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ABSTRACT

In predicting the aerodynamic characteristics of airfoils operating at low
Reynolds numbers, it is often important to account for the effects of laminar (tran-
sitional) separation bubbles. Previous approaches to the modelling of this viscous
phenomenon range from fast but sometimes unreliable empirical correlations for the
length of the bubble and the associated increase in momentum thickness, to more
accurate but significantly slower displacement-thickness iteration methods employ-
ing inverse boundary-layer formulations in the separated regions. Since the penalty
in computational time associated with the more general methods is unacceptable
for airfoil design applications, use of an accurate yet computationally efficient model
is highly desirable. To this end, a semi-empirical bubble model has been developed
and incorporated into the Eppler and Somers airfoil design and analysis program.
The generality and the efficiency ha;»;e Been achieved by successfully approximat-
ing the local viscous/inviscid interaction, the transition location, and the turbulent
reattachment process within the framework of an integral boundary-layer method.
Comparisons of {E?predicted aerodynamic characteristics with experimental mea-
surements for several airfoils show excellent and consistent agreement for Reynolds

numbers from 2,000,000 down to 100,000.
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Chapter 1

INTRODUCTION

This thesis is concerned with a particular aspect of the overall task of estimating
the aerodynamic performance of airfoils. Before a more precise statement of the
problem can be made, it is necessary to describe its physical setting and to define

some important terms.

Background and Definitions
The prediction of the aerodynamic performance of a two-dimensional airfoil
can be obtained by letting the airfoil remain stationary while analyzing the flow of
air over it. The speeds of interest here are usually sufficiently smaller than the local
speed of sound of the air to justify an assumption of incompressible flow.

As the Reynolds number, defined as
Ut

v

R=

(1.1)

falls below approximately R = 4 x 10%, the laminar boundary layer may run out
of momentum before transition on the surface occurs. Since the momentum of the
outer flow cannot readily reach the stagnant fluid near the surface, the imposed ad-
verse pressure gradient can only be balanced by a negative velocity of the flow. That
is, the boundary layer separates leaving a thin region of reversed flow underneath
it. In such cases, transition occurs in the free shear layer downstream of laminar
separation and is usually followed by reattachment as a turbulent boundary layer,
such that a small amount of fluid remains trapped between the shear layer and the
surface. This pocket of fluid is called a laminar separation bubble.

Laminar separation bubbles on airfoils are observed over a large Reynolds num-

ber range. Due to the ability of the turbulent shear layer to reattach to the surface
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of a streamlined shape such as an airfoil, the critical Reynolds number is approx-
imately two orders of magnitude smaller than that at which laminar separation is
first observed. In the flow over a circular cylinder, a large jump in drag coefficient is
observed as the Reynolds number is decreased approximately below R = 300, 000.
At this value, in fact, the bubble cannot reattach immediately downstream of tran-
sition and massive laminar separation results. For airfoils, the critical Reynolds
number depends on thickness and angle of attack but is usually between R = 40,000
and 200,000. Unlike the case of a cylinder, a bubble that has burst due to a de-
crease in Reynolds number will usually reattach upstream of the trailing edge. In
this state, it is called a long bubble and it causes a large decrease in lift and a
large increase in drag. Bursting may also occur at high Reynolds numbers near the
leading edge, downstream of the suction peak present on the upper surface at high
angles of attack. The inability of the shear layer to reattach is ascribed in this case
to the extreme values of the adverse pressure gradient.

In the first forty years since laminar separation bubbles were first observed by
Melville Jones in 1933, leading-edge bubbles at high Reynolds numbers received
most of the attention since their bursting is generally believed to be responsible for
abrupt stall. In more recent years, the development of small remotely controlled
aircraft (Remotely Piloted Vehicles) has shifted the Reynolds number range of in-
terest to values below one million. In this range, due to the delayed transition,
bubbles may form near the mid-chord causing significant increases in profile drag,
depending on their length and thickness. The shift from leading-edge to mid-chord
bubbles has been a fortunate one. Since the latter are usually an order of magni-
tude larger (although they appear to be very similar in internal flow structure), the
greater ease of measuring pressure or flow variables has made it possible to make

great progress toward full understanding of this phenomenon. This understanding,



however, is still not sufficient to establish a reliable bursting criterion.

Whether bursting occurs due to a decrease in Reynolds number or to an in-
crease in pressure gradient, the resulting flowfield is characterized by a global strong
interaction between the viscous and the inviscid regions and section properties can-
not be obtained by means of simple approximations. Away from these limiting
conditions, however, the viscous/inviscid interaction induced by the bubble is lim-
ited to its immediate vicinity, especially at low to moderate lift coefficients. Such
bubbles have traditionally been called “short,” although it may be more accurate

to refer to them as “weakly interacting.”

Problem Statement

The purpose of this study is to develop a model for weakly interacting laminar
separation bubbles developing in the incompressible, two dimensional, viscous flow
over airfoils that can accurately account for the increase in airfoil profile drag that
accompanies them.

From the point of view of boundary-layer theory, the distinction between weak
and strong viscous/inviscid interaction is made on the basis of the magnitude of
the modification to the inviscid pressure distribution by the viscous flow. A weakly
interacting bubble, therefore, is such only insofar as its effect on the global invis-
cid pressure distribution is concerned but is still characterized by a strong local
interaction. In addition, when first confronted with the description of a region of
recirculating flow between a separation and a reattachment point, it seems natural
to assume that the flowfield is elliptic and that the boundary-layer approximations
are not applicable. Given the very slow speeds of the recirculating flow and the
thinness of the bubble, however, the boundary-layer approximations are usually as-
sumed to be valid everywhere. Rather than within the recirculating flow, in fact,

important signals are communicated upstream through the interaction with the



4

outer flow. A parabolic boundary-layer method is therefore adequate for analyzing
laminar separation bubbles as long as it is coupled to the outer elliptic flow through
at least a local interaction algorithm. This has been employed in the present model
and, to maximize the computational efficiency, the boundary-layer development is
calculated with an integral method.

In order to determine the increase in drag caused by a bubble, the shear layer
development must be calculated through the different regions of the bubble as shown
in Fig. 1-1. The formation of a bubble is initiated at point S, shown in the figure,
by the laminar boundary layer separating from the airfoil surface. Using integral
boundary-layer methods, this point can be determined with sufficient accuracy for
airfoil design work. Once separated, the free shear layer development must be
tracked and the transition from laminar to turbulent flow, which occurs near the
point T, predicted. As shown in the figure, the separation bubble causes a plateau
to form in the velocity distribution between the points corresponding to laminar sep-
aration and the end of the transition region. From this point, the turbulent part of
the bubble encompasses a pressure recovery region which leads to the reattachment
of the turbulent shear layer at point R. As an additional pressure recovery always
occurs downstream of a reattachment point [Green, 1966], the velocity distribution
corresponding to the highly non-equilibrium, relaxing boundary layer downstream
of reattachment usually “undershoots” the inviscid distribution. Eventually, the
turbulent boundary layer reaches its fully developed state and the undershoot re-
gion merges smoothly from below with the inviscid velocity distribution. Clearly it
is possible, especially at low Reynolds numbers, that the turbulent boundary layer
does not reach equilibrium before the trailing edge of the airfoil.

Rather than describing the effect of the bubble on the pressure distribution,

it is more informative to explain why such an effect is observed. This can be done
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Fig. 1-1  Schematic of bubble and of its effect on the velocity distribution
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by invoking two conservation laws, the conservation of mechanical energy and the
conservation of linear momentum. In an inviscid incompressible flow, the conserva-
tion of mechanical energy is simply Bernoulli’s equation. While inside the boundary
layer the total pressure is continually and unevenly being dissipated by the shear
stresses, static pressure rise is still achieved by trading for it the available kinetic
energy inside the boundary layer. Once the boundary layer runs out of kinetic
energy shortly downstream of separation, since conservation of energy is a scalar
law and energy is a positive-definite quantity, no more pressure can be recovered.
Conservation of linear momentum, on the other hand, is a vector law such that,
once the boundary layer runs out of momentum, it has no difficulty allowing it to
become negative to balance the imposed inviscid adverse pressure gradient. As soon
as this happens, however, the presence of the reverse flow, felt by the outer flow as
a modification of the airfoil surface, effectively decreases this same inviscid pressure
gradient. As the pressure gradient decreases, it, in turn, induces a lesser growth of
reverse flow. In the limit, a bounded growth of reverse flow at constant pressure
results. This new distribution of static pressure matches what the energy equation
allows.

While the momentum present in a laminar boundary layer is strictly dependent
on what is “handed down” by the upstream development, the efficient cross-stream
transfer of momentum by the Reynolds stresses that appear downstream of transi-
tion in the bubble brings the momentum of the outer flow near the wall. This allows
the reverse flow to be accelerated and near-inviscid pressure to be recovered by the
reattachment point. This loss of outer flow momentum is observed, by definition,
as a rapid boundary-layer growth in the turbulent part of the bubble. Within the
context of an integral method, the momentum lost by the flow results in the large

growth in momentum thickness measured in this part of the bubble and can result
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in a significant increase in airfoil drag.

Previous Models

Previous attempts at modelling this flow phenomenon range from very crude
empirical correlations for the transition length from laminar separation and subse-
quent reattachment behavior to full simulations of the Reynolds-averaged turbulent
Navier-Stokes equations. This variety of approaches is partly caused by the long
time-span over which this problem has been studied. In the early years, several
empirical models or empirical correlations for particular bubble characteristics were
proposed. Von Doenhoff [1938] assumed that the dividing streamline is straightr
and tangent to the airfoil surface at the separation point. He determined the tran-
sition location by assuming a constant transition Reynolds number, formed with
the velocity at separation and the distance between separation and transition along
the dividing streamline. The distance to reattachment is then determined using
a constant spreading angle of the turbulent shear layer of 15° measured from the
direction of the dividing streamline. Interestingly, the present model resembles this
initial configuration more than many others that have followed in the next fifty
years. Crabtree [1957] proposed a coeflicient of pressure rise in the turbulent part
of the bubble equal to

o ¢

This coefficient has been used mainly to monitor bubble bursting, which would

happen for values of o > 0.35. These early results, measurements, and hypotheses
are discussed extensively in review papers by Ward [1963] and Tani [1964].

Gaster [1967] investigated bubble bursting with decreasing Reynolds number.

He characterizes the bubble by the values of the momentum thickness Reynolds



number at separation,

Us(6
(Rs,)s = —————S(VQ)S (1.3)
and a pressure gradient parameter,
2
p- 8)s AU (1.4)
v As

where the velocity gradient in Gaster’s parameter refers to the mean inviscid gradi-
ent between the separation and reattachment points. With varying conditions, for
instance decreasing Reynolds number, a locus of points corresponding to the bubble
evolution can be traced on a plot whose axes measure variations in these two param-
eters. He found that bursting would occur always along the same line on this plot.
Although bursting is not modelled in this study, these same two parameters play
a fundamental role in the present model. Horton [1967) proposed a semi-empirical
model where the governing integral boundary-layer equations are coarsely approxi-
mated inside the bubble. This model will be discussed in more detail in Chapter 2.
Van Ingen [1975] and Van Ingen et al. [1980, 1986] studied the bubble problem for
many years. Their model is distinguished by a good approximation to the pressure
distribution in the bubble region and of the transition process. The shear layer
growth along the bubble, however, is not adequately approximated. These methods
are usually not sufficiently accurate or general, their main shortcoming being an
inability to account for the local ellipticity of the bubble flowfield.

Since approximately 1970, advances in computer technology have prompted a
number of more detailed viscous simulations by finite-difference methods. Briley
and McDonald [1975] developed a local Navier-Stokes solution for the bubble region
which is matched with the steady boundary-layer equations upstream and down-
stream of the bubble and with the inviscid outer flow. Their predictions match

Gault’s [1955) measurements to an acceptable degree of accuracy but comparisons
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with airfoil drag data are not given. Davis and Carter {1984] developed an in-
teracting method based on a perturbation of the outer inviscid flow by a source
distribution representing the bubble and a finite-difference boundary-layer method
for the bubble flowfield and boundary layer. By properly accounting for the local
flow direction, their method is able to resolve rather interesting details about the
flow inside the bubble. For instance, there appear to be three different vortices:
one in the laminar part, one in the turbulent part, and one in between, next to the
wall and rotating in the opposite sense. While the bubble characteristics predicted
by this method compare well with the experimental data presented in their report
[Gault, 1955], low Reynolds number cases and the effect of the bubble on airfoil
drag are not considered. Cebeci and Schimke [1983], Cebeci [1989], and Kwon and
Pletcher [1979] follow similar formulations, where a finite-difference boundary-layer
method interacts with the outer flow. These methods are limited by the general-
ity of the turbulence model they employ and, for the present time, are much too
inefficient computationally to be used routinely.

Over the same period of time, approaches that can be considered of an in-
termediate degree of complexity have flourished: interactive methods that use an
integral formulation for the boundary-layer development. Crimi and Reeves [1976],
Drela and Giles [1987], Drela [1989], and Gleyzes et al. [1983] are of this type. The
advantage of such methods is that they combine a relative computational efficiency

with a potential for sufficient accuracy and generality.

A Model for Airfoil Design

In the Reynolds number range over which laminar separation bubbles form,
40,000 < R < 4,000,000, they assume many different sizes and thicknesses, each
tied to a particular airfoil geometry or to particular conditions on different airfoils.

In fact, many different types of aircraft with different mission requirements and
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design constraints fly in this range. It often happens that particular airplane design
goals conflict with flow conditions that would minimize the detrimental effects of
bubbles. For instance, the low-drag requirement of sailplanes necessitates extensive
use of natural laminar flow technology. The favorable pressure distribution to 50
or 60% of the chord generally employed on laminar flow airfoils necessarily leads
to a steep pressure recovery over their aft-portion. The high performance of such
airfoils hinges on forcing transition before the boundary layer encounters the ad-
verse pressure gradient since the higher energy turbulent boundary layer is more
able to recover the near-freestream trailing-edge pressure without separating. This
is achieved by means of a region of moderately adverse pressure gradient, a “tran-
sition ramp,” at the end of the favorable pressure gradient region. As the Reynolds
number decreases, the transition ramp becomes insufficient to destabilize the lam-
inar boundary layer into transition before the beginning of the recovery such that
a thick, high-drag bubble forms. The trade-off, therefore, is between the advan-
tages of natural laminar flow at cruise speeds and the disadvantages of the bubble
in thermalling flight. The higher ¢, required for thermalling would at first sight
seem to help the designer in avoiding the bubble. In fact, higher c,’s are obtained
at higher angles of attack such that the adverse pressure gradient starts near the
leading edge. The destabilizing effect of this type of pressure distribution is offset,
however, by the lower Reynolds numbers characteristic of this flight regime. Since
small changeé in the pressure distribution can effect large changes in bubble struc-
ture and, therefore, in drag, this “fine-tuning” engineering problem can be resolved
only if the effects of the bubble can be accurately calculated under different types
of pressure distributions at different Reynolds numbers.

One way of accounting for laminar separation bubbles in airfoil design is the

bubble analog used in the design and analysis program of Eppler and Somers [1980].
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The design method of this program uses an inverse conformal mapping method that
allows great freedom and flexibility in specifying the characteristics of the airfoil
pressure distribution to achieve the desired performance. The aerodynamic charac-
teristics are calculated by an integral boundary-layer method driven by the inviscid
velocity distribution. Close monitoring of the boundary-layer development is ac-
tively used in the design process to aid in the modification of the inviscid velocity
distribution to achieve the desired transition and separation behavior. In this pro-
gram, the designer is warned about the presence of separation bubbles which might
unacceptably increase the drag over that which is predicted assuming that transi-
tion occurs at laminar separation. Although this approach has proven very useful in
designing airfoils for low Reynolds number applications, it would be advantageous
to have predictions of section properties which more fully account for the presence of
laminar separation bubbles provided this can be done without significantly increas-
ing computational requirements. In fact, while above R = 500,000 this criterion
can be used effectively to design airfoils with short bubbles that do not increase
the drag of the airfoil, as the Reynolds number decreases it becomes increasingly
difficult to eliminate the detrimental drag increases [Mueller, 1984].

In order to design low Reynolds number airfoils more effectively, a new method
of modelling the bubble has been developed in this thesis. It combines the speed of
the empirical and semi-empirical approaches of the early years with the accuracy of
the more recent interactive methods. This approach rests on the hypothesis that it
should be possible to model a local phenomenon such as a laminar separation bubble
through local rather than global information. This hypothesis has been confirmed.
While the boundary-layer development upstream of laminar separation must in some
cases be taken into account in order to predict accurately the transition location

inside the bubble, all other characteristics of the bubble flowfield have been found
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to depend on a few local scaling parameters that will be discussed in the following
chapters. Furthermore, by accounting for the interaction through a local iteration,
a uniformly accurate laminar separation bubble model has been developed. This
model has been incorporated into the Eppler and Somers program. Although it is
unable to account for strong interactions such as the large reduction in the suction
peak sometimes caused by leading-edge bubbles, it is able to predict the increase
in drag and the local alteration of the airfoil inviscid pressure distribution that are
caused by bubbles occurring in the operational range which is of most interest.

In Chapter 2, the reasoning leading to the independent parameters that control
the bubble is retraced. In Chapter 3, the calculation of the laminar part of the
bubble is described in detail. In Chapter 4, possible approaches to the modelling
of transition are discussed together with the method employed here. In Chapter 5,
the calculation of the turbulent part of the bubble is described in detail. Several
empirical functions necessary to model this most complicated part of the airfoil
flowfield are proposed. In Chapter 6, several airfoils are analyzed and the results
are compared to experimental data. In Chapter 7, the range of validity of the present
model is assessed, important results are summarized, and specific suggestions are
given toward enlarging the empirical data base necessary to confirm the present

formulation.
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Chapter 2

LOCAL PARAMETERS

In this chapter, the approach followed in developing the present laminar sepa-
ration bubble model is justified. It is then shown how the shortcomings of previous
similar models can be remedied by letting the bubble flowfield depend on three local

parameters.

Modelling Philosophy

The development of a model of a physical phenomenon entails a three-step pro-
cess that is usually iterative rather than sequential: (1) identifying which dependent
variables need to be modelled, (2) identifying which independent variables best char-
acterize the conditions on which the phenomenon depends, and (3) determining the
correct relationships between the two. In the case of incompressible fluid flow, (1)
is comprised by the velocity and pressure field, (2) by spatial variables, time, and
boundary conditions, and (3) by a differential relationship, the Navier-Stokes equa-
tions, which embodies pointwise mass and momentum conservation. This model can
be integrated numerically to obtain the dependence of the velocity and preésure on
varying geometry and flow conditions for the laminar separation bubble problem as
well as for thousands of other flowfields.

Motivated by computational efficiency requirements, methods of varying de-
grees of approximation have been developed. As soon as approximations are intro-
duced, the modelling challenge changes in nature since assumptions have to be made
about what does and what does not need to be approximated and these assumptions
must be supported either by analytical arguments or by experimental evidence. For

instance, viscous/inviscid interaction methods rely on the boundary-layer assump-
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tions and on the extensive analytical and experimental evidence that supports them.
There are two important consequences of this type of approximation: (1) the num-
ber and types of flowfields that can be analyzed with interactive boundary-layer
methods is severely restricted from what could be done by the original equations;
(2) by integrating the inviscid or outer problem, the independent conditions are
shifted from geometry and spatial variables to flow variables. The final solution is
arrived at by allowing the outer and boundary-layer flows to interchange their roles
as dependent and independent processes at each iteration, with the relationship
between them given by the numerical integration of either Laplace’s equation or
the boundary-layer equations. Although the solution information is limited to the
airfoil surface, approximating high Reynolds number viscous flows in this way adds
valuable integral insight about the solution over and above the knowledge that it 1s
governed, pointwise, by the Navier-Stokes equations.

If the computational requirements are even more stringent, as in the present
casc, then a more drastic approximation of the physical phenomenon is necessary.
The resulting model will be even more limited in applicability and it will have to
rely on relationships that are further removed from the original differential pointwise
balance and closer to the integrated solutions. In essence, the limit to this approx-
imation process is simply an explicit solution to the original mathematical model
of the phenomenon, nec¢ssarily obtained at the expense of its generality. That is,
if such a solution is not possible at a particular level of approximation, the model
is simplified further. The advantages of speed and insight brought by an explicit
solution, however, are off-set by a model that may have become too simplistic and
restrictive in applicability. In this thesis, the approximation is brought one step be-
yond the viscous/inviscid interaction approach to a semi-empirical method. In this

case, this approach has proven to be a successful compromise between speed, gener-
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ality, and understanding. In order to minimizé the reliance on empirical “guesses,”
the governing integral boundary-layer equations are enforced in the bubble and are
complemented with a set of simple relationships that capture the essential features
of the bubble allowing the prediction of its characteristics and of its effects in gen-
eral. This formulation was arrived at by starting with the simpler models and

adding complexity only after establishing that it was absolutely necessary.

Early Results

In the course of the research reported here, efforts to develop a method able to
predict the effects of a laminar separation bubble which interacts weakly with the
inviscid flow began with the incorporation of the classical empirical model of Horton
[1967], modified according to the suggestions of Roberts [1980] and Schmidt and
Mueller [1989], into the Eppler and Somers program. Because they are formulated
in terms of integral boundary-layer properties, bubble models such as these are well
suited to the integral boundary-layer analysis method employed by Eppler. This
method employs two coupled governing differential equations, the momentum and

energy integral equations,

dé &2 dU

T =3 ety @1
dés 83 dU

s PTG (2:2)

together with appropriate closure relations for ¢, Cp, and Hiz [Eppler, 1963],
given in the Appendix. Contrary to simpler, one-equation methods such as that
of Thwaites [1949], in two-equation methods the shape factor (Haz, in this case) is
obtained directly from the governing equations and is therefore independent of the
local pressure gradient parameter. This allows such methods to analyze accurately

the non-similar boundary-layer developments characteristic of aerodynamic flows
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provided that the assumed family of velocity profiles approximates the actual flow
reasonably well.

The empirical models noted above do not take advantage of the accuracy af-
forded by a two-equation method to calculate the development of the shear layer
along the bubble. Instead, they obtain the growth of §, along the bubble by means
of rather coarse approximations of these equations. Thus, assuming a constant-
pressure plateau betwecen separation and transition and negligible skin friction

brought by the near-stagnant fluid in this region leads to

(82)1 = (82)s (2.3)

from the momentum integral equation. Based on low Reynolds number measure-
ments [Schmidt and Mueller 1986; O’Meara, 1986; Brendel, 1988}, Schmidt and

Mueller [1989] suggest using, instead,

(b2)r _ (62)s (1.1969)2(41/¢)
c \/1+ [(62)s /<l (Ree,)s 24

from the similarity solution for the laminar free shear layer. The value of momen-

tum thickness growth predicted by this equation, which was proposed earlier by
Russell [1978], increases with decreasing Reynolds number. In order to evaluate
this equation, the length of the laminar part of the bubble, given by correlations to
be discussed in Chapter 4, must be known.

From the transition point, the growth of &, in the turbulent part of the bub-
ble is approximated by simplifying the momentum and energy integral equations.

Combining these two equations leads to Truckenbrodt’s shape parameter equation,

dH 8, dU
ds” = (Hyp - DHn 22 4 Cp— L Hy (2.5)

s
2 U ds 2

As discussed by Horton [1967], it appears from experimental data that

[dflfs‘”]n =0 (2.6)
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Using this result along with that of vanishing skin friction at a point of reat-

tachment, Horton was able to reduce Eq. (2.5) to

[iSldU ‘o (2.7)

—_— = | = A
u dS]n [Hsz(le—l)]n "

The assumption of a universal reattachment velocity profile and a constant Cp in the
turbulent part of the bubble leads to a constant value for Az. Assuming constant
Cp and Hj;, and a linear pressure recovery from transition to reattachment, one

can integrate the energy integral equation to obtain the momentum thickness at
reattachment,

(62)m = (b2)7 (—%)3 + 02 (4(;’;2) (1 + ZZ) 1+ (%)T (2.8)

Then, eliminating (8;)r between Eqgs. (2.7) and (2.8) one obtains

0y = (E)r(g *(1 = 7) (2.9)

PREAIT

In order to implement this result numerically, Uz is decreased in small increments
from the value of Uy. At each step, £ is calculated and it is checked whether or
not the segment joining 7 to R intersects the inviscid velocity distribution. When
this happens, (62)% is calculated from Eq. (2.8) and the turbulent boundary-layer
method is started at sz using this value and (Hs2)=r = 1.51 for initial conditions.
This type of formulation is inadequate for several reasons. It does not properly
account for the effects of the local viscous/inviscid interaction on the pressure dis-
tribution in the laminar part and therefore cannot accurately calculate the growth
of 62 in this region. It relies on local empirical transition criteria which are un-
able to sense the influence of the upstream boundary-layer development. Also, in

actuality, neither H3; nor Cp are constant in the turbulent part of the bubble.
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The turbulent recovery distribution can deviate appreciably from a straight line.
Finally, the pressure at the reattachment point can be significantly below or above
the corresponding inviscid value.

In an attempt at better approximating the pressure distribution induced by
thé bubble, van Ingen’s functions were implemented [Ingen and Boermans, 1986].

In the laminar part use is made of the empirical function

U

oo = 978+ 022 exp(—4.545¢ — 2.5¢%) (2.10)
- ,
where
§— S8s
= 2.11
¢ (Rs;)s(b2)s (211)

which allows for a slight pressure recovery between separation and transition. For
the turbulent part, a Stratford pressure distribution is employed and again it is
assumed that reattachment occurs at the intersection with the inviscid distribution.
Fig. 2-1 shows a comparison between the Horton and Stratford recoveries. The
dashed line is the locus of possible reattachment points as given by Eq. (2.9).
Using the empirical separation bubble model noted, the sensitivity of the
boundary-layer development and drag prediction to various parts of the bubble
was explored. In order to achieve accurate drag polar predictions, it was found
necessary to capture the vanishing of the bubble with increasing adverse pressure
gradient while at a constant chord Reynolds number. It is found that the transition
length for such empirical models responds to variations in chord Reynolds num-
bers but not in pressure gradient. The drag prediction, in turn, is very sensitive
to small variations in the governing parameters, for instance, the pressure level at
the beginning of the turbulent pressure recovery. Thus, although generally capa-
ble of predicting features of the bubble to within thirty percent, empirical bubble
models based only on conditions at separation cannot provide acceptable drag pre-

dictions. Fig. 2-2 shows the aerodynamic characteristics of the Eppler E387 airfoil
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at R = 300,000 obtained with this early version of the bubble model compared to
the original Eppler and Somers prediction and the measurements of McGhee et al.
[1988] taken in the Low Turbulence Pressure Tunnel at the NASA-Langley Research
Center.
| Before beginning a discussion of possible alternatives to the above approxima-
tions, two issues indirectly affecting the bubble model should be addressed. Firstly,
due to the presence of the boundary layer, the experimental pressure distribution
does not equal the inviscid one at the same angle of attack but falls inside it, leading
to a smaller lift coefficient. If a weakly interacting bubble is present, it will modify
the viscous pressure distribution only locally. Using the inviscid pressure distribu-
tion to drive the bubble model, therefore, necessarily leads to a discrepancy between
the predicted and measured results if the same angle of attack is prescribed. This
discrepancy can be eliminated by employing a viscous/inviscid interaction algo-
rithm. While appropriate for analyzing near-stall conditions, methods of this type
are not really necessary at lower lift coefficients where the design effort is most often
concentrated. In fact, since aerodynamic characteristics are usually compared at
the same cg rather than at the same «, the difference in angle of attack between the
experimental and inviscid lift coefficients poses no obstacles to comparing drag pre-
dictions obtained with the inviscid pressure distribution to the experimental drag
polar. It may be expected that the validity of the present model will decrease for
mid-chord bubbles on highly aft-loaded airfoils and for leading-edge bubbles near
bursting,.
Secondly, the turbulent boundary-layer analysis method developed by Eppler
and employed in the program is based on empirical equilibrium relationships be-
tween the integral variables [Eppler, 1963]. While quite appropriate for analyzing

high Reynolds number flows without bubbles, such a method cannot correctly ac-
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count for the relaxing, nonequilibrium turbulent boundary layer downstream of
reattachment, especially at lower Reynolds numbers. The present model, therefore,
rﬁakes use of the nonequilibrium turbulent boundary-layer method developed by
Drela [1986]. To provide a comparison between these two boundary-layer meth-
ods, in Figs. 2-3 and 2-4 the Eppler E387 and the NASA NLF(1)-1015 airfoils
are analyzed assuming transition at the laminar separation point using the origi-
nal and Drela’s turbulent boundary-layer methods. The turbulent separation point
predicted by Drela is downstream of that predicted by Eppler for "che low Reynolds
number case but is equal to it at the higher Reynolds number. The drag coefficient,

however, is consistently higher by 10 to 15 counts.

The Local Independent Parameters Controlling the Bubble

It is stated in Chapter 1 that the present model has confirmed the hypothesis
that it should be possible to model the weakly interactive bubble solely by means of
local parameters, with the exception of the transition process. Although transition
may be the most important effect, it is not of much help without an accurate
estimation of the bubble flowfield. Thus, the failure of the early empirical models
can be traced not only to their poor modelling of transition but also to their inability
to capture the principal physical processes in the two parts of the bubble. In spite of
this, their reliance on local conditions has not been abandoned in the present model.
Rather, it has been extended to achieve a more detailed prediction of this flowfield.
Specifically, the local parameters must be able to characterize three aspects of the
bubble flowfield that have been found to control all other bubble characteristics:
the boundary-layer momentum thickness at separation, the mean inviscid pressure
gradient along the bubble, and the thickness of the bubble at transition. In addition,
the correct lowest-order response of the bubble to these inputs must be identified.

The failure or success of previous approaches to predict the bubble flowfleld and its
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effects on airfoil performance can be shown to be directly related to their failure or
success to account properly for these independent and local flow conditions.

The first investigators of the bubble problem recognized that the transition
location plays a fundamentally important role in determining the size of the bubble.
They therefore recognized the need to estimate the degree of instability present in
the boundary layer as it separates from the surface. A very stable boundary layer
at separation, in fact, is likely to be followed by a fairly long bubble, whereas an
unstable one would be associated with a shorter bubble. The Reynolds number
has been universally used as an indicator of how far from turbulence a particular
flowfleld is. In addition, as the chord Reynolds number is decreased, the bubble
becomes longer until it bursts at the critical value. It seemed plausible, therefore,
that a good correlating parameter for the stability of the separating boundary-layer
flow could be arrived at by forming a Reynolds number with the value of inviscid
velocity and momentum thickness at laminar separation as characteristic velocity

and length,

(Rs,)s =

Us(®2)s (2.12)

This parameter is certainly useful but, unfortunately, only provides a coarse indica-
tion of the stability of the flow at laminar separation. Another parameter that has
been used extensively in empirical correlations is the value of momentum thickness
at laminar separation nondimensionalized with respect to the airfoil chord. Rather
than a measure of the stability of the separating shear layér, this parameter only
contains information on how much momentum has already been lost by the bound-
ary layer upon reaching the laminar separation point. These criteria lack sensitivity
to the effect of the pressure distribution on transition, namely the effect of the up-
stream boundary-layer development. As will be discussed in Chapter 4, this effect

is well modelled by the e™ method of linear stability theory.
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Another effect that needs to be accounted for is the local strong viscous/inviscid
interaction. Since this interaction is a result of the presence of separated flow and
since the amount of separated flow is affected by the severity of the pressure gradient
and by (62)s, it is not surprising that this effect has been found to scale well with
a parameter that incorporates these flow conditions, Gaster’s pressure gradient
parameter, given by Eq. (1.4).

It should be mentioned at this point that a recent study [Pauley et al., 1989]
of the laminar separation bubble shows Gaster’s parameter to bé important in yet
another respect. In this study, the unsteady laminar Navier-Stokes equations are
discretized to calculate the flow through a duct. Although the local Reynolds num-
ber of the flow based on the distance between the entrance of the tunnel and the
laminar separation point is on the order of R = 50, 000-300, 000, transition to turbu-
lence cannot be accurately computed (computational unsteadiness can occur) due
to the grid resolution and time-step used to keep the computational requirements
within reasonable limits. A suction port on the upper wall of the duct provides
an adverse pressure gradient for the laminar boundary layer developing along the
lower wall.

The value of the parameter P, = .24, a modification to Gaster’s parameter
with the velocity gradient representing the maximum rather than the average in-
viscid gradient between separation and reattachment, is found to correspond to the
boundary between steady and unsteady reattachment of the laminar shear layer.
This boundary correlates well to Gaster’s bursting line such that it separates the
long (steady, Pmaz < .24) from the short (unsteady, Pmar > .24) bubbles measured
by Gaster. Because of this correlation between the steady and long bubbles and the
unsteady and short bubbles, it is proposed by Pauley et al. that the reattachment

process may be governed by the large-scale laminar pressure field rather than by
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turbulent transfer of momentum. While this cannot be proved or disproved with
certainty, the onset of unsteadiness can be justified in the case of laminar flow. In
fact, as Prac increases, the inviscid gradient and/or the momentum loss at sepa-
ration increases. Thus, a greater momentum transfer is necessary to recover the
inviscid pressure and/or to accelerate the sizable amount of reverse flow. As the
laminar shear layer is not capable of such momentum transfer, reattachment prob-
ably occurs due to Coanda’s effect, or the formation of a low-pressure region below
the shear layer. This effect as it relates to laminar separation bubbles is discussed
by Russell [1978). When the adverse inviscid gradient exceeds the favorable suction
of the flow below the shear layer, the bubble starts growing without bounds; until,
that is, the large vortex of recirculating flow at constant pressure becomes unstable
and is shed causing the bubble to collapse in size. This small bubble then starts
growing again and the cycle repeats.

Before the above description was arrived at, it was thought that transitional
bubbles, too, were unsteady in the large scale and short-time mean. It was also
thought that the unsteadiness near reattachment would feed back upstream and
influence the transition location. It seems now that if there is some unsteadiness
it should not necessarily be periodic in nature and that the turbulent transfer of
momentum is a much more significant factor in determining reattachment than
Coanda’s effect if turbulence is present. Although the final word on transition can-
not be given with the method used in the present model, it appears at this point to
depend mainly on upstream rather than downstream conditions. It is still not clear,
therefore, why the unsteady laminar simulation reported by Pauley et al. correlates
so well with Gaster’s measurements of transitional bubbles. Resolution of this issue
may have to wait for a complete understanding of bubble bursting.

Given a means of approximating the viscous/inviscid interaction in the laminar
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part of the bubble and the transition location, the height of the bubble at transition
can be estimated. This geometrical characteristic of the bubble is the keystone that
bridges the laminar and the turbulent parts, providing the correct characteristic
length for the latter. As the spreading angle of the turbulent shear layer is a
weak function of Reynolds number and pressure gradient, in fact, the length of the

turbulent part of the bubble follows directly and the model is thereby closed.
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Chapter 3

THE LAMINAR PART OF THE BUBBLE

The Eppler and Somers program uses a very reliable criterion to detect laminar
separation. It is based on the value of the energy to momentum thickness shape

factor,

(Hsz)s = 1515005 (3.1)

This value is approached from above. Upon detection of laminar separation, the
development of the separated laminar shear layer is calculated using the momentum
and energy integral equations, together with closure relations to be discussed below.
Instead of implementing this boundary-layer method in the inverse mode as it is
usually done, the development of a general family of pressure distributions in the

laminar part of the bubble allows its calculation in the direct mode.

Pressure Distribution

The function used to approximate the pressure distribution in the laminar part
of the bubble is a generalization of that developed by van Ingen and Boermans [1986]
and given by Eq. (2.10). This distribution allows a slight pressure recovery after
laminar separation, quickly approaching a limiting value. Using detailed pressure
distributions in the bubble region available from wind-tunnel tests of the NASA
NLF(1)-1015 airfoil in the NASA-Langley Low-Turbulence Pressure Tunnel, the
accuracy of Eq. (2.10) was checked for several different conditions. It was found
that, as the pressure gradient along the bubble decreases, the pressure distribution
tends to fall below van Ingen’s curve while, as the pressure gradient steepens, it
becomes flatter, closer to Horton’s approximation and above van Ingen’s curve. It

is therefore postulated that Eq. (2.10) can be improved by relaxing the amount of
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pressure recovery between separation and transition,

5U‘ — (1 — DU) + DU exp(~4.545¢ — 2.5¢?) (3.2)
S

The steeper the pressure gradient along the bubble, the smaller the value of DU.
This behavior is consistent with an inviscid velocity distribution calculated over an
ever-thickening displacement surface in a steepening adverse gradient.

While the agreement with the experimental distributions was much improved
by use of Eq. (3.2), an inconsistency became apparent when attempting to predict
the pressure distribution over leading-edge bubbles. Given the very large gradients
along these bubbles, the predicted pressure distributions in the laminar part were
quite flat, in contrast to the measurements which show only a small perturbation
of the inviscid distribution with a significant pressure recovery between separation
and transition. This apparent contradiction with the trend observed for mid-chord
bubbles can be resolved once it is realized that the amount of pressure recovered
is inversely proportional to the magnitude of the perturbation of the displacement
surface, that is, to the amount of fluid entrained by the bubble. Near the leading
edge, the boundary layer is so thin that the short bubbles (1—6%c) usually observed
there can only hold a very small amount of fluid and can therefore only modify the
inviscid distribution slightly.

Although there is a strong correlation between the thickness of the boundary
layer at separation and the amount of fluid caught in the separated region, the
value of (6;)s more precisely reflects the input to the momentum balance that
determines such amount: the greater the momentum already lost by the boundary
layer, that is, the greater the amount of separated flow necessary to counteract the
imposed inviscid gradient. The variable DU should therefore depend both on the
average pressure gradient along the bubble as well as on (62)s. Both these effects

are included in Gaster’s pressure gradient parameter, Eq. (1.4) which, for this
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reason, is thought to be a better independent parameter than simply the average

dimensionless inviscid velocity gradient along the bubble,

A(U/Us)

—_— 3.3
A(s/e) 49
In dimensionless variables P becomes,
(52)s]" AU/Us)
= 3.4
p=r |2 ST G4

From experimental pressure distributions, it is found that DU 1is well repre-
sented as a function of the Gaster pressure gradient parameter, P. This functional
relationship, shown in Fig. 3-1, was developed by extracting corresponding values
of DU and P directly from the experimental pressure distributions of the NLF(1)-
1015 [NASA LaRC LTPT, June 1987] and the Eppler E387 airfoils [McGhee et al.,
1988]. The solid line is a quadratic least-squares fit that has been included in the

model,

0.0610 + 0.3048P + 0.5072P? —P < .3
DU = .
v {0.0152 -P>23 _ (3.5)

The value of DU = 0.022 used by van Ingen and Boermans falls in the middle of
the variation in DU shown in Fig. 3-1.

As pointed out by van Ingen [1989)], the factor 4.545 in Eq. (3.2) was derived to
ensure continuity in the velocity gradient when Thwaites’s laminar boundary-layer
method is used to determine the laminar separation point. In fact, if the derivative
of Eq. (2.10) is evaluated at laminar separation and the variables are rearranged,

one obtains

[M%ﬁ] = —(4.545)(.022) = —.10 (3.6)
v Slg

which is Thwaites’s laminar separation criterion. Eppler’s separation criterion (Eq.
(3.1)), however, corresponds to slightly different values of Thwaites’s parameter

for differing upstream developments. Furthermore, in the present formulation a
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variable DU is used in place of 0.022. Therefore, the constant necessary to ensure
a continuous velocity gradient at separation when Eq. (3.2) is used in conjunction

with Eppler’s laminar boundary-layer method 1s

When C is substituted for 4.545 in Eq. (3.2), the result is

Ui pu e[ -s9)|} (3.8)

S

where the prime denotes the derivative with respect to s and the second term in

the exponent of the original expression has been neglected.

Closure

In order to integrate the momentum and energy integral equations in the direct
mode as driven by the pressure distribution given above, closure correlations for
Hi,, cs, and Cp must be provided. The most natural choice is to use the reversed
Falkner-Skan, or Stewartson [1954], profiles since the attached Falkner-Skan, or
Hartree, profiles [Schlichting, 1979] are used to develop the correlations upstream
of separation. Recent measurements by Fitzgerald and Mueller [1990], however,
seem to indicate that the Stewartson profiles may not be the best choice. This
matter was therefore examined in some detail.

Fitzgerald and Mueller [1990] have obtained good agreement between their
measurements and the two-parameter profile family originally developed by Green
[1966] for a turbulent shear layer forming a free stagnation point downstream of
a base. As shown in Fig. 3-2, the two parameters are linked to the geometrical
characteristics of the profiles. (h/b) is the ratio of the distance of the shear layer
from the centerline of the wake to the width of the shear layer and G is the am-

plitude of Coles’s wake function. Since there is slip along the centerline of such a
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recirculating base flow, these profiles cannot be used to develop a correlation for cy.
By applying the definitions for the integral thicknesses of the boundary layer and

for the dissipation coefficient, the following relationships are obtained:

1422
H, = b 3.9
¢ -36)-25(1-26) &9
292G+ 5G?) +42(1 - 3G +2G?
H32=( 2 +23 )+ ,’:( +267) (3.10)
(1-3G6)-2%1-206)
w2 G3 3 h
Rs,Cp = 5 [1—§G+2E(1_2G)] (3.11)

In order to compare these relationships to those obtained from the Stewartson
profiles, it is necessary to know how the two parameters vary inside the bubble. The
values used by Fitzgerald and Mueller to fit the profiles measured inside one bubble
can serve as a starting point. The three boundary-layer variables are evaluated
at values of the parameters corresponding to the same downstream station inside
the bubble and then plotted against one another. The same calculations are then
repeated for values of G and (h/b) similar to those used by Fitzgerald and Mueller
in order to determine the sensitivity of the correlations to these parameters. The
result is shown in Figs. 3-3 and 3-4 where these new two-parameter correlations
are compared to those developed by Drela [1986] from the Stewartson profiles. The
solid lines utilize the fitted variations of G and (h/b). As both H;2 and H32 increase
monotonically between separation and transition, moving to greater values of the
abscissa on these plots corresponds to moving downstream inside the bubble. Thus,
both are very similar to the Stewartson correlations near separation but can be
quite different further downstream.

While Hi,(H32) seems quite sensitive to changes in the parameters,
Cp(Hsz, Rs,) is not, thereby making the determination of its exact dependence

on G and (h/b) less crucial. It appears from the measurements that the back-flow,
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proportional to G, may be constant within each bubble although different for differ-
ent bubbles. As shown in Fig. 3-3, the values of shape factors actually measured,
although different in absolute value, follow the same slope, thus confirming a con-
stant value of back-flow velocity. These considerations justify eliminating (h/b)
bétween Egs. (3.9) and (3.10) and expressing the closure relationships in terms of
Hj,, calculated from the governing equations and G, whose behavior within each

bubble appears easier to correlate to local flow conditions,

_ 3(1-G) — Hy
_ W2G3 3 (4 - 5G)(1 - G) - (2 - 3G)H32
Rs,Cp = —— |1-5G - TR (3.13)

Although very encouraging, these results do not appear sufficiently well devel-
oped to be implemented in the model in their present form. In fact, the dependence
of G on local flow conditions is unknown and no measure of ¢ can be obtained
from these profiles. By contrast, although the details of the velocity profiles are
not well represented by the Stewartson profiles, the integrated parameters derived
from them are not far from the corresponding values obtained with the fitted Green
profiles. It seems better, therefore, to keep using the Stewartson profiles, for now,
until these issues have been resolved. Accordingly, the closure correlations devel-
oped by Drela [1986] have been implemented in the model. Since the governing

integral equations yield the value of Hjo directly, Drela’s shape factor correlation is

inverted,
1l
Hai, — 1.104068 Hap — 1.194068 )\ 2 :
Hyp = — 64. 14
12 0.08 + [( 04 ) 64.4 (3.14)
The skin-friction coefficient is found from
_ 2
¢, [ —0067+0.01077% e, Hyp <74 5.15)

R52-2— = 2
~0.067+0.022 [1 - 5], Hip 274
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while the dissipation coefficient is given by

Rs, gﬂ = 0.207 — 0.003(Hy2 — 4)* (3.16)

32

Removal of the Separation Singularity

Knowledge of the pressure distribution downstream of separation has led to a
simple technique for removing the Goldstein singularity at laminar separation and
to allow for some effect of the bubble on the pressure distribution upstream of lam-
inar separation. When the development of the laminar shear layer is calculated in
the direct mode from laminar separation using the function described above, the
boundary-layer variables remain at their separation values for a few percent chord
before starting to grow normally. This is believed a consequence of the singularity,
in the following sense. The growth of the boundary-layer variables upstream of sep-
aration does not reflect just the local pressure gradient but is increasingly affected
by the singularity as separation is approached. This effect is equivalent to a much
steeper pressure gradient than is actually present and causes the distribution of Hj,
to exhibit a very steep slope immediately upstream of separation. The skin-friction
coefficient behaves similarly and thereby leads to a prediction of the separation
point upstream of the experimentally observed location. Therefore, when the sep-
aration values are incremented downstream of separation using a pressure gradient
continuous with its value upstream, it is felt by the boundary layer as, in fact, a
much gentler gradient which cannot maintain the previous rate of growth. In the
present model, the point where the separated laminar shear layer starts growing
again is taken as the actual laminar separation point. The laminar boundary layer
is therefore calculated again from a few percent chord upstream of the “inviscid”
laminar separation point to this point by prescribing between them an assumed

(cubic) development of Hia(s) and solving the laminar boundary-layer equations
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in the inverse mode. Smooth growth of the boundary layer through the separation
point results.

The local inverse solution causes the velocity distribution to start deviating
from the inviscid some distance upstream of the laminar separation point. As this
distribution matches the experimental measurements, this behavior of the separa-
tion point and of the corresponding velocity distribution is believed to be correct.
In fact, as the boundary-layer assumptions break down as separation is approached,
a modification to the inviscid pressure distribution upstream of- separation is to be
expected. Referring to Fig. 3-5, as the new separation point is usually at a higher
pressure than the original, the old value of DU is usually too great and a new one

is calculated from
_ (Us)ota = (Us)new
(Us)old

Using this value and the new value for the velocity gradient at separation, Eq. (3.8)

DUnew = DUsia (3.17)

can be used to generate a new velocity distribution whose tangent is continuous

with the current distribution at the separation point.

Separation Angle

Using the new value of momentum thickness at the “viscous” separation point,
the tangent of the angle the separating streamline makes with the surface is given

by an empirical relationship proposed by Wortmann [1974],

64P
(Rs,)s

tany = —

(3.18)

A similar relationship proposed by van Ingen et al. [1980] was also examined,

(3.19)

B is given the experimental mean value of 17.5. The model did not perform at all

well with the latter relationship. The reason is that the factor 64 P assumes a wide
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range of values, from as low as 2 up to 30 for the range of bubbles examined, and
their average does not give the model enough flexibility. Eq. (3.18), on the other
hand, gives the correct scaling for this variable. In addition, very similar values
for B as given by Eq. (3.18) have been reported by Pauley et al. [1988] in their

Navier-Stokes simulation. Eq. (3.18), therefore, has been included into the model.
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Chapter 4

TRANSITION

The prediction of the transition location inside the bubble has received a great
deal of attention since the very first models. In fact, both the drag increment due to
the bubble as well as the bursting behavior depend strongly on the location where
the calculations switch in a more or less gradual way from laminar to turbulent
flow. Although it has been claimed that the length of the transition region inside
the bubble must be modelled accurately [Walker, 1989], a point-transition has been
found to work very well in the present model. In this chapter, a few empirical

transition criteria are discussed together with the method employed in the model.

Empirical Criteria

Ever since bubbles were first observed, many researchers have looked for an
empirical correlation between the distance from separation to transition and local
bubble characteristics such as conditions at separation. Since it was observed that
the length of the bubble is inversely proportional to the Reynolds number, the first
transition criterion, proposed by Von Doenhoff [1938], assumed a constant Reynolds
number based on the velocity at separation and the distance between separation
and transition,

Ust
Ry, = fj‘ = 50,000 (4.1)

As the Reynolds number increases, Us usually increases, too, such that this criterion
forces the laminar length to decrease in size. Horton [1967], thirty years later, used

a value of 40,000. This expression can be rearranged as

c

[l
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O’Meara and Mueller [1986] took an experimental mean from many sets of data as

G qp5l8)s (4.3)

& Cc

which is a less general relationship. As pointed out by Schmidt and Mueller [1989],
thése relationships cannot capture the vanishing of the bubble at the experimentally
reported value [Crabtree, 1957] of momentum thickness Reynolds number at sep-
aration of about 750, over which transition precedes laminar separation. Schmidt
and Mueller describe how the correlation developed by Vincent de Paul [1972] is
able to capture this effect by allowing a variable R,,. Similarly, based on the same
data sets used by O’Meara and Mueller, Schmidt and Mueller propose the following

criterion,

(4.4)

c

& | [513 - 3.7820(Rs,)s]) 82, 27 < (Rs,)s < T2
[267 — 0.3700(Rs, )s) 25, 72 < (Rs,)s < 720

such that the bubble length vanishes at values of (Rs,)s > 720. Fig. 4-1 shows
this criterion in graphical form together with Eq. (4.3). Since Eq. (4.3) does not
incorporate any dependence on (Rs,)s, it is shown in the figure as a plane whose
projection onto the (62)s/c-£1/c plane is simply a straight line through the origin.

While it is true that the Reynolds number has a strong influence on the tran-
sition length, and therefore on the overall length, of separation bubbles, this effect
is reflected in many of these correlations in a rather coarse way. The correlations
for which the transition length is proportional to the value of momentum thickness
at separation better predict the length of leading-edge bubbles due to a spurious
coincidence. For airfoil flows, in fact, small values of (62)s correspond to leading-
edge bubbles, which form on large suction peaks near the stagnation point and are
usually quite short. Larger values of (§;)s are usually associated with mid-chord
bubbles that occur far downstream of the stagnation point and are usually much

longer. Fig. 4-2 illustrates this effect, where the isolated points are leading-edge
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Comparison of two empirically derived transition correlations
for the separated laminar shear layer.
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Fig. 4-2
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0O Schmidt

Comparison of the laminar lengths predicted by the two
correlations for the Eppler E387 airfoil at R = 300, 000.
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bubbles. The value of (8;)s, however, does not in itself contain any information
about the stability of the separating shear layer. In fact, no empirical criterion
developed so far can capture the effects of a variable pressure distribution. Specif-
ically, no local criterion can capture the vanishing of the upper-surface mid-chord

bubble with increasing angle of attack.

Eppler’s Transition Criterion

Given the success of Eppler’s transition criterion in predicting the transition
location in attached boundary layers, it was thought that it should be possible to ex-
tend such a criterion to separated boundary layers. Whereas the criteria described
above seek a correlation between transition in the free shear layer and conditions
at separation, which is at a different location on the airfoil, Eppler’s criterion is
based on the local characteristics of the boundary layer. Since, unlike in the early
bubble models, the boundary layer development here is calculated also downstream
of separation, it seemed that monitoring the development at each downstream in-
crement would naturally lead to a more accurate transition prediction. In order
to better explain how Eppler’s criterion is implemented, Eppler’s boundary-layer
development plot should be described.

Integration of the momentum and energy integral equations gives the values of
62 and 63 at each downstream station. The shape factor H3, = 8§3/8, is therefore
also known. Since the inviscid velocity along the airfoil is taken as the boundary-
layer edge velocity that drives the boundary-layer development, U and §, at each
downstream station can be grouped to obtain the development of Rs,. Eppler con-
nects subsequent (Hjz, Rs, )-pairs on a plot whose axes measure the variation in
these two variables, thereby describing the boundary-layer development from the
stagnation point to the trailing edge in a very concise way. The stagnation point

occurs at a value of Hz; = 1.62 and Rj, approximately equal to 10. Values of
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Ii5, < 10 are not plotted. Fig. 4-3 shows a typical boundary-layer development.
Following the upper surface development given by the solid line, laminar separa-
tion is encountered when H3; = 1.515095. This criterion is shown on the plot as a
vertical dotted line. From the laminar separation point, H3, starts growing again
until transition is met. While H3; grows monotonically inside the laminar part of
the bubble with downstream distance from laminar separation, Rs, stays approxi-
mately constant. A very similar criterion to Eq. (4.4) can therefore be constructed
by correlating the value of Hj, at transition to (Rs,)s. The particular transition
criterion for separated shear layers shown in this figure as a family of cubics intro-
duces an additional dependence on P. Thus, while the bubble is seen to disappear
at values of (Rs,)s > 875, for smaller values (H3z)r increases with decreasing P.
This trend in (Hzz)7 does not necessarily imply a similar trend in laminar length
since the rate of growth of H3y depends on the pressure distribution in the lami-
nar part of the bubble. Although unsuccessful, this and similar criteria served to
illustrate how poorly (Hsz)7 correlates to local bubble conditions incorporated in
parameters such as P and (Rs,)s. In fact, while any one particular bubble could be
matched quite easily with a criterion as shown in the figure, any such criterion was
consistently found of very limited generality. Downstream of transition, the tur-
bulent shear layer growth causes Hs; to decrease again to a value at reattachment
which is weakly dependent on the local momentum thickness Reynolds number and
always close to 1.51. The attached turbulent boundary-layer development causes
Hsz to increase again toward the flat-plate fully developed value of 1.77. As the
trailing edge is approached, the adverse pressure gradient drives the boundary layer
toward turbulent separation which occurs at Hip = 1.46 for Eppler’s method and
Hj; = 1.51 for Drela’s method, which will be discussed in the next chapter.

In the course of these investigations, it was found that the curve corresponding
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to attached transition will cause natural transition to be predicted in many cases
where a bubble is actually present. This happens because the value of Reynolds
number at which transition precedes laminar separation can be quite high. In fact,
it can be higher than the value of 720 proposed by Schmidt and Mueller. Eppler’s
original transition criterion [Eppler, 1963], not shown, intersected the laminar sep-
aration line at Rs, = 463. Based on additional measurements, Eppler [1989] has

modified the criterion to
(ln Rs,]7 > —21.74 + 18.4H;3y + 125(Hs, — 1.573)2 (4.5)

where now the intersection occurs at Rs, = 704. For such a value, however, tran-
sition is still predicted too soon when the boundary layer is near separation. In
order to be able to compare bubbles forming on airfoils at chord Reynolds numbers
of one million or greater, approximately, the 125 in Eq. (4.5) is replaced with 190.
This leads to a value at the intersection of Rs, = 875, which seems to work well.
This apparent coarseness in Eppler’s criterion is due to its having been calibrated
mainly from airfoil drag coefficient data rather than from a modelling of the actual
transition process. The reason why transition is predicted instead of a bubble at
high chord Reynolds numbers is simply that at such values the bubble does not
cause any significant drag increase; in fact, it usually causes the same increase in
momentum thickness that is given by the attached turbulent boundary layer over
its length.

In an attempt to reconcile Eppler’s transition criterion with another very suc-
cessful transition prediction method, the e™ method, they are plotted together in
Fig. 4-4. In the e™ method, a value of n = 9 has been found to correspond
to observed transition locations in many different flows. Rather than using Ep-
pler’s boundary-layer development plot, this comparison is done here on a plot of

Rs, vs. Hi, in order to include several measurements of these variables at observed
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transition locations. This comparison was attempted also because, since the e"
method can predict transition successfully in a separated shear layer, it was hoped
that a suitable criterion for use in the boundary-layer development plot could be
inferred from it. In this figure, contours of constant n are given for the Falkner-
Sk'an self-similar developments [Schlichting, 1979]. For such developments, in fact,
a unique surface exists that allows the determination of the value of n from the local
values of the momentum thickness Reynolds number and shape factor alone. The
equation defining this surface was developed by Drela [1986] and will be discussed
below. Shown in this figure is Eppler’s transition criterion for attached boundary
layers as well as one of the attempted criteria for separated flow. It is interesting
that Eppler’s curve falls quite close to the n = 9 contour, for zero-pressure gradient
flow (Hy2 = 2.59). As can be seen from the wide scatter in the experimental data,
however, it seems dubious that a single curve could capture the correct transition
location inside the bubble with any generality. In fact, the growth of n in a non-
similar boundary layer development will not follow the surface whose contours are
shown in the figure, regardless of whether the flow is attached or separated. This
implies that transition is not dependent solely on the local boundary-layer charac-
teristics but depends also on the manner in which the boundary layer arrives at such
values. The inclusion of path-dependency, or the effect of upstream boundary-layer
development on transition, has captured the generality that the transition criteria
discussed so far lack In order to fully understand why, the €™ method will now be

discussed in detail.

The e™ Method

The e™ semi-empirical transition prediction method, developed thirty years
ago [van Ingen, 1956; Smith and Gamberoni, 1956] and since successfully applied

to a variety of aerodynamic flows, relies on a theory that can explain the moderate
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success of some of the correlations described above, that can correctly distinguish
between leading-edge and mid-chord bubbles, and that can correctly model the ef-
fects of variations in pressure distribution upstream of the bubble. Linear stability
theory, in fact, directly models the growth of instabilities in a boundary layer while
indirectly, through the boundary-layer development, accounting for the effects of
Reynolds number. n(s) is defined as the logarithm of the ratio of disturbance am-
plitude at station s to its amplitude at neutral stability, so. Transition is assumed to
take place when n reaches a value previously correlated to experimentally observed
transition locations. For similar flow environments this value has been reported
to lie around 9 by many researchers, although it appears to depend on Reynolds
number [Evangelista and Vemuru, 1989; Horstmann et al., 1990].

It is generally accepted that linear stability theory correctly models the transi-
tion process for approximately 70% of the distance between neutral stability (n =0)
and fully turbulent flow. The actual “transition region,” however, is usually defined
as the region between the first appearance of turbulent spots and fully turbulent
flow [Arnal, 1984], or the last 30% of this distance. In order to approximate the
transition process in the nonlinear amplification region, an intermittency function
is usually employed at a value close to n = 8. Equally often, transition is taken to
be completed when n = 9 — 14 and the turbulent calculations are started abruptly
at the corresponding streamwise station. In both cases, significant empirical input
is necessary to render the method usable. Another concern associated with this
method is that the amplitude of the disturbance at neutral stability is unknown.
The inability of the method to model directly the influence of the turbulence in-
tensity of the oncoming air and surface conditions on the onset of transition forces
the use of further empirical corrections [Mack, 1977]. In spite of these weaknesses,

the e™ method remains the engineering transition prediction method most faithful
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to the actual physical process.

The e” method is based on the numerical solution of the Orr-Sommerfeld
equation which is derived from the Navier-Stokes equations as follows. The two-
dimensional Navier-Stokes equations are perturbed and linearized. An assumption
of locally parallel mean flow is made. Subtracting the mean flow, a system of three
partial differential equations for the perturbation field is obtained. Since the coef-
ficients are functions only of y, the method of normal modes can be applied in the

particular form

v'(2,4,) = Re [(y)e @ 77"0)] (4.6)

which implicitly assumes a sinusoidal disturbance. Here v’ is the disturbance in the
y-direction. Similar expressions are assumed for u' and p’. o* is the wavenumber
and w* the radian frequency, which can be nondimensionalized with respect to a

reference length and velocity,
a=0a "Ly

wW*Lref (4.7)
Uref

Substitution of these expressions into the partial differential equations for the dis-

w =

turbance field results in a set of three ordinary differential equations for the dis-
turbances. Eliminating @' and p' in favor of ¢', the Orr-Sommerfeld equation is

obtained,
9" + [~iR(aU — w) — 2a2]8" + [iR(eU —w)a® +iRU"a + a'}o =0  (4.8)

« and w are, in general, both complex. Although the derivation and the analysis
are performed in the complex plane, it is understood that physical quantities are
obtained by taking the real part of any of the complex variables employed.

Two limiting cases of interest are

a=qar WwW=w,+iw; temporal instability
a=ar+ie;, w=uw, spatial instability

(4.9)
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To calculate the amplification of disturbances as the boundary layer develops, a
spatial instability analysis is necessary. Thus, the Reynolds number and the fre-
quency are specified and the wavenumber is found by solving numerically the Orr-

Sommerfeld equation subject to the boundary conditions

!
v'=d—v=0 at y=0 and as y — o (4.10)
dy

The homogeneous boundary conditions imply the existence of an infinity of solutions
or eigenvalues a. The value of greatest physical interest is the eigenvalue for which

—a; is largest. This can be seen from the expression for the fluctuation,

’l)’ — ﬁ(y)ei[(a:-i—ia:)z—w: ]
(4.11)
— [6(y)e—a:x]ei(a:x—w:t)
where 9(y) is the distribution of the disturbance amplitude (eigenfunction) and
the bracketed term is the amplitude of the disturbance at a distance z from some
reference point. The ratio between this term evaluated at two different z-locations

represents the amplification of a disturbance between them. Assuming a boundary

layer developing in zero pressure gradient,

Az _ d(y)ei®

= = i (z2—11) 4.192
AT gy ¢ (t.12)

The amplification factor, n, is defined as the logarithm of this ratio,

n=In (%) = —aX(zy — 21) (4.13)

The amplification factor is thus equal to the area under the amplification rate curve.
In this case, this curve is a constant because the parallel flow approximation and
the absence of a pressure gradient prevent any change in the local Reynolds number
such as, for instance, R, .

The continuous wavelength modulation encountered by a fixed-frequency dis-

turbance travelling downstream in a developing boundary layer is approximated
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locally by a series of constant-wavelength plateaus, obtained by solving the Orr-
Sommerfeld equation for a sequence of parallel mean flows of different thicknesses
and at different pressure gradients, each characterizable by a different value of Rs,
and Hyz. As the streamwise extent of the plateaus tends to zero, Eq. (4.13) can be

generalized to

n .—_/ —aj dz (4.14)

1

As a measure of how far from transition a boundary layer is, it is preferred to
calculate the total amplification that has occurred: the amplification, that is, from
the lower branch of the neutral curve,

n(s) = / ot ds (4.15)

990

where the independent variable is again s, the distance along the airfoil from the
front stagnation point.

In general, the disturbance environment in a wind tunnel or in free flight does
not consist of a single-frequency pressure pulse but, rather, of broad-band or white
noise. The boundary layer simply amplifies those frequencies that, at a specific
local Reynolds number, correspond to what in simpler dynamical systems is called
the natural frequency. Since the local boundary-layer Reynolds number changes
with downstream distance, different frequencies are amplified as the boundary layer
develops. This necessitates the tracking of several different frequencies at the same
time, with the first that reaches n = 9 indicating transition.

As the frequencies amplified in the separated shear layer may be different from
those upstream of separation, it may not be necessary to monitor the stability of
the laminar boundary layer upstream of separation. The fact that some frequencies
may come close to n = 9 upstream of separation does not necessarily imply that

transition will occur sooner once the boundary layer separates. If this is true,
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then it should be possible to devise a transition criterion based solely on local
information, for instance on conditions at laminar separation. The consistent failure
of all previous such criteria would still not be sufficient proof of the untenability of

this hypothesis.

Drela’s Approximate e™ Method

While the questions raised above need further study, for the present time the
approximation to the e™ method developed by Drela {1986] has been implemented
in the Eppler and Somers program. In order to demonstrate that this method intro-
duces an error in the calculation of n over and above its declared approximations,
it is now discussed in some detail.

Rather than performing a linear stability analysis of the boundary-layer velocity
distribution as can be obtained, for instance, from a finite-difference method at each
downstream station, following Gleyzes et al. [1983] Drela computes a data base of
the stability characteristics of the Falkner-Skan profiles that can be “tapped” during
a boundary-layer calculation using the local shape factor as the coupling parameter.
More precisely, the nondimensional growth rate, —a;, corresponding to a particular
value of the local shape factor of a Falkner-Skan profile and of the local Reynolds
number is divided by the local boundary-layer characteristic thickness, i.e. &z,
to obtain the physical growth rate to be used in the integral (4.15). Given that
the correct characteristic thickness is obtained independently, from the momentum
integral equation, the manner in which the nondimensional data base is generated
is of no consequence. The most convenient way is to calculate the growth rates for
self-similar developments at constant H;2 values and increasing Rs,. Starting from
the Orr-Sommerfeld spatial instability analysis of the Falkner-Skan profiles at many
different values of Hisg, a set of neutral curves is generated, one for each value of

shape factor. An example of these neutral curves is shown in Fig. 4-5 for two values
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of Hy2. For each value of shape factor, the dimensionless amplification rate, —a;,

is evaluated along rays of constant reduced frequency,

27 fv
U2

F= (4.16)

to form curves —a;(H;2, Rs,, F'). From these curves the amplification factor for the

devclopment of each Falkner-Skan profile is found from

n(ng,R(sz,F):/ —ajds

80

Rs, —af
_ / AR, (4.17)
Rozq ds

For a Falkner-Skan profile,

R6 = — =
: v

U _ U
v

1
2 ws\? [ | ,
_ 1—-1)d 4.18
(=) [ o f)n] (4.18)
where m is constant and defined as

m=—— (4.19)

Denoting the momentum-thickness integral (not a function of s) by I,

1
Rs, = (LE) I (4.20)

1+m v
Thus,

1

dRs, _ (2 \[L(U YRR LE
ds 14+ m 2 \vs 2 \vU ds

_l (2 U\, sdU
) 1+mv U ds
1
2

=i (4.21)
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Thus, Equation (4.17) becomes,

1 [T
n(Hiz, R, F) = 75 / _(a*63) dRs,
520
L / ™ i(Hia, F) dR (4.22)
= TTr rr 19 — 0 12, b2 .
[I(H12)]? Jr,,,

In this way, the original dimensionless eigenvalues of the dimensionless Orr-
Sommerfeld equation can be used to find n, which is defined in terms of a di-
mensional wave number and distance. This can be done for a self-similar profile
since dRs,/ds assumes the particular form shown.

The curves obtained with this integral for different frequencies and at a constant
Hi, are shown in Fig. 4-6. Drela takes the envelope as a straight line as done by
Gleyzes et al. [1983]. This leads to the following expression for the amplification

surface for self-similar developments,

dn
dRs,

n(Rs,, Hiz) = [ (le)} e [Rs, — Ré,,(H12)] (4.23)

where the superscript “e” denotes a value obtained from the envelope of amplified

frequencies and

[ = (le)] = 0.01[{2.4Hys — 37

dRs,

+2.5tanh[1.5(H;z — 3.1)]}% + 0.25)% (4.24)

1.41 5
log,o[Rs, o (H12)] = [H 51 —0.489] tanh [H 0 _ 12_9]

12 — 12 —

3.295
: 4.
+H12—1+0440 (4.25)

While Gleyzes et al. then evaluate the amplification integral as

Réz(s) dn ]e
n(s) = H dRs 4.26
W= || ar. (4.20)
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Drela changes the variable of integration back to s,

n(s) = / [ d‘Z’ (H12)] dR“d (4.27)

At this point, Drela finds an expression for dRs,/ds in a rather roundabout way.

4 (VBN _ &V U
ds v ds v ds

1sdUUb Udby 16,dU

20U ds vs T vds T2vds
_Ll[sdU ,vs (Udh 16dU\) U1
- U ds Ué,

v

(4.28)

vds 20 ds vs 6y

He shows that dRs,/ds equals this last expression with a 1 in place of the sec-
ond term inside the square bracket. If this is taken as a condition, the resulting

differential equation can be integrated as follows,

vs (g@ 152dU>

Toa \vds 127 a0

s dé, s dU

[ —(né) + — d ~(In U)]

s—d— [In(630)] =1

ds
din(820)] = &
In(62U) =lns 4+ C
82U = Cs

§=C 5— (4.29)

Thus, the functional form characteristic of Falkner-Skan profiles is recovered, where
the constant is in general a function of the shape factor. Drela now introduces the

two “empirical relations” (given in the Appendix),

dU
%d— = m(Hiz) (4.30)
Usl
L~ (Hy) (4.31)
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What he means is “analytical correlations from the Falkner-Skan profiles.” Since
he is using these profiles here and since his form for dRs,/ds indeed implies the
assumption of a Falkner-Skan &;-growth, it is not clear why he did not simply
substitute the Falkner-Skan expression for §,(s) directly into his expression for

dRs,/ds, Eq. (4.28),

ngz__ s dU 1 gﬁl
ds U ds

vs &y

1 1
s [(an) [ 3
I?
=5 (4.32)
which is identical to Eq. (4.21). Thus, Drela only had to curve-fit I(Hiq).
Having established that
m(Hio) + 1
P Ly 51) = U(H ) (4.39)
Drela’s integral for evaluating n(s),
8 dn m(ng) + 1 K(le)
= H .
n(s) ,/30 [dRﬁz( 12)] 9 52(3) ds (4 34)

can be written, using Eqs. (4.17), (4.21), (4.26), and (4.33),

*l —at ) I?
n(s) = / 0 [—_g_—} o (4.35)

where 6;(s) comes from the non-similar boundary-layer development as calculated

by the momentum and energy integral equations. Thus,

Y A )
n(s) = / S (4.36)
- / =il | (4.37)
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Which is identical to the expression used by Stock and Degenhart except for the use
of an envelope to find «;. Using 6;2(s) as calculated by the governing equations is
precisely what enables the method to account for upstream history on the growth of
n. That is, the dimensionless growth rate —a; obtained at each downstream station
from the value of H;, and R, 1s divided by the local boundary-layer momentum
thickness which is in general different from the value in a self-similar development

at the same value of Hy, and Rg,.

The Envelope Error

In collaboration with Selig {1990}, the author found that, even if Drela had used
the actual envelope of the amplification curves instead of approximating it with a
straight line, his n(s)-development would not correspond to the true envelope of
the amplification curves at constant frequency along the airfoil surface. The error
arises whenever the boundary-layer development is non-similar. To see this, it is
necessary to rely on a numerical example, since the functions in question are not
known analytically but are obtained numerically. Thus, it is helpful to envision a
fictitious boundary-layer development made up of two constant-H;, lengths with a
discontinuous jump in between. Fig. 4-5 shows the neutral curves corresponding to
the two values of shape factor. It is desired to compare the growth of n obtained
by following the development through the jump in H;, at constant frequency to
that obtained using Drela’s envelope. Fig. 4-6 shows the amplification curves for
the three reduced frequencies shown on the neutral curves plot as calculated by Eq.
(4.22) together with the envelopes given by Eqgs. (4.23)-(4.25) for the two values
of Hyz. Fig. 4-7 shows the n-growth along the boundary layer with the switch in
shape factor occurring at Rs, = 500.

The three frequencies selected represent limiting cases that serve best to eluci-

date the argument. Referring to Fig. 4-7, as Rs, increases n(F}) grows according
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to Fig. 4-6 up to the maximum and, just as it is ready to start decaying, the jump
in H,, forces further amplification until the upper branch of the neutral curve cor-
responding to Hj; = 2.67 is crossed. This additional growth will not necessarily
be steeper than the envelope. n(F;) does not start being amplified until the switch
oc.curs, at which point it grows quite steeply in accordance with the greater area
under the amplification rate surface —a;(2.67, Rs,,w). This curve does not nec-
essarily exceed the envelope. Starting with the Fj-curve, at all lower frequencies
the growth of n will follow the Hy; = 2.67 line, which is parallel to but greater
than Drela’s envelope. In this example, it is possible to recover the steep similarity
growth given by Eq. (4.23) since the shape factor is held constant downstrearﬁ of
the switch. In a non-similar development, however, the variation of Hiz is con-
tinuous. If a monotonically increasing shape factor is approximated by a series of
infinitesimally small stcps, the resulting growth on n will never be able to “catch
up” with the value obtained from a self-similar profile at the same local shape factor
and Reynolds number. The correct envelope obtained by following each frequency,
therefore, will lie above Drela’s approximation without ever reaching the growth
given by Eq. (4.23). The converse is true for an accelerating boundary-layer.
Based on the above argument, Drela’s envelope method may be expected to
overpredict the transition location for non-similar, decelerating flows and to under-
predict it for non-similar, accelerating flows. This method has been incorporated
in the model nonetheless, although the method of Stock and Degenhart should be

extended to separated profiles and used in its stead in future research.
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Chapter 5

THE TURBULENT PART OF THE BUBBLE

The calculation of the turbulent part of the bubble relies on the assumption that
reattachment will occur. An independent bursting criterion has not been devised,
nor have existing ones been tested. The reason is that bursting occurs either at
very low Reynolds numbers or when the mean inviscid pressure gradient becomes
too steep, downstream of a suction peak. Regardless of the fact that the same
mechanism may not be responsible for both types of bursting, both conditions
represent extremes that lie outside the capabilities of the simple approach taken with
the present model. This is not so much because of a failure of the bubble model itself
but, rather, because at such extremes the onset of strong global viscous/inviscid
interaction modifies too greatly the inviscid pressure distribution which drives the
model.

In this chapter, a parameter that characterizes the turbulent part of the bubble
is introduced and the modelling of the reattachment process within the context of

an integral method is discussed in detail.

Scaling Parameter

Having obtained a good approximation of the strong local viscous/inviscid
interaction induced by the laminar part of the bubble and a fairly accurate transition
location, now a steep pressure recovery must be predicted in order for the turbulent
shear layer to reach again the inviscid distribution as it flows past reattachment,
downstream of the strong interaction region. In the laminar part, the strength of the
interaction depends on the amount of near-stagnant fluid downstream of separation

and can be gauged by the deviation of the local viscous pressure distribution from
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the inviscid. As this amount is, in turn, proportional to the local mean inviscid
pressure gradient and to the momentum already lost by the boundary layer—to
(82)s, that 1s—it i1s not too surprising that the pressure recovered in this part of
the bubble correlates well with P. In the turbulent part, on the other hand, the
stgong interaction is the result of a different mechanism, which acts to reverse what
happened in the laminar part. As a consequence, the solution may be expected to
depend on a different scaling parameter.

Assuming the boundary-layer equations to bé valid in this region allows the
use of conditions at transition as initial conditions for the turbulent calculations. A
similar approach to that taken in the laminar part was attempted, at first. Thus,
several types of velocity distributions, similar to Horton’s straight line or to Strat-
ford’s recovery, were prescribed and the boundary-layer equations were solved in the
direct mode. In addition to the difficulty in approximating observed reattachment
velocity distributions with any degree of generality, the solution was found highly
sensitive to the smallest variations in the input pressure distribution, suggesting
that this part of the bubble could not be calculated by solving the boundary-layer
equations in the direct mode.

Unlike in the laminar part, it is more convenient here to approximate the
distribution of Hj; than that of edge velocity. In fact, given that the value as well
as the slope of the Hj;-distribution is always known at the reattachment point,
a general function has been developed in this study which allows the solution of
the turbulent part of the bubble in the inverse mode. The distribution of Hss is

specified as

Ha() = (Hao)r + A (W) - (B {14n | ] L o)

where the subscript ¢ = 1,2 denotes the amplitudes of the sin(1/z) function up-
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stream and downstream of reattachment, respectively, and

2
v= (5 —vo) 7+ (5:2)

™

Yo = 37— sin 1 (1/4; — 1) (5.3)

s—s1)/ls s<s
o= {%(b;,—)/ez—usp“ 5> (5-4)

where

SF= \/Al/Ag (55)

ensures continuity in the curvature of Hj3y(s) at the reattachment point. This
function is shown in normalized form in Fig. 5-1.

The inverse boundary-layer formulation employed here, where the distribution
of shape factor is specified [Eppler, 1989], is especially convenient and powerful since
it allows complete control of the boundary-layer behavior in an otherwise extremely
sensitive region while at the same time relying on an intrinsically general function.
Indeed, in view of the discussion given above concerning the reversal of solution
hierarchy in regions of reversed flow from the standard weakly-interacting boundary-
layer formulation, it is perhaps not mere coincidence that an inverse method should
prove so much more effective in this part of the bubble. Such effectiveness, however,
comes at a price. In fact, while specification of the pressure recovery distribution,
if the correct one were indeed known in general, would automatically drive the
boundary layer to reattach at the correct location, the turbulent length of the
bubble, ¢;, in Eq. (5.4) is not known a priori and must be found by independent
means.

For some time during the model development, the inviscid velocity distribution
was used to guide the location of the reattachment point. The correct value of 45,

that is, would be the one that leads the pressure at reattachment near the inviscid
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value at the same station. Previous models, such as Horton’s, have also assumed
that reattachment occurs at the intersection of the bubble recovery with the inviscid
pressure distribution. Using the experimental pressure distributions for the NLF(1)-
1015 airfoil, however, integration of the boundary-layer equations in the direct mode
aloﬂg the bubble revealed that the reattachment point may lie significantly above
as well as below this intersection. Although the validity of this result is limited by
the accuracy of the closure correlations employed, as well as by the assumption of
the validity of the boundary-layer equations themselves, the observed trends seemed
too consistent to be mere coincidence. Specifically, it was observed that for long,
high-drag, mid-chord bubbles, corresponding to the middle of the airfoil drag polar,
the reattachment point is always below the inviscid distribution (above, in the value
of pressure) whereas for short mid-chord bubbles about to disappear corresponding
to the top of the low-drag bucket in the airfoil polar, as well as for leading-edge
bubbles, the reattachment point is always well above the inviscid. Allowing this
point to move and trying to reproduce the observed trends by means of an empirical
function based on local bubble conditions was helpful in obtaining reasonable drag
predictions at least for a single Reynolds number. The inability to justify such a
function physically and its limited generality, however, prompted further study.

It was noticed that interaction methods have no trouble pinpointing the unique
solution. Whereas the accuracy of such computed solutions still depends on the ac-
curacy of the correlations, their mere ability to reach a converged solution indicates
that all the necessary physical constraints are somehow accounted for. Also, their
success at predicting the correct trends with respect to the location and pressure
level of the reattachment point is explained by their ability to “sense” the presence
of the wall through variations in the strength of the transpiration velocity or through

the shape of the displacement thickness itself needed for convergence. An equiv-
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alent geometrical constraint had to be introduced in the present model. Whereas
prescribing the pressure level at reattachment is consistent with a direct formula-
tion of the boundary-layer equations, in a region of such strong viscous/inviscid
interaction as the bubble the inverse formulation of the boundary-layer equations
should be complemented with the treatment of the correct physical process as the
independent one to reflect the reversal in the solution hierarchy. The local flow-
field is driven by a turbulent momentum-transfer mechanism whereby the outer
momentum brought toward the wall accelerates the near-stagnant reverse flow un-
til reattachment is achieved. Reattachment, therefore, becomes dependent on the
efficiency of this mechanism. In geometrical terms, the reattachment location be-
comes dependent on the spreading angle of the turbulent shear layer and on the
initial distance of the shear layer from the wall; that is, on the height of the bubble
at transition. Since the spreading rate of the shear layer is nearly insensitive to
variations in Reynolds number and, in this particular flowfield, in inviscid pressure
gradient, the turbulent length of the bubble becomes almost entirely dependent on
the thickness of the bubble at transition nondimensionalized with respect to the
airfoil chord. Making the characteristics of the turbulent part of the bubble depend
on this parameter has enabled the model to reproduce all the available experimental

data with excellent and consistent accuracy in the range 100,000 < R < 2,000, 000.

Governing Equations

Following Eppler [1989], the distribution of H3, described above is input into

the momentum and energy integral equations expressed in the inverse mode,

[ dH3, U
—_— = 2)Hjo — .
dS ’ _(Cf/ ) 32 CD + 62 dS ] 52H32(H12 —_ 1) (5 6)
d52 [ 3(Cf/2)H32 dH32 H12 + 2
—2 o | -nfie/e8 _6 :
ds L Hiy +2 +Cp 2 ds H32(H12 —1) (5 7)
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where Hj, denotes the derivative with respect to s of Eq. (5.1).

Drela’s turbulent boundary-layer method makes use of an additional equation,
the turbulence lag equation. Following Green et al. [1973], Drela simplifies the
stress-transport equation originally proposed by Bradshaw and Ferris [1968] to a

rate equation for the maximum shear stress coefficient,

6 dC. 1 1
_ =49(C: —Cp? 5.8
o =each, - ch) (58)
where C; is defined as
~u'v! maz
Cr = (_E"’l— (5.9)
and §, the boundary-layer thickness, is given by
1.72
6=4¢ 1 _— ) 5.10
2<3 5+H12_1)+1 (5.10)

This system of equations needs to be supplemented with closure relations for Cp,

H12, cr, and C,—eq.

Closure

Much of the following discussion is an expansion on that given by Drela [1986].
The maximum shear stress coefficient is used in the expression for the local dissi-
pation coefficient. Its deviation from the equilibrium value, C-, .» as calculated by
means of Eq. (5.8) accounts for the slow response of the intensity of the turbulence
being convected from upstream to varying local conditions. The equilibrium value
refers to the equilibrium turbulent boundary layers of Clauser [1954], for which the
local pressure gradient acting on the displacement thickness is balanced by the local
wall shear stress. The ratio of the two forces acting on an incremental “slice” of the

boundary layer is a constant,

Sidp 26 dU

o ds ——;—U:Ea& (5.11)
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For equilibrium flows, the modified shape parameter G, is also constant,

o He-1 1 1 &
‘T THe Vel VR A

A is the displacement thickness scaled in an analogous way to the defect profile,

(5.12)

A:/ U—u g 5 (5.13)
0 Usx U

ue =,/ =U,]L (5.14)
p 2

To lowest order, the defect law (v — U)/u. vs. y/8§ will collapse the outer layer

where

of any boundary-layer development for which #; equals a constant. Thus, there
exists a unique relationship between G; and §; for equilibrium boundary layers, or

“equilibrium locus” [Kline et al., 1968],

Gy = 6.7\/1 + 0.750, (5.15)

Using Eqs. (5.11), (5.12), and (5.15), the velocity gradient can be expressed as

§dU 1 Hip —1\?
Ay - |4 _(Ha2—t (5.16)
U ds 0.75 2 6.7H12

Noting that for these flows Hi; and Hj, are nearly constant, Eq. (2.5) can be

simplified to
b2 dU

C
0=Cp-~— Efﬂgz + Hyp(Hiz = 1) = (5.17)

Eliminating the velocity gradient between Egs. (5.16) and (5.17), yields an expres-

sion for the dissipation coefficient valid only for equilibrium flows,

cf 4 H32 H12 -1 3
Cp=-+-|——1| == +0.03 5.1
, b [Hw ] 3 + [ Hio (5-18)

In the laminar boundary-layer calculation, the closure relationships are derived

from the similarity profiles and, strictly, are valid only for such flows. This means
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that if for a self-similar development the Falkner-Skan pressure gradient parameter

is calculated directly from its definition [Schlichting, 1979],

g EesdU (5.19)

v ds

this value will be constant and will correspond to a unique value of the shape factor,
also constant. In a non-similar development, on the other hand, the relationship
between f and Hj; is not unique anymore. It is found in this case that calculating
the shape factor from the governing equations while disregarding entirely the local
value of 3 allows accurate values for Cp, Hjz, and ¢f to be obtained even though
the similarity correlations are utilized. In the calculation of the turbulent boundary
layer the same approach is used by Eppler [1963] who utilizes empirical correlations
that are valid mostly for equilibrium flows. In this case, however, obtaining the
shape factor from the governing equations is not sufficient anymore if the pressure
gradient is varying too rapidly as, for instance, downstream of a bubble. This is
because of the large inertia of the Reynolds stresses that respond slowly to variations
in local pressure gradient. As the stress level is the most important physical quantity
in a turbulent boundary layer, it makes sense for there to be a need for its careful
modelling in flows that depart too greatly from equilibrium assumptions. Just
as in the laminar case decoupling the shape factor from local conditions brought
a great gain in accuracy, so here the maximum shear stress coefficient should be
decoupled from a statement of the type of Eq. (5.21) (in the next page) and obtained
independently. Therefore, just as in the laminar case an additional equation is
necessary, the kinetic energy integral equation, a third governing equation must be
introduced, the rate equation for C..

The integral variable which is affected the most by the stress level in the bound-
ary layer is the dissipation coefficient. In the laminar case, obtaining the shape

factor independently was sufficient to obtain accurate values of Cp through the
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similarity correlation, Eq. (3.16) inside the bubble. Although this provides no
guarantee of success for the turbulent case, an analogous argument is followed and
Eq. (5.18) is assumed to be valid also for non-equilibrium flows. In order to be able
to use it, however, it must be expressed in terms of C,,. To this end, the dissipation

cocflicient is assumed to equal the sum of a wall and a wake contribution,
Cp = csUstip + QCreq(l = Usiip) (5.20)

By cquating this expression to Eq. (5.18),

0.015H3; [Hip —1]°
o= 5.21
¢ “ 1- Uslip [ H12 :| ( )
lip = —= | — — 1 5.22
Uiy = 22 |51 -1 (5.22)
So that, finally, the dissipation coefficient is given by
Cp =cfUstip +2C(1 — Uslip) (5.23)

where Usy;p is given by Eq. (5.22) and C is calculated from the rate equation (5.8).

The shape factor correlation is derived from the analytical profiles of Swaf-
ford [1983]. In the present method, this correlation needs to be expressed in the
form Hj2(Hszz). Since Drela’s correlation is expressed as H3o(Hiz) and, unlike in
the laminar case, cannot be inverted, a close approximation has been developed.

Defining first

Hspy = 1.505 + 4 (5.24)
Rs,
4
Hipy =3+ 00 (5.25)
Rs,
c1 = 0.081(Rs, — 300)°! (5.26)
¢z = 0.0158(R;s, — 300)°-°8 (5.27)
¢3 = 1.06 + 5009 (5.28)

(Rs, + 600)15
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Hy, is obtained from

R cg > 0
Hyy = (5.29)

i
H120 + {—'——D'] ° y ¢ < 0
This expression, as the original, is valid for Rs, > 400. It is shown in Fig. 5-2.
The skin-friction law of Swafford is employed for attached flow,

0'36—1.331‘[12

cr = (log R62)1.74+0.31H”

Hy,
. - =1 5.30
+ 0.00011 [tanh (4 0.875) ] (5.30)

This expression does not give the correct value of skin-friction in the turbulent part
of the bubble. The modification employed is discussed in the next section together

with the remaining empirical functions.

Supplementary Functions

In order to achieve good agreement with measured bubble pressure distribu-
tions and corresponding airfoil drag coefficients, existing turbulent correlations had
to be modified and several empirical functions have been introduced. These func-
tions are specified by assigning values to certain parameters left free. While such a
formulation granted the model great flexibility, the unknown dependence of these
parameters on local flow conditions significantly limited its generality. Identification
of the correct scaling parameter for the turbulent part of the bubble, however, has
made the determination of the correct functional dependence of these parameters
both easier and less crucial. The remaining details for the calculation of the tur-
bulent part of the bubble will now be discussed and, wherever possible, supporting
arguments will be given. It should be realized, however, that final proof of the
validity of the modifications introduced will await more detailed measurements of

this region of the bubble flowfield.
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The height of the bubble at transition is estimated by means of the expression

b

- tan y

hr (5.31)

where tan+ is given by Eq. (3.18). An estimate for the spreading angle is obtained
from the experimental values reported by Birch and Eggers [1973]. In this report,
measured spreading rates are expressed in nondimensional form as function of a

velocity ratio defined as
Uy — Uz
uy + uz

A= (5.32)

where u; and u; are the velocities above and below a splitter plate, respectively.
The spreading rates are normalized with respect to the maximum, which occurs at
A = 1. The data are all taken in shear layers developing in zero pressure gradient,
so that their validity in the turbulent part of the bubble, where the pressure varies
very rapidly, could be doubted.

Making recourse to the strongly interacting nature of the flow, the above ob-
jection can be dispelled. Specifically, this shear layer is not developing inside a
duct with diverging wall, where the pressure gradient is imposed as a boundary
condition of the inviscid flow. In the bubble, the amount of pressure recovered is
strictly a function of the intensity of the turbulence: of the momentum transfer
across the shear layer. Therefore, treating the reattaching turbulent shear layer in
the bubble as a shear layer in zero pressure gradient with varying velocity ratios,
with the rise in pressure a by-product with negligible feed-back, seems a reasonable
approximation.

In order to obtain an estimate of the spreading rate of the shear layer from the
experimental plot given by Birch and Eggers, it should be realized that between
transition and reattachment A varies between a value slightly greater than 1 to 1.

It falls, therefore, off the plot. Since the magnitude of the reverse flow is quite small
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compared to the local edge velocity, it is not a bad approximation to assume that
the spreading rate will be slightly larger than the maximum reported and constant.
The following function, which depends weakly on Reynolds number, has been found

satisfactory,

tanf = .0975+ 2.5 x 107°R (5.33)

This corresponds to a spreading angle varying from 5.71° at R = 100,000 to 8.39°
at R = 2,000,000, measured from the parallel to the airfoil surface. Thus, the
turbulent length of the bubble is simply obtained from

hr

= tan 6

£ (5.34)

The bubble geometry as defined by these expressions is summarized in Fig. 5-3.

The coarseness of this approximation may seem unnecessary. In fact, it is a
well known fact that the dividing streamline is curved downstream of transition
and meets the airfoil surface at 90°. It is assumed here, instead, to be straight.
In addition, the spreading of the shear layer should be measured from its bottom
edge or from its center, the line of zero velocity, whereas here it is measured from
the dividing streamline. This apparently wrong resolution of the bubble geometry
1s followed because the height of the dividing streamline is the only length scale
known entirely from the upstream development. The approximation works so well
because the extent of the turbulent part of the bubble is very short and because
this height is an accurate characteristic length.

Having determined ¢;, Eq. (5.1) is completely specified when values are as-
signed to the A4;. The value for A; may be linked to the length of the transi-
tion region. In accordance with the Hjp-distributions measured by Horton [1967]
as well as, more recently, by Fitzgerald and Mueller [1990], A4; is such that Hj,

grows steeply downstream of transition to a local maximum before dropping to the
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reattachment value. This local maximum corresponds to the sharp “knee” in the
pressure distribution which, as maintained by Russell [1978], occurs downstream
of transition and corresponds to the location where the turbulent shear layer first
touches the surface. The following function has been found necessary to give good

results for leading-edge as well as mid-chord bubbles,
Ay = 0.5 4 ¢7300(k7/0) (5.35)

The value of A, is obtained by iterating on the intersection angle between the
undershoot and the inviscid distribution. As shown in Fig. 5-4, the calculations
between the reattachment point and this intersection are repeated with different
values of Az until the angle satisfies the desired tolerance. As the drag prediction
has been found to be quite insensitive to this tolerance, it has been relaxed to only
1 radian to maximize computational efficiency.

The closure relations for Cp and ¢y, Egs. (5.23) and (5.30), were originally
used unchanged. There were cases, however, when the reattaching experimental
pressure distribution could not be reproduced. This is explained as follows. Drela’s
turbulent correlations were originally developed for separated turbulent boundary
layers downstream of turbulent separation. The skin-friction coefficient obtained
from these correlations in the turbulent part of the bubble is quite small in magni-
tude, equal to or less than that in the laminar part, while the dissipation coefficient
is very similar to that of an attached turbulent boundary layer. While such val-
ues make sense in the slowly recirculating, constant pressure flow downstream of
turbulent separation, they are clearly too small to reflect the effect of a turbulent
shear layer impinging on the wall, a process for which the boundary-layer approx-
imations are likely to break down. This claim is also supported by Navier-Stokes
simulations, such as the one reported by Briley and McDonald [1983], which show

a peak in negative skin friction in the turbulent part of the bubble several times its
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value before transition, as well as by the high peak in heat-transfer coefficient mea-
sured at the reattachment point of bubbles developing on turbine blades [Pucher
and Gohl, 1987]. Roberts [1980] reports a measured mean value for the dissipation
coeflicient of 0.035, which is twice the value originally proposed by Horton and also
gi\'ren by Drela’s correlations. Finally, it is not known with certainty whether or not
the reattachment process is unsteady. Unsteadiness certainly seems likely at lower
Reynolds numbers, as the critical value is approached, or for very large values of
ht/c. The most effective way to capture such unsteadiness in a steady, integral
method is to lump its effects into a higher value for Cp.

Two additional empirical functions have been introduced. The distribution of
- skin-friction 1s specified by fitting a parabola to the transition point, the reattach-
ment point (where c¢; = 0 by definition), and to a preassigned value, cy, ;. , half-way

in between,

h
Choin = _*/0'0002"21 (5.36)

The higher level of dissipation is obtained by means of a multiplicative function
- to Drela’s values. This function rises quadratically from 1 at transition to a peak,
CDomasy 8t the mean reattachment point and then exponentially decays back to 1 a

small distance downstream of reattachment,

2
14+ (Cp,.. =) (2322),  0<epr <1

— _ Z

f= L+ (G 1)6"(%1“), x5 (5.37)
- where the decay rate is
. r=15— 1000%1 (5.38)
- such that
- | Cp = f X [Cp|Dreta (5.38)

The decay rate downstream of reattachment increases with decreasing bubble thick-

ness at transition. This reflects the assumed slower rate of decay of the turbulence
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(or unsteadiness) downstream of thicker bubbles.

It is not known whether or not Roberts’s value of Cp = 0.035 is representative
of most bubbles. Thus, although the value of Cp, . could be adjusted to match
this experimental value, its general dependence on varying flow conditions cannot
be inferred from it. Given the great impact of this variable on the shear layer
devclopment, however, it is still indispensable to obtain an estimate for at least
the order of magnitude of its variation. Rather than offering a rigorous derivation,
the following argument discusses flow variables that may be used to develop an

empirical correlation between Cp and ht/c.

As shown in Fig. 5-5, it is observed that, for an airfoil at a fixed «, as the
Reynolds number decreases the bubble increases in length with the (nondimen-
sional) edge velocity at transition remaining practically constant. The laminar sep-
aration point calculated with the boundary-layer equations (without interaction) is
independent of Reynolds number [Schlichting, 1979]. Since most airfoil velocity dis-
tributions are nearly linear in the main recovery region, the amount of velocity that
needs to be recovered in order to reach the inviscid distribution from a constant
value at transition increases linearly as this value moves downstream. Referring
now to Fig. 5-6, it can be seen how the main contribution to the decrease in edge
velocity comes from the dissipation coefficient term in Eq. (5.6). Specifically, the
decrease in velocity between transition and reattachment is mostly dependent on
the area under the Cp-distribution. As an aside, it can be seen from this figure
that a correct modelling of ¢y is not crucial. If a linear decrease in velocity with
increasing transition length is desired, therefore, an approximately linear increase

in this area is necessary. As the Reynolds number decreases, the ratio

(62)s AU

P/(R62)S = US AS

(5.39)

which determines the separation angle, varies together with the transition length

&
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in such a way that the height of the bubble at transition varies almost linearly
with £;. This is shown in Fig. 5-7 for the bubble and the Reynolds numbers
shown in Fig. 5-5. Finally, as the spreading angle of the turbulent shear layer is
also nearly constant, the turbulent length of the bubble also increases linearly with
trénsition length. Therefore, in order for the area under the C'p-distribution to
increase linearly over this length, Cp,,,. should remain constant.

Given the very approximate nature of the argument given above, it is not

surprising that some variation in Cp,,,, was found necessary. The function that

has given the best agreement is

3
Cp.,... =1+ 1/200-Z (5.40)
C

This modification has led to a much greater control on the amount of pressure
recovery between transition and reattachment such that any experimental pressure
distribution can now be reproduced simultaneously with the correct growth in §,.

This function is shown in Fig. 5-8 together with the variations of 4; and ¢j,,,, .

Model Flowchart

Having described cach part of the bubble separately, the scheme used by the
present method of predicting the development of laminar separation bubbles is now
summarized by the flow diagram shown in Fig. 5-9. Starting with the inviscid veloc-
ity distribution over an airfoil, the bubble model is invoked when laminar separation
is predicted. After removal of the Goldstein singularity, (Rs,)s is determined and,
based on the inviscid velocity gradient at the laminar separation point, an initial
estimate of Gaster’s parameter, P, is made. These two parameters are necessary
to estimate the angle that the separating streamline makes with the surface. The
velocity distribution in the plateau region is prescribed by means of the velocity

plateau function which depends both on P and on the matching of its slope to that
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of the inviscid velocity distribution at the laminar separation point. The separated
shear layer development can thus be calculated in the direct mode using the mo-
mentum and energy integral equations. The laminar length of the bubble extends
to the point where the amplification factor n = 9. This length times the tangent
of the separation angle gives the thickness of the bubble at transition. From this
height, knowledge of the spreading angle of the turbulent shear layer allows the
calculation of the turbulent length of the bubble. The value of the inviscid ve-
locity corresponding to this known reattachment location can be used to obtain a
new value for P, such that the laminar calculations can be iterated until P reaches
a fixed value. Upon convergence, the shear layer development in the turbulent
part of the bubble is calculated by prescribing the distribution of H3, and solving
the integral boundary-layer equations in the inverse mode together with turbulent
closure relations based on Drela’s but modified to model better the reattachment
process. Upon the intersection of the undershoot with the inviscid distribution,
the boundary-layer development is calculated in the direct mode using the inviscid
pressure distribution to drive Drela’s unmodified non-equilibrium turbulent to the
trailing edge, where the drag is obtained with the Squire-Young [1937] formula.
The equations used in the different parts of the bubble model are summarized

in the Appendix.
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Chapter 6

RESULTS

In this chapter, the bubble model will be tested by comparing its predictions to
available experimental measurements. These include mostly drag polars and pres-
sure distributions for several airfoils but also two sets of Laser-Doppler Velocimetry
mcasurements inside the bubble. The Reynolds number of these tests ranges from

2,000,000 down to 100, 000.

NACA 66:-018 Airfoil

The NACA 663-018 airfoil was one of the first to be tested for which the effect
of the bubble on the pressure distribution could be clearly seen. Figs. 6-1 and 6-2
show a comparison between the predicted pressure distribution and boundary-layer
developments and those measured by Gault [1955]. It can be seen that away from
the bubble the inviscid pressure distribution is quite satisfactory. To the right of the
plot is a blow-up of the bubble pressure distribution. The two asterisks represent
the “viscous” separation and the reattachment points. The local inverse solution
near separation with Hj, prescribed employed to remove the separation singularity
results in a rounding of the discontinuity in the velocity gradient upstream of sep-
aration and in some upstream influence of the bubble on the pressure distribution.
Although this is achieved by purely numerical means, the correct local behavior
seems well captured. The growth of the amplification factor is plotted along the
airfoil surface itself in units of percentage chord. This curve is plotted as function
of z/c rather than arc-length for consistency with the pressure distribution. Thus,
the end of the curve, at n = 9, lies a distance equal to 9% of the airfoil chord above

the airfoil’s y-coordinate corresponding to the transition location. For this case, all
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of the amplification occurs after laminar separation.

Fig. 6-1(b) contains all the relevant inputs and outputs of the boundary-layer
analysis. The inviscid velocity distribution is provided for reference together with
the Reynolds number and angle of attack. The calculated bubble is drawn on
this plot. The summary of the viscous analysis as printed out by the Eppler and
Somers program is printed to the right, below the label indicating that a bubble
analysis has been performed with transition at n = 9. This includes the extents
of turbulent and separated arc lengths normalized with respect to the chord, as
well as the drag coefficients from the upper and lower surfaces. The lift and the
total drag coefficients are printed next, and the bubble lengths on the upper and
lower surfaces come last. The Eppler boundary-layer development plot is shown
below. This plot is especially useful during the design process. Finally, all five
boundary-layer variables are plotted as functions of z /¢, with the asterisk denoting
the reattachment point. The removal of the Goldstein singularity can be clearly
seen in the smooth developments through the separation point.

This figure serves to illustrate several points. Since the airfoil is symmetrical
and a = 0, by suppressing the bubble model on the lower surface the present
prediction using the model and Drela’s turbulent boundary-layer method can be
compared with the original Eppler turbulent boundary-layer analysis starting at
the laminar separation point. With the exception of the bubble region, the two
methods give very similar results, as expected. The difference in separation point
locations with and without Goldstein’s singularity can be seen from the plot of
Hi, vs. z/c. At the bottom left of the figure Eppler’s boundary-layer development
plot shows that laminar separation for this airfoil occurs at the boundary with
natural transition according to the modified tramsition criterion Eq. (4.5). The e

analysis, however, indicates that n at separation is still quite small. This apparent
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inconsistency of Eppler’s transition criterion may be resolved by realizing that it was
calibrated using mainly drag data. For this case, the drag of the upper and lower
surfaces is identical. Therefore, the bubble does not seem to cause any deterioration
in airfoil performance. The experimental values of momentum thickness inside the
bﬁbble, derived from Gault’s data by Roberts [1980], support this interpretation.
As shown more clearly in Fig. 6-2, a bubble may not necessarily lead to an increase
in momentum thickness greater than if transition had been assumed at laminar
separation. In fact, as will be shown ldter, below a certain length a mid-chord
bubble appears to reduce the airfoil drag. The growth in momentum thickness in
the laminar part of the bubble is clearly evident. The calculated transition point is
a few percent chord too far downstream. As the length of the plateau in the laminar
part shown in Fig. 6-1(a) is quite close to the experimental, transition may indeed

start before any change in the pressure is observed, as maintained by Russell [1978].

NASA NLF(1)-1015 Airfoil

This airfoil was recently tested in the NASA Langley Low-Turbulence Pressure
Tunnel. Drag polars calculated from force measurements for lift, wake surveys
for drag, and also detailed pressure distribution measurements were obtained at
R = 2,000,000, 1,000,000, 700,000, and 500,000. The profile was designed for use
on a high-altitude long-endurance RPV and is therefore characterized by a large
aft-loading to achieve the high ¢, requirement. It was also designed to minimize the
effects of the bubbles at the design conditions of R = 2,000,000 for a high-speed
dash (bottom of the low-drag bucket) and R = 700,000 for maximum endurz;nce
(top of low-drag bucket). The present predictions are compared with the R =
500,000 data since here the effects of the bubble are most clearly seen.

Fig. 6-3 shows the aerodynamic characteristics of this airfoil on the plot as gen-

erated by the original Eppler and Somers program. Shown is the original prediction
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obtained by assuming transition at laminar separation, the prediction of the present
mode), Drela’s XFOIL results, and the experimental data from LTPT. Part of the
difference in drag prediction between the original program and the present version
is due to the different turbulent boundary-layer methods employed, as shown in Fig.
2-4. In fact, comparing Figs. 2-4 and 6-3, it can be inferred how at the top of the
bucket the bubble leads to a drag reduction over what is calculated by assuming
transition at laminar separation. In any case, the present formulation is able to re-
produce the measured data with excellenf accuracy. At the upper and lower limits
of the polar, the onset of strong global interaction cannot be neglected. At these
conditions, the present lift and drag predictions are poorer. The plot also contains
the lift and moment curves as functions of o as well as the transition and turbulent
separation locations as functions of z/c. In actuality, although the program labels
the axis as “z/c,” the independent variable is really “1 — squrb/c,” a rather more
cumbersome variable. Given that there is usually very little difference between the
two variables, z/c is used for ease of presentation. Since the original version of
the program assumes transition at the laminar separation point, the difference be-
tween the transition curves for the two analyses represents the laminar length of the
bubble. It can be seen how the bubble decreases in size and eventually disabpears
as the pressure distribution upstream of laminar separation becomes increasingly
adverse. This will be clearly shown in subsequent plots. Because the XFOIL tran-
sition locations are given in terms of actual z/c, they appear to occur downstream
of transition as calculated by the present model. As will be shown below, however,
they occur upstream.

Matching the experimental drag polar does not by itself guarantee an accurate
prediction. The pressure distribution and the boundary-layer development should

also be compared to experimental data. Unfortunately, it is much more difficult
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to measure these quantities. Consequently, few data sets are available. For the
NLF(1)-1015 airfoil, the details of the bubble flowfield can be checked only through
the pressure distribution, since no boundary-layer data were taken. Figs. 6-4 to
6-6 show typical comparisons with the measured pressure distributions together
wi£h the corresponding calculated developments. Fig. 6-4(a) shows the pressure
distribution corresponding to the lowest value of ¢, on the polar together with the
XFOIL prediction. Two very different bubbles can be seen, one at the mid-chord
on the upper surface and the other at the leading edge on the lower surface. Both
bubbles are well approximated by the model. XFOIL gives a slightly shorter bubble
on the upper surface and a very slight perturbation on the pressure distribution on
the lower. Fig. 6-4(b) shows the boundary-layer development. It is interesting
to see how large the values of the shape factors can become inside leading-edge
bubbles. These, in any case, do not seem to contribute much to increasing the drag
of the airfoil. The shape of the sin(1/z) function can be clearly recognized in the
mid-chord bubble. The values for Cp,,,, are very similar, the greater increase in 6,
of the upper-surface bubble being largely due to the longer extent of its turbulent
part. This bubble, in fact, is much thicker at the transition point than the leading-
edge bubble. The distribution of cf seems plausible. In any case, in this region this
variable has little impact on the boundary-layer development or on the pressure
distribution.

Fig. 6-5(a) shows the pressure distribution at an angle of attack corresponding
to the middle of the airfoil polar. In an attempt at matching the pressure gradient
along the bubble, the inviscid angle of attack is one degree less than the experi-
mental. It can be seen, however, that the strong trailing-edge interaction induced
by the large aft-loading prevents the matching of the gradients on both surfaces

simultaneously. In any case, the model reproduces the measured pressure distribu-
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tion remarkably well. Both the upper and lower surface bubbles are quite long and
may be expected to be thick. In fact, as can be seen in Fig. 6-3, at this condi-
tion the drag due to the bubble is highest. The bubbles predicted by XFOIL are
a little short although the same value of n was used. At this angle of attack, n is
stérting to be amplified upstream of laminar separation on the upper surface. The
boundary-layer development is shown in Fig. 6-5(b), where the step in §; in the
turbulent part of the bubble is evident.

Fig. 6-6(a), finally, corresponds to .the top of the bucket, where the upper
surface bubble is about to disappear and the lower surface contributes little to
the total drag. The short transition length in this case is believed to be a direct
consequence of the destabilizing effect of the adverse pressure distribution upstream
of separation. This is clearly shown by the distribution of n along the upper surface.
In Fig. 6-6(b), the viscous analysis summary shows how the lower-surface drag is
only a fifth of the upper-surface drag in spite of a 16%c long bubble. It is particularly
interesting to observe how the upper-surface bubble is shrinking while preserving
its proportions. This indicates that the correct scaling for the bubble has been
identified. At a slightly higher angle of attack, the transition point corresponds to
the laminar separation point. Beyond this condition, the transition point precedes
the separation point and travels upstream until the rise of the suction peak again
leads to laminar separation before transition and to the formation of a leading-edge
bubble. As far as the effects on transition are concerned, therefore, it appears that
the a destabilizing pressure distribution is entirely analogous to a rise in Reynolds

number.

Eppler E387 Airfoil

This airfoil was designed more than twenty years ago and is intended for use

on model gliders. It also was recently tested in the NASA Langley Low-Turbulence
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Pressure Tunnel [McGhee et al., 1988]. Figs. 6-7 to 6-10 show comparisons between
measurements and calculations at R = 300,000. Fig. 6-7 shows the aerodynamic
characteristics. While the original program underpredicts the drag by 10 or 20
counts, the new version is quite accurate. Also shown is the prediction with Drela’s
XFOIL program. Even though XFOIL was run with n = 12, the drag is still
underpredicted. As the bubble in this case is as long, if not longer, than the exper-
imental, the small drag values can only be a consequence of a too small value for
the dissipation coefficient in the turbulent part of the bubble.

Fig. 6-8(a) shows the pressure distribution for the lowest point on the polar.
The slight drag overprediction at low ¢, in Fig. 6-7 is caused by the too steep
bubble recovery that can be seen on the upper surface. Fig. 6-8(b) shows the
boundary-layer development. Fig. 6-9 shows the results at o = 1.5°. Fig. 6-
10(a) shows a leading-edge bubble at a high c,. It is quite similar in shape to the
slight perturbation in the experimental pressure distribution, including the small
undershoot. Better agreement might be obtained with slightly different profiles, for
instance the Green profiles. In fact, the early transition is a consequence of the very
high values for the shape factor, shown in Fig. 6-10(b), which seem unrealistic.

Fig. 6-11 shows the drag polar at R = 200, 000. Again, the prediction is
excellent. Figs. 6-12-6-14 are some characteristic analyses. Fig. 6-15 is a limiting
case, very near the critical Reynolds number. Below R = 100,000, the model
breaks down due to a transition length which extends beyond the trailing edge.
At this Reynolds number the prediction is not as good, as shown in Figs. 6-16
to 6-20. The pressure distribution shown in Fig. 6-16(a) highlights some of the
limitations of the model. The error due to the envelope method increases as the
Reynolds number decreases. Thus it could explain the disagreement between the

measured and predicted transition predictions for the upper surface bubble. The
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lower surface bubble is of a very difficult type for the model. In fact, the velocity
distribution along the bubble deviates significantly from a straight line, such that
the height at the transition point is probably overestimated by Eq. (5.31). As a
consequence, the predicted turbulent length is also too large leading to a too great
pressure recovery. A higher-order dependence of A7 on the curvature of the velocity
distribution should be developed. As discussed by Gaster, such deviation from a
linear recovery may be well represented by a P2-term in the correlations. As the
pressure distribution upstream of laminar separation becomes increasingly adverse,
as shown in Figs. 6-17(a)-6-20(a), the predicted transition point moves downstream
relative to the experimental. This is consistent with the conclusions of Chapter 4
about Drela’s e” method. In Fig. 6-18(a), the effect of the interaction on the

growth of n can be clearly seen in the XFOIL analysis. At this Reynolds number,

in fact, the bubble is so large that its effect on the pressure distribution upstream
of laminar separation cannot be neglected anymore. The steeper growth of n that
results is responsible for the early transition. This effect is probably independent

of the e™ method employed such that a correlation between n and R should be

developed for use with interactive methods. In Figs. 6-16(b)-6-20(b) the details

of the boundary-layer development inside the bubble are most clearly evident. To
conclude the comparisons, the last two airfoils to be discussed, Figs. 6-21 and 6-

22, were tested for pressure distributions and boundary-layer developments using
Laser-Doppler Velocimeters.

NACA 65-213 Airfoil

An NACA 65-213 airfoil was tested by Hoheisel et al. [1984] at DLR, Ger-
many. Pressure coefficients and boundary-layer developments obtained with a
Laser-Doppler Velocimeter are given for the upper surface at zero angle of attack

and R = 240,000. Fig. 6-21(a) shows the airfoil and the pressure distribution. Al-
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though the inviscid analysis is performed at one degree less than the experimental,
the pressures could not be matched since the coordinates used were not the exper-
imental ones and, morcover, were generated by scaling those of an NACA 65-210
airfoil. As explained in Abbot and Von Doenhoff [1959], this is an approximate
pr'ocedure which can be used in place of the exact method of Theodorsen if the
change in thickness is small. Finally, the turbulence intensity of the wind tunnel
used is Tuo, = 0.2%. This is to be contrasted with that of LTPT, which is less than
0.02%. Both the shape of the bubble distribution and the transition location appear
to be affected by such a high freestream turbulence intensity. In fact, the bubble
recovers a significant amount of pressure in the laminar part, followed by a fairly
gradual steepening into the fully turbulent recovery. As shown in Fig. 6-21(b), the
experimental transition point occurs about 5%c upstream of the predicted. In any
case, the shape factor and momentum thickness developments are reproduced very

well.

Wortmann FX 63-137 Airfoil

The last of the comparisons is a prediction of the pressure distribution and
boundary-layer development over a Wortmann FX 63-137 airfoil at R = 100, 000.
The data were taken by Brendel and Mueller [1988] with an LDV at a = 7°.
Fig. 6-22(a) shows the pressure distribution and Fig. 6-22(b) the upper surface
boundary-layer development. Although the calculated trailing-edge value of mo-
mentum thickness is 0.028, the plot is cut off as shown in order to view more clearly

the bubble region. The comparison is very good.
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Chapter 7

CONCLUSION

Summary and Conclusions

The correct scaling parameters for the bubble have been determined: P,
(Rs,)s, and hr/c. The generality of the model relies on having understood and
correctly approximated the dominant physical processes in the bubble flowfield.
Having identified what the bubble depends on, parameters characteristic of this
particular problem have been utilized to construct an algorithm that conforms to
the flow development itself. Thus, the strong interaction leading to the pressure
plateau in the laminar part is well represented by DU(P), a relationship that re-
flects the dependent role of the pressure recovery. The e™ method coupled with
Wortmann’s correlation for the separation angle as a function of P and (Rs,)s al-
lows the transition location and the height of the bubble at transition to be found.
ht/c, in turn, determines the length of the turbulent part such that even a rough
estimate of the turbulence intensity in the reattachment region allows an accurate
prediction of the pressure distribution and the momentum thickness growth.

The feasibility of a semi-empirical approach has finally been established. After
fifty years of unsuccessful attempts at developing a general semi-empirical bubble
model, the identification of the correct scaling parameters for the bubble has finally
made such an approach possible. This has brought two main advantages: a method
more efficient than any interactive boundary-layer of finite-difference algorithm and
a deeper understanding of the bubble flowfield without which, in fact, the method
could not have been developed.

A general, accurate, and computationally efficient laminar separation bubble
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model has been developed. Although very simple, the model is able to reproduce
the effects of vastly different bubbles over the whole Reynolds number range in
which bubbles form. On a VAXstation 3100, the original version of the Eppler and
Somers program takes approximately ten seconds to generate a drag polar, which
tyfically is defined by fourteen angles of attack. The program with the bubble
model takes approximately one minute for the same analysis. Drela’s XFOIL takes
approximately thirty minutes, partly because smaller steps in angle of attack must

be taken to ensure convergence.

Suggestions for Future Work

The simplicity of the model brings a few drawbacks. While its response to
large changes in the controlling flow conditions is correct to lowest order, its sen-
sitivity to slight variations in pressure distribution is limited. More importantly,
its performance near limiting conditions such as high angles of attack, very low
Reynolds numbers, or very unusual pressure distributions is not reliable. These
deficiencies can be traced to the “stiffness” of the model: by effectively integrating
parts of the flowfield in an approximate way, the pointwise flexibility of the original
governing equations is lost. Whereas it appears that the bubble flowfield itself has
been properly “integrated,” its effect on the airfoil pressure distribution has not.
An interactive method should therefore be incorporated in the Eppler and Somers
program in order to be able to analyze those limiting cases where the present model
is likely to fail.

The principles of conservation of mechanical energy and momentum that are
invoked to justify the pressure plateau in the laminar part might be used to deduce
what the value of G should be in the Green profiles. Since the value of skin friction
appears to have such a small impact on the bubble development, the correlations

based on these profiles may lead to a more accurate calculation of the separated
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laminar shear layer.

Another concern for future work on the improvement of the model is the
transition prediction method. The method of Stock and Degenhart should be
implemented in place of Drela’s but its accuracy should nonetheless be tested
against “exact” stability analyses of boundary-layer developments calculated by
finite-difference methods. The influence of the interaction on the growth of n de-
serves particular attention. It appears from the XFOIL analyses that the correct
transition location can be matched by a value of n that increases with decreasing
Reynolds number. It should therefore be possible to develop an empirical function
n(R) that reflects this trend.

Finally, very detailed measurements of the reattachment process are necessary
to understand it better and to provide a better estimate for Cp in the turbulent
part of the bubble. Specifically, the mean flow and the turbulent stresses should be
measured in order to deduce the actual distribution of dissipation coefficient in the

turbulent part of the bubble.
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APPENDIX

MODEL SUMMARY

In this appendix, all the equations used in the present version of the bubble

model are summarized. This will facilitate both the understanding and the repro-

duction of the model.

Laminar Boundary-Layer

The inviscid velocity distribution is used to drive the laminar boundary-layer

development, which is found by integrating the following system of equations.

Governing Equations:

Closure correlations:

Hyp = ¢

dé 6, dU

gf=£2£—(H12 +2)ﬁ2—d—s— (A.1)
dés 63 dU

@ _cp-38% A2
ds Cp 3U ds (4.2)

 (25.71578574H3; — 89.58214201) Has
+79.87084472, Hsp > 1.7258

(A.3)

v H3zz — 1.515095[(—227.18220 H;2
\ +724.55916)H3, ~ 583.60182], Hjyp < 1.7258

¢ (2.2216872229Hs, — 4.226252829) Hsy

+1.3723907030, Hip > 1.7258
2~ ) [(—0.03172850655H, + 0.3915405523) H1,

| —1.686094798] Hy + 2.512588652, Hip < 1.7258

(A.4)

Rs,Cp = (6.8377961H;, — 20.521103)H3, + 15.707952 (A.5)

Laminar Separation:

Hjz = 1.515095 (A.6)
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The development of the shear layer in the laminar part of the bubble is cal-

culated by integrating Eqs. (A.1) and (A.2) along with the following expressions.

The removal of the Goldstein singularity at laminar separation is discussed at the

end of Chapter 3.

Separation angle:

64P

tany = ———-——(R62 )5

where

Us Bo)s

(R52 )5 = RUoo c

(52)5]2 AU/U)

PzR[ c | TAGTo)

Laminar pressure recovery:

U 1 U;
—_— =1 — —_— S8 —_—
Us DU {1 exp [DU Us (s ss)] }

where

DU = { 0.0610 + 0.3048P + 0.5072P? —-P < .3
0.0152 -P>.3

Closure correlations:

H12 =

0.08 .04

R52—2—- =

6

Cp

Re, = = 0.207 — 0.003(Hyz ~ 4)°

¢; | —0067+0.019770 4R By, < 74
2
—~0.067+0.022 [1 - L], Hyp > 74

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(4.13)

(A.14)



Transition

Amplification factor:

)= [ |am ()| R0,

where

d €
[dR’";z (le)} = 0.01[{2.4H}5 — 3.7

+ 2.5 tanh[1.5(H1, — 3.1)]} +0.25]%

6.54H,; — 14.07
Hi,

L(Hi2) =

0.058(Hyz — 4)2 1

Hiz) = =
m(Hz) = gy T 0.008 2

so is defined as the location where Rs, = Rgzo, where

1.415 20
logy[Rs,,(H12)] = Hool 0.489] tanh [le —7 - 12.9}
3.295
44
+ Ho,—1 + 0.440
Laminar length of the bubble:
€1 @n = 9
Bubble height at transition:
hy = 2
tan vy

Turbulent Part of the Bubble

Spreading angle of turbulent shear layer:

tanf = .0975+ 2.5 x 1078 R
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)
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Turbulent length of the bubble:

Shape factor distribution:

where

<

Yo
g

SF

Ay

= tan 6 (A.23)
H;(y) = sin [%] (A.24)
— H32 - (Hgg)R _
T 4 A [(Ha2)T — (H32)R) 1 (A.25)
B (% - y") 7+ 0 (4.26)
~ 3r —sin ' (1/A4; — 1) (A.27)
= (S — s )/e s<s
- { [(s - ‘:1’)/52 ~1SF+1 s> s: (A.28)

= /41 /43 (A.29)

= 0.5 4 ¢~300(hr/c) (A.30)

and A; is iterated upon until the undershoot merges with the inviscid velocity

distribution.

The above shape factor distribution is used to drive the integral boundary-layer

equations in the inverse mode.

Governing equations:

iU_._P
ds—_
a _ |
ds
é

__dC'T:4

Cr ds

dHj, 4
— ’ 1
(cs/2)Hz2 — Cp + 6, 7s } 62H2(Hyg — 1) (431)
3(cs/2)Hsz stz] Hiz +2
et/ sy A.32
Hip+2 PTG Hyz(Hiz — 1) (432
2CE, - CF) (4.3
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where

_ 0.015H3; [Hiz — 1

3
C,.. =
“ l_Uslip[ Hys ]

1.72

Closure correlations:

C’D = f X [CD]DreIa

where
S$—3 2 S—s
st - (E),  0sepEsa

1+ (CDmuz - l)e—r( ‘2 _1), -s:e_:z; > 1

h

r =15 — 1000—~
c
/ h
Cp,..=1.+ 200—7
c
[CD]Drela = CstIip + 201—(1 - Uslip)
Hso 4
Ustin = — | — -1
slip 6 [le ]
Hiz,
, >0
1 [HS'J‘HMQ}T-}” o
Hy = “
Hiz + [—————QH‘”;”” ] * e <0
where
4
H320 = 1.505 + R62
400

H12° =3 + R52

c1 = 0.081(R;s, — 300)°?

c2 = 0.0158(R;s, — 300)°-°®
3000

~1.
¢a =100+ o e00ye
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(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)
(A.40)

(A.41)

(A.42)

(A.43)

(A.44)
(A.45)
(A.46)

(A.47)
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Cloin = —1/0.00022Z (A.48)
C

The ¢ distribution is obtained by fitting a parabola through ¢y, , ¢y,.;,, and ¢y =0

at »CQ.

Turbulent Boundary Layer

The development of the turbulent boundary layer downstream of the intersec-
tion of the undershoot with the inviscid velocity distribution is calculated in the
direct mode by prescribing the inviscid velocity distribution to drive Eqs. (A.1),
(A.2), and (A.33). This system of equations is complemented by closure correlations

(A.34), (A.35), and (A.40)-(A.47). The skin-friction coefficient is obtained from

ep= — 03 T 000011 [rann (4 - PO ) — 1 (4.49)
f= (log R52)1'74+0'31Hu : 0.875 .
Turbulent separation:
400
Hj, = 1.505 + (A.50)
Rs,
Drag Calculation
Squire- Young formula:
5 2.540.5H12, 5
ca = Z—Z‘i (%—TE) (A.51)
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