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1. Introduction 

2 Over 20%'of the land surface of Canada and Alaska is covered by peatlands, which 

may be defined as any waterlogged ecosystem with a minimum thickness of 20 cm of 

organic matter in the soil (4 In	 fldzPakaren'inLl98:L). Although peatlands are common 

throughout the boreal region, the majority of peat is concentrated in a few major peat basins 

located within the continental interior of Canada and Alaska (Zoltai and Pollet 1983; Glaser 

1987a; Fig. 1). Here/ peat has spread over the regional landscape, restricting exposures of 

mineral soil to isol/aed locations. These large peat basins represent one of the most 

important reservoirs in the global cycle for carbon and may also be the most significant 

source for atrôspheric methane (Matthews and Fung 1987; Sebacher et at. 1986). 

However, field work has been limited in these large peatlands because of their great 

expanse of roadless, waterlogged terrain. The important ecologic and hydrogeochemical 
/ 

processes that control the development of these peat basins therefore have been largely 

inferred from studies of much smaller peatlands, which have a much different ecologic and 

hydrologic setting. 

Past investigations have demonstrated the value of aerial photographs in identifying the 

major vegetation types and analyzing the biotic and hydrogeologic processes that control 

the development of these peatlands @i 	 In the present 

study, Landsat TM imagery was used in conjunction with field studies to determine the 

utility of this satellite sensor for detecting these important processes. 	 ' 6€.-

2. Target Areas 

Target areas were selected in three of the largest peat basins in North America 1) the 

Glacial Lake Agassiz region, 2) the Hudson Bay lowlands, and 3) the Great Slave/Great 

Bear Lake lowlands (Zoltai and Pollet 1983; Glaser 1987a; Fig. 1). Very large peat 

deposits are also present in the interior of Alaska, which were not included in this study. 

The 3 target areas are situated in regions of relatively low relief and are underlain by largely
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Figure 1. Major peat basins in North America. The largest peat basins are 1) the Glacial Lake Agassiz 

region, 2) the Hudson Bay lowlands, 3) the Great Slave Lake lowlands, and 4) the interior of Alaska. 

The stippled area represents the boreal region. The target areas are marked by arrows. 
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Figure 4. The Hay River target area. The peatland watersheds selected for study are I) lowland peat plateaus 

complexes and II) highland peat plateaus. The Caribou Mountains and other highlands are indicated by light 

stippling. This figure corresponds to a Landsat TM scene (E-50460-18221; Path 46, Row 18) and has a scale of 

approximately 1: 1,000,000.



calcareous sediments (Bostock 1967; Wright and Glaser 1983). Each target area 

corresponds to a Landsat TM scene and represents an important reference point along 

important ecologic and climatic gradients. 

2:1. Glacial Lake Agassiz Area 

The first target area is located in the Glacial Lake Agassiz region of northern Minnesota 

and southwestern Manitoba (48 0 - 55 0 N. Lat. and 93 0 - 960 W. Long.). The large 

peatlands in this area are dissected by linear exposures of loamy ground moraine or sandy 

beach ridges deposited by Glacial Lake Agassiz (Fig. 2). The climate is continental, with a 

summer maximum in precipitation. Permafrost is absent from the region and apparently 

was never associated with the development of these peatlands, which started to form after 

the mid-Holocene, approximately 4500 yr B.P. (Heinselrnan 1963; Janssen 1968; Griffin 

1977; Glaser etal. 1981). 

2.2. Albany River Area 

The second target area is located within the Albany River drainage in the Hudson Bay 

lowlands and approximately corresponds to the Ghost River Map area (51° - 52° N. Lat. 

and 82° - 83° W. Long.). This area is covered by a nearly continuous blanket of peat 

except for small local exposures of mineral soil and many small lakes (Fig. 3). The most 

prominent physiographic features are 1) a moraine system in the southwestern portion of 

the study area, 2) nearly featureless plains along the edge of the moraine system, and 3) 

plains dissected by numerous streams with branching tributaries. The climate is colder 

and drier (15 - 81 cm) than that to the south, but permafrost is absent from the study area. 

The peatlands started to form approximately 6000 yr B.P. following the draining of Glacial 

Lake Agassiz and the Tyrrell Sea (Sjörs 1963). Paludification, however, is still occurring 

along the coast, which continues to emerge in response to isostatic rebound (Dionne 1979). 
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Figure 2. The Glacial Lake Agassiz target area. This classification of the Landsat TM scene in the color 

centerfold distinguishes 1) fen vegetation, 2) bog vegetation, 3) exposures of sandy soil, 4) exposures of loamy 

soil, 5) exposures of clayey soil, and 6) areas with standing water. Most of the peatiands in this scene are fens, 

although the bog-dominated areas are primarily located in the NE quadrant where the smaller peatlands are 

surrounded by relatively impermeable clayey or loamy soils. The large tracts of fen vegetation, in contrast., are 

Figure 3. The Albany River study area. This classification of a Landsat TM scene separates bog vegetation 

(white), fen vegetation (grey), and standing water (black). The largest bogs are located on the dissected plain to 

the left, whereas large stands of fen occur downslope from the moraine complex to the right.. Calcareous 

groundwater apparently discharges along the edge of the moraine complex and maintains these large areas of fen. 

The target area for this classification scene covers 8,400 km2.



2.3. Hay River Area 

The third target area is located in the Hay River drainage south of Great Slave Lake 

(1140 - 115 0 N. Lat. and 59° - 61° W. Long.). This area is largely composed of a paludified 

plain and several flat-topped hills that rise approximately to 950 m in elevation (Fig. 4). It 

is underlain largely by limestone and dolomite and was inundated by Glacial Lake 

McConnell until 10,000 yr B.P. (Bostock 1967; Dyke and Prest 1987). The climate is 

colder and drier than that of the other target areas, and permafrost is common in the bogs. 

Peatlands began to form in this region during the early Holocene, but the major period of 

peat accumulation occurred between 8000 and 5000 yr B.P. (Zoltai and Tarnocai 1975). 

3. Methods 

Each target area was first analyzed with black and white aerial photographs prior to 

field work. These images ranged in scale from 1:15,000 to 1:40,000 and were used to 

identify potential sites for field sampling. During the summers of 1985 and 1986, field 

work was conducted in each target area to identify the major patterns in the vegetation, 

water chemistry, and peat stratigraphy. The methods used for these investigations follow 

Glaser et al. (1981) and Glaser (1983a). A helicopter or float plane provided 

comprehensive access to the study area. In the Albany River region it was necessary to set 

up a base camp within the peatlands because of the remote setting of the site. 

An intensive hydrogeochemical study was conducted in the Lost River peatland in 

northern Minnesota to determine the role of groundwater hydrology on the development of 

the landform patterns. Nests of piezometers were installed at the crest of a raised bog and 

adjacent spring fen mound to determine gradients in hydraulic head and to sample pore-

water. Peat cores from this site were also analyzed to reconstruct the development of this 

peatland. 

Images of the target areas were then processed from Landsat TM imagery at the 


Goddard Space Flight Center. The scenes used were 1) L5TM8553000 (8-3-86) and



L5TM5 130116371 (9-23-87) for the Glacial Lake Agassiz region, 2) E-40062-15532 (9-

16-82) for the Albany River region, and 3) L5TM8744 (6-4-85) for the Hay River region. 

The most useful information was obtained from false color composites using TM bands 2, 

3, and 4 (=blue, green, and red) with a linear contrast stretch. False color composites 

using bands 3, 5, and 4 (=blue, green, and red) were also processed. An unsupervised 

classification using the isoclass routine from LAS (Land Analysis System) was also 

conducted on a subscene from the Albany River target area. The 15 classes identified from 

this analysis were then merged by a supervised classification into 3 classes that correspond 

to areas of bog, fen, and standing water. 

A supervised classification was conducted of the major peatland types within the 

Glacial Lake Agassiz regions using large 20 x 30" prints of Landsat images of the target 

area. Outlines of the major vegetation types were traced onto mylar overlays, whereas the 

major soils were determined from existing soil and surficial geology maps. 

The morphometry of the peat landforms were analyzed to infer the processes that 

control their development. The principal dimensions of 40 bog islands were determined 

with an X-plan 360 computer curvimeter. The length of these islands parallels the main 

direction of flow, the width as the maximum line drawn perpendicular to the length, and the 

area as the space enclosed within the margins of the island. The island dimensions were 

quantitatively studied by transforming these data to logarithms and calculating linear 

regressions of the length vs. area, width vs. area, and length vs. width. 

The relative area of bog and fen were determined for 59 peatlands in northern 

Minnesota with an X-plan 360 computer curvimeter. These data were quantitatively 

studied by calculating linear regressions of the area of bog vs. total peatland area, area of 

fen vs. total peatland area, and bog-to-fen ratio vs. total peatland area, and by comparing 

these data to regional changes in soils, physiography, and climatic isopleths. 
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4. Results 

4.1. Peat Landforms 

The vegetation within these large peat basins has developed into orderly geometric 

shapes that simulate the form of geomorphic landforms, such as river channels, streamlined 

islands, and networks of ripples (Glaser 1987a, b; Fig. 1). These patterns seem to be 

products of sensitive feedback systems that involve 1) vegetation processes, 2) differential 

peat accumulation, and 3) hydrology. Because of their consistent shape over broad 

geographic areas, and their relatively uniform species assemblages these patterns can best 

be described as peat landforms. 

4.1.1. Peat Landforms as Ecological Units. 

The vegetation patterns in boreal peatlands are commonly called peat landforms because 

of their visual similarity to geomorphic landforms. A peat landform is characterized by 1) 

its characteristic shape in cross-section and plan view, 2) a distinct vegetation assemblage, 

and 3) narrow ranges in water chemistry (Glaser et at. 1981; Glaser & Janssens 1986; 

Glaser 1987a). Certain types of landforms are also highly characteristic of discharge areas 

for groundwater (Tarnocai 1974; Glaser 1983b; Glaser et al. in press). 

Each type of landform has a characteristic Grossform ( cross-sectional profile) and 

Kleinform (surface pattern) (Aario 1932; Paasio 1933; Glaser & Janssen 1986). A peat 

landlorm is therefore a 3-dimensional feature, which is composed of living vegetation on 

the surface of a massive deposit of organic matter (Fig. 5). These 2 components of a 

landform are highly correlated. The surface features visible on aerial photographs (plan 

view) are consistently oriented according to the prevailing slope. This relationship has 

been demonstrated by careful topographic leveling in Fennoscandia, eastern Canada, and 

Minnesota. The scales of these 2 components, however, are not comparable. Surface 

relief rarely exceeds 1 meter/kilometer in Minnesota and is often less than 50 cm/kilometer. 

In plan view, however, a peat landform can cover an area up to 140 km2 in Minnesota. 
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Figure 5. Peat landforms in the Lost River pcalland. Peat accumulation produced 3 types peat Iandforms 1) a 

spring-fen mound, 2) a water track, and 3) a raised bog. The surface elevations of the 2 peat mounds is nearly 

identical, although the spring-fen mound has developed over a rise in the mineral substratum, and the raised bog 

has developed over a depression (Almendingcr et al. 1986; Glaser e: al. in press).



Although the surface area of raised bogs and water tracks is usually greater in the the 

Hudson Bay lowlands and Hay River region the surface relief of these landforms is 

comparable to that in Minnesota. A bog complex along the Albany River, for example 

covered over 20 km2, whereas its surface elevation rose less than 2.5 m from the bog 

margin to the nearly level bog plain (Fig. 6). 

Each of the different landform types in the target areas is associated with different 

ranges in water chemistry and different assemblages of species. The peat Iandforms 

therefore provide an important indicator of the peatland environment. The patterns also 

provide important new data on peatland development. Spatial transitions from one type 

of landform to another may represent important developmental trends, which can be tested 

by the stratigraphic analysis of peat cores (Glaser et al. 1981; Glaser 1987a,b). The 

physical dimensions of the landforms (length, width, and area) can also be measured and 

analyzed to infer the processes that formed them (Glaser 1987a). 

4.1.2. Peat Landform Types 

Four basic types of peat landform occur in the target areas: raised bogs, peat plateaus, 

water tracks, and spring-fen channels. These landform types are closely related to the 

principal types of peatland vegetation, which are discussed in more detail in the next 

section. Raised bogs have a raised profile in cross section, which isolates the bog surface 

from solute-rich runoff draining from the surrounding mineral uplands. In northern 

Minnesota raised bogs have a forested crest from which lines of spruce trees radiate 

downslope (Heinselman 1963, 1970). This pattern produces the characteristic radiating 

forest patterns that appear on aerial photographs (Fig. 7). On the lower bog flanks the 

spruce forest gives way to nonforested lawns, which form an apron around the forested 

crest. In large peatlands raised bogs have a streamlined margin, where they are trimmed by 

fen vegetation. These streamlined forms simulate the shape of islands where the bog is 

completely surrounded by fen vegetation.
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Figure 6. Cross-sectional Profile from a raised bog along the Albany River 
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Figure 7. A raised bog with radiating forest patterns. The bog is distinguished by lines of spruce trees (1), which 

radiate from the central bog crest (2). The lower flanks of the bog are fringed by a nonforested Sphagnum lawn 

(3). This aerial photograph of the Myrtle Lake peatland covers an area 2.5 km across.



In the Albany River region a transition occurs as the, forest cover on raised bogs 

gradually disappears and the nonforested bog plain is marked by intricate networks of 

pools(Glaser and Janssens 1986; Glaser 1987a) (Fig. 8). No permafrost was found in 

these bogs. The bogs are replaced farther north by peat plateaus that are underlain by 

permafrost (Fig. 9). Peat plateaus contain stunted spruce trees and are pock-marked by 

thermokarst collapse scars in the Hay River region (Glaser 1987a). The collapse scars 

occasionally contain water but are usually carpeted by flat Sphagnum lawns. 

Water tracks (Sjors 1948), in contrast, have a concave to flat profile in cross section 

and represent zones where runoff is channeled across the peat surface. Water tracks have 

the appearance of river channels on aerial photographs and are sharply delineated from the 

surrounding vegetation, which generally consists of swamp forests or raised bogs (Fig. 

10). Three types of water tracks are found in the target areas (Glaser 1987b). Featureless 

water tracks contain linear bands of trees and shrubs that are oriented parallel to the 

prevailing direction of flow. They usually consist of nonforested sedge meadows that are 

surrounded by wet swamp forests. Patterned fens (Aapamoor or Strangmoor of 

Fennoscandian authors) are water tracks that contain distinctive networks of peat ridges 

(strings) and pools (flarks) arranged perpendicular to the slope. Patterned fens may also 

contain fields of tree islands, which are oriented parallel to the prevailing slope (Fig. 11). 

These islands always have rounded heads and tapering tails that stream downslope. 

The water tracks in the Albany River region are distinguished by their deep pools that in 

places approach the size of small lakes. These features represent a regional trend in which 

the pools in water tracks enlarge in peatlands of greater age. Water tracks with reticulate 

networks of pools and peat ridges also occur in this region but are more typical of the Hay 

River target area near Great Slave Lake. 

The fourth type of peat landform is the spring-fen, which is similar to water tracks with 

tree islands (Fig. 12). Spring-fens consist of an anastomosing network of nonforested 

channels that drain through a swamp forest and carry alkaline water. The forest is 
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Figure 8. Peat landforms in the Albany River study area. The large raised bogs (I) are distinguished by their 

light tones and streamlined margins where they are trimmed by water tracks (2). The bogs are fragmented by 

smaller water tracks (3; dark tones) and large pool systems (5). The pcaiiand is drained by small streams (6). The 

photo covers an area approximately 16 km across.
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Figure 9. Lowland peat plateaus near the Hay River. The peat plateaus are dissected by water tracks () that 

divide the lower bog flanks into streamlined lobes (2) and hog islands (3). The mottled appearance of the peat 

plateaus is produced by the numerous thcrrnokarst collapse features. Water drains toward the upper part of the 

photo, which covers an area about 6 km across. 
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Figure 10. Landsat MSS image of the western water track of the Red Lake peatland. This image (E-30042-

16303-D) was recorded during spring break-up in 1978. The water track (large white arrows) drains eastward to 

a large raised bog complex (A), where it splits into two diverging branches. Surface drainage (darker tones) 

arises in narrow channels (small dark arrows) downslopc from a beach ridge and flows around the central portion 

of the track, which is still ice-covered (white tone). Surface drainage on the adjacent bog (A) is also focused in 

internal water tracks (dark grey tones), in contrast to the surrounding snow-covered bog areas (white). The 

rectangular lines are drainage ditches spaced 1.6 or 3.2 km apart. Most of the image is covered by peatland except 

for the snow-covered beach ridge north of the western water track. The image covers an area approximately 64 

km across. Sec color plates 5-7 for comparison.



Fi g ure 12. Spring-len channels near Pine Creek. The pcatland is characterized by an anastomosing network of 

channels that drain southward through a swamp forest. The forest is fragmented downslope into long tapering 

fingers and discrete isce islands. 

liurc 1 1 Peat islands in the Ha y River area. I lie ircwiiliiicd pcat Iiid are underlain b\ prnialrost and 

completely surrounded by water tracks.



generally fragmented downslope into long streamlined fingers that split off into distinct tree 

islands. Spring fen landforms are found in all 3 target areas. 

4.1.3. Mire-Complex Types 

Most of the larger peatlands in the target areas contain more than one landform type and 

may best be described as mire complexes (sensu Cajander 1913). Mire complexes can 

be classified according to 1) their size and 2) the configuration of bog, fen, and mineral soil 

in a watershed. Most mire complexes in northern Minnesota are clearly separated from 

adjacent peatlands by mineral soil. The borders of these discontinuous complexes (types 

1-7) are easier to delineate than the continuous complexes (types 8-11) of the other target 

areas in which the watershed divides are often covered by peat (Figs. 13-14). However, 

the drainage divides in these continuous peatlands may be determined by the vegetation 

patterns that are sensitively adjusted to the prevailing direction of water movement. 

The simplest mire complex type (1) consists of a single bog that almost completely 

fills the peatland except for a narrow marginal lagg. These mire complexes are generally 

small (<20 km2) and either straddle drainage divides or contain only a narrow strip of 

mineral soil at the crest of the watershed (Fig. 13). The bogs in these complexes may 

completely surround small lakes or outcrops of mineral soil. 

In larger mire complexes (>20 km2) the raised bogs are separated by water tracks of 

varying sizes. The water tracks originate in drainage channels at the mineral crest of the 

watershed and terminate in tributary streams at the downslope margin of the peatiand. The 

bogs, in contrast, are located downslope from flow obstructions or develop over minor 

drainage divides. The majority of these mire complexes contain less than 50% bog and are 

smaller than 50 km2 (Fig. 15). A few complexes, however, are huge, ranging up to 180 

km2. Despite these physiographic constraints most bog and fen patterns can be assigned 

to a limited number of types.
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Figure 13. Discontinuous mire-complex types. The types represent reference points along a continuous range of 

variation (Glaser 1987b, in press). In types 1-5 the area of fen relative to bog increases, culminating in the very 

large water tracks of type 4 (Glaser 1987a). The arrows show the direction of water movement. 
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Figure 14. Continuous mire-complex types in Minnesota (Glaser 1987a, in press).
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Figure 15a. Dimensions of selected mire complex types in Minnesota. Mire-complex types may be 

categorized according to their proportion of bog or fen in relation to the total area of peatland (Glaser in 

press).
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Figure 15b. The relationship of selected mire-complex types to soils in northern Minnesota. Peatlands 

dominated by bog landforms are generally located in areas of relatively impermeable clayey or loamy 

soils. Peatlands dominated by fens, however, are located in areas of permeable sands (Glaser in press).



The type 2 peatlands are nearly filled by several raised bogs that are separated by 

narrow water tracks. These peatlands are generally small (15-26 km 2) and consist mostly 

of bog (>75%). The bogs seldom have a conspicuous crest and generally have an eccentric 

cross-section. This peatland type corresponds to watershed III at North Black River 

(Glaser 1983a). 

The type 3 peatlands have larger water tracks that originate near the upsiope margin of 

the peatland. Runoff from the adjacent uplands drains directly into these water tracks, 

which drain downslope toward tributary streams. These peatlands are generally small (20-

37 km2), have nearly equal proportions of bog and fen (43: 57), and have a wide zone of 

mineral soil at the watershed crest. The bogs are widely separated by the water tracks, 

which generally lack the string-and-flark patterns. This peatland type corresponds to 

watershed II at North Black River in Minnesota (Glaser 1983a). 

The type 4 peatlands have one huge water track that arises from the upsiope margin of 

the peafland and splits downslope into 2 branches around a large raised bog. Several 

raised bogs may also occupy the lateral margins of the water track. These peatlands are 

very large (@100 km2) and range from 34 to 54 % bog. This peatland type corresponds to 

the largest watersheds in the Myrtle Lake (Heinselman 1970) and North Black River 

(Glaser 1983a) peatlands in Minnesota. 

The type 5 peatlands are distinguished by the concentration of raised bogs near the crest 

of the watershed, with broad water tracks downslope. One of these peatland types is small 

(37km2), but the others are intermediate in size (58-79 km2), and the dimensions of 

several nearly completely overlap. Most of these peatlands have nearly equal proportions 

of bog and fen, but several are predominantly bog (70%). 

The remaining discontinuous mire complexes consist of patterned fens (type 6; ) and 

spring fens (type 7). These complexes lack raised bogs but differ greatly in size. The 

patterned fens range from the small (<1 km 2) to the huge patterned fens (>20 km2) in the 

three target areas (>60 km 2; Fig. 8). The spring fens, in contrast, are generally smaller 
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(0.3 - 15 km2) although their watershed boundaries are somewhat arbitrary to define. In 

regions with discontinuous permafrost spring fens still produce the same general landlorm 

patterns except that the forested areas are pocketed by thermokarst collapse scars. 

The continuous mire-complex types are restricted to the level terrain of the three target 

areas, where peat nearly covers the regional landscape. The semi-circular bogs of type 8 

are situated along the linear beach ridges of Glacial Lake Agassiz, with their convex margin 

facing upsiope. These bogs are associated with patterned water tracks, which split into 2 

branches around the bog margin. These mire complex types are fairly common and 

superficially resemble types 4 and 10. The type 8 peatlands, however, are smaller (<36 

km2) and are predominantly fen (>50%). 

The large bog complexes (type 9) of the Red Lake peatland in Minnesota have 

previously been described by Glaser et al. (1981). These complexes may cover more than 

160 km2 and largely consist of bog (55-90%). The bogs are divided into streamlined lobes 

and islands by water tracks that arise near the bog crest. This complex type is the most 

common peat landlorm in the Hudson Bay lowlands (Glaser 1987a). In areas with 

discontinuous permafrost the bogs are more finely dissected by water tracks but the same 

basic pattern prevails. Smaller bog complexes exhibit similar patterns but can be better 

placed in other peatland types on the basis of size. 

The western water track (type 10) at Red Lake is also distinguished by its great size 

(>160 km2) and the almost complete absence of bogs in the watershed (Fig. 10). Unlike 

the type 4 peatlands the western water track is surrounded by a vast belt of swamp forests, 

which grade downslope into linear fingers of forest and streamlined tree islands. In the 

Albany River region this complex type consists of featureless swamp forests that arise 

downslope from paludified moraines. 

The Glacial Lake Agassiz region also contains several peat mounds that are dissected by 

spring-fen channels (type 5). These mounds are restricted to the Lost River peatland region 
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and are surrounded by large areas of peatland. The mounds range in size from 0.3 to 2.3 

km2. 

4.1.4. Morphometry of Island Landforms 

Streamlined bog islands are found in all three target areas, wherever fen water tracks 

completely surround raised bogs. The bog islands have rounded heads and long tapering 

tails oriented parallel to the direction of flow (Fig. 16). Approximately 40 of these islands 

were selected for morphometric analysis according to the methods devised by Baker 

(1978). The islands are located in the Red Lake peatland of northern Minnesota and the 

Pigeon River peatlands east of Lake Winnipeg. There is a high correlation between the 

length versus area, the width versus area, and length versus width of these islands. Power 

curve fitting of these data yields the empirical relationships 

L = 1.64A 0•47 (R = 0.93)	 (1) 

W = 0.73 A0 •46 (R = 0.98)	 (2) 

W = 0.43L085 (R = 0.92)	 (3) 

where L = length, W = width, and A = area of the islands. The quantitative 

correspondence of these islands to an idealized airfoil or streamlined strut was determined 

by calculating their average length-to-width ratio and by their average K factor, which 

defines a lemniscate loop (Baker 1978; Komar 1983, 1984). The average length-to-width 

ratio of these peat islands is 2.5, and the average K factor is 2.9. 

4.2. Vegetation and Water Chemistry 

4.2.1. Bog and Fen 

Northern peatlands have traditionally been separated into bog and fen on the basis of 

their 1) peat landforms, 2) indicator species, 3) water chemistry, and 4) inferred hydrology 

(Fig. 1). Raised bogs can always be identified in Minnesota by their forested crest, acid 
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Figure 16. Streamlined bog islands froin the Red Lake peatland. northern Minnesota. The large bog island in the 

center of the photo has a forested crest (1) and a streamlined margin that is trimmed by fen water tracks (2). The 

direction of flow in time water track is indicated by the arrows. The photo covers an area over 2.6 km broad.



waters (pH <4.2; Ca concentration <2 mg 1- 1 ), and absence of fen indicator species. 

Farther north the forested crest grades into a nonforested plain in which the orientation of 

the pool networks indicates a raised profile in cross-section. Fens, in contrast, have 

concave landforms, less acid to alkaline waters (pH 4.2-7.2; Ca concentration 2-50 mg I-

1 ), and at least one indicator species present. These contrasting characteristics are linked to 

the hydrological properties of bogs and fens. The acid waters of bogs are maintained by 

internal sources of H+ ions and by the absence of any significant external source for a 

base. The H+ ions may be generated internally by the cation- exchange capacity of 

Sphagnum (Clymo 1963, 1967; Clymo and Hayward 1982) or by the release of organic 

acids through decomposition of Sphagnum peat (Gorham et al. 1984). The most important 

base in surface or ground waters, however, is carbonate, which is readily weathered from 

mineral soil by atmospheric precipitation (Drever 1982). Carbonate has a low concentration 

in bog waters because 1) the surface of the bog is raised above the flood level of runoff 

draining from the adjacent uplands, and 2) groundwater cannot move through the dense 

accumulation of bog peat. Thus bogs are believed to be ombrorrophic or rain-nourished, in 

contrast to fens, which are minerotrophic and receive at least some water that has percolated 

through mineral soil. The hydrogeological work in the Lost River peatland, however, 

disputes this commonly held belief. Analysis of Landsat imagery indicates that the fen 

vegetation in these large peat basins is controlled by the location of regional seepage faces 

for groundwater. 

4.2.2. Raised Bogs 

The ombrotrophic flora in the Glacial Lake Agassiz region contains less than 20 species 

of vascular plants (Tablel). All of these species can also be found in fens, so bogs are 

distinguished by the absence of fen indicator species. The two best developed vegetation 

types (noda) on raised bogs are the Carex trisperma - Vaccinium vitis-idaea nodum in 

densely forested stands and the Carex oligosperina nodum on nonforested lawns (Glaser et 
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al. 198 1). Most of the bog flora occurs on both lawns and forested stands, but Carex 

trisperma, Vaccinium vitis-idaea, Gaulrheria hispidula, and Smilacina trjfolia are generally 

restricted to forested stands, whereas Carex oligosperma is most common on lawns. 

The stands of radiating forest generally consist of small trees of Picea mariana (<10 m 

tall) with occasional trees of Larix laricina. The trees are largest near the crest and 

gradually become smaller and more clumped downslope as the radiating lines of forest are 

more widely separated by nonforested bog drains. The lawns are dominated by Carex 

oligosperma , although small layered clumps of Larix and Picea are usually present. The 

ground layer consists of a continuous layer of Sphagnum, which forms easily 

compressible hummocks and ill-defined hollows. 

In burned areas Carex oligosperma becomes dominant, and the assemblage assumes 

the character of a nonforested lawn. However, where the water table has been artificially 

lowered by drainage ditches Carex oligosperma does not colonize the burned area, which 

instead is dominated by a luxuriant growth of Sphagnum along with bog ericads, 

especially Chamaedaphne calyculata.. 

A rare vegetation type in Minnesota is the Sphagnum cuspidatum hollow (schienke of 

northern European authors) that occur only near the bog crests at North Black River, 

Myrtle Lake, and Sturgeon River. The wetter moss carpet in these hollows contains a rare 

bog assemblage in Minnesota that includes Carex limosa, Scheuchzeria palustris, 

Rhynchospora alba, and Utricularia cornuta. These species are generally absent from most 

ombrotrophic sites in Minnesota, where the fluctuating water table may drop as much as 

70-100 cm below the surface during a dry period. 

With increasing pH and Ca concentration a number of minerotrophic indicator species 

appear on the Sphagnum lawns, representing a subtle change from ombrotrophic bog to 

minerotrophic poor fen. Carex aquatilis is the most common of these poor-fen indicators, 

followed by Carex rostrata, C. chordorrhiza, and C. lasiocarpa. Except for these indicator 

species the poor-fen relevés are almost indistinguishable from those of ombrotrophic bog. 
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The Albany River area contains the same forested and lawn vegetation types as those 

found in Minnesota. These noda contain virtually the same species of vascular plants 

although the lichen cover is more important in the northern peatlands. The northern bogs 

contain 3 additional vegetation types that are restricted to different landform patterns. The 

nonforested bog plains are marked by large pools that contain Nuphar variegatwn. 

Menyanthes trifoliãta is also present in pools containing typical bog waters, although 

elsewhere in North America this species is restricted to minerotrophic fens. Mud-bottom 

communities are well-developed in depressions that contain a distinct assemblage of species 

including Rhynchospora alba, Utricularia cornuta, Carex limosa, Sceuchzeria palustris, 

and a Continuous carpet of bryophytes including Sphagnum rubellum. The nonforested 

bog plain also contains hummock communities dominated by ericaceous shrubs including 

Kalmia angustzfolia, Chamaedaphne calyculata, and Ledum groenlandicum and a high 

cover of lichens. The greater microtopography of the bog surface supports the richest bog 

flora and most diverse bog vegetation within the three target areas. However, the most 

diverse bog vegetation and richest bog floras occur in the Maritime Provinces of eastern 

Canada. 

The peat plateaus of the Hay River area contain very simple vegetation patterns and an 

exceptionally impoverished flora. The plateaus contain 2 vegetation types that are 

characterized by only a few species. The raised platforms underlain by permafrost are 

forested with stands of Picea mariana with occasional Pinu.s banksiana, and Larix laricina. 

The understory contains mostly ericaceous shrubs including Ledum decumbens, L. 

groenlandicum, Chamaedaphne calyculara, and Andromeda glaucophylla and abundant 

lichens. Depressions formed by thermokarst are usually carpeted by a continuous mat of 

Sphagnum rubellum and other bryophytes with a sparse cover of vascular plants. These 

hollows often contain minerotrophic waters. 
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4.2.3. Water Tracks and Spring Fens 

The fen vegetation in these target areas is distinguished by 1) richer species 

assemblages, 2) the presence of minerotrophic fen indicators, and 3) the low representation 

of Sphagnum relative to the Amblystigeaceae mosses (Table 2). The indicator species are 

related to different ranges in water chemistry, although the indicators are most common in 

nonforested stands. Each of the different landform types is distinguished by a 

characteristic species assemblage, which can be identified as noda. These noda are actually 

reference points along a Continuous gradient of vegetation change. 

Spring-Fen Channels (Scirpus hudsonianus-Cladium mariscoides nodum) 

The spring-fen channels are characterized by the Scirpus hudsonianus-Cladium 

mariscoides nodum (Glaser et al., in press). These nonforested channels are dominated 

by sedges, the most important of which are Scirpus cespirosus, Cladium mariscoides, 

Carex lasiocarpa, and C. exilis. Also present are Carex limosa, C. livida, Scirpus 

hudsonianus, and Rhynchospora alba. The very alkaline waters (pH >6.8; Ca 

concentration >20 mg 1- 1 ) in these channels are associated with a number of extremely-rich 

fen indicators including Muhienbergia glomerata, Cladium mariscoides, Parnassia 

palustris, and Thuja occidenralis. The channels have standing water and scattered 

tussocks of sedges, which are slightly raised above the water level. 

Flarks (Triglochin maririma-Drosera intermedia nodum) 

The flarks are variable with respect to their area and depth of standing water. In the 

wettest locations Triglochin maritima, Utricularia minor, Drosera intermedia, D. anglica, 

and D. linearis are usually present (Glaser et at. 1981). The drier flarks usually lack these 

species. All flarks, however, are dominated by sedges including Carex lasiocarpa, C. 

limosa, C. livida, C. chordorrhiza, Rhynchospora alba, and Menyanthes trfoliata. The 
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relative abundance of these species changes with respect to water level and water 

chemistry. The flarks of pristine water tracks also contain several rare plants, which are 

restricted to fens in undisturbed locations. 

Strings (Carex cephalantha-Potenrillafruticosa nodum) 

Strings are very variable across the target areas. They are best developed in water 

tracks that have been ditched, whereas they are barely perceptible above the water level in 

the most pristine water tracks. Strings are also impossible to define in certain areas with 

small and shallow flarks. Strings are generally dominated by Betula pumila var. 

glandulzfera, Potenrillafruticosa, Salix pedicellaris var. hypoglauca, Carex diandra, C. 

cephalantha, Thelypteris palustris var. pubescens, and Viola pallens var. mackloskeyi. 

In the wettest water tracks, however, strings also have sedges, such as Carex lasiocarpa 

and C. chordorrhiza. 

Featureless water tracks (Carex limosa - C. lasiocarpa nodum) 

Most water tracks have nonforested lawns that lack oriented pools. These sedge lawns 

are dominated by Carex lasiocarpa and Rhynchospora alba, with Carex limosa, C. 

chordirrhiza, and Betula pumila var. glandulifera. These sedge lawns are very similar to 

the flark nodum but lack the more aquatic species, such as Drosera anglica, D. linearis, 

Utricularia minor, and Triglochin maritima. Probably the most notable species absent 

from these featureless water tracks is Carex livida, which is virtually restricted to flarks and 

spring-fen channels in Minnesota. The featureless water tracks usually have standing 

water but there may be a continuous carpet of mosses including various Sphagna. 

Forested Fingers (Larix laricina-Carex chordorrhiza nodum) 

The margins of water tracks are often fringed by fingers of forest that extend Out into 

the track and are dominated by Larix laricina with Picea mariana. The understory of these 

stands is dominated by Carex chordorrhiza, C. lasiocarpa, C. leptalea, Berula pumila var. 

19



FOLDOUT FRAME
	

r&E a 

SPRING-FEN FIARKS FEATURELESS STRINGS FOREST TREE SPRING-PEN 
CHANNELS WATER TRACKS ANGERS ISLANDS FORESTS 

i.26) 15) n.7) 3) (i4) (1.3) 

6.6 7.6 4.8 -7.4 4.2 .7.1 6.2 - 7.2 4.8 -6 8.4 -7.2 6.8 - 7.2 
Cann.mgl 559-98.5 2.0.56.5 1.5-30.4 2.1 -658 1.5-11.1 13-65.9 .7-45.6 
K	 tT. 44 - K4 22 . 149 26.181 20.129 42. 129 9. 128 21-15 

RED

0.75  Aster jund/erml, 
Th4. ocdd.ntall, 100 • Oil 0.14 2 - - 0.75 • - - 
Car., •sill, 0.25 2 0.19 2 - - - - - - - - 
Oediwn mariscold.a 0.75 • - - - - - - - - 
Parnassia palusb4a 100 • 0.15 . - - 0.14 • - - - . - 

Lobelia *alnWl 100 * 0.26 • - - 0.43 • - . . . - - 
Sdrpus c.spltoau, 100 2 0.3  
0-ours anQika 0.5 * 0.35 I 0.07 • - . . - . . - 
0os.ra lin.arl, - - 0.21 I 0.07 I - - - 
Ut,tculajla	 Idno, - - 0.21 • - - - - - - - 

Trlgloctiin marltima 0.5 - 0.41 • * 0.13 0.14 • - - 0.25  
Care, hide 0.5 • 0.9 I 0.2 • 0.14 • - - - - - 
Car., I/mesa I • 0.79 2 0.87 1 0.29 * 0.67 1 - - - - 
Uanyanth.a	 SibIlate 0.75 • 0.9 I 0.73 I 0.29 I 0.67 1 - - - - 
Rtiyioapora abs 0.75 • 0.83 I 0.67 I 0.29 • - - - - 

Ufric,Iarla lnt.,m.dia 0.75 1 0.51 I 0.46 • - - 0.33 • - 
EIaod,a,l, canpr.ssa 0.75 • 0.45 1 0.27 1 0.14 • 0.33 • 0.5 * - 
Eqds.tum fluvlaEl. - - 0.52 I 0.4 1 0.43 • - - 0.33 • - 
Car., laslocarpa 0.75 2 0.97 2 1 3 0.86 2 1 2 0.25 I - 
854a pwiñla ear. glandullb.re I • 0.56 • 0.93 1 0.71 3 I 2 1 I - - 

Sib, padlcalans par. hypoglauca 0.25 • 0.14 * 0.47 • 0.71 • 0.67 1 0.5 • - - 
AnWom.da glauccphyDa 0.5 • 0.79 1 I I 0.71 1 I 1 0.75 1 0.33 • 
0-os.ra rot,e,thfolia 0.25 • 0.34 • 0.53 • 0.43 * 0.66 * 0.75 • 0.66 • 
Sa,rac.nia pwpt..a I * 0.69 * 0.8 • 0.71 • 0.66 • 0.75 • I • 
Car., chofdont4za - - 0.82 1 0.93 I 0.71 3 I 1 0.5 I 0.33 • 

Sch.uchz.rl.a pabsotrl. 0.25 • 0.82 I 0.53 I 0.53 • 0.33 • - - - 
Drojers lnt.rm.dJa 0.25 • 0.45 I 0.27 I - - - - - - 
Kalmia po.'lIolia - - 0.21 • 0.67 . . - 0.66 1 - - - 
Qiama.dapM. calyo4ata - - 0.41 I 0.8 I 0.29 I 1 2 0.75 I 0.66 * 
Vacdnsm, esynaccos 0.25 • 0.52 • 0.73 I 0.43 • I I I , 0.66 * 

Lan, lane/na 0.75 I 0.28 1 0.47 I 0.56 I I 4 I 4 - - 
Pic.a ma,Iana 0.25 • 0.17 I 0.4 I 0.14 • 0.66 2 0.75 2 I S 
Smilacina	 fri/ella - - 0.17 • 0.33 I - - 0.66 * 0.5 1 0.66 I 
Car., paIV.rcvla - - 0.03 * 0.27 1 0.14 • - - 0.5 • 0.66 • 
Led,..,,	 o.nlandia,m - - 0.07 * 0.27 • 0.14 • I • 1 2 I 3 

Ca,., dians,a - - 0.03 • - - 0.57 • 0.33 • - - - 
TlWIypterls palusbis van. pubesce - - - - - - 0.71 I - - 0.25 • - - 
Vista palI.ns var. maddosbeyl - - - - - - 0.57 * 0.33 • 0.25 • - 
&omus aliaS,. 
Agroslia scab,. 0.25 • 0.1 • - - 0.43 • - - - - - 

Potantilla	 paluatils - - 0.1 • 0.13 • 0.57 • 0.33 * I I 
Typha	 latibolia 0.75 1 . - - - 0.29 I 0.33 2 0.75 I - - 
Can., lepldea - - 0.03 • - - 0.57 * 0.33 * 0.5 • I 
CaSts,, labnadoncvn, - - 0.07 * 0.07 • 0.57 • - - 1 • 0.33 • 
Ca,., I.nulflora - - - - 0.07 • 0.14 • I * 0.5 • 0.67 

Car., bisp.tma - - - - - - - - - - 0.5 • 0.67 2 
LyslmacNa	 1/inysiltona - - - - - - - - 0.33 2 0.75 • - 
Vacaniwn	 vilis-/da.a - - - - - - - - - - 0.25 • I I 
Pyre/a secwjda van. obutmata - - - - - - 0.29 * - - 0.5 • 0.33 
Rum., o,bio4atus - - - - - - - - - - 0.75 * 0.33 * 

Oryoptarls	 cristata - - - - - - - - - - 0.5 • 0.33 • 
Car., dl,p.nn. - - - - - - - - - - 0.75 
Call/ia palusfris - - - - - - - - - - 0.5 • 0.33 * 
Cennu, sloJonhI.ra - - - - - - - - - - 0.5 • 
Care, gynoaal.s - - - . - - - - - - 0.25 

Cernu, canadensis - - - . - - - - - - 0.75 I - - 
Cadth.na hlspiduia - - - - 0.07 • - - - - 0.5 • 0.33 * 
Scinpus ansI,,, 0.5 2 - - - - 0.14 * - - 0.25  
Hab.na,la clav.Itala 0.25  
Sdnpue h,.dsemarvs 0.25 * 0.13 1 0.07 • 0.29 , 

PoI.nlllla	 bruticosa 0.5 * - - - - 0.14 • - - - - - -



glandulifera, Ledum groenlandicum, and Chamaedaphne calyculata. The forest canopy in 

these stands is not continuous, and the forest floor consists of a continuous carpet of 

Sphagnum, with high hummocks around the base of the trees and low, moist depressions. 

Tree Islands (Carex pseudocyperus-Aronia melanocarpa nodum) 

Water tracks may have small streamlined tree "islands." These islands are dominated 

by Larix laricina associated with Picea mariana and occasionally Abies balsamea. The 

islands are floristically similar to the forested finger nodum but are generally much richer in 

species. Carex pseudo-cyperus and Aronia melanocarpa are consistently present, along 

with Berula pwnila var. glandulifera, Ledum groenlandicum, Vaccinium oxycoccos, 

Porentilla palustris, Galium labradoricum and Lysimachia rhrysflora. Carex lasiocarpa 

and C. chordorrhiza , however, are generally absent. The tree islands consists of moss-

covered hummocks around the base of the trees and water-filled depressions. 

Spring-Fen Forest (Picea mariana- Carex gynocrates nodum) 

The spring-fen forests are dominated by Picea mariana but also contain Larix laricina, 

Abies balsamea, and Thuja occidenralis. Carex gynocrares is consistently present in the 

understory with Smilacina trifolia, Carex paupercula, Ledum groenlandicum, Carex 

trisperina, and Vaccinium vitis-idaea. The spring-fen forests usually have a nearly 

continuous canopy and a continuous carpet of moss on the substrate. Standing water is 

unusual in these stands, but the water table is usually close to the surface. 

4.2.4. Water Chemistry 

The water chemistry from the vegetation samples may be divided into 2 major classes 

on the basis of pH and calcium concentration. The ombrotrophic bog samples have a pH 

below 4.2 and calcium concentrations below 2 mg 11, whereas the niinerotrophic fen 

samples have values above this level.
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The bog samples have very narrow ranges for pH (3.7-4.1) and calcium concentration 

(0.6-2.0 mg 1- 1 ). A few bogs have unexpectedly high concentrations of Ca but otherwise 

seem to be ombrotrophic. These samples were taken from pits, because standing water 

was not present at the surface, and they may represent complex exchanges with the 

subsurface peat. The water chemistry of the bog samples does not differentiate among the 

various types of vegetation-landform on bogs, except that absorbance readings tend to be 

lower at the bog crest, indicating higher rates of flow. 

Extremely poor fens (sensu Sjörs 1950) are distinguished by a pH of 3.8-5.0. In the 

target areas these fens generally exhibit the most sensitive floristic response to small 

changes in water chemistry. A group of poor fens that have bog-like vegetation is 

characterized by a pH of 4.1-4.6 and Ca concentrations of 2.2-5.5 mg 1- 1 . These samples 

were taken from relevés containing one or more minerotrophic indicators (sensu Sjörs 

1963, 1983; Glaser eta/ 1981; Wheeler et al. 1983) with low cover values. 

The other group of poor fens recognized by Sjörs (1950) has considerable overlap in 

pH and is characterized by Heinselman (1970) as weakly minerotrophic, with a pH of 4.3 

to 5.8 and Ca concentrations of 3-10 mg 11. The samples that fall within this range were 

taken from relevés whose vegetation was very similar to that of the water tracks. These 

samples had a pH of 4.1-5.9 and Ca concentrations of 0.9-13.0 mgi 1 . Many of the small 

patterned fens from northeastern Minnesota fall into this class, along with water tracks 

from the Albany River region. 

The transitional rich fens of Sjörs (1950) or minerotrophic class of Heinselman (1970) 

is characterized by a pH of 5.8 to 7 and Ca concentrations of 10-25 mg 1- 1 . The water 

samples from northern Minnesota that fall into this class have a pH of 5.9-6.8 and Ca 

concentrations of 10-32 mg 1- 1 . Other samples, however, are transitional to the poor-fen 

class and are difficult to categorize with certainty. 

Extremely-rich fens, which Sjörs (1950) distinguishes as having a pH of 7 to about 

8.5, are the only class of fen samples that are generally restricted to particular landform 
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units. Water samples from the spring fens have a pH of 6.8-7.4 and Ca concentrations of 

20-45 mg 11. These landlorms are common within the three target areas, although spring 

fen channels from the Albany River region exhibit slightly lower values for pH and Ca 

concentration. Only a few samples from patterned fens in Minnesota have values in the 

extremely rich fen range, but reticulate fens in the Albany River and Hay River areas 

consistently have a pH greater than 7.5. The chemistry of these fens seems to indicate 

groundwater discharge from the underlying calcareous till. 

4.2.5. Environmental Gradients 

The vegetation in patterned peatlands is closely related to landlorm type and water 

chemistry. This relationship is documented by Detrended Correspondence Analysis 

(DCA), a multivariate method for determining the underlying pattern within a large data set 

composed of many different variables (Hill 1979). The fen relevés from northern 

Minnesota, for example, are consistently grouped according to landform type and 

secondarily by water chemistry (Fig. 17). This close correspondence among the 

vegetation, landform, and water chemistry is surprising when the regional spacing of the 

samples is considered and when many relevés from disturbed peatlands in Minnesota are 

included. 

The DCA ordination indicates that 2 environmental gradients control the composition of 

the vegetation. Most of the variation in the data set is expressed along axis 1, which 

corresponds closely to the moisture gradient. The driest forested stands are located on the 

right side of the ordination, whereas the wettest flarks are located on the left. The influence 

of water chemistry is indicated by axis 3, with poor fens positioned at the bottom and richer 

fens toward the top of the axis. 

The effect of water chemistry on the relative abundance of the dominant mire species is 

best illustrated by direct gradient analysis (sensu Whittaker 1967). The major fen 

dominants attain their peak in abundance within specific ranges of water chemistry with the 
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Figure 17. Ordination of fen vegetation by detrended correspondence analysis. The fen vegetation is separated 

into groups that correspond to landform type and water chemistry. The first ordination axis corresponds most 

closely to a moisture gradient with the wetter stands on the left and drier stands on the right. The third ordination 

axis corresponds to the chemical gradient, with the poor-fen waters below and extremely-rich fen waters above 

(Glaser 1987b, in press). 
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Figure 18. Direct gradient analysis of the major vascular plant species along a chemical gradient. The average 

cover value (Braun-Blanquet index) of each species is plotted in relation to the water chemistry. The symbols for 

the Braun-Blanquet index are (+) sparsely present; (1) plentiful but low cover value; (2) very numerous, or 

covering at least 5% of the area; (3) very numerous or covering 25-50% of the area; (4) any number of individuals 

covering 50-75% of the area; (5) covering more than 75% of the area. The ranges in water chemistry are bog (pH 

<4.2; Ca concentration <2 mg 11); poor fen: bog-like (pH 4.1-4.6; Ca concentration 1.5-5.5 mg 11); poor fen: 

fen-like (pH 4.1-5.8; Ca concentration <10 mg 11); intermediate rich-fen (pH 5.8-6.7; Ca concentration 10-32 

mg 1 1 ); extremely rich fen (pH >6.7; Ca concentration >30 mg l-) (Glaser 1987b, in press). 



exception of Scirpus cespirosu.c , which has separate peaks in the poor-fen and extremely-

rich fen range, and Betula pumila var. glandulifera, which has a fairly uniform distribution 

across the entire rich-fen range (Fig. 18). The direct gradient analysis of the major bog-fen 

species, however, demonstrates that many of these species are relatively insensitive to 

changes in water chemistry (Fig. 19). Picea mariana and bog ericads such as 

Chamaedaphne calyculata and Ledum groenlandicum have two 2 peaks in abundance at 

the opposite ends of the chemical gradient. These species apparently respond to the 

moisture gradient and become dominant on the driest landlorms irrespective of the water 

chemistry. Larix, however, is more common in the fen range and is similar in behavior to 

Betula pumila. 

Plant succession may also play an important role in determining the vegetation patterns 

in these peatlands. Two types of poor fen occur in northern Minnesota, with similar ranges 

in water chemistry and water levels but very different types of vegetation. One type occurs 

on the Sphagnum lawns and is almost indistinguishable from ombrotrophic bog 

vegetation, whereas the other type is very similar to that found in the more minerotrophic 

flarks and featureless water tracks. The major division between these two types of poor 

fen actually separates the overall peatland vegetation into two contrasting types much better 

than the more subtle floristic changes that occur at a pH of 4.2 and Ca concentration of 2 

mg 1- 1 . These two types of poor fen seem to represent the opposing end products of 

development for bogs and fens. 

The factor that best integrates the varying effect of water chemistry, moisture, and plant 

succession on the mire vegetation is the landform patterns. Direct gradient analysis 

indicates the degree to which different species attain dominance on different landform 

types, particularly the different types of poor fen (Fig. 20). Subtle changes in the form of 

these patterns also provides an important tool for interpreting the direction of plant 

succession and influence of the major environmental controls. 
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Figure 21 Detrended correspondence analysis of the vegetation relevds from Lost River. The 3 plots present 

ordinations for the vascular plant data (21a), the bryophyte data (21b), and the combined data set (21c). The water 

chemistry of the relevds is indicated by the symbols: circles (bog), hexagons (poor fen), squares (rich fen), and 

triangles (extremely rich fen). The eigenvalues for axis 1 are 0.738 (5a), 0.705 (5b), and 0.700 (5c). The 

eigenvalucs for axis 2 are 0.205 (5a), 0.191 (5b), 0.188 (5c) (Glaser et at. in press).
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The relative effects of various environmental gradients on the vascular plants and 

bryophytes was investigated in detail in the Lost River peatland of northern Minnesota. 

Three separate DCA ordinations were run to compare the response of the more deeply 

rooted vascular plants to that of the more shallow absorbing organs of the bryophytes: 1) 

the vascular plant scores (Fig. 21a), 2) the bryophyte scores (Fig. 21b), and the combined 

data set (Fig. 21c). 

These three ordinations produce very similar results, indicating a similar response of 

the major plant types to water level and water chemistry. Most of the variation in the data 

sets is expressed along axis 1, which corresponds to a moisture gradient. The spring-fen 

relevés, which have the wettest surface, are grouped on the right side of this axis, whereas 

the drier forested stands are positioned to the left. The chemical gradient does not directly 

correspond to any of the DCA axes, but each of the vegetation types delineated by the 

ordination represents a distinct range in pH and calcium concentration. Thus the 

ordinations strongly support the vegetation types identified in the vegetation tables. 

Canonical correspondence analysis (ter Braak 1986, 1987; Jongman etal. 1987) was 

used to approximate the quantitative relationship of the species and relevés to the 

environmental variables at Lost River. The species and relevés are indicated by points on 

the jointplot, whereas the environmental variables are plotted as arrows, which determine 

the axes of the diagram (Fig. 22). The weighted averages of the species with respect to the 

environmental variables are approximated by projecting a perpendicular line from each 

species point onto the axis of each environmental variable. The endpoints of these 

perpendiculars indicate the center of that species distribution (weighted average) along that 

particular environmental axis. Environmental variables with long arrows are more strongly 

related to the pattern of variation in the species composition than those with short arrows. 

The CCA diagram for the relevés (Fig. 22) indicates that axis 1 most closely 

corresponds to the area of standing water (STAGW), which has the highest canonical 

coefficient (113) and inter set correlation (961) for axis 1 (Table 4). Tree cover has the 
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Figure 22. CCA ordination diagram of the Lost River vegetation relevds with the environmental variables 

represented by arrows. The environmental variables are: standing water (STAGW), conductivity (cond.), pH, Ca 

concentration (Ca), Fe concentration (Fe), Si02 concentration (Si02), tree cover (TCV), and forb/shrub cover 

(FSCV). The relevds are: spring-fen channel (SFC), spring-fen forest (SFF), swamp forest (SF), water track 

(WT), and raised bog (RB). The eigenvalues are 0.67291 for axis 1 and 0.22853 for axis 2. The diagram 

accounts for 65% of the variation of the weighted averages. 
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Figure 23. CCA diagram of the species from the Lost River peatiand with respect to the environmental variables. 

The numbers for the species points correspond to those in Tables 5 and 6. The symbols for the environmental 

variables and the eigenvalues are the same as those in Figure 22 (Glaser el al. in press). 



strongest negative correlation to axis 1, and the direction of its arrow is nearly the opposite 

of that for standing water. Chemical variables, such as Ca concentration, conductivity, 

Si02 concentration, and pH, have progressively lower inter set correlations for axis 1. 

Ca concentration, however, has a very high variance inflation factor (VIP >21) indicating it 

is almost perfectly correlated with another factor, such as conductivity (VIF >9.5) and 

therefore has no unique contribution to the regression coefficient. These chemical variables 

are also related to pH (VIF >14). 

Axis 2 most closely corresponds to Fe concentration, which has an inter set correlation 

of 692 (Table 4). The pH of the surface waters has the strongest negative correlation for 

axis 2 and the direction of its arrow on the ordination diagram is nearly the opposite of that 

for Fe. 

The CCA ordination diagram for the relevés indicates that the spring-fen relevés have 

the highest weighted averages for standing water, whereas the spring-fen forest and raised 

bog relevés have the lowest (Figure 22). The swamp forest and water track relevés are 

centered at an intermediate position along this gradient but are located closer to the drier 

end. With respect to pH, the spring-fen relevés have the highest inferred weighted 

averages and the raised bog relevés the lowest, whereas the relevés from the spring-fen 

forest, swamp forest, and water tracks have intermediate averages. 

The CCA ordination for the species (Fig. 23) shows the approximate center for the 

distribution (inferred weighted averages) of each species along the various environmental 

gradients at Lost River. Muhienbergia glomerata, Carex exilis, Drosera anglica, Typha 

latifolia, and Rhynchospora alba, for example have the center of their distributions at the 

wettest end of the gradient for standing water (STAGW), whereas Dicranumfiagellare, 

Carex trisperma, Dicranum polyserum, Hylocomnium splendens, and Kalmia polifolia are 

located at the driest end. For pH, Kalmia polfo1ia, Carex trisperina, Vaccinium 

oxycoccos, Dicranwnj7agellare, Sphagnum russowii, and Mylia anomala are respectively 

centered near the lowest values, whereas Carex aquarius, Moerckia hibernica, Calliergon 
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tnfarium, Thuja occidentalis, Lonicera villosa, and Galium labradoricwn respectively are 

centered at the highest values. The labels for the species points in the ordination diagram 

correspond to the species in the vegetation tables (Table 5-6). 

4.3. Hydrogeology and Peat Stratigraphy 

An intensive hydrogeochemical investigation was conducted in the Lost River peatland, 

which contains the complete range in water chemistry and major landform-vegetation types 

within a very limited area. The study area of 780 hectares includes 3 different landforms 

1) a spring-fen mound, 2) a raised bog, and 3) a narrow water track that separates these 

two peat mounds (Fig. 5). The crest of the spring-fen mound and raised bog are nearly at 

the same elevation although the spring-fen mound is located over a rise in the mineral 

substratum, and the bog occupies a depression (Almendinger et al. 1986; Fig. 5). The 

slopes are relatively gentle except for the slightly steeper drop on the eastern end of the 

spring fen. Peat depths range from about 2 m under the spring-fen mound to 3.3 m under 

the bog. 

Both the spring fen mound and the raised bog are located in discharge areas for ground 

water despite their raised topography and significant accumulation of peat (Siegel & Glaser 

1987). The hydraulic-head gradients at the crest and margin of the raised bog reversed 

seasonally in 1983, when the vertical direction of water movement changed from a 

downward to an upward direction in the peat column. When upward gradients prevailed, 

the entire peat mass swelled, raising the elevation of the benchmarks apparently as a 

response to a rise in pore pressure (Almendinger et at. 1986). The discharge of ground 

water within an apparently ombrotrophic bog is quite unexpected. This finding was 

nevertheless supported by the chemistry of the pore water under the bog, in which the pH 

and calcium concentration at 1 m depth were similar to the values found in the underlying 

calcareous till.
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Figure 24. Water-level measurements in the Lost River peatland in mid-summer (0) and autumn (0) (Siegel and 

Glaser 1987).
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This study confirmed that the spring-fen channels were sites for groundwater 

discharge. The water levels in the piezometers were always above the elevation of the 

water table indicating upward head gradients (Fig. 24). The close similarity of these 

spring-fen channels with respect to vegetation, surface water chemistry, and landform to 

the other spring-fen channels across the 3 target areas indicates similar hydrogeologic 

conditions for all of these channels. 

An unexpected finding was that the adjacent raised bog was also seasonally a 

discharge zone for groundwater (Fig. 24). Although the surface waters had virtually no 

alkalinity, a low pH (<4.2), and a low Ca concentration (<2 mg 11), the chemistry of pore 

water at 1 meter depth was identical to that in the underlying calcareous till (Fig. 25). 

Apparently the alkalinity carried by groundwater to the peat surface was consumed by 

organic acids or biotic processes within the top meter of peat. 

The past response of the vegetation to hydrology at Lost River was reconstructed from 

the peat stratigraphy (Fig. 26). The two peat mounds in this peatland began to form about 

2000 yr B.P. and rose in elevation at about the same rate. At this time both peat mounds 

were raised bogs but at 1200 yr B.P. one of these mounds was converted into a spring-fen 

channel. Apparently groundwater began to discharge at this site at that time. The deeper 

peat under the raised bog, however, swelled and the discharge rate was insufficient to alter 

the water chemistry and vegetation at the surface. Thus the 2 peat mounds at Lost River is 

delicately adjusted to the present hydrologic flow field and a slight change in the head 

gradient could produce significant changes in the vegetation. 

4.4. Analysis with Landsat TM imagery 

4.4.1. Vegetation Patterns 

A greater range of vegetation types can be detected with false-color composites of 

Landsat 'FM imagery than from conventional aerial photographs. Bogs can clearly be 

distinguished from fens on the basis of their spectral characteristics, and the different types 
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Plate XXXI. Landsat image (2,3,4 
= BGR) of peatland types in the 
Glacial Lake Agassiz region. The 
peatlands are dissected by mineral 
exposures (bright red) and by trib - 
utary streams (1) that direct the 
path of drainage. The large bog 
complex has a forested crest (2; 
dark purple) with lines of spruce 
radiating downslope. Fen water 
tracks (3; green) arise near the bog 
crest and divide the lower bog 
flanks into streamlined lobes. A 
much larger water track (4; green) 
arises from a sandy beach ridge 
(red) that is partially surrounded 
by a tamarack swamp. Flow lines 
in these water tracks are laminar 
and exhibit no evidence for turbu - 
lent mixing where the two tracks 
merge. These patterns indicate that 
the discharge of the main track is 
much greater than that of the 
smaller track. The image covers an 
area 12 km across. The arrows 
indicate the direction of flow. 

Plate XXXI1. Landsat image 
(2,3,4 = BCR) of the Glacial Lake 
Agassiz peatlands in early fall (Sep. 
1987). The peatlands are dissected 
by a sandy beach ridge (red; 1) 
from which large water tracks 
(green; 2) originate. Flow in these 
water tracks diverges around a 
large bog complex (brown-yellow; 
3) that is situated over a drainage 
divide. Vegetation bands (4) in the 
water tracks indicate laminar lines 
of flow. The peatlands are locally 
cut by a grid of drainage ditches 
and by a powerline and roadways. 
The image covers an area approxi-
mately 20 km across. The arrows 
indicate the direction of flow. 
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Plate XXXIII. Bogs and fens in the Albany River region. The 
Landsat TM image (2,3,4 = B, C, R) distinguishes large raised 
bogs that have lichen-covered crests (blue) and Sphagnum 
lawns (yellow) on their lower flanks. Poor-fen water tracks 
(green) can also be distinguished from the rich-fen swamp 
forests (purple); and the extremely-rich fen channels (turquoise). 
Nearly the entire image is covered by peat except for small 
mineral exposures (bright red), rivers (black), and small lakes 
(black) on the moraine complex to the right. The image covers 
an area approximately 50 km across. 

Plate XXXI V. Peatland patterns along the edge of a paludified 
moraine in the Albany River region. The colors on this subscene 
from Plate XXXIII indicate lichen-covered bogs (blue), Sphag - 
num bogs (yellow), poor-fen Sphagnum lawns (pink), poor-fen 
water tracks (green), rich-fen swamp forests (purple), and 
extremely-rich fen channels (turquoise). Numerous water tracks 
(A) arise from the edge of the moraine system (B) and discharge 
into the swamp forest (C). Laminar and "plmnehke" flow lines 
are visible in the swamp forest leading toward a stream (D) at 
the edge of the watershed. The image covers an area 12 km 
across. 

Plate XXXV. Peat plateaus in the Hay River region, N.W.T. 
The colors on this Landsat TM image (2,3,4 = B, C, R) indicate 
peat plateaus (orange), mineral exposures (red), and small lakes 
(black). Flow lines (blue-green; arrow) visible in the water 
tracks arise from the edge of the mineral uplands and diverge 
around the streamlined peat islands. This image covers an area 
approximately 37 km across.
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of bog and fen can be detected with TM bands 2, 3, and 4 (Plates 2,3,4,5, and 6). 

Although the spectral properties of these vegetation types change according to season and 

region, this variability is limited. 

The dominant type of cryptogam on raised bogs can also be determined with 

Landsat TM imagery despite the presence or absence of trees (Plate 4 and 5). Bogs 

dominated by Sphagnum are clearly distinguished from those with high lichen cover in the 

3 target areas. This distinction is significant, because the Sphagnum-covered bogs appear 

to be accumulating carbon much more rapidly than bogs dominated by lichens (Glaser and 

Janssens 1986). The Landsat imagery also provides a sensitive indicator for the transition 

from bog to poor fen on the Sphagnum lawns that form an apron around the lower bog 

flanks and bog margins. 

The major types of fen vegetation may also be distinguished on Landsat images 

composed of TM bands 2, 3, and 4. In the Albany River region, the spectral properties of 

extremely rich fens (p1-I> 6.8; Ca concentration> 20 mg 1- 1 ) are different from those of 

poor fens (pH 4.2-5.5; Ca concentration 2-10 mg 1- 1 ), although both of these vegetation 

types are dominated by sedges (Plate 4 and 5). In the Hay River region, extremely rich 

fens, may also be distinguished on false-color composites with TM bands 3, 4, and 5 

(Plate 6). In the Glacial Lake Agassiz region, extremely rich fens are too small to be 

detected on satellite imagery. However, the spruce (Picea mariana) swamps that surround 

them have a different spectral signature than the rich fen swamps dominated by tamarack 

(Larix laricina). 

Landsat imagery provides an important means to distinguish bog from fen vegetation 

in areas where the peatlands contain large pools. In the Albany River area, for example 

the bog Iandforms commonly have large networks of deep pools, which appear uniformly 

black on conventional aerial photographs. Without a detailed ground survey it is 

impossible to determine whether the pool networks are part of the bog matrix or represent 
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fen water tracks. On the color-composite Landsat images, however, the fen pools are 

distinguished by their green tones. 

4.4.2. Distribution of the Major Vegetation Types 

The Landsat scenes provide a synoptic view of the vegetation patterns with respect to 

the important physiographic features in the three target areas. In the Glacial Lake Agassiz 

region, mineral exposures are common throughout the peatlands and play an important 

role in determining the peatland vegetation patterns (Fig. 3, Plate 2). Fen vegetation 

predominates in areas where sandy beach ridges dissect the peatlands, whereas bog 

vegetation forms the most important cover type in areas where the exposures are largely 

composed of silty-loamy or clayey ground moraine (Figs. 2 and 15). 

The close relationship between soils and the spatial spread of bogs is demonstrated by 

an analysis of the mire complex types. Mire complexes that are primarily composed of 

bog (types 1,2,5) are surrounded by clayey or loamy soils that have a relatively low 

hydraulic conductivity (Fig. 15). Mire complexes that have large areas of fen (types 3, 4, 

6, 7,10), however, are consistently surrounded by sandy outwash or beach ridges. The 

largest water tracks in Minnesota, such as those at Red Lake and Myrtle Lake all arise 

downslope from these sandy beach deposits. 

Regional changes in soil types have a dramatic effect on the size and abundance of 

water tracks. In the northeastern portion of the Glacial Lake Agassiz region raised bogs 

nearly cover the peatlands, which generally can be identified as type 1 or 2 mire complexes 

(Fig. 3). This region is largely covered by relatively impermeable clayey lake sediments. 

An outlier of sandy outwash, however, is associated with the head of the large water track 

at North Black River. In the southeastern portion of the Lake Agassiz region the bog 

complexes (type 3, 5, and 8) are almost completely surrounded by larger water tracks and 

featureless swamp forests. The peatlands in this zone are only locally interrupted by 

narrow sandy beach ridges.

We



To the east the beach ridges almost disappear underneath the Red Lake peatiand, where 

large bog complexes have developed over drainage divides in the eastern and central 

watersheds. Here most of the landscape is covered by bog, but the bogs are finely divided 

by water tracks that arise from the lower bog flanks. The extremely large western 

watershed at Red Lake, however, is almost completely composed of fen vegetation, 

including the huge western water track. The edges of this watershed are marked by 

exposures of sandy outwash and beach ridges. This relationship is continued in the 

northwestern part of the Lake Agassiz peatlands. This area contains the largest patterned 

fens in Minnesota, which are surrounded by sandy outwash and beach deposits. Only a 

few bogs occur in this region despite the large expanse of peaflands. 

The regional distribution of bog and fen is therefore closely related to the texture of the 

adjacent soils. Peatlands are dominated by bogs where the adjacent clayey or loamy soils 

are relatively impermeable. Mire complexes, however, are dominated by fens when the 

adjacent mineral exposures consist of porous sandy outwash or beach ridges. These 

deposits are always found near the source of the largest water tracks or spring fens. The 

most likely explanation for this relationship is that the sandy deposits are conduits for 

alkaline groundwater discharging from the calcareous soils that underlie the peatlands. 

The tributary streams that dissect these peatlands also play an important role in 

determining the orientation, location, and stability of the peatland patterns. The large water 

tracks generally drain toward the heads of tributary streams that are slowly eroding 

headward into the peatlands. The orientation of the vegetation patterns, however, may 

change as new tributary streams cut into the margin of the peatland and alter the direction of 

drainage. This process is apparent in the North Black River peatland (Glaser 1983a) and 

the northern edge of the western water track in the Red Lake peatland, where trees and 

shrubs are growing over former drainage paths. The tributary streams also seem to control 

the position of several large bogs, which are located between two adjacent streams. 
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In the Albany River study area, the physiographic controls on peatland development are 

more subtle, because the landscape is nearly completely covered by peat. Nevertheless, the 

distribution of bog and fen vegetation in this area is not uniform and exhibits a strong 

relationship to physiography. A classification of the data from Landsat TM bands 2, 3, and 

4 in the Albany River region indicates that the majority of these peatlands are fen (56%) 

with a smaller area of bog (34%) and a much smaller area of standing water (10%) (Fig. 

3). The major blocks of fen vegetation are located down slope from the moraine 

complexes, which are almost entirely covered by lichen-covered bogs. Therefore fens 

may be supplied by alkaline ground water that discharges from the edge of the moraine 

complex, because a surface source for this alkalinity is lacking. This hypothesis is 

supported by finer-scale TM imagery described below. The large areas of bog, in contrast, 

are located on the dissected plain to the west, where the bogs occupy divides between the 

tributary streams. 

In the Hay River region, the distribution of bogs and fens does not seem to be strongly 

related to physiographic features. The lowlands are dominated by large bog complexes 

(peat plateaus) that are underlain by permafrost (Fig. 9). These bogs are dissected by a fine 

dendritic network of fen water tracks that occasionally converge into a large single track. 

Some of these large water tracks arise near the margins of mineral exposures, but others 

originate from within the peat plateaus. Peat plateaus are also the most important peatland 

type on the flanks and summits of the Caribou Hills, where they are dominated by lichens. 

4.4.3. Hydrogeochemical Processes 

The hydrogeochemistry of these large peat basins may be inferred directly from the 

vegetation patterns, which are sensitively adjusted to both the hydrology and water 

chemistry. The Landsat TM imagery provides new data for predicting 1) the location of 

regional seepage faces for ground water, 2) relative volumes of groundwater discharge, 3) 

flow dynamics in watersheds with very low rates flow, and 4) tests for various models of 
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peatland hydrology. The intensive study of the hydrogeology and peat stratigraphy of 2 

peat mounds in northern Minnesota documented the hydrologic flow fields associated with 

the vegetation patterns. 

4.4.3.1. Discharge zones 

Discharge zones for groundwater are generally characterized by 1) anamolies in the 

surface water chemistry and 2) characteristic peat landforms in these large peat basins 

(Glaser et al. 1986; Glaser 1987a, b). Alkaline surface waters (pH> 6.8; Ca 

concentrations > 20 mg 11) generally indicate zones where groundwater is discharging 

from the calcareous sediments that underlie these peat basins. Without the continual 

discharge of ground water these surface waters would soon equilibrate to a lower pH 

(about 5.6) as CO2 from the atmosphere diffuses into the water. The most common 

landforms associated with these alkaline waters are spring-fen channels and water tracks 

with reticulate networks of pools and peat ridges (Fig. 12). The discharge of groundwater 

has been documented by hydrogeologic methods in a spring-fen channel from northern 

Minnesota (Siegel and Glaser 1987), and these results should apply to the other spring-fen 

channels in these peat basins, which have strikingly similar vegetation and landlorm 

patterns. The discharge of groundwater may also produce fen water tracks (pH> 5) or 

expanding lakes (pH 4.5-5) within the interior of acid bogs (pH< 4.2). However, the 

water chemistry from these sites is insufficient by itself to conclusively document 

discharge. 

Discharge zones for groundwater (extremely rich fens) can be distinguished by their 

spectral properties with Landsat TM imagery, particularly in the Hay River and Albany 

River target areas. In the Albany River region, discharge zones seem to be concentrated 

along the edge of the moraine complexes, producing a regional seepage face for 

groundwater (Plate 5). Discharge zones also seem to be located along the downslope edge 

of large raised bogs in this area. In the Glacial Lake Agassiz region the largest water 
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tracks and blocks of fen vegetation are concentrated downslope from sandy beach ridges 

(Fig. 2; Plate 3). The high porosity of these sand deposits also make them a likely source 

for upwelling groundwater. 

Strong support for this hypothesis is provided by Landsat TM imagery taken during the 

spring break-up (Fig. 27). At this time the water tracks are open and flowing, while the 

surrounding raised bogs and mineral soil are still frozen and snow-covered. The most 

likely source for the heat necessary to melt the ice in these water tracks is ground water 

upwelling from the underlying mineral soil. This imagery also indicates that the water 

tracks are fed by systems of narrow channels that originate near the margins of the beach 

ridges (Fig. 10). These channels dissect tamarack swamps that have a distinctive spectral 

signature on the Landsat imagery (bands 2, 3, and 4) taken during late September (Fig. 3). 

4.4.3.2. Flow lines 

The direction of surface drainage in these peat basins may be detected by the orientation 

of the vegetation patterns in plan view, despite the nearly level slope and imperceptible rates 

of flow. Streamlined peat landforms are always oriented parallel to the prevailing slope, 

with their rounded heads facing upstream and tapering tails trailing downslope. The 

networks of pools and peat ridges in the water tracks, in contrast, are consistently oriented 

perpendicular to the slope. The Landsat TM imagery also detects linear patterns in the 

water tracks that seem to represent flow lines for runoff (Plates 2,3,5, and 6). These 

patterns are most conspicuous in water tracks of the Hay River region, with false-color 

composites composed of TM bands 3, 5, and 4. These "flow lines" are generally laminar, 

particularly where they diverge around streamlined bog islands. However, they tend to 

dissipate in areas where the water track contains conspicuous networks of pools and peat 

ridges (Plate 6). 

In the Albany River region both laminar and tortuous flow patterns are detectable in 


swamp forests with false color composites utilizing TM bands 2, 3, and 4 (Plate 5). They 

33



- -
+1\-

:i	 • 

:. 

-	 -'	 -	
7- + 

	

-	 -1  

	

--..	 \	 '4	 - -
	 4___1	 c	 * •	 r	

;.: 

-	 -	 - : 

1 ¼	 ••
	 ;T;	 ' 

	

^Aw-	 - •-	 -'	 t_ 

L
J. 

&_ 
!• 

2 

S

: 

Figure 27. Landsat MSS image of the Glacial Lake Agassiz pcatlands during spring break-up of 1978. The white 

tones on this image are snow-covered bogs, swamp forests, and exposures of mineral soil. The darker tones are 

water tracks with flowing water. These water tracks flow around the streamlined margins of large bogs. Smaller 

"internal" water tracks are also located within the interior of the larger bogs. The image covers an area 

approximately 70 km across and is just east of the area shown in Figjc.



seem to represent subtle vegetation patterns that respond to local changes in the water 

chemistry and flow dynamics. They can be traced from their source at the edge of moraine 

complexes toward tributary streams at the margin of these watersheds. These flow 

patterns cannot be detected with conventional aerial photographs that depict a relatively 

featureless stand of vegetation. Similar types of flow lines are also present on Landsat 

imagery of the Glacial Lake Agassiz peatlands. 

4.4.3.3. Discharge volume 

Although Landsat TM data cannot be used to directly measure rates of flow or 

volumes of groundwater discharge, they nevertheless provide 1) estimates for relative 

volumes of flow and discharge and 2) precise locations for hydrological field sampling. 

In the Albany River region the TM imagery discerns flow patterns imperceptible on 

conventional aerial photographs. Along the edge of moraine complexes, spring fens and 

water tracks discharge into broad swamp forests and drain toward tributary streams at 

the edge of the watershed (Plate 5). The size of these channels should be proportional to 

their volume of flow, which controls their flux of cations and prevents them from being 

invaded and overrun by Sphagnum. Most of the small narrow channels can only be traced 

a short distance downslope where they fade into the surrounding swamp forest. The larger 

channels, however, have much longer trajectories and continue to the edge of the 

watershed. In contrast, the largest water track produces a large plume-like pattern that 

tapers into a single flow path downslope. 

Landsat TM imagery also provides an indication of relative flow rates where 2 water 

tracks converge. In the Glacial Lake Agassiz region, for example there is no indication for 

turbulent mixing where two water tracks merge at right angles (Plate 2). This pattern 

suggests that the main track has a much larger volume of flow than its smaller tributary. 
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5. Discussion 

Most concepts of peatland hydrogeochemistry and ecology have been developed by 

mire ecologists working in relatively small peatlands. These concepts have been applied 

by default to the large peat basins of North America, which probably represent one of the 

most pristine and least studied ecosystems of North America. These peat basins, however, 

are ideally suited for a regional analysis with Landsat TM imagery because of their great 

expanse and their unique vegetation patterns. These vegetation patterns have been termed 

peat landforms because of their remarkable regional uniformity and consistent shapes 

(Glaser etal. 1981; Glaser 1987 a,b). 

5.1. Peat Iandforms 

The peat landforms provide important indicators for the processes that control the 

development of these large peat basins. First, the shape and spectral properties of these 

landforms are closely correlated with particular vegetation assemblages, narrow ranges in 

water chemistry, and different types of peat stratigraphy (Glaser eral. 1981, Glaser and 

Janssens 1986; Glaser 1983a, 1987a, b). Second, the landforms are closely adjusted to 

hydrology. Certain types of landforms indicate discharge zones for groundwater and the 

orientation of the patterns sensitively indicate lines of flow (Glaser eral. 1986; Glaser 

1987a, b). Third, spatial transitions from one type of landform to another indicate 

potential developmental trends that may be tested by the stratigraphic analysis of peat cores 

(Glaser et al. 1981; Glaser 1987b). Fourth, the quantitative analysis of the landlorm 

shapes may be used to infer the processes that formed them (Glaser 1987a). Fifth, the 

spatial scale of these landforms (102 to 10 m2) is suitable for the regional analysis of biotic 

and hydrogeochemical processes using Landsat TM imagery. 

Although the peat landforms are detectable with conventional aerial photographs, the 

Landsat TM imagery provides essential new data for their interpretation. The analysis of 

Landsat data products indicates that the major physical and biotic processes that control the 
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development of these peat basins may be quite contrary to concepts developed in smaller 

peatlands. 

5.2. Hydrogeochemical controls 

5.2.1. Regional seepage faces 

A central concept of peatland hydrology states that water flow is restricted to the 

uppermost portion of a peat profile where the peat is relatively porous and undecomposed 

(Ingram 1983). At greater depths the peat is believed to be impermeable to flow because 

of its high degree of decomposition and correspondingly low porosity. According to this 

concept the input of water and salts into a peatland should be restricted to 1) precipitation 

and 2) runoff from mineral exposures. 

In the large peat basins of North America the regional spread of peatlands greatly 

restricts the area of mineral exposures. As this source of alkalinity decreases, raised bogs 

should spread over the landscape, because there is insufficient alkalinity in precipitation to 

stop the spread of Sphagnum. Sphagnum will then acidify the peatland as a result of its 

cation exchange system or release of organic acids. 

Information derived from Landsat TM imagery, however, disproves this hypothesis. 

In the Glacial Lake Agassiz region the peatlands are predominantly covered by fens except 

where the exposures of mineral soil changes from sandy beach deposits to loamy or 

clayey ground moraine. In the Albany River region the landscape is almost entirely 

covered by peat but the peatlands consist mostly of fen vegetation. The source of the 

alkalinity in these fens seems to be supplied by the discharge of groundwater upwelling 

from regional seepage faces at the edge of the moraine complexes or beach ridges. Thus, 

the accepted concepts of peatland hydrology do not seem to be applicable to the large peat 

basins of North America where permafrost is absent. 

This hypothesis is supported by the • hydrogeologic data from the Lost River peatland. 

The nonforested channels on the spring-fen mound at Lost River are very similar to the 
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spring-fen channels elsewhere. The great similarity among these features in terms of their 

peat landforrns, water chemistry, and vegetation indicates that they are all located in 

discharge zones for groundwater. 

In the Hay River region, the predominance of bog complexes (peat plateaus) is 

probably controlled by the distribution of discontinuous permafrost. Permafrost will block 

the flow of subsurface water and locally raise the elevation of the peat surface. 

Nevertheless, the Landsat imagery indicates that water tracks in this area may be fed by 

the discharge of groundwater. Conspicuous flow lines are visible in these water tracks 

that arise near mineral exposures, lakes, or within the interior of bog complexes (Plate 6). 

The spectral signature of these flow lines on the Landsat imagery and their very high 

alkalinity (pH> 7-8) in places indicates that they may also be supplied by groundwater 

upwelling from the calcareous mineral soil that underlies these peatlands. 

5.2.2. Local seepage faces 

The conventional concept of peatland hydrology states that raised bogs are completely 

isolated from groundwater because 1) their surface is elevated above the flood level of 

water in the adjacent fens, and 2) their dense accumulation of humified peat is impermeable 

to groundwater flow. The interpretation of Landsat TM imagery, however, indicates that 

all the larger bogs (>20 km 2) within these boreal peat basins are dissected by fen water 

tracks that arise near the bog crest (Glaser 1987a). The alkalinity in these water tracks 

rises downslope but never reaches the level (pH> 7) where it is diagnostic of calcareous 

groundwater. Apparently the volume of groundwater discharge is insufficient to raise the 

pH to the extremely-rich fen range (Siegel and Glaser 1987). 

The Landsat TM and MSS imagery, however, provides strong evidence that these fen 

water tracks are supplied by alkaline groundwater. During the time of spring break-up 

these water tracks generally thaw first, while the surrounding area of bog is still frozen 

(Fig. 10, 27; Glaser 1987b). This effect is apparent in both the Hudson Bay lowlands and 
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the Glacial Lake Agassiz region. The most likely heat source to melt these water tracks 

preferentially is groundwater upwelling from the mineral substrate underneath these 

peatlands. 

5.3. Feedbacks between hydrology and vegetation succession 

5.3.1. Groundwater effects 

The seepage faces for ground water have two principal effects on vegetation 

succession in these large peat basins. Along regional seepage faces the upwelling of 

groundwater prevents the spread of acidifying Sphagnum and maintains large stands of fen 

vegetation (Fig. 2-3, 28). This result is unexpected, because conventional concepts of 

peatland succession predict that these areas should be converted into a continuous expanse 

of bog. In local areas, however, upwelling groundwater may supply the alkalinity 

necessary to convert strips of bog into fen vegetation. This phenomenon has been 

documented from the peat stratigraphy in northern Minnesota (Glaser 1987b; Glaser et al. 

in press), and may be a common feature for bog development within large boreal peat 

basins. The conversion of a bog into a fen runs counter to conventional principles of 

peatland succession (Glaser 1987a). 

Siegel (1981, 1983) has suggested that the growth of raised bogs on these flat plains 

may produce sufficient differences in hydraulic head to drive local flow cells. The 

development of water table mounds under the raised bogs may drive local flow cells in 

which the water flows downward from the bog crest into the underlying calcareous till and 

then rises to discharge in the adjacent water tracks. Landsat TM imagery from the Albany 

River region supports this hypothesis by indicating that large water tracks arise around the 

downslope margins of large bogs.
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Figure 28. Model for groundwater flow in the Glacial Lake Agassiz region. The discharge zones for 

groundwater may be controlled by 1) permeable lenses of sand in the glacial till that underlies the peatlands and 2) 

topographic high points in the bedrock.



5.3.2. Vegetation patterning 

The streamlined bog and fen patterns in these peat basins appear to represent a stable 

adjustment of the vegetation to the hydrology and water chemistry. The physical 

dimensions (length, width, and area) of the streamlined bog islands, for example, are 

strongly correlated and appear to represent equilibrium features (Glaser 1987a) (Fig. 29). 

The length-to-width ratio of these vegetation patterns (1:3) also corresponds to the ratio that 

would produce the minimum drag or resistance to flow in a wind tunnel or flume (Komar 

1983, 1984). Glaser (1987a) suggests that the most stable configuration of these peat 

islands is one that minimizes turbulent mixing in the adjacent water tracks and permits a 

boundary layer with low alkalinity to form around the island margin. 

This hypothesis is difficult to test by standard hydrologic methods because of the nearly 

imperceptible flow in the water tracks. The Landsat TM imagery, however, provides new 

data to evaluate the dynamics of flow in the larger water tracks. The vegetation patterns 

detectable on color composites of TM bands 2, 3, and 4 or 3, 4, and 5 are generally 

laminar and show no signs of turbulent mixing. In the Albany River region, however, two 

types of flow patterns appear where water tracks and spring-fen channels discharge into a 

swamp forest (Fig. 5). Most of the flow lines are laminar, but the largest water track has a 

pattern similar to a turbulent wake. In this area a large volume of groundwater may have 

recently discharged onto the peatland and disrupted the existing vegetation pattern. The 

vegetation in this area may eventually adjust to these new flow conditions by establishing a 

water track with laminar flow patterns. 

The development of laminar drainage patterns in these peatlands seems to be the 

product of a sensitive feedback system involving the response of the major peat-formers to 

the hydrology and water chemistry (Glaser 1987a,b) (Fig. 30-31). Water tracks develop 

where surface drainage contains sufficient alkalinity to promote the growth of sedges, such 

as Carex lasiocarpa. These peat formers produce very porous peat, which further channels 

drainage into these zones. Runoff, however, is diverted around the margins of the 
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Figure 29. Morphometric analysis of streamlined bog islands. Islands from the Pigeon River in 
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Figure 30. Developmental model for bog islands and water tracks (Glaser 1987a). 

L) As pest spreads over a landscape the path of runoff is diverted 

around obstructions (crystalline rock outcrops) creating zones of sluggish 

flow dowoalope (circular arrows, step 1). 

2) As peat continues to accumulate Sphagnum cats fore in these zones of 

sluggish flow where the alkalinity and flux of cations is low (step 2). 

3)The Sphagnum mat will spread outward until its continued growth is 

checked by the higher alkalinity transported by the main path of flow (step 

3).

4) Runoff continues to be channeled into the water tracks because of the 

great difference in hydraulic conductivity between the Sphagnum pest under the 

bogs and more porous sedge peat under the water tracks (step 4). The symbols 

indicate 1) •inersl outcrops, 2) Sphagnum sacs, 3) tortuous flow, 4) 

streamlined flow, 5) zones of sluggish flow.
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Figure 31. Developmental model for a raised bog complex (Glaser 1987a). 

A large 020 k.1) bog complex for.s as runoff is diverted around a large 

obstruction creating a large zone with sluggish flow (step 1). Sphagnum will 

colonize these zones and spread out to for, a continuous sat. The sat will 

then be fragmented by water track. (A and B). According to the corrosive 

oxidation hypothesis a base is released by enhanced decomposition along lines 

of flow (A l - A3). A base can also be transported from the underlying mineral 

soil by the discharge of ground water	 - 3 3 ). Once at the surface the 

higher alkalinity in these waters promotes the localized growth of sedges and 

the channeling of runoff into water tracks that are dominated by sedge.. The 

sy.bols are described above with the exception of 1) mineral beach ridge and 

6) discharge zone for ground water. 

ORIGINAL PAGE IS 
OF POOR QUALITY 



Sphagnum bogs, because the Sphagnum peat is relatively impermeable. The boundary 

between a bog and water track is determined by the intolerance of the bog Sphagnum for 

the alkalinity in the water track and the corresponding intolerance of the major fen peat-

formers for the low alkalinity in the Sphagnum bog. The bog/fen boundary will then shift 

as the alkalinity and volume of flow changes in the water tracks. 

6. Conclusions 

Landsat 'FM imagery indicates that the discharge of alkaline ground water is largely 

responsible for the development of vegetation patterns in the large peat basins of North 

America. Regional seepage faces for ground water are located along the margins of sandy 

beach deposits or paludified moraine systems and produce large areas of minerotrophic fen. 

The more localized discharge of ground water may also produce the fen water tracks that 

dissect all the larger (>20 km2) raised bogs of these peat basins. Contrary to conventional 

concepts of peatland ecology and hydrology, these large peat basins seem to be sensitively 

adjusted to the dynamics of groundwater hydrology, which may radically alter the expected 

path of peatland succession. 

Although the vegetation landforms within these major peat basins are visible on aerial 

photographs, Landsat TM imagery provides essential new evidence for their analysis. 

Spectral data from the Landsat TM system provides(1) synoptic views of the patterns 

across large portions of these peat basins, indicating important physiographic controls on 

peatland development42) more sensitive detection of the major vegetation types, allowing 

rapid quantitative estimates to be made of their distribution and aerial extent,3) 

discrimination of bog areas with-potentially I 

rapid or slow rates of peat accumulation,(4) 

identification of discharge zones for groundwater, which apparently represents the most 

important source of alkalinity in these peat basins, andC5) detection of flow patterns in 

water tracks that appear nearly uniform on standard aerial photographs. 	 . 
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These large peat basins seem to be ideally suited for study by Landsat TM imagery, 

because of 1) the large relatively uniform stands of vegetation and 2) the intimate feedback 

systems that have developed between the vegetation and hydrogeochemical processes. 
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