data was used in a manner similar to the thermal 

images to calculate the velocities of ocean currents in the Gulf of 

Mexico. Using a tracking program [11], a buoy trajectory was plotted 

to determine the movement of the current in which the buoy is 

moving. Two buoy trajectories were used to calculate the velocities. 

One buoy, labeled 3353, was located on the edge of the Loop Current 

in the eastern Gulf of Mexico. The other buoy, labeled 5502, was 

located in the middle of the Loop Current. Figure 5 shows the path of 

Buoy 5502 for 22 days. Several wild data points had to be edited 

from the buoy track. Points which could not be reasonably explained 

by motion of the current were considered wild points. Wild data 

points can be caused by such things as the satellite misreading the 

buoy location, the buoy drifting out of the current, and fishing boats 

catching the buoy in their nets. Once the buoy tracks were edited, 

the velocities of the currents were calculated by determining the 

distance the buoy traveled and dividing it by the time it took to 

travel that distance.
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FIGURE 5: THE PATH FOR BUOY 5502 FOR 22 DAYS 

PICTURED ON NEXT PAGE (Page 23) 

This cover page has been used to avoid

degrading the quality of the thermal image.
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The velocities of the currents were calculated from the buoys 

using a linear approximation. Using this method for Buoy 3353, the 

team calculated the current velocity by taking the linear distance 

between two buoy locations and dividing it by the actual time 

between the two readings. This method does not account for the 

curvature of the eddy path. However, since Buoy 3353 had a 

reasonably linear path, a correction for the curvature of the path was 

not needed. 

All data used to calculate the velocities of ocean currents was 

taken from the Spring of 1989. Specifically, the data for Buoy 3353 

was taken from May to June. The AVHRR data used in the project 

was recorded from March 10 to March 13, 1989. Spring data was 

used because there is a greater temperature contrast between the 

Loop Current and the surrounding waters than during other seasons. 

The greater contrast allows clearer thermal images which show the 

Loop Current distinctly. The buoy data was available at UT/Austin 

beginning in February of 1989. This allowed buoy data to be taken 

from time periods corresponding to the thermal images. 

The final results of the current velocity calculations were used 

to create an empirical probability distribution. The model used this 

distribution to predict the current velocity during the simulation 

time. The velocity values were magnitude only, and did not take into 

account location, season, or weather conditions. 

Weather. Weather information was used to predict wind and 

wave behavior in the Gulf of Mexico. The weather information came 

from the GEOSAT altimeter, NOAA AVHRR, Daily Weather Maps 

supplied by the Climate Analysis Center in Washington, D.C., and a
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composite weather model of weather conditions at Cape Hatteras, 

North Carolina. The team used these four sources together to model 

the weather related conditions for the simulation. 

The GEOSAT satellite mission carried an altimeter which used a 

laser sensing ranger and locator to measure the surface conditions as 

the satellite passed over the the Gulf of Mexico. GEOSAT's altimeter 

was operational from January, 1986 to January, 1990. The data used 

in this project was of the first 150 days of 1989. The resolution of 

the GEOSAT altimeter was approximately one kilometer squared. 

GEOSAT took readings along a ground track approximately a 

kilometer wide.	 The same ground tracks were repeated every 

sixteen days.	 The team determined the location of the Loop Current 

using the AVHRR thermal images and defined a window to 

encompass the entire Loop Current. For the simulation model, the 

team used only the data from the tracks that were located in the 

window. Figure 6 shows the window and the altimeter tracks that 

fell within it.



FIGURE 6: WINDOW AND THE ALTIMETER TRACKS 

THAT FELL WITHIN THE WINDOW 

PICTURED ON NEXT PAGE (Page 27) 

This cover page has been used to avoid 

degrading the quality of the thermal image.
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The altimeter measured significant wave height at the ocean 

surface. From the significant wave height, the team was able to 

predict wind speed at the time of the reading using a factor provided 

in the altimeter data. The team averaged the readings along each 

individual track in the window and used these averages to estimate 

the' wind and wave conditions throughout the entire window. 

The Cape Hatteras composite weather model was made using 

data supplied by ARCO Oil and Gas Company from 1957. [7] The 

data was used to create time series models of wind speed and 'wave 

height, in addition to models for storm arrivals and durations. 

The team used the Daily Weather Maps to chart the passage of 

weather fronts through the window. A figure of the . Daily Weather 

Maps is included in Appendix H of this report. The days when fronts 

passed through the window were removed from the data set in order 

to leave only calm weather data. 	 The data from these frontal 

passage days were placed in a separate file of storm data. It 

appeared that a better weather model could be built by separating 

the weather into calm periods and storms since these data were 

significantly different in magnitude.[2] The averaged values of wind 

speed and significant wave height for the calm tracks were plotted 

versus time and used to generate frequency histograms as shown in 

Appendix I. Neither the wind speed histogram nor the significant 

wave height histogram represented a distinct probability distribution 

clearly enough to warrant the fitting of a continuous probability 

function.	 Therefore, an empirical probability distribution was used

to predict calm weather wind and wave behavior in the model.
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The storm data suggested the storm magnitude and the time 

between storms. The team considered 1.5 meters the minimum 

average significant wave height for the sea conditions to be 

considered a storm. The storms were classed according to maximum 

wave height attained during the storm. Class 1 storms were those 

with wave heights up to two meters, and Class 2 storms were those 

with wave heights above two meters. According to the set of data 

points, storms occurred approximately twenty five percent of the 

time. The average interval between data points was about two and a 

half days. This suggested that storms arrived an average of every 

ten days. The team calculated the standard deviation of the time 

between storm arrivals as 8.76 days. The ten day interval was 

substantiated by the fact that fifteen storms occurred in the 150 

available days of data. 

Because of the limited number of data points available, no 

continuous probability functions were assigned to weather processes. 

Instead, the team used empirical probability distributions to predict 

the significant wave height and wind speed during both calm and 

storm conditions. Appendix I contains figures showing these 

cumulative probability distributions. These distributions were 

provided to the model in the form of one dimensional arrays. 

Initial Conditions and Parameters. The weather and wave 

models in the simulation used Box - Jenkins time series analysis. 

These models were of the autoregressive moving average form. The 

autoregressive (AR) terms use previous values in the series, and the 

moving average terms (MA) use the current and previous random 

inputs. Together, these AR and MA terms are used to predict the
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next value in the time series. [7] The ARMA model is represented 

mathematically as 

z = theta(B)/phi(B) * at 

where

z = observation of the process at time t 

mu = mean of the process 

phi(B) = 1- phiiB - phi2B 2 - ...-phinB = 

autoregressive operator 

theta(B) = 1 - thetaiB - theta2B 2 - ...-thetaB = 

moving average operator 

B = backshift operator such that Bzt = z. 1 

a t • = random input or shock to the process at time t 

such that the mean of at equals sigma2 [7]

Wind speed and wave period during calm conditions were 

modeled with univariate ARMA models. These models are called 

univariate because the future time series values depend only on the 

previous values of that time series. 

Wave height was modeled with a transfer function. Transfer 

function models represent the dependent variable as a function of an 

input variable and an ARMA noise model. The noise term is not 

necessarily the same as the corresponding univariate model of the 

dependent variable. The transfer function is represented 

mathematically as 
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z t-mu = w(B)/delta(B) *	 - theta(B)/phi(B) * at

where

z t	 observation of process at time t 

mu = mean of process 

-Xt b = Xtb - mux = deviation of exogenous input 

variable about its mean at time t-b 

w(B) = wO- w i B - ...-wnB 2 = input lag operator of 

order n 

delta(B) = 1 - deltal B - ... - deltarB r = output lag 

operator of order r 

theta(B) = moving average operator of order q 

phi(B) = autoregressive operator of order p 

B = backshift operator 

at = white noise random input [7] 

Wave height is modeled using a transfer function. Wave height 

is the dependent variable and wind speed is the independent 

variable in the time series. 

Intervention models are special cases of transfer models. 

Intervention models are used to model deterministic deviations from 

the mean of the process. The deterministic component models the 

change in the system as a step input. The dependent variable is a 

function of an intervention term and a random noise term. The 

intervention term takes a value of zero or one to determine whether 

the intervention variable is switched "on" or "off". [7] The 

mathematical form of the intervention model is represented below:
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z t-mu = w(B)/delta(B) * It-b - theta(B)/phi(B) * at 

where

zt	 observation of process at time t 

mu = mean of process 

I t-b = zero-one variable denoting whether an 

impact or intervention variable is switched 

"on" or "off" at time t-b 

w(B) = input lag operator of order s 

delta(B) = output lag operator of order r 

theta(B) = moving average operator of order q 

phi(B) = autoregressive operator of order p 

B = backshift operator 

at = white noise random input [7] 

Storms are modeled in the simulation with an intervention 

model. The intervention term is set to zero during calm weather and 

is set to one during storm conditions. [2] 

The simulation model also required the response amplitude 

operators for the simulated vessel. 	 RAO's are generally presented 

as curves plotted versus wave period.	 Figure 7 shows an example 

RAO plot.	 The model read the RAO's as a series of linear 

approximations over short intervals of wave period values. The 

RAO's were required to predict the vessel's heave response to waves. 

The simulated vessel was a Western Pacesetter #2 semisubmersible 

platform manufactured by Friede and Goldman in New Orleans, 

Louisiana. ARCO Oil and Gas Company provided the team with the 

RAO's for the Pacesetter.
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FIGURE 7: EXAMPLE RAO PLOT



PROGRAM DEVELOPMENT 

The team's simulation model was developed from an existing 

model.	 The existing model simulated the operation of an oil drilling 

vessel in the Arctic Ocean.	 The original model was written in a 

combination of SLAM and FORTRAN programming languages for use 

on the UT/Austin CDC Cyber system . Several changes were made to 

the original model. These changes are as follows:

1. Code written in SLAM was deleted from the model, leaving 
only FORTRAN code. 

2. Oil drilling operations were deleted from the model. 

3. Wind and current drag force models were written for the 
model. 

4. A time keeping routine was developed to replace the deleted 
SLAM time keeping functions. 

5. The weather and wave input values were changed to fit 
conditions in the Gulf of Mexico. 

6. Routines were developed to generate random numbers from 
uniform and normal probability distributions. 

SLAM was deleted for three reasons. First, SLAM is not as 

widely available as FORTRAN. Thus, by using only FORTRAN in the 

simulation, the team felt that the program would be more applicable 

to a wider range of users. Second, SLAM requires a large amount of 

computer memory (600 sectors on the CDC Cyber system). The team 

hoped to adapt the program for possible use on a personal computer, 

where computer memory is more limited than on a mainframe 
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computer. Finally, by writing the program in one language instead 

of two, the team made the program easier to compile and run, since 

no linking was involved. 

The original simulation modeled a platform engaged in offshore 

oil drilling operations. Since the project originally was intended to 

apply to non drilling operations such as the U.S. Navy's DORI project, 

the team felt that drilling operations should be deleted. Also, drilling 

operations comprised the majority of the original simulation. 

Therefore, deleting the drilling allowed the program to run in a much 

shorter amount of time in addition to increasing the program's range 

of applications. 

The team created functions which calculated the force on the 

platform due to both wind drag and current drag. These functions 

were based on tests of the performance of the Western Pacesetter. 

[12] The platform was assumed to maintain station in the original 

model, therefore the original model did not include any drag force 

calculations.	 The new functions determine the wind and current 

conditions given the specific location of the platform.	 These

conditions are then used to calculate the net drag force on the 

platform. From the net drag on the platform, the engine power 

output requirement was calculated as a percentage of maximum 

available power (6000 horsepower). 

Figure 8 shows as simple flow chart of the inputs to the model.



FIGURE 8: SIMPLE FLOW CHART 
OF INPUTS
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Without the SLAM time keeping routines, the computer 

simulation model only goes through one iteration. 	 Therefore, the

team developed a new time keeping routine to allow the program to 

simulate periods of time longer than one interval. This interval best 

fit the input data available to the team. The time keeping routine 

was a simple loop structure which updates the state of the platform 

and external conditions at each time interval. The team wrote the 

simulation with the time interval as a variable so that various 

intervals could be used. Figure 9 shows a simple flow chart of the 

structure of the program.



FIGURE 9: SIMPLE FLOW CHART 
OF THE STRUCTURE OF THE PROGRAM

38 
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Input parameters for the weather and wave models were 

originally developed for the Arctic Ocean. Since the team simulated 

operations in the Gulf of Mexico, these parameters had to be altered. 

Wind conditions, wave conditions, and storms in the Gulf of Mexico 

are all quite different than their Arctic counterparts. For instance, 

storms (excluding hurricanes) are generally less severe in the Gulf of 

Mexico than in the Arctic Ocean. Therefore, the team only included 

two classes of storms, rather than the original three. 

The simulation model required random number inputs for the 

weather and wave condition models. Therefore, the team wrote 

functions which generated random numbers according to uniform 

and normal probability distributions. In a uniform distribution, each 

number in the range has an equal probability of occurring. 	 The

uniform random number function used the Fibonacci sequence to 

generate pseudorandom numbers between zero and one. Five 

significant digits were used to give a cycle repeat length of at least 

150,000 terms. The first 1000 terms were deleted, and every second 

term in the series was used to increase the apparent randomness of 

the numbers. The normal probability distribution function is 

commonly graphed as a "bell curve". The normal function generates 

a normally distributed random number with a mean of zero and a 

variance of one by adding twelve numbers from the uniform 

function and subtracting six from the sum. 

A flowchart of the complete model is included in the Appendix 

section of this paper with listing of the complete computer program.
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RESULTS 

Based on the input data given, the model predicts weather, 

wave, and current conditions and the vessel power output required 

to maintain station. 

The weather, wave, and current predictions that the model 

generates are reasonable estimates of conditions that could be 

expected in the Gulf of Mexico. The team compared the values 

generated by the simulation to the actual input data points, and 

found that these output values did fall in the range of the actual 

readings. Therefore, the team feels the simulation's models for wind, 

wave, and current are reasonable. The simulated values are general 

approximations of the conditions across the window, however, not 

accurate point values. 

The simulation output for power required to maintain station 

was modeled assuming a worst case scenario. In this scenario, the 

team assumed that all forces on the platform acted concurrently and 

in the same direction. This scenario yields the greatest net force on 

the platform for a given set of environmental conditions. Since no 

actual semi submersibles are operating unanchored at this time, the 

team had no real data with which to compare the simulation results. 

Therefore, the accuracy of this model is unknown. However, since 

the environmental conditions were assumed to be worst case and 

conservative engine power estimates were used, the team believes 

that any error in simulation results will tend to be conservative. In 

other words, the predicted station keeping requirements will most
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likely be overestimated, meaning that a platform should be able to 

maintain station more easily than the simulation predicts.
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CONCLUSIONS 

This computer simulation model was developed to simulate the 

operation of a semisubmersible platform in deep waters of the Gulf 

of Mexico. This computer simulation model will be valuable to any 

organization interested in keeping a dynamically positioned vessel 

stationary in the Gulf of Mexico. The simulation is versatile and 

simple to use. Because the simulation does not contain any drilling 

operations, its uses are not limited to the oil industry. Also, the 

model can simulate any type of dynamically positioned vessel if the 

vessel's RAO's are known. By varying the weather input, the 

simulation can model all four seasons. This allows for modeling of a 

complete year, or whichever portion of the year is needed. 

The simulation is easy to run. It requires only three input files: 

one for ARMA model parameters, one for weather and wave 

probability thresholds, and one for initial values for the time series 

functions. Therefore, to change the conditions of the simulation, only 

the input files need to be modified, rather than the program code. 

However, if the code does need to be altered or expanded, the 

FORTRAN language used is widely known and the code is well 

documented.
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RECOMMENDATIONS 

The main problem that the team encountered was limited data 

sets available within the time available to this project. The team was 

only provided with 150 days of altimeter data from the GEOSAT 

satellite mission. A more complete data set would provide more 

accurate probability distributions for wind, waves, and storms. 

Ideally, data from several years could be used to generate input for 

the model. This would allow the simulation to differentiate between 

seasons. 

The team did not have access to the complete set of GEOSAT 

data. At the time of the project, the orbital errors inherent in this 

data had not yet been corrected. Therefore, the team was unable to 

make use of the macroscopic sea height readings, which show the 

overall height of the sea surface. Since the surface of warm water 

features like the Loop Current is higher than the surrounding cooler 

waters, the height readings could be used to locate the Loop Current 

and warm core eddies. The altimeter location of these features 

would be useful in the summer months when the thermal images are 

indistinct. The team recommends that future research be devoted to 

this use of the altimeter data. 

AVHRR and buoy data was only available at UT/Austin for the 

past year, starting on February 28, 1989. Three days of AVHRR data 

were used for this project to compute velocities of currents. A larger 

data set could be used to create a finer grid structure for the current 

array which would provide a more precise estimate of the current at 

any specific location. Due to the amount of time required to track
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and edit the buoy paths, a limited number of paths were processed 

for this project. More buoy tracks could substantiate the elliptical 

path patterns observed during this project as well as provide more 

data on velocities of currents. The team recommends that in future 

projects the elliptical fitting program available from Glenn and 

Forrestall be used to evaluate the buoy paths. The program was not 

available in time to use for this project. 

The wind, wave, and current models include only magnitudes. 

The team did not have time to model the directionality of these 

phenomena. Directionality can be modeled using sectors to denote 

direction from a specific location. The size of the sectors is arbitrary, 

and the sectors need not be equal in size. The team suggests using a 

Markov Chain model to model the probabilities of future directions 

based on the previous directions. Some of the direction variables 

may need to be synchronized because of their effect on one another. 

For example, wind and wave directions are not always the same, but 

are often related to one another. This approach has been successful 

in modeling directionality of wind and waves in Alaska. [7] Since 

directionality has such a great effect on the station keeping of the 

platform, the team recommends that further research be conducted 

in this area. 

The team did not model the movement of the platform caused 

by environmental forces, except to tell the user whether the 

platform is able to keep station. The team recommends that future 

models include drift of the platform by modeling the platform's 

location on a grid map. Such a location model would allow a much 

more complete treatment of current velocity magnitudes and
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directions, since these values vary with geographic location. By 

modeling location, future researchers could also incorporate station 

keeping strategies. These strategies could vary with the amount of 

drift allowed for the platform. For example, allowing larger amounts 

of drift would make possible a sprint and drift strategy, where the 

platform "sprints" into the current to the edge of the allowed drift 

area and then "drifts" with the current to the opposing edge. 

Future users of the model are likely to be interested in drilling 

for oil. In order to make the model more useful to the oil industry, 

drilling operations could be included in the simulation. Drilling 

operations could be included in the model either by reinstating the 

SLAM and FORTRAN drilling routines or by writing new FORTRAN 

code to simulate drilling. 

The team developed the model for use on UT/Austin's CDC 

Cyber system, which will be removed from operation in January 

1991. In order to avoid losing the simulation, it must be moved to 

another system. The team recommends that further study be 

devoted to the translation of the program to a version of FORTRAN 

compatible with other systems. Both mainframe systems such as 

UT/Austin's VAX and personal computers such as IBM PC's should be 

considered.
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APPENDIX B 

SAMPLE OUTPUTS



INPUT ECHO REPORT 

INPUT FCR ARMA MODELS 
MODEL	 P 9	 DELTA SIGMA NSAMP 

1	 1 1	 9.004	 1.030 300 
PHI S	 .189 
THETA S= -.277 
MODEL	 P G	 DELTA SIGMA NSAMP 

2	 1 0	 3.662	 1.096 30 
PHI S	 .466 

INTERVENTION WEIGHTS 
HEIGHT PERIOD 
3.5888 .1876 
6.1444 1.4865 
6.9556 2.1046 

TRANSFER FUNCTION MODEL INPUT 
NOIS r P	 NOISE Q	 OUTPUT ORDER INPUT ORDER	 INPUT OACNSHIFT SIGMA	 MEAN 

1 0	 2 1 0 1.00 1.262 
PHI S	 .418 
DELTA S	 1.145 -.193 
OMEGA S=	 .162 .139 

NO. OF TIME BETWEEN STCRMS	 STORM LENGTHS FOR MONTH 
2 15 1 
19 14 2 
16 7 3 
15 10 4 
14 7 5 
3 2 6 
3 3 7 
9 5 8 

12 9 
25 16 
23 14 11 
18 13 12 

COF CUTOFFS A TIME BETEEN STORMS FOR MONTH	 1 
.04	 .07 .15	 •22	 .33	 .37 .41 .44	 .48 •52 
12.	 14. 20.	 22.	 24.	 26. 28. 34.	 36. 4c. 
.59	 .63 .67	 .70	 .78	 .81 •85 .93	 .96 1.00 
44.	 50. 58.	 60.	 62.	 84. 88.	 136. 108. 128. 

8	 0 8	 0	 U 
0	 0 C	 0	 8 

COF CUTOFFS A TIME BETLEEN STORMS FOR MONTH	 2 
.04	 .08 .17	 .21	 .29	 .33 .38 .46	 .50 •58 
6.	 14. 16.	 24.	 33.	 44. 48. 60.	 7 .j. 74. 
.63	 .61 .71	 .79	 .83	 .88 .92 .96	 1.03 0 
80.	 8. 84.	 88.	 94•	 100. 110.	 124. 222. 0 

0 C	 C	 3 
0	 0 C	 0	 0

ORIGINAL PAGE Is 
OF POOR QUALITY 



COF CUTOFFS & TIME BETWEEN STORMS FOR MONTH	 3 
.35 .09 .14 .27 .36 .41 .45 .55 .64 .73 
20. 22. 26. 30. 32. 34. 38. 40. 44. 56. 
.77 .82 .86 .91 .95 1.00 C 0 3 0 
66. 70. 92. 106. 124. 126. 0 0 3 3 

3 0 0 0 -3 
3 0 C & 0 

COF CUTOFFS g	 TIME BETWEEN STORMS FOR MONTH	 4 
.06 .13 .19 •2 .38 .44 .50 .56 .63 .69 
12. 22. 24. 26. 30. 32. 42. 50. 56. 68. 
.75 .81 .88 .94 1.30 0 0 -0 0 0 
74. 76. 116. 184. 202. 0 0 0 0 3 

3 0 C 0 0 
0 0 0 0 

COF CUTOFFS & TIME RETIEEN STORMS FOR MONTH	 S 
.01 •13 .20 .33 .40 .47 .53 .60 .67 .73 
10. 14. 16. 20. 22. 26. 54. 94. 120. 132. 
.80 .87 .93 1.00 0 0 0 3 .3 3 

138. 146. 148. 158. 0 0 C 0 '3 0 
3 0 . 0 0 0 
3 0 0 0 3 

CDF CUTOFFS & TIME BETIEEN STORMS FOR MONTH	 6 
.33 .671.00 C 0 C 0 3 0 0 
16. 70. 74. 3 0 0 3 0 0 0 

O 0 C 0 0 0 0 0 3 0 
0 0 0 3 0 0 0 3 0 

0 0 0 0 0 
0 0 0 0 0 

CDF CUTOFFS 8 TIME BETWEEN STORMS FOR PONTH	 7 
33 671•0t 0 3 C 0 0 0 0 

54. 86.328. 0 0 0 0 0 3 0 
3 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 
0 0 C 0 0 
0 0 0 0 C 

COF CUTOFFS & TIRE BETEEN STORMS FOR MONTH	 8 
.11 .22 .33 •4 .56 .67 .78 .89 1.03 3 
14. 36. 52. 90. 132. 152. 218. 292. 300. 0 

0 0 C. 0 0 0 0 0 3 0 
--	 3 0 C 0 0 0 0 0 0 0 

0 0 0 0 0 
0 0 0 3 0 

CDF CUTOFFS & lIME 2ETEEN STORMS FOR MONTH	 9 
.05 .09 .14 .18 •23 .27 .45 .5 .59 •64 
12. 18. 24. 28. 32. 36. 40. 42. 56. 58. 
.68 .73 .77 .82 .91 .95 1.00 .3 0 0 
80. 82. 168. 188. 296. 374. 578. 0 0 0 

0 C 0 3 
0 0 0 0 0

ORIGINAL PAGE Is 
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CDF CUTOFFS & TIME BETZEN STOFMS FOR MONTH 10 
•02	 .10 .11 .24 .29	 .40 .48 .50 .52 .55 
8.	 12. 16. 18. 20.	 22. 24. 26. 28. 32. 
.60	 .62 .64 .67 .71	 .74 .76 .83 •86 .28 
36.	 38. 40. 44. 50.	 54. 56. 60. 62. 66. 
.90	 .93 .95 .98 1.30 
76.	 86. 100. 108. 116. 

COF CUTOFFS & TIME 2ETLEEN STOFHS FOR MONTH 11 
.04	 .07 .11 .18 .21	 .25 .29 .36 .43 .46 
10.	 16. 18. 20. 24.	 26. 28. 32. 36. 38. 
.50	 .54 .61 .64 .68	 .71 .15 .79 .82 .89 
40.	 46. 48. 52. 54.	 52. 64. 70. 72. 80. 
.93	 .96 1.00 0 0 
82.	 86. 88. 0 0 

CDF CUTOFFS & lIME BETIEEN STONNS FOR MONTH 12 
.03	 .06 .12 .15 .27	 .39 .45 .55 .61 .64 
14.	 16. 22. 24. 26.	 28. 30. 38. 42. 46. 
.70	 .79 .82 .85 .91	 .94 .97	 1.00 0 0 
48.	 52. 54. 56. 64.	 66. 74. 90. 0 0 

0 0 0 0 
2	 0 0 0 0 

COF CUTOFFS & STORM LENGTHS FOR MONTH 1 
.04	 .11	 .19 .22 .41 .56	 .63	 .70 .74 .81 .85	 .89	 .93 .961.00 C 
4.	 6.	 8. 10. 14. 12.	 20. 22. 26. 34. 38. 56. 58. 62. 66. 0 

COF CUTOFFS * STORM LENGTHS FOR MONTH 2 
.08	 .25 •42 .46 .63 .67	 •71	 .75 .79 •83 •88	 .92	 .961.00 C 0 
4.	 6.	 8. 10. 12. 14. 16. 18. 20. 22. 24. 28. 64. 66. C 0 

COF CUTOFFS & STORM LENGTHS FOR MONTH 3 
.21	 .41	 .68 .73 .77 .911.00	 0 0 3 a a	 0 3 0 a 
6.	 8. 10. 12. 14. 20.	 40.	 0 0 0 0 0	 0 0 0 0 

CDF CUTOFFS & STORM LENGTHS FOR MONTH 4 
.06 .19 .50 .56 .69 .75	 .81	 .88 .941.03 3 0	 0 0 -	 C 0 
4.	 6. 10. 12. 18. 20.	 30.	 34. 40. 48. 0 0	 3 0 0 0 

COF CUTOFFS & STORM LENGTHS FOR MONTH 5 
.01	 .13	 .40 .67 .87 .931.00	 0 0 0 3 0	 0 0 C C 
4.	 6.	 8. 10. 12. 16.	 20.	 0 0 0 0 0	 0 0 0 0 

CDF CUTOFFS & STORM LENGTHS FOR MONTH 6 
.331.30	 C 0 0 0	 0	 0 0 0 0 0	 0 0 0 0 
8.10.	 0 C 0 C	 0	 0 0 0 0 0	 0 C 0 C 

COF CUTOFFS & STORM LENGTHS FOR MONTH 7 
.33.671.00 0 0 0	 0	 0 0 3 C 0	 0 0 0 0 
4.	 8.10. 0 0 0	 0	 3 0 0 0 9	 C 3 0 0

ORG1 PAGE 
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COF CUTOFFS $ STORM LENGTHS FOR MONTH 8 
.11 .22 .67 .781.00	 0	 C	 0	 C	 0	 0	 0	 0	 0	 C	 C 4. 6. 8.10.22.	 0	 C	 0	 0	 0	 0	 0	 0	 0	 C	 C 

COF CUTOFFS	 STORM LENGTHS FOR MONTH 9 
.05 .23 .36 .50 •64 .68 .73 .77 .82 .91 .951.00	 3	 0	 0	 0 
4. 6. 8. 10. 12. 14. 18. 2C. 22. 24. 30. 32. 	 0	 0	 0	 C 

CDF CUTOFFS & STORM LENGTHS FOR MONTH 10 
.02 .21 •38 .48 .57 .69 .74 .76 .79 .81 .86 .88 .93 .95 .981.00 
4. 6. 8. 10. 12. 14. 16. 20. 22. 28. 30. 34. 36. 40. 58. 72. 

CDF CUTOFFS & STORM LENGTHS FOR MONTH 11 
.04 .07 918 •32 .43 .50 .54 .68 .71 .86 •89 .93 .961.00 	 C	 0 2. 6. 8. 10. 12. 14. 16. 20. 22. 24. 30. 36. 38. 40.	 0	 0 

CDF CUTOFFS & STORM LENGTHS FOR MONTH 12 
C •09 .21 .30 .42 .61 .1C .82 .85 .88 .91 .94 .971.00	 0	 0 

4. 8. 10. 12. 14. 16e, 18. 22. 30. 52. 58. 74. 76. 	 0	 0	 0 

COF CUTOFFS FOR STORM CLASS 
MONTH 1	 2 

1	 .15 .55 
2	 .29 .96 
3	 .32 .68 
4	 .38 .50 
5	 .53 .93 
6	 .67 1.00 
7	 1.00	 C 
8	 .44 .78 
9	 .21 .73 

10	 .21 •64 
11	 0.46 
12	 .18 .61 

STARTING MONTH IS 8 AND DAY IS 15 

MON DAY WZNDSPEED WAVEHT VAVEPD HEAVE FROPUL DRIFT 
8 15 11.884114 9.743 8.120 2.30 .6679	 I 

MON DAY VINOSPEED WAVEIIT WAVEPD HEAVE PROPUL DRIFT 
8 15 11.149488 11.001 59996 1.12 .6585 	 I	 - 

MON DAY WINOSPEED VAVEIIT MAVEPO HEAVE PROPUL DRIFT 
• 8 15 10.130361 9.762 6.718 1.53 .6463 	 I 

MON DAY VINOSPEED WAVEHT VAVEPD HEAVE PROPUL DRIFT 
8 15 11.657371 8.997 6.397 1.20 .6649	 I 

MON DAY VINOSPEED VAVEI1T WAVEPO HEAVE PROPIJL DRIFT 
8 15 13.784485 10.105 8.556 2.57 .6952	 I 

MON OIY WINOSPEED WAVEHT WAVEPD HEAVE PROPUL DRIFT 
8 35 12.916946 9.829 6.887 1.65 .6823	 1 
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MON DAY WINOSPEED WAVEIIT WAVEFO HEAVE PROPUL DRIFT 

	

8 15 10.618981 9.618 7.916 2.18 .6522	 I 
MON DAY VINDSPEED WAVEIfT WAVEPD HEAVE PROPUL DRIFT 

	

8 15 9.393722 8.515 7.321 1.66 .6383	 I 
MON DAY VINOSPEED WAVEIIT WAVEFD HEAVE PROPUL DRIFT 

	

8 15 10.849416 8.584 7.596 1.81 .6548	 I 

MON DAY MINDSPEED UAVEHT VAVEPD HEAVE PROPUL DRIFT 

	

8 15 10.652211 8.107 5.842	 .73 .6524	 I 
MON DAY VINOSPEED VAVEHT WAVEPO HEAVE PROPIJL DRIFT 

8	 5 10.93468 7.658 4.970	 .24 .5891	 I 
MON DAY WINDSPEEO WAVEIfT WAVEPO HEAVE PROPUL DRIFT 

	

8 15 11.425301 7.715 6.18	 .81 .5953	 I 
MON DAY WINOSPEED VAVEHT WAVEPU HEAVE PROPUL DRIFT 

	

8 15 10.119716 1.612 5.881	 .71 .5795	 I 
MON DAY WINDSPEED VAVEI1T WAVEPD HEAVE PROPUL DRIFT 

	

8 15 11.347096 6.315 5.964	 .63 .5943	 I 
•	 MON DAY WINDSPEED WAVEIIT WAVEPD HEAVE FROPIJL DRIFT 

	

8 15 10.481868 7.400 6.781 1.19 .5837	 I 
MON DAY VINOSPEED WAVEIIT WAVEPD HEAVE PROPUL DRIFT 

	

8 15 11.858495 6.772 5.810	 .61 .6109	 I 
MON DAY VINIISPEED VAVEFIT WAVEPD HEAVE PROPUL DRIFT 

	

8 15 10.644124 6.642 6.444	 .91 .5856	 I 

PION DAY WINOSPEED WAVEIITWAVEPO HEAVE PROPUL DRIFT 

	

8 15 9.651338 7.818 6.797 1.27 .5744	 1 
MON DAY WINDSPEED VAVEIIT WAVEPO HEAVE PROPUL DRIFT 

	

8 15 10.861273 8.178 5.852	 .74 .6549	 I 
MON DAY WINOSPEED WAVEIfT WAVEPD HEAVE PROPUL DRIFT 

	

8 15 11.092415 5.331 6.150	 .57 .5911	 I
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APPENDIX C 

IMPORTANT ALGORITHMS



Ct 
PROGRAM 

SRTGEO(INPUT,OUTPUT,TFY,TAPE 11 =INPUT,TAPE 1 2=OUTPUT) 
REAL SIGO,TEMP,HITE,HGTF,SWH,A,B,S,WG,WC,SIGMA,DAy,SEC 
REAL TIME,MSECSEC,LLONG,LLATLONG,LAT 

C********** 
C*** PROGRAM TO READ DATA FROM WINDOW OUTPUT FORM

AND CONVERT TO BE READ AS INPUTS TO PROGRAM 
C GEOAVHRR TO PLOT ALTIMETER TRACKS ON THERMAL IMAGE 
C********** 
C 
C MAIN LOOP FOR READING THE DATA FROM FILE 
C 
C*** LOOP INPUT DATA UNTIL END OF FILE 

DAY=1 
WHILE(DAY.NE.0) DO 

C 
C*** READ WINDOW DATA IN FREE FORMAT FORM 

READ(1 1 ,*)DAY,SEC,MSEC,LONG,LAT,}jJTE,SWH,SIGQ 
C 
C*** TIME CALCULATION OF DAY SEC MSEC 

DAYSEC=0. 
IF(DAY.NE.0) THEN 

DAYSEC=(DAY- 1 )*86400 
ENDIF 
MSECSEC=MSEC/1000000. 

TIME=DAYSEC+SEC+MSECSEC 
C 
C	 LONG-LAT CALC. 

LLONG=LONG/1 000000. 
LLAT=LAT/ 1000000. 

C 
C*** PROCESSING HGT TO METERS 

HGTT=HITE/1 00. 
C

WRITE IN FORMAT FOR GEOAVHRR INPUT FORM FOR TRACK 
C	 MAPPING PURPOSES 

WRITE( 1 2,30)TIME,LLONG,LLAT,HGTF 
30	 FORMAT(2X,F1 6.6,2X,F1 0.6,2X,F1 0.6,2X,F5.2) 

END WHILE 
STOP 
END.



CL 
PROGRAM 

SRTAVG(INPUT,OUTPUT,TAPE1 1 =INPUT,TAPE 1 2=OUTPUT) 
REAL 

SIGO,ThMP,HGT,HGTF,SWH,A,B,S,WG,WC,SIGMA,DAy,SEC,WW 
REAL 

DAYSUM,SECSUM,HGTSUM,SWHSUM,SIGSUM,DAYAVG,SECAVG,HGTAV 
G,SWHAVG 

REAL SIGAVG,N,DAYDEF,SECDEF 
C********** 
C*** PROGRAM TO READ INPUT FROM WINDOW PROGRAM OUTPUT 

THEN WILL DEFINE INDIVIDUAL TRACK ALONG DATA 
C*** AVERAGE TRACK DATA FOR ANALYSIS 

C 
C MAIN LOOP FOR READING THE DATA FROM FILE 
C 
C*** DEFINE INITIAL VALUES 

DAY=1.O 
DAYSUM=0.O 
SECSUM=0.0 
HGTSUM=O.O 
SWHSUM=0.0 
SIGSUM=0.0 
N=0.0 

C 
C*** READ INPUT UNTIL END OF FILE IS REACHED 

WHILE(DAY.NE.0) DO 
C NEW TRACK 
C 
C*** READ INPUT IN FREE FORMAT 
100	 READ(1 1 ,*)DAY,SEC,MSEC,LONG,LAT,HGT,S'WH,SIGMA. 
C 
C*** DEFINE DIFFERENCE VALUES FOR A NEW TRACK 

IF(N.EQ.0) THEN 
DAY2=DAY 
SEC2=SEC 

ENDIF 
C 
C* ** CALCULATE DIFFERENCE 

DAYDEF=AB S(DAY-DAY2) 
SECDEF=ABS(SEC-SEC2) 

C 
C*** USE DIFFERENCE VALUES TO LOCATE NEW TRACK



C3 
IF((DAYDEF.NE.0).OR.(SECDEF.GE.600)) GO TO 200 

C
INCREMENT N BY 1 (COUNTER) 

N=N+ 1 
C 
C*** ADD VALUES OF A GIVEN TRACK 

DAYSUM=DAYSUM+DAY 
SECSUM=SECSUM+SEC 
HGTSUM=HGTSUM+HGT 
SWHSUM=SWHSUM+SWH 
SIGSUM=SIGSUM+SIGMA 

C 
C*** RESET DIFFERENCE VALUES FOR ANOTHER TRACK 

DAY2=DAY 
SEC2=SEC 
GO TO 100 

C 
C*** NEW TRACK DISCOVERED, AVERAGE VALUES IN OLD TRACK 
200	 DAYAVG=DAYSUMJN 

SECAVG=SECSUM/N 
HGTAVG=HGTSUMJN 
SWHAVG=SWHSUM/N 
SIGAVG=SIGSUMJN 

C 
C*** SET NEW SUM VALUE 

DAYSUM=DAY 
SECSUM=SEC 
HGTSUM=HGT 
SWHSUM=SWH 
SIGSUM=SIGMA 

C 
C*** PROCESSING HOT FROM CM TO METERS 

HGTT=HGTAVG/1 00. 
C 
C*** PROCESSING SWH FROM 0.1 METERS TO METERS 

SWHM=SWHAVG/1 0. 
C 
C*** PROCESSING SIGMA TO WC IN METERS/SECOND 
C

SIGO=SIGAVG/1 0. 
S=10**(((SIGO+2. 1)110)) 

IF(SIGO.GT.(10.9)) THEN 
A=0.01595



B=O.017215 
ELSE IF(SIGO.LE.(10.12)) THEN 

A=0.080074 
B=-0. 124651 

ELSE
A=0.03983 
B=-0.031996 

ENDIF 
L

WG=EXP((S -B )/A) 
IF(WG.GT.16) THEN 

WC=WG 
ELSE

WW=(2.087799*WG) 
(0.3649928 *WG**2)+(0 04062421 *WG* *3) 

WC=WW-(0.00 1 904952*WG* *4)+(O 00003288 189 *WG* *5) 
ENDIF 

C 
C	 WRITE TO OUTPUT IN NEW FORMAT 

WRITE( 1 2,30)DAYAVG,SECAVG,HGrF,SWHMWC 
30 FORMAT(F4.0,2X,F6.0,2x,F7 .3 ,2X,F4. 1 ,2X,F1 0.2) 
C 
Ck	 RESET DIFFERENCE VALUES AND COUNTER 

DAY2=DAY 
SEC2=SEC 
N=1 

END WHILE 
STOP 
END



PROGRAM 
DEFWIN(INPUT,OUTPUT,TAPE11=INPUT,TAPE12=OUTPUT)

INTEGER DAY,SEC,MSEC,LONG,LAT,HGT,SWH,SIGMA 
C********** 
C*** PROGRAM TO READ IN RAW ALTIMETER DATA AND TO 
C*** PROCESS TO BE READ IN A FREE FORMAT 
C*** A WINDOW IS DEFINED TO REDUCE DATA 

C 
C MAIN PROGRAM 
C 
C*** LOOP THRU DATA UNTIL END OF FILE IS REACHED 

DAY=1 
WHILE(DAY.NE.0) DO 

C*** READ FROM INPUT FILE THE FORMAT PROVIDED 
10	 READ(1 1, 1 OO)DAY,SEC,MSEC,LONG,LAT,HGT,SWH,SIGMA 
100	 FORMAT (13,15,16,219,14,13,13) 
C 
C*** DEFINE WINDOW IN THE GULF 

IF((LAT.LE. 272000000) .AND. (LAT.GT.269000000)) THEN 
IF((LONG.GE.23000000).AND.(LONG.LE.28500000)) THEN 

WRITE( 1 2,200)DAY,SEC,MSEC,LONG,LAT,HGT,5WH,SIGMA 
200	 FORMAT(13 ,2X,I5 ,2X,16,2X,I9,2X,19,2X,14,2X,I3 ,2X,I3) 

ENDIF 
ENDIF 

IF((LAT.LE.276000000).AND .(LAT.GT.272000000)) THEN 
IF((LONG . GE.23000000).AND.(LONG .LE.29250000)) THEN 

WRITE( 1 2,200)DAY,SEC,MSEC,LONG,LAT,HGT,SWH,5IGMA 
ENDIF 

ENDIF 
END WHILE 
STOP 
END
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APPENDIX E 

LISTING OF COMPUTER PROGRAM



PROGRAM 
MAIN(INPUT,TAPE 1 ,TAPE2,TAPE3 ,TAPE4,TTY,TAPE5=TTY, 

$TAPE7,TAPE8,TAPE9,TAPE 1 O,OUTPUT,TAPE 11 =INPUT, 
$TAPE 1 2=OUTPUT,TAPE 13 ,TAPE 1 4,TAPE 15 ,TAPE 16) 

COMMON/B RY/ROLD,RNEW,TEMP 
COMMON/SCOM1/ TNEXT,TNOW,TAB(23) 
COMMON/UCOM1 / 

HEAVE,HEIGHT,RINIT(6),IP(3 ),JQ(3 ),PERIOD,IV(3) 

1 ,WP(3 ),WH(3),WIND,COUNT,RLENGTH( 12,1 6),SLENGTH,STIME( 12,16) 
COMMON/UCOM3/ IPP,JQQ,KR,MS,NB 
COMMON/UCOM4/ 

MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 
1 NSTORMS( 1 2),MONTH,NHDAY,NDAy 

COMMON/TRFSERI/ 
KOLD,LOLD,MOLD,MAXA,MAXB ,MAXC,A(5),B(5),C(4), 

1 SIG,RMU,TX(8),TY(4),TU(4),ADDON 
COMMON/TSERIES/DELTA(3),SIGMA(3),NSAMIp(3),THETA(348) 
1 ,X(3 ,60),U(3 ,60),IOLD(3),JOLD(3),PHJ(3 ,48) 

COMMON/STORMTM/LSTART,LSTOP,LSTRM,STRM 
COMMON/FORS/FORWAV,FORWIN,FORCUR,FORNET,PROPULDR 
REAL MEAN,VAR 
MEAN = 0.0 
VAR =1.0 
CALL INTLC 
WRITE(5 , *) 'BEGIN SIMULATION' 
DO 10 I = 1,20 

IF (NHDAY.EQ.LSTART) THEN 
CALL STORM 
LSTRM = LSTRM + 1 

ENDIF 
CALL WEATHER 
CALL FORCE 
CALL REPORT 
IF (NHDAY.EQ.LSTOP) THEN 

CALL NDSTORM 
ENDIF 

10 CONTINUE 
WRITE(5 , *) 'THERE WERE ',LSTRM,' STORMS' 

11 CONTINUE 
STOP 
END



22 
SUBROUTINE INTLC 

C *** CALLED BY SLAM BEFORE EACH SIMULATION TO READ INPUT 
DATA 
C SETS, SET INITIAL CONDITIONS, & SCHEDULE INITIAL EVENTS 

COMMON/TSERIES/DELTA(3),SIGMA(3),NSAMp(3), 
1 THETA(3 ,48),X(3 ,60),U(3 ,60),IOLD(3),JOLD(3 ),PHI(3 ,48) 

COMMON/B RY/ROLD,RNEW,TEMP 
COMMON/STORMTMILSTART,LSTOp,LS'FRM,STRM 
COMMON/TRFSERI/ 

KOLD,LOLD,MOLD,MAXA,MAXB,MAXC,A(5),B(5),C(4), 
1 SIG,RMU,TX(8),TY(4),TLT(4),ADDON 
COMMON/SCOM1 /TNEXT,TNOW,TAB(23) 
COMMON/UCOM1IHEAVE,HEIGHT,RINIT(6),IP(3),JQ(3),PERIOD 

1 ,IV(3),WP(3),WH(3),WJND,COUNT,RLENGTH(1 2,1 6),SLENGTH,STIME( 
12,16) 

COMMON/UCOM3/ IPP,JQQ,KR,MS,NB 
COMMON/UCOM4/ 

MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 
1NSTORMS( 1 2),MONTH,NHDAY,NDAY 
DIMENSION FEE(2),THE(2),DEL(2),OMEGA(3) 
LSTRM = 0 
NHDAY = 0 
NNRUN = 1 
TNOW =0 

C *** INITIALIZE ARRAYS FEE,THE,DEL,OMEGA TO 0 
DO 11 = 1,2 

FEE(I) = 0.0 
THE(I) = 0.0 
DEL(I) = 0.0 

CONTINUE 
DO 2 I = 1,3 

OMEGA(I) = 0.0 
2 CONTINUE 

C INITIALIZE RANDOM NUMBER GENERATOR 
C GENERATE FIRST 1000 FIBONACCI NUMBERS 

ROLD = 0.0 
RNEW = 0.00001 
DO 10 1=1,1000 

TEMP = RNEW 
RNEW = RNEW + ROLD 
ROLD = TEMP



IF (RNEW.GE.1.0) THEN
	

L3 

RNEW = RNEW - 1.0 
ENDIF 

10 CONTINUE 
C *** READ RAO'S 

READ (9,170) (TAB(I),I=1,23) 
170 FORMAT (F4.2) 

C READ INITIAL SUPPLIES ON DRILLING VESSEL 
READ(8 , *) (RINIT(I),I=1,6) 

C *** INITIALIZE INTERVENTION TERMS 
DO 20 1=1,3 

20 IV(I)=0. 
IF(NNRUN.NE.1) GO TO 610 

C *** READ EMPIRICAL STORM DISTRIBUTIONS 
READ(8 , *) (MSTORMS(I),I= 1,1 2),(NSTORMS(I),I= 1,12) 
READ(8 , *) ((PR(I,J),J=1,25),I=1,12) 
READ(8,*) ((TTNS(I,J),J=1,25),I=1,12) 
READ(8,*) ((CLS(I,J),J= 1 ,2),I=1 ,12) 
READ(8, *) ((RLENGTH(I,J),J= 1,1 6),I= 1,12) 
READ(8 , *) ((STIME(I,J),J= 1,1 6),I= 1,12) 

C READ DATE 
READ(8 ,*) MONTH,NDAY 

C *** READ WAVE HEIGHT AND WAVE PERIOD INTERVENTION TERMS 
READ( 10, *) (WH(I),I= 1 ,3),(WP(J),J= 1,3) 

195 FORMAT (F8.4) 
DO 60 KS=1,2 

C READ EACH ARMA MODEL 
READ(10,*) IP(KS),JQ(KS),DELTA(KS),SIGMA(K5),NSAMP(Ks) 

200 FORMAT (Ii ,1X,I1 ,1X,F6.3,F5.3,1X,13) 
210 FORMAT (9(1X,F5.3)) 

C *** READ ARMA PARAMETERS 
IF (IP(KS).GT.0) READ (10,*) (PHI(KS ,I),I= 1 ,IP(KS)) 

IF (JQ(KS).GT.0) READ (10,*) (THETA(KS,J),J=1,JQ(KS)) 
YY=ARMA(0,KS) 
NN=. 10*NSAMP(KS) + 2*(IP(KS)+JQ(KS)) 

C *** GENERATE FIRST NN VALUES. 
DO 30 K=1,NN 

30 YY=ARMA(l ,KS) 
60 CONTINUE 

C *** READ TRANSFER FUNCTION PARAMETERS 
READ( 1 0,*) IPP,JQQ,KR,MS,NB,SIG,RMU 

220 FORMAT (I1,1X,I1,1X,I1,1X,I1,1X,I1,1X,F6.3,1X,F6.3) 
IF(IPP.GT.0) READ (10,*) (FEE(I),I= 1 ,IPP)



IF(JQQ.GT.0) READ (10,*) (THE(I),I=1,JQQ) 
IF(KR.GT.0) READ (10,*) (DEL(I),I=1,KR) 
READ(10, *) (OMEGA(I),I=1 ,MS+1) 

230 FORMAT (3(1X,F5.3)) 
C *** TWICE AS MANY HALF DAYS(NHDAY) AS DAYS 

610 NHDAY=2*NDAY 
A, B, C ARRAYS ARE PARAMETERS MULTIPLIED BY PAST 

SERIES' 
C VALUES IN TRANSFER FUNCTION GENERATION & INTERVENTION 
C CALCULATIONS. THEY ARE DERIVED FROM TRANSFER FUNCTION 
C INPUT PARAMETERS 

DO 240 1=114 
A(I)=0.0 
B(I)=0.0 
C(I)=0.0 

240 CONTINUE 
B(5)=0. 
A(1)=.-FEE(1)-DEL(1) 
A(2)=-DEL(2)+DEL( 1 )*FEE( 1 )-FEE(2) 
A(3)=DEL(2) *FEE( 1 )+DEL( 1) *FEE(2) 
A(4)=DEL(2) *FEE(2) 

A(5)=( 1 -DEL( 1 )-DEL(2)) *( 1 -FEE( 1 )-FEE(2)) 
B(1)=OMEGA(1) 
B(2)=-OMEGA( 1 )*FEE( 1 )-OMEGA(2) 
B(3)=OMEGA(1)*FEE(2)+OMEGA(2)*FEE(1)OMEGA(3) 
B (4)=OMEGA(2) *FEE(2)+FEE( 1 )*OMEGA(3) 
B(5)=OMEGA(3)*FEE(2) 
C(1)=-DEL(1)-THE(1) 
C(2)=-DEL(2)+THE( 1 )*DEL( 1 )-THE(2) 
C(3)=THE( 1 )*DEL(2)+DEL( 1 )*THE(2) 
C(4)=DEL(2)*THE(2) 
SUM=1 .0 
IF(IP(1).EQ.0) GO TO 248 

C *** CALCULATE MEAN(XMU) OF WIND SERIES 
DO 245 I=1,IP(1) 

245 SUM=SUM-PHI( 1,1) 
248 XMIJ=DELTA( 1)/SUM 

C *** DETERMINE WHAT MUST BE ADDED ON TO TRANSFER FUNCTION 
10 
C BRING TO MEAN 

ADDON=( 1 -FEE( 1 )FEE(2))*(( 1 -DEL( 1 )DEL(2))*RMU(OMEGA( 1)-
OMEGA(2) 

XOMEGA(3))*XMU)



MAXA=MAXB=MAXC=0 
C DETERMINE MAX A, B, C ELEMENTS >0 

620 DO 500 1=1,4 
IF(A(I).NE.0.0) MAXA=I 
IF(B(I).NE.0.0) MAXB=I 

500 IF(C(I).NE.0.0) MAXC=I 
IF(B(5).NE.0.0) MAXB=5 

C INITIALIZE TRANSFER FUNCTION--BRING TO STEADY STATE 
630 YY=TRANSFR(0) 

NN=30+2*(IPP+JQQ) 
C *** GENERATE ENOUGH OF TRANSFER FUNCTION PROCESS TO BRING 
10 
C TO STEADY STATE 

DO 510 K=1,NN 
WIND=ARMA(1 ,1) 

510 YY=TRANSFR(1) 
IF(NNRUN.NE.1) GO TO 640 

C *** WRITE ECHO REPORT FOR ALL INPUT VARIABLES 
WRITE( 12,300) 
WRITE( 12,641) 
DO 1020 1=1,2 
WRITE( 12,650) 
WRITE( 12,660) I,IP(I),JQ(I),DELTA(I),5IGMA(I),N5AMP(J) 
IF(IP(I).GT.0) WRITE( 12,670) (PHI(I,J),J= 1 ,IP(I)) 

1020 IF(JQ(I).GT.0) WRITE( 12,680) (THETA(I,J),J= 1 ,JQ(I)) 
WRITE( 12,690) 
WRITE( 12,700) 
DO 1030 1=1,3 

1030 WRITE(12,710) WH(I),WP(I) 
WRITE( 12,720) 
WRITE( 12,730) 

WRITE( 12,740) IPP,JQQ,KR,MS ,NB ,SIG,RMU 
IF(IPP.GT.0) WRITE( 12,670) (FEE(I),I= 1 ,IPP) 

IF(JQQ.GT.0) WRITE(12,680) (TF1IE(I),I=1 ,JQQ) 
IF(KR.GT.0) WRITE( 12,750) (DEL(I),I= 1 ,KR) 
WRITE( 12,760) (OMEGA(I),I= 1 ,MS+ 1) 
WRITE( 12,770) 
DO 1040 1=1,12 

1040 WRITE( 12,780) (MSTORMS(I),NSTORMS(I),I) 
DO 1050 1=1,12 
WRITE(12,790) I 
WRITE( 12,800) (PR(I,J),J= 1,1 0),(TTNS(I,J),J= 1,10) 
WRITE( 12,800) (PR(I,J),J= 11 ,20),(TTNS(I,J),J= 11,20)



1050 WRITE(1 2,810) (PR(I,J),J=21 ,25),(TTNS(I,J),J=21 ,25)	 L 6 
DO 1055 1=1,12 
WRITE(12,820) I 

1055 WRITE( 12,830) (RLENGTH(I,J),J= 1,1 6),(STIME(I,J),J= 1,16) 
WRITE( 12,840) 
WRITE( 12,850) 
DO 1060 1=1,12 

1060 WRITE(12,860) (I,CLS(I,1),CLS(I,2)) 
WRITE(12,870) MONTH,NDAY 

300 FORMAT(28X,'INPUT ECHO REPORT) 
641 FORMAT(//8X'INPUT FOR ARMA MODELS') 
650 FORMAT(2X'MODEL',3X,'P',5X,'Q',3X,'DELTA',1x,'s1[GMA', lx, 

X'NSAMP') 
660 FORMAT(4X11 ,5X11 ,5X11 ,2X,F6.3, 1X,F5 .3,16) 
670 FORMAT(' PHI S='(9F6.3)) 
680 FORMAT(' THETA S='(9F6.3)) 
690 FORMAT(/1 INTERVENTION WEIGHTS') 
700 FORMAT(5X,'HEIGHT,4X,'PERIOD') 
710 FORMAT(1X,2(3XF7.4)) 
720 FORMAT(//' TRANSFER FUNCTION MODEL INPUT) 
730 FORMAT(' NOISE P',2X,'NOISE Q',2X,'OUTPUT ORDER',2X, 

X'INPUT ORDER',2X,'INPUT BACKSHIFT',2X,'SIGMA',2X,'MIEAN') 
740 FORMAT(4X,11 ,8X,I1 ,12X,I1, 13X,I1 ,1 3X,I1 ,8X,F5.3, 1X,F5.3) 

750 FORMAT(' DELTA S='(2F6.3)) 
760 FORMAT(' OMEGA S='(3F6.3)) 
770 FORMAT(//' NO. OF TIME BETWEEN STORMS STORM LENGTHS 

FOR MONTH') 
780 FORMAT( 1 6X12, 1 6X12, 1 2X,I2) 

790 FORMAT(/f CDF CUTOFFS & TIME BETWEEN STORMS FOR 
MONTH',I3) 

800 FORMAT(1X(10F5.2)/1X(10F5.0)) 
810 FORMAT(1X(5F5.2)/1X(5F5.0)) 

820 FORMAT(/I" CDF CUTOFFS & STORM LENGTHS FOR MONTH',I3) 
830 FORMAT(1 X(1 6F4.2)/1 X(1 6F4.0)) 

840 FORMAT(/1 CDF CUTOFFS FOR STORM CLASS') 
850 FORMAT(1 MONTH',2X,'1',4X,'2') 
860 FORMAT(2X12,2X,(2F5.2)) 
870 FORMAT(/I STARTING MONTH IS',I3,1X,'AND DAY IS',I3) 

C PRINT STATE VARIABLES 
640 CONTINUE 

C *** CALL FIRST WEATHER EVENT 
CALL WEATHER 

C *** TBT CHOOSES TIME UNTIL FIRST STORM



STRM=TBT(N)	 ,L 7 
SLENGTH = 2 
LSTART = STRM 
WRITE(5,*)'STORM ',STRM 
WRITE(5,*)'LSTART ',LSTART 

RETURN 
END 

SUBROUTINE WEATHER 
C *** UPDATE WEATHER MODEL--WAVE PERIOD, WAVE HEIGHT, AND 
SHIP 
C HEAVE. ALSO UPDATE VARIOUS SUPPLY USAGE RATES. 
C ALSO UDATE DATE. 

COMMON/SCOM1/ TNEXT,TNOW,TAB(23) 
COMMON/UCOM1/ HEAVE,HEIGHT,RINIT(6),IP(3),JQ(3),PERJOD 

1 ,IV(3),WP(3),WH(3),WIND,COUNT,RLENGTH(1 2,1 6),SLENGTH,STIME( 
12,16) 

COMMONJUCOM3/ IPP,JQQ,KR,MS,NB 
COMMON/UCOM4/ 

MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 
1 NSTORMS( 1 2),MONTH,NHDAY,NDAY 

COMMONrFSERIESIDELTA(3),SIGMA(3),NSAMP(3), 
1 THETA(3 ,48),X(3 ,60),U(3 ,60),IOLD(3 ),JOLD(3 ),PHI(3 ,48) 

COMMON/TRFSERI/ 
KOLD,LOLD,MOLD,MAXA,MAXB,MAXC,A(5),B(5),C(4), 

1 SIG,RMIJ,TX(8),TY(4),TU(4),ADDON 
COMMON/STORMTM/LSTART,LSTOP,LSTRM,STRM 
DIMENSION IVECTOR(3,4) 

*** FIRST TIME THROUGH INITIALIZE VARIABLES: 
C HOLD: POINTS TO 'OLDEST'(J) INTERVENTION TERMS(IV) IN 
IVECTOR 
C IVECTOR(I,J):J TH INTERVENTION TERM FOR CLASS I STORM 

IF(TNOW.GT.O.) GO TO 1 
IIOLD=4 
DO 10 1=1,3 
DO 10 J=1,4 

10 IVECTOR(I,J)=O 
C *** IF NEW MONTH, MUST UPDATE NHDAY(# OF 1/2 DAYS) & 
MONTH 

1 IF(NHDAY.LT.61) GO TO 5 
NHDAY= 1



MONTH=MONTH+1	 £8 
LSTOP = SLENGTH + LSTART -61 
STRM = TBT(N) 
LSTART = STRM 
IF(MONTH.EQ. 13) MONTH=1 

C UPDATE ARMA(P,Q) WIND SPEED MODEL. 
5 WIND=ARMA(1,1) 

C REDRAW WIND IF< OR = 0.
IF(WIND.LT.0.) GO TO 5 
REPEAT=0. 

C *** EVALUATE WAVE PERIOD INTERVENTION MODEL 
35 PERIOD=ARMA( 1 ,2)+WP( 1) *IV( 1 )+WP(2) *IV(2)+Wp(3) *IV(3) 

C *** IF JUST REDRAWING PERIOD, DON'T UPDATE HEIGHT 
IF(REPEAT.EQ.1.0) GO TO 360 

C *** EVALUATE WAVE HEIGHT TRANSFER FUNCTION MODEL 
38 HEIGHT=TRANSFR( 1 )+WH( 1 )*IV( 1 )+WH(2)*IV(2)+WH(3)*Iv(3) 

C *** FIND PAST INTERVENTION TERMS BY GOING THROUGH IVECTOR 
ARRAY 
C START WITH MOST RECENT TO 'OLDEST 
C EFFECTS OF PAST INTERVENTION TERMS MUST BE ACCOUNTED 
FOR 
C WHEN UPDATING WEATHER PROCESSES WITH INTERVENTION 
TERMS 

360 DO 100 11=1,4 
I=MOD(IIOLD+II,4) 
IF(I.EQ.0) 1=4 

C IF JUST REDRAWING PERIOD, DON'T UPDATE PERIOD 
IF(REPEAT.EQ.1.0) GO TO 370 

C *** ADD TO HEIGHT IVECTOR*CORRESPONDING A ELEMENTS 
HEIGHT=HEIGHT+A(II)*(JVECT0R( 1 ,I)*WH( 1 )+I VECTOR(2,I) * 
XWH(2)+IVECTOR(3 ,I) *WH(3)) 

C *** IF JUST REDRAWING HEIGHT, DON'T UPDATE PERIOD 
IF(REPEAT.EQ.2.0) GO TO 100 

C *** DON'T INCLUDE VALUES PAST THOSE NECESSARY 
370 IF(II.GT.IP(1)) GO TO 100 

C *** SUBTRACT FROM PERIOD IVECTOR*CORRESPONDIING PHI 
ELEMENTS 

PERIOD=PERIODPHI(2,11)*(IVECTOR( 1 ,I)*WP( 1 )+I VECTOR(2,I) * 
XWP(2)+IVECTOR(3 ,I)*WP(3)) 

100 CONTINUE 
C IF PERIOD < OR = 0., REDRAW & INDICATE BY SE17ING 
C REPEAT 

IF(PERIOD.GT.0.) GO TO 385



REPEAT=1.	 9 

GO TO 35 
C *** IF HEIGHT < OR = 0., REDRAW HEIGHT & INDICATE BY 
C SETTING REPEAT VARIABLE 

385 IF(HEIGHT.GT.0.) GO TO 390 
REPEAT=2. 
GO TO 38 

C FOR EACH CLASS STORM PUT CURRENT INTERVENTION TERM 
C VALUE WHERE "OLDEST" ELEMENT HAD BEEN IN IVECTOR FOR 
C THAT CLASS STORM 

390 DO 200 1=1,3 
200 IVECTOR(I,IIOLD)=IV(I) 

C *** UPDATE HOLD, WHERE HOLD IS BETWEEN 1 & 4 
IIOLD=IIOLD- 1 
IF(IIOLD.EQ.0) IIOLD=4 

C DETERMINE DRILL SHIP'S HEAVE RESPONSE, THROUGH USE OF 
C BRETSCHNEIDER'S SPECTRUM. NUMERICALLY INTEGRATE HEAVE 
C SPECTRAL DENSITY BY TRAPEZOIDAL RULE. USE FUNCTION 
C ZETA TO EVALUATE HEAVE SPECTRAL DENSITY 
(BRETSCHNEIDER'S 
C SPECTRUM*RAO**2) AT ALL POSSIBLE FREQUENCIES 
C HEAVE IS SQUARE ROOT OF INTEGRAL OF HEAVE SPECTRAL 
DENSITY 

SUM=0. 
DO 40 1=1,22 
N=I 

FREQ=4. *3 . 14159/(1+13) 
ZET1 =ZETA(FREQ,N) 
F1=FREQ 
N=I+1 

FREQ=4. *3 14159/(1+14) 
40 SUM=SUM+(ZET11ZETA(FREQ,N))*(F1 -FREQ)/2. 

HEAVE=S QRT(SUM) 
C *** UPDATE NHDAY(# OF HALF DAYS) 

NHDAY=NHDAY+ 1 
RETURN 
END 

SUBROUTINE NDSTORM 
C *** END STORM AND SCHEDULE NEXT STORM 

COMMON/SCOM1/ TNEXT,TNOW,TAB(23) 
COMMONIUCOM1/ HEAVE,HEIGHT,RINIT(6),IP(3),JQ(3),PERIOD



io 

1 ,IV(3),WP(3 ),WH(3 ),WIND,COUNT,RLENGTH( 12,1 6),SLENGTH, STIME( 
12,16) 

COMM0N/IJCOM4/ 
MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 

1 NSTORMS( 1 2),MONTH,NHDAY,NDAY 
COMMON/TSERIES/ DELTA(3),SIGMA(3),NSAMP(3), 
1 THETA(3 ,48),X(3 ,60),U(3 ,60),IOLD(3),JOLD(3 ),PHI(3 ,48) 

COMMON/TRFSERIJKOLD,LOLD,MOLD,MAXA,MAXB,MAxC,A(5),B(5),C( 
4),

1 SIG,RMU,TX(8),TY(4),TU(4),ADDON 
COMMONIUCOM3/IPP,JQQ,KR,MS,NB 
COMMON/STORMTM/LSTART,LSTOP,LSTRM,STRM 

C *** TURN STORM OFF BY SETTING INTERVENTION TERMS,IV, TO 0. 
DO 10 1=1,3 

10 IV(I)=0. 
C *** FUNCTION TBT DETERMINES TIME UNTIL NEXT STORM 

STRM=TBT(N) 
LSTART = NHDAY + STRM 
RETURN 
END 

SUBROUTINE STORM 
C THIS SUBROUTINE STARTS STORMS, DETERMINES THEIR CLASS 
& 
C LENGTH FROM MONTHLY CUMULATIVE PDFS. CALLS S. 
NDSTORM TO END 
C STORM 

COMMON/SCOM1/ TNEXT,TNOW,TAB(23) 
COMMON/UCOM 1/ HEAVE,HEIGHT,RINIT(6)JP(3),JQ(3),pERIOD 

1 ,IV(3),WP(3),WH(3),WIND,COUNT,RLENGTH(12,1 6),SLENGTH,STIME( 
12,16) 

COMMONIUCOM4/ 
MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 

1 NSTORMS( 1 2),MONTH,NHDAY,NDAY 
COMMONIFSERIES/DELTA(3),SIGMA(3),NSAMP(3),THETA(3 ,48), 
1 X(3 ,60),U(3 ,60),IOLD(3),JOLD(3 ),PHI(3 ,48) 

COMMON/TRFSERIIKOLD,LOLD,MOLD,MAXA,MAXB,MAXC,A(5),B(5),c( 
4),



1 SIG,RMU,TX(8),TY(4),TU(4),ADDON 	 £ ii 
COMMONIUCOM3/IPP,JQQ,KR,MS ,NB 
COMMON/STORMTM/LSTART,LSTOP,LSTRM,STRM 

C *** CHOOSE PROB, A RANDOM NUMBER TO DETERMINE STORM 
CLASS FROM 
C CUMULATIVE PDF FOR MONTH 

PROB=UNTFORM(I) 
C *** IF PROB IS <= CLS(MONTH,1), THEN STORM IS CLASS 1, IF NOT, 
C CHECK IF CLASS 2 OR CLASS 3 STORM 

IF(PROB.GT.CLS(MONTH,1)) GO TO 10 
C SINCE STORM IS CLASS 1 SET CORRESPONDING INTERVENTION 
C TERM TO 1,IV(1),TO TURN STORM ON 

IV(1)=1 
GO TO 30 

C *** SEE IF STORM IS CLASS 2 
10 IF(PROB.GT.CLS(MONTH,2)) GO TO 20 

TURN CLASS 2 STORM ON 
IV(2)=l 

GO TO 30 
C *** IF STORM NOT CLASS 1 OR CLASS 2, MUST BE CLASS 3, SO TURN 
C CLASS 3 STORM ON 

20 IV(3)=1 
C *** CHOOSE PROB, A RANDOM NUMBER. 

30 PROB=UNIFORM(I) 
DO 40 I=1,NSTORMS(MONTH) 

C FIND WHERE PROB LANDS IN CUMULATIVE PDF FOR STORM 
LENGTH(RLENGTH) 
C FOR MONTH 
C *** STORM LENGTH(SLENGTH) IS CORRESPONDING ELEMENT IN 
STIME ARRAY 

IF(PROB.GT.RLENGTH(MONTH,I)) GO TO 40 
SLENGTH=STIME(MONTH,I) 
LSTOP = NHDAY + SLENGTH 
RETURN 

40 CONTINUE 
RETURN 
END 

SUBROUTINE FORCE 
C THIS ROUTINE CALCULATES THE NET ENVIRONMENTAL FORCE 
C ON THE PLATFORM AS THE SUM OF WAVE DRIFT FORCE, WIND 
C FORCE, AND CURRENT FORCE. ALL FORCES ARE ASSUMED TO



C CONCURRENT AND ACTING IN THE SAME DIRECTION TO GI\E2 
C A WORST CASE SCENARIO. THE NET PROPULSION REQUIRED 
C TO KEEP STATION IS THE NET FORCE VALUE IS EXPRESSED 
C AS A PERCENTAGE OF THE MAXIMUM AVAILABLE THRUST 
(120000 LBS). 

COMMON/FORS/FORWAV,FORWINFORCURFORNET,PROPUL,DR1FT 
COMMON/UCOM1/HEAVE,HEIGHT,RJNIT(6),ip(3 ),JQ(3),PERIOD 

1 ,IV(3),WP(3),WH(3),WIND,COTJNT,RLENGTH(1 2,1 6),SLENGTH,STIME( 
12,16) 

VC =1.5 
MAX = 120000.0 

FORWAV = FDRIFF(HEIGHT) 
FORCUR = FCURNT(VC) 
FORWIN = WINDFC(WIND) 

FORNET = FORWAV + FORCUR + FOR WIN 
PROPUL = FORNET/MAX 
IF (PROPUL.GT.1.0) DRIFT = 1.0 

RETURN 
END 

SUBROUTINE REPORT 
C THIS ROUTINE PRINTS THE CONDITIONS ENCOUNTERED AT THE 
PLATFORM 

COMMON/UCOM1/HEAVE,HEIGHT,RINIT(6),Jp(3),JQ(3),pERJOD 

1 ,IV(3),WP(3),WH(3),WIND,COUNT,RLENGTH(1 2,1 6),SLENGTH,STIME( 
12,16) 

COMMON/UCOM4/M5TORMS( 1 2),PR( 1 2,25),TTNS( I 2,25),CLS( 12,2) 
1 ,NSTORMS( 1 2),MONTH,NHDAY,NDAY 
COMMON/FORS/FORWAV,FORWIN,FORCUR,FORNET,PROPUL,DRIFT 
IF (NDAY.EQ.1) THEN 
WRITE(5,*)'MON DAY WINDSPEED WAVEHT WAVEPD HEAVE 

PROPUL DRIFT 
ENDIF 

WRITE( 12,1 0)MONTH,NDAY,WJND,HEIGHT,PERIOD,FIEAVE,PROPUL,DRI 
FT 
10 
FORMAT(1X,12,2X,12, 1 X,F9.6, 1 X,F6.3 1 X,F6.3, 1 X,F5.2, 1 X,F6.4, 1 X,F3. 1) 

RETURN 
END
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FUNCTION ZETA(FREQ,N) 	 ___ 
C DETERMINE VALUE OF INTEGRAL AT DIFFERENT FREQUENCIES, 
C WHERE INTEGRAL IS BRETSCHNEIDER'S FUNCTION*RAO**2 
C OR WAVE SPECTRAL DENSITY. 

COMMON/SCOM1/ TNEXT,TNOW,TAB(23) 
COMMON/UCOM1 I HEAVE,HEIGHT,RINIT(6),IP(3),JQ(3),pERI0D 

1 ,I V(3),WP(3),WH(3 ),WIND ,COUNT,RLENGTH( 12,1 6),SLENGTH, STIME( 
12,16) 

COMM0N/UCOM4/ 
MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 

1 NSTORMS (1 2),MONTH,NHDAY 
COMMONrFSERIES/DELTA(3),SIGMA(3),NSAMP(3),THETA(3 ,48), 
1 X(3 ,60),U(3 ,60),IOLD(3),JOLD(3 ),PHI(3 ,48) 

COMMONIFRFSERI[KOLD,LOLD,MOLD,MAXA,MAxB ,MAXC,A(5),B(5),C( 
4),

1 SIG,RMU,TX(8),TY(4) ,TU(4),ADDON 
COMMON/UCOM3JIPP,JQQ,KR,MS,NB 
POWER=- 1 050./((PERIOD* *4) *(FREQ* *4)) 

C *** CALCULATE WAVE SPECTRAL DENSITY, SPECDF 

SPECDF=4200. *(HEIGHT* *2)*E)(p(pO\y R)/((pERJoD * *4)*(FREQ * *5)) 

C TAB(N) IS RAO FOR GIVEN FREQUENCY, FREQ 
ZETA=SPECDF*(TAB(N)**2) 
RETURN 
END 

FUNCTION TBT(N) 
*** CALCULATE TIME UNTIL NEXT STORM, GIVEN MONTH 

COMMON/SCOM 1/ TNEXT,TNOW,TAB(23) 
COMMON/UCOM1/ HEAVE,HEIGHT,RINIT(6)JP(3),JQ(3),pERJQD 

1 ,IV(3),WP(3),WH(3),WIND,COUNT,RLENGTH( 12,1 6),SLENGTH,STIME( 
12,16) 

COMMON/UCOM4/ 
MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 

1 NSTORMS( 1 2),MONTH,NHDAY 
COMMON/TSERIES/DELTA(3),SIGMA(3),NSAMP(3),Ti{ETA(3,48),
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COMMONIFRFSERIIKOLD,LOLD,MOLD,MAXA,MAXB,MM(C,A(5),B(5),C( 
4),

1 SIG,RMU,TX(8),TY(4),TU(4),ADDON 
COMMON/UCOM3/IPP,JQQ,KR,MS,NB 

C *** CHOOSE PROB, A RANDOM NUMBER. 
PROB =UNTFORM(I) 
DO 10 I=1,MSTORMS(MONTH) 

C FIND WHERE PROB LANDS IN CUMULATIVE PDF(PR) FOR MONTH 
C TBT IS FOUND BY CORRESPONDING ELEMENT IN rrs ARRAY 

IF(PROB.GT.PR(MONTH,I)) GO TO 10 
TBT=TTNS(MONTH,I) 
WRITE(5 , *) 'PROB ',PROB 
WRITE(5,*)'PR(MONTH,I) ',PR(MONTH,I) 
WRITE(5,*)'TBT ',TBT 

RETURN 
10 CONTINUE 

RETURN 
END 

FUNCTION ARMA(IND,KS) 
C *** GENERATE ARMA (P,OJ MODELS 
C GENERATOR USES ARRAYS,X(SERIES) & U(WHITE NOISE SERIES), 
C TO ACCOUNT FOR DEPENDENT PAST VALUES. IOLD AND JOLD 
POINT TO 
C THE OLDEST ELEMENT IN EACH ARRAY. NEWEST ELEMENT IS 
ONE ELE-
C MENT OVER. 

COMMON/TSERIES/DELTA(3),SIGMA(3),NSAMp(3), 
1 THETA(3 ,48),X(3 ,60),U(3 ,60),IOLD(3 ),JOLD(3 ),PHI(3 ,48) 

COMMON/UCOM1/ HEAVE,HEIGHT,RINIT(6),IP(3),JQ(3),PERIOD 

1 ,IV(3),WP(3),WH(3),WJND,COUNT,RLENGTH(1 2,1 6),SLENGTH,STIME( 
12,16) 

COMMON/SCOM1 TTNEXT,TNOW,TAB(23) 

COMMON/TRFSERI/KOLD,LOLD,MOLD,MAXA,MAXB,MAXC,A(5),B(5),C( 
4),

1 SIG,RMU,TX(8),TY(4),TU(4),ADDON 

COMMON/UCOM4/MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2),



1NSTORMS( 12),MONTH,NHDAY	 A-

COMMON/UCOM3IIPP,JQQ,KR,MS,NB 
C FIRST TIME THROUGH (IND=0), INITILIZE VARIABLES. 
OTHERWISE, 
C GO TO 100 AND GENERATE SERIES. 

IF(IND.EQ.1) GO TO 100 
NIP=IP(KS) 

NJQ=JQ(KS) 
XMU = DELTA(KS) 
SUM = 1.0 

C *** CALCULATE MAXIMUM LAG, LMAX 
LMAX = MAXO(NIP,NJQ) 

C *** CALCULATE MEAN (XMU) OF SERIES 
IF (NIP .EQ. 0) GO TO 20 
DO 10 I=1,NIP 

10 SUM = SUM - PHI(KS,I) 
20 XMU = DELTA(KS)/SUM 

C *** INITIALIZE OLDEST ELEMENT POINTERS, IOLD & JOLD, FOR 
SERIES (X) 
C & WHITE NOISE SERIES (U) TO LAST ELEMENT IN EACH ARRAY 

IOLD(KS) = NIP 
JOLD(KS) = NJQ 
DO 30 LAG=1,LMAX 

C *** INITIALIZE WHITE NOISE SERIES TO MEAN (0.) 
U(KS,LAG) = 0.0 

C *** INITIALIZE SERIES (X,ARMA) TO MEAN (XMU) 
30 X(KS,LAG) = XMU 
35 ARMA = XMU 

RETURN 
C *** WHITE NOISE (UO) IS NORMAL(0.,SIGMA) 

100 UO = ORMAL(0.0,SIGMA) 
ARMA = DELTA(KS) + UO 

C IF ARMA NOT DEPENDENT ON PAST SERIES VALUES (X), DON'T 
C ADD THEM ON 
C *** ARMA DEPENDS ON WHITE NOISE PLUS DELTA TO BRING SERIES 
C UP TO MEAN 

IF (IP(KS) .EQ. 0) GO TO 150 
C *** GET PAST SERIES ELEMENTS (X) IN ORDER, FROM LAST TO 
C OLDEST 

DO 120 II=1,IP(KS) 
I = MOD(IOLD(KS)+II,IP(KS)) 
IF (I.EQ.0) I=IP(KS) 

C *** ADD TO ARMA PAST SERIES VALUES(X) TIMES PHI ARRAY



120 ARMA = ARMA + PHI(KS,ll)*X(KS,I) 	
C 

C *** IF ARMA NOT DEPENDENT ON PAST WHITE NOISE VALUES(U), 
C DON'T ADD THEM ON 

150 IF (JQ(KS) .EQ. 0) GO TO 500 
C *** GET PAST WHITE NOISE VARIABLES (U) FROM LAST PERIOD 
C TO OLDEST 

DO 170 JJ=1,JQ(KS) 
J = MOD(JOLD(KS)+JJ,JQ(KS)) 
IF (J.EQ.0) J=JQ(KS) 

C *** SUBTRACT PAST WHITE NOISE VARIABLES(U) TIMES THETA 
ARRAY 

170 ARMA = ARMA - THETA(KS,JJ)*U(KS,J) 
C IF ARMA IS DEPENDENT ON PAST SERIES VALUES (X), SAVE 
C ARMA WHERE OLDEST X ELEMENT IS. 

500 IF (IP(KS) .EQ. 0) GO TO 550 
X(KS,IOLD(KS)) = ARMA 

C *** UPDATE IOLD WHERE IOLD IS BETWEEN 1 AND P 
IOLD(KS) = IOLD(KS) - 1 
IF (IOLD(KS) .EQ. 0) IOLD(KS) = IP(KS) 

C *** IF ARMA NOT DEPENDENT ON PAST WHITE NOISE, DON'T 
UPDATE 
C U ARRAY 

550 IF (JQ(KS) .EQ. 0) RETURN 
C *** SAVE CURRENT WHITE NOISE (UO) WHERE OLDEST WHITE NOISE 
C HAD BEEN 

U(KS,JOLD(KS)) = UO 
C *** UPDATE JOLD 

JOLD(KS) = JOLD(KS) - 1 
IF (JOLD(KS) .EQ. 0) JOLD(KS) = JQ(KS) 
RETURN 
END 

FUNCTION TRANSFR(IND) 
C TRANSFR IS GENERATED TRANSFER FUNCTION VARIABLE. 
C TERM DEFINITIONS: 
C TY:PAST OUTPUT SERIES VALUES THAT CURRENT OUTPUT 
VALUE DEPENDS ON 
C TX:INPUT SERIES VALUS THAT CURRENT OUTPUT VALUE 
DEPENDS ON 
C TU:WHTTE NOISE SERIES VALUES THAT CURRENT OUPUT VALUE 
DEPENDS ON
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PARAMETERS. 
C PARAMETERS TY SERIES IS MULTIPLIED BY TO GENERATE 
TRANSFR. 
C LAST ELEMENT> 0.15 MAXA. 
C B:CALCULATED IN S. INTLC FROM TRANSFER FUNCTION 
PARAMETERS. 
C PARAMETERS TX SERIES IS MULTIPLIED BY TO GENERATE 
TRANSFR. 
C MAXB IS LAST ELEMENT> 0. 
C C:CALCULATED IN S. INTLC FROM TRANSFER FUNCTION 
PARAMETERS. 
C PARAMETERS TU SERIES IS MULTIPLIED BY TO GENERATE 
TRANSFR. 
C MAXC IS LAST ELEMENT> 0. 
C *** THIS FUNCTION SAVES DEPENDENT VALUES IN TY, TX, & TU 
ARRAYS 
C AND POINTS TO OLDEST ELEMENT WITH POINTERS. NEWEST 
C ELEMENT IS TO RIGHT OF OLDEST. 

COMMON/SCOM1/ TNEXT,TNOW,TAB(23) 
COMMONIUCOM1 I HEAVE,HEIGHT,RINIT(6),IP(3),JQ(3),PERIOD 

1 ,IV(3),WP(3),WH(3),WIND,COUNT,RLENGTH( 12,1 6),SLENGTH,STIME( 
12,16) 

COMMON/UCOM3/ IPP,JQQ,KR,MS,NB 
COMMON/TSERIESIDELTA(3),SIGMA(3),NSAMP(3), 
1 THETA(3 ,48),X(3 ,60),U(3 ,60),IOLD(3 ),JOLD(3 ),PHI(3 ,48) 

COMMON/TRFSERI/ 
KOLD,LOLD,MOLD,MAXA,MAXB ,MAXC,A(5),B (5),C(4), 

1 SIG,RMU,TX(8),TY(4),TIJ(4),ADDON 

COMMONIUCOM4/MSTORMS(1 2),PR(1 2,25),TTNS(1 2,25),CLS(1 2,2), 
1 NSTORMS( 1 2),MONTH,NHDAY 

C *** IF FIRST TIME THROUGH, INITIALIZE VARIABLES AND RETURN. 
C OTHERWISE, GO TO LINE 100 AND GENERATE TRANSFR. 

IF(IND.EQ.1) GO TO 100 
C INITIALIZE OLDEST ELEMENT POINTERS, KOLD, LOLD, & MOLD, 
C FOR OUTPUT ARRAY(TY), INPUT ARRAY (TX), & WHITE NOISE 
ARRAY (TU), 
C AT LAST ELEMENT OF EACH. 

KOLD=MAXA 
LOLD=NB+MAXB 
MOLD=MAXC



C IF TRANSFR NOT DEPENDENT ON PAST OUTPUT SERIES (T18 
C DON'T SAVE PAST OUTPUT VALUES 

IF(MAXA.EQ.0) GO TO 15 
C *** INITIALIZE OUTPUT SERIES (TY) AT MEAN (RMU) 

DO 10 II=1,MAXA 
10 TY(II)=RMU 

C CALCULATE MEAN (XMU) OF INPUT SERIES 
15 SUM=1.0 

IF(IP(1).EQ.0) GO TO 25 

DO 20 I=1,IP(1) 
20 SUM=SUM-PHI(1,I) 
25 XMU=DELTA( 1)/SUM 

C *** INITIALIZE INPUT ARRAY (TX) WITH MEAN (XMU) 
DO 30 II=1,MAXB 

30 TX(II+NB)=XMU 
C IF TRANSFR NOT DEPENDENT ON PAST WHITE NOISE 
VALUES(TU), 
C DON'T NEED TO SAVE PAST VALUES 

IF(MAXC.EQ.0) GO TO 50 
C INITIALIZE WHITE NOISE ARRAY(TU) TO MEAN (0.) 

DO 40 II=1,MAXC 
40 TU(II)=0. 

C INITIALIZE OUTPUT SERIES(TRANSFR AND HEIGHT) TO ITS 
MEAN(RMU) 

50 TRANSFR=RMU 
HEIGHT=RMU 
RETURN 

C IF TRANSFR NOT DEPENDENT ON PAST OUTPUT SERIES VALUES, 
C DON'T NEED TO UPDATA TY ARRAY 

100 IF(KR.EQ.0.AND.IPP.EQ.0) GO TO 110 
C *** REPLACE OLDEST TY VARIABLE WITH LAST OUTPUT SERIES 
VARIABLE 

TY(KOLD)=HEIGHT 
C *** UPDATE KOLD, WHERE KOLD IS BETWEEN 1 AND MAXA 

KOLD=KOLD- 1 
IF(KOLD.EQ.0) KOLD=MAXA 

C REPLACE OLDEST TX VARIABLE WITH CURRENT INPUT SERIES 
VARIABLE 

110 TX(LOLD)=WIND 
C *** UPDATE LOLD, WHERE LOLD IS BETWEEN 1 AND NB+MAXB 

LOLD=LOLD- 1 
IF(LOLD.EQ.0) LOLD=NB+MAXB 

C *** CURRENT WHITE NOISE IS NORMAL(0.,SIGMA)



UO=ORMAL(0.0,SIGMA) Z 19 
C TRANSFR IS WHITE NOISE(UO) PLUS ADDON(BRINGS TRANSFR 
C UP TO MEAN) 

TRANSFR=UO+ADDON 
C IF TRANSFER FUNCTION NOT DEPENDENT ON PAST OUTPUT 
SERIES 
C VARIABLES, TY, DON'T NEED PAST VALUES 

IF(MAXA.EQ.0) GO TO 200 
C FIND PAST OUTPUT SERIES VARIABLES, TY, STARTING FROM 
C LAST PERIOD TO OLDEST 

DO 120 II=1,MAXA 
1=MOD(KOLD+II,MAXA) 
IF(I.EQ.0) IMAXA 

C *** SUBTRACT FROM TRANSFR PAST OUTPUT SERIES VARIABLES, 
Ty, 
C TIMES CORRECT A TERMS 

TRANSFR=TRANSFRA(II)*TY(I) 
120 CONTINUE 

FIND INPUT SERIES TERMS, TX, STARTING WITH CURRENT TERM 
C AND GOING BACK TO OLDEST 

200 DO 220 JJ=1,MAXB 
J=MOD(LOLD+JJ-i-NB ,MAXB-i-NB) 
IF(J.EQ.0) J=MAXB+NB 

C ADD TO TRANSFR B TERMS TIMES CORRECT TX TERMS 
220 TRANSFR=TRANSFR+B(JJ)*Tx(J) 

C IF OUTPUT SERIES NOT DEPENDENT ON PAST WHITE NOISE 
VAR!-
C ABLES, DON'T ADD ON PAST TU TERMS 

IF(MAXC.EQ.0) GO TO 550 
C *** FIND NEEDED PAST TU VARIABLES, STARTING WITH LAST TU, 
C THEN ONE BEFORE LAST, UNTIL REACH OLDEST 

DO 320 KK=1,MAXC 
K=MOD(MOLD+KK,MAXC) 
IF(K.EQ.0) K=MAXC 

C *** ADD TU TERM TIMES CORRESONDING C ELEMENT TO TRANSFR 
320 TRANSFR=TRANSFR+C(KK)*m(K) 

C IF TRANSFER FUNCTION NOT DEPENDENT ON PAST WHITE 
NOISE, DON'T 
C UPDATE TU ARRAY 

550 IF(MAXC.EQ.0) RETURN 
C *** PUT UO(WHITE NOISE) WHERE OLDEST TU(WHITE NOISE) SERIES 
HAD BEEN 

TU(MOLD)=UO



C UPDATE MOLD, WHERE MOLD MUST BE BETWEEN 1 AND MA 
MOLD =MOLD- 1 
IF(MOLD.EQ.0) MOLD=MAXC 
RETURN 
END 

FUNCTION UNIFORM(N) 
C *** THIS FUNCTION GENERATES A UNIFORMLY DISTRIBUTED 
C PSEUDORANDOM NUMBER BETWEEN 0 AND 1 FROM THE 
C HBONACCI SEQUENCE. EVERY SECOND TERM IS USED TO 
C MAKE THE NUMBERS APPEAR MORE RANDOM. 

COMMON/BRY/ ROLD,RNEW,TEMP 
DO 10 I = 1,2 

TEMP = RNEW 
RNEW = RNEW + ROLD 
ROLD = TEMP 
IF (RNEW.GE.1.0) THEN 

RNEW = RNEW - 1.0 
ENDIF 

10 CONTINUE 
UNIFORM = RNEW 
RETURN 
END 

FUNCTION ORMAL(MEAN,VAR) 
C *** THIS FUNCTION GENERATES A NORMALLY DISTRIBUTED 
C PSEUDORANDOM NUMBER FROM A NORMAL DISTRIBUTION 
C WITH MEAN "MEAN" AND VARIANCE "VAR" BY ADDING 
C 12 UNIFORMLY DISTRIBUTED RANDOM NUMBERS BETWEEN 
C 0 AND 1 AND SUBTRACTING 6. 

REAL MEAN,VAR,DEV,TEMP 
TEMP = 0.0 

DEV = SQRT( VAR) 
DO 10 I = 1,12 

TEMP = TEMP + UNIFORM(N) 
10 CONTINUE 

TEMP = TEMP - 6.0 
ORMAL = MEAN + (TEMP*DEV) 
RETURN 
END



FUNCTION WINDFC(VW)	 J 21 

C THIS FUNCTION CALCULATES THE WIN]) FORCE ON THE 
PLATFORM 
C ASSUMING A 60 FOOT DRAFT AND A 0 DEGREE HEADING. 

REAL VW,DW,CSCHA,CW 
C VW IS THE VELOCITY OF THE WIND IN KNOTS 
C DW IS THE DIRECTION OF THE WIND IN RADIANS(0=NORTH) 
C CSCHA IS THE PRODUCT OF THE SHAPE COEFFICIENT, THE 
C HEIGHT COEFFICIENT, AND THE PROJECTED AREA IN SQUARE 
C FEET. 
C CW IS 0.0034 LB(FT**2)(KT**2) 

CW = 0.0034 
CSCHA = 19738.0 

FORCE = CW * CSCHA * (\I\V**2) 
WINDFC = FORCE 
RETURN 
END 

FUNCTION FDRIFT(WAVEHT) 
C THIS FUNCTION READS WAVE DRIFT FORCE FROM AN ARRAY 
C BASED ON SEA STATE (SIGNIFICANT WAVE HEIGHT). 

REAL WAVEHT 
IF (WAVEHT.LE.2.9) THEN 

FDRIFT = 0.0 
ELSE IF (WAVEHT.LE.4.6) THEN 

FDRIFT = 5000.0 
ELSE IF (WAVEHT.LE.8.0) THEN 

FDRIFT = 17500.0 
ELSE IF (WAVEHT.LE.12.0) THEN 

FDRIFT = 25500.0 
ELSE IF (WAVEHT.LE.18.0) THEN 

FDRIFT = 41500.0 
ELSE IF (WAVEHT.LE.28.0) THEN 

FDRIFT = 58000.0 
ELSE

FDRIFT = 73000.0 
ENDIF 
RETURN 
END 

FUNCTION FCURNT(VC)



: 

C *** THIS FUNCTION CALCULATES THE FORCE ON THE PLATFOPJ?2 
C DUE TO OCEAN CURRENTSFROM THE FORMULA 
C CSS(CD*AC + CD*AP)VCA2 
C USING API RECOMMENDED DRAG COEFFICIENTS, THE CURRENT 
C FORCE IN LBS WAS DETERMINED BY BROWN & ROOT U.S.A.,INC. 
C TO BE 20077*VCA2 

REAL VC 
FCURNT = 20077.0 * VC**2 

RETURN 
END
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USER'S GUIDE 

The purpose of this guide is to help the user to operate the 

program. Access to the program, execution of the program, input, 

and output will be explained. 

The program is located on the UT/Austin CDC Cyber system in 

account MEDC532. A backup is located in AGL account MEIE003. The 

program is saved under the name STATION. 

To run the program on the Cyber, it must be read into a local 

file while under the TAURUS operating system. From the "period" 

prompt, type

READ STATION <Cr> 

Next, the input files must be copied. There are three input files: 

ARINPUT, TABLE, and INITIAL. ARINPUT contains ARMA model 

parameters, TABLE contains platform RAO's, and INITIAL contains 

initial	 condition	 values.	 These	 files must be	 copied	 to TAPE10,

TAPE9, and TAPE8. From the "period" prompt, type 

READ ARINPUT = TAPE10 <er> 

READ TABLE = TAPE9 <Cr> 

READ INITIAL = TAPE8 <Cr> 

Now, the program must be compiled using the Minnesota 

FORTRAN compiler. To compile the program, the edit buffer must be 

expanded using the RFL command, and all files must be rewound. A 



slash must be typed at the end of the RFL command to delay the 

execution of this command until the next executable command is 

entered.	 From the "period" prompt, type 

REWALLX 

RFL, 100000/ <Cr> 

MNF, I=STATION <cr> 

All that remains is to run the program.	 From the "period"

prompt, type

LGO <cr> 

The simulation results will be in file OUTPUT, along with a 

listing of the compiled program. To view the results, from the 

"period" prompt, type

SHOW OUTPUT 

A sample output is contained in Appendix B.
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SWHCALMDATA	 Wed, Apr 4, 1990 15:39 

SWH(rn) FREQ% CUM% 

1	 0.200 7.792 7.800 
2	 0.400 20.130 27.900 
3	 0.600 16.234 44.200 
4	 0.800 14.286 58.400 
5	 1.000 9.740 68.200 
6	 1.200 9.091 77.300 
7	 1.400 9.091 86.400 
3	 1.600 10.390 96.800 
9	 1.800 2.597 99.400 

10	 2.000 0.649 100.000
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WNDCALMDATA	 Wed, Apr 4, 1990 15:42 

WNDSP(m/s) FREO% CUM% 

1	 1.000 0.694 0.700 
2	 2.000 4.167 4.900 
3	 3.000 3.472 8.300 
4	 4.000 6.250 14.600 
5	 5.000 20.139 34.700 
6	 6.000 19.444 54.200 
7	 7.000 25.000 79.200 
8	 8.000 16.667 95.800 
9	 9.000 3.472 99.300 
0	 10.000 0.694 100.000
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STRM1SWHDATA	 Wed, Apr 4, 1990 15:36 

SWHrn) F1REQ% CUM% 

1 0.500 0.204 0.200 

2 0.600 0.000 0.200 

3 0.700 0.088 0.300 

4 0.800 0.292 0.600 

5 0.900 0.563 1.100 

6 1.000 1.965 3.100 
7 1.100 3.174 6.300 

8 1.200 5.302 11.600 

9 1.300 8.342 19.900 

10 1.400 13.020 32.900 

11 1.500 14.934 47.900 

12 1.600 8.515 56.400 

13 1.700 15.371 71.800 
14 1.800 13.307 85.100 

15 1.900 7.127 92.200 
16 2.000 1.980 94.200 

1 7 2.100 1.702 95.900 

18 2.200 1.318 97.200 

19 2.300 1.157 98.400 

20 2.400 0.713 99.100 

21 2.500 0.348 99.400 

22 2.600 0.260 99.700 

23 2.700 0.000 99.700 

24 2.800 0.130 99.800 

25 2.900 0.000 99.800 

26 3.000 0.093 99.900 

27 3.100 0.093 100.000 

28 3.200 0.000 100.000 

29 3.300 0.000 100.000
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SIRMIWNODATA	 Wed, Apr 4, 1990 15:33 

WNDSP(m,) FREQ%	 CUM% 

1-5 8.000 8.000 
6-10 46.800 54.700 

11-15 4.900 59.600 
16-20 1.500 61.100 
21-25 1.900 63.000 
26-30 2.900 65.900 

30- 34.100 100.000
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STRM2SWHDATA	 Wed. Apr 4, 1990 15:27 

S\M-l() FPEQ% CUM% 

1	 1.600 2.200 2.200 
2	 1.700 3.600 5.800 
3	 1.800 10.100 15.900 
4	 1.900 12.700 28.600 
5	 2.000 7.700 36.300 
6	 2.100 7.000 43.300 
7	 2.200 4.900 48.200 
8	 2.300 9.800 58.000 
9	 2.400 7.400 65.400 

10	 2.500 6.200 71.600 
11	 2.600 8.000 79.600 
12	 2.700 3.500 83.100 
1 3	 2.800 5.100 88.200 
14	 2.900 3.400 91.600 
15	 3.000 1.700 93.300 
16	 3.100 2.200 95.500 
17	 3.200 1.800 97.300 
18	 3.300 2.700 100.000
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STRM2WNDDATA	 Wed, Apr 4, 1990 15:30 

WNDSm/j) FREQ%	 CUM% 

1-5 0.000 0.000 
6-10 47.600 47.600 

11-15 27.400 75.000 
16-20 0.000 75.000 
21-25 0.000 75.000 
26-30 0.000 75.000 

30- 25.000 100.000
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APPENDIX J: GLOSSARY 

Altimeter - measures distance between the satellite and the ground 
by measuring the time for a radar pulse to travel to the ground 
and back to the satellite. 

AR - "autoregressive" time series forecasting technique that assigns 
weight to previous terms in the time series. 

ARMA - "autoregressive moving average" combination of AR and MA 
models. 

AVHRR - Advanced Very High Resolution Radiometer 

Box - Jenkins - time series forecasting technique, often using ARMA 
models. 

Eddy - large area of rotating water created by the passing of the 
Loop Current. 

Fibonacci Sequence - numerical sequence in which each value is the 
sum of the previous two values. 

GEOSAT - geological satellite launched in 1986 and was shut down in 
January 1990. 

Heave - vertical motion of a ship in response to waves. 

Loop Current - current which moves warm equatorial waters into the 
Gulf of Mexico west of Cuba and out between Cuba and Florida. 

MA - "moving average" time series forecasting technique that assigns 
weight to current and previous random inputs. 

Macroscopic Sea Height - level of the ocean surface relative to a fixed 
reference such as the center of the earth. 

NASA - National Aeronautics and Space Administration. 

NOAA - National Oceanic and Atmospheric Administration.



Radiometer - measures the radiant energy emitted by the earth's 
surface. 

RAO - response amplitude operator, ships heave response to waves 
in distance of heave per unit wave height (ft/ft). 

Significant Wave Height - distance from trough to peak of a wave. 

SLAM - a dedicated simulation language which includes many 
helpful time keeping features. 

Station Keeping - operations necessary to keep a dynamically 
positioned vessel stationary in the ocean conditions 
encountered. 

USRA - University Space Research Association.
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