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I. Introduction

One of the most difficult problems the manufacturing community has faced during recent years

has been to accurately assess the physical state of anisotropic high-performance materials by

nondestructive means. Destructive testing of materials, although it supplies useful information for

the design engineers in the development stage of a material, is inappropriate for ascertaining the

state of the material during assembly testing and routine maintenance procedures. Conventional

nondestructive ultrasonic measurement techniques, currently employed with much success, can be

improved to yield even more information about the physical state of a material. In the past,

communication between the physical science and engineering communities has been somewhat

inadequate. Each community has valuable information to contribute towards the assessment of

material integrity. Measured ultrasonic parameters can be related to the common engineering

parameters to yield information useful to both communities.

In order to advance the design of ultrasonic nondestructive testing systems, a more

fundamental understanding of how ultrasonic waves travel and interact within the anisotropic

material is needed. The relationship between the ultrasonic and engineering parameters needs to be

explored to understand their mutual dependence. One common denominator is provided by the

elastic constants. Accurate measurements of these physical parameters can yield information useful

in determining the physical integrity of the material. With this in mind, advanced ultrasonic

measurement systems can be designed with the internal nature of the material in mind. The type of

material and the very question the investigator is trying to answer should play a major role when

setting up a measurement system.

In Section II of this Progress Report we discuss Our preparation of specific graphite/epoxy

samples to be used in the experimental interrogation of the anisotropic properties (through the

measurement of the elastic stiffness constants). Accurate measurements of these constants will

depend upon knowledge of refraction effects as well as the direction of group velocity propagation.

Section III discusses Our continuing effort for the development of improved visualization

techniques for physical parameters. Group velocity images are presented and discussed. In order

to fully understand the relationship between the ultrasonic and the common engineering

parameters, Section IV discusses the physical interpretation of the linear elastic coefficients (the

quantities that relate applied stresses to resulting strains). This discussion builds a more intuitional

understanding of how the ultrasonic parameters are related to the traditional engineering

parameters.
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II. Sample Preparation and Preliminary Velocity Measurements

As discussed in previous Progress Reports, uniaxial graphite/epoxy laminates exhibit

hexagonal symmetry. Five distinct elastic stiffness coefficients are required to describe the elastic

properties of this material. Four of the five constants may be measured by propagating

longitudinal and shear waves perpendicular and parallel to the fiber orientation. The fifth elastic

constant must be measured at an angle that is neither parallel nor perpendicular to the fiber

direction. In our Progress Report of 9/86 a discussion of the existence of a possible optimum

angle at 77 ° with respect to the fiber orientation, for measurement of this fifth elastic constant, was

predicted based on analysis of the propagation of errors.

We have prepared three uniaxial samples, received from NASA Langley Research Center, for

the measurements. Two of the samples were surface ground so that their sides were parallel and

perpendicular to the fiber orientation as illustrated in Figure 1.

Graphite Fibers

Figure 1:

I

Two samples prepared for the propagation of longitudinal and shear

waves parallel and perpendicular to the fiber orientation.

The third sample was prepared so that insonification normal to the surface will produce ultrasonic

waves whose phase velocity will propagate inside the sample at an angle of 77 ° with respect to the

fiber orientation. Figure 2 illustrates the two steel stages machined and used to prepare the third

sample of graphite/epoxy. Also illustrated in Figure 2 is the finished sample.

Time resolution of the received ultrasonic signals requires an understanding of refraction

effects and possible mode conversion at interfaces. An understanding of the directions of phase

and group velocity propagation inside the material is also required (see Section III of this Progress

Report). Using results obtained from linear elastic theory we are evaluating a preliminary design

of the measurement system. A full report of these investigations will be forth coming.



Stage 1

-3-
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Figure 2: Preparation of a uniaxial graphite/epoxy sample for measurement of
the fifth elastic constant
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III. Visualization of Group Velocity Surfaces for Uniaxial Graphite/Epoxy

Composites

For anisotropic materials the phase and group velocity need not be collinear. The group

velocity is defined in terms of the modulation of the wavefronts. Consider an ultrasonic wave

emitted from a conventional planar cylindrical cross section transducer. The wavepacket is

restricted in two dimensions by the diameter of the transmitting transducer and in the third

dimension by the ultrasonic pulse length. The wavefronts propagate in the direction of k (along

the axis of the transducer) while the wavepacket propagates along the direction of group velocity

(modulation envelope). If the phase and group velocities are not collinear, the receiving transducer

will have to be offset with respect to the phase velocity direction in order to intercept the ultrasonic

pulse. By using the information obtained from linear elastic theory we are able to predict the group

velocity direction for a given initial phase velocity direction. This information will enable the

investigator to incorporate such knowledge into the design of the measurement system. Although

numerical calculations produce useful numbers, they do very little to raise the physical intuition of

the investigator about the intrinsic nature of the material with which he is working. Our hypothesis

is that a three dimensional representation of the group velocity surfaces for each allowed ultrasonic

mode of propagation would greatly improve the insight one has when designing an advanced

measurement system.

Using the fact that the fiber direction is an axis of six-fold symmetry, which implies that

orthogonal planes to this axis are transversely isotropic, we have produced three dimensional

group velocity surfaces for uniaxial graphite/epoxy composites. Figure 3 displays the group

velocity surfaces for the three propagation modes.

The way to interpret these surfaces, for each propagation mode, is to place the observer inside

the surface at the origin. When he/she looks in any direction, the length of the vector from the

origin to a point on the surface represents the magnitude for the group velocity that propagates in

that direction. In general for anisotropic materials, this does not necessarily result from the

propagation of the phase velocity in this direction. We are currently working on a representation

which will enable the viewer to more easily visualize the relationship between the initial phase

velocity direction (i.e., the direction in which the wave is launched) and the resulting group

velocity direction.
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IV. Physical Interpretation of the Elastic Matrices

In the previous Sections of this Progress Report we have stressed the importance of

understanding the intrinsic nature of the material that is to be evaluated. The more we understand

about the intrinsic physical properties of a material, the more intelligent the design of the

measurement system can be. The ultimate goal is the assessment of material integrity by a

nondestructive means. Ultrasonic measurement techniques have proven to be a very attractive

approach for solving this problem. Information about the strengths and weaknesses of a material

can be derived from ultrasonic parameters with the added feature that these parameters can be

directly related to the traditional engineering parameters, such as Young's moduli, Poisson's ratios

and the like.

In this Section the relationship between the stress and strain in a linear elastic material, via the

elastic stiffness and compliance matrices, is discussed. A physical interpretation of the form of the

elastic matrix as well as the individual components is presented. The relationship between the

elastic coefficients and the Young's moduli, Poisson's ratios, and the pure-shear moduli is also

discussed.

The Constitutive Relation: Hooke's Law

The constitutive relation, relating stress and strain, in the most general case requires 81

coefficients to describe the elastic properties of a linear elastic solid. For a lossless material the

stress (Tij) is proportional to the strain (Skl) via the real-valued elastic stiffness coefficients (Cijkl).

3 3

Tij = _ E cij kl Skl (i,j= 1,2,3)

k=l 1= 1

or T = c : S (1)

Stress denotes a force acting on an area. It is useful to consider the stress tensor in dyadic form to

explicitly show the direction of the applied force and the surface area to which it is applied. This

representation, common in engineering literature, yields a more physical interpretation of the stress

tensor. A dyad is defined as the direct multiplication of two vector quantities to produce a nine

component 2nd-rank tensor quantity. We can write the stress tensor in dyadic form as

fi 1 1 I

T = F_ = <F1, F2, F3><_-7(, A----7, A---7> (a direct product)
, (2)

or in matrix form as
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[Tij ]

F1 FI F1

A1 A2 A3

F2 F2 F2

A1 A2 A3

F3 F3 F3

A1 A2 A3

where Fi is the component of force in the ith direction

and Aj is the area of the surface whose normal is in the

jth direction (3)

In Figure (4) the notation for the applied stresses on a unit cube is illustrated. The first

subscript denotes the direction the force is acting; the second denotes the direction of the normal

vector to the face of the cube on which the force is applied.

x3

X1

T33

x2

Figure 4: The stress components acting on each face of a unit cube within a stressed

body (ijkl system).

Figure 4 along with the previous discussion demonstrates the necessity for the stress being a

double subscript quantity.

From classical linear elastic theory, the maximum number of distinct elastic constants for a

material is reduced from 81 to 36 due to the symmetry of the stress and strain tensors. That is,

Tij = Tji and Sij = Sji
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from whichit necessarilyfollowsthat

Cij kl ---- CJikl -- Cij lk = CJilk and

which is obtained by permuting the indices in pairs.

Sijkl = Sjikl----= Sijlk = Sjilk

Abbreviated Subscript Notation:

Due to the symmetry of both the stress and strain tensors, there are at most 36 distinct elastic

coefficients. Since many of the 81 coefficients are equivalent a reduced notation is possible.

Using the abbreviated subscript notation developed by Voigt, we can rewrite the double indexed

quantities as single indexed quantifies as displayed in Table 1.

Voigt Notation

T1 - Tll T4 -- Tg3 = T32

T2 - T22 T5 - T13 = T31

T3 -- T33 T6 = T12 = T21

S1 -= $11 $4 -= 2S23 = 2 $32

$2 = $22 $5 - 2S13 = 2S31

83 _ $33 $6 -- 2 812 --- 2 821

Table 1

Following the common convention, we can write the elastic coefficients in reduced notation, taking

into account the numerical factors, as

Clj _ Cijkl and Slj _ Sijkl )_ 1 for IandJ=l,2,3}
2 for I or J=4,5,6

4 for I and J = 4,5,6 (4)

In the following discussion, quantities with lower case subscripts will refer to an 81 element Cijkl

system while upper case subscripts, cij, will refer to the Voigt notation. Figure 5 illustrates the

stress components acting on each face of a unit cube within a stressed body in the Voigt notation.
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X3

Xl

T3

x2

Figure 5: The stress components acting on each face of a unit cube within a stressed

body (IJ Voigt system).

The constitutive relation may be rewritten as

6

TI = Z cIJ Sj (I = 1,2,3,4,5,6)

J=l

where Clj represents the elastic stiffness coefficients.

[ClJ ] =

-Cll C12 C13 C14 C15 C16"

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

(5)

(6)

If a localized strain-energy function exists then the elastic matrix that describes the solid is

symmetric. Thus, the 36 elastic stiffness constants can be reduced to 21 distinct constants. A
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materialwhich hasanelasticmatrix of this form is calledatriclinic systemandrepresentsavery
generalclassof materialswhichexhibitnoelasticsymmetry.

Reduction of Elastic Constants

The number of distinct elastic coefficients needed to describe the elastic properties of a material

can be reduced if the material exhibits elastic symmetries. For example, a large class of real-world

materials exhibit orthotropic symmetry. These materials possess three mutually orthogonal planes

of elastic symmetry and have at most 12 distinct elastic coefficients. Orthorhombic, tetragonal,

hexagonal, cubic, and isotropic systems all exhibit orthotropic symmetry. We should note that the

number of distinct coefficients will be reduced only if the coordinate axes chosen are aligned

properly with the high-symmetry directions. Thus, an improper choice of coordinate axes will

generally result in an increase in the apparent number of distinct elastic coefficients needed to

describe the elastic properties of the material. In reality many of the coefficients will be linear

combinations of the smallest set of coefficients obtained when the coordinate axes are chosen to be

aligned with the principal axes. In Table 2 information is given for 7 linear elastic systems.

The following discussion will demonstrate how a material possessing orthotropic symmetry

reduces the number of elastic coefficients and produces an elastic matrix having a specific

characteristic form when the material is aligned with respect to the principal axes of the system.

Orthotropic System Derivation:

The reduction of the number of distinct elastic coefficients can be illustrated by first

considering a general rotation transformation a,

Falla  '31[aij] = /a21 a22 a23

1_a31 a32 a33 . (7)

Application of this transformation to the stress and strain tensors yields the following relations

between the rotated (primed) and nonrotated (unprimed) components of these tensors.

T' = aTa t and S' = aSa t (8)

These relations can be written in matrix form as

!

T mn

3 3 3 3

-- £EamiYijanj = EEamianjTij

i=lj=l i=lj=l (9)

and
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Trielinic System: 21 coefficients (no

elastic symmetries)

cll cx2 c13 c14 cl5 c16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36
[ClJ ] =

C14 C24 C34 C44 C45 C46

c15 c25 cs5 c45 c55 c56

C16 C26 C36 C46 C56 C66

Monoelinic System: 13 coefficients (only

the xlx3 plane is a plane of elastic symmetry)

ell C12 C13 0 C15 0

C12 C22 C23 0 C25 0

C12 C23 C33 0 C35 0

[ClJ]-" 0 0 0 C44 0 C46

C15 C25 C35 0 C55 0

0 0 0 C46 0 C66

Orthotropic Systems

All systems below have 3 mutually orthogonal planes of elastic symmetry
I I I II

General Orthotropic Form: 12 Orthorhombic System: 9 coefficients

[CIJ ] --

coefficients

rCll C12 C13 0 0 0 "1

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 %4 0 0

0 0 0 0 c55 0

0 0 0 0 0 C66 "

[ClJ ] =

(rectangular packing)

cll c12 c13 0 0

C12 C22 C23 0 0

C13 C23 C33 0 0

0 0 0 %4 0

0 0 0 0

0

Tetragonal System: 6 coefficients

(square packing)

-Cll C12 C12 0 0 0

c12 c22 c23 0 0 0

C12 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 %5 0

0 0 0 0 0 c55

[CIJ ] =

Cubic System: 3 coefficients

[ClJ ] =

0

0

0

c55 0

-Cll C12 C12 0 0 0

C12 Cll C12 0 0 0

C12 C12 Cll 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 c_

0 0 0 0 0 C66

Hexagonal System: 5 coefficients (six-fold

axis aligned with xl axis)

-ell C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

[ClJ] -- C22- C23
0 0 0 0 0

2

0 0 0 0 c55 0

0 0 0 0 0 c55

Isotrople System: 2 coefficients

Same form as the cubic system except

C12 = Cll -- 2 C44

Table 2: Linear elastic systems for which a localized strain-energy function exists.



- 12-

S'op

3 3 3 3

= 2 ZaokSklap 1 = ZZaokap 1ski

k=l 1=1 k=l 1=1 (10)

Since we want the elastic stiffness coefficients to be invariant under the transformation, we make

use of the constitutive relation and impose the condition that

T' = c' :S' :::* T' = c : S' (11)

Equation (11) yields two sets of equations which when compared will determine which coefficients

are to be eliminated.

The following algorithm sketches the necessary steps to be performed in order to reduce the

number of distinct coefficients needed to describe an orthotropic system.

Step 1:

Write out the primed (transformed) stress and strain elements in 3x3 form as a function of the

unprimed variables.

T mn

3 3

Z ;amiT   
i=lj=l

3 3

i= I j= x (I2)

3 3 3 3

S'op = 2ZaokSklap 1 = 2Zaokap 1Ski

k=l 1=1 k=l 1=1 (13)

Step 2:

Rewrite the sets of equations obtained in Step 1 using the Voigt notation.

Step 3:

Write the primed constitutive relation in component form.

6

T'I = Z cIJ S'j

J=l

Replace the S'i's with equivalent Sj terms as given in Step 2.

Replace the T'i's with equivalent Tj terms as given in Step 2.

We now have the six primed equations totally in terms of the unprimed variables.

(14)
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Step 4:

Compare the set of equations from Step 3 with the original unprimed constitutive equations to

determine which cij are to be set to zero.

6

YI = 2 cIJ Sj

J=l (15)

Planes of Elastic Symmetry:

A plane of elastic symmetry exists at a point where the elastic constants have the same values

for every pair of coordinate systems which are the reflected images of one another with respect to

the plane. The axes of such coordinate systems are referred to as equivalent elastic directions. If

the xlx3 plane is one of elastic symmetry, the constants cij are invariant under the coordinate

transformation

X' 1 = X1, X'2 -- _ X2, X'3 = X3, (16)

which maps a right-handed coordinate system into a left-handed system as illustrated in Figure 6.

X'2

X3, X' 3

::_tiiii!_iiii!!i!!ii_iiii!!ii_ii_ii_i_i_:_iiii_ii_ii_ii_ii_:_i!i_:!i_ili_ii_:i_:!i_¸

...._!_?_ii_!i_!_i_i!_?!fiQ_ii_ii_iii!ii!i_ii_iii_i_!_iiiii;_/_iii!i_!_ii_?_

I

X 1 X', 1

"="= X2

Figure 6: Geometry for illustration of an xlx3 plane of elastic symmetry

Let the xlx3 (or equivalently, x'lx'3) plane be a plane of elastic symmetry. Then

TI = cIj Sj and T'I = cIj S'j ( J = 1,2,3,4,5,6 ). The transformation matrix for mapping x2

to x'2 is given by
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1 0 0[aij] = 0 -1 0
0 0 1 (17)

The stressandstraintransformationlawsyield thefollowing relations,

T'll = Tll, T'12 = -T12, T'13 = T13

T'21 = -T21, T'22 = T22, T'23 = -T23

T'31 = T31, T'32 = -T32, T'33 = T33 (18)

S'll = Sll, S'12 - -S12, S'13 - S13

S'21 = -821 , S'22 = $22, S'23 = -$23

S'31 = $31, S'32 = -$32 , 5'33 = 533 (19)

which imply

for I - 1,2,3,5 and
S'i = SI (Si = -SI

for I = 4,6

(20)

Using the information in Equation (20) we are now able to write the primed variables totally in

terms of the unprimed variables.

Primed Constitutive Equations:

T' 1 _ T 1 = Cll S1 + c12 82 + c13 53 - c14 54 + c15 55 - c16 96

T' 2 _ T 2 = C21 S1 + c22 $2 + c23 $3 - c24 S4 + c25 S5 - c26 86

T'3 :=_ T3 = c31S1+c32S2+c33S3-c34S4+c35S5-c36S6

T' 4 =, T 4 = -c41Sl-c42S2-c43S3+c44S4-c45S5+c46S6

T' 5 _ T 5 = C51 $1 + c52 52 + c53 53 - c54 54 + c55 55 - c56 56

T'6 _ T6 = -c61 S1 - c62 52 - c63 53 + c64 54 - c65 S5 + c66 $6 (21)

The relations given in Equation (21) must be equivalent to the unprimed stress/strain relations in

the nonrotated coordinate system.
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Unprimed Constitutive Equations:

T 1 = Cll S 1 -t- c12 S 2 q- c13 S 3

T 2 = c21 S1 + c22 $2 + c23 $3

T 3 = c31 S1 + c32 $2 q- c33 $3

T 4 = c41 $1 + c42 $2 + c43 $3

T 5 = c51S1+c52S2+c53S3

T 6 = c61 $1 + c62 $2 q- c63 $3

+ C14 $4

+ c24 $4

d- c34 8 4

+ c44 $4

+ c54 $4

-'k C64 S 4

Therefore, we obtain from Equations (21) and (22) that

T' 1 _ c14 = c16

T' 2 =:, c24 = c26

T' 3 :=_ c34 = c36

T' 4 =:> c41 = c42

T' 5 _ c54 = c56

W' 6 _ c61 = c62

=0

and the elastic stiffness matrix reduces to

-Cll

C12

C12
[Clj] =

0

c15

0

+ C15 S5 q- C16 S6

+ c25 S5 + c26 56

+ c35 S5 + c36 S6

-t- c45 S 5 -t- c46 S 6

-F c55 S 5 -t- c56 S 6

+ c65 55 -4- c66 56

=0

=0

= C43 = C45 = 0

=0

= C63 = C65 = 0

C12 C13 0 C15 0

C22 C23 0 C25 0

C23 C33 0 C35 0

0 0 C44 0 C46

C25 C35 0 C55 0

0 0 C46 0 C66

(22)

(23)

(24)

Inspection of the elastic matrix representation for a material with one plane of elastic symmetry

(XlX3 plane) yields the matrix form for a monoclinic system as displayed in Table 2.

By repeating the procedure, this time requiring the x1x 2 plane to be a plane of elastic

symmetry, the following elastic stiffness coefficients can be shown to be zero.
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T" 1 _ c15 = c16 -" 0

T" 2 _ c25 = c26 = 0

T" 3 _ c35 = c36 = 0

T" 4 _ c45 = C46 = 0

W"5 =:_ c51 = c52 = c53

W" 6 _ c61 = c62 - c63

= c54 = 0

= c64 = 0 (25)

The elastic stiffness matrix for a medium having an x1x 3 and XlX 2 elastic plane of symmetry

[ClJ ] =

reduces to

-cll %2 c13 0 0 0

%1%2 %3 0 0 0

c31 c32 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 C66 (26)

The elastic symmetry with respect to the (third) x2x 3 plane is identically satisfied by this

matrix. That is, if we have two orthogonal planes of elastic symmetry with respect to principal

axes, we must necessarily have the third. Inspection of Equation (26) shows that for an

orthotropic material aligned along the principal axes, the elements of the upper-right and lower-left

quadrants, and the off-diagonal elements of the lower-right quadrant are zero for the elastic matrix.

The physical significance of these elements being zero can be understood by again returning to the

constitutive relation.

Inversion of the Constitutive Relation:

To understand the physical role played by the elastic coefficients we must first transform the

constitutive relation into a more convenient form. That is, we must obtain a form where we

express the strain as a function of stress. This will allow us to systematically apply stresses along

specific directions in order to ascertain which coefficients are involved in producing the strains and

what types of strains result from a specific applied stress. We can invert the constitutive relation

by multiplying each side of Equation (1) by the inverted stiffness matrix

where [s]

form as

[el -1 : T [c] -1= c:S = S _ S = s:T, (27)

-_ [C] -1 is defined as the compliance coefficients. Equation (27) is written in matrix
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3 3

Sij = EESijklTkl

k=ll=l

6

S I _'_ Tj
= z_.a sIj

J= 1

where for the most general case

[SIJ ] ----

(i,j = 1,2,3)

(I = 1,2,3,4,5,6)

-$11 S12 $13 $14 $15 S16

S21 $22 $23 S24 $25 $26

$31 $32 $33 $34 $35 $36

$41 $42 $43 S44 $45 $46

$51 $52 $53 $54 $55 $56

$61 $62 $63 $64 $65 $66

(28)

(29)

Elucidating the Relationship Between Physical and Engineering Parameters

We can obtain a better understanding of the physical significance each of the elements of the

compliance matrix plays by investigating their dependence on the common engineering parameters

for an orthotropic system.

Young's Moduli:

A Young's modulus describes a physical phenomenon resulting from a single direction

operation. That is, we apply a tensile/compressive normal stress along a given principal axis

direction and observe the resulting strain along the same axis direction (see Figure 7).

applied tensile/compressive normal stress
Young's Modulus -

resulting tensile/compressive normal strain (30)

(both along the same principal axis direction)

Consider, for example, the application of a tensile stress T1 (Tll) along the xl direction, with

all other stresses zero. Then

-S1 -

Sz

83

$4

s5
_$6 _

-Sll

$21

$31

0

0

0

S12 S13 0 0

$22 $23 0 0

$32 $33 0 0

0 0 S44 0

0 0 0 S55

0 0 0 0

0

0

S66

0 -T1 "

0 0

0 0

0

0

.0
(31)
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T 1

x2

i
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................................... I ....... iilY'/i/i//_i/C-ll ...........

+:,>:+_o>>:+>:+:+::+:+:+:< >:.:+: :>:+:+>::<,:i:,_< ,x::52x .:+_5:::::::,- <:::_:_:.-. <::::fi::-L_:L _

L: : : ::::::.:::_ : :::::::.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::_:

/,::: :: ::::2: ::::::2:::::::::2:::::2:.:2:.:2:.::_:.:v. ¸5 /:< x,: :+:<¸¸¸> : :+:o:+>: >< :: >::> _.. _

_: :::::: :, :.::::::: ::::::::::2:1;;-_::::,: ::::::::::::::::::::::::::::::::::
iiiiiii .....
::::::::: :::: : : ::,: ,:; :: :: :::: : :::1 2: ::::_:::::::::::::::::::::2::2 2: :; ::::: : :

I
I
I

Sll = S1111 Tll =_ S 1 = Sll T1

$22 = S2211T_I _ S 2 = s2_ T_

$33 = S3311T_ _ S 3 = s31T_

11

Figure 7: Resulting strains produced by a tensile normal stress T 1 (Tll).

By inspection we have

S] = Sll T 1 (32.a)

S 2 = s21 T] (32.b)

S 3 = s31 T1 (32.c)

and $4 = $5 = S6 = 0. The first of these equations allows us to express the Young's modulus

in terms of the compliance matrix elements.

T1 IT, 1
E1-- S1 = Sl-"7 (33)

By an analogous procedure we obtain

1 1

TI[TIsI I _ sIi EI (I =E I = = sim =--,
1,2,3)

(34)

As seen from Equation (34) the Young's moduli are the reciprocals of the diagonal elements of the

upper-left quadrant of the compliance matrix.

Poisson Ratios:

The Poisson ratios describe an operation which involves two orthogonal principal axes. We

apply a stress along a given principal axis and observe the ratio of the resulting strain along a
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principal axis perpendicularto the stressaxis to the resulting strainalong the stressaxis (see
Figure 7).

Poisson Ratio -=

(due to an

_ resulting lateral strain ]resulting tensile/compressive normal strain

applied tensile/compressive normal stress) (35)

From Equation (32.b) we obtain

$2 IT 1
V21 = S1

$21 -

S21 T1 s21

Sll T1

V21

E1

Sll
s21 E1

(36)

A general relationship between the Poisson ratios and the compliance elements can be written as

Sj Sji T I = SJI _ SJI El
VjI _ S/ [TI -- Sn TI - si---]- =

VjI ( I,J = 1,2,3; I_J)
::_ SjI = EI ' (37)

From Equation (37) we see that a specific Poisson ratio is obtained from a multiplication of the

corresponding compliance element and the appropriate Young's modulus.

Shear Moduli:

A pure-shear strain results from the application of two diametrically opposing planar tangential

stresses of equal magnitude acting on adjacent orthogonal surfaces to produce a pure distortion (see

Figure 8). The direction of the applied forces are tangential to the surfaces to which they are

applied. A shear strain is defined as

applied planar tangential stress
Shear Modulus -

resulting planar tangential strain, (38)

where the applied stress and the resulting strain are in the same plane.
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X3

I
I
I

T r

T3 2 __

r T23_

---_ _(2

T23

Y
Tr

S23 =

S32 =

i
i
i

T32 i

S2323 T23 + S2332 T32

S3223 T23 + S3232 T32

Figure 8: Pure-shear strain in the x2x 3 plane

Consider, for example, the application of planar tangential stresses T4 (T23, T32) in the x2x3

plane, with all other stresses zero.

-S1

$2

$3

$4

S5
_$6

-Sll s12 s13 0 0

s21 $22 s23 0 0

$31 $32 $33 0 0

0 0 0 %4 0

0 0 0 0 s55

0 0 0 0 0

0

0

$66

0 0

0 0

0 0

T4
0

.0 (39)

Multiplication of the matrices yields the following stress/strain relation for a pure-shear strain in the

X2X 3 plane,

84 = $44 T4 , (40)

From Equation (40) we see that the pure-shear modulus forwhere $1 = $2 = 83 = 85 = $6 = 0.

the x2x 3 plane is equal to

T4 _ 1

G23 = -6---IT 4 =
$4"-_"o4 (41)
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By an analogousprocedurewe seethatthediagonalelementsof the lower-right quadrantof the

compliance matrix are related to the pure-shear strains in a reciprocal manner.

T4 1 1
= _ _ S44 =G23 =- _ ]1"4 s44 G 2 3

(42)

T5 1 1I
G13 = _ ::=# s55 --,T, s55 G 13 (43)

T6 1 1
G12

= _ ==_ S66 = G 1"-'-_"_'6 IT6 S66
(44)

Combining the information obtained above we can rewrite the compliance matrix of an

orthotropic system in terms of the engineering parameters as

[SIj ]

1 V12 V13

E1 E2 E3

V21 1 V23

E1 E2 E3

V31 V32 1

E1 E2 E3

0 0 0

0 0 0

0 0 0

0 0 0

0 0

1
0

G23

1
0

G13

0 0 0 0 0

0

0

0

1

G12 (45)

For orthotropic materials we have seen that many of the elastic coefficients are zero when the

system is aligned with the principal axes. Some of these coefficients may not be zero if the

material is not aligned. But since these coefficients will be linear combinations of the smallest set

of distinct coefficients, the response of the material will also be a linear combination of the

responses described above.

For example, consider an orthotropic material prepared in the shape of a cube for which one

side is aligned with the x2 principal axis while the two adjacent orthogonal surfaces are at an angle

of 45* degrees with respect to the xl and x3 principal axes of the system. Figure 9 illustrates the

geometry of the material. By application of the Bond transformation matrix we obtain the

following matrix for s'ij.



T

- 22 -

[S'ij ]

S'll S'12 S'13

S'21 S'22 S'23

S'31 S'32 S'33

0 0 0

S'51 S'52 S'53

0 0 0

0 S'15 0

0 S'25 0

0 s'35 0

S'44 0 S'46

0 s'55 0

S'64 0 S'66 (46)

Each of the s'ij coefficients can be written as a linear combination of the smallest set of distinct

compliance coefficients that describe the material when aligned with the principal axes.

s' ='}411 (Sll+ s13+ s31 + S33+ 4s55) s'41 = 0

S'12 = _2 (S12+ S32) S'42 = 0

s'13 = _4 (s_l + s13 + s3_ + s33- 4 s55 ) s'43 = 0

s' 1
14 = 0 S'44 = 2

S'15 --1= 4 (Sll- s13 + s31- s33 ) s'45 = 0

s'16 = 0 s'46 -'-"_2

S'21 = _2 (S21 + s23 ) S'51 = "_4

= S' _2S' 22 S22 52 =

S'23 = 12 ( s21 + S23) S'53 = "_4

S' S'24 = 0 54 = 0

S'25 = 1 (S21-- S23) S'55 = 1

S'26 = 0 S'56 = 0

31 (Sll-t- S13+ $31+ S33 4S55) S'61 = 0

S' = "_232 (sl2 + $32 ) S'62 ----- 0

s' -J433 = (Sll + S13 + S31 + S33 + 4S55 ) S'63 = 0

s' 1
34 = 0 S'64 = 2

S'35 = 14 (Sll- S13 + S31- S33) S'65 = 0

S'36 = 0 S'66 = "_2

(S44 + S66 )

(S66 -- $44 )

(Sll + S13-- $31- S33)

(s12- s32)

(Sll + S13-- S31- S33)

(Sll -- S13 -- $31 + $33 )

(S66 -- S44 )

(S44 + S66 )
(47)
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Figure9: Applicationof atensilenormalstressT'I (T'11)to anorthotropicmaterial.
Theprincipalaxesfor thematerialis representedby theboldunprimedsetof axes.

Now considertheapplicationof atensilenormalstress,T'I (T'll), along thex'l axiswith all
theotherstresseszero(seeFigure9).

-S,1

S'3

S'4
S'5

_S' 6

S'l 1

S'12

S'13

0

S'15

0

S'12 S'13 0 S'15 0

s'22 s'23 0 s'25 0

S'23 S'33 0 S'35 0

0 0 S'44 0 S'46

s'25 s'35 0 s'55 0

0 0 S'46 0 S'66

-T' 1

0

0

0

0

0
(48)

Expanding Equation (48) the resultant strains can be explicitly written as

1

S' 1 = S'll T' 1 = _- ( Sll + S13 + S31 + S33 + 4 S55 ) T' 1
(49)
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S, 2 1
= S'21 T' 1 = _" ($21 + $23) T' 1

, (50)

1

S'3 = s'31 T' 1 = _ ( sll + s13 + $31 + $33 -- 4 $55 ) T' 1
, (51)

1

S' 5 = s'51 T' 1 = _- ( Sll + S13 -- $31 -- $33 ) T' 1
(52)

and S'4 = 5'6 = 0. Equations (49-52) can also be written in terms of the engineering moduli

which more vividly illustrates that the response of the material is a combination of bulging,

constricting, and shearing effects.

1 ( 1 v13 V31S'I = S'll T'I = _ E1 E3 E1 14)+'_33 +_ T' 1G13 (53)

1(V21 V23)9'2 = s'21 T'I = - _ t,. E 1 + _ T'I
(54)

S, 3 1( 1 v13 v31 1 4 )T ,= s'31 T'I = _ E1 E3 E1 + E3 G13 1
(55)

S, 5 1( 1 v13 v31 1 )T '= s'51 T'I = _" E1 E3 + E1 E3 1
(56)

The final shape of the material is determined by the superposition of the contributions of all the

nonzero strains (S'1, S'2, S'3, S'5). Inspection of Equations (53-55) illustrate that the sole

application of a tensile normal stress T'I along the X'l axis produces normal tensile/compressive

strain components along the x'l, x'2, and x'3 axes. The amount of the elongation or constriction is

determined by the linear combination of the engineering moduli measured with respect to the

principal axes. Equations (52) and (56) reveal that a shear strain also results from the application

of a tensile normal stress under these conditions.

As a second example, we will consider the case when all the stresses are zero except for planar

tangential stresses T'5 (T'13, T'31) in the x'lx'3 plane (see Figure 10).
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T' r

T'31

T'13

\

T'13

T'31

T' r

Figure

plane.

axcs.

10: Application of a planar tangential stress T'5 (T'13, T'31) in an x'lx'3

The principal axes for the material is represented by the bold unprimed set of

The stress/strain relation is given by

"S, 1

s_

S' 3

S' 4

S' 5

_S' 6

S'1 1

S'12

S'l 3

0

S'l 5

0

S'12 s'13 0 s'15 0

S'22 S'23 0 s'25 0

S'23 S'33 0 S'35 0

0 0 s'44 0 S'46

S'25 S'35 0 s'55 0

0 0 S'46 0 S'66

0

0

0

0

T' 5

0 (57)

From Equation (47) we can write the primed compliance coefficients in terms of the unprimed

coefficients.

S' 1= s'15T'5 = _- ( s11- sa3+ s31- s33) T'5
(58)

S, 2 1= s'25T' 5 = _'(s21-s23)T' 5
(59)



- 26 -

1
S'3 = s'35T'5 = _'(s11-s13+s31-s33)T' 5 (60)

1
5'5 = s'55T'5 = _- (Sll -- S13 -- S31 q- S33 ) T' 5 (61)

Equations (58-61) can also be written in terms of the engineering moduli.

1 ( 1 V13 V31 1 )S'I = s'15 T'5 = _" _1 + E3 E1 E3 T'5 (62)

1(.1v23/w
8'2 = S'25 T'5 - 2 E 1 E 3 5 (63)

1)S'3 = s'35 T'5 = 4" + E"'_"--E 1 E3 T'5 (64)

1(1 vx3 v31 1 )S'5 = s'55 T'5 = 7 _'1+"_'3 +"_'1+_'3 T'5 (65)

Again the superposition of the contributions from all the nonzero strains (S'l, 5'2, 5'3, 5'5)

will determine the final shape of this material. Inspection of Equations (62-64) illustrate that the

application of planar tangential stresses in the X'lX'3 plane (for this material) produces normal

tensile/compressive strain components along the X'l, x'2, and x'3 axes. The amount of the

elongation or constriction along a particular axis is determined by a linear combination of the

engineering moduli measured with respect to the principal axes. Equation (65) illustrates explicitly

how the shear strain contribution is dependent on the Poisson's ratios and Young's moduli for a

sample, subjected to a shear stress, that is not aligned with the principal axes.

Reciprocity Relation:

Materials for which a symmetric strain-energy function exists exhibit a symmetric compliance

matrix.

SIj ----- SjI (for I,J = 1,2,3,4,5,6; I _J)
(66)

From Equation (36) for all stresses zero except T1, we obtain

$2 v21
52 [T 1 -- [Wl ---- _

s21 - T1 $1 E1 E1 (67)

In a similar manner, if all the applied stresses are zero except T2, then
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S12 Sl IT 2 VI2
82 E2 E2

Therefore, if $21 = $12 then this implies

V21 V12

E1 E2

Thus, in general the equivalence of Slj = SJI reveals that

VJI VIJ
- (I,J = 1,2,3; I_eJ)

E 1 Ej

(68)

(69)

(70)

Physical Interpretation of the Most General Compliance Matrix:

The role of the compliance coefficients is to relate the applied stresses to the resulting strains

for all possible combinations. Initially, we were required to have 81 compliance coefficients to

relate uniquely the 9 stress components to the 9 strain components. In order to illustrate the role

each compliance coefficient plays, we will systematically determine the type of stress to the type of

strain each element uniquely relates. The most general form for the constitutive relation, in the

Voigt notation, is

-S,']

S_I

S_ I

Sal

S, I

.s63

$11 $12 S13 S14 S15

$21 $22 $23 $24 $25

$31 $32 $33 $34 $35

$41 $42 $43 $44 $45

S51 $52 $53 $54 $55

$61 $62 S63 $64 $56

Thus, the total resulting strain

linear superposition of the contributions

S I = Sll T1 + sl 2 T2

S16 -T 1

S26 T2

s36 T3

$46 T4

s56 T5

S66 _Y6 (71)

experienced by a material, due to the application of stresses, is the

of $1, $2, $3, $4, $5, and $6.

+ s13 T3 + s14 T4 + s15 T5 + s16 T6

S2 -- $21 TI + s22 T2 + $23 T3 + $24 T4 + $25 T5 + $26 T6

S3 = s31 T_ + $32 T 2 + s33 T 3 + s34 T 4 + s35 T 5 + s36 T 6

S 4 : $41 Wl + $42 T2 + $43 T3 + $44 T4 + $45 T5 + s46 T6

S 5 = s51Tl+ s52T2+ s53T3+ s54T4+ s55Ts+ s56T6

S6 = s61 T1 + s62 T2 + S63 T3 + $64 T4 + $65 T5 + s66 T6 (72)

Inspection of Equation (72) reveals that the compliance elements of the first column
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sn for I = 1,2,3,4,5,6

relatestheappliedtensile/compressivenormalstressesalongthe xl axisto thedifferent typesof
strains. Table3 summarizesthepossiblestraincontributionsresultingfrom theapplicationof a
tensile/compressivenormalstressT1(Tll) alongthexl axis.

Stress/Strain Contribution

Sll = Sllll Tll _ S 1 --- $11 T1

S12 = S1211 Tll _ S 6 = s61 T1

513 = s1311 Tll _ S 5 = s51 T1

$21 = s2111 Tll _ S 6 = s61T1

$22 = s2211 Tll _ S 2 --- s21T1

$23 = $2311 Tll _ S 4 = $41 T1

$31 = s3111 Tll :=¢, S 5 = s51T1

$32 = $3211 Tll :=_ S 4 = $41 T1

$33 = $3311 Tll :::* S 3 = $31 T1

Table 3: Contributions to the total

that involve T1 stresses.

Resulting Physical Phenomenon

Tensile/compressive strain along the x 1 axis

Shear strata in the xlx2 plane

Shear strain in the x1x 3 plane

Shear strain in the x2x 1 plane

Tensile/compressive strain along the x2 axis

Shear strata in the x2x3 plane

Shear strain in the x3xl plane

Shear strata in the x3x2 plane

Tensile/compressive strain along the x3 axis

resulting strain due to the compliance coefficients

We see from Table 3 that the sI1 elements for I = 4,5,6 imply that the tensile/compressive normal

stress T_ would produce a shearing strain. For orthotropic systems these elements are zero when

referenced to the principal axes for the material. Thus, a shearing strain cannot result from a

tensile/compressive normal stress applied along a principal axis for orthotropic materials.

From Equation (72) we see that the compliance elements of the sixth column

si6 for I = 1,2,3,4,5,6

relate an applied planar tangential stress in the xax2 plane to the different types of strains. Table 4

summarizes the possible strain contributions resulting from the application of a planar tangential

shearing stress T6 (T12, T21) in the XlX2 plane.
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Stress/Strain Contributions

$11 = Sill2 T12+ Sl121 T21

::_ S 1 = s16 T6

S12 = s1212 T12+ s1221 T21

S 6 -- s66 T6

S13 = s1312T12+ s1321 T21

::¢, S 5 = s56 T6

$21 = $2112 T12+ s2121 T21

::_ S 6 --- s66 T6

$22 = s2212 T12 + s2221 W21

::_ S 2 --- $26 T6

$23 = s2312T12+ s2321 T21

::_ S 4 = s46 T6

531 = $3112 T12 + $3121 T21

=_ S 5 = s56 T6

$32 = s3212 T12 + s3221 T21

=:_ S 4 -- $46 T6

$33 = s3312T12+ $3321 T21

=:_ S 3 = $36 T6

Resulting Physical Phenomenon

Tensile/compressive normal strain along the

Xl axis

Shear strain in the XlX 2 plane

Shear strain in the xlx3 plane

Shear strata in the XlX 2 plane

Tensile/compressive normal strain along the

x2 axis

Shear strata in the x2x 3 plane

Shear strain in the xlx3 plane

Shear strata in the x2x3 plane

Tensile/compressive normal strain along the

x3 axis

Table 4: Contributions to the total resulting strain due to the compliance coefficients

that involve T6 stresses.

We see from Table 4 that $66 relates a planar tangential shearing stress to a shear strain in the

same plane. The $46 and s56 coefficients relate an applied shear stress in the XlX2 plane to shear

strains in orthogonal planes, while the s16, s26, and s36 coefficients relate a shearing stress to a

tensile/compressive normal strain along the principal axes. For orthotropic systems aligned with

the principal axes $46 = $56 = s16 = $26 = $36 = 0. Therefore, the strains involving these

coefficients are not allowed.

We can also view the compliance matrix in terms of quadrants (see Table 5), which groups

together the coefficients by types of applied stresses and types of resulting strain contributions.
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Tensile/Compressive

Strain Contribution

Planar Tangential

Shear Strain

Contribution

Tensile/Compressive

Stress

Sll S12 S13

$21 $22 $23

$31 $32 $33

S41 S42 S43

$51 S52 S53

S61 S62 S63

Planar Tangential

Shear Stress

S14 S15 S16

$24 $25 $26

$34 $35 $36

S44 S45 S46

S54 $55 $56

$64 $65 $66

Table 5: The compliance coefficients grouped by types of applied stresses and the

types of resulting strain contributions they uniquely relate.

Figure 11 and Table 6 also illustrate the role each of the compliance coefficients plays in relating an

applied stress to the resulting strain.

As has been shown above, an orthotropic system has an elastic matrix which contains many

coefficients equal to zero. If the material is not aligned with the principal axes, then these matrix

elements may not be zero. These matrix elements are now linear combinations of the smallest set

of distinct coefficients. (The Bond rotation formalism is a useful tool under these circumstances).

Application of a tensile/compressive stress along the Cartesian axes of the misaligned system may

produce both tensile/compressive strains and shearing strains. Thus, information on how the

elements in the upper-right, lower-left and off-diagonal elements of the lower-right quadrants

contribute to the resulting strains is important for materials whose macroscopic surfaces are not

aligned with the principal axes for the material.

In this Section, we have reviewed the formalism of linear elasticity in order to build a more

solid foundation upon which an investigator can raise his/her physical intuition about the intrinsic

nature of the physical properties of materials. We presented a physical interpretation for the role

the elastic compliance coefficients play in uniquely relating applied stresses to resulting strains and

the dependence these coefficients have on the traditional engineering moduli. Such information

will be extremely useful in the design of advanced ultrasonic measurement systems.
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Physical Interpretation of
Elastic Coefficients

$41 $42 843

S51 S52 S53

861 862 863

S14 S15 S16

824 825 826

$34 835 836
Apply planar

tangential shear stress;

yield planar shear

strain in same plane

................................................................................. i

Apply tensile/compressive normal stress;

yield a shear strain in a plane orthogonal
to the stress axis

*................................................................................. m

Apply planar tangential shear stress; yield

planar shear strain in plane orthogonal to
the stress plane

.................................................................................

S m

m s:T
Figure 11
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Applied Stress

Involved

Tensile/compressive

normal stress along

the xj axis

Tensile/compressive

normal stress along

the xj axis

Tensile/compressive

normal stress along

the xj axis

Planar tangential

shear stress in the J

plane

Planar tangential

shear stress in the J

plane

Planar tangential

shear stress in the J

plane

Compliance

Coefficient

Sjj

SIJ

SIJ

Sjj

SIJ

SIJ

Valid Indices

J=1,2,3

I,J= 1,2,3

I_J

J=4,5,6

I,J=4,5,6

IeJ

I=1,2,3

J=4,5,6

Resulting Strain

Contribution

Tensile/compressive

strain along the xj

axis, Axj/xj

Tensile/compressive

strain along the xi

axis, A XI/Xi, an

orthogonal axis

Planar shear strain in

the plane denoted by

the I index,

orthogonal to the xj

axis

Planar shear strain in

the same plane (J) as

the applied stress

Planar shear strain in

the plane I, an

orthogonal plane

Tensile/compressive

strain along the xi

axis, orthogonal to

the stress plane,

Axi/xr

Table 6: Physical interpretation of the elements of the elastic compliance matrix
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