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Chapter 14
Reliable Broadcast Protocols

T. A. Joseph and K. P. Birman

The distinguishing feature of a distributed program is not just that its various
parts are distributed over a number of processors, but that these parts communi-
cate with one another. The hardware in a distributed system allows a processor to
send messages to other processors; the operating system usually extends this facil-
ity to allow a process on one machine to send messages to a process on another.
The operating system may also provide facilities to set up virtual circuits between
processes and may include protocols that ensure a certain degree of reliability in
the communication. From the point of view of a programming language, how-
ever, these facilities are still rather low-level, and this has led to a search for
appropriate high-level abstractions for inter-process communication. Some
researchers suggest that distribution should be completely hidden from the pro-
grammer. They argue for an abstraction that looks like a global shared memory.
This abstraction has the advantage that it is simple to program with — writing a
distributed program is no different from writing a non-distributed one. However,
hiding distribution is not appropriate for all applications — some applications
need to have explicit knowledge of location, either to obtain fault-tolerance or for
better performance. Moreover, implementing the abstraction of a global shared
memory on a network of computers could be extremely inefficient, especially if the
network is large. It becomes increasingly difficult to justify the overhead of a
shared memory abstraction as the network size becomes larger and a typical
application runs only on a small fraction of the sites in the network.

A commonly used high-level abstraction for inter-process communication is the
remote procedure call (RPC), introduced by Birrell and Nelson (1984). A process
communicates with another using an interface that looks just like a call to a pro-
cedure. The advantage of this abstraction is that it simplifies distributed program-
ming by making communication with a remote process look like communication
within a process. Its limitation, however, is that it can only be employed for two-
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way communication, between a calling process and a called process. Remote pro-
cedure calls are therefore most useful in distributed programs that fit the ‘client-
server’ model —— client processes request services from server processes; server
processes accept such requests and respond to each of them individually. In con-
trast, RPC is not a particularly convenient abstraction when a distributed pro-
gram is composed of a number of processes that have a high degree of inter-
dependence on one another and where the communication among them reflects
this inter-dependence. In such programs the communication often takes place
from one process to a number of processes rather than from a calling process to a
called process, as in RPCs. An example of such a program would be a server that,
for reasons of fault-tolerance or load sharing, is implemented as a group of
processes on a number of sites. It would be convenient if a client requesting a ser-
vice from such a server could send requests to the group as a whole, rather than
being required to know the group’s membership and to communicate with
members on a one-to-onc basis. This is especially important if the server group
could change its membership or location from time to time. Also, if the members
of the group wish to divide up the work of responding to a request, each of them
must ensure that its actions are consistent with what the other members are doing,
and so they will need to communicate with one another. What is needed here is a
facility that enables a process to send a message to a set of processes. We will call
the act of sending a message to a set of processes a broadcast. t

In its simplest form, a broadcast causes a copy of a message to be sent to each
destination process. What makes broadcasts interesting is that they must handle
the possibility that some of the processes taking part in the broadcast may fail in
the middle of a broadcast. For example, a failure of the sender could cause a
broadcast message to be delivered to some but not all of its intended destinations
— a possibility that never occurs when only two processes communicate with
each other. To be useful to a programmer, a broadcast must have well-defined
behaviour even when failures may occur. Broadcasts that provide such guaran-
tees arc called ‘reliable broadcasts.” Reliable broadcasts are implemented using
special protocols that detect failures and/or take compensating actions. The
definition of broadcast used here is general enough to cover protocols like 2- and
3-phase transaction commit protocols, and indeed some of the broadcast proto-
cols described in this chapter are similar to these protocols. The discussion
begins with a description of the system model and the model of failures.

14.1 System model

Ficure 14.1 shows a model of a distributed system. It consists of a number of
processors (sites) connected to one another by a communications network. Each

t T'hus use of the term broadcast does not refer to any hardware broadcast facility. On the contrary, we
assume otuy that the network provides point-to-pount comunurucauon. lf the network does have a
broadcast capabulity, some of the protocols described in thus chapter can take advantage of it.
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Figure 14.1 System model

processor may have a number of user processes executing on it. There is no
shared memory between sites and so the only form of communication between
sites is through the network, which enables messages to be transmitted from any
processor to any other processor in the system. Message transmission is asyn-
chronous: sending and receiving processes do not have to wait for one another
for communication to occur, and message transmission times are variable. Fig-
ure 14.2 shows the structure of the communication sub-system at each site (the
meaning of the arrows will be described later). The communication sub-system
may be part of the operating systemn kernel, a separate system process, part of
the user process, or any combination of these. The issue here is its functwn rather
than its location. The transport layer contains the hardware and the software
that enables a message to be sent from one processor to another. It is assumed
that the transport layer provides reliable, sequenced point-to-point communica-
tion. That is, a message sent from one site to another is eventually delivered
(unless the sending or the receiving site fails), and that messages between any
pair of sites are delivered in the order they were sent. This form of reliability is
achieved using protocols that sequence messages, detect lost or garbled messages
(with high probability), and retransmit such messages. Many such protocols are
described in Tanenbaum (1988).

The broadcast layer implements the facility to send a message from one pro-
cess to a set of processes, possibly on different machines. A process wishing to
perform a broadcast presents the broadcast layer with a message and a list of
destination processes for that message. The broadcast layer uses the destination
list to compute a set of sites that must receive this message, and uses the tran-
sport layer to send a copy of the broadcast message to each of these sites. It typ-
ically includes other information with the message, which is used by the broad-
cast layer at the receiving site. Depending on the broadcast protocol being exe-
cuted, there may be further rounds of communication among the sites before the
message is finally delivered to the destination processes at cach of the sites. In
what follows the site from which a broadcast is made is called its wmuiator, and
the sites to which it is sent its recipients. The arrows in Figure 14.2 shows a pat-
tern of message exchange that could arise when a process at site | does a

ORIGINAL PAGE IS
OF POOR QUALITY



296 T.A. JOSEPH AND K. P. BIRMAN

Application Layer

Broadcast Layer r

Transport Layer

) ]

Site 1 Site 2 Site 3

Figure 14.2 Communication sub-system

broadcast to processes at sites 2 and 3. In this figure, the broadcast layer at site
| sends a message to the broadcast layers at sites 2 and 3, which engage in
further communication with the broadcast layer at site 1 before they deliver the
message to the application.

The protocol executed by the broadcast layer depends on the level of fault-
tolerance it provides and on the way in which it orders the delivery of broadcasts
relative to one another. A number of such broadcast protocols will be con-
sidered and their cost-performance trade offs will be examined, beginning with a
protocol that achieves a simple form of fault tolerance and then moving on to
more complex protocols providing various delivery ordering properties. The
detailed examples will be the broadcast protocols of the ISIS system (Birman
and Joseph (1987a); Birman and Joseph (1987b)), but other, similar protocols
will be discussed in passing.

14.2 Failure model

To talk about reliable broadcasts we must first talk about what kinds of failures
we are uying to overcome. The simplest failure model is the ‘crash model.’ In
this model, the only kind of failure that can occur in the system is that a proces-
sor may suddenly halt, killing all the processes that are executing there. Opera-
tional processes never perform incorrect actions, nor do they fail to perform
actions that they are supposed to carry out. Furthermore, all operational
processes can detect the failure of a processor, much as if there were a special dev-
ice connected to each processor and giving the status — operational or failed —
of all other processors in a mutually consistent manner. For most of this chapter
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it is assumed that only crash failures can occur. There are a couple of reasons
for restricting our attention to crash failures. First, the abstraction of crash
failures can be implemented on top of a system subject to more complex failures
by running an appropriate software protocol. The ISIS failure detector (Birman
and Joseph (1987a)) and the protocol described in Schlichting and Schneider
(1983) are examples of such protocols. Second, techniques are available to
automatically translate a protocol that tolerates crash failures into protocols that
tolerate larger classes of failures (Neiger and Toueg (1988)). Since protocols
that tolerate only crash failures are simpler to develop and to understand, it is
easiest to describe such protocols here, and then to either implement them on top
of an appropriate base layer or to use translation techniques to obtain versions
that are more fault-tolerant.

14.3 Atomic broadcast protocols

One of the simplest properties provided by a broadcast protocol is atomucity, that
is, a broadcast message is either received by a// destinations that do not faii or by
none of them.t Moreover, non-delivery may occur only if the sender fails before
the end of the protocol. An atomic broadcast protocol will never cause a mes-
sage to remain undelivered at some non-faulty destinations if it has been
delivered at some others (even if some destinations fail before the protocol com-
pletes). This is a very useful property because a process that receives such a
broadcast can act with the knowledge that all the other operational destinations
will also receive a copy of the same message. This reduces the danger of a reci-
pient taking actions that are inconsistent with the actions taken by other proces-
sors. Consider the case where a number of processes each maintain a copy of a
replicated set of items and a broadcast is made to these processes requesting
them to add a particular item to this set. If an atomic broadcast protocol is
used, each recipient can add the item to its copy of the set in the knowledge that
all other destinations will do the same, and so their sets will all contain identical
information. Without atomicity, the implementor of the replicated set will have
to take steps to ensure that a failure will not cause some processes to miss
updates, which would result in the copies of the set becoming inconsistent.

At first glance, an atomic broadcast protocol might seem trivial to implement,
especially if the transport layer gives reliable point-to-point transmission. The
initiator could simply send the message to each destination site, and a recipient
could simply deliver it to any destination process at that site. But what happens
if the initiator crashes after it has sent the message to some (but not all) of the
destination sites? This leaves us in precisely the situation that we are trying to
avoid: some destinations have received the message, while others have not. To
make matters worse, the destinations that have not received the message have no

t Some researchers have used the term atormuaty to refer to stronger properties. Here, it is used to mean
all-or-nothing delivery only.



298 T.A. JOSEPH AND K. P. BIRMAN

idea that they should receive one. This means that it is necessary for one or
more of the recipients to detect that the initiator has failed and to forward the
message to the sites that did not receive it. This, of course, also means keeping a
copy of the message around for a while — at least until it is known that all des-
tinations have received it. And, since copies of messages cannot be kept around
forever, some means must also be provided for a recipient to obtain the
knowledge that a message has been received everywhere, so that it can then dis-
card the message. This introduces further complexity. If a duplicate copy of a
message were (o turn up at a site after knowledge about the message was dis-
carded there, it might be (erroneously) delivered a second time. Thus, one needs
to be certain that before the system discards a message, all copies of the message
have been purged from any active processors and communication channels.
What originally seemed to be a trivial problem turns out to be not so trivial
after all!

At the iniuator:

send message m to all sites where there is a destination process
At a site receiving message m:

if message m has not been received already

send a copy of m (o all other sites where there is a destination process
deliver m to any destination process at this site

Figure 14.3 A simple atomic broadcast protocol

Figure 14.3 gives a simple protocol that implements an atomic broadcast that
tolerates crash failures. It is similar to the algorithm in Schneider (1986). When
a site receives a message for the first time, it retransmits a copy of the message to
all the destinations. Hence if a site receives a message and remains operational,
all the destinations will receive a copy of the message. Thus atomicity is
guaranteed. However, this property is achieved at the expense of increased com-
munication because of the retransmissions. The protocol also takes up memory
space because the message (or some part of it) must be stored at a recipient until
all the retransmitted copies arrive, otherwise there will be no way of identifying
these copies as duplicates of the first one. This protocol could be modified to
retransmit messages only if the initiator is seen to fail. Most of the extra com-
munication would then occur only when a failure occurs, which is more reason-
able. But even when failures do not occur, this protocol would incur extra
storage and communication costs. Each recipient must store the message until it
is notified that it has been delivered at all the destinations it was addressed to,
and this notification will require some message overhead. In general, depending
on the properties that it achieves, a broadcast protocol will incur a cost in terms
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of latency (the time between when a message is sent and when it is delivered at
its destinations), communication (because of extra messages or larger messages),
and memory consumed.

14.4 More complex protocols

In the previous section a simple broadcast protocol was discussed that achieves
atomnicity. There are two directions in which one could go to arrive at more
sophisticated protocols. One is to expand the class of failures that the protocol
tolerates. The other is to consider protocols that provide stronger guarantees
than atomicity. An example of a larger class of failures than crash failures is
‘omission failures.’ In this failure model, a faulty processor could crash as before,
or it could remain operational but occasionally fail to send or to receive mes-
sages. This is a realistic way to model processors connected by communications
links that may lose messages, or that are subject to transmission buffer overflows
capable of causing occasional message loss. Interestingly enough, the protocol
described above achieves atomicity even with this class of failures. We could go
even further, and consider failure models like Byzantine failures, where processes
may malfunction by sending out spurious or even contradictory messages. The
rest of this chapter, however, is restricted to crash failures, but considers proto-
cols that are more complex because they achieve stronger properties than atomu-
city. For protocols that deal with omission and Byzantine failures, the reader is
referred to Perry and Toueg (1986), and Lamport, Shostak, and Pease (1982),
respectively.

14.5 Ordered broadcast protocols

When atomicity was introduced, the example of a number of processes cooperat-
ing to maintain a replicated set of items was also considered. Atomicity was seen
to be sufficient to ensure that all the copies of the set contained the same items.
But what if the processes were maintaining a queue of items instead of a set? In
this case, the order of the items is required to be the same in all the copies.
Atomicity is not sufficient here because there are no guarantees of the order in
which different broadcasts will be delivered to different destinations (especially if
they originate from different senders). Given a broadcast protocol that had the
additional guarantee that messages will be delivered in the same order every-
where, implementing a replicated queue is simple: this protocol is used to broad-
cast items to the processes maintaining the queue, and each recipient adds items
to its copy of the queue in the order that it receives them. Atomicity ensures
that all operational copies will contain the same set of items; the ordering pro-
perty ensures that these will be in the same order in all the copies. Without the
ordering property, the implementor of a replicated queue will have to include
code to ensure that all the copies agree on the order in which items arc added to
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the queue, which makes developing this application a more difficult task. The
availability of an ordered broadcast can thus simplify the implementation of
many distributed applications, and much work has been done in developing pro-
tocols for such broadcasts. A few are described here.

If two sites broadcast messages to overlapping sets of destinations, it is possible
for these messages to arrive at the common destinations in different orders. The
essential feature of an ordered broadcast protocol, then, is that an incoming mes-
sage is delivered only when all the recipients have agreed on how to order its
delivery relative to other messages. This usually increases the latency, results in
additional communication, and requires that the message be stored for the dura-
ton of the protocol. The algorithms studied below differ in the way they trade
these costs off against one another.

The first protocol we study was proposed by Dale Skeen and is described in
detail in Birman and Joseph (1987a) under the name ABCAST It operates by
assigning each broadcast a timestamp and delivering messages in the order of
timestamps. (These timestamps need have no relation to real time — all that is
required is an increasing sequence of numbers.) When a site receives a new mes-
sage, it stores it in a pending queue, marking it as undeliverable. It then sends a
message to the initiator with a proposed timestamp for the broadcast. This pro-
posed timestamp is chosen to be larger than any other timestamnp that this site
has proposed or received in the past. (To make the timestamp unique, each site
is assigned a unique number that it appends to its timestamps as a suffix). The
irutiator collects the timestamps from all the recipients, picks the largest of the
values it receives, and sends this value back to the recipients. This becomes the
Jfinal timestamp for the broadcast. When a recipient receives a final timestamp, it
assigns the timestamp to the corresponding message in the pending queue, and
marks the message as deliverable. The pending queue is then reordered to be in
order of increasing timestamps. If the message at the head of the pending queue
is deliverable, it is taken off the queue and delivered. This is repeated until the
queue is empty or the message at the head of the queue is undeliverable (if there
are delivcrable message after this undeliverable one, they remain in the queue
until the messages ahead of them are all delivered or moved after them in the
queue).

Figure 14.4 illustrates how this protocol works. Let us assume that (processes
at) three sites are trying to broadcast messages m,,m; and m; to the same set of
destinations at sites |, 2 and 3. Assume that the largest timestamps seen at sites
I, 2 and 3 are 14, 15 and 16 respectively. Step | shows the messages arriving at
the recipients in different orders. They are all placed in the pending queues
marked as undeliverable (u), with proposed timestamps as shown. Notce how
the site number is used to disambiguate equal timestamps. In Step 2, the sender
of m, collects its proposed timestamps (16.1, 17.2 and 17.3), computes the max-
imum (17.3), and sends this value to the recipients as the final timestamp. The
recipients mark the message as deliverable (d) and reorder their pending queues
as shown. Since there are no undeliverable messages ahead of m, at site 3, m,
can be taken off the queue and delivered there, but it cannot be delivered at

ORIGINAL PAGE IS
OF POOR QUALITY



|4 RELIABLE B. .ADCAST PROTOCOLS 301
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Figure 14.4 The ABCAST protocol
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sites 1 and 2. Step 3 shows the pending queues after the sender of m, sends its
final timestamp, and Step 4 shows the queues after the sender of m; does the
same. At this point, all the messages can be taken off the pending queues and
delivered. Observe that the messages are delivered at all sites in the order m,
m3 and then m;, which was the order of their final timestamps.

The 4BCAST protocol assigns each broadcast a unique final timestamp, and
all messages are delivered in the order of their final timestamps. This ensures
that broadcasts are delivered in the same order at all destinations. Because the
sender picks the /argest of the proposed timestamps, changing the timestamp of a
message from its proposed one to the final one can only cause it to be moved
behind other messages in a pending queue, and never ahead of them. So a mes-
sage mught have to wait for other messages to be delivered before it gets
delivered, but there will never be a situation where it s necessary to deliver a
message before one that has already been taken off the queue and delivered
(which would cause this protocol to fail).

Let us examine the costs associated with this protocol. First, observe that a
message cannot be delivered as soon as it is received; it has to remain in the
pending queue until at least a second round of message exchange has occurred,
and it has been assigned a committed timestamp. It has also to wait for all mes-
sages with smaller timestamps to be delivered. This represents the latency cost.
Second, each broadcast results in a higher communication overhead beyond the
act of sending the message to each destination site. Each recipient must also
send proposed timestamps back to the initiator and the initiator must respond to
all of them with the final timestamp. Finally, the message must be saved in the
pending queue from the time it is received until the time it is delivered. This
represents the storage cost. (Actually, the storage cost is higher than this. Some
information about a message has to be maintained at each recipient until it is
known that it has been delivered at a/ the destinations.)

How this protocol deals with failures has not been described. If a recipient
crashes in the middle of the protocol, the initiator simply ignores it and contin-
ues the protocol without it. If the initiator fails, one of the recipients must take
over and run the protocol to completion. It doesn’t matter which recipient does
this, but if several recipients might take over in parallel, steps must be taken to
ensure that all arrive at the same outcome even in the presence of further
failures. Details of such a mechanism are given in Birman and Joseph (1987a).

Chang and Maxemchuck (1984) describe another family of protocols that
achieve ordered reliable broadcasts. Their protocols do not require the transport
layer to provide reliable point-to-point transmission — unreliable datagrams
suffice because the retransmission of lost messages is built into their protocols. In
these protocols, one member of each group of processes is assigned a token and is
called the ‘token site’. The token site assigns a timestamp for each broadcast,
and broadcasts are delivered at all destinations in the order of their timestamps.
This ensures that all broadcasts to a group are delivered in the same order at all
members of the group. The protocols require that the token be periodically
transferred from site to site. The list of possible token sites (called the ‘token
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list') is maintained at each of the token sites, and a token site passes the token to
the next site in this list. The protocols operate correctly as long as the number
of failures that occur is less than the size of the token list. The sites go through a
‘reformation phase’ whenever the token list has to be changed — either because
of a failure or because a new site is to be added to the list. The different
members in this family of protocols huve different values for the size of the token
list and different rules for when the token is passed to the next site in the token
list. These rules also determine the various costs for the protocols.

In the Chang and Maxemchuck protocols, a message may be commutted and
memory of it discarded only when the token has been passed twice around the
sites in the token list. At the end of the first round, it is known that the message
has been received everywhere, and at this point it becomes safe to begin deliver-
ing copies. At the end of the second round, it is known that the message has
been committed (delivered) everywhere, and processes can safely discard any
status information needed during the protocol. Thus the rate at which the token
is passed from site to site (and the size of the token list) determines the latency
cost as well as storage cost (as information about a message has to be stored until
it is committed). If the token is passed rapidly, the latency and storage costs are
minimized, but unless special hardware can be exploited (such as an ethernet
broadcast), communication costs will go up. The communication costs may be
reduced by passing the wken infrequently, but this increases the latency and
storage costs. In the limit, if the token is never passed, the additional communi-
cation goes down to one acknowledgement message per broadcast, but the
latency and storage costs go up to infinity and fault-tolerance is lost.

There are several recent developments in this general area. Within the ISIS
system, a version of 4BCAST is being implemented that uses clements of the
token-passing approach within a pre-existing ISIS process group. In this scheme,
a reliable protocol is used to disseminate a message to a set of group members.
One of these, the token holder, then performs a second reliable broadcast to
inform recipients of the order in which message delivery should take place. The
two phases use a weakly ordered broadcast that requires only a single round of
communication. The cost is thus comparable to that of ABCAST. However, the
protocol permits an optimization according whereby the token is passed to the
sender of a broadcast as part of the ordering message. If the sender then does a
second ordered broadcast, it can combine the two rounds into a single one, yield-
ing a very substantial performance improvement. One might wonder how this
scheme avoids the token-passing and reformation overhead of the Chang-
Maxemchuck scheme. The reason is that these functions are pushed down into
the mechanisms that ISIS uses for process-group management and to implement
the crash failure abstraction, which impose minimal overhead unless a failure
actually occurs.

Spauster and Garcia-Molina (1989) have proposed a third approach to solv-
ing the message-ordering problem. In their protocol, a tree is superimposed on
the set of processes in the system. To transmit a broadcast, the message is for-
warded to the least common ancestor of the destination processes, which in turn
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uses a reliable FIFO protocol to handle message delivery. As in the modified
ISIS protocot, the cost is low unless a failure occurs, in which case a more com-
plex mechanism is required to reform the tree and complete any broadcast inter-
rupted by the failure. In addition, recent work by Peterson et al. has resulted in
an ordered broadcast implemented on a set of kernel primitives called Pync. A
detailed discussion of the approach can be found in Peterson, Buchholz, and
Schlichting (1989).

Finally, there has been considerable recent interest in the use of ‘optimistic’
protocols, especially in settings where a small set of senders broadcast to large
numbers of destinations. These protocols require the destinations to send nega-
tive acknowledgements when packet loss is detected, and often employ special
hardware features (such as Ethernet multicast) to reduce the number of messages
transmitted. Such approaches make trade offs to reduce communication traffic;
for example, very long delivery latencies are a common problem in optimistic
schemes. Hybrid schemes have also been proposed, for example using Ethernet
multicast for transmission and some modified acknowledgement scheme with
constant cost and limited latency to confirm delivery. A good discussion of these
approaches appears in Stephenson (1989).

14.6 Weaker orderings

Protocols that place a total order on all broadcasts are useful for many applica-
tions, but it has been shown that they entail substantial latency, communication
and storage costs. The natural question that arises is whether or not there are
less expensive protocols that achieve something less than a total order on broad-
casts but which are nevertheless useful for some applications. Within the ISIS
system, much work has been done to develop protocols that provided sufficient
order to obtain consistency in replicated data, but which are asynchronous in the
sense that messages can be delivered as soon as they arrive at a destination
(without waiting for further rounds of communication). The advantage of using
such a protocol to transmit updates to replicated data is that if there is a copy of
the data at the sender site, the latency to update this copy is almost zero (as a
message can be sent from one site to itself with very little overhead). As a result,
a local copy of replicated data can be updated at almost the same rate as a
piece of non-replicated data (with some background overhead because of mes-
sages being sent to the sites with the other copies). We begin with an example.
Figure 14.5 shows processes P and Q sending broadcasts 6, 4, ... to a group
consisting of 4 and B. (The dotted lines represent the passage of time; the solid
lines represent messages being sent.) For some applications, it may not be
important that broadcasts from different processes be delivered in the same
order, and it may be quite acceptable that 4 reccives 4, before 6,, while B
receives b, before b, for example. On the other hand, because 65 and 4, were
sent by the same process P and b, was sent after 44, the broadcast 6, could con-
tain information that depends on 4;. For example, if 4 and B were maintaining



14 RELIABLE BROADCAST PROTOCOLS 305

Figure 14.5 Unordered, FIFO, and causal broadcasts
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a distributed data structure and b3 were a message to initialize this structure and
by were a message that causes this data structure to be accessed, then 4,
depends on 6;. Because of this causal dependency, it is desirable that b, is
delivered after 6, everywhere. The property required here is a FIFO property,
namely that all broadcasts made by the same process are delivered everywhere
in the order that they were sent. This property is achieved automatically if the
transport layer gives sequenced point-to-point communication (provided, of
course, that the messages are sent directly from the initiator to the recipients),
But what if P does a broadcast 45, which then does a remote procedure call to
R, which then does a broadcast ;> Broadcast b is logically part of the same
computation as 65 and could have exactly the same causal dependency on b5 as
by has on b3 (b5 could be a message to initialize a data structure and bg one to
accesses it). Unfortunately, because 45 and b4 originate from different processes,
the FIFO property gives no guarantee about the order in which they will be
delivered. This is especially unfortunate because if bg were a broadcast from
within a local procedure call, a programmer developing this application could
take advantage of the fact that the deliveries would be ordered, but just because
the procedure call happened to be remote, the task becomes far more compli-
cated. What would be useful here is a broadcast protocol that guarantees that if
the initiation of a broadcast 4 is causally dependent (as described above) on the
initiation of a broadcast 4’, then 6 will be delivered after b’ everywhere. We
need to formalize the notion of causal dependency before we can proceed with
the protocol.

An event @ occurring in a process P can affect an event b in a process Q only
if information about a reaches Q by the time # occurs there. In the absence of
shared memory, the only way that such information can be carried from process
to process is through messages that travel between them. Accordingly, as in
Lamport (1978), the potential causality relation a — 4 (4 is potentially causally
dependent on a) can be defined to be the transitive closure of the two relations
— and — defined as follows:

1 2

l. @ =6 if aand b are events that occur in the same process and a occurs
before b.
2. a — b if ais the sending of a message and b is the receipt of the same mes-

sage.

[nformally, if 4 is an event in process P and 4 is an event in process Q, then a—b
if and only if there is a sequence of messages m,, m,, - , m, and processes
P =Py, P, Py ., P, = Q; (n = 0) such that message m, travels from P, _,
to P, and is delivered to P, before m, .| is sent from there. Also, m, is sent from
P after event a occurs there, and m, is delivered to Q before b occurs there. It is
the exustence of this sequence of messages that enables information about a to be
carried to Q and so makes 4 potentially causally dependent on a.
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What s needed. then., is a broadcast protocol that ensures that if
end 5. — wnd 4 b, will be delivered after b, at all overiapping destinations.
The protoces ¢ 77 IST for Causal BroadCAST) described in Birman and Josepn
(1987a, actueves this. The protocol in Peterson, Buchholz. and >chu.chting
1 1989) is similar. The easiest wav to explain the CBCAST protocol is to start
with a grossly inefficient version and derive the actual protocol from it. Imagine
that for each process P the broadcast layer at its site keeps a buffer containing
every message £ has ever sent or received (in order). Any time a broadcast b is
initiated by P. this buffer will then contain every message that could have
causally affected 5. Whenever any message m is sent from a site, the protocol
sends the entire contents of these buffers along with m (in other words, it piggy-
backs the buffers onto m). At the receiving site, the broadcast layer adds the
piggybacked messages to all its buffers {preserving their order, but discarding
duplicates) even if the piggybacked messages are not destined for any process at
that site. It then delivers (in order) any messages destined for processes at that
site. the last of which will be m.

The reason why the protocol described above works s simple. If &, is iru-
tiated by process P at site S and 6, by Q at T and if send (b, ) — sendib,), then
there must be a sequence of messages as described above from Sto 7. The pro-
tocol ensures that 4, will be piggybacked on this sequence of messages (and pos-
sibly on other messages as well) and so 6, wiil reach T and before 6, is sent.
Since 5. will be in Q’s buffer when 4, is sent from there, b, will be piggybacked
on b, and will hence be delivered before 6, at any overlapping destination.

The problem with the scheme described above. of course, is that the amount
of information to be piggybacked grows indefinitely. There are a number of
wavs in which the protocol described above can be improved. First. the buffers
can be maintained on a per-site basis instead of on a per-process basis. This
reduces the storage overhead. Second, a message does not have to be pig-
gybacked to a site if it has been sent there already. More importantly, messages
do not have to be piggybacked once it is known that they have reached all their
destinations. because they will be discarded on arrival anyway. This means that
a message needs to be piggybacked only from the ume a broadcast is inutiated
until the time it reaches at all the destination sites. If we call this ume period 8,
siggvbacking need occur only if broadcasts are being made at a rate of more
thar one every 8 time units. 8 is usually a very small window and so unless
sroadcasts are being made rapidly one after another, there need be very firele
act ..l piggvbacking. The initiator can stop piggybacking a message when its
transport laver recetves an acknowledgement from all the recipients; other sites
must continue to do so until they are informed that the message has reached all
ts destinations. The performance of this protocol thus depends nn how
effectively this information is propagated to sites that have a copy of this mes-
sage. This issue can be avoided by piggybacking a message only on messages
going directly to the destination sites. Other sites are instead sent a small
descriptor that identifies the message. If a destination receives a descriptor
before it receives the actual message, it must wait for the message to arrive
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before delivering any message that may causally depend on it.

Messages sent :"ing the CBCAST protocol can be delivered as soon as they
reach a destination site. There is no need to wait for additional rounds of com-
munication and hence no latency cost (except to the extent that transmitting
larger messages may take a slightly longer time). The protocol requires no addi-
tional messages besides those required to get the message from the initiator to the
destinations, but it does increases the message size. In most systems, the number
of messages (and not their size) is the dominant factor in the communication
costt and so the communication overhead is minimal. The protocol does have a
storage cost because the messages have to be buffered while piggybacking is
going on.

FIFO broadcasts preserve the order of causality in a computation that runs at
one site; causal broadcasts generalize this to distributed computations. Causal
broadcasts can be used to order deliveries when all broadcasts to a group arise
from a computation with a single thread of control, but this thread of controi
may span scveral sites (because of remote procedure calls, for example). They
can also be used when broadcasts to a group arise from different computations,
but these computations have some other form of synchronization relative to one
another. An example of this is broadcasts to a group that arise from within
nested transactions whose sub-transactions may run on different sites. Here, the
broadcasts arising from sub-transactions of any one transaction will be ordered
because they are causally related; broadcasts arising from different transactions
will be ordered because of the concurrency control mechanism used to imple-
ment nested transactions.

14.7 Real-time delivery guarantees

Another property that may be useful in a reliable broadcast protocol is that
delivery will occur within a specified amount of time after the initiation of the
protocol. This is especially useful in real-time systems and in control applica-
tions, where a broadcast that arrives too late may not produce the desired
response. If a broadcast is being made to a set of processes to instruct them to
each begin some action, it might also be desirable that broadcast deliveries occur
within a known time interval of one another, so that their actions take place
with some degree of simultaneity. The protocols described earlier make no such
guarantees — they ensure that broadcasts will eventually be delivered w0 all
non-faulty destinations, but delivery could take arbitrarily long.

Cristian et al. (1986) describe several broadcast protocols that provide real-
time delivery guarantees. For such protocols, one needs to have timing bounds
on various aspects of system behaviour, for example, a bound on the time it
takes for the system to schedule a process for execution, a bound on the time it

t Thus s wrue only up to a point. Ifa message size gets very large, it may have to be fragmented into a
number of smaller packets before being transmitted.
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taxes fur 4 message to travel from one site to another. the ability to schedule an
event to occur within a certain time. and so on. Given such bounds. one can
devise druadcast orotocols by taking into account worst-case uming benaviour.
For exampie. simultaneous delivery can be achieved by umestamping each
broadcast with the sending time ¢ and computing A, the maximum time it can
take for a message to reach a destination. Now, if a broadcast is burfered at
each destination and delivered only at time ¢—J, simultaneous delivery is
achieved. It should be noted that ‘simultaneous’ here means that the processors
will deiiver a broadcast at the same time as read off their own clocks. In practice,
the clocks of individual processors will differ somewhat from real time, and a
broadcast will not be delivered everywhere at exactly the same instant. How-
ever, by using algorithms such as described in Srikanth and Toueg :1987), the
clocks of the various processors can be synchronized to the degree required, thus
achieving the desired level of simultaneity.

The calculation of the constant A must take into account possible differences
in clock values as weil as possible scheduling and message transmission delavs,
and is described in detail in Cristian et a/. (19867, In addition, this calculation
must account for faulty system behaviour. One kind of possible failure is a "um-
ing fault’. Recall that the protocols were based on uming bounds for certain sys-
tem activities. If the system violates these timing bounds (such as when a mes-
sage takes longer to be delivered than the assumed upper bound), a timing fault
occurs. Other classes of failures like omission or Byzantine failures could also be
considered. Cristian ¢ al. (1986) describe protocols to achieve reliable real-ume
broadcasts that tolerate increasingly higher classes of faults, from no fauits at all
to Byzanune faults.

There is a basic difference between these protocols and the ones described car-
lier. The earlier protocols use explicit message transfer to ensure that a broad-
cast has arrived at all its destinations and to agree on an order for its delivery.
These protocols. on the other hand, use the passage of time {and knowledge of
timing bounds on system behaviour) to deduce the same information implicitly.
As a result, the latter protocols will, in general, have a lower communication
cost. However the latency and storage costs are based on worst-case system
behaviour. If the variance in the duration of system events (such as message
transmission; is low and one has accurate estimates of these times, the iatency
and storage costs are likely also to be low. On the other hand, if the variance is
hugh -as would happen if the load on the system is variable), then the fact that
(hese costs are based on worst-case behaviour might make them unacceptably
high. The latency is especially critical, because the perceived speed of an appli-
cation performing broadcasts depends on this. For this reason. recent work on
real-time protocols has been focused on ways to reduce the delay constant A
1nder assumptions that limit the number of various types of faults that can occur
while the protocol 1s executing. With these sorts of assumptions. A can be
brought down into the 100ms range for a small network of fast machines with
closely synchronized internal clocks.
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14.8 Broadcasts to dynamically changing groups

Until now, only broadcasts made to a fixed set of destinations have been con-
sidered. The protocols described above assume that the set of destinations is
known when a broadcast is initiated and that it does not change. For many
applications, it is useful to be able to broadcast a message to a ‘process group’
— a logical name for a set of processes whose membership may change with
time. Such a group may implement some service, like a document-formatting
service or a compile service. The reason for implementing such a service using a
group of processes instead of a single one may be to divide up the work of
responding to a user’s request over a number of machines, to obtain faster
response time by executing a user’s request on the machine best suited to that
particular request, to have the service remain available despite the failures of
some machines, or any combination of these. New members may join the group
as the number of requests on the service increases or as idle machines volunteer
their cycles for the service. Members may leave the group as the load on the
service decreases or when a machine crashes. It is useful if a user of such a ser-
vice can use the process group name to communicate with the service without
needing to know the membership of the group or where the members are
located. »

To implement broadcasts to process groups, the system must provide a facility
for mapping process group names to sets of processes, and provide some seman-
tics for what it means to perform a broadcast to a group whose membership
mught be changing as the broadcast is under way. The V system (Cheriton and
Zwaencpoel (1983)) provides a means to broadcasts to process groups, but there
are no ordering guarantees on broadcast message delivery. Also, if the member-
ship changes as a broadcast is in progress, it is possible for the broadcast to be
delivered to some intermediate set of destinations that is neither the old member-
ship nor the new one. In Cristian (1988), Cristian discusses the problem of
agreeing on group membership in systems that have timing bounds on their
behaviour, and describes a solution based on the protocols described in Cristian
et al. (1986). The ISIS system provides an addressing mechanism that permits
ordered broadcasts to be made to dynamically changing process groups. In
addition to causal or totally ordered message delivery, ISIS guarantees that if
the membership of a process group is changing as a broadcast is under way, the
broadcast message will be uclivered ecither to the members that were in the
group before the change or to those that were in the group after the change, and
never to some intermediate membership. In other words, it is never possible for
a broadcast to a group to be delivered to some processes after they have seen a
change in the group membership and to other processes before they have seen
that change. Let us see why this property is useful.

Figure 14.6 shows processes executing in an environment where broadcast
delivery is not ordered relative to group membership changes. A process P is
using a broadcast to present a task made up of 6 sub-tasks to a group currently
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Figure 14.6 Unordered group membersrip cnanges

consisting of processes 4 and B. The group divides up the task equally, with the
nrst process taking the first set of sub-tasks. and so on. Any deterministic order-
ing on process names may be used — the lexicographic order has been used in
thus example. Let us suppose that P sends the group another similar task around
(ne same time that process C attempts to join the group. The figure shows 4
recenving the task before it knows that C has joined the group. while B and C
recene the task after they see C join. Consequently. 4 divides the task on the
assumption that the group consists of two members, while 8 and C do so on the
assumption that there are three members. The result is an inconsistent division
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of the task. In this case, sub-task 3 gets cxecuted twice (which may or may not
be acceptable), but if this anomaly arose as a member was leaving the group
instead of joining, some sub-tasks might end up not being executed by any
member (which is clearly unacceptable). The only way to avoid this problem is
for the group members to execute some protocol that ensures that they all have
the same view of the group membership before they respond to any request.
However, if the broadcast delivery had been ordered relative to group member-
ship changes, this problem would not have arisen in the first place.

What the example illustrates is that if broadcast delivery is not ordered rela-
tive to group membership changes, and if the members of the group have to
coordinate the actions they take in response to an incoming request, then addi-
tional protocols are needed to ensure that their response is based on consistent
views of the group membership. This would increase the complexity of the algo-
rithms needed and make the task of the person programming such an applica-
tion a difficult one. On the other hand, if broadcast delivery ts ordered relative
to group membership changes, there are no such problems. Each member can
respond to an incoming request based on its view of the group membership, with
the assurance that when the other members receive the same request, they will
all have exactly the same vicw, and will consequently take consistent actions.
Note that group membership may change not only when a process voluntarily
Joins or leaves a group, but also when a process drops out of a group because of
a failure. To be completely useful, the process group mechanism must order
broadcast deliveries with respect to the latter kind of group membership change
as well. This might seem impossible to achieve because the system has no con-
trol over when failures occur, but in fact it can be achieved because what is
important is that each process observes group membership changes and broadcast
deliveries in the same order, or that each process detects failures and broadcast
deliveries in the same order, and not that the failure actually occurs in an ord-
erly fashion. Similar observations have been made for database systems that
manage replicated data in the presence of failures (Bernsrein and Goodman
{1983); Bernstein, Hadzilacos, and Goodman (1987)).

To explain how the process group mechanism is implemented in the ISIS sys-
tem, we will first describe a simplistic mechanism and then show how it may be
modified. For now assume that every site in the system has a table containing
the names of every existing process group and their current membership. When
a process at a site initiates a broadcast to a group, the system simply obtains a
list of the current members from the table at that site and exccutes the relevant
broadcast protocol using that list. When a process joins or leaves a group, the
tables must all be changed. This is done using a special broadcast protocol
whose deliveries are ordered consistently relative to afl other kinds of broadcasts.
In ISIS, the other kinds of broadcast are ABCAST and CBCAST, and the
corresponding special broadcast protocol is called GBCAST (for group broad-
cast). An interlocking mechanism is also required to ensure that broadcasts that
have been initiated using the old membership list are delivered before a
GBCAST is delivered. When a GBCAST is delivered at a site, the table at that
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site s cnanged and ail interested processes are notified of the membershuip
change Since GBCAST is ordered relative to all other broadcasts. all processes
observe membersn:p changes in a way that is ordered consistently with respect to
other broadcast deliveries.

It is impractical to maintain group membership lists on a system-wide basis
and carrv out a svstem-wide broadcast whenever the membership of any group
changes. What ISIS actually does is to maintain information about the
membership of a group at the sites where members reside (member sites) and
optionally at a few other sites (client sites). Membership changes are broadcast
using GBCAST only to member and client sites. This ensures that membership
changes are ordered relative to broadcasts that originate from member or client
sites. If a broadcast is made to a group from a site that is neither a member nor
a client site, the system first obtains the current membership list from elsewhere
(or uses an old but possibly inaccurate cached list) and then executes the
relevant broadcast protocol. This leaves open the possibility that the member-
ship may have changed between when the broadcast message was initiated and
when it is about to be delivered. The system detects this if it happens and does
not deliver the message. Instead, it sends the new membership list to the initia-
tor site. which then restarts the broadcast protocol with this new set of destina-
tions. This protocol will continue to iterate until the membership list remains
unchanged from the time the broadcast is initiated until the tme it 1s debivered.
This kind of iteration increases the possible latency cost. This cost can be
reduced by increasing the number of client sites, but the trade off is that
membership changes now become more expensive.

14.9 Degraded behaviour

The protocols described in this chapter have been designed to be tolerant of
various types of failure and by using them one can achieve a certain degree of
robustness in a distributed system. At the same time, it is important to be aware
of the limitations of these protocols — the assumptions they make, the types of
failures they 4o not handle, and the ways in which their performance may
degrade when failures occur. Each class of broadcast protocols discussed above
makes assumptions about the responsiveness of processors, the way that failures
manifest themselves when they occur, and the way that a failed process or pro-
cessor should be treated subsequent to the failure. Before applying a protocol in
4 given setting, it is important to evaluate the validity of these assumptions in
the intended execution environment.

As an example. consider the protocols that ISIS uses. It was indicated above
that ISIS implements a crash failure model. Specifically, ISIS assumes that pro-
cessors fail by crashing and builds a crash failure detector using a low-level mes-
sage exchange protocol, as described in Birman and Joseph ¢1987a). This low
level protocol. in turn. is tolerant of message loss and duplicate delivery, but not
of partitioning failures. It assumes that processors that continue to send out
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messages are non-faulty, and operates by having processors send *Are you alive?’
messages to other processors whenever they seem to be unresponsive. These
probe messages are sent out sufficiently often to ensure that if a crash does occur,
it will be noticed by some operational processor in a timely fashion. Based on
this, a two-phase protocol is used to manage the processor status information on
which the crash-failure abstraction is based.

From this, it can be seen that ISIS is simply intolerant of failures that cause a
processor to continue executing while sending incorrect messages or violating the
rules of its protocols. If such behaviour occurs, all bets are off. Moreover, if a
processor becomes partitioned from the remainder of the ISIS system, or gets
overloaded to such a degree that it ceases to respond to liveness probe messages,
it will appear to have failed. ISIS handles these cases exactly as for a genuinely
failed processor — by isolating the processor from the rest of the system (any
messages appearing to come from that processor are discarded) and by requiring
that the processor in question explicitly rejoins and is reintegrated into the sys-
tem. Processes executing on the ‘failed’ processor are informed that they have
been isolated from the rest of the system, and are expected to react in a way that
limits the degree of inconsistent behaviour that can occur during the period
before it rejoins the rest of the system. In the current version of ISIS, if several
processors find themselves partitioned from the remainder of the systemn, they
may al/ be forced to undergo such a restart: normal execution is permitted only
in a partition that has a majority of processors in it. An important area for
future work in ISIS is to permit a significant level of processing to continue in
such a partitioned mode and to provide useful tools for merging partitions when
communication is restored.

What are the practical implications of al] this? One is that the ISIS system
should probably not span communication links subject to frequent communica-
tion partitioning. A preferable approach would be to run one copy of ISIS on
cach side of such a link, and use other ‘long haul’ mechanisms to connect appli-
cations that run on both sides. Similarly, since the ISIS approach incurs an
overhead when a site fails or recovers, there are probably limits on the size of
network within which it can be used. However, the ISIS failure detector seems
to scale up to at least one or two hundred machines without imposing a severe
overhead, and this is without any sort of hierarchical scheme — implementation
of this is the obvious next step. On the other hand, the fact that an unresponsive
machine could be considered failed is a potential source of concern. If one were
to overload a collection of machines running these sorts of protocols, some
machines might be treated as if they had crashed, which would serve to exacer-
bate the load on the system. One could speculate about the use of adaptive
methods to deal with this problem more gracefully, but they would certainly
increase the system latency in responding to a failure, and in any case it is
unclear how one would implement such a scheme in a decentralized fashion.
The point here is that serious thought needs to be given to the operational
characteristics of an environment and the manner in which it degrades under
load as a basic part of a decision to use protocols such as these.
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~ir.oar oosaierations apply inthe case of the real-time broadcast protocols.
[Mise oroton- s ~rsure that processors which do not violate timing constraints
Wil feten s L asts correctly, but they do not provide a means for a processor
that viuiates (hese constraints to recognize that it has done so. This is a serious
problem because such a faulty processor could be in an inconsistent state, but
can continue to communicate with the rest of the system. and its subsequent
messages will not necessarily be rejected by the operational processors in the sys-
tem. Thus these protocols can allow information to propagate out of an incon-
sistent processor. and this could compromise the entre system. The reai-ume
orotocols place a number of timing constraints on the system, including limits on
the maximum time before a processor responds to a message, on the time needed
to propagate a message through the network, and on the degree to which proces-
sor clocks are svnchronized. Clearly. these are all constraints that an overloaded
system could violate. It can be argued that this whole issuc limits the use of
real-time protocols to applications where any resuiting inconsistent behaviour
does not compromise the correctness of the system, or where overloads simply
cannot occur. If one adopts the latter assumption, the protocols should only be
used in systems known to operate far from the thresholds at which tming faults
might become common. Otherwise, were the system load to gradually rise
above these thresholds. widespread violations of atomicity might suddenly occur,
leading to a catastrophic failure of the distributed application as a whole.
Although it seems piausible that one could design a class of adaptive real time
protocols immune to this problem, we know of no current research on this topic.

14.10 Conclusion

In this chapter a number of broadcast protocols that are reliable subject to a
variety of ordering and delivery guarantees have-been considered. Developing
appiications that are distributed over a number of sites and. or must tolerate the
failures of some of them becomes a considerably simpler task when such proto-
cols are available for communication. [medeed, without such protocols the kinds
of distributed applications that can reasonably be bult will have a very lirruted
w.pe  As the wend towards distribution and decentralization continues. it will
rot be surprising if reliable broadcast protocols have the same role in distributed
operating systems of the future that message passing mechanisms have in the
operating svstems of today. On the other hand. the problems of engineering
wh a system remain large. For example, deciding which protocol 1s the most
4ppropriate to use in a certain situation or how to balance the latency-
. amurication-storage costs is not an easy question. It is our hope cthat as our
experience with broadcast based systems grows, we will begin to gain insight into

some of these problems.
Even .ackine these sorts of insights, however, the experience of programming
with rehable hroadcast protocols can surprising in many ways. Ar entirely new

form of distributed computing becomes practical. one in which teams of
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processes execute asynchronously but cooperate with one another in a consistent
fashion, sharing computational tasks and backing one another up for fault-
tolerance. Fredrick Hayes-Roth (also known for his work on speech recognition)
recently commented that ‘a revolutionary change in how we think about distri-
buted computing is now within our reach, one that will be every bit as striking
as the transition from black and white to colour when Dorothy steps out of her
aunt’s house into the Land of Oz.’ Having worked with reliable broadcast pro-
tocols and built a system that elevates them to a high level of abstraction, we are
now convinced that reliable broadcasts are the key to this change in perspective.
In the next chapter, some of the reasoning underlying this conviction is explored.
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