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INTRODUCTION:

Qne goal of this project is to design a regolith container to be
used as a fundamental building block in radiation protection of a
habitable lunar base. Parameters for the container are its:_size, shape,
material, and structural design. The other goal is to de_51gn7a machine
to fill the regolith container which is capable of grasping and opening

an empty container, filling it, closing it when full, and depositing it on

the surface of the moon. A

The most important constraint on the system was the total cost
to be shipped to the moon. The cost of the entire operation is mainly
due to the weight of the material being shipped. Obviously, the
weight of the machine and the weight of the bags must be
minimized. However, there are several other key factors to consider.
The “brain” and moving parts of the machine must be protected and
distanced from the loose soil. The time it takes to fill all of the bags
should not exceed one daylight cycle on the moon, which is fourteen
days. All materials must maintain its required properties between
temperatures of -260 and 260 degrees F. The rocks on the moon are
razor sharp because there is almost no atmosphere to erode the
corners. The bags must be made extra strong to prevent puncture or
tear and must survive beta and UV radiation. (Gamma radiation 1is
almost identical to that on earth, so it is ignored). The closing
mechanism in the bags must not fail when the bag is being deposited

or lifted by another machine.

it
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DESIGN STRATEGY

Originally focusing on the problem of creating a large number of bags
filled with regolith, this problem was broken down into two district tasks:
designing the bag and the fabric itself, and designing a mechanism to fill the
bags with regolith, seal the tops, and drop the bags off for future placement
onto the lunar habitat.

Each subteam developed a series of design criteria to evaluate the
proposed designs and narrow the options to one combined choice.

In this report, the alternatives considered for each part of the design
will be discussed. The design of the Lunar Regolith Bagging System will

then be presented.
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I. Material Alternatives

The material or fabric desired for application in space must be suitable
for the space/lunar environment. These constraints include:

* The material must be either resistant to or transparent to electron
(B) radiation, which is the predominantly degrading type of lunar radiation.

* The material must be resistant to vacuum ultraviolet (UV) radiation.

* The material must have a service temperature range that
corresponds with lunar temperatures (-250 F to 250 F).

*  The material must be able to withstand extreme temperature
swings, such as those experienced on the moon without melting or becoming
brittle.

*  The material must be cut- and puncture-resistant since razor sharp
rocks will be bagged and the bags may be pulled across the lunar surface,
which could puncture or tear the material.

*  The fabric must be lightweight in order'to minimize the overall
weight transported in the earth-to-moon shuttle craft.

*  The price per yard of the material, although not critical 1in
comparison with the price of transportation, is important in calculating the
entire cost of the project since the fabric is high performance in nature and

a large number of bags will be constructed.

In determining a suitable material for this design, both organic and
inorganic materials were considered. The organic material included PBI in a
50/50 blend with p-aramid, Nomex, Teflon TFE, Spectra 900, and Kevlar

149. Inorganic materials that were considered include fiberglass, Nextel



ceramic, and a general category of metals. Paper forms were also
considered in which Nomex (organic) and Nextel (inorganic) were included.

Among the organic materials, Hoechst Celanese polybenzimidazole
(PBI) 7.5 oz/sq. yard fabric was considered because it is a high performance
fiber with a unique combination of properties. PBI, when combined in a
50/50 blend (PBI/p-aramid), offers the best combination of temperature
resistance, puncture resistance and tensile strength. PBI has good high
temperature dimensional stability and is will not melt, drip, or become
brittle, which suggests that it has the high temperature requirements
needed (Hoechst Celanese Corporation, 1989). However, no information was
available giving the low temperatures that the material can withstand.
Finally, PBI was not chosen because specific information stating whether 1t
is resistant to or transparent to either ultraviolet or electron radiation is not
available.

Nomex, produced by DuPont, was considered because of its excellent
range of temperature stability and its resistance to cutting (DuPont, 1978).
Nomex was not chosen, however, because of the lack of available
information on its specific tensile strength. According to Dr. Bill Percival of
DuPont, the Nomex would degrade upon contact with electron ( B) radiation.

Spectra 900, which is produced by Allied-Signal Corporation, was
considered. The Spectra was rejected due to the lack of information
available on its resistance to or transparency to electron radiation (Bill
Burton of Allied-Signal, 1990).

DuPont produced Teflon TFE fluoropolymer was considered since its
service temperatures were within the range needed for this application
(DuPont, 1968, 1989). However, the Teflon TFE was not cut resistant when

tested in the physical testing laboratory of the School of Textile and Fiber



Engineering at Georgia Tech (Appendix A). Additionally, Teflon TFE would
degrade rapidly when exposed to electron radiation according to Dr. Bill
Percival of DuPont.

Kevlar 149, also from DuPont, offered high strength, high toughness,
high wear resistance, low density, and high temperature stability. Kevlar
149 does not melt or soften, has good dimensional stability and offers a long
product life (DuPont, 1989). Dr. Paul Riewald of DuPont Industrial
Applications Research has completed studies (Appendix B) confirming that
Kevlar will not degrade under constant UV exposure in the absence of
oxygen. For the general purpose of this project, according to Professor J. w.
Brazell of the Mechanical Engineering Department at Georgia Tech, the
conditions on the moon resemble a "near complete” vacuum. Dr. Riewald
further stated that Kevlar is transparent to electron radiation.

Among the inorganic materials under consideration, fiberglass fabric
was initially considered because it is resistant to vacuum UV radiation and
transparent to electron radiation according to Dr. John L. Lundberg of the
School of Textile and Fiber Engineering at Georgia Tech. The service
temperatures specified for the fiberglass cover the range required for lunar
applications according to information obtained from the Clark Schwebel
Fiber Glass Corporation. The fiberglass was rejected, however, because its
level of cut resistance was less than that determined necessary (Appendix
A).

3M brand High Performance Nextel 312 ceramic material was
considered because it offered a long product life, very high temperature
stability, resistance to vacuum ultra violet radiation as well as resistance to
electron radiation (3M, 1988). The cut resistance of the Nextel fabric was

poor, however, causing the Nextel to be rejected (Appendix A).



A general category of metals were considered, were ruled out because

of the greater density of the metals in comparison to the Kevlar 149.

A coating (film) or resin was considered in order to give protection
from radiation and cutting or puncture to the fabric. Only organic films and
resins were considered as there are not inorganic films or resins.

Teflon FEP - fluoropolymer, made by DuPont, does not melt and is
good for unspecified high temperatures, according to available literature.
The FEP is not cut resistant, nor is it resistant or transparent to electron (B)
radiation.

Teflon PFA is also made by DuPont. The PFA service temperature is
good for the lunar application. However, it is not cut resistant, nor 1is it
resistant or transparent to either electron or vacuum ultraviolet radiation.

Tefzel fluoropolymer has a service temperature range that is also good
for the lunar application, but like the Teflon PFA, it is not resistant or
transparent to vacuum ultraviolet or electron radiation (DuPont, 1988). It 1s
not cut resistant either.

A coating (film) or resin was not chosen due to inadequate information
currently available.  Information provided by Dr. Paul Riewald, senior
research associate at DuPont (Appendix B), did not specify a particular type
of film or resin that would be applicable as a protective coating for this
design. More research must be conducted in this area before a

recommendation may be made.



II. Fabric Structure Alternatives

The fabric structures considered were knit, woven, and
paper/nonwoven.

A knit fabric is relatively lightweight, but it was not deemed
appropriate for rough usage applications such as the lunar bag design. Upon
stretching, the a knitted structure may become porous, allowing more than
the acceptable amount of regolith to leak out. In the event that ripping or
tearing should occur, the knitted fabric would " continue to ravel
catastrophically.

Nonwovens and papers were deemed inappropriate as well, primarily
because very little experimental performance data is available for these
structures. The nonwoven structures of Nomex and Nextel have high tensile
strength, sufficient service temperatures, and long service lives (up to 10
years or more). The nonwoven structures made of high performance Nomex
fibers are significantly more expensive than the knitted or woven
structures, according to the Nomex marketing department at DuPont. Nomex
paper was not chosen because it is not resistant to either vacuum ultraviolet
or electron radiation. Nextel paper was not chosen because it has poor
resistance to puncture and only fair resistance to cuts.

A woven structure was considered and chosen because it had the least
stretch capability and the least porosity. Also, a weave can be designed to

prevent propagation of rips throughout the rest of the fabric.

There are many types of weave structures that are used in high
performance products, including the twill, the satin, the plain, and the rip-
stop weaves. In choosing a weave structure suitable for the lunar bag

design, the most important consideration was the ability of the weave



structure to prevent the propagation of rips or tears. By reducing the size
that a rip or tear may become, the severity of the rip is reduced, and the
leakage due to the rip may be kept to a minimum.

The twill weave produces the structure shown in Figure 1la, and is
commonly used in the manufacture of denim in the apparel industry. The
twill weave does not have the capability to prevent the propagation of rips
from destroying a fabric, so the twill weave was rejected.

A plain weave, shown in Figure 1b, was considered because of its
widespread use in high performance applications, such as fire-proof
garments, cut-proof chaps for use. with chain saws, bullet-proof vests and
helmets (DuPont, 1989). The plain weave does not have the capability to
prevent rip propagation either, and was rejected.

The satin weave, shown in Figure 1lc, has less dimensional stability
than either the plain or the twill weave. The satin weave can be constructed
to obtain a specific amount of drape, which is why it is often used for formal
dress fabrics (Joseph, 1986, 225). The satin weave also does not have the
ability to prevent rip propagation and was rejected because of this.

The rip-stop weave, shown in Figure 1d, is commonly used in
applications where the prevention of rip propagation is desired, and
sometimes critical. The rip-stop weave is found in parachutes where
propagating rips mean death. The rip-stop weave was chosen as the desired

weave structure for the regolith bag design.
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III. Bag Shape Alternatives

In designing the shape of the regolith container, several assumptions
and design parameters were considered to be important.  First, it was
assumed that a maximum volume of regolith per container was desirable for
protection of the habitat against radiation, as well as to minimize the
amount of containers needed. Secondly, it was assumed that a stitched seam
in the construction of the containers could be considered an area of potential
weakness because the thread used in stitching the seam would be most
vulnerable to cuts from the regolith. Finally, it was assumed that, due to the
fabric overlap required for a seam, a seam would weigh more per length
than the container would. From these assumptions, the parameters of the
container shape were derived. The design parameters are as follows:

*  The regolith packing potential (the ratio of the volume of the
regolith per the volume of the free or unfilled space) of the container must
be as near to ideal
(o0 ) as possible. From the packing potential, the maximum volume of
regolith per bag weight can be developed.

*  The number of seams in the container design must be held to a
minimum in order to minimize potentially weak areas and prevent
additional weight added to the container.

*  The shape of the regolith container must be applicable to the
regolith bagging machine design.

Initially, two categories of container shapes were considered:
structured shapes, those with specified corners and angles necessary to the
design; and unstructured shapes, those without specified corners or angles.
The structured shapes included a box-shaped pillow, a shoe box with

separate cover, a grocery bag with a rectangular bottom and sides



perpendicular to each other, and a pyramid- or trapezoid-shaped container
with the base wider than the top. (Figure 2) The unstructured shapes
included a pillow case, a tube sock, a come, a bread bag, a bag with vertical
accordion pleats, and a "pie pocket"or container with flat top and bottom,
similar to the top and bottom pie crusts, which would be secured together
after putting regolith between them like the filling in a pie. (Figure 3)

Upon inspection of the geometries of the shaped in both categories, it
was determined that the unstructured shapes had better potential for
maximum regolith packing -- a higher ratio of regolith volume 1o free
volume in the container. The unconstructed shapes required fewer seams
for the construction of each shape than the structured shapes required. The
structured shapes were rejected based on their poor comparison with the
unstructured shapes in terms of both the regolith packing potential and the
number of required construction seams.

After comparing the geometries of the unstructured shapes, it was
determined that the cone did not have a good regolith packing potential.
Specifically, if a larger rock were to be scooped into the cone first, the rock
would prevent smaller pebbles and soil from filling the free volume of the
tip of the cone as shown in Figure 4. On this basis, the cone shape was
rejected.

The pie pocket model was rejected because its concept of forming a
sealed shape after filling is applicable to only one of the filling machine
designs under consideration, -and this design was ultimately not chosen.

The accordion pleated bag does not offer an increase in the packing
potential over the pillowcase, sock or bread bag. Instead, the accordion

pleated bag requires special methods of construction and storage. The
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accordion pleated bag was rejected in favor of simpler shapes that
accomplished the same objectives.

The tube sock model requires the least amount of construction seams
of the three remaining alternatives. However, the tube sock requires only
one seam during construction because the fabric structure of the sock is that
of a circular knit. The fabric structure desired for this design application is
that of a weave, and therefore, the tube sock model could not be used.

The two remaining alternatives, the pillowcase and the bread bag,
were compared and contrasted with regard to their maximum regolith
packing potential and to their design simplicity, i.e., the number of seams
required in construction.

Both the pillowcase and the bread bag utilize a rectangular piece of
fabric, which is doubled over and stitched across the bottom and up the side
to form the general rectangular shape of each container. If the initial pieces
of fabric for the pillowcase and the bread bag are the same size, the surface
area of the pillowcase would be equal to that of the bread bag. Since the
total weight of the fabric is directly proportional to the surface area of the
bag, the weights of the pillowcase and the bread bag would be equal.

The pillowcase model, when empty, resembles a rectangle. When
filled as shown in Figure S5a, the pillowcase volume would approximates a
cylinder (Appendix C).

The bread bag model requires two small tacking stitches of negligible
weight to tuck the corners of the bag up, in order to form the inverted pleat
across the bottom of the bag that is visible when the bag is empty as in
Figure 5b. When filled, the bread bag volume approximates a cylinder

minus two small triangular volumes at the base where the corners of are

tacked up. (Appendix C)
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The slight loss in volume in the bread bag compared to the volume of
the pillowcase causes the regolith packihg potential of the bread bag to be
slightly less than that of the pillowcase (Appendix C).

The bread bag model incorporates an extra step of tacking up the
corners in order to obtain a pleat at the bottom of the bag. This pleat
theoretically allows the regolith to form a flat base at the bottom of the
bread bag. Since, in the chosen bag-filling machine 7design, the container is
to be filled while in a horizontal position, the base pleat in the bread bag
does not offer an advantage over the simpler pillowcase. Therefore, the
pillowcase was determined to have the maximum regolith packing potential
and the simplest design requiring the fewest number of seams, yet while

remaining applicable to the design of the regolith bagging machine.



IV. Bag Size Consideration

It was necessary to assume a constant bag shape for the ideal bag size
to be found. The pillowcase bag shape, described in the previous section,
was used for the idealization. Also, for idealization, the top section of the
bag that is used in the closing mechanism was neglected. The bag size
idealization found the optimum bag dimensions necessary to obtain the
desired ratio of fabric weight to regolith weight.

The bag size was idealized by finding the volume of the bag fabric,
assuming a constant fabric thickness and comparing the fabric volume to the
maximum filled volume of regolith attainable for a range of bag widths from
6 to 60 inches. The length of the bag was held constant because the first
derivatives of the equations for both the volume of the bag fabric and the
volume of the regolith showed that these equations depend upon the width
and not the length for change. A ratio of the regolith volume to the bag
fabric volume was calculated. This ratio was plotted against the width of
the bag. The ideal bag width was calculated from this graph. The
maximum regolith weight that the bag fabric could withstand on the moon
was calculated, and was found to be much greater than that of the regolith
volume. (Appendix D)

The data for the ideal bag size is summarized below:

width: 36 inches
length: 72 inches
thickness: 7.57 mils

volume of bag fabric: 39 cu. inch
maximum regolith volume: 29702 cu. inch
bag mass / regolith mass ratio: 0.001554
total bag mass(fabric+regolith): 1231.08 pounds



From this data, the minimum number of bags required to cover the
lunar habitat with a minimum thickness of two meters of regolith would be
924 bags. Twelve bundles of bags would be needed if each bundle

contained 80 bags. (See calculations in Appendix H)



V. Bag Storage Alternatives

In choosing a method of bag storage, several design parameters had to
be carefully considered. The most important of these parameters was the
applicability of the method to the regolith bagging machine. Other
parameters included the ease of bag withdrawal from the bundle, the
degrees of freedom required by the machine to load the bag and to move
into position for filling the bag, the occurrence of permanent deformation of
the bag as a result of the storage method, the ability to store a maximum
number of bags per bundle volume and the need for packaging aids (centers
or containers) to promote uniform bag storage.

The bag storage options that were initially considered were (Figure 6):

* computer paper -- folded with connected ends

* Kleenex® facial tissue -- folded with staggered end§

* toilet paper roll -- rolled with connected ends

* garbage roll -- roll with staggered ends

* "Dixie Cup" stacks -- stacked one inside another

* horizontally stacked like copy machine paper

* vertically stacked like the pages of a book on a shelf

* vertically stacked with tops connected in a series like paper dolls

Neither of the vertically stacked options were applicable to the chosen
design of the regolith bagging machine and were rejected.

The withdrawal of and loading of the bag from a storage in computer
paper stack, a toilet paper roll, a or flat horizontal stack onto the bagging
machine was determined to require too many degrees of freedom of the
loading mechanism to be useful in the mechanical design. These options

were rejected on that basis.
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The unconnected tissue storage option was rejected because it requires
a box or other container into which the bags may be stacked.

The remaining alternatives, the staggered roll and the Dixie cups were
considered. The Dixie cups were chosen over the staggered roll because the
staggered roll option depended too heavily on precise staggering when
construction the bundle. As the roll unraveled and the diameter of the roll
decreased, the opening of each newly exposed bag would be difficult to
pinpoint with the accuracy required by the remote-controlled bagging
procedure used in the design of the bagging machine. The Dixie cup option
could be relied upon more heavily, because as one bag was withdrawn, the

next bag was exposed in the correct position (Figure 7).
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FASTENING ALTERNATIVES

Many fascinating ideas were created to close the regblith-fillcd
bag. Common fastening means were modelled to determine if they
were applicable to the moon’s surface. These include Ziplock, Velcro,
drawstring, twist-tie, rubber-band, zipper, clothespin, snaps, staples,
and many others. The tests they had to pass were:

Applicability to the machine design,
Short term reliability, '
Temperature limitations,

Machine’s degrees of freedom required,
Leakage rate,

Fastener Mass,

Material Limitation, and

Long term reliability.

The option with the greatest number of positive marks was the
magnetized thread design. (See Appendix G. for the list of fastening

means and the decision matrix).



ALTERNATIVES: MECHANICAL CONSIDERATIONS
The basic objectives in designing the bag-filling machinery were to
create a system to pick up a bag, open the bag, fill the bag with lunar soil,
close the bag, drop it, and then start the process all over again with the
next bag. The system should be controllable by remote signals from earth,
and should minimize the possibility of breakdown because astronaut time
spent on the moon costs approximately $80,000 per hoﬁr (according to Mr.
Brazell of the M.E. department of Georgia Tech). Also, the machinery
should be as lightweight as possible because each pound transported via
the space shuttle costs approximately $20,000 to ship (according to Mr.
Brazell). Finally, because cubic space aboard the shuttle is limited, the
total volume of the system should be minimized.
The following mechanical alternatives were considered in meeting
the objectives of the bag-filling system:
* a platform/brush combination;
* a forced ramp;
* a conveyor belt system;

* a"Pac man" or double clam shell scoop;

*

an imbedded cone and brush;

*

a screw lift;

*

a paddle wheel with shroud;



* a "french fry scoop”.

In order to evaluate these options further and form a basis of
comparison among them, several design parameters were identified,
including a minimal number of moving parts exposed to the disruption of
dirt produced by any of the mechanisms, a good bag closure system, a good
control system capability, and the avoidance of specific bag shape
constraints.

The platform/brush combination, shown in Figure 8(a), was designed
for attachment on a lunar vehicle which moves in an up-and-down motion,
such as a Skitter. When the Skitter is "down", the bottom "crust” of a pie
pocket is dropped onto the flexible platform, dirt is swept by the two
brushes into the center of the crust until a weight sensor in the platform
indicates the crust is full, and then an upper crust drops on to the top of
the regolith pile and lower crust. All edges of this pocket must be sealed
with either a pressure sealing mechanism (velcro, staples, etc.) or an
adhesive (glue, etc.). When the Skitter raises to take another "step”, the
filled pocket slips off the flexible platform and onto the ground to await
pickup and placemem'.on the habitat. However, because lunar dust was 10
be swept over the sealing surface, the potential for dirt to interfere with a

tight seal was significant, and the design was rejected for this reason.
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The forced ramp, shown in Figure 8(b), is designed for attachment on
a lunar truck, or other vehicle that moves in a horizontal direction over the
moon's surface. As the ramp is forced in a forward motion through the
dirt approximately 2-3 inches below the surface, the dirt's own inertia
forces it up the shallow ramp where it drops into a vertically placed bag
resting on a platform. When a weight sensor underneath the bag indicates
the bag is full, the platform supporting it drops, and the bag is closed using
its own weight and a drawstring closure top. Unfortunately, in testing this
design on earth, it was discovered that the inertial forces would only push
the dirt up a short ramp, leading to usage of a comparatively shallow bag.
The maximum bag size that could be used in this design was not in the
range of ideal bag sizes previously determined. Although the simplicity of
the design indicated a resistance to mechanical breakdown, the forced
ramp design alternative was rejected due to its dependance on a specific
bag size that was not ideal.

The conveyor belt, sketched in Figure 9(a), provided a way to raise
the dirt to any level, thereby eliminating any dependence on a specific bag
size or shape. The conveyor belt design also could utilize an effective
control system to determine when filling should stop and sealing should
begin. However, this option resulted in a large number of moving parts

near the soil required to move a bag into place and seal the bag. One of
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the most significant design criteria was a consideration for the potential for
breakdown, and a large number of moving parts increased that potential,
especially if the moving parts are exposed to ambient regolith clouds
created during the filling process. The conveyor belt option was rejected
on that basis.

The "Pac man"/double clam shell, shown in Figure 9(b), was also
rejected on the basis of the multiple moving parts criterion. The
mechanism depended heavily on the ability for two interlocking parts to
come together forcibly with a fairly tight seal around the dirt, then pivot to
a position above the vertical bag, and release the dirt. The potential for
clogging any of the sliding parts was too significant to be ignored.

The imbedded cone, pictured in Figure 10(a), was a unique design in
that, instead of raising the dirt to a position above the ground to fill a
vertical bag, the bag was inserted into the cone and forcibly imbedded into
the moon's surface. A bag was dropped from a bag bundle holder into the
open cone below, then dirt was swept into the cone and bag combination.
However, the surface of the moon presented an uncontrollable parameter.
While the surface of the moon is loosely packed for approximately the first
six inches, the subsurface then starts to become more dense quickly. In
order to penetrate that dense packing, a very strong material must be used

in constructing the cone and it must be imbedded at a substantial force,
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which would vary with each location attempted because the subsurface
density is not uniform. The repeated forced entry into the moon’s surface
leads to a great potential for cone-tip breakage and subsequent
catastrophic breakdown of the entire machine. In avoiding this problem,
the cone could be made short enough that it will penetrate only the soft
uppermost layer of regolith, but then it is limited to small, non-ideally
sized containers. Because of this unavoidable problem with the embcdded.
cone, this design option was discarded.

The screw design, shown in Figure 10(b), utilizes the force of gravity
to gradually move lunar dirt up a twisting ramp. The dirt is introduced
through an opening in the tip, and as the screw slowly revolves, the dirt
falls to its lowest level. The axis angle of the screw with the moon's
surface ensures that the dirt raises one level with each revolution of the
SCrew. Further investigation of the regolith's characteristics, however,
revealed a large percentage of extremely fine textured dirt similar to
talcum powder. This textured material resists "flowing”, the basis of the
entire screw design. Although the screw design would work well to lift
slick objects or liquids, it would not work well on lunar regolith, for
bridging might occur, and the design was rejected on that basis.

The shrouded paddle wheel design, sketched in Figure 11, lifts the

regolith into a trajectory, which is controlled by a overhead shroud and
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guided into a vertically placed bag. When the bag is full, it drops and
closes with a drawstring mechanism woven into the lip of the bag similar
to the way the forced ramp's container was closed. This design employs a
good closure system and could be easily controlled electronically, but it is
designed to create a very large ambient cloud of airborne regolith. If the
paddle wheel is turning at a substantial speed most of the dust will be
directed by the shroud into the waiting bag. However, a significant
amount of the finely textured material will be floating in the vicinity of the
gears, motors, and other moving mechanical parts, resulting in the greatest
possibility of regolith-induced clogging among any of the designs discussed
previously. For this reason, the paddle wheel/shroud design was
discarded.

The "french fry scoop”, shown in Figure 12, uses the inertia of the
lunar dust in a similar manner as the forced ramp. The scoop is designed
for attachment on a lunar truck and can move both in a vertical motion
and in a horizontal motion under the truck using a motor system. After
inserting the tip of the scoop into the first in a series of dixie cup stacked
bags, an electric magnet in scoop is activated, attracting metallic threads
woven into the folded lip of the bag and securing the bag onto the scoop.
The scoop and bag are lowered to ground level and dragged along

approximately two inches beneath the actual regolith surface. The scoop
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and bag sweep underneath the dirt until a weiéht sensor in the platform
under the bag indicates it is nearly full. When the scoop rises, it tilts the
rest of its dirt into the bag, filling it to capacity. As the scoop is removed,
it draws an inner-folded lip outward, displacing a small amount of dirt and
revealing magnets attached to the bag which are used to close the bag.
The bag is dropped and the process is repeated until the dixie cup bundle
is exhausted.

The "french fry scoop” disrupts the dirt only marginally, and thus
minimizes the airborne dust.  Also, most moving parts (the motors,
horizontal track, etc.) are removed from the surface of the moon and
‘contact with ambient dirt created would be very little. The control system
is excellent, and the sealing mechanism utilizing magnets is valid for the
temperature range specified and in operation in a vacuum environment.

The scoop was chosen for further development as the bag-filling system.



BAG DESIGN DESCRIPTION

The bag design for the lunar regolith bagging system incorporates a
working design of a bag capable of withstanding the radiation (electron
and UV) environment, temperature range, and impact of small meteorites
experienced on the surface of the moon while holding regolith in place for
a service life of ten years.

The regolith bag was designed to be in the shape of a pillowcase.
This shape offered a maximum regolith packing probability, a maximum
regolith volume per fabric weight and a simplicity of des'ign which lead to
a minimum number of construction seams and potential weak areas. The
criteria for the decision of the bag shape were discussed in detail
previously.

The regolith bag is designed to have a width of three feet and a
length of eighty-six inches, and to be fabricated from six ounces per square

yard DuPont Kevlar 149 fabric in a rip-stop weave configuration. Kevlar

will not degrade under constant ultraviolet exposure in the absence of
oxygen and is transparent to electron (Beta) radiation. It is able to
withstand temperatures from -300 to 800 degrees Fahrenheit and will not
melt or become brittle. Kevlar 149 is cut and puncture resistant and it is

light weight due to its low density.



Kevlar 149 was chosen over Kevlar 29, 49, and 129 because it is
commonly used in apparel applications in the protective garment industry
such as gloves, chaps, and vests. In these applications, high strength,
toughness, and low linear density (lightweight) fabrics are necessary. For
this project, these same characteristics are necessary in order to have a
durable, strong fabric which will not be expensive to transport since
weight is a major cost factor in space transportation.

The best seam to use, according to Mr. Roy Peek of Clark-Schwebel
Fiberglass Corporation, for construction of the bags is a double-stitched,
flat-felled seam. A flat-felled seam is one in which the fabric edges are
wrapped around each other into interlocking "J's” and sewn together with
double seams. Using this method, there are no open, raw edges. The
recommended stitch density is seven to twelve stitches per inch. (Tent
Book, p. 30)

The four 8.75 inch long rectangular magnets are sewn .25 inches
apart into the upper edge of the bag, then folded down to form an inner
"lip". Each of the magnets are fabricated with two holes in the center, then
are sewn to the bag with Kevlér thread like buttons. (See Appendix F for
specific magnetic calculations.) Each magnet contains approximately 17.25
cubic inches of a steel alloy made up of 6% tungsten, 0.7 % carbon, and

93.3% iron (Appendix F). Figure 13 shows the dimensions of the bag.
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MECHANICAL DESIGN DESCRIPTION

The final design of the french fry scoop bag filling mechanism can
best be described by discussing its setups and actions to accomplish its
various tasks. It is modelled after the utensil used in fast food restaurants.
Figures 14 and 15 reveal the dimensions of the three main parts of the
design.

The entire scoop structure is attached to a lunar truck, as shown in
Figure 12, which is moving at approximately seven kilometers per hour
(towards the left side of the paper). Eighty bags rest in a "dixie cup”
configuration with each bag inserted into the bag behind it. The bundle
rests on a stationary platform near the rear of the truck with the opening
facing forward. This platform extends one bag length to the front of the
bundle. The scoop is attached to the truck by an arm which can move up
and down, left and right, and forward and backward along an enclosed
track. On the horizontal portion of the scoop are two hooks aimed
downward. Beside the scoop is a rod that has two hooks aimed upward.
The two hooks on the rod lie directly above the other two. All motions are
controlled by an electronic mic-roprocessor.

To open and attach the first bag in the dixie cup bundle, the scoop
moves to a position directly in front of the bundle. Initially, the hooks are

pressed flat together and the rounded portion of the scoop is inserted into
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the bag opening. The electromagnet activates and the scoop withdraws the
bag from the rest of the bundle. The four rods are then spread to a
rectangular shape, holding the bag open for the incoming of the soil. When
the scoop moves into the filling position on the ground, the horizontal force
acting on the bag is negligible because the scoop and protective platform
move together with the lunar truck. When actually in the filling position,
the bag is resting on the stationary protective platform during the entire
filling process.

Filling the bag relies heavily on the movement of the lunar truck. As
the vehicle is moving, it will be gradually pushed three centimeters into
the soil. The vehicle will move forward and the dirt, which follows the
laws of inertia, will flow towards the rear of the bag. Meanwhile, the
increasing weight of the dirt in the bag is being monitored closely by the
electronic weight sensors in the filling platform which will eventually
activate the closure system.

Without withdrawing the scoop from the filled bag, the scoop raises
slightly, thus creating a ramp for the dirt contained in the scoop down into
the upper portion of the bag. Then, simultaneously the four hooks, which
have been holding the bag open all this time, withdraw, scraping against
the outer edge of the bag and catching on the inner lip. The hooks draw

the lip outward, displacing a small amount of the lunar dirt and revealing



the permanent magnets attached to the bag. The upper fold of the bag will
fall at approximately 1.6 m/sA2. As the magnets on the edges of the bag
come into proximity of each other the magnetic field surrounding them
pulls the two halves of the bag together and the bag snaps shut. (See
Appendix F for calculations).

The filled bag is now in the way of the scoop's journey to pick up
another bag. However, by moving the scoop to the right side of the closed
bag, the bag is pushed towards the left, off of the protective weight sensor
platform and onto the dirt, without having to fall any distance that might
cause it to burst open. The scoop then moves into position to pick up
another bag, and the process begins again.

In keeping with the objective to minimize weight without sacrificing
strength of material, the french fry scoop and all associated parts are to be
constructed of Aluminum 6061-T6. All motors and microprocessors are to
be constructed to maintain usability in the extreme temperature range (-
250 F to +250 F) encountered on the moon's surface and must be able to
radiate heat away from moving parts.

Assuming the lunar vehicle is moving at approximately seven
kilometers per hour, the time to fill each bag should be only twelve
seconds. Allowing six minutes for movement of scoop along the track and

positioning the scoop and bag for filling, this design should be able to fill
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and drop ten bags per hour, and all of the bags

(Supporting calculations are included in Appendix H).

in

twelve days.



CONCLUSIONS:

R
Our simple design will bag lunar soil in a relatively short

amount of time, with a low equipment weight, and with moving parts
distanced from the dirt. The bags are made out of Kevlar 149 with a
fabric weight of 6 oz. per square yard. All machine parts are
composed of aluminum 6061-T6. Assuming that the vehicle runs at 7
km/hr for 8 hours a day, the machine will bag the necessary 450 m3
of soil in about 12 days. The total mass of the bags and the machine
to be shipped to the moon will be 687 kg. The cost of shipping this

weight will be $6.23 million.



RECOMMENDATIONS;

When the last few bags on the platform are to be filled, the
scoop must attach itself to one bag without disrupting the others. To
make sure that the action happens correctly, the last bag on the
platform should be attached somehow to the platform. Heat-resistant
Velcro is recommended.

The motors which are to control the motions of the scoop
should withstand the large temperature range, expel heat by a
radiative source, and not consume more than ten kilowatts of power.
An 8-bit microprocessor is suggested to control the actions. A stretch
of the Kevlar is recommended to cover these moving components and
protect them from ambient dust.

A team should determine how to transport the buhdles of bags
to the vehicle.

The four magnets that are to be used in each bag should be
sewn into the lip like buttons. They will need to be drilled first.

The scoop needs to be welded in many places. Tee welds by gas

Tungsten-arc welding is recommended (Marks’ 13-46).
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APPENDIX A
CUT RESISTANCE TESTS

Tests to determine the resistance to cuts caused by a razor-
sharp edge were conducted on several of high performance fabric
samples in the physical testing laboratory in the School of Textile and
Fiber Engineering at Georgia Tech.

Sample swatches of Kevlar (4.5 oz/sq yd and 6 oz/sq yd),
50/50 PBI/p-aramid blend (4.5 oz/ sq yd and 6 oz/sq yd), PBI (9.2
oz/sq yd), Teflon TFE (unknown oz/sq yd), and Nextel 312 (unknown
oz/sq yd) were subjected to five passes in each the warp and the
weft directions with a razor blade mounted in a utility knife frame
("warp" designates the warp yarns cut, whereas "weft” designates the
weft yarns cut). Medium force was exerted by the operator on the
razor knife in the first test. Heavy force was exerted by the operator
on the razor knife in the second test. Ratings of "pass” or "fail” were
given to the cut resistance of the samples after each test.

The results of the testing are shown below:

TABLE A.1: RESULTS OF MEDIUM FORCE CUT RESISTANCE

Fabric Summary of Warp Summary of Weft
ampl Cut_Resistance Cut Resistance
Kevlar (4.5) pass (5/5) fail (4/5)
Kevlar (6.0) pass (5/5) pass(5/5)
PBI/aram(4.5) pass (5/5) pass(5/5)
PBI/aram(6.0) pass (5/5) pass(5/5)
PBI (9.2) pass (5/5) pass(4/5)
Teflon TFE fail (5/5) fail (5/5)
Nextel 312 fail (4/5) fail (5/5)

TABLE A.2: RESULTS OF HEAVY FORCE CUT RESISTANCE

Fabric Summary of Warp Summary of Weft
ampl Cut Resistance Cut Resistance
Kevlar (4.5) pass(5/5) fail (3/5)
Kevlar (6.0) pass(5/5) pass(5/5)
PBIl/aram(4.5) pass(5/5) pass(4/5)
PBl/aram(6.0) pass(5/5) pass(5/5)
PBI (9.2) pass(4/5) fail (4/5)

note: Teflon TFE and Nextel 312 not tested due to failure under medium force



APPENDIX B

Electron (B) and UV Radiation
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CHESTNUT RUN PLAZA

Ms. Sabrina Brown
Georgia Tech.

P.O. Box 35405
Atlanta, GA 30332

Dear Ms. Brown:

Fibers & Composites Development
Centers

Oak Run, Chestnut Run Plaza

Wilmington, DE 19880-0701

February 22, 1990

Enclosed are a number of technical papers and data
sheets dealing with UV and other radiation resistance properties of
Kevlar® aramid fibers and their composites. It is important for you
to distinguish between degradation under radiation exposure and
transmission or shielding properties. Unless protected, Kevlar®
will degrade under constant UV exposure (less in absence of oxygen),
but it is strongly absorbing. Kevlar® has good electron and gamma
radiation resistance, but it will transmit them, especially gamma.

Good luck in your NASA project.

PGR:sm
Enc.

Sincerely,

INDUSTRIAL APPLICATIONS RESEARCH
Paul G. Riewald

Sr. Research Associate
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THE EFFECT OF ULTRAVIOLET LIGHT ON
PRODUCTS BASED ON FIBERS OF KEVLAR® 29
AND KEVLAR® 49 ARAMID

AUGUST 1977

We believe that this information is the best cumrently available
on the subject. 1t is offered as a possibly helpful suggestion in
experimentation you may care 2o undertake along thede Lines. Du Pont
mahes no guarantee of results and assumes no obligation on Liability
whatsoever in comnection with this information. Anyone intending 2o
wse resommendations contained {n this publication concerning equip-
ment, procesding Lechniques, on chemical products should {inst satisfy
himself that the recommendations are suitable for his use and meet all
appropriate safety and health standards. This publication is not a
License 2o operate under, or intended 2o suggest infringement of, any

Cc-29



Interior fibers are shielded by the strong absorption of the
surface fibers. UV stabilj erefore increases wi »_size
of the fiber arxay, increasing with yarn denier or with diam-
eter, as in ropes and cables (Table I). In some cases, the
small strength loss associated with UV degradation in large diam-
eter ropes and cables is acceptable and no further protection is
required., Where this is not the case, two techniques are avail-
able -- overbraiding and jacketing (Table 1I).

In overbraiding, the entire cable or individual sub-elements
are wrapped with a light-stable fiber such as Dacron® peclyester,
providing a UV shield. Added weight of the order of 20% on a
two-inch diameter cable weighing two 1lb/ft is typical. 1In
jacketing, a continuous sheath of opague polymer, usually black
urethane, is extruded onto the cable or sub-elements giving
add-ons of 15% on 0.9 lb/ft cable. Impregnation of individual
strands--for example, urethane--as required for cabling opera-
tions, is by itself generally not sufficient for UV protection
and an additional jacket is recommended.

FABRICS, TAPES AND WEBBINGS

UV protection is especially critical for woven fabrics and
some tapes and webbings of Kevlar® aramid where the thickness of
the fiber array is insufficient for effective self-shielding.
The best protection is offered by pigmented resin coating ox f£film
lamination (Table III). In some cases, overbraiding with light
stable fiber is possible. Where coating or £ilm is used, pig-
mentation which is visually transparent should be avoided since
many so-called UV absorbers and screeners do not cover the en-
Egggﬁrggion between 300 ‘and 450 nm where "Revlar® is sens;tlve.
The most effective screen is opagque, but scme tfanslicence is
acceptable providing only non-damgg&gg,lgghgwi§_§§@;gtg§.

BALLISTIC AND PROTECTIVE GARMENTS

Most garments based on Kevlar® aramid will be protected
from the effects of UV either by a fabric jacket or by a resin
coating. Thus, home laundering and drying in the sun of a
jacketed ballistic garment should not result in loss of protec-
tion due to UV degradation. Unprotected garments, or those from
which the protective covering has been removed, should not be
exposed to sunlight to avoid possible deleterious effects.
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_.PRECEQING PAGE BLANK NOT FILMED

® Fiber reinforced composites based on Kevlare® normally
do not require special UV protection. If protection is desired,
apply a pigmented gel or surface coat.

¢ Determine the validity and acceleration factor of accel-
erated UV exposure tests for the material and system of interest
before using test data for design. :

MWW:LEM/kb
Augqust 11, 1977
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TABLE II

OV_PROTECTION OF ROPES AND CABLES

$ Tensile Strength

Lost
Braided Rope, Kevlar® 29 Aramid
1000 hrs "Weather-Ometer"
Bare (1/4") 43
Same with Dacron® T-68 Polyester 6
Overbraid (5/16")
Stranded Cable, Urethane Impregnated
Kevlar® 49 Aramid 7x7
500 hrs "Weather-Ometer”
Bare (1/4") 16
Same with 20 mi) Black Urethane <2

_ Jacket
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EFFECT OF ULTRAVIOLET EXPOSURE ON THE
TENSILE STRENGTH OF COMPOSITES REINFORCED
WITE KEVLAR®149 AND FIBERGLASS FABRICS

- 10 -
TABLE IV

Exposure

None

No OV
120°F, 93% R.H.
1584 hr

Weatherometer
500 hr

Weatherometer
1000 hr

Fadecometer
870 hr

Weatherometer
100 hr + 72 hr
Salt Water Socak +
600 hr FPadeometer

(a) 2 Plies Style
(b) 2 Plies Style
(c) 2 Plies Style

CARBON ARC EXPOSURE

"E"=-Glass/
Polyester(c)

Revlar®l49/ Kevlarel49/
Epoxv(a) Polvester (b)
67,900(&) 43,700
70,000 41,700
63,800 46,800
76,000 33,600
€8,500 38,300
68,600 37,300

37,000

31,600

30,700

34,900

31,100

31,700

181 + 1 ply Style 120/Eexcel "F-155"; 55 vol. %.

281 + 1 ply Style 120/Mahogany "Dion 63508"; 40 vol. &.
181 + 1 ply Style 120/Mahogany "Dion 6€508"; 40 vol. &.

(d) Each value an average in lb/in2 of 3 axial tensile breaks.
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APPENDIX C
BAG SHAPE CALCULATIONS

The regolith-filled volume of the pillowcase shape approximates the
volume of a cylinder, which is given by:

Vcylinder = T0 r*r*h, where r is found by:

circumference of a cylinder = 2nr = 2(width)
therefore, r = width, and h = length
T

Viregolih = width*width*length

n

The Regolith Packing Potential of the pillowcase shape is given by:

Regolith Volume = width*width*length

free volume i

The regolith volume of the bread bag approximates the volume
of a cylinder, minus two small triangular volumes at the base
corners.

V cylinder - 2V1riangular = width*width*length - 2(base area*height)
n 3

The triangular volume will vary according to the height of the
tacking stitch along the side of the bag.

The regolith volume of the bread bag is maximized when the
triangular volumes are equal to zero, or in other words, when the
bread bag does not have any tacking stitches -- which then makes it
a pillowcase.

From these calculations, it can be found that the regolith
packing potential is greater for the pillowcase shape than for the
bread bag shape.
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APPENDIX D
BAG SIZE IDEALIZATION

The pillowcase shape was used to idealize the size of the
regolith bag. The volume of the bag fabric is directly proportional to
the surface area of the fabric for a constant fabric thickness.

The surface area is found by:

Asur = 2*width*length,
$0,
Vifabric = 2*width*length*thickness

The equation for the volume of regolith was found in Appendix C as:

Vregolith = width*width*length
o

Taking the first derivative with respect to length of both the fabric
volume and the regolith volume equations gives:

dViabric = 2*width*thickness = (constant)*width
dl

dVregolith = width*width
dl .4

This shows that the equations depend upon the width for change,
and so a constant length may be assumed for purposes of width
idealization.

The surface area is directly proportional to the fabric volume,
and so if a constant thickness is assumed to be equal to one inch, the
surface area may be used to calculate the fabric volume. To do this,
a length equal to ten inches is used. The idealized width was
calculated from a range of widths from 6 to 60 inches.



A graph of surface area versus regolith volume was generated,
and from this graph, an exponential increase in the regolith volume
can be seen as the surface area increases.

A ratio of the surface area to regolith volume was then
calculated for the range of widths. A graph of the widths versus the
ratio of surface area to regolith volume was made. From this graph,
an exponential decrease in the ratio occurs, and begins to level off
above 30 inches. At the levelled off portion of the curve less change
in the ratio of surface area to regolith volume occurs. A width of 36
inches was chosen from this idealized section of the curve. The 36
inch width was chosen because it is about the maximum
commercially available width for a doubled over fabric (total fabric
width of 72 inches). And it is possible to obtain Kevlar in 72 inch
fabric widths.

The data and graphs follow:
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WIDTH

SURFACE AREA

120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
800
920
840
960
880
1000
1020
1040
1060
1080
1100
1120
1140
1160
1180
1200

VOLUME

115
156
204
258
318
385
458
538
624
716
815
820
1031
1148
1273
1404
1541
1684
1833
1889
2152
2320
2496
2677
2865
3059
3259
3466
3680
- 3899
4125
4358
4596
4841
5083
5351
5615
5886
6162
6446
6735
7031
7334
7643
7958
8279
8607
8941
9282
9629
9982
10342
10708
11080
11459

Untitled Data #1

RATIO

1.05
0.90
0.79
0.70
0.63
0.57
0.52
0.48
0.45
0.42
0.39
0.37
0.35
0.33
0.31
0.30
0.29
0.27
0.26
0.25
0.24
0.23
0.22
0.22
0.21
0.20
0.20
0.19
0.18
0.18
0.17
0.17
0.17
0.16
0.16
0.15
0.15
0.15
0.14
0.14
0.14
0.13
0.13
0.13
0.13
0.12
0.12
0.12
0.12
0.1
0.11
0.11
0.11
0.11
6.10

Thu, Mar 8, 1980 5:38 PM



RATIO

RATIO OF BAG MATERIAL VOLUME TO
REGOLITH VOLUME for LENGTH=10"
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The thickness of the fabric was found as follows:

(6.0 oz/sg vd)*(1vd) *(1 1b) = .000289 1b/sq in
(36 in) *(16 ounces)

The density of Kevlar 149 = 1.45 gm/cc = .051 Ib/cu in

thickness = mass/area = ,00028 1Ib/sq in

mass/volume 051 1b/cu in

thickness = .00567 inches = 5.67 mils

To further demonstrate the idealization, the volume of the bag
fabric was calculated using a range of widths again from 6 to 60
inches, the specified length of 72 inches, and a fabric thickness of
5.67 mils.

A ratio of the fabric volume to the regolith volume was
calculated. The mass of the bag fabric was calculated from the fabric
volume and the density of the fabric (.051 Ib/cu in).

mass (Ib) = volume (cu in) * density (lb/cu in)

The mass of the regolith was calculated similarly from the
regolith volume and the density of the regolith (1.2 gfcc = .04335
Ib/cu in).

Ratios of regolith mass to fabric mass were calculated for the
range of widths. The total filled mass of each bag for the range of
widths was calculated by:

Total mass of bag = (Regolith Mass + Fabric Mass)



The tensile strength of 6 ounce per square yard Kevlar 149
fabric is approximately 2760 MPa. After long exposure periods to
high heat, at least 50% of its original strength will remain.

Calculations to determine if the strength of the fabric will be
sufficient to support the weight of the regolith are as follows:

Tensile stress = O = Force/Area

Force = (Vol of regolith)*(density of regolith)*(lunar gravity)

= (29702 cu in)*(.04335 1Ib/cu in)*(32/6fi/sq sec)*(12in/f1)

= 82406 lb*in/sq sec = 949.4 kg*m/sq sec

Force = 9494 N

Areacs = width*width = 36*36 = 11.46 sq in
4 4

Area =

.0074 sq meters

Gregolilh = 9494 N

128,400 Pa = .128 MPa

.0074 sq m
O fabric = 1380 MPa = approx. 10,000
Gregolilh .128 MPa

The tensile stress caused by the weight of the regolith is negligible

compared to the amount of tensile strength the fabric is able to
withstand.



APPENDIX E

Bag Shape, Size and Fabric
Alternatives and Decision Matrices
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BAG SHAPES

b et s ¢ 08! >

PILLOWCASE -- UNCONSTEUCTED SHAPE LIEE & PILLOWCASE

GINGER'S PIE POCEET -- MADE BY PILING REGOLITE ONTO 4 (ROUND)
BOTTOM LAYER, AND THEN COVERING WITH A TOP LAYER-
LIEE AN APPLE PIE

CCHE -- SHAFED LIEE A SUGAR ICE CREAM CONE - ROUND OPENING

ACCORDICON PLEATED BAG -- ANY BAG SHAPE - TO BE USED WITH SOME
CLOSING MECHANISMS

BREAD B4G -- CYLINDRICAL WITH A FLAT BOTTOM
GROCZERT BAG -- SQUARE WITH A FLAT BOTTOM

TUBE 50CY -- SIMILAR TC BREEAD BAG / PILLOW BUT LONGER & NARROWER
CHOE BOX -- BOX WITH & REMOVAEBLE LID

SQUAREPILLOW -- ﬁ L I STRUCTED SHAFPE WITH EDGES AND CORNERT AND
AN OPENING ON ONE EDGE OR SIDE

PYRaMID BAG -- 1N TEE SHAPE OF & PYRAMID WITH A FLAT BOTTOM AND
SIDES SLOPIMG I SO THAT THE OFENING 15 NARROWER AT THE

—_
M

iy
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BAG STORAGE METHODS

COWPUTER FPAPER STACKING:
a) ends connected
b) ends staggered or overlapped (Kleenexe)

CERY PRODUCE BAG / TOILET PAPER ROLL:
a) ends connected
b) ends staggered ot overlapped

loy]
"ﬂ

DIXIE CUPS:
a2} horizontal
by vertical

FLAT STalcKE
a; horizontal
) wertical

VERTICALLY STACEED / CONNECTED:
r'*: stacked together vertically in groups of 10 ors
with the openings connected -- when opened, the en’uro group
iz opened, like mumwe ¢oin purses, at ohe time
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APPENDIX F

Magnetic Calculations



PPENDIX F: NE ALCULATION

The magnetic attraction between two materials can be described using
Coulomb's Law:

m_m' = attractive force
dar2

where m, m' represent the two pole strengths of the materials and
d represents the separation distance.

Pole strength can be represented as a function of intensity of
magnetization, J, and surface area of the magnet, A, as follows:

m=17J*A,

J can be further defined in a relationship between permeability of the
specific material used in the magnet, p, and the impressed field intensity,
H.

J=(u-1HH
%4

It should be noted that permeability varies with each material used and
also with temperature, showing a marked variance at the material's Curie
point.

Inserting this definition of J into the original equation for pole strength, -
the following equation is derived:

m=(u-1YH*A .
4

At this point, the field intensity is the only parameter to be further
defined, since the permeability is dependent on the material used and the
area is controlled by the designer. Fortunately, the field intensity can also
be controlled during the magnetization process on earth by identifying the
following relationships.



The magneto-motive force, mmf, can be defined as

mmf = H pm
where pm is the mean path length of the magnetic force.

Alternatively, mmf can be proven to be the work done in carrying a unit
magnetic pole once around the closed circuit, or

mmf = 4z n 1 ergs = 125.6637 x 10(-6) n 1 Newtons
10

where n is the number of windings and I is the current in the wire.
Equating the two expressions for mmf, the following expression is derived:
H pm = (125.6637 * 10(-6)) n I
which yields the following expression for H in MKS units

H=1256637 * 10(-6) n 1 .
pm

Returning to the equation defining the pole strength,

m=(y -1) (125.6637 * 10(-6)) n 1 A
4 m pm

m=(u -1) (0 exp-6)nlA .
4mpm

As was noted earlier, permeability is specific to the material used in
constructing the magnet and changes with extreme temperature
fluxuations. Because of the relationship between permeability and the
intensity of magnetization, J, the strength of the magnetization is also
affected by extreme temperature fluxuations in the following manner.



For every ferromagnetic material, those materials that can be used to
create a permanent magnet, there exists a temperature above which the
magnetic properties fail completely and fairly suddenly. This temperature
is called the Curie point and is a property of both the metallic alloy itself
and the method of preparation. However, upon cooling the material below
the Curie point, the crystal structure of the metal realligns in such a way
that the magnetic property of permeability is actually improved. This
process is called magnetic annealing, and the cooling rates and
temperatures should be carefully controlled to achieve desired results.

(Magnetic Materials, p 80.)

The material specified in construction of the permanent magnets used in
the french fry scoop design is a tungsten magnetic steel made up of
approximately 6 % tungsten, 0.7 % carbon, and 93.3% iron. Extreme care
should be taken during the fabrication of this alloy to minimize the
introduction of impurities, as this would decrease the magnetic properties.
This type of steel can maintain an energy level of greater than 1380
J/cubic meter (Applied Magnetism, p 46 with appropriate conversions
from Marks'). A factor of safety of 1.5 results in a nominal value of 920
J/cubic meter to be used in calculations.

Since mmf for the magnet has already been determined to be
mmf = H pm,
magnetic force intensity, H, for the magnet can be defined as

H = (920 J/cubic_meter) .
pm

Assuming 4 magnets in a 36 inch circumference bag lip, allowing 25
inches between each magnet, each magnet's pm would be 8.75 inches, or
22.225 cm long. Therefore, the previous expression reduces to

H =_920 J/cubic meter
22225 m
= 4.1397 kJ/m74

= 4.1397 kN/m73 for each magnet in the 4 magnet system.



The critical factor in the magnet's closure potential is its ability to support
the weight of the regolith without shearing. In its horizontal resting
position, approximately half of the regolith in the filled bag exerts a
pressure on the magnetic closure, according to Pascal's principle (Marks', p
3.38).

This pressure can be calculated to be
P=pgdz

where p is the density of the regolith, 1.2 g/cubic cm,
g is the acceleration of gravity on the moon, 1.6 m/s"2,
and dz is the depth of the regolith.

P = (,0012 kg)(1.6 m/s"2)(5.73 in)(.0254 m/in)
107-6 m”3

= [279.44 N/m"2] [.5 n 1"2]
= 279.44 (.133) = 37.16552 N.
For each magnet in the 4 magnet system, this reduces to a pressure of
P =929 N.

For a shear force calculation, a frictional coefficient must be used; for dry
steel to steel contact, the static friction coefficient is about 0.78 (Marks', p
3.25). Therefore the intensity strength can be represented as

H = 4139.7 (C) (.78) = 3229 (C) Newtons,

using the variable (C) to represent the undetermined volume of each
magnet. Forming a ratio of the intensity strength per volume and the
necessary pressure, the following required magnetic volume can be
determined:
H/P = 3229 (C)
9.29

(C) = _9.29 = .00029 cubic meters.
3229



The following dimensions meet the volumetric requirements outlined
above.

length = 22.225 cm = 8.75 inches
width = 10.0 cm = 3.94 inches
thickness = 1.295 cm = 0.5 inches

Using magnets of this size, the total mass of the 4 magnet system can be
determined to be 9.21 kg. (Marks', p 6.44.)



APPENDIX G

Fastening Methods Decision Matrix



FASTENING MEANS

ZIFLCCKE -- SELF SEALING LIEE A ZIPLOCK® BAGGIE

L TNTTY Y

HEAT SEAL -- a) ADHESIVE ALEEADY ON BAG
) ADHESIVE IN MACHINE

TIE -- TIE HANDLES LIEE & TRASH BAG

IRAWSTRING -- PULL DRAWSTRING TO CLOSE BAG (LAUNDRY BAG)
COIN PURSE -- SELF EZPLANATORY (?)

SUITTNIT Wi AT, SIIMTMUT R AM STA a6 GVER PEGOLITY

SORIING T oy == SORLNL DAY 7 PACEAGING OVEE REGU

BUIIELE -- @) BELT BUCELE
b} SHAP BUCKLE (DOG COLLAR OR SEFARAELE EEY CHAIN)

BUTTOHS -- SEE DRESE SHIRT

WMETAL DISC CRUSHED SHUT -- LIGHT WEIGHT, PLIARLE METAL OF OTHER
MATERIAL THAT CAN EE CRUZHED SHUT WHEN BAG IS FULL

STITCH -- 3EW BAG SHUT WITH AFPLICABLE THEEAD TYPE
FEIL'Z REWIPATER BAG -- ONE BAG FITTED OVER ANCTHER FILLED DAG

EiW'S NEWIPAPER BAG -- ONE BAG FILLED PART WAY WITH THE
REMAINING MATERIAL AT THE END FOLDED OVER

BEEAD B&G W/0 TWISTIE -- SPIN EXCESS MATERIAL AT END, OPEN END
AND FOLD OVER FILLED BAG

CHIP CLIP/ CLOTHESPIN -- CLAMP END OF BAG SHUT

RAP FLEXIELE EAND ONE OR MORE TIMES AROUND END

g

RUEBER BAND -- W
OF E-A

-

[4



TWISTIE -- a) COMMON BEEAD BAG TTYPE (WIRE INSIDE PAFER)-WRAP
AROURD TOP AND TWIST TUGETHJ:.R
b) OTHER BREAD BAG TYPE (PLASTIC THING)-FIT AROURD TOP
CF BAG
o) GARBAGE BAG HOLDER-PLACTIC STRAP WITH SPIEED EDGES
THAT CATCH WHEN FULLED THROUGH OPENING AT
OPFPOCSITE END

STAPLES -- COMMON STAPLES BUT USING AN ALTERNATIVE MATERIAL
70'S HAIR PIN -- SHOOT 4 THIN ROD THROUGH BAG (LIKE A SEEWER)

POLARIZED METALLIC THREAD -- METALLIC THREAD WOVEN ONLY
THROUGH THE OPEN END OF THE BAG WILL BE POLARIZED (ONE SIDE
POSITIVE AND THE OTHER NEGATIVE) AND UZE THE MAGHNETIC
ATTRACTION EETWEEN THE TWO SIDES TO EEEP THE BAG SHUT

FIEER ENTANGLEMENT -- COMEING OUT CURLY FIEERS ALLOWS
ENT&NGLEMENT DURING RECUERL

WARP FIBERD -- UZE EXTEA LENGTHS OF WARP FIBERS AT OPEN END OF
E4G TC BE GRIPPED FOR CLOSING INSTEAD OF WOVEN FABRIC

TA 1 SHOOT PRICE TAG HOLDER THEOUGH ACCORDIGH
P}LEP‘;T: L&ll T’T’P’ OF fJIh’lILP&R TO ?0 : H; ;IR PII")

COLD ZEAL -- a) ALREADY ON BAG ie, DOUELE-FACED TAPE FRINCIFLE
b)) ADHESIVE IN MACHINE, TO BE PUT ON BAG

w
k4

trl

LCED -- ZELF SEALING
ZIFFER -- ONE END ATTACHED, MECHANICALLY CPEN/SHUT
EASEEALL CAP -- PUSH SMaLL DIAMETER HOLE OVER PIN FOR TIGHT FIT

TWISTING RING CLOSURE -- SLIDE RING OVER TOP OF BAG, TWIST TO CLOSE,
SECURE IN PLACE WITH VELCRO (SIMILAR TO FOLD OVER EREAD BAG)
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APPENDIX H

Machine Characteristics, Cost, and
Production Calculations



Machine Characteristics, Production and Cost Calculations

1) Dimensions of habitat's surface (half-cylinder): diam =9 m.
length = 12 m

2) Thickness of protective area: th =2 m.

3) Total volume of dirt and bags needed for protection:

Vt = (pi/8) * [(9+2+2)72-9/2]*12 Vit = 418 m"3
(estimate Vt to be 450 m”"3) Vit = 450 m"3
4) Volume of dirt and bag (per filled bag): Vb= 29741 in"3

or Vb= .487 m"3
5) Number of bags:
Nb = 450 m?3/ 487 m”3 Nb = 924 bags

6) Total weight of bags (on earth):

Wb = Nb * wb
Wb = 924 bags * 1.50 lbs/bag Wb = 1386 lbs
or Wb =628 kg
7) Velocity of truck: 7 km/hr
8) Width of bag when opened into rectangular shape: 75 cm.
9) Distance scoop is pushed into ground 3 cm.

10) Volume of dirt picked up per hour:

Vh = width * depth * velocity
Vh = 75 cm.*3 cm.*700000 cm/hr = 158 mA3/hr

11) Time for each bag to fill up (filling time alone):

Tb = Vb / Vh * 60 min/hr
Tb = 29702 inA3*(.0254m./in.)*3/158 m”3/hr*60 min/hr

Tb = .18 min.



Calculations (cont'd)
12) Total time to fill each bag:
(includes opening, moving, and closing), approx. Tt = 6 min.

13) Bags filled per day (8 hrs)

Bd = 8 hrs * 60 min/hr / Tt Bd = 80
14) Distance truck travels for each bag to fill up:

Dt = velocity * Tt

Dt = 7 km/hr * 1/60 hr/min * 6 min. Dt = 700 m.
15) Maximum number of bags on platform:

Nbp = bags filled per day Nbp = 80

16) Total length of bags on platform:

Lbt = bag length + Nbp*seam width
Lbt = 6 feet + 80*1 inch Lbt = 12.7 ft.
or Lbt =3.86 m.

17) Length of platform:

Lp = bag length + Lbt + 2 in.
Lp = 6 ft. + 12.7 ft. + 1/6 ft. Lp = 189 ft
or Lp=575m
18) Width of platform:

wp = bag width wp = .914 m.
19) Thickness of platform: Tp = .2 cm.
20) Dimensions of tubing supporting platform: 16 x 2 mm * 1 m

(Shigley, p.734)

21) Density of Aluminum 6061-T6 2700 kg/m73
(Marks', 6-11)



Calculations (cont'd)
22) Weight of platform and tubing:

Wpt = 4*weight of tube + density*Lp*wp*Tp =
4* 687 kg. + 2700 kg/m”3* 5.75m* .914m *.002m.

Wpt = 31.1 kg
23) Weight of scoop:
support column -- 34 cm * 5 cm * 4 cm * 2.7 g/cmA3
= .184 kg
triangular sides -- 76.2 cm*5cm*.4cm *2.7g/cm”3 * (2)
= .823 kg
bottom -- [76.2cm*Scm*.4cm + (pi/8)*(73 cm)*2]*2.7 g/em”3
= 6.06 kg
electromagnet -- = .5 kg
hooks -- negligible
rod / elevating hooks -- (100cm + 76.2cm) * (pi/4)*(1.2 cm)fh2 ¥
2.7 gfem”"3
= .540 kg
Total weight of scoop: =811 kg
24) Total weight of scoop, platform, and bags
(excluding motors, microprocessors)
= 667 kg
25) Approximate weight of motors and microprocessors = 20 kg
26) Total weight of cargo to be shipped to the moon = 687 kg

27) Cost of shipping this weight at $20,000/1b

$20,000/Ib *1kg/2.204 1b * 687 kg = $6.23 million



