
A TASK CQNTROL ARCHITECTURE FOR AUTONOMOUS ROBOTS

Reid Simmons and Tom Mitchell

School of Computer Science
Carnegie Mellon University

Pittsburgh. PA 15213

Abstract
We present an architecture for controlling robots
t h a ~ 'nave multiple tasks, operate in dynamic
dol..alns, and require a fair degree of autonomy.
The architecture is b u ~ l t on several layers o f
functionality, including a distributed commualca-
tion layer, a behavior layer for querying sensors.
expanding goals. and executing commmdr, and a
task level for managlnp the temporal aspects o f
planning and achieving goals, coorc(.inating tasks.
allocating resources, monitoring, and recovering
from er:ors. Application to a lcggeo planetary
rover and an indoor mobile manipulator i s
descr ibed .

INTRODUC'I'ION

receives a message. it decides when the message
should be attended to, and which module will
handle it. We believe that a centralized control
scheme will facililate the coordination of the
complex tasks needed for autonomous behavior
on Mars. Due ta its deliberative nature.
however, TCA is not well-suited for robots that
need very fast reflexes (e.g., race-car drivers).
Our group is beginning research, however, on
ccqbining reflexive actions with a deliberative
architecture.

TCA cap be thought of as a high-level robot
operating system - providing a shell for
building specific robot control systems. L i i t

We are currently developing a general-purpqse any good operating syst~:m, the architecture
task control a r c h i m u r e (called TCA) for pmvidrr communication with tasks and
controlling mobile robots. 7CA is designed the oulside world, for constructing new
specifically lor robot: that be behavi,3rn from more primitive ones, and

and Ihat Operate in dynamic to control and schedule tasks and t;, illanage
uncertain environments, have multiple goals to and physical resources A t the
achieve. have a variety of strategies to achieve same i t tries to impose few

goals* and use a variety of sensors constraints on the overall control and data flow
different ranges and resolutions. in any particular system. This should enable

resev.rchers to experiment easily with different
We are TCA On jnStalrtiationj of robot contra) schemes.
testbeds - the CMU six-legged Planetary 'lover,
and the Hero, a commercially available mobile
manipulator platform. The CMU Rover project is TESTBEDS
an attempt 10 develop an autonomous robot that
can survive. naqrigate, and acquire samples on Our long-term goal is to produce a rover capable

the Martian surface [I] . The Hero testbed is an
of reliable and robust behavior on another

indoor platform that is being used to study planet [I] . Such a system would have to be
relatively autoncmous, since it will receive

coordination of planning, execution, monitoring,
error recovery, ,7cision and infrequent commands from 5drch (on the order

interaction 131. of every 8 hours) and will have significant com-
munication delay (on the order of 30 minutes).

TCA is a distributed architecture with
centralized control. Communicatioa occurs via The tasks envisioned for such a rover incluue I)
coarse-grained message passing between mod- navigating to given sites. 2) acquiring rock and
ules, with all messages being routed through the soil samples, 3) surveying for sites of scientific
central control. When the central control interest, ~ b c h as regions of sedimentary rock or

Ol?IC;Ih!AL PAGE
BLACK AND v f i l l T E PHOTOGRAPH

underground water, 4) mapping the area
traversed, 5) diaenosing system malfunctians,
and 6) maintaining communication with Earth.

The rover is designed as a six-legged walking
rohot. The walker. which will stand around I5
feet high, features orthogenal legs and a split
body to enable rear legs to recover past forward
legs by p a s s i ~ g between the body segments
(Figure 1). A prototype leg of the walker has
Gcen built and IS currently being tested. The
leg. along with a laser range-scanner, is
mounted on an overhead carriage that is free to
roll along a r a ~ l (Figure 2). The single-leg
testbed "walks" by choosing a footfall 1oca:ion
based on elevation maps computed from I.,ser
scans. moving the leg to that location while
avoiding obstacles, and pull:ng the camage with
the shoulder and elbow joints.

Figure I . Design of Six-Legged Pl~netlry Rover

Since the current rover testbed is Irmited in the
tasks it can perform. we are exploring issurs of
coordinating multiple tasks. m~r~itor ing, error
recovery, and decision making uJing the Hero
tcstbed [3]. The testbed is based on the Reathi
Zenith Hero 2000, a wheelrd robot with manip
ulator arm and on-board sonars (Fipl:re 3). In
aadition, an overhead camera provides a two-
dimensional plan view of the lab.

Our goal is to let the Hero operate unattended
for hours or days at a time in our lab and
nearby vicinity. The high level goais of the
rohot will include I) collecting cups on the Inb
floor and placing them in a receptacle, 2)
retrieving printer ~ u t p u t when teqvested anrl\,

Figure 2. Single-Leg Tea!bed

delivering i t tc a workstation. 3) avoiding ob-
stacles, 4) recharging batteries when necesspry,
and 5) exploring and mapving its environment,
when nor otherwise ucupied. We have already
implemented the first three tasks, and are
working on tb.: other tasks, as well as the
problems of c ordinating multiple tasks and
error detection and recovery.

Figurc 3. Hem 2F00 Robor

SCENARIO

This section presents a scenario fo! the H?ro
robot that illusnales capshiliries we want TCA
to support. Similar scenarios are envisioned for
the Planetary Rover.

The scenario begins with the Hcro using its
overherd camera to spot two cup-like objects on
the floor. I t forms two "cup-collection" goais

and prioritizes them by choosing to attend to
the closer object first. The robot plans and
executes a path to the object. While movivg, it
monitors for objects in its path; at the same
time. it uses its overhead image of the lab to
pre-plan a path from the object to the recep-
tacle. Upon arriving near the object, the robot
uses sonar sensors to determine the height and
width of the object. If this matchzs its model of
a cup, it plans how to pick up the cup, then
executes the actions. The robot then uses the
plan prev'msly made to navigate to the
receptacle, where it drops off the cup.

Next, the rcbot attends to collecting :he other
cup it had spotted previously While moving
towards the second cup, it receives a printer
retrieval request. Since this request is of higher
priority, the robot suspends planning nd
execution of the cup-collection goal. It plans
and executes a path to the printer, monitors the
printer to determine when printing is finished,
and then picks up the paper. While waiting for
the printer, it plcns a path to the appropriate
workstation. In this case, the workstation is
located outside the lab, sd it plans a path to the
door, with the intenti~n of using its sonar-based
navigation once outside the room.

Before executing the plan, however. :he robot
aoticcs firom its overhead vision) that an
obstacle has appeared in a segment of the path.
The robot attempts to replan that segment to
detour around the obstacle. If no detour can be
found, the robot replans i.igher level segments
until a clear path is found.

At this point, the robot notices that its battery
charge is getting low. It estimates that it has
enough power left to deliver the output before
it needs to recharge, so it continues towards the
door. Upon finding the door closed, it re-
prioritizes its goals and, after setting the printer
output down near the printer, docks with its
charger and waits until the battery is charged.

robot constructs plans based on the current (or
projected) env'i.onment. available resources,
and its other goals and beliefs. I t should also be
able to execute parts of its plans before speci-
fying them completely, for instance, moving
t o w ~ r d s a potential cup before determining
exact grasp points.

C o o r d i n a t i n g M u l t i p l e T a s k s - for
autonomous robots -:.'th many gcals but iimited
resources, prioritizing and scheduling its various
tasks are crucial. The robot should make
decisions about which to attend to by com-
paring their relative costs, benefits, likelihood of
success, etc.

Reacting to Environmental Changc - if a
new cup is placed on the floor, or the battery
charge is low, the robot should notice the change
in a timely manner and attend to it. if
necessary. Handling such changes may involve
adding new subgoals (e.g.. collect a new cup), re-
prioritizing tasks (e.:., stop collecting the cup
and g 3 recharge), or re~lqnning.

E r r o r Recovery - part of reacting to changes
includes noticing when a plan or action is failing.
The rohot should have general mechanisms for
recovering from both execution and plan time
errors. For example, if an obstacle appears in
the robot's path, it might want to letour around
the object. or plan a new path to its goal.
Similarly, if the robot is unable to find a path, it
may try replanning with less restrictive
constraints (e.g.. allouing more tolerance), or
may just attend to a different goal altogether.

E x t e r n a l Communica t i on - although not
i:l~rtrste:! tn the scenario, interaction with
humans is a necessity. The robot should be able
to explain its decisions and actions. It also
should request asslstance when needed and
allow people to add goals and to alter plans and
decisions made by the system.

MECHANISMS

CAPA9ILITIES
F To facilitate experimentrtion with different

control schemes. TCA is built as a :ayered
The above scenario "lustrates many of the system. ~h~ cllrrenl layers of functionality
capabilities we balleve will be important for include for ,) communica t ing
autonomous robots, capabilities that we desire between distributed processes, 2) building be-
the task co,itrol architecture to support. haviors out of more primitive behaviors, and 3)

managing the planning and execution of tasks.
Achieving Goals - the most basic need of a
robot is to construct and execute plans to TCA is designed so that an implementor can
achieve given goals, such as collecting cups. The c h ~ o s e which layers to use - higher layers

provide mqre functionality specific to robot
control, but lower layers provide flexibility to
implement alternative control schemes. For
example. if the implementor finds the types of
messages in the behavior layer insufficient, slhe
can construct new types using the lower
communication layer.

Communica t ion Layer

The base layer of TCA supports the sending and
receiving of messages between distributed
processes (modules). Modules send messages to
a central control module, which routes the
messages to the appropriate modules to be
handled. TCA supports the use of a variable
number of modules - in fact, modules can be
added or removed while the system is running.
The communication layer contains mechanisms
to route messages, notify modules when
messages are pending, and send and receive
data, even between modules written in different
languages (currently both Lisp arld C are
supported j.

Using a user-supplied description of :be format
of a message, TCA translates the message data
into a linear strearn of bytes, routes the data,
and then reasszmbles it on the receiving end.
All data transfer is transparent to the user. The
data format language we developed allows for
primitive data types (e.g., integer, float, string),
and cornposiie types (e.g., structures, arrays,
pointers 1.

Comn~unication via message passing encourages
the use of good software engineering techniques
- f ~ r s t defining the functionality and interfaces
of the system, implementing them in a modular
fashion, and treatlng the functions as "black
boxes." We have found that this eases the effort
to integrate different parts of the system. This
contrasts with some architectures in which some
f-nction: are allowed to interfere with the
internal workings of others (e.g., [2)).

Note that while perception, planning, and execu-
tion modules are distributed, control of how
messages are handled is centralized. A majcr
a ' lrantage of centralized control is that it
facilitate5 coordination of the robot's behavior.
All control decisions, such as which goals to
pursue, or which modules should Landle
particular messages, are made centrally. where
global information can be used to determine the
best alternatives.

A potential problem with centralized control is
that it may become a bottleneck. This may be
overcome through conventions, such as using
coarse-grained behaviors to limit the amount of
process-to-process communication, and limiting
the amount of information passed in each
message. Although further experimentatic
m.i:fit show that this is indeed a problem, the
current message passing cycle time of around
50 milliseconds has pro-/en to be sufficient for
our applications.

Behavior Layer

TCA provides 0-veral types of p r im~t ive
building blocks needed to construct robot
behaviors. The primitive behaviors are imple-
mented as different classes of messages, built on
top of the communication layer. The classes
differ mainly in their flow of control. For
example, query messages block the user's code
until a reply i s received, while goal messages
are non-block~ng and report success or failure
directly to the central control.

Query m e s s a g e s are requests io provide
information about the external o r internal
environment. such as computing an elevation
map or determining the robot's current position.
Query messages are routed either to modules
that have access to external and internal sensol
data, or to the constraint data base (see below).
The module issuing the query suspends
execution pendin- the reply.

G o a l messages are intended to support top-
down, hierarchical planning. A typical response
to a goal message would be to issue other
(sub)goal or command messages based on the
results of some queries.

Unlike queries, goal messages are non-blocking.
That is, the central control may queue the goal
until rPC?u,<es become available; in the mean-
w h ~ l e , the module sending the goal message can
continue. This implies that a planning behavior
cannot assume that the goal will actually be
achieved after the goal message is issued. The
rationale is that non-blocking goal messages
give the implementoi greater flexibility in
controlling the achievement of goals, such as
planning in advance of execution. If goal
messages were blocking, p!anning would always
be depth-first - the f ~ r s t subgoal would have to
be completely planned before the next subgoal
message could be issued.

C o m m a n d m e s s a g e s , which are used to
execute actions, are similar to goal messages.
The difference is manifcst only at the task I? 7-
which distinguishes between order in \ -'r
goals are planned and the order in wr .1

commands are achieved. For example, although
the robot might be able to plan how to go from
the printer to a workstation before planning
how to pick up the printer output, it obviously
should not actually go to the workstatior, before
it has the output in hand.

Cons t ra in t messages provide a way to alter
the robot's internal state, just as command
messagrs alter the exterr,l environment. For
example, ccnstraint messages call be used to set
the robot's desired average speed, or add
expectations about irs future behavior. We plan
to implement a global data base (blackboard) to
facilitate adding constraints and maintaining
consistency among them. Currently, constraint
messages are used to set global variables, whose
valces can then be accessed via queries.

Task Layer

The task iayer provides mechnnisms for
mainta in ing hierarchical goa l s t ructures ,
allocating resources, monitoring the environ-
ment, recovering from execution and plan-time
errors, and coordinating multiple tasks. The
main representations in the task layer are goal
structures, resources, and monitors.

While the behavior layer defints goal and
command messages, the task lsyer contains
mechanisms for constructing and analyzing goal
hierarchies. For each goal, TCA maintains a
subtree of the goal, command, and monitor
messages (and their descendants) issued by the
goal. Facilities exist for tracing goal/subgoal
relat ionshi~s, displaying the goal structure. and
suspending or killing subtrees (needed for
switching tasks and doing error recovery).

For the scheduling of tasks, TCA contains a
general facility for reasoning about time [4 i that
enables modules to temporally constrain the
planning and achievement of goals. A module
specifies constraints on the planning intervals of
goals (!he time needed to completely expand a
goal subrree) and the achievement intervals
(the time needed to execute all the commands of
the subtree). For example. a module might
specify that the achievemelit of G1 precedes the
achievement of G2, but that the planning of G2
precedes that of G I . Similarly, it might con-

strain G3 to be completely planned before any
of its sub-commands can start being achieved
(by default, planning and execution can occur
concurrently). This temporal framework shotild
enable implementors to take advantage of
concurrencies in the distributed environment of
TCA - for instance, planning routes from a given
area while still travelling to the area.

I t i s crucial for an autonomous agent to
effectively allocate its limited resources in order
to satisfy its goals. The robot must detect when
tasks need competing resources, and inust
prioritize and schedule tasks when conflicts
occur. In TCA, a resource is an abstract entity
that i s used to manage the handling of
messages. A resource may be associated with a
computational entity, such as a module, or with
a physical entity, such as a motor or range-
scanner. Resources are created with a capacity
- the number of messages the resource can
handle simultaneously. By default. TCA
associates a single resource of unit capacity with
each module. In addition, a module can create
addit ional resources and associate message
handlers with !hem.

A message received b:, TCA is queued until the
resource that haidles the message has available
capacity. Lurrently, messages are handled I n

FIFO order, subject to the temporal constraints
imposed by the goal structure. In the future.
we plan to add mechanisms for prioritizing
messages. Since the prioritization I S context
dependent, it will be determined by user-
supplied functions, accesszd using "decision
messages." A module can zlqo explicit!^ reserve
a resource , temporari ly preventing other
modules from using the resource. While taking
an image, for example, a vision module might
reserve the "robot motors" resource to ensure
that the robot does not move during that period.

M o n i t o r s are m e c h a ~ ~ i s m s that query for speci-
f ied changes in the environment, such as
obstacles in the robot's path or low battery
charge, and take some action based on the
results. A monitor is specified by the condition
to be monitored (a query message), an action to
take if the condition holds (a goal, commar.d, or
monitor message), and the time, relarive to
other messages, when the monitoring is to take
place. Point monitors, which test the condition
just once , a re useful for checking the
preconditions or postconditions of an action,
such as checking that a planned move succeeded
in reaching the desired location. Interval

monitors, which have a temporal extent. are
useful for checking for changes in the
environment, such as a low battery charge or
the appearacce of a new cup. Two complement-
ary implementations exist for interval monitors
- synchronous polling at a fixed frequency, and
asynchronous demon-invocation.

When a monitor detects an error condltion, it
sends a "failure message" to the central control.
The architecture will then decide what to do
based on the current environment and the goal
structure for the goal that failed. The decision.
made by user-defined handlers for the failure
messages, may include replanning the goal with
additional constraints, replanning a higher level
goal. or adding a new subgoal to patch the initial
plan. We believe that the goal structure depen-
dencies maintained by TCA will prove useful in
diagnosing and recovering from errors 15 1.

Since monitors must be coordinated by the
central control, special reflex behaviors are
needed to provide bounded-time reactions to
imminent dangers. such as collisions. Such
reflexes, which would be implemented outside
the centralized TCA, would have a default
response (e.g., "halt immediately": and then
signal TCA that a reasoned response to the error
1s required. This strategy is being tested on the
Hero testbed. We implemented a "guarded
move" routine that checks the robot's encoders
and sonars and stops the robot if it detects a
collision or impending collision. Once stabilized,
the robot notifies TCA so that an appropriate
recovery can be planned.

Currently, we have implemented the communl-
cation layer, the behavior layer (except for the
constraint data base), and most of the task layer
(except for mechanisms to deal with decision
and failure messages). We have used the
communication and behavior layers of TCA to
run the single-leg testbed for the CMU Rover.
Our Hero testbed has recently been re-
implemented to use the architecture, and we are
currently experimenting with it to test out and
expand the task layer.

control to queue and route mt -s. TCA is
built using layers of functionality to provide
flexibil i ty in experimenting with different
control regimes. In addition to the message-
passing communicatior~ layer, higher layers pro-
vide mechanisms for building and coordinating
complex robot tasks and behaviors, including
mechanisms for goal structure manipulation,
t e m p o ~ a l reasming, rcsourc* management, and
monitoring.

The TCA
Planetary
NAGW-I

was designed with the help of the CMU
Rover group, under NASA contract

175. In particular. Christopher Fedor
and Long -!i Lir, have helped in both the design
and implementation ot TCA and the Hero
testbed. Kevin Ryan implemented the Hero
guarded move routine.

REFERENCES

1. Bares, John. Heoert, hlartial, Kanade. Takeo,
Krotkov, Eric. Mitchell. Tom, Simmons, Reid,
Whittaker, Wiiiiam "An .4utonomous Rover
for Exploring Mars," IEEE Computer, Vol. 22.
No. 6, J m e , 1989, pp. 18-25.

2. Brooks, Rodney. "A Robust Layered Control
System for a .Mobile Rohot," IEEE Journal of
Robots and Automation, Vol. RA-2, No. 1 ,
1980.

3 . Lin, Long-Ji, Mitchell, Tom. Simmons, Reid. "A
Case Study in Autonomous Robot Behavior,"
CMU-RI-TR-89-1, Robotics Institute, Carnegie
Mellon University, Januarv, 1989.

4. Simmons, Reid, "'Commonsense' Arithmet~cal
Reasoning," Proceedings of AAAI-86, Phila-
delphia, PA. August. 1986.

5. Simmons, Reid. "A Theory of Debugging Plans
and Interpretdtions," Proceedings of AAAI-
58. St. Paul. MN, August, 1988.

We have described a task control architecture
(TCA) that tve believe w ~ l l be useful i n itnple-
rnen t in~ control systems for autonomous mobile
robots. TC.4 is designed around a distributed
message-passing system that uses centralized

	0001C13.TIF
	0001C14.JPG
	0001D01.TIF
	0001D02.TIF
	0001D03.TIF
	0001D04.TIF

