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ROBOT VIBRATION CONTROL USING INERTIAL DAMPING FORCES
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ABSTRACT

Nppumthemppnsﬁmofthevibnﬁmohhryﬂcﬁbbmbabyinmidfmm of a
smallrobotwhichisbatedattheﬁpofthchrgerobotAconkoﬂcrforgcnenﬁngdampingforcestoa
hrgerobotisdesignedbascdonthemﬁmemlemodel'l‘heeontrollerdounotneedtoulanatethc
quasi-steady-state variables and is efficient in computation. Simulation results show the effectiveness of the
inertial forces and the controller designed. )

1. INTRODUCTION

The desire to improve manipulator arm performance has lead to designs with lighter arm structures.
A light elastic structure responds to motion or disturbances with undesirable vibration, which must be
cither actively or passively damped before most manipulation tasks can be completed. A pumber of
researchers have explored actively damping the vibrations with the joints of the flexible arm. [1,2,3] While
this can be very effective, it requires high bandwidth servo control of the joints, with actuator bandwidth
exceeding the vibrational frequencies to be damped.

This paper considers an alternative active control approach that is useful when additional degrees of
freedom are available at the tip of the arm. In particular, we consider a small arm mounted on the end of
a larger arm. This configuration is representative of proposed space manipulators and of bracing
manipulators under study in several laboratories [4]. The small arm is used in this study to generate
inertial forces on the large arm to cancel large arm vibrations. It is easier to provide high bandwidth
actuators for a small arm than for a large arm. The large arm’s function is to provide a base for the small
arm, bringing the task into the small arm’s work space. Highly accurate motion is not needed for the
large arm, and providing it solely for active vibration control is a major compromise in cost and
complexity. In fact, the large arm could be brought to position against a mechanical stop, or moved with a
very simple on-off or open loop control.

This study involves siraulation of a physical system for which later experiments are planned. The
large arm, designated RALF (Robotic Arm Large and Flexible), is comprised of two ten foot long links
and two bydraulically actuated joints. The second joint is actuated through a parallelogram mechanism by
an actuator located near the base. Details on RALF, its modeling and experiments verifying its behavior
are described in [5]. The small arm, designated SAM (Small Articulated Manipulator), is electrically
powered and remains under construction at this time. It’s three rotational joints give a spatial motion, but
only two joints are considered here. As considered here SAM’s first joint, which rotates about RALF's
second link, has placed the four remaining joint axes of the system in a parallel direction and all motion

considered is coplanar.
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2. DYNAMIC MODELING
Figure 1 shows a large flexible robot carrying a small rigid robot at its tip. There are four joint
variables and infinite number of vibration variables. The most important variables to describe the dynamic
system are four joint angles and one vibration variable for each flexible link [6]. However, in order to
ﬂudytheeﬁeaivenesofthzinertialfo:eesohnnallrobot,themglesofthehrgerobotmmumedto
beﬁmeinvuinnt.Byfollowing[S],thedymmiceqnationsofmoﬁonfortherobotmbewritteninthe
following form.
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where,

M(0.q) is the incrtia matrix,

N(O,é,q,&) includes nonlinear and gravity terms,

K is the stiffness matrix of the flexible robot,

@ is the vector of joint angles of small robot,

q s the vector of vibration amplitudes and

U is the actuator torque vector.

The singular perturbation technique is a useful method for simplifying the equations and reducing
the order with modest reduction of model accuracy [7]. The flexible robot designed for industrial
application, could have relatively high stiffness. In this case, the reduced order models comprised of fast
and slow submodels can keep its original dynamic characteristics with negligible order of errors. The two

reduced order submodels can be obtained by following [10,11] for the flexible robot.  The equation (1)
can be expressed as,

(=

0 = -Hp, Kq - Hy Ny - HiN o+ Hyy U

- (2)

q= - sz Kq - HZINO - HZZNq + HZlu

where H is the inverse of mass matrix M(#,q) and subscript i and j denote the corresponding submatrix
To make the equation (2) a standard form as in [3], the inverse of the smallest spring constant k is

sclected as a perturbation parameter i(=1/k). Then, the equation (2) can be written as following forms:

1

0= - lez - Hll"ﬂ - HIZNq + I'luU (3a)

Pz = - Kszz - KHZINO - KHZZNq + KHZIU (3b)

where, K = K, z = Kq, H;; = Hy(,2), and N; = N(8,8.pz,82).
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The equation for the slow submodel can be obtained by assuming =0 which regards the flexible
links as rigid. Substituting §6=0 into the equation (3), we can obtain the following cquations:
- -1 - = - - - =
- - - 4
Hyy (- HygNy - Byl + HyU) (4)

N

122~ Ml - BiNg * P
where bars are used to denote corresponding terms when b = 0 meaning the mode! dynamics are resticted
to quasi-stcady-state variables Z. U is a slow control torque vector. The equation of slow submodel is

obtained from equations (4) and (5) as

U (5)

X

N, + U) (6)

Thcequaﬁon(6)isthesameasthatofarigidrobot.
In order to obtain the equation for the fast submodel, a scaled time T-t/.lu is introduced. Then,
the equation (3b) can be rearranged as

n'--Kﬁzzn+Kﬁ21Uf (7)
wheref) = z- z represents the deviation vector of the fast variables from the quasi-steady-state variables
;, Uy=U- U denotes fast control torque vector, and ’ indicates differentiation with respect to 7. The
equation (7) represents the fast submodel dynamics.

3. CONTROLLER DESIGN
To stabilize the two submodels, a composite control law is, generally, adopted [10] as
U = U(f) + Un)
The slow controller is used for controlling a rigid robot while the fast controller is used for forcing the fast
deviation vector to approach to zero. For the slow submodel control, most of the well developed control
laws for the rigid robot can be applied [9]. The nonlinear feedback controller is chosen as in [11].

D-ﬂoniu (od-xv(b-od)-xp(a-od)) (8)

where, subscript d denotes a desired value while K, and K are gain matrices.

The gain matrices should be determined to keep the time scale separation between the controller
bandwidth and lowest vibration frequency [12]. In simulation, the gains were chosen so the small rigid arm
behaves as two decoupled joints, each with natural frequency of 6 rad/scc and damping ratio of one. This
maintains a 4 to 1 separation from the lowest vibration frequeacy of 4 Hz.

The fast controller is usually designed using an optimal or cigenvalue assignment control law [9,10].
However, cquation (7) has time-varying paramerters. Hence, those control laws may not guarantee the
stability of the controlled system. In addition, those controllers need the information about the quasi-



stcady-state variables, z. When the order of the dynamic equations is large as is the complete model in
thisase,thewmpuuﬁonof;ukuﬁphtgeamounuofproccssingﬁmemdmynotberealisticforreal
time control. One of the main criteia for the fast controller design in this rescarch is the capability of real
time control. The equation (7) can be written in time t domain as

n-fxﬁzn+xﬁ v (9)

2
The equation (9) can be stabilized by applying the fast control torques as

K ﬁzl U = - Knvﬁ | - (10)
where, Kp, denotes velocity gain matrix The matrix Hy, is generally not invertable but will be in this cas.
However, the inverse of the matrix can be obtained using the pseudo-inverse technique. The signal, 7,
used in the control can be written as

flet-2a}=Kj (11)
Hence, the controller does not require information about z and, therefore, is efficient in computation. It
is generally known that adding a proportional control action to the controller can improve the
performance. One would expect to be able to stiffen the system as well as increase its damping. However,
there are physical imitations Like the torque, joint travel, and bandwidth of actuators, or the time scale
separation between controller bandwidth and the frequency of unmodeled dynamics. The controller
satisfying equation (11) can relax the limitation. Thus, we design the fast controller as

_ ]
or
A I
Ug(a) = - Hyy (Hyy Hyp) ~ Kp\a (12b)

where the equation (12b) is for the case when the matrix §21 is not invertible. The composite controller is
given as,

U = U(9) + Ug
In our simulation, the equation (12a) is used. The elements of the gain matrix are determined by
considering the frequencies of vibration , 4 and 6 Hz, as Kpyjy = Kpygz = 20 and Kypgp = Kppypy = 0. In
order to compare the perfomance of the designed controller with full state feedback controller, the
following modified nonliner pole assignment control law is designed as

- = -l.,= - ,
Uelm) = (R Ay )" (R Ry m - K 07 - Kem) (13)

The elements of the gain matrix Ky, and Ky are determined to yield two decoupled controllers each with a
natural frequency of 60 rad/sec and a damping ratio of 0.5.



4. SIMULATION RESULTS

The control of the small manipulator SAM was simulated using the three control schemes described
sbove. Thejoinuofw,thehrgenm,memumedtobe locked as is representative of highly geared
drives or stiff hydraulic actuators, at §; = 60 degrees and §; = 120 degrees. Results for an initial rate of
deflection of RALF (Fig. 2, 3 and 4) with SAM in two nominal configurations and for a commanded
motion of SAM (Fig. 5) are shown. The nominal configurations of SAM arc 83 = 0 and 8, = 60 degrees
(the design condition) and 8 = 10, 8, = 50 degrees (the off design condition).

First, the response of the system for no active attempt to respond to vibration of RALF is shown in
Fig. 2. This is called the passive case. Only (8) is used to compute the control of SAM. As you see, the 6
rad/sec response of SAM’s controller has superimposed on it the higher natural frequency of RALF at
approximately 25 rad/sec (4 Hz). The vibration of the base due to RALF's dynamics are clearly visible in
the motion of SAMs joints (Fig. 2) and in the displacement of the lower (Fig. 3) and upper (Not shown)
link of RALF. Energy is slowly taken out of these vibrational modes by the motion of SAM as it is back
driven by the disturbance. No damping is included in the model of RALF. The behavior is undesirable
due to the long settling time of over 2 seconds.

A significant improvement in settling time of the vibration is achieved with active control of SAM in
response to the vibrations of RALF as shown in Fig. 2,3 and 4. The control is computed using both (8)
and (12-a) and is referred to as deflection rate control. Under active feedback of the deflection rates,
vibrations arc damped in less than 1/2 the time required with passive control. A significant degradation is
observed for the off design angles of SAM as shown in Fig. 4. The effectiveness of this control is sensitive
to both the proper gains and the placement of SAM in a configuration to most effectively damp the
vibrations. The large excursions of joint 4 in the off design condition (Fig. 4a) render the dashed case
unacceptable. Joint torques (not shown) are also unacceptably high in this case.

An attempt to add deflection feedback to the deflection rate feedback is shown in Fig 2, labeled full
state feedback. The control incorporates (8) and (13) using a pole placement scheme. The large
excursion of SAM’s joints point to difficulties predicted with this controller. The vibration of RALF is not
damped as rapidly as with the deflection rate control as can be seen from Fig. 3a-b. Other methods of
using full state feedback may prove more effective in future rescarch.

When SAM is given a step command in desired angle, substantial excitation of RALF's vibration
results. In Fig. § SAM’s first joint (#3) is commanded to move from 0 to 30 degrees while 8,is
commanded to move from 60 to 90 degrees. Both the passive and deflection rate control complete the
move in 1 second, characteristic of the 6 rad/sec natural frequency of the slow control as shown in Fig. 5-a.
The deflection rate fast control eliminates the deflection displacement almost simultancously with
completion of the commanded movement, however as seen in Fig. 5b and Fig. 5¢.. The passive control
shows vibrations continuing well beyond 4 seconds.
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§. CONCLUSIONS
Based on the results of simulation, the following conclusions are reached:

The incrtia forces of the small robot are onc of the effective ways to control the vibrations of
the large flexible robot. _
ThedynamicequaﬁomofSAMndRALFmdpiﬁmnﬂydmpﬁedbyﬁngulupemnbmon
technique and have proper time scale scparation.
mdedgneddmphgmudhwmmgoodpafmeewithmuchksmpmaﬁmm
full state feedback control laws.

The nominal angles of SAM affect the performance of controller. The problems related to the
angles will be addressed in a future paper.
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