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Abstract

e

Ip order to be cost_effectlve, space structures must be extremely

light=welght, and subsequently, very flexible structures. The power

system for Space Station Freedom is such a structure. Each array

consists of a deployable truss mast and a split "blanket _ of photo-

voltaic solar collectors. The solar arrays are deployed in orbit, and

the blanket is stretched into position as the mast is extended.

Geometric stiffness due to the preload make this an interesting non-

linear problem.

The space station will be subjected to various dynamic loads,

during shuttle docking, solar tracking, attitude adjustment, etc.

Accurate prediction of the natural frequencies and mode shapes of the

space station components, including the solar arrays, is critical for

determining the structural adequacy of the components, and for

designing a dynamic controls system.

1_vi_J_a_aperchronlcles the process used in developing and

verifyin_ the finite elemen_ dynamic model of the photo-voltaic

arrays." Various problems were identlfled,_n the investigation, such

as grounding effects due to geometric stiffness, large displacement

ef_ts, and pseudo-stiffness (grounding) due to lack of required

• Igldbody modes. _r-!ous _nalysis techniques, such as development of
rigorous solutions using co_tlnuum mechanics, finite element solution

sequence altering, equivalent systems using a curvature basis, Craig-

Bampton superelement approach, and modal ordering schemes were

utilized. Thls,--paper emphasizes the grounding problems associated

with the geometric stlffness_ _ _ _,___
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differential operator with respect to position

differential operator with respect to time

modulus of elasticity

axial strain

input force vector at the beginning of a step

applied transverse force

factor defined by Eq. (14)
moment of inertia

stiffness matrix
elastic stiffness matrix

geometric stiffness matrix

length

moment

change in moment

mass per unit length

axial force

pseudo-force necessary for equilibrium

force vector, output force vector at the end of a step

kinetic energy

displacements at the node points

longitudinal displacement

strain energy due to axial load

strain energy due to bending

transverse displacement

shear

change in shear

potential of thc external loads

change in volume

natural frequency

axis defined by Figure I

axis defined by Figure I

1/2 the angle of rotation

factor defined by Eq.(11)

factor defined by Eq.(12)

angle of rotation

stress

Introduction

NASA's Space Station Freedom consists of various modules

supported by a space truss. Power for the space station will be

provided by a deployable system of split blanket photo-voltaic arrays,
which will have two degree of freedom rotational capabilities in order

to track the sun during its orbit. The arrays are designed to be

operated in a zero-gravity environment.

NASA Lewis Research Center, along with its contractors, have the

responsibility for developing a verified finite element dynamics model

of the solar arrays, which could be combined with the other space

station substructures for both structural and dynamic control studies.

The development of the model necessitated the use of unique

procedures, and rigorous analytical checks.

The procedure Included the fo]l(,_,._ng:



I ° Development of an idealized model of the solar arrays, and

derivation of a unique solution for the response frequencies for

the idealized array cantilevered from the space truss, using

equations developed from continuum mechanlcs.[1]

2 . Comparison of the frequencies from the MSC/NASTRAN finite element

dynamic model of the idealized array with the rigorous solution

from continuum mechanics.[2]

3. Refinement of the finite element mesh.

4. Rigid body mode checks of the finite element models.

• Various parameter studies involving the amount of tension in the

blanket, rigidity of the blanket tip beam, type of elements used,
etc..

6. Cralg-Bampton approach for appending rigid body modes to

substructures (superelements) [3].

7. Modal ordering schemes for identifying "important" modes.

8 . Study of grounding effects due to lack of rigid body mode

capabilltles.[4]

k detailed summary of the project was presented [5].

noted that this study is ongoing at the present time.

It should be

This paper will be restricted to the grounding problems

with the geometric stiffness due to blanket pre-load.

associated

Grounding

The space station solar arrays were modeled utilizing

MSC/NASTRAN. As a routine check, the stiffness matrices generated by

the model were multiplied by a matrix of rigid body modes, and large

pseudo-forces were developed (grounding). The cause of this

"grounding" phenomenum was examined.

Finite element solves non-linear problems of the form

liKe] + [Kg]] * (u) = {R) - (F}

where [Ke] is the elastic stiffness matrix, and [Kg] is the geometric,

or initial stress stiffness matrix.

[Kg] is a function of the pre-load. Thus, it equals zero for a

linear problem• [Ke] possesses the required rigid body modes•

However, [Kg] lacks the capacity for rigid body rotation. Hence, an

erroneous stiffening, or "grounding", occurs when a pre-loaded beam

deforms•



The traditional, or consistent

developed by Martin [6] and others, is

geometric stiffness matrix,

Kg = P
6/5L 1/10 -6/5L 1/10 1

1/10 2L/15 -I/10 -L/30

-6/5L -1/I0 6/5L -I/11/10 -L/30 -1/10 2L/1

This matrix does not possess rigid body rotation capabilities.

Various refinements to the geometric stiffness have been developed

which contain higher order terms [6,7,8] However, none of these

possess all the rigid body modes. Bosela [4] developed a modified

[K£] with complete rigid body modes when used with an exact rigid body

rotation matrix, but [Kg] lost some of its rigid body capabilities.

Closer examination of the traditional formulation of [Kg]

indicated that there is a load Imbalance in the representation, and

that pseudo-forces occur to maintain equilibrium. (Fig. 1)

P

P .-
J • P

L/2(I-C )
P .

I
p,

L/2S xIN(2_)

Fig 1. P' Represents Pseudo-forces Required for Equilibrium

In Reference [9], Collar and Simpson Indicate that the lack of

rigid body rotation capabilities for [Kg] is not a problem, because
the energy representation is correct It can be shown that it is

• 4
correct to _z terms, but error does occur, as a function of _ . For

large rigid body rotation, as will occur with the solar arrays, this

is significant.

It should be noted that as long as the pre-load P is assumed to

remain horizontal during rotation, work will be done by the force.

Thus, true rigid body rotation cannot occur. In order for the strain

energy to equal zero, the force P must change its orientation as the

beam rotates ( ie. a follower force).

Rigorous Solution Of Pre-Loaded Beam

Suppose we have an axially loaded beam in space subjected to

time varying transverse loading (Figure 2).
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Figure 2 Beam in Tension and Differentia] Element
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The kinetic energy is

T =

L

I m (v')'
dx

2

0

(I)

The strain energy due to bending is

U B --
I E I

-- (v") 2 dx
2

(2)

The strain energy due to axial load is

1[UA= -- o e

2j

dVol
a

Letting dVol = dA dx and applying non-linear elasticity yields

(3)

CA = -- (du/dx) = + du/dx(dv/dx} z + 1/4(dv/dx) 4 dx
2

Neglecting axial displacement and higher order terms yields

(4)



U A

L

!'!!- (v')' dx

2

0

The potential of the external loads is

(5)

I F(x,t)
v dx + V o v(O,t) + M 0 v'(O,t)

- V L v(L,t) - M L v'(L,t)

(s)

Applying Hamilton's principle, and performing the variation, yields

t 2 L

IEIt lEIv"6(v")÷Pv'6(v')-mv6(v)-F(x,tl6(vl dx

t 1 0 +Vo6V(O,t)+Mo6V ' (O,t)-VL6V(L,t)-ML6V' (L,t)]dt = 0
J

Integrating by parts yields the differential equation

(7)

d'/dx'(EId'v/dx') - P d'v/dx' + m d'v/dt 2 = F(x,t) , (s)

which agrees with Clough in reference [I0], after a sign change

required to express the axial force in tension instead of compression.

This is also in agreement with Shaker in Reference [11].

For a beam in space, the moment and shear at the end points must

equal zero. Thus, the boundary conditions are

Elv"(0,t)=Elv"(L,t)=v'"(O,t)-P v'(0,t)=v'"(L,t)-P v'(L,t)=0

EI El

(9)

Choose a solution of the form

v(x) = DlSln(Sx) + D2cos(Sx) + D3slnh(6x) + D4cosh(6x)

1/2

[4 I/2_g, ]
where 5 = (a +g4/4) /2

E

(a4+g4/4) 112+gi12]

1/2

(lO)

(11)

(12)
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a4 = mw2/EI

gZ = P/EI

(13)

(14)

Applying the boundary conditions at x=0, and after much

manipulation, yields

Applying the boundary conditions at x=L, and after more

manipulations, yields

mathematical

(15)

mathematlca]

D3153coshEL - 53cosSLi + D4[E3sinbL + 63sinhEL]
(16)

Expressing Eq.(15) and Eq.(16) into matrix form,

determinant equal to zero, and after more mathematical

the following characteristic equation is obtained

setting the
manipulations,

±2a6(coshELcosbL-1) + (E6-b6)sinhELslnSL = 0 (17)

Using Eq.(13), this can be expressed as

±w3(m/EI)3/2(coshELcos5L-1) + (E6-56)sinhELsln5L = 0 (18)

By observation, when w=O, a=O, and 5=0.

3 3/2
w (m/El) (coshELcosbL-J) = O

Letting sln(O)=O yields

(19)

3
The w term indicates that there must be three zero roots of

"w", which suggests the three required rigid body modes.

Concluslon

Lack of complete rigid body mode capabilitles is inherent in the

physical representation of the pre-tensloned beam problem currently

used to formulate the geometric stiffness matrix. This lack of

complete rigid body mode capabilities invalidates the rigid body mode

check for non-linear problems, and adversely impacts the use of

7



traditional finite element techniques to predict dynamic response of

pre-loaded structures unless the missing rigid body modes are somehow

apppended on to the structure, such as by the Craig-Bampton technique.

The rigorous solution of the axially-loaded beam with free/free

boundary conditions developed in this paper may lend itself to the

development of a new geometric stiffness matrix for a beam element

with full rigid body capabilities.
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