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Project Progress Summary

In this project we have proposed to investigate a number of experimental and theoretical issues
associated with the practical use of multi-version software to provide run-time tolerance to software
faults In the gerxod rcported here we have worked on the following:

o

o]

CR% sl GRTRD 4 /Lsfﬁ; > = LR

We have finished developing and evaluaung a specialized tool for measuring testing coverage
for a variety of metrics. R A

We have started using the tool o collect information on the relationships between software

faults and coverage provided by the testing process as measured by different metrics ..

L. B T-

(including data flow metrics). We have found considerable correlation between coverage -

provided by some higher metrics and the elimination of faults in the code.

We have continued studying back-to-back testing as an efficient mechamsm for removal of
un-correlated faults, and common-cause faults of variable span. o

We continued studying software reliability estimation methods based on non-random
sampling, and the relatlonshlp between software reliability and code C coverage provided
through testing,. «#e® T~ - L= EEs

We continued mvcstlgatmg ex1stmg, and worked on formulation n_of new fault- toIerancc

models, In particular, we have finished simulation studies of the Acceptance Voting and &t i

Multi-stage Voting algorithms, and found that these two schemes for Qr_lg_rs fault-tolerance
are superior in many respects to sothe commonly used schemes. Particularly encouraging are
the safety properties of the Acceptance testing scheme. ,

This report describes the results obtaineci in the period March 1, 1989 to August 31, 1989.

LT WA
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1. General Project Description

Software reliability is very important in critical software application areas. For example, space
based systems, avionics systems, critical nuclear power plant systems, and life-critical medical
systems are all expected to operate reliably even under extremely severe conditions. However,
practicc shows that critical systems are not immune to software related failures [e.g. Neu85].

Currently there are two basic ways of showing that code is 100% correct. One is program proving
and the other exhaustive testing [Adr82, AnR74, Cri85, How82,87]. Neither approach is currently
practical for use with complex software systems. Techniques for proving software correct are not
mature enough and exhaustive testing is ruled out principally by the huge number of possible
inputs. Although significant progress has been made in developing efficient and effective
development and testing techniques which greatly aid in avoiding software faults through formal
constructive and analytical methods [e.g. Adr82, How87, Hor87], these techniques do not
guarantee production of error-free code. Furthermore, quantitative relationships between software
reliability and the quality of the applied development and testing techniques have received relatively
little attention. In modern critical systems the problem is further aggravated by the need for
extensive concurrent processing.

The only way of handling unknown and unpredictable software failures (faults) is through fault-
tolerance. Fault-tolerance already is, or is planned to be, part of many critical software and hardware
systems such as nuclear power plants [Gme79, Bis86] and aerospace systems [Mar82, Wil83,
Spe84, Mad84, Tro85, Hil85, Avi87, Vog88a]. Two methods for achieving software fault-tolerance
are in common use today. These are the N-version programming scheme [Avi77, Che78, Avi84] and
the recovery block scheme [Ran75]. Both schemes are based on software component redundancy
and the assumption that coincident failures of components are rare and when they do occur responses
are sufficiently dissimilar so that the mechanism for deciding answer correctness is not ambiguous.
For best results all of these techniques require the component failures to be mutually independent, or
at least that the positive inter-component failure correlation is low. Fault-tolerant software (FTS)
mechanisms based on redundancy are particularly well suited for parallel processing environments
where concurrent execution of redundant components may drastically improve sometimes prohibitive

costs associated with their serial execution.
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Hence, the study of both multi-version and single version software fault-avoidance and fault-
tolerance issues, with an emphasis on the issue of fault correlation in multiple software versions, is
of utmost importance where critical software is concerned. We have proposed to study different
testing approaches suitable for development of single and multi-version high-reliability software,
model single and multi-version reliability, and investigate different fault-tolerance mechanisms.

In the period 1985-87 NASA funded a multi-university experiment to develop 20 functionally
equivalent software versions, known as RSDIMU software versions. These versions are to be used
to determine the reliability gains of several common fault-tolerant software systems, including N-
version programming, recovery-block [Ran75, Avi84], and hybrid schemes such as the consensus
recovery block technique [Sco87].

In the period reported here we have worked on the following:

We have finished developing and evaluating a specialized tool for measuring testing coverage
for a variety of metrics.

We have started using the tool to collect information on the relationships between software
faults and coverage provided by the testing process as measured by different metrics
(including data flow metrics). We have found considerable correlation between coverage
provided by some higher metrics and the elimination of faults in the code.

We have continued studying back-to-back testing as an efficient mechanism for removal of
un-correlated faults, and common-cause faults of variable span.

We continued studying software reliability estimation methods based on non-random
sampling, and the relationship between software reliability and code coverage provided
through testing.

We continued investigating existing, and worked on formulation of new fault-tolerance
models. In particular, we have finished simulation studies of the Acceptance Voting and
Mulii-stage Voting algorithms, and found that these two schemes for software fault-tolerance
are superior in many respects to some commonly used schemes. Particularly encouraging are
the safety properties of the Acceptance testing scheme.

This report describes the results obtained in the period March 1, 1989 to August 31, 1989.
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2. Results
2.1 Fault-Avoidance Through Coverage Testing

BGG, Basic Graph Generation and Analysis tool, was developed to help studies of static and
dynamic software complexity, and testing coverage metrics, It is composed of several stand-alone
modules, it runs in UNIX environment, and currently handles static and dynamic analysis of
control and data flow graphs (global, intra-, and inter-procedural data flow) for programs written

we describe the structure of BGG, give details concerning the implementation of different metrics,
and discuss the options it provides for treatment of global and inter-procedural data flow.

1007 20-Version Set: Program P9
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Figure 1. Comparison of linear block Coverage observed for two random testing profiles and a
functional data for a program out of the 20-version set.
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It is interesting to note that Coverage growth follows an exponential growth curve, and reaches a
plateau extremely quickly. In the example, this happens after about 100 cases. Once the coverage is
close to saturation for a particular testing profile, its fault detection efficiency drops sharply. This is
illustrated in Figure 2 where we plot the coverage provided by the functional testing profile shown
in Figure 1, and the cumulative number of different faults detected using these test cases. Out of
the 10 faults that the code contained, 9 were detected with the functional data set used within the
first 160 cases.

It is clear that apart from providing static information on the code complexity, and dynamic
information on the quality of test data in terms of a particular metric, BGG can also be used to
determine the point of diminishing returns for a given data set, and help in making the decisions on
when to switch to another testing profile or strategy.

- 10
100 Functional Test Data [
(20-Version Set: Program P9) -
90 - -8 3
£ g
S =
g 80 -6 8
é Detected Faults Total Number of Faults é
a _ in the Program was 10 L 4
g 70 \ 3
. 2
\ 2
60 Coverage -2 g
' 3
50 ——————r—r—rrry Tt ——r—r——r 0
109 101 102 103

Number of Test Cases

Figure 2, Linear block coverage and fault detection efficiency observed for program P9 with
functional acceptance test cases.

Similar measurements have been taken for all 20 version of the RSDIMU set. We are currently

studying the correlation between higher metrics, such as p-uses [Fra88], and the reliability of the
versions,
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2.2 Fault-Avoidance: Using Back-to-Back Testing for Regression
Testing

An interesting variant of back-to-back testing is its application to regression testing of a single
program. Regression testing is typically conducted either during the production, or in the
maintenance phase, after modification of software. The intention is to check back on any changes,
and make sure that the changes have not injected, and/or stopped masking, faults, or have corrupted
already tested functions and parts of the code. Sometimes it is possible to conduct regression testing
using all of the data available for testing, but often, due to execution time and schedule constraints, it
is necessary to limit the regression testing to a smaller subset of the test data. An obvious problem
that arises during regression testing is the evaluation of the responses received from the newly
modified software. If the only failures of concern are self-reporting failures (e.g. system crash, or an
obvious disruption of the computer service) a relatively simple acceptance test, or consistency check,
may be sufficient to verify the correctness of the answers. On the other hand, if the correctness of the
responses is less obvious, then a more elaborate, and often very time consuming, scheme must be
used. Comparison of the answers with an existing, progressively generated and growing, database
of "correct” answers is a natural solution.

Some of the problems associated with regression testing may be:

1. Regression testing is limited to a smaller subset of the total data set. In this situation there is
always some doubt that the "important” test case(s), which could reveal an inadvertently injected
bug, is(are) not part of the regression set. Regression testing could be limited to a subset for
several reasons. For example, only a limited execution and calendar time is available for the
regression testing. This can possibly be alleviated through parallel execution of mutually
exclusive but exhaustive subsets of the full test set. Another problem, which may be more
difficult to resolve, is the storage problem. It is quite conceivable that the amount of storage
required to record the input and output data for a complete set may be inordinately high.
However, it is possible that the input set can nevertheless be reproduced, within an acceptable
time frame, using some generation algorithm, but that the output verification remains a problem.

2. Regression testing does not employ random data. There are indications that in some
circumstances random data may detect more faults than more conventional structured, partitioned
and special value testing (e.g. EhRE88, Ham88). Therefore, it is desirable to supplement testing
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based on a designed (fixed or growing) test set with random test data. The problem is that, unless
failures are self-reporting, it may be very expensive to regression test with random data because
of storage problems, answer correctness problems and similar.

3. Regression testing does not monitor intermediate program states. There is experimental evidence
(e.g. ShL88) that monitoring of internal program states can considerably enhance failure
detection efficiency of a testing approach. However, time, storage and correctness problems can
present a considerable deterrent to practical use of this technique for regression testing based on
the data-base approach.

There are, of course, other possible deficiencies of regression testing that could be discussed, not the
least of of them being diminished flexibility of "fixed" data regression sets to changes in the

operational input profiles.
Obsolete
Iloldll OId “NeW"
version version

New

Expected
differen.

Comparator
OK Warning

Figure 3. Back-to-back regression testing.
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One approach that can help in solving at least some of the problems is back-to-back testing. One of
the primary problems with development use of back-to-back testing is the need for independently
developed multiple software versions in order to exploit fault detection properties of software
diversity. This can be expensive, and it is possible that some of the similar faults will not be detected.
This problem does not exist with regression testing. Regression testing is used primarily to make
sure that any applied changes have not corrupted the code and functions that have already been tested
and found correct. Because generation of a new version of the code is implicit in any software
modification, functionally "almost-equivalent” 2-tuples are available at no extra cost.

_This means that the "new" and "old" versions of the code can be run against each other to verify
_invariance of the the functions and responses that were not supposed to be affected by the applied
changes. A model of back-to-back regression testing data-flow is illustrated in Figure 3. The circles
depict two consecutive versions of the software, the squares the sources of data (files), and the
diamond the answer comparator. The response comparisons can be made at almost any desired level;
output only, module/function level, intermediate states, even line level. The nice part is that there is
practically no problem with the insertion of the sampling probes because the code is not only
functionally almost identical, but also structurally very similar (the differences, of course, exist in the
modified parts of the code).

We assume that three "types” of regression data are available. An invariant ("old") set, which
contains all the test cases which are still valid and completely unchanged following the program
modification. A set containing "obsolete” test cases, cases which are no longer valid because of
changed requirements, variable ranges, functionality of the code, and similar. And, finally, a set of
"new" or changed test cases which contains all the test cases that had to be modified, or were
generated completely anew, to accommodate the changes in the functionality and structure of the
code. One file, "expected differences”, contains a "list" of test cases (and responses) for which the
differences between the "old" and "new" code versions would be expected to arise. This data needs
to be generated, based on performed modification(s), prior to any regression testing. For example, if
upward compatibility of versions is required because the changes are enhancements which should not
affect previous performance (e.g. and extension of a communication protocol), then all of the "old"
data set responses for key parameters should match (except for new variables), while the "expected
differences" will derive primarily from the "new" data set.
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There are two general output states of the system. The system either issues a warning, or it accepts
the comparison (OK event). In principle, only unexpected differences or unexpected agreement
between the outputs should raise an alarm. However, it is prudent to re-examine all outputs where
differences arise unless the size and sign of the expected differences is included in the data base.
Unexpected disagreements between the versions may be indicative of incompletely corrected faults,
newly introduced faults, or old faults that are no longer masked owing to the implemented code
changes. The question of tolerances, and false alarms should also be considered [Vou88a]. It is also
possible that an expected difference in response does not materialize. This should also be the cause
for alarm. The cause could be, for example, that the implemented change was not successful
(although not detrimental), or that there is a fault in the test case, etc. The states are illustrated in
Figure 4.

A special case is the use of randomly generated data in regression testing. These data sets (either
generated dynamically, or in part stored) can be used to probe for possible omissions and "holes" in
the regular regression test set. A big advantage that the testing successive versions back-to-back
offers is that the random input data, and the corresponding answers, do not have to be stored but can
be generated during the testing. Furthermore, the range and the profile of these test cases can be
readily changed to accommodate a different operational profile without a (possibly) costly re-
generation of the regression data base.

agreement

Initial

Figure 4.Transition states for (back-to-back) regression testing.
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Another obvious advantage of using back-to-back regression testing is that a very large number of
variables and intermediate states can be monitored relatively cheaply. This should increase sensitivity
of the testing to any anomalies introduced or revealed during the modifications. Furthermore,
probing of intermediate states and classification of the expected outputs according to whether a
difference would, or would not, be observed with respect to the earlier version can yield useful
information about the expected and actual coupling of, and dependencies within, the code (c.f.
perturbation or mutation testing).

The cost efficiency of back-to-back regression testing depends on the available resources, and on the
nature of the failures. It is shown that the process is not cost-effective if mainly self-reporting
failures (differences) are present after the modification, and if the available resources allow for a fast
table look-up of the answers. However, the technique becomes particularly effective if random
testing is used to supplement regression data sets, a large number of intermediate states is monitored,
or there are frequent changes in the operational profile and variable ranges between versions, and, of
course, if there are storage problems but input data can be dynamically reproduced. '

We are currently in the process of using the incremental correction versions of RSDIMU software to
verify usefulness and efficiency of regression back-to-back testing.

2.3 Safety Properties of Some Hybrid Fault-Tolerance Schemes

The performance of classical Majority voting, and of some more reliable hybrid models such as
Consensus Recovery Block (CRB) model, deteriorates if the output space is reduced. Binary
output space is an extreme case where CRB acts as a simple voter, and the acceptance test is never
invoked. This lead us to develop a new hybrid models which with better performance in reduced
output space. One ways is to use a better voting strategy (e.g. Consensus Majority Voting
[Sun85]. Another is to reduce, or completely eliminate, as many wrong answers as possible before

voting.

The model of the scheme we discuss here is called Acceptance Voting (AV). Itis
illustrated in Figure 5. N functionally equivalent software versions are independently developed,
together with an acceptance test, and a voting procedure. When AV is invoked, all versions execute
and submit their outputs for acceptance testing. All answers are acceptance tested. Only the outputs
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that pass the acceptance test continue on to the voter. Each time the model is invoked it may vote
with a different number of outputs, depending on how many results were passed to the voter by
the acceptance testing. The voting may be done using any suitable voting scheme. We have
examined the influence of three voting schemes, the two-out-of-n voting 2N) [SCO87], the
majority voting (MV) and the dynamic majority voting.

Version
correct result wrong result

1-o a

success failure

Figure 5 Block diagram of the Acceptance Voting model

Two-out-of-N and Majority voting are well known. In the case of AV we define Dynamic Majority
voting in the following way. In dynamic majority voting the agreement number is

m = Ceiling [(kgl)]

where k is the number of results passed to the voter, and not N. Tt is important to mention that k
changes dynamically , hence m is different for each run. The difference between the dynamic
voting and majority voting is that even if a small number of results are passed to the voter, dynamic
voting will try to find the majority among them. Majority voting will fail if there are less than
majority of the answers passed to voter. Thus, it is better solution than a fixed agreement number
used in a majority voting scheme.
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A system may be described as safety-critical if an execution time failure result in
death, injury, loss of equipment or property, or environmental harm [LEV87]. All failures are not
of equal consequences, and a relatively small number of failures are catastrophic in nature. The
aim is to eliminate all failures, if possible; if not, as many as possible. This implies that software
reliability should be increased or some techniques such as fault-tolerant should be used. A common
theory, that a reliable software system is also safe is not necessarily true. This is because, a
reliable software may fail causing a catastrophe, on the other hand a less reliable software may fail
more number of times, but causing non-vital failures. In fact, it may be desirable to trade a certain
amount of overall reliability, for higher safety.

We classify failures into two groups: safe failures and unsafe failures. When

a) System outputs a wrong result as a correct, we have an unsafe failure,

b) System can not decide on the correctness of a result, and is unable to output an answer, but
is "aware" of the fact that it will fail, and can therefore forward this knowledge to the user,
we have an safe failure.

In Figures 6 and 7 we illustrate our results through the number of observed unsafe-failures (out of
a total 100,000 simulation test cases) against the version reliability, for three different methods. We
have shown results for binary output space, an extreme situation which approximates the safety
behavior of the system in the presence of highly dependent failures, and B1=B>=p.

In binary output space Consensus Recovery Block acts as a simple voter and is equivalent to N-
version programming with majority voting. There is always an answer, right or wrong, that may
satisfy required number of agreeing versions. Voter will output this answer as a correct, which
may result in an unsafe-failure. The number of unsafe-failures in the AV model is lower than in
CRB model. This is because in AV acceptance testing removes most of the wrong answers, there
by reducing the probability of them to have the required agreement,

Acceptance test reliability (1 - B) does not affect unsafe-failures in Consensus Recovery Block
model because in binary space the test is never invoked (for odd N). Unfortunately, at the same
time, every CRB failure is an unsafe one. Situation improves with larger effective output space
cardinality (decision space), but CRB model exhibits a higher number of unsafe-failures than AV
model under any output space cardinality or voting strategy. In AV, as the acceptance test
deteri- rates (P is increases), the number of unsafe-failures is increases for the same version

reliability.



NASA/NAG-1-983/Semi-Annual Report/1.1/NCSU.CSC.(DFM,MAYV)/Sep-89 15

Number of Unsafe-Failures (Out of 100,000)

Safety Analysis (2-out-of-N Voting, Binary Space, N=3)

100000 4§
Consensus Recovery Block
80000 7 Acceptance Voting $=0.3
60000 ~ cceptance Voting =0.2
Acceptance Voting $=0.1
40000
20000 ~
0 : . . =
0.0 0.2 0.4 0.6 0.8 1.0
Version Reliability

Figure 6 Number of Unsafe Failures (out of 100,000 runs) under 2-out-of-N voting vs. version
reliability assuming binary output space, for N =3, =0.1

Number of Unsafe-Failures(Out of 100,000)

Figure 7

Safety Analysis(Dynamic Majority Voting, Binary Output Space, N=3)

100000
80000 -
<

60000
40000 -

20000 -

0.0

T ¥ T T T =y
0.2 0.4 0.6 0.8 1.0
Version Reliability

Number of Unsafe Failures (out of 100,000) under Dynamic Majority Voting
voting vs. version reliability under binary output space, for N =3
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2.4 Other Work in Progress

1. We are empirically validatin nsensus Recov lock and Majorit nsensus votin
mechanisms,

2. We continue to investigate cost-effectiveness of multi-version development, testing, and run-

time fault-tolerance approaches (assuming single-stage and multi-stage voting). The strategies
and methods are being evaluated with respect to the development of a single ultra-high reliability
component. Of special interest are the fault-avoidance properties offered by multi-version
software development, fault-elimination properties of back-to-back testing, and cost-efficient
detection and elimination of correlated faults.

3. We continue to investigate software reliability models in order to provide a basis for estimation
of the reliability of the components making up a fault-tolerant software (FTS) system. Software
testability modeling, based on control and data flow construct coverage, is being conducted. A
coverage based software reliability model will be developed and used as part of the FTS
reliability modeling process.

4. We continue to study single stage and multistage voting and fault-tolerant software performance
issues. Particular attention is directed towards incorporation of the failure dependencies
(positive or negative correlation) into the methods and models used to predict (estimate)

reliability offered by a particular fault-tolerance mechanism or strategy.

5. We continue to investigate empirical multi-version software properties. For this we are using the
code developed during the summer 1987 RSDIMU certification effort
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BGG: A Testing Coverage Tool

Miladen A. Vouk and Robert. E. Coyle?

North Carolina State University
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Raleigh, N.C. 27695-8206

Abstract

BGG, Basic Graph Generation and Analysis tool, was developed to help studies of static and
dynamic software complexity, and testing coverage metrics. It is composed of several stand-alone
modules, it runs in UNIX environment, and currently handles static and dynamic analysis of
control and data flow graphs (global, intra-, and inter-procedural data flow) for programs written
in full Pascal. Extension to C is planned. We describe the structure of BGG, give details
concerning the implementation of different metrics, and discuss the options it provides for
treatment of global and inter-procedural data flow. Its capabilities are illustrated through examples.
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BGG: A Testing Coverage Tool

Mladen A. Vouk and Robert. E. Coyle?

North Carolina State University
Department of Computer Science, Box 8206
Raleigh, N.C. 27695-8206

1. Introduction

Software testing strategies and metrics, and their effectiveness, have been the subject of numerous
research efforts (e.g. comparative studies by Nta88, Cla85, Wei85, and references therein).
Practical testing of software usually involves a combination of several testing strategies in hope that
they will supplement each other. The question of which metrics should be used in practice in order
to guide the testing and make it more efficient remains largely unanswered, although several basic
coverage measures seem to be generally considered as the minimum that needs to be satisfied
during testing. '

Structural, or "white-box", approaches use program control and data structures as the basis for
generation of test cases. Examples include branch testing, path testing [Hen84, Wo0080] and
various data flow approaches [Hec77, Las83, Rap83, Fra88]. Functional, or "black-box",
strategies rely on program specifications to guide test data selection [e.g. How80,87, Dur84].
Some of the proposed strategies combine features of both functional and structural testing as well
as of some other methods such as error driven testing [Nta84].

Statement and branch coverage are regarded by many as one of the minimal testing requirements; A
program should be tested until every statement and branch has been executed at least once, or has
been identified as unexecutable. If the test data do not provide full statement and branch coverage
the effectiveness of the employed testing strategy should be questioned. Of course, there are a
number of other metrics which can provide a measure of testing completeness. Many of these are
more sophisticated and more sensitive to the program control and data flow structure than statement
or branch coverage. They include path coverage, domain testing, required elements testing, TER
(n>3) coverage, etc. [How80, Hen84, Whi80, Nta84 and reference therein].

3Teletec Corporation, Raleigh, N.C.
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The simplest data-flow measure is the count of definition-use pairs or tuples [Her76]. There are
several variants of this measure. More sophisticated measures are p-uses, all-uses, and du-paths
[Fra88, Nta88], ordered data contexts [Las83], required pairs [Nta84,88], and similar. The data-
flow based metrics have been under scrutiny for some time now as potentially better measures of
the testing quality than control-flow based metrics [e.g. Las83, Rap83, Fra88, Wey88].
However, one recent study [Zei88] indicates that most of the data-flow metrics may not be
sufficiently complete for isolated use, and that in practice they should be combined with control-
flow based measures.

Over the years a number of software tools for measuring various control and data flow properties
and coverage of software code have been reported [e.g. Ost76 (DAVE), Fra86 (ASSET), Kor88].
Unfortunately, in practice these tools are either difficult to obtain, or difficult to adapt to specific
languages and research needs, or both. To circumvent that, and also gain better insight into the
problematics of building testing coverage tools, we have developed a system for static and dynamic
analysis of control and data flow in software.

The system, BGG (Basic Graph Generation and Analysis system), was built as a research tool to
help understand, study, and evaluate the many software complexity and testing metrics that have
been proposed as aids in producing better quality software in an economical way. BGG allows
comparison of coverage metrics and evaluation of complexity metrics. It can also serve as a
support tool for planning of testing strategies (e.g. stopping criteria), as well as for active
monitoring of the testing process and its quality in terms of the coverage provided by the test cases
used. Section II of the paper provides an overview of the BGG system structure and functions.
Section III gives details concerning the implementation of various metrics and of handling local,
global and inter-procedural data flow. Section IV illustrates the tool capabilities through examples.

II. Structure and Functions

A simplified top level diagram of BGG is shown in Figure 1. BGG is composed of several
modules which can be used as an integrated system, or individually given appropriate inputs, to
perform static and dynamic analyses of control and data flow in programs written in Pascal. The
tool currently handles full Berkeley Pascal* with one minor exception. The depth of the "with"
statement nesting is limited to one. The extension to greater depth is simple and will be
implemented in the next version of the system. BGG runs in UNIX environment. Its

4Standard UNIX compiler, pc.



NASA/NAG-1-983/Semi-Annual Report/1.1/NCSU.CSC.(DFM,MAYV)/Sep-89 23

implementation under VM/CMS is planned together with its extension to analysis of programs
written in the C language. BGG itself is written in Pascal, C and UNIX C-shell script.

BGG-preproce®ssor
Terminal
Source
Code
File
BGG-Statie Language
Tables (FMQ)

)

Detailed Static | [Instrumented
Graph Analysis| |Source G"ﬂ‘ Code

Analysi —

Compiler
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Program GG"@VW@M”@

Dynamic
Coverage
Analysis

Test Data

Figure 1. Schematic diagram of the information flow in the BGG system of tools.

BGG pre-processor provides the user interface when the tool is used as an integrated system. It
also performs some housekeeping chores (checks for file existence, initializes appropriate language
tables and files, etc.), and prepares the code for processing by formatting it and stripping it of
comments. The language tables are generated for the system once, during the system installation,
and then stored. The front-end parsing is handled through the FMQ generator [Mau81, Fis88].
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This facility also allows for relatively simple customization of the system regarding different
programming languages and language features. Also, each of the BGG modules has a set of
parameters which can be adjusted to allow analyses of problems which may exceed the default
values for the number of nodes, identifier lengths, nesting depth, table sizes, etc.

Pre-processed code, various control information and language tables are used as input to the BGG-
Static processor. This processor constructs control and data-flow graphs, and performs static
analysis of the code. These graphs are the basis for all further analyses. Statistics on various
metrics and control-flow and data-flow anomalies, such as variables that are used but never defined
etc, are reported. BGG-Static also instruments the code for dynamic execution tracing.

When requested, BGG executes the instrumented code with provided test cases and analyzes its
dynamic execution trace through BGG-Dynamic. The dynamic analysis output contains
information (by procedures and variables) about the coverage that the test cases provide under
different metrics.

When instrumenting code BGG inserts a call to a special BGG procedure at the beginning of each
linear code block. It also adds empty blocks to act as collection points for branches. The
instrumentation overhead in executable statements is roughly proportional to the number of linear
blocks present in the code. In our experience this can add between 50% and 80% to the number of
executable lines of code. The run-time tracing overhead for the instrumented programs is
proportional to the number of linear blocks of code times the cost of the call to the BGG tracing
procedure. The latter simply outputs information about the block and the procedure being executed.

The raw run-time tracing information may be stored in temporary files, and processed by BGG-
Dynamic later. However, often the amount of raw tracing information is so large that that it
becomes impractical to store it. BGG-Dynamic can then accept input via a pipe and process it on-
the-fly. Because BGG-Dynamic analyses may be very memory and CPU intensive, particularly in
the case of data-flow metrics, interactive testing may be a slow process. Part of the problem lies in
the fact that BGG is still a research tool and was not optimized. We expect that the next version of
BGG will be much faster and more conservative in its use of memory. It will permit splicing of
information from several short independent runs, so that progressive coverage can be computed
without regression runs on already executed data.
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Currently BGG computes the following static measures: counts of local and global symbols, lines
of code (with and without comments), total lines in executable control graph nodes, linear blocks
of code, control graph edges and graph nodes, branches, decision points, paths (the maximum
number of iterations through loops can be set by the user), cyclomatic number, definition and use
counts for each variable, definition-use (du) pair counts, definition-use-redefinition (dud) chain
counts, count of definition-use paths, average definition-use path lengths, p-uses, c-uses, and all-
uses. Dynamic coverage is computed for definition-use pairs, definition-use-redefinition chains, p-
uses, c-uses and all-uses. Definition-use path coverage and path coverage for paths that iterate
loops k times (where k can be set by user) will be implemented. There are several system switches
which allow selective display and printing of the results of the analyses.

III. Graphs and Metrics
Control and data flow graphs

Each linear block of Pascal code is a node in a graph. A linear code sequence is a set of simple
Pascal statements (assignments, I/O, and procedure/function calls ), or it is a decision statement of
an iterative or conditional branching construct. When a linear block is entered during execution all
of its statements are guaranteed to be executed. Decision statements are always separated out into
single "linear blocks". Procedure/function calls are treated as simple statements which use or define
identifiers and/or argument variables. A linear block node has associated with it a set describing
variables defined in it, and a set describing variables used in it. Also attached to each node is the
node execution information.

In each Pascal statement all identifiers for simple local and global variables, named constants
defined using CONST, and all built-in Pascal functions are considered. Built in functions are
treated as global identifiers. For the purpose of the definition-use analyses, explicit references to
elements of an array are treated as references to the array identifier only. Similarly, references to
variables pointed to by pointers are currently reduced to references to the first pointer in the pointer
chain. An extension that will differentiate between a stand-alone use of a pointer (e.g. its definition
of use in a pointer expression), and use of a pointer, or a pointer chain, for de-referencing of
another variable, will be implemented in the next version of the tool. Input/output statement
identifiers (function names) are considered used, while their argument variables are used (e.g.
write, writeln) or defined (e.g. read, readln). The file identifier is treated as a simple variable
(defined for input, used for output).
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Calls to functions or procedures are treated as local statements which use the procedure/function’
identifier. In the case of function calls this use is preceded by one or more definitions of the
function identifier in the called function itself. This definition is propagated to the point of call,
where a single definition of the function identifier is then followed by its local use. From the point
of view of the calling procedure, the actual argument variables are either used once, or defined
once, or both used and defined once (in that order), depending on whether the corresponding
parameter is used (any number of times), defined (any number of times), or used and defined (in
any order) in the procedure that is called. Definitions are returned only if the corresponding
parameter is a var parameter.

The point of call ordering: used-defined, for var parameters used and defined in any order, was
chosen as a warning mechanism for programmers that have access to analyses of their own code
but may not have access to the analyses, or the actual code, of the procedures they call. The idea is
to impress on the programmers that the variable may be used in the invoked unit, and therefore
they should be careful about what they send to it because the definition may not mask an undefined
argument variable, an illegal value, etc. The way we handle procedure arguments permits a limited
form of inter-procedural data flow analysis, and offers a more realistic view of the actual flow of
information through the code. It also means that the code for the called procedures must be
available for BGG to analyze. An alternative is not to use this option, but use the defensive
approach of assuming that every argument variable of a var parameter is always used and then
defined.

A global variable that has been only used in a called procedure, or used in the procedures called
within the called procedure, is reported as used at the point of call. A global variable that has been
only defined in the called procedure, or deeper, is reported defined at the point of call. However, a
global variable that has been used and defined (in any order) in the called procedure, or in any
procedure called within the called procedure to any depth, is reported as defined and then used at
the point of call. The reason global variables are treated differently from procedure arguments is to
highlight global variable definition in the called procedure(s) by making it visible as a definition-
use pair at the point of call. Again, it is a form of warning to the programmers that the underlying
procedures have changed a global variable value, may have re-used this value, and in turm may

5From here on, we use term "procedure” to mean procedure or function, unless a distinction has to be made between
the two.
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have (if the definition was erroneous) affected values of some, or all, the parameter values passed
back to the point of call.

All procedure parameters are assumed to be defined (pseudo-defined) on entry. Global variables
used in a procedure are also pseudo-defined on entry. Parameters and global variables set in a
procedure or function are assumed used (pseudo-used) on exit. The actual use and definition of
completely global variables, and locally global variables, is fully accounted for in each procedure in
which they occur as far as their uses and re-definitions are concerned. On return to the calling
procedure, any global variables that have been used or defined in the called procedure are reported
as single uses and/or definitions of that global variable at the point of call, however, pseudo-uses
enabled within a procedure are not reported back to the point of call. The tool has options that
allow different treatment of global variables (e.g. pseudo definitions and uses can be switched off),
and selective display of the analyses of only some functions and procedures.

Iteration constructs are treated as linear blocks containing the decision statement followed (while,
for), or preceded (repeat), by the subgraphs describing the iteration body. Conditional branching
constructs (if, case of) consist of decision nodes followed by two or more branch subgraphs. All
decision points are considered to have p-uses (edge associated uses) as defined in [Fra88].

Metrics

Some of the static metrics that BGG currently computes are less common or are new and require
further explanations.

By default, path counts are computed so that each loop is traversed once. However, definition-use-
redefinition chain counts (see below) force on some loops one more iteration in addition to the first
traversal. User may change the default number of iterations through a loop through a switch (one
value for all loops). Cyclomatic number is computed in the usual way [McC76]. Implemented data
flow visibility of all language constructs and variables is such that full definition-use coverage
implies full coverage of executable nodes (and in turn full statement coverage) [e.g. Nta88]. BGG
computes c-uses, p-uses, and all-uses according to definitions given in [Fra88].

Definition-use-(re)definition, d(u)d, chains are data-flow constructs defined in [Vou84]. It is one
of the metrics we are currently evaluating for sensitivity and effectiveness in software fault
detection. A d(u)d is a linear chain composed of a definition followed by a number of sequential
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uses, and finally by a re-definition of a variable. The basic assumptions behind this metric are a)
the longer a d(u)d chain is the more complex is the use of this variable, and b) the more one re-
defines a variable the more complex its data-flow properties are. The first property is measured
through d(u)d length (see below), the second property is measured by counting d(u)d's. An
additional characteristic of d(u)d chains is that they are cycle sensitive and, for those variables
where they are present, they force at least two traversals of loops within which a variable is
defined. However, full d(u)d coverage does not imply full du-pair coverage. The d(u)d metric is
intended as a supplementary measure to other definition-flow metrics.

Definition of a du-path can be found, for example, in [Fra88, Nta88]. A single du-pair may have
associated with it one or more du-paths from the definition to that use. We augment the count of
du-paths and du-pair counts with measures of du-path lengths. The assumption is that, from the
standpoint of complexity (and hence affinity to errors), it is not only the count of du-paths that is
important, but also the length of each path. A definition which is used several times, perhaps in
physically widely separated places in the program, requires more thought and may be more
complex to handle than one that is defined and the used only once, or for the first time. For each
du-path we compute length by counting the number of edges covered in reaching the paired use.
For every variable we also compute an average length over all du-pairs and du-paths associated
with it. In a similar manner we define d(u)d-length as the number of use-nodes between the
definition and redefinition points of the chain. Average d(u)d-length is the d(u)d-length
accumulated over all d(u)d pairs divided by the number of d(u)d's. We use d(u)d-lengths to
augment d(u)d-counts.

We also distinguish between linear (or acyclic) d(u)d's and loop generated, or cyclic, d(u)d's.
Cyclic d(u)d's are those where the variable re-defines itself or is re-defined in a cyclic chain. All
cyclic constructs are potentially more complex than the linear ones. Comparison is difficult unless
the loop count is limited, or looping is avoided, in which case cyclic structures lend themselves to
comparison with acyclic ones through unfolding. If iterative constructs are regarded only through
du-pairs, many cycles may not be detected since all du-pairs might be generated by going around a
loop only once. On the other hand, for a cyclic d(u)d to be generated, a second pass through a loop
is always required. However, if there are no definitions of a variable within a loop then the loop
would not be registered by d(u)d constructs belonging to that variable. When a variable is only
used (or not used at all) within a loop, its value is loop invariant and loop does not add any
information that the variable can (legally) transmit to other parts of the graph.



»

NASA/NAG-1-983/Semi-Annual Report/1.1/NCSU.CSC.(DFM,MAV)/Sep-89 29

BGG also has facility for computing concentration (or density) of du-paths and d(u)d-paths through
graph nodes. We believe that graph (code) sections that show high du-chain and d(u)d-chain node
densities may have a higher probability of being associated with software faults than low density

regions.
IV. Examples

The examples given in this section derive from an ongoing project where BGG is being used to
investigate static and dynamic complexity properties of multi-version software, multi-version
software fault profiles, and effectiveness and efficiency of different testing strategies. We are using
two sets of functionally equivalent numerical programs for these studies. One set consists of 6 Pascal
programs (average size about 500 lines of code) described in [Vou86], the other set consists of 20
Pascal programs (average size about 2,500 lines of code) described in [Kel88].

-
158 function fptrunc(x: real): real;
159
160
161 const
162 largevalue = 1.0e18;
163 var
164 remainder: real;
165 power: real,;
166 bigpart: real;
167 term: real;
168 begin
169 remainder := abs(x);
170 if remainder > largevalue then
171 fptrunc :=x
172 else begin
173 power = 1.0;
174 while power < remainder do
175 power = power * 10.0;
176 bigpart := 0.0;
177
1;3 while remainder > maxint do begin
1
180 while power > remainder do
181 power := power / 10.0;
182 term := power * trunc(remainder / power);
183 remainder := remainder - term;
184 bigpart := bigpart + term;
185 end;
186
13"8/ remainder := trunc(remainder) + bigpart;
1
189 if x < 0.0 then
190 fptrunc := -remainder
191 else
192 fptrunc := remainder;
193 end;
194 end;

Figure 2. Code section for which analysis is shown in Figures 3 and 4
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Figure 2 shows a section of the code from program L17.3 of the 6-program suite. Figure 3
illustrates the output that static analysis processor "BGG-Static" offers in the file "Static Analysis"
for the same procedure.

Outputs like the one shown in Figure 3 provide summary profile of each local and global symbol
found in the code. How many times it was defined (or pseudo-defined), used (or pseudo-used),
how many du-pairs it forms, how many d(u)d chains, etc. This static information can be used to
judge the complexity of procedures, or the complexity of the use of individual variables. In turn,
this information may help in deciding which of the variables and procedures need additional
attention on the part of the programmers and testers.

Figure 4 illustrates the detailed node, parameter, and global variable information available in the file
labelled "Detailed Graph Analysis” in Figure 1. Figure 4 is annotated (bold text) to facilitate
understanding. We see that all parameters (e.g. X), global variables (e.g. TRUNC), and built-in
functions (e.g. ABS) are pseudo-defined on entry. The parenthesized number following a
capitalized identifier is its number in the symbol table. Note that there are empty nodes, inserted by
BGG, which act as collection points for branches (e.g. Block #17). Because FPTRUNC was
defined in several places in the code, it is pseudo-used on exit from the function (in Block #18).
Note also that built-in function ABS is treated as a global variable, and its parameters are used only
(because BGG does not have insight into its code), but the situation is different in the case of
locally defined procedures.

For example, Figure 5 shows another section of the code in which procedure ADJUST calls a local
function FPMOD (line 285) which, in turn (not shown), calls function FPFLOOR, which then
calls function FPTRUNC. The details of the static analysis of the first ADJUST node where the
call chain begins are shown in Figure 6. Output lines relevant to the discussion are in bold. Note
that FPTRUNC is global from the point of view of ADJUST and is therefore pseudo-defined on
entry. The same is true for FPMOD and FPFLOOR. All three are reported as defined and then used
in line 285. For two of them the use actually occurs at a deeper level, in function FPMOD for
FPFLOOR, and in function FPFLOOR for FPTRUNC. The definitions occur in functions
themselves, €.g. for FPTRUNC it occurs in FPTRUNC itself. All these underlying definitions and
uses are propagated back to ADJUST.
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......................... se 0

Procedure FPTRUNC (193)
Parameter X (194)

Global TRUNC (28) used
Global MAXINT (55) used
Global ABS (7) used

Global FPTRUNC (193) defined

Block # 1

Nodetype: NOT FOR

Predecessor list: none

Successor list: 2

Block start at line: 168

Block ends at line: 169

Definition-use list for this block:
ABS (7) is defined in line # 168
MAXINT (55) is defined in line # 168
TRUNC (28) is defined in line # 168
LARGEVALUE (195) is defined in line # 168
X (194) is defined in line # 168
X (194) is used in line # 169
ABS (7) is used in line # 169
REMAINDER (196) is defined in line # 169

Block # 2

Nodetype: NOT FOR

Predecessor list: 1

Successor list: 4 3

Block start at line: 170

Block ends at line: 170

Definition-use list for this block:
LARGEVALUE (195) is used in line # 170
REMAINDER (196) is used in line # 170

Block # 3

Nodetype: NOT FOR

Predecessor list: 2

Successor list: 18

Block start at line: 170

Block ends at line: 171

Definition-use list for this block:
X (194) is used in line # 171
FPTRUNC (193) is defined in line # 171

(1) ABS is a built i

Block # 17

Nodetype: NOT FOR

Predecessor list: 15 16

Successor list: 18

Block start at line: 193

Block ends at line: 193

Definition-use list for this block: empty

Block # 18

Nodetype: NOT FOR

Predecessor list: 3 17

Successor list: none

Block start at line: 194

Block ends at line: 194

Definition-use list for this block:
FPTRUNC (193) is used in line # 194

32

global variable
global variable
built in function

not a for-loop

pseudo-def
pseudo-def
pseudo-def
constant

pseudo-def

(1)

empty collector node

end node

pseudo-use

n function and is treated as a global identifier only

Figure 4. Elements of the detailed node analysis
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274  procedure adjust(var p: point);

275

276

277 var

278 twopi, piover2; real;

279  begin

280 twopi := pi * 2,

281 piover2 :=pi/2;

282

283 begin

284

%gg p.long := fpmod(p.long, twopi);
287 Jdat ;= fpmod(p.lat, twopi);
288 ff p.lat >%i therllJ P
289 p.lat := p.lat - twopi;
290

291 if p.lat > piover2 then

292 p.lat :=pi - p.lat
293 else if p.lat < -piover2 then
294 p.lat := -pi - p.lat;
295 end;

206 end;

Figure 5. Code section for which static analysis is shown in Figure 6.

Of course, variables strictly local to FTPRUNC, such as "remainder" (see also Figures 2, 3 and
4), do not show at the point of call to FPMOD in ADJUST. It is obvious that global data flow can
add considerably to the mass of definitions, uses, and other constructs a programmer has to worry
about. Nevertheless, we believe that it is a good practice to make this information available so that
the full implication of a call to a procedure can be appreciated.

BGG provides coverage information on the program level, and on the procedure level. Figure 7
illustrates output from the dynamic coverage processor "BGG-Dynamic”, delivered in the "Dynamic
Coverage Analysis" output file, for function FPTRUNC and a set of 103 test cases. In the example
some of the output information normally delivered by BGG has been turned off, e.g. all-uses.

For each procedure BGG-Dynamic first outputs a summary of branch coverage information: the
block number, statement numbers encompassed by the block, the number of times the block was
executed, and the execution paths taken from the block (node). For example, node 5 in Figure 7 was
executed 724 times, 6 times to node 3, and 721 times to node 7. Branches which have not been
executed show up as having zero executions.



Procedure ADJUST (214)
Parameter P.LONG (216) used
Parameter P.LONG (216) defined
Parameter P.LAT (217) used
Parameter P.LAT (217) defined

Global WRITELN (35) used
Global FPFLOOR (200) used
Global ABS (7) used
Global MAXINT (55) used
Global TRUNC (28) used
Global FPTRUNC (193) used
Global FPMOD (203) used
Global PI (107) used
Global FPMOD (203) defined
Global FPFLOOR (200) defined
Global FPTRUNC (193) defined

Procedure # 13 : ADJUST

Block # 1
Nodetype: NOT FOR
Predecessor list:
Successor list: 2
Block start at line: 279
Block ends at line: 287
Definition-use list for this block:
PI (107) is defined in line # 279
FPMOD (203) is defined in line # 279
FPTRUNC (193) is defined in line # 279
TRUNC (28) is defined in line # 279
MAXINT (55) is defined in line # 279
ABS (7) is defined in line # 279
FPFLOOR (200) is defined in line # 279
WRITELN (35) is defined in line # 279
P.LAT (217) is defined in line # 279
P.LONG (216) is defined in line # 279
P (215) is defined in line # 279
PI (107) is used in line # 280
TWOPI (218) is defined in line # 280
PI (107) is used in line # 281
PIOVER2 (219) is defined in line # 281
P.LONG (216) is used in line # 285
FPMOD (203) is defined in line # 2835
FPFLOOR (200) is defined in line # 285
FPTRUNC (193) is defined in line # 285
WRITELN (35) is used in line # 285
FPFLOOR (200) is used in line # 285
ABS (7) is used in line # 285
MAXINT (55) is used in line # 285
TRUNC (28) is used in line # 285
FPTRUNC (193) is used in line # 285
FPMOD (203) is used in line # 285
. in line #
TWOPI (218) is used in line # 287
P.LAT (217) is used in line # 287
FPMOD (203) is defined in line # 287
FPFLOOR (200) is defined in line # 287
FPTRUNC (193) is defined in line # 287
WRITELN (35) is used in line # 287
FPFLOOR (200) is used in line # 287
ABS (7) is used in line # 287
MAXINT (55) is used in line # 287
TRUNC (28) is used in line # 287
FPTRUNC (193) is used in line # 287
FPMOD (203) is used in line # 287
P.LAT (217) is defined in line # 287
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Figure 6. Elements of the detailed
static analysis of the procedure shown
in Figure S.

procedure in scope, global variable

pseudo-definition

pseudo-definition

Beginning of the list of

C-memememeeeeemeneeeeo- visible definitions and uses

for line 285 from Figure 5.
calls FPFLOOR
calls FPTRUNC

actually used in FPMOD

actually used in FPFLOOR
actually used in ADJUST

........................ List for line 285 ends

<-omeeeeeeeeee———— Block #1 ends

34
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Coverage (%)

Efficiency of Random Testing
(6-Version Set: Program L17.3)
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Figure 8. Coverage observed during random testing of a program from the 6-version set.

1007 20-Version Set: Program P9
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Functional
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o
1

50 v ——ry ———————rry
109 10! 102
Number of Test Cases

T

3
103

Figure 9. Comparison of linear block coverage observed for two random testing profiles and a
functional data for a program out of the 20-version set.
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The branch table is followed by a summary of coverage by metrics: coverage for non-empty blocks
(blocks that have not been inserted by BGG), lines of code within executable nodes, and branch
coverage. This is followed by coverage for data flow metrics by symbol name. The static
definition, use, du-pair, d(u)d, p-use, etc. counts for a variable are printed along with the
information on its the dynamic coverage expressed as percentage of the executed static constructs.
For each identifier, this is followed by a detailed list and description of constructs that have not
been executed (e.g. du-pairs or p-uses). Execution coverage output tables can be printed in
different formats (e.g. counts of executed constructs, rather than percentages), and with different
content (e.g. all-uses).

100 7 . - 10
00 Functional Test Data
(20-Version Set: Program P9) i 3
90 - - 8 g
2 S
© _ i =
§’ 80 6 =
3 Detected Faults Total Number of Faults ;
-§ 70 - In the Program was 10 L 4 E
35
o =
[+e] 'g
i<
60 7 Coverage -2 g
4 3
50 ——rrrry ———rrrry — 0
100 10/ 102 103

Number of Test Cases

Figure 10. Linear block coverage and fault detection efficiency observed for program P9 of the
20-version set with functional test cases.

BGG can also be used to obtain coverage growth curves for a particular test data set. Figures 8 and
9 illustrate this. They show some of the coverage growth curves we have observed with random
and functional (designed) test cases for the program L17.3 of the 6-version set using BGG
described here, and for a program P9 from the 20 version set using an early version of the system.



NASA/NAG-1-983/Semi-Annual Report/1.1/NCSU.CSC.(DFM,MAYV)/Sep-89 40

It is interesting to note that both figures show coverage that follows an exponential growth curve
and reaches a plateau extremely quickly. For the smaller program (Figure 8, about 600 lines of
code) metrics reach saturation already after about 10 cases, while for the larger program (20-
version set, about 2,500 lines of code) this happens after about 100 cases. There is also a marked
difference in the initial slope and the plateau level obtained with different testing profiles.

Once the coverage is close to saturation for a particular testing profile, its fault detection efficiency
drops sharply. This is illustrated in Figure 10 where we plot the coverage provided by the
functional testing profile shown in Figure 9, and the cumulative number of different faults detected
using these test cases. Out of the 10 faults that the code contained, 9 were detected with the
functional data set used within the first 160 cases.

It is clear that apart from providing static information on the code complexity, and dynamic
information on the quality of test data in terms of a particular metric, BGG can also be used to
determine the point of diminishing retumns for a given data set, and help in making the decisions on
when to switch to another testing profile or strategy.

V. Summary

We have described a research tool that computes and analyses control and data flow in Pascal
programs. We plan to extend the tool into C language. We have found BGG to be very useful in
providing information for code complexity studies, in directing execution testing by measuring
coverage, and as a general unit testing tool that provides programmers with information and insight
that is not available through standard UNIX tools such as the pc compiler, or the pxp processor.
We are currently using BGG in an attempt to formulate coverage based software reliability models
by relating code complexity, testing quality (expressed through coverage), and the number of faults
that have been discovered in the code.
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