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Abstract  
We present an architecture for controlling robots 
t h a ~  'nave multiple tasks, operate in dynamic 
dol..alns, and require a fair degree of  autonomy. 
The architecture is b u ~ l t  on  several layers o f  
functionality, including a distributed commualca- 
tion layer, a behavior layer for querying sensors. 
expanding goals. and executing commmdr,  and a 
task level for managlnp the temporal aspects o f  
planning and achieving goals, coorc(.inating tasks. 
allocating resources, monitoring, and recovering 
from er:ors. Application to a lcggeo planetary 
rover and an indoor mobile  manipulator i s  
descr ibed .  

INTRODUC'I'ION 

receives a message. it decides when the message 
should be attended to, and which module will 
handle it. We believe that a centralized control 
scheme will facililate the coordination of the 
complex tasks needed for autonomous behavior 
on Mars. Due ta its deliberative nature. 
however, TCA is not well-suited for robots that 
need very fast reflexes (e.g., race-car drivers). 
Our group is beginning research, however, on 
ccqbining reflexive actions with a deliberative 
architecture. 

TCA cap be thought of as a high-level robot 
operating system - providing a shell for 
building specific robot control systems. L i i t  

We are currently developing a general-purpqse any good operating syst~:m, the architecture 
task control a r c h i m u r e  (called TCA) for pmvidrr communication with tasks and 
controlling mobile robots. 7CA is designed the oulside world, for constructing new 
specifically lor robot: that be behavi,3rn from more primitive ones, and 

and Ihat Operate in dynamic to control and schedule tasks and t;, illanage 
uncertain environments, have multiple goals to and physical resources A t  the 
achieve. have a variety of strategies to achieve same i t  tries to impose few 

goals* and use a variety of sensors constraints on the overall control and data flow 
different ranges and resolutions. in any particular system. This should enable 

resev.rchers to experiment easily with different 
We are TCA On jnStalrtiationj of robot contra) schemes. 
testbeds - the CMU six-legged Planetary 'lover, 
and the Hero, a commercially available mobile 
manipulator platform. The CMU Rover project is TESTBEDS 
an attempt 10 develop an autonomous robot that 
can survive. naqrigate, and acquire samples on Our long-term goal is to produce a rover capable 

the Martian surface [ I ] .  The Hero testbed is an 
of reliable and robust behavior on another 

indoor platform that is being used to study planet [ I] .  Such a system would have to be 
relatively autoncmous, since it will receive 

coordination of planning, execution, monitoring, 
error recovery, ,7cision and infrequent commands from 5drch (on the order 

interaction 131. of every 8 hours) and will have significant com- 
munication delay (on the order of 30 minutes). 

TCA is a distributed architecture with 
centralized control. Communicatioa occurs via The tasks envisioned for such a rover incluue I )  
coarse-grained message passing between mod- navigating to given sites. 2) acquiring rock and 
ules, with all messages being routed through the soil samples, 3) surveying for sites of scientific 
central control. When the central control interest, ~ b c h  as regions of sedimentary rock or 
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underground water, 4)  mapping the area 
traversed, 5) diaenosing system malfunctians, 
and 6) maintaining communication with Earth. 

The rover is designed as a six-legged walking 
rohot. The walker. which will stand around I5 
feet high, features orthogenal legs and a split 
body to enable rear legs to recover past forward 
legs by p a s s i ~ g  between the body segments 
(Figure 1). A prototype leg of the walker has 
Gcen built and IS currently being tested. The 
leg. along with a laser range-scanner, is 
mounted on an overhead carriage that is free to 
roll along a r a ~ l  (Figure 2). The single-leg 
testbed "walks" by choosing a footfall 1oca:ion 
based on elevation maps computed from I.,ser 
scans. moving the leg to that location while 
avoiding obstacles, and pull:ng the camage with 
the shoulder and elbow joints. 

Figure I .  Design of Six-Legged Pl~netlry Rover 

Since the current rover testbed is Irmited in the 
tasks it can perform. we are exploring issurs of 
coordinating multiple tasks. m~r~itor ing,  error 
recovery, and decision making uJing the Hero 
tcstbed [3]. The testbed is based on the Reathi 
Zenith Hero 2000, a wheelrd robot with manip 
ulator arm and on-board sonars (Fipl:re 3). In 
aadition, an overhead camera provides a two- 
dimensional plan view of the lab. 

Our goal is to let the Hero operate unattended 
for hours or days at a time in our lab and 
nearby vicinity. The high level goais of the 
rohot will include I )  collecting cups on the Inb 
floor and placing them in a receptacle, 2 )  
retrieving printer ~ u t p u t  when teqvested anrl\, 

Figure 2. Single-Leg Tea!bed 

delivering i t  tc a workstation. 3) avoiding ob- 
stacles, 4) recharging batteries when necesspry, 
and 5) exploring and mapving its environment, 
when nor otherwise ucupied. We have already 
implemented the first three tasks, and are 
working on tb.: other tasks, as well as the 
problems of c ordinating multiple tasks and 
error detection and recovery. 

Figurc 3. Hem 2F00 Robor 

SCENARIO 

This section presents a scenario fo! the H?ro 
robot that illusnales capshiliries we want TCA 
to support. Similar scenarios are envisioned for 
the Planetary Rover. 

The scenario begins with the Hcro using its 
overherd camera to spot two cup-like objects on 
the floor. I t  forms two "cup-collection" goais 



and prioritizes them by choosing to attend to 
the closer object first. The robot plans and 
executes a path to the object. While movivg, it 
monitors for objects in its path; at the same 
time. it uses its overhead image of the lab to 
pre-plan a path from the object to the recep- 
tacle. Upon arriving near the object, the robot 
uses sonar sensors to determine the height and 
width of the object. If this matchzs its model of 
a cup, it plans how to pick up the cup, then 
executes the actions. The robot then uses the 
plan prev'msly made to navigate to the 
receptacle, where it drops off the cup. 

Next, the rcbot attends to collecting :he other 
cup it had spotted previously While moving 
towards the second cup, it receives a printer 
retrieval request. Since this request is of higher 
priority, the robot suspends planning nd 
execution of the cup-collection goal. It plans 
and executes a path to the printer, monitors the 
printer to determine when printing is finished, 
and then picks up the paper. While waiting for 
the printer, it plcns a path to the appropriate 
workstation. In this case, the workstation is 
located outside the lab, sd it plans a path to the 
door, with the intenti~n of using its sonar-based 
navigation once outside the room. 

Before executing the plan, however. :he robot 
aoticcs firom its overhead vision) that an 
obstacle has appeared in a segment of the path. 
The robot attempts to replan that segment to 
detour around the obstacle. If no detour can be 
found, the robot replans i.igher level segments 
until a clear path is found. 

At this point, the robot notices that its battery 
charge is getting low. It estimates that it has 
enough power left to deliver the output before 
it needs to recharge, so it continues towards the 
door. Upon finding the door closed, it re- 
prioritizes its goals and, after setting the printer 
output down near the printer, docks with its 
charger and waits until the battery is charged. 

robot constructs plans based on the current (or 
projected) env'i.onment. available resources, 
and its other goals and beliefs. I t  should also be 
able to execute parts of its plans before speci- 
fying them completely, for instance, moving 
t o w ~ r d s  a potential cup before determining 
exact grasp points. 

C o o r d i n a t i n g  M u l t i p l e  T a s k s  - for 
autonomous robots -:.'th many gcals but iimited 
resources, prioritizing and scheduling its various 
tasks are crucial. The robot should make 
decisions about which to attend to by com- 
paring their relative costs, benefits, likelihood of 
success, etc. 

Reacting to Environmental Changc - if a 
new cup is placed on the floor, or the battery 
charge is low, the robot should notice the change 
in a timely manner and attend to it. if 
necessary. Handling such changes may involve 
adding new subgoals (e.g.. collect a new cup), re- 
prioritizing tasks (e.:., stop collecting the cup 
and g 3  recharge), or re~lqnning. 

E r r o r  Recovery - part of reacting to changes 
includes noticing when a plan or action is failing. 
The rohot should have general mechanisms for 
recovering from both execution and plan time 
errors. For example, if an obstacle appears in 
the robot's path, it might want to letour around 
the object. or plan a new path to its goal. 
Similarly, if the robot is unable to find a path, it 
may try replanning with less restrictive 
constraints (e.g.. allouing more tolerance), or 
may just attend to a different goal altogether. 

E x t e r n a l  Communica t i on  - although not 
i:l~rtrste:! tn the scenario, interaction with 
humans is a necessity. The robot should be able 
to explain its decisions and actions. It also 
should request asslstance when needed and 
allow people to add goals and to alter plans and 
decisions made by the system. 

MECHANISMS 

CAPA9ILITIES 
F To facilitate experimentrtion with different 

control schemes. TCA is built as a :ayered 
The above scenario "lustrates many of the system. ~h~ cllrrenl layers of functionality 
capabilities we balleve will be important for include for  ,) communica t ing  
autonomous robots, capabilities that we desire between distributed processes, 2) building be- 
the task co,itrol architecture to support. haviors out of more primitive behaviors, and 3) 

managing the planning and execution of tasks. 
Achieving Goals - the most basic need of a 
robot is to construct and execute plans to TCA is designed so that an implementor can 
achieve given goals, such as collecting cups. The c h ~ o s e  which layers to use - higher layers 



provide mqre functionality specific to robot 
control, but lower layers provide flexibility to 
implement alternative control schemes. For 
example. if the implementor finds the types of 
messages in the behavior layer insufficient, slhe 
can  construct  new types using the lower 
communication layer. 

Communica t ion  Layer 

The base layer of TCA supports the sending and 
receiving of  messages between distributed 
processes (modules). Modules send messages to 
a central control module, which routes the 
messages to the appropriate modules to be 
handled. TCA supports the use of a variable 
number of modules - in fact, modules can be 
added or removed while the system is running. 
The communication layer contains mechanisms 
to route messages, notify modules when 
messages are pending, and send and receive 
data, even between modules written in different 
languages (currently both Lisp arld C are 
supported j. 

Using a user-supplied description of :be format 
of a message, TCA translates the message data 
into a linear strearn of bytes, routes the data, 
and then reasszmbles it on the receiving end. 
All data transfer is transparent to the user. The 
data format language we developed allows for 
primitive data types (e.g., integer, float, string), 
and cornposiie types (e.g., structures, arrays, 
pointers 1. 

Comn~unication via message passing encourages 
the use of good software engineering techniques 
- f ~ r s t  defining the functionality and interfaces 
of the system, implementing them in a modular 
fashion, and treatlng the functions as "black 
boxes." We have found that this eases the effort 
to integrate different parts of the system. This 
contrasts with some architectures in which some 
f-nction: are allowed to interfere with the 
internal workings of others (e.g., [2)). 

Note that while perception, planning, and execu- 
tion modules are distributed, control of how 
messages are handled is centralized. A majcr 
a ' lrantage of centralized control is that it 
facilitate5 coordination of the robot's behavior. 
All control decisions, such as which goals to 
pursue, or  which modules should Landle 
particular messages, are made centrally. where 
global information can be used to determine the 
best alternatives. 

A potential problem with centralized control is 
that it may become a bottleneck. This may be 
overcome through conventions, such as using 
coarse-grained behaviors to limit the amount of 
process-to-process communication, and limiting 
the amount of information passed in each 
message. Although further experimentatic 
m.i:fit show that this is indeed a problem, the 
current message passing cycle time of around 
50 milliseconds has pro-/en to be sufficient for 
our applications. 

Behavior Layer 

TCA provides 0-veral  types of p r im~t ive  
building blocks needed to construct  robot 
behaviors. The primitive behaviors are imple- 
mented as different classes of messages, built on 
top of the communication layer. The classes 
differ mainly in their flow of control. For 
example, query messages block the user's code 
until a reply i s  received, while goal messages 
are non-block~ng and report success or  failure 
directly to the central control. 

Query  m e s s a g e s  are requests io provide 
information about the external  o r  internal 
environment. such as computing an elevation 
map or determining the robot's current position. 
Query messages are routed either to modules 
that have access to external and internal sensol 
data, or  to the constraint data base (see below). 
The  module  issuing the query  suspends 
execution pendin- the reply. 

G o a l  messages  are intended to support top- 
down, hierarchical planning. A typical response 
to a goal message would be to issue other 
(sub)goal or  command messages based on the 
results of some queries. 

Unlike queries, goal messages are non-blocking. 
That is, the central control may queue the goal 
until rPC?u,<es become available; in the mean- 
w h ~ l e ,  the module sending the goal message can 
continue. This implies that a planning behavior 
cannot assume that the goal will actually be 
achieved after the goal message is issued. The 
rationale is that non-blocking goal messages 
give the implementoi  greater flexibility in 
controlling the achievement of goals, such as 
planning in advance of execution. If goal 
messages were blocking, p!anning would always 
be depth-first - the f ~ r s t  subgoal would have to 
be completely planned before the next subgoal 
message could be issued. 



C o m m a n d  m e s s a g e s ,  which are  used to 
execute actions, are similar to goal messages. 
The difference is manifcst only at the task I? 7- 
which distinguishes between order in \ -'r 
goals are planned and the order in wr .1 

commands are achieved. For example, although 
the robot might be able to plan how to go from 
the printer to a workstation before planning 
how to pick up the printer output, it obviously 
should not actually go to the workstatior, before 
it has the output in hand. 

Cons t ra in t  messages provide a way to alter 
the robot's internal state, just as command 
messagrs alter the exterr,l environment. For 
example, ccnstraint messages call be used to set 
the robot's desired average speed, or  add 
expectations about irs future behavior. We plan 
to implement a global data base (blackboard) to 
facilitate adding constraints and maintaining 
consistency among them. Currently, constraint 
messages are used to set global variables, whose 
valces can then be accessed via queries. 

Task  Layer  

The task iayer provides mechnnisms for 
mainta in ing hierarchical  goa l  s t ructures ,  
allocating resources, monitoring the environ- 
ment, recovering from execution and plan-time 
errors, and coordinating multiple tasks. The 
main representations in the task layer are goal 
structures, resources, and monitors. 

While the behavior layer defints goal and 
command messages, the task lsyer contains 
mechanisms for constructing and analyzing goal 
hierarchies. For each goal, TCA maintains a 
subtree of the goal, command, and monitor 
messages (and their descendants) issued by the 
goal. Facilities exist for tracing goal/subgoal 
relat ionshi~s,  displaying the goal structure. and 
suspending or  killing subtrees (needed for 
switching tasks and doing error recovery). 

For the scheduling of tasks, TCA contains a 
general facility for reasoning about time [4 i  that 
enables modules to temporally constrain the 
planning and achievement of goals. A module 
specifies constraints on the planning intervals of 
goals (!he time needed to completely expand a 
goal subrree) and the achievement intervals 
(the time needed to execute all the commands of 
the subtree). For example. a module might 
specify that the achievemelit of G1 precedes the 
achievement of G2, but that the planning of G2 
precedes that of G I .  Similarly, it might con- 

strain G3 to be completely planned before any 
of its sub-commands can start being achieved 
(by default, planning and execution can occur 
concurrently). This temporal framework shotild 
enable implementors to  take advantage of 
concurrencies in the distributed environment of 
TCA - for instance, planning routes from a given 
area while still travelling to the area. 

I t  i s  crucial  for  an autonomous agent to 
effectively allocate its limited resources in order 
to satisfy its goals. The robot must detect when 
tasks need competing resources, and inust 
prioritize and schedule tasks when conflicts 
occur. In TCA, a resource is an abstract entity 
that i s  used to manage the handling of 
messages. A resource may be associated with a 
computational entity, such as a module, or with 
a physical entity, such as a motor or range- 
scanner. Resources are created with a capacity 
- the number of messages the resource can 
handle simultaneously.  By default. TCA 
associates a single resource of unit capacity with 
each module. In addition, a module can create 
addit ional  resources and associate message 
handlers with !hem. 

A message received b:, TCA is queued until the 
resource that haidles the message has available 
capacity. Lurrently, messages are handled I n  

FIFO order, subject to the temporal constraints 
imposed by the goal structure. In the future. 
we plan to add mechanisms for prioritizing 
messages. Since the prioritization I S  context 
dependent,  it will be determined by user- 
supplied functions, accesszd using "decision 
messages." A module can zlqo  explicit!^ reserve 
a resource ,  temporari ly preventing other 
modules from using the resource. While taking 
an image, for example, a vision module might 
reserve the "robot motors" resource to ensure 
that the robot does not move during that period. 

M o n i t o r s  are m e c h a ~ ~ i s m s  that query for speci- 
f ied changes in the environment,  such as 
obstacles in the robot's path or low battery 
charge, and take some action based on the 
results. A monitor is specified by the condition 
to be monitored (a query message), an action to 
take if the condition holds (a goal, commar.d, or 
monitor message), and the time, relarive to 
other messages, when the monitoring is to take 
place. Point monitors, which test the condition 
just  once ,  a re  useful  for  checking the 
preconditions or postconditions of an action, 
such as checking that a planned move succeeded 
in reaching the desired location. Interval 



monitors, which have a temporal extent. are 
useful  for checking for changes  in the 
environment, such as  a low battery charge or 
the appearacce of a new cup. Two complement- 
ary implementations exist for interval monitors 
- synchronous polling at a fixed frequency, and 
asynchronous demon-invocation. 

When a monitor detects an error condltion, it 
sends a "failure message" to the central control. 
The architecture will then decide what to do 
based on the current environment and the goal 
structure for the goal that failed. The decision. 
made by user-defined handlers for the failure 
messages, may include replanning the goal with 
additional constraints, replanning a higher level 
goal. or adding a new subgoal to patch the initial 
plan. We believe that the goal structure depen- 
dencies maintained by TCA will prove useful in 
diagnosing and recovering from errors 15 1. 

Since monitors must be coordinated by the 
central control, special reflex behaviors are 
needed to provide bounded-time reactions to 
imminent dangers. such as collisions. Such 
reflexes, which would be implemented outside 
the centralized TCA, would have a default 
response (e.g., "halt immediately": and then 
signal TCA that a reasoned response to the error 
1s required. This strategy is being tested on the 
Hero testbed. We implemented a "guarded 
move" routine that checks the robot's encoders 
and sonars and stops the robot if it detects a 
collision or impending collision. Once stabilized, 
the robot notifies TCA so that an appropriate 
recovery can be planned. 

Currently, we have implemented the communl- 
cation layer, the behavior layer (except for the 
constraint data base), and most of the task layer 
(except for mechanisms to deal with decision 
and failure messages). We have used the 
communication and behavior layers of TCA to 
run the single-leg testbed for the CMU Rover. 
Our Hero testbed has recently been re- 
implemented to use the architecture, and we are 
currently experimenting with it to test out and 
expand the task layer. 

control to queue and route mt  -s. TCA is 
built using layers of functionality to provide 
flexibil i ty in experimenting with different 
control regimes. In addition to the message- 
passing communicatior~ layer, higher layers pro- 
vide mechanisms for building and coordinating 
complex robot tasks and behaviors, including 
mechanisms for goal structure manipulation, 
t e m p o ~ a l  reasming, rcsourc* management, and 
monitoring. 

The TCA 
Planetary 
NAGW-I 

was designed with the help of the CMU 
Rover group, under NASA contract 

175. In particular. Christopher Fedor 
and Long -!i Lir, have helped in both the design 
and implementation ot  TCA and the Hero 
testbed. Kevin Ryan implemented the Hero 
guarded move routine. 
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We have described a task control architecture 
(TCA) that tve believe w ~ l l  be useful i n  itnple- 
rnen t in~  control systems for autonomous mobile 
robots. TC.4 is designed around a distributed 
message-passing system that uses centralized 
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