
ADAPTIVE TRACKING FOR COMPLEX SYSTEMS
USING REDUCED-ORDER MODELS

by

Craig R. Carignan
STX Corp.

Lanham, MD

Reduced-order models are considered in the context of parameter adaptive
controllers for tracking workspace trajectories. A dual-arm manipulation task is
used to illustrate the methodology and provide simulation results. A parameter
adaptive controller is designed to track the desired position trajectory of a
payload using a four-parameter model instead of a furl-order, nine-parameter
model Several simulations with different payload-to-arm mass ratios are used
to illustrate the capabilities of the reduced-order model in tracking the desired
trajectory.

1.0 INTRODUCTION

Recent advances in control systems for robot manipulators have increased
tracking accuracy far beyond the decoupled joint control schemes in
predominant use a decade ago. Many controllers are based on computed
torque schemes which use a model of the system to fabricate a feedforward
portion to the control law in addition to an error feedback term. While the
feedforward can mitigate the.tracking error significantly, the reduction is strongly
dependent upon the integrity of the model. Another important consideration is
the additional computational burden imposed by a complex albeit accurate
model.

Often, the model parameters are not known accurately because of the
difficulty in measuring them or uncertainty about the object being manipulated.
This difficulty can be overcome by using a "parameter adaptive controller" (see
[1,2,3]) to update the model used by the control system. Depending upon the
properties of the adaptation algorithm, the variable model can come very close
to the true model and thus improve the tracking performance through the more
accurate feedforward.

The algorithm developed in [3] has been found to be particularly successful
in a number of applications including the MIT Whole Arm Manipulator [4] and,
more recently, a Kraft Master Arm [5]. The latter application was a teleoperation
experiment designed specifically to test the adaptation algorithm when the load
on the arm was constantly changing due to the retrieval and release of
payloads. The tracking capability of the adaptive controller was far superior to
that of the PD controller with constant feedforward.
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An interesting question arises when not only are the values of the model

parameters uncertain but the validity of the model itself as well. This situation
would occur, for example, when the equations of motion for a manipulator are
divided into an arm/wrist decoupled model. Both the arm model and wrist
model assume the other is fixed when determining the robot dynamics. Thus
the arm link which is attached to the wrist is assumed to have fixed parameters
in the arm model whereas, in actuality, the parameters are changing

continuously due to wrist movement. The arm parameters cannot converge in
this case because they are not really constant. Since the algorithm was

designed assuming constant parameters, the question becomes, "Will the
algorithm still work and, if so, how well?"

This question forms the theme for the remainder of this paper because it
becomes a very important issue for more complex systems. Even in a system
as simple as a single manipulator link, the inclusion of friction, backlash, drive
train flexibility, sensor dynamics, etc. may become necessary to form a model
accurate enough to have truly "constant" parameters. Pending the development
of such a model, one could still be left with a model so complex that

computation time starts to become an issue. Thus the use of a simple model
may be propelled by the necessity of reducing on-line computations as well as

off-line development.

This paper will address the issue of reduced-order models in the context of
the parameter adaptive controller developed in [3]. The task studied will be the
transport of a payload along a desired trajectory using two manipulator arms.
The task will be studied in a plane to keep the demonstration simple while at the
same time allowing significant departures of the reduced-order model from
reality. The issue of how to incorporate a force distribution strategy for the two
arms will also be addressed out of necessity due to the force redundancy

present in the problem.

The report begins with a brief review of dual-arm dynamics with
consideration given to kinematically redundant arms. A least squares torque
strategy will be used for completely resolving the desired force trajectory for the
arms and payload. A parameter adaptive controller will then be designed to
track the desired position trajectory of the payload using a reduced-order model
for the arm/payload dynamics. Several simulations using different payload-to-
arm mass ratios will be used to illustrate the capabilities of the reduced-order

model in replicating the dynamics of the actual system.

2.0 TRANSPORT DYNAMICS

The dual-arm robot configuration is depicted in Fig. 1. The relative joint

angles for arms A and B are .g,aT=[01a e2a 03a] and _lbT=[01b 02b 03b] (positive

angles are counterclockwise). The base of arm A is at point (Xoa,Yoa) and arm B

at (Xob,Yob). The length, mass, inertia and center of mass of link i are li, m i, Ii and

Xcm i respectively. The link 1 and 2 center of mass and inertia are referenced to

the attach point with the subsequent link (Xcm i is negative). Link 3's center of
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mass is assumed to be at the attach point to the payload, and as with the inertia
13,is measured from the wrist joint and has positive value 13.

The inertial coordinates for the payload are XeT=[xe Ye ee]. The payload has

mass me, length 21e (with Xe and Ye at the midpoint), and inertia le about its

geometric center. The center of mass is at position (Xcme,Ycme) with respect to
the payload's body coordinates which parallel the reference coordinates when

Oe=0.

The free-body diagram of Fig. 2 assists in the generation of the system
dynamics. The payload exerts a force fa and _fb on arms A and B, respectively,
and thus has a reaction force exerted on it of -f_a and -_fb if the connection is rigid.

Thus the arm dynamics are given by

[Ma

and payload dynamics by

Me__e + ge =- JeT _a- Je_ S

r JaTta
+LJb%l (11

(2)

M i is commonly called the "mass matrix" and ..q4 is a nonlinear vector

characterized by Coriolis and centripetal force terms, :_ and _ are the torques
exerted at the arm joints, and _a and .f.b are the beam interaction forces described

above. The Ji are known as "Jacobians" and convert the forces at the end

effector into arm torques. These equations are presented in full in Appendix A.

In addition to these dynamical equations, there are also equations of
constraint due to the connection of the arms through the payload

•Y-e= h-a(g.a) (3)
X_.e=

which are given in Appendix A. The constraints (3) can be differentiated and
combined with the system equations through a procedure called the "reduction
transformation" (see [6]) to eliminate the interaction forces fa and f-b- The

procedure for this particular example can be found in [7] and the results are

MeJeb -DaMa::T,a+DaMa.ga" eg.e" ag.a

JeaQa Me ea f.a

/ M'Ij T -1 -1 -1jTJebQb+Me _fb = -1 D M -1 M q . . (4)
L e ea eb -DbMb-T4o+ b bgb" ege-Db-g.b

where
-1 -1 -1 T

Da - Jea Ja Qa =JaMa Ja (5)

Db _ j-leb Jb Qbl=JbM_J_
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The interaction forces can now be solved in terms of the arm torques using
the reduced dynamics (4) and payload dynamics (2). Solving for f-bfrom (2)
gives

f-b= - jeTb[ JeT f-a+ Me_e+ ...qe] (6)

Substituting (6) into (4), premultiplying the arm A partition by Jea, and then
solving for f-ayields

f-a= Qa [- JatV_ll;a+ Jea-_e+ JaU_ga - JeaDa_ ] (7)

Using a parallel procedure, the arm B interaction forces are

_b = eb[" JbMl_ll;b + Jeb_e + JbM_g.b - JebDb_b ] (8)

Substituting (7) and (8)into (2) and regrouping terms gives

T -1 je_QbJbMbl [JeaQaJaMa _ + =

arm A arm B payload

Je TQa Jea + Je_Qb Jeb + Me ] E_e

T -1 T -1
+ JeaQaJaMaga + JebQbJbMbgb + ge

T " " t " •

JeaQaJeaDa_la - JebQbJebDbg.b (9)

Equation (9) represents the equation of motion of the arm/payload system in
payload coordinates. The terms in brackets represent the inertial forces needed
to accelerate the arms and payload along the desired trajectory; the "Q" terms
are the inertia tensors for the arms projected onto the end-effector, and "Je" is
an additional transformation to the payload origin. The g. terms represent
Coriolis and centripetal forces in joint coordinates, and the joint velocity terms
result from the time varying nature of the arm jacobians when transforming joint
velocities into end-effector velocities.

Since (9) only contains one acceleration term, (9) can be solved for,_ if the

term in brackets is invertible. The arm interaction forces are obtained by

substituting _ into (7) and (8). The interaction forces can then be substituted

into the equations of motion for the two arms (1) to give the joint accelerations.

3.0 CONTROL SYSTEM

The matrix "Q" defined in (5) has appeared previously in the literature in the
context of impedance control. In [8], Q is referred to as the "end-point mobility
tensor" as opposed to the "mobility tensor" which is the manipulator's inverse
inertia matrix. By generating the kinetic energy quadratic with the momentum
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vector in end-effector coordinates, the resulting surfaces of constant energy
form "ellipsoids of gyration" in the momentum space. The shape and orientation
of the ellipsoid indicate how much inertial resistance there is to motion in a
particular direction, hence the term "mobility."

The concept of mobility tensors is a useful insight for forming a reduced
order model for the dual-arm system. The term in brackets in (9) can be
considered a superposition of the mobility tensors of the payload and the two
arms, all contributing to the mobility of the arm/payload system from the
perspective of the payload's position. Is it possible that if the arm terms are
ignored but the parameters in the payload's mobility tensor are allowed to vary,
that the model can absorb the effect of the arm mobility tensors as well? In
addition, since the Coriolis and centripetal forces result from the time variation
of the inertia tensor, can the remaining terms in (9) be effectively accounted for
through the time variation of the payload parameters?

The idea of superposition provides the underlying basis for using the
following equation for a model of the actual system dynamics in (9):

A °° ^

Mexe + (_eX_"e = ._e (10)

^

Me and _e are the same as Me and Ce given in Appendix A except they depend
A

upon the model parameters l_.e instead of the payload parameters Pe- The
^

quantity !e is the modeled total force applied to the arm/payload system and is

given by

._e =ATE, a + BT E,b (11)

where AT_= T ^ -IJea(_aJaMa

BT - T ^ -1Jeb_bJbMb

If the arm inertia tensors are known precisely, (11 ) reduces to the left side of (9),
constituting an exact relationship between the arm torques and system force f_e.
Deviations from the actual inertia tensors generate additional errors which must

be absorbed by the model parameters.

The control law is formulated from the adaptive algorithm in [3] and is given

by

^ "" _eXer (12)fec = Me ( -Xer - _L_ ) + _

E_er= Xed - _. Xe

Xe : Xe" Xed

S=Xe+ e
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The parameter adaptation law is

• T
_e =" ['-1 ye S (13)

where [' is a diagonal matrix of positive constant gains and Ye is the parameter

coefficient matrix given in Appendix B.

The control law in (12) only specifies the total force to be applied to the
payload; it is not a control law for the arms. Since either arm alone can deliver
the requisite force, the force redundancy must be resolved via some artificial
constraint imposition. The next section will present one way of effecting the
desired force on the payload using both arms.

4.0 FORCE RESOLUTION

Given that the system force in (11 ) is specified by (12), the task now at hand

is to determine the arm torques, _-a and :r,b. Since the three degrees of planar

motion of the payload through the workspace are governed by 1e, there is an
excess of three arm torques available to achieve this motion. Thus the arm
torques can be anything as long as the three constraints in (1 1) hold.

One approach to determining a unique solution is to optimize some cost
criterion while adjoining any existing constraints on variables being optimized•
A natural choice is to minimize the amount of current drawn by the arm motors,

especially if the motors are being powered by on-board batteries. Since torque
is proportional to current .in a d-c motor, the energy used will also be
proportional to the torque.

A measure of the quantity of torque used might be the mean square cost

C = 1/2__aT__a + 1/2___bT__b (14)

Though this cost is not an exact reflection of the power being drawn by the
motors, its advantage over other measures is that it leads to an analytical

^

solution. If the constraint in (11) for fe=fec is adjoined to the cost using a
Lagran, ge multiplier, and the resulting Hamiltonian is minimized with respect to
the arm torques, the "optimum" arm torques become

:f,a = A(ATA+BTB)-lfec

::[,.b= B(ATA+BTB)'lfec

(15)

Thus (15) together with (12) constitutes the control law for the torques to be

applied to the two arms.



The relationship in (15)is a more general result than the one found in [7,9]
because it does not assume that the arm and payload dimensionality are the
same. If the arms are not redundant, A and B are square and a direct
relationship between the torques in the two arms can be found using (15). In
addition, if the arm jacobians are invertible, the inertia tensors cancel out and
the relationship becomes completely geometric, involving only jacobians.

5.0 SIMULATIONS

A number of simulations were performed between the initial and final
configurations shown in Figure 3. The initial payload position was xeT=[0.60
0.20 0.35] and the final position was xeT=[0.80 -0.20 -0.35]. The corresponding
link parameters for the arms were the same and are given in Table 1. The
baseline parameters for the payload were me=l.0 kg, ie=0.2 kg-m 2, and
Xcme=Ycme=0.0m. The arm bases were equidistantly spaced 0.5 m from the
reference x-axis, and the grippers were equidistantly spaced 0.5 m from the
payload x-axis.

Table 1" Arm parameters used in simulations.

link # length (m) mass (kg) c.m. (m) inertia (kg-m2)

1 0.5 1.0 -0.25 0.05
2 0.5 1.0 -0.25 0.05
3 0.1 0.2 0.10 0.01

The desired trajectory fo? the payload consisted of a constant acceleration
followed by a constant deceleration phase of the same magnitude for each
coordinate. The total time for each test was 5.0 sec, and the control bandwidth
was _,=5.0 rad/sec. The adaptation gain matrix for the baseline case was
F=diag(0.001,0.005,0.001,0.001). The parameters in the control model were
initialized to be the same as the payload parameters. The arm parameters and
configuration geometry were all assumed to be known precisely.

The tracking algorithm was simulated for three different ratios of payload
mass to link mass: (a) 1:5, (b) 1:1 and (c) 5:1 (inertia ratios were also the same).
A ratio' of 1:5 represents the most severe test of the algorithm where the arm
masses and inertias dominate the system dynamics, whereas a ratio of 5:1
represents the case closest to the model used by the control system. Equal
payload and link masses represent the baseline case.

The diagonal elements of the modeled mass matrix are plotted in Figure 4
for the three different payload/link ratios. These elements are normalized by the
corresponding elements of the actual system mass matrix M (the coefficient of
_e in (9)): ,g.T=[pel/Mll Pel/M22 Pe2/M33]. For large payload/link masses, the
normalized parameters should approach unity since the system mass is



dominated by the payload, and the control model is based on the dynamics of a
single rigid body. As the arm masses start to become a factor, however, the Pi
can deviate significantly since a degenerate model is being used to replicate
the system dynamics. Even for dominant payloads, however, the parameters
are not guaranteed to converge unless the trajectory is sufficiently rich to excite
all the dynamics affected by the parameters.

The convergence time also depends strongly upon the adaptation gains.
The adaptation gains in the baseline case were selected to give rise times on
the order of 1 sec but not so high as to produce large overshoots. Since larger
parameters required faster adaptation, the gains were increased by a factor of
ten for the high payload/link ratio and decreased by a factor of ten for the low
payload/link mass ratio.

The normalized parameters undergo their closest approach to unity in the
5"1 case of Fig. 4c midway through the trajectory when the payload speed was

highest. The normalized inertia, P3, is the most unstable of the three

parameters because of its relatively small size. The oscillatory behavior in the
first half of the trajectory could be eliminated by choosing a smaller adaptation
gain for the inertia. As the payload slows down, the trajectory is no longer

"persistently exciting" enough to keep the parameters on track. The 1:5 case
exhibits the worst behavior, with large overshoots and incomplete parameter
convergence.

Though the parameter convergence is a good indicator of how well the
tracking algorithm is working, the goal of the control system is to minimize the
tracking errors, si. The tracking errors for the two cartesian positions of the
payload, Xe and Ye, and orientation, qe, are shown in Figures 5-7 both with and
without parameter adaptation. In the nonadaptive cases, the parameters were
held constant at the value of the payload parameters.

The tracking errors display similar characteristics over the evolution of the
trajectory. For most cases, the errors for the adaptive cases start out almost as
large as the nonadaptive errors. Once the parameters have had a chance to
adapt (around "t sec), the errors take a rather sharp drop which is usually
maintained through the remainder of the trajectory. Sometimes the errors
decrease as the payload comes to a stop due to the divergent behavior of the
parameters when the velocities go to zero.

All 'three payload/link ratios showed significant reductions in tracking errors

for the adaptive runs over the nonadaptive runs. Even the 5:1 case with the
payload dominating the dynamics showed reductions on the same order as the
case where the arm masses dominate. Thus it is not clear that by choosing
constant parameters based on the system mass matrix rather than the payload
parameters, the tracking errors would have been reduced significantly for the
1:5 case.
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6.0 CONCLUSIONS

This report has explored one option for improving tracking performance
without resorting to higher control bandwidths. The approach used was to
implement an adaptive controller modeled upon a much simpler system than
that which was actually present. Though the use of a reduced-order model
negated any prospects for the parameters to converge, it was hoped the model
would provide an accurate enough feedforward to improve the tracking
performance significantly over constant gain methods.

What was discovered was encouraging. The adaptive controller was able to
reduce tracking errors substantially over the constant gain approach even for
cases where the payload began to dominate the system dynamics. This meant
that even when only slight perturbations to the four-parameter model used by
the controller were present, the adaptive controller could reduce the tracking
errors significantly, as if a full-order model were being used. Thus even a crude
model like the one used here could offer significant improvement over
nonadaptive methods.

Much work remains to be done on the use of reduced-order models for
tracking control. Though a simple dual arm system has been tested in some
detail, there are many other applications which could benefit from using the
same approach. In particular, the segmentation of a manipulator arm into two
decoupled models for the controller is one area currently under investigation. A
full three-dimensional dual-arm task is also being considered. It is hoped that
reducing the order of the model used by the controller will allow the use of
adaptive control in manipulation tasks once thought too computationally
intensive for model-based control.
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APPENDIX A: SYSTEM EQUATIONS OF MOTION

payload equations of motion:

Me Xe + ge = fe

M e = Pel

L-Pe3Se-Pe4Ce Pe3Ce-Pe4Se

ge

-Pe3Se-Pe4Ce

Pe3Ce-Pe4Se

Pe2

l• IO 1= (-Pe3Se-Pe4Ce)0e 2 = Ce X_e Ce = 0 0 (-Pe3Se-Pe4Ce)0e

0 00 0

ExelXe = Ye

Oe [me1ie

]2e = meXcme

meYcme

Se - sin 0e

Ce = COS e e

arm equations of motion:

M.Q + g =_ +JT.{

M
I Pl +2J1 p4c2+2J2PSC3+2J1 P5c3

= p2+l 1p4c2+212 p5c3+11 p5c23

p3+12P5C3+11 p5c23

C
I1(p4s2+p5s23)
II(p4s2+p5s23)

IlP5S23

12P5S3-11P4S2

12P5S3

12P5S3

io,lg,= 02

e3

P2+J1 p 4C2+ 2J2PsC3+I1 p5C23 P3+J2PSC3+I'I p5c23

p2+212P5C3 p3+12P5C3

p3+I2Psc3 P3

-p5(12s3+lls23)

-12P5S3

0 e12 1



- il +i2+i3+112(m1+m2+m3)+211m1Xcml+122(m2+m3)+212m2Xcm2-

i2+i3+122(m2+m3)+212m2Xcm2
i3

m2Xcm2+12(m2+m3)
- m3Xcm3 -

Sij- sin(qi+qj)
cij = COS(qi+qj )

constraint equations:

Xef f = IlC 1 + 12C12 + 13C123 + x o

Yeff= IlSl + 12S12 + 13S123 + Yo

0elf = ql + q2 + q3

j _ oq_Xeff
I -IlSl -12s12-13s123 -12s12-13s123 -13Sl 23 ]

_ ILC1+12C12+13C123 12C12+13C123 130123 J1 1 1

leseXe=Xeff+ -leSe

-leCeYe = Yeff + lece

ee = eeff

arm A

arm B

arm A

arm B

Je
= _Xe

Jea = I! 0 lece
1 les e

0 1 ] Jeb = ! 0 -lece
1 -les e

0 1



APPENDIX B: PARAMETER UPDATE DYNAMICS

parameter adaptation law:

_e =" F-1 yTs

where Ye (P-e-P-e) = (Me'Me)[Her-X.__.] + (_e-Ce) -Xer

Ye T =

Xerl-_LSl Xer2-_LS2 0

0 0 Xer3-_LS3

-Se (Xe r3-_LS3)-CeX e23 Ce (Xe r3-_LS3)-Se)(e_3 -Se(xerl -_LS1)+Ce(Xer2-XS2)

•. x 2
-Ce(Xer3"_LS3 )+se er3

•" X 2
"Se(Xer3"_LS3 )-Ce er3 -Ce (Xerl-_LS 1)-Se (Xe r2-;LS2)
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Figure 1: Two.arm geometry and coordinates.
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Figure 2: Free-body diagram showing interaction
forces for arms grasping payload.
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Figure 3: Initial (a) and final (b) configurations used in simulations.
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