LDEF Materials Data Analysis Workshop

(NASA-CP-10046) PROCEEDINGS OF THE LDEF MATERIALS DATA ANALYSIS WORKSHOP (NASA) 289 p

N90-26075

Unclassified

June 23, 0295175

Compiled by
Bland A. Stein
and Philip R. Young

Langley Research Center
Hampton, Virginia

Proceedings of a workshop sponsored by
Langley Research Center and held at
John F. Kennedy Space Center
Kennedy Space Center, Florida
February 13–14, 1990

July 1990

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225
FOREWORD

The National Aeronautics and Space Administration Long Duration Exposure Facility (LDEF) was launched into low-Earth orbit (LEO) from the payload bay of the Space Shuttle Orbiter Challenger in April 1984. It was retrieved from orbit by the Columbia in January 1990. The original flight plan called for a 1-year mission. The extended time in orbit, some 4 years and 10 months longer than originally planned, generally enhanced the value of the 57 LDEF experiments which covered the disciplines of materials, coatings, and thermal systems; power and propulsion; space science; and electronics and optics. LDEF was designed to provide a large number of economical opportunities for science and technology experiments that require modest electrical power and data processing while in space and which benefit from post-flight laboratory investigations of the retrieved experiment hardware on Earth. Most of the materials experiments were completely passive; their data must be obtained in post-flight laboratory tests and analyses.*

The 5-year, 10-month flight of LDEF greatly enhanced the potential value of most LDEF materials, compared to that of the original 1-year flight plan. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) in early 1989 to address the expanded opportunities available in the LDEF structure and on experiment trays, so that the value of all LDEF materials data to current and future space missions would be assessed and documented. (Similar Special Investigation Groups were formed for the disciplines of Ionizing Radiation, Systems, and Meteoroids/Debris.) MSIG was chartered to investigate the effects of the long LEO exposure on structure and experiment materials which were not originally planned to be test specimens and to integrate the

results of this investigation with data generated by the Principal Investigators of the LDEF experiments into the LDEF Materials Data Base. This LDEF Materials Data Analysis Workshop addressed the plans (and those of other LDEF groups) resulting from that charter (and similar charters for the other disciplines). The workshop ran concurrently with the activities surrounding the successful return of the LDEF spacecraft to the NASA Kennedy Space Center. This document is a compilation of the visual aids utilized by the speakers at the workshop.*

The LDEF Materials Data Analysis Workshop had several objectives. Session 1 summarized current information on analysis responsibilities and plans; this information was aimed at updating the workshop attendees: the LDEF Advisory Committee, Principal Investigators (PIs), Special Investigation Group Members, and others involved in LDEF analyses or management. Workshop Sessions 2 and 3 addressed materials data analysis methodology, specimen preservation/shipment/archival, and initial plans for the LDEF Materials Data Base. An equally important objective of this workshop was to stimulate interest and awareness of the opportunities to vastly expand the overall data base by considering the entire spacecraft as a materials experiment. To this end, the voluntary contribution and sharing of samples between PIs and MSIG were encouraged. These samples include both materials on experiment trays which were not intended to be test specimens and material test specimens which are available after the original test objectives have been achieved.

The synergistic effects of atomic oxygen, ultraviolet and particulate radiation, thermal cycling, and vacuum in the 5-year, 10-month LEO exposure of materials on LDEF will produce a data base unparalleled in the history of space environmental effects. Data of this type will not be available again until Space Station Freedom has deployed a materials exposure experiment for more than 6 years. Thus, the LDEF Principal Investigators and Materials Special Investigation Group now have the unique opportunity and responsibility to significantly contribute to spacecraft design, verification of analysis models based on previous in-space and Earth laboratory data on space materials, and planning of space research and development for the 1990s and into the 21st century. This workshop served as one step toward the realization of that opportunity.

Bland A. Stein and Philip R. Young
Co-Chairmen, LDEF Materials Data Analysis Workshop

*Notes: These charts reflect general understanding of space environmental effects on materials, prior to specific analyses of LDEF materials specimens. The LDEF materials analysis plans presented herein are subject to revision as the analyses proceed during the next several years.
CONTENTS

FOREWORD ... iii

INTRODUCTION .. 1
 Bland A. Stein

NASA HEADQUARTERS PERSPECTIVE 7
 Robert J. Hayduk

LDEF DATA ANALYSIS PROJECT OFFICE OVERVIEW 13
 Darrel R. Tenney

LDEF SUPPORTING DATA GROUP PLANS

ENVIRONMENTS AND ORBIT AND ORIENTATION 21
 William H. Kinard

SPACECRAFT THERMAL .. 25
 William M. Berrios

SPECIAL INVESTIGATION GROUP PLANS

METEOROID AND DEBRIS SIG .. 31
 William H. Kinard

SYSTEMS SIG ... 33
 James B. Mason

MATERIALS SIG .. 45
 Bland A. Stein

IONIZING RADIATION SIG .. 63
 Thomas A. Parnell

OVERVIEW OF PRINCIPAL INVESTIGATOR PLANS 95
 James L. Jones, Jr.

SDIO OVERVIEW .. 105
 Wayne E. Ward

MATERIALS DATA ANALYSIS METHODOLOGY OVERVIEW 117
 Bland A. Stein

POLYMERIC MATERIALS CHARACTERIZATION 121
 Philip R. Young
<table>
<thead>
<tr>
<th>CONTENTS (CONCLUDED)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE CHEMISTRY</td>
<td>151</td>
</tr>
<tr>
<td>James Wightman</td>
<td></td>
</tr>
<tr>
<td>ATOMIC OXYGEN</td>
<td>191</td>
</tr>
<tr>
<td>Bruce A. Banks</td>
<td></td>
</tr>
<tr>
<td>MATERIALS SPECIAL INVESTIGATION GROUP MATERIALS ANALYSIS</td>
<td>217</td>
</tr>
<tr>
<td>Gary Pippin</td>
<td></td>
</tr>
<tr>
<td>MSIG/MAPTIS DATA BASE</td>
<td>231</td>
</tr>
<tr>
<td>John M. Davis</td>
<td></td>
</tr>
<tr>
<td>MATERIALS SPECIMEN PRESERVATION AND CONTAMINATION AVOIDANCE</td>
<td>249</td>
</tr>
<tr>
<td>Russell Crutcher</td>
<td></td>
</tr>
<tr>
<td>STORAGE AND ARCHIVAL OF EXTRATERRESTRIAL MATERIAL</td>
<td>273</td>
</tr>
<tr>
<td>Michael E. Zolensky</td>
<td></td>
</tr>
<tr>
<td>WORKSHOP AGENDA</td>
<td>283</td>
</tr>
<tr>
<td>WORKSHOP ATTENDANCE</td>
<td>287</td>
</tr>
</tbody>
</table>
INTRODUCTION

BLAND A. STEIN

NASA - LANGLEY RESEARCH CENTER
WORKSHOP CO-CHAIRMAN

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
LONG DURATION EXPOSURE FACILITY

LONG DURATION EXPOSURE FACILITY
MATERIALS DATA ANALYSIS WORKSHOP

INTRODUCTION

BLAND A. STEIN
NASA - LANGLEY RESEARCH CENTER,
WORKSHOP CHAIRMAN

LDEF MATERIALS DATA ANALYSIS WORKSHOP
NASA - KENNEDY SPACE CENTER
FEBRUARY, 1990
LDEF Retrieval.

LDEF Launch.
LDEF INSPECTION TEAM

LDEF RETRIEVAL OBSERVATIONS FROM DOWNLINK VIDEO, IN-SPACE PHOTOGRAPHS, AND INITIAL KSC OBSERVATIONS

GENERAL

• NO STRUCTURAL DAMAGE
• NO UNANTICIPATED PHENOMENA
• DAMAGE TO THIN FILMS, COATINGS, AND THERMAL BLANKET MATERIALS ON EXPERIMENT TRAYS, PREDOMINANTLY ON:
 - LEADING EDGE
 - SPACE END
• FLOATING DEBRIS VISIBLE NEAR LDEF, ESPECIALLY AFTER GRAPPLE
• MINIMAL DEBRIS IN CARGO BAY; SOLAR CELL MODULE ONLY LARGE PIECE OF DEBRIS FOUND
• LOCALIZED CONTAMINATION ON LDEF SURFACES IN SEVERAL AREAS

MECHANISMS AND SYSTEMS

• ALL FIVE EXPERIMENT EXPOSURE CONTROL CANISTERS (EECCs) ON LDEF CLOSED, AS PLANNED
• A CLAMSHELL CANISTER IS OPEN (PROBABLY CLOSED AND REOPENED)
• MSFC THERMAL CONTROL SURFACES EXPERIMENT (A0069) MECHANISMS APPEAR TO HAVE FUNCTIONED CORRECTLY.

MICROMETEOROID AND DEBRIS EFFECTS

• SIGNIFICANT MICROMETEOROID AND DEBRIS IMPACTS OBSERVED ON EXPERIMENT TRAYS, IMPACTS GENERALLY CONSISTENT WITH EXPECTATIONS.
• NO LARGE, CATASTROPHIC IMPACT EVENTS DETECTED.
• MORE MICROMETEOROID/DEBRIS DAMAGE APPARENT ON LEADING EDGE THAN ON TRAILING EDGE.
• IMPACTS ALSO OBSERVED ON LDEF STRUCTURE.
LDEF INSPECTION TEAM

LDEF RETRIEVAL OBSERVATIONS FROM DOWNLINK VIDEO, IN-SPACE PHOTOGRAPHS, AND INITIAL KSC OBSERVATIONS (CONCLUDED)

ATOMIC OXYGEN EFFECTS

• SIGNIFICANT ATOMIC OXYGEN DEGRADATION OBSERVED ON MOST LEADING EDGE EXPERIMENTS.

• MORE THAN 0.005 INCH DEGRADATION OF KAPTON AND MYLAR FILMS ON LEADING EDGE EXPERIMENTS.

• SURFACES OF SILVER/TEFLON THERMAL BlankETS ON LEADING EDGE TURNED "MILKY" WHITE.

• THERMAL CONTROL PAINT "TARGET SPOTS" REMAINED WHITE ON ENTIRE LEADING FACE OF LDEF.

ULTRAVIOLET RADIATION EFFECTS

• THERMAL CONTROL PAINT TARGET SPOTS DISCOLORED ON TRAILING FACE, EARTH END, AND SPACE END OF LDEF.

INDUCED RADIATION EFFECTS

• INDUCED RADIATION SURVEYS SHOW MEASURABLE RADIOACTIVE ACTIVITY.

• NO THREATS TO HUMAN HEALTH.

LDEF MATERIALS DATA ANALYSIS WORKSHOP

SESSION 1: LDEF DATA ANALYSIS RESPONSIBILITIES AND PLANS

OBJECTIVE: Understanding of the breadth and potential of LDEF experimental and analytical data by LDEF Advisory Committee, Principal Investigators, Special Investigation Groups, and other Workshop Attendees

APPROACH: Presentations and Interactive discussions on

• LDEF
• LDEF Science Office and NASA HQ Management
• Supporting Data Group plans
• Special Investigation Group plans
• Principal Investigator Plans
LDEF MATERIALS DATA ANALYSIS WORKSHOP

SESSION 2: MATERIALS DATA ANALYSIS METHODOLOGY DISCUSSIONS
AND
SESSION 3: MATERIALS ANALYSIS, DATA BASE, AND PRESERVATION

OBJECTIVE: Stimulate interest and awareness of the opportunities to expand the LDEF data base through:
- Understanding the potential of data synergism
- Voluntary contribution of materials which:
 - were not originally planned to be test specimens
 - were duplicate specimens in the experiment
 - are specimens whose initial experiment objectives have been satisfied

APPROACH: Interactive discussions on analysis methodology
- Characterization
- Surface science
- Atomic oxygen
- Contamination
- Other parameters which define (or obscure) the data
- Specimen preservation and shipment
NASA
LONG DURATION EXPOSURE FACILITY

NASA HEADQUARTERS
PERSPECTIVE

ROBERT J. HAYDUK
NASA HEADQUARTERS
LDEF SCIENCE PROGRAM MANAGER

LDEF
MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
NASA HEADQUARTERS PERSPECTIVE OF LONG DURATION EXPOSURE FACILITY

BY

ROBERT J. HAYDUK
LDEF SCIENCE PROGRAM MANAGER
OAST, MATERIALS & STRUCTURES DIVISION

LDEF MATERIALS DATA ANALYSIS WORKSHOP
NASA KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990

LDEF SCIENCE ORGANIZATION
LDEF HISTORY

• LDEF Announcement of Opportunity (OAET-76-1)

• "Solicited Research Experiments in Long Duration Testing in Space" in Areas of Interest to OAET, OSSA, & OSF

• Open to NASA, Universities, Industry, U.S. Government Agencies, & Foreign Participants

• AA OAET Selected Experiments

LDEF - EARLY 80's

• "Laboratory in the Sky"

• Many Flight Opportunities

• Sequential Plan of Experiments
 - Flights: A, B, C, etc.
 - Experiments: Based on Experiments of Prior Flights
 - Develop Large Data Base
LDEF - LATE 80's

- One Flight Opportunity

- LDEF Spacecraft & Experiments
 - Have Higher Interest & Potential-Payoff

- Significant Changes in Science Plan
 200 Principal Investigators
 Plus
 Special Investigation Groups
 - Materials
 - Environmental Stability
 - etc.

LDEF SCIENCE PROGRAM

OBJECTIVE

- Maximize Science Return From LDEF Mission

APPROACH

- Integrated Plan for Data Analysis
- Documentation and Timely Dissemination of Data
- Science Team of International Stature
LDEF SCIENCE

SUMMARY

- LDEF is a unique opportunity to obtain scientific and technological information in collaboration with principal investigators from the United States and nine other countries, four special investigation groups, and three supporting data groups.

- An LDEF data base will be assembled and managed to collect all scientific and technological results. This data base will be accessible to the international scientific community.

- LDEF results will be of significant benefit to future space systems.
NASA
LONG DURATION EXPOSURE FACILITY

LDEF DATA ANALYSIS
PROJECT OFFICE OVERVIEW

DARREL R. TENNEY
NASA - LANGLEY RESEARCH CENTER
CHIEF, MATERIALS DIVISION

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
LDEF DATA ANALYSIS

Darrel R. Tenney
Materials Division
NASA Langley Research Center

LDEF Materials Data Analysis Planning Workshop
NASA Kennedy Space Center
February 13, 1990

LONG DURATION EXPOSURE FACILITY

- Launched - April 1984 Retrieval - January 1990

- 57 Technology, Science, and Applications Experiments
 (More than 10,000 test specimens)

- Participants
 - P.I.'s: >200
 - Industry: 33
 - NASA Centers: 7
 - Country: 9
 - University: 21
 - DOD Labs: 9
 - Special Investigation Groups (Approx. 60 participants)
 (Materials, Systems, Meteoroid/Debris, & Radiation)
LDEF EXPERIMENTS (57 TOTAL)

- MATERIALS AND COATINGS (20 TOTAL)
 - NASA, 11
 - INDUSTRY, 2
 - DOD, 1
 - FRANCE, 4
 - CANADA, 1
 - TEXAS A&M, 1

- PROPULSION, POWER, AND ENERGY (8 TOTAL)
 - NASA, 5
 - WEST GERMANY, 1
 - MORTON THIOKOL, 1
 - McDONNELL DOUGLAS, 1

- INFORMATION SCIENCES AND HUMAN FACTORS (14 TOTAL)
 - NASA, 7
 - UK, 1
 - DOD, 2
 - FRANCE, 4

- SCIENCE (15 TOTAL)
 - NASA, 6
 - DOD, 2
 - UK, 1
 - GERMANY, 2
 - NETHERLANDS, 1
 - FRANCE, 2
 - PARK SEED, 1

LDEF SCIENCE ORGANIZATION

OAET

OAET - RM

LANGLEY

LDEF INSPECTION TEAM

STRUCTURES DIRECTORATE

MATERIALS DIVISION

LDEF ADVISORY COMMITTEE

LDEF SCIENCE OFFICE

SPECIAL INVESTIGATION GROUPS

SUPPORTING DATA GROUPS

PRINCIPAL INVESTIGATORS
LDEF DATA ANALYSIS GROUPS AND FUNCTIONAL RESPONSIBILITIES

LDEF Advisory Committee
- Technical critique of data analyses plans and strategies

LDEF Program Manager
- NASA Hq's. coordination
- Programmatic issues
- International cooperation
- External affairs

LDEF Inspection Team
- Critical inspection of LDEF

Data Analyses Project Office
- Planning and implementation of data analyses

Experiment PI's
- Analyses & reporting of results

Supporting Data Groups
- Quantitative definition of LDEF environment

Special Investigation Groups
- Central analyses & discipline data bases

LDEF ADVISORY COMMITTEE

Membership, February, 1990

- Chairman: J. Garibotti, Ketema
- Executive Secretary: R. Hayduk, NASA Hq.

U.S. Spacecraft Industry
- J. Blumenthal, TRW
- E. Littauer, Lockheed
- S. Greenberg, Aerojet
- H. S. Greenberg, Rockwell
- M. Misra, Martin-Marietta
- G. Wadsworth, Boeing
- H. Babel, McDonnell Douglas
- J. Schiewe, Aerospace Corp.

NASA - User Community
- J. Moacanin, JPL
- K. Faymon, LeRC
- A. Edwards, Space Station Freedom
- D. Wade, JSC
- H. Price, GSFC

Science Community
- J. Wightman, Va. Tech
- J. Lewis, U. Arizona
- R. Naumann, MSFC

Department of Defense
- A. Young, SDIO
- M. Minges, USAF-WRDC
LDEF INSPECTION TEAM

Assess "Normality" of LDEF Spacecraft & Science Experiments

Membership

Chairman - Darrel R. Tenney - LaRC

Bland A. Stein - LaRC
Bill Kinard - LaRC
Lubert Leger - JSC
Ann Whitaker - MSFC
Tom Parnell - MSFC

Dr. William Lehn - WRDC
Lt. Dale Atkinson - AF Weapons Lab.
Bob Hayduk - NASA Headquarters
Jim Mason - GSFC

LONG DURATION EXPOSURE FACILITY
INSPECTION TEAM

REPORT TO OAET MANAGEMENT

DARREL R. TENNEY

NASA - KENNEDY SPACE CENTER
FEBRUARY 8, 1990
PI RELATIONS

- MOU/MOA's - (1) Trays Returned to PI's
 (2) PI's provide data to NASA/Science Community

- Addendum's to MOU/MOA's (Planned)
 -- Identify specific samples/data SIG's require

SUPPORTING DATA GROUPS

Environments: William Kinard, LaRC
2. Particle Fluxes - Gene Benton, San Francisco State Univ.
3. Atomic Oxygen Fluxes - Lubert Leger, JSC
4. Meteoroid and Space Debris Fluxes - Don Humes, LaRC; Don Kessler, JSC
5. Contamination - Lubert Leger, JSC
6. Time Line of Operational Events - Larry Brumfield, LaRC

Spacecraft Thermal: William M. Berrios, LaRC

Orbit and Orientation: Mel Kelly, Analytical Mechanical Associates
SPECIAL INVESTIGATION GROUPS (SIG)

STRATEGY

• Four working groups established (Jan. 1989) to address key technology areas which are broader than individual experiments

• Technical expertise was the principal criteria for selection of participants

• LDEF facilities and experiments studied to identify samples and systems of key interest from a total LDEF perspective

• Contracts established to provide central analyses of samples with state-of-the-art analyses techniques and procedures

• SIG's providing key mechanism to implement cooperative activities between PI's, NASA, and DOD
LDEF DATA ANALYSIS

<table>
<thead>
<tr>
<th>Thrusts</th>
<th>FY-89</th>
<th>FY-90</th>
<th>FY-91</th>
<th>FY-92</th>
<th>FY-93</th>
<th>Expected results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDEF retrieval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Early assessment of space environmental effects</td>
</tr>
<tr>
<td>Environment definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Definition of LDEF mission environment</td>
</tr>
<tr>
<td>LDEF experiment data analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Effects of LDEF exposure on materials & systems</td>
</tr>
<tr>
<td>Special investigations & documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Enhanced models for space environmental effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Space environmental effects handbooks for low earth orbit exposures</td>
</tr>
</tbody>
</table>

Major milestones

1. LDEF retrieval & "quick-look-inspection" findings
2. Supporting data packages to PI's & SIG's
3. LDEF investigator workshop to compare preliminary data
4. LDEF data conference
5. LDEF data & space environmental effects models symposium
6. LDEF materials, systems, & debris effects data bases documented

SHUTTLE FLIGHTS WITH SAMPLE RETURNS

First shuttle launch 4/81
LDEF launch 4/84
Space Station Launch 3/95

1980 STS-3 3/82
EOIM-I (STS-5) 11/82
EOIM-II (STS-8) 9/83
41-G (STS-17) 10/84
Solar Max repair 4/84
1990 LDEF retrieval 1/90
EOIM-III 1991
LDEF retrieval 1991
TDMX-2011 ~1996
NASA
LONG DURATION EXPOSURE FACILITY

LDEF SUPPORTING DATA
GROUP PLANS
- ENVIRONMENTS
- ORBIT AND ORIENTATION

WILLIAM H. KINARD
NASA - Langley Research Center
LDEF Chief Scientist

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP
NASA - Kennedy Space Center
February 13 & 14, 1990
LDEF DATA ANALYSIS TEAM & SUPPORTING DATA GROUP

LDEF Data Analysis Team
Team Leader
William H. Kinard
LDEF Chief Scientist

− Experiment P.I.'s
− Supporting Data Groups
− Special Investigation Groups

− Orbit and Orientation Data Manager
 G. Wei Kelley
− Environments Data Manager
 TBD
− Spacecraft Thermal Manager
 William M. Berrios

− Meteoroid and Space Debris Group Leader
 William H. Kinard
− Induced Radiation Group Leader
 Tom Parnell
− Environmental Effects on Materials Group Leader
 Blaine A. Stein

Environmental Effects on Systems Group Leader
James B. Mason

LDEF FIRST MISSION EXPERIMENTS

CRYSTAL GROWTH
ATOMIC OXYGEN OUTGASSING
ATOMIC OXYGEN INTERACTION
HIGH-TOUGHNESS GRAPHITE EPOXY
RADAR PHASED-ARRAY ANTENNA
COMPOSITE MATERIALS FOR SPACE STRUCTURES
EPOXY MATRIX COMPOSITES
COMPOSITE MATERIALS
METALLIC MATERIALS UNDER ULTRAVACUUM
GRAPHITE-POLYIMIDE AND GRAPHITE-EPOXY
POLYMER MATRIX COMPOSITE MATERIALS
SPACECRAFT MATERIALS
BALLOON MATERIALS DEGRADATION
THERMAL CONTROL COATINGS
SPACECRAFT COATINGS
THERMAL CONTROL SURFACES
TEXTURED AND COATED SURFACES
VARIABLE CONDUCTANCE HEAT PIPE
LOW-TEMPERATURE HEAT PIPE
TRANSVERSE FLAT-PLATE HEAT PIPE
THERMAL MEASUREMENTS
HIGH VOLTAGE DRAINAGE
SOLAR ARRAY MATERIALS
ADVANCED PHOTOVOLTAICS
COATINGS AND SOLAR CELLS
SOLID ROCKET MATERIALS
INTERSTELLAR GAS
ULTRA-HEAVY COSMIC RAY NUCLEI
HEAVY IONS
TRAPPED-PROTON ENERGY SPECTRUM
HEAVY COSMIC RAY NUCLEI
LINEAR ENERGY TRANSFER SPECTRUM
MICROABRASION PACKAGE
METEOROID IMPACT CRATERS
DUST DEBRIS COLLECTION
CHEMISTRY OF MICROMETEOROIDS
MEASUREMENTS OF MICROMETEOROIDS
INTERPLANETARY DUST
SPACE DEBRIS IMPACT
METEOROID DAMAGE
BIOSTACK
SEEDS IN SPACE
STUDENT SEEDS EXPERIMENT
HOLOGRAPHIC DATA STORAGE CRYSTALS
INFRARED MULTILAYER FILTERS
PYROELECTRIC INFRARED DETECTORS
METAL FILM AND MULTILAYERS
VACUUM-DEPOSITED OPTICAL COATINGS
RULED AND HOLOGRAPHIC GRATINGS
OPTICAL FIBERS AND COMPONENTS
ERB EXPERIMENT COMPONENTS
SOLAR RADIATION ON GLASSES
QUARTZ CRYSTAL OSCILLATORS
ACTIVE OPTICAL SYSTEM COMPONENTS
FIBER OPTIC DATA TRANSMISSION
FIBER OPTICS SYSTEMS
SPACE ENVIRONMENT EFFECTS
ENVIRONMENTS DATA

LDEF ENVIRONMENTS DATA GROUP

- TIMELINE OF OPERATIONS
- SOLAR & PLANETARY FLUXES
- PARTICLE RADIATION
- ATOMIC FLUXES
- METEOROID & DEBRIS
- CONTAMINATION

ORBIT AND ORIENTATION DATA

- Initial Orbit -
 - Inclination
 - Perigee Altitude
 - Apogee Altitude
 - Semi-major Axis Altitude

- Time History of Semi-major Axis Altitude Decay

- Orientation and Range of Oscillations About Each Axis
NASA
LONG DURATION EXPOSURE FACILITY

LDEF SUPPORTING DATA
GROUP PLANS
- SPACECRAFT THERMAL

WILLIAM M. BERRIOS
NASA - LANGLEY RESEARCH CENTER
MEMBER, SUPPORTING DATA GROUP

LDEF
MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
LONG DURATION EXPOSURE FACILITY
LDEF

LDEF THERMAL DATA

LDEF THERMAL

TOPICS OF DISCUSSION

• OBJECTIVE
• APPROACH
• EFFECTS OF EXTENDED MISSION
• DATA REDUCTION PLAN
• STATUS
LDEF THERMAL

OBJECTIVE

- VALIDATE THE LDEF THERMAL MODEL
- ASSESS THE EFFECTS OF THE EXTENDED MISSION ON THE LDEF PREDICTED TEMPERATURES
- UPDATE THE LDEF END OF MISSION CALCULATED TEMPERATURES
- PROVIDE SCIENCE COMMUNITY WITH DATA DESCRIBING THE THERMAL ENVIRONMENT EXPERIENCED BY THE LDEF EXPERIMENTS

LDEF THERMAL

APPROACH

- UPDATE THERMAL MODEL ORBITAL PARAMETERS
- COMPARE AND VALIDATE BEGINNING OF MISSION THERMAL MODELS WITH RECORDED FLIGHT TEMPERATURE DATA
- SURVEY THE LDEF SURFACES END OF MISSION A/E PROPERTIES
- UPDATE THE LDEF THERMAL MODELS WITH END OF MISSION A/E PROPERTIES
- RUN END OF MISSION THERMAL MODELS
- PREPARE AND DISTRIBUTE THE LDEF THERMAL DATA PACKAGES
LDEF THERMAL

DATA PACKAGE

• BOUNDARY CONDITIONS
 BEGINNING/END OF MISSION
 ORBITAL PARAMETERS
 HEAT FLUXES
 SURVEY OF THERMAL COATINGS
 LDEF STRUCTURE TEMPERATURES

• CALCULATED LDEF TEMPERATURES
 BEGINNING OF MISSION
 DEPLOYMENT ALTITUDE
 NEW COATINGS
 HOT & COLD CASES
 1 YEAR BETA ANGLE TRACKING

 END OF MISSION
 RETRIEVAL ALTITUDE
 DEGRADED COATINGS
 HOT & COLD CASES
 1 YEAR BETA ANGLE TRACKING

LDEF THERMAL

EFFECTS OF EXTENDED MISSION

• Temperature data recorded for the first year of the LDEF mission. There are no active measurements of the LDEF temperatures for the remainder of the extended mission.

• Data mismatch. There are no recorded end of mission temperatures to correlate with the measured end of mission coatings.

• Uneven degradation of coatings will require increased sampling of thermal coatings in order to characterize their behavior.

• Role of coatings interaction effects on their thermal control performance needs to be characterized.

• On-board passive attitude detectors may be saturated at this time.
LDEF THERMAL

DATA REDUCTION PLAN

• BEGIN MEASUREMENT OF A/E PROPERTIES BY FEBRUARY 20, 1990
• BEGIN UPDATE OF THERMAL MODEL A/E VALUES BY FEBRUARY 23, 1990
• COMPLETE END OF MISSION SURVEY OF THERMAL SURFACES A/E PROPERTIES BY END OF MARCH 1990
• RECEIVE FLIGHT TEMPERATURE DATA BY END OF MARCH 1990
• PRELIMINARY REPORT BY SUMMER 1990
• FINAL REPORT BY WINTER 1990

LDEF THERMAL

DATA REDUCTION STATUS

• ACQUIRED NEW INSTRUMENTATION FOR MEASUREMENT OF SOLAR ABSORPTANCE
• LOCATED INSTRUMENTATION IN THE SAEF II CLEAN ROOM AREA
• LOCATED OPERATIONS CENTER ON SUPPORT TRAILER 633
• OPENED DATA LINE TO LaRC COMPUTING FACILITIES
• PERFORMED INSTRUMENTATION CHECK-OUT
• PERFORMED A/E MEASUREMENTS OF THERMAL PANELS REMOVED FROM THE FACILITY
• PERFORMED A/E MEASUREMENTS OF SILVERED TEFLOM SURFACES ON LOCATIONS A10 & B11
• READY FOR MEASUREMENT OF LDEF THERMAL COATINGS DURING DEINTEGRATION SCHEDULE
LDEF THERMAL
DATA REDUCTION PLAN

PRE-FLIGHT
- COATINGS
- ORBIT PARAMETERS
- ATTITUDE

UPDATE
REVISED LDEF THERMAL MODEL
CALCULATE

POST-FLIGHT
- MEASURED COATINGS
- ATTITUDE
- FLIGHT TEMPERATURES
 + ACTIVE
 + PASSIVE

REVISED CALCULATED TEMPERATURES

COMpare

FLIGHT TEMPERATURES
 + ACTIVE
 + PASSIVE

FINAL LDEF TEMPS

NO

YES

REVISE DATA
NASA
LONG DURATION EXPOSURE FACILITY

SPECIAL INVESTIGATION GROUP
PLANS
- METEOROID AND DEBRIS SIG

WILLIAM H. KINARD
NASA - LANGLEY RESEARCH CENTER
CHAIRMAN, M&DSIG

LDEF
MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
To exploit the wealth of M&D data recorded on the LDEF during the 5 1/2 year space exposure in space by:

- Ensuring that natural meteoroid and man-made debris craters in retrieved LDEF and experiment hardware, which were not originally intended to be meteoroid & debris test specimens, are identified, investigated, and archived for future investigations.

- Coordinating the data obtained by the LDEF meteoroid & debris experiment P.I.'s with the data obtained by this SIG into a single LDEF METEOROID & DEBRIS DATA BASE for use by engineers and scientists in future studies.

MEMBERS OF LDEF M&D SIG

Dr. William H. Kinard (Group Leader)
Mail Stop 356
NASA Langley Research Center
Hampton, VA 23665-5225

MEMBERS:

Lieut. Dale Atkinson
Air Force Weapons Laboratory/NTCAS
Kirtland Air Force Base, NM 87117-6008

Dr. Donald E. Brownlee
University of Washington
Seattle, WA 98102

Dr. Theodore E. Bunch
Mail Stop 239-4
NASA Ames Research Center
Moffett Field, CA 94035

Dr. Vladimir Chobotov
The Aerospace Corporation
M4-948
2350 E. El Segundo Blvd.
P. O. Box 92957
Los Angeles, CA 90245

Mr. Richard Engstrom
POD Associates, Inc.
1850 Trainway Terrace Loop Ave.
Albuquerque, NM 87102

Dr. Fred Horz
Code SN21
NASA Johnson Space Center
Houston, TX 77058

Mr. Donald H. Humes
Mail Stop 493
NASA Langley Research Center
Hampton, VA 23665-5225

Mr. Donald J. Kessler
Code SN31
NASA Johnson Space Center
Houston, TX 77058

Dr. J. A. M. McDonnell
Physics Laboratory
University of Kent at Canterbury
CT2 7NR Kent
UNITED KINGDOM

Mr. Michael J. Mircich, Jr.
Mail Stop 16-1
NASA Lewis Research Center
Cleveland, OH 44135

Mr. Roy A. Taylor
Code EH15
NASA Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

Dr. Ernst Zinner
Washington University
One Brookings Drive
St. Louis, MO 63130

Mr. Herbert A. Zook
Code SN31
NASA Johnson Space Center
Houston, TX 77058

Ms. Martha Alibrooks
5-CUBED
2501 Yale SE, Suite 300
Albuquerque, NM 87066

Dr. Michael Zolensky
Code SN2
NASA Johnson Space Center
Houston, TX 77058

Mr. J-C. Mandeville
CERTONERA-DERTS
Toulouse
FRANCE

Ms. Sally Little
Code SSO
Space Station Freedom Program Office
10701 Parkridge Boulevard
Reston, VA 22091

Dr. Jerry Weinberg
Space Astronomy Laboratory, ISST
1810 NW 6th Street
Gainesville, FL 32609

Mr. Thomas H. See
C23
Lockheed/JSC
2400 NASA Road 1
Houston, TX 77058-3711

Mr. Charles G. Simon
Washington University
Campus Box 1105
1 Brookings Drive
St. Louis, MO 63130
NASA
LONG DURATION EXPOSURE FACILITY

SPECIAL INVESTIGATION GROUP
PLANS
- SYSTEMS SIG

JAMES B. MASON
NASA - GODDARD SPACE FLIGHT CENTER
CHAIRMAN, SSIG
AND
JOEL EDELMAN AND HARRY DURSCH
SSIG SUPPORT

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
LDEF SPACE ENVIRONMENTAL EFFECTS ON SYSTEMS

SPECIAL INVESTIGATION GROUP

MATERIALS SIG
- B. Stein

RADIATION SIG
- T. Parnell

DEBRIS SIG
- W. Kinard

SYSTEMS SIG
- J. Mason

EER SUPPORT
- J. Edelman

BOEING SUPPORT
- H. Dursch

LARC
- W. Kinard

Principal Investigators

DATA MGFS

SIG COMMITTEE

NASA/SSSF
- S. Little

NASA GSFC
- J. Mason
- R. McIntosh

NASA MSFC
- M. Martin

NASA LEWIS
- L. Kaszubinski

NASA LaRC
- F. Staggs
- J. Gowdey

NASA JSC
- W. Killingsworth

CNES/France
- F. Jamin-Changeart

JPL
- R. Scott

DOD/AFWL
- E. Taylor

NASA KSC
- D. Zimmerman

DOD/SDI/O/WPAFB
- T. Trumble

AEROSPACE
- K. Scott
INVESTIGATE THE EFFECTS OF THE NEARLY SIX YEAR EXPOSURE IN SPACE ON LDEF AND EXPERIMENT SYSTEMS.

COORDINATE THE DATA FROM THE ANALYSIS OF THE LDEF AND EXPERIMENT SYSTEMS INTO A SINGLE LDEF SYSTEMS DATA BASE.

LDEF SYSTEMS SIG

OBJECTIVE

- DEVELOPMENT OF THE LDEF SYSTEMS DATA BASE
SYSTEMS SIG

ROLE OF LDEF SYSTEMS SIG:

• DEFINE LDEF DATA BASE REQUIREMENTS
• DEFINE LDEF SYSTEMS FOR ANALYSIS AND MEASUREMENT
• DEFINE MEASUREMENT PROGRAM FOR SELECTED SYSTEMS
 – LDEF STRUCTURE AND SUBSYSTEMS
 – EXPERIMENT TRAYS
 – MATERIAL USED IN BUILDING OF LDEF AND EXPERIMENTS (e.g., SPARES)
• DEVELOP INSPECTION, HANDLING, TESTING AND REPORTING PLANS AND PROCEDURES
• COORDINATE WITH AND SUPPORT PROJECT, SIGs, AND EXPERIMENTER ACTIVITIES
• COLLECT AND DOCUMENT SYSTEMS DATA BASE

THREE INVESTIGATION PHASES

I. PLANNING EFFORT

II. KSC OPERATIONS

III. POST-KSC TESTING AND DATABASE DEVELOPMENT
LDEF SYSTEMS SIG INVESTIGATION PLAN

1.0 Introduction
2.0 Requirements
 2.1 Objectives, Rationale, Prioritization Considerations
 2.2 Data
 2.2.1 Data Development
 2.2.2 Data Management and Dissemination
 2.3 Hardware Systems Identification
 2.4 Standard Test Plans
3.0 Implementation
 3.1 Implementation Team
 3.2 Implementation Timeline
 3.2.1 Pre-inspection Activities
 3.2.1.1 KSC-provided Equipment
 3.2.1.2 Boeing-provided Equipment
 3.2.2 General Inspection
 3.2.3 Experiment and LDEF Systems Deintegration
 3.2.4 Post-KSC Operations
 3.3 Configuration Management

Appendix A KSC Operations Procedures
Appendix B Individual Experiment Test and Implementation Plans/Procedures
Appendix C System SIG/Boeing Personnel
Appendix D Nomarski Analysis

SYSTEMS SIG
DATA BASE CONTRIBUTORS

DATA SOURCES

SYSTEM SIG DATA

SYSTEM SIG-INSPIRED OUTSIDE DATA

DATA BASE

PIs, DATA GROUPS, OTHER SIGs DATA
LDEF SYSTEMS FLIGHT HARDWARE

STANDALONE

- LDEF STRUCTURE
- VISCOS MAGNETIC DAMPER
- TRUNNIONS/GRAPPLE FIXTURE
- EXPERIMENT INITIATE SYSTEM (EIS)
- EXPERIMENT INITIATE BOX (EIB)

SHARED

- STANDARD EXPERIMENT POWER AND DATA SYSTEM (EPDS):
 - DATA PROCESSOR CONTROL ASSEMBLY (DPCA)
 - MAGNETIC TAPE MEMORY UNIT (MTM)
 - LIS02 BATTERY POWER SOURCE
- EXPERIMENT EXPOSURE CONTROL CANISTER (EECC): WITH LIS02 BATTERIES
- EXPERIMENT TRAYS (CLAMPING ARRANGEMENT)

LDEF EXPERIMENT SYSTEMS

<table>
<thead>
<tr>
<th>EXPER</th>
<th>KSC</th>
<th>LIS02</th>
<th>OTHER</th>
<th>EPDS</th>
<th>ECEC</th>
<th>ELEC</th>
<th>OPT</th>
<th>MECH</th>
<th>THER</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ISU2E</td>
<td>OTHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 0038</td>
<td>MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PYRO CABLE CUTTER, FLIP UP MECH</td>
</tr>
<tr>
<td>A 0054</td>
<td>PWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH VOLTAGE EQUIP, COULOMETER</td>
</tr>
<tr>
<td>A 0075</td>
<td>PWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VARIABLE CONDUCTANCE HT PIPES</td>
</tr>
<tr>
<td>A 0133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RADAR ANTENNA, SOLID STATE MEMORY</td>
</tr>
<tr>
<td>A 0138-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PRECOPA</td>
</tr>
<tr>
<td>A 0139-A</td>
<td>MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEALED CRYSTAL DEWERS</td>
</tr>
<tr>
<td>A 0180</td>
<td>PWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEALED CASSETTE RECORDER</td>
</tr>
<tr>
<td>A 0187-1</td>
<td>MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CLAM SHELL AND ELECTROMECHANISMS</td>
</tr>
<tr>
<td>A 0201</td>
<td>PWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUN SENSOR</td>
</tr>
<tr>
<td>M 0003</td>
<td>MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALL SYSTEMS TYPES</td>
</tr>
<tr>
<td>M 0004</td>
<td>PWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FIBER OPTICS ELECTRONICS</td>
</tr>
<tr>
<td>M 0006</td>
<td>PWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPTICAL SURFACES</td>
</tr>
<tr>
<td>P 0003</td>
<td>PWR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>THERMOCOUPLES, EXTENSIVE HARNESS</td>
</tr>
<tr>
<td>S 0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EECC ACCESSIBLE AT JPLC</td>
</tr>
<tr>
<td>S 0014</td>
<td>MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PV CELLS, SUN SENSOR, RADICIPETER</td>
</tr>
<tr>
<td>S 0069</td>
<td>MANUAL</td>
<td>LCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAROUSEL, OPT SYSTEM, THERMAL SYSTEM</td>
</tr>
<tr>
<td>S 1001</td>
<td>PWR</td>
<td>NCd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOLAR ARRAY, POWER SYSTEM, HT PIPES</td>
</tr>
<tr>
<td>S 1002</td>
<td>MANUAL</td>
<td>LCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOLAR CELLS, QCM</td>
</tr>
<tr>
<td>S 1005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEAT PIPES</td>
</tr>
<tr>
<td>7 PASSIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MANUAL VALVES, SEALS</td>
</tr>
</tbody>
</table>
STANDARD TEST PLAN OUTLINE

I. GENERAL
 A. Review and Inspection
 1. Preliminary Review
 2. Visual Inspection
 3. Initial Data Review
 B. Calibration
 1. General
 2. Calibration Certification
 3. Accumulative Errors
 4. Statement of Accuracy
 C. Contamination

II. ELECTRICAL
 A. Electrical Systems
 1. Component examination and failure analysis
 2. Systems and subsystems functional testing
 3. Circuit board evaluation
 B. Power
 1. Batteries
 2. Solar Cells
 3. Power management and control components
 4. High voltage insulators/dielectrics
 C. Wire Harnesses

III. OPTICAL
 A. Glasses/Substrates/Filter
 B. Sources/Detectors/Radiometers
 C. Fiber Optics

IV. MECHANICAL
 A. Structures
 B. Mechanisms
 C. Electro-Mechanical/Servo
 D. Instrumentation

V. THERMAL
 A. Insulation
 1. Non-metallic insulators
 2. Thermal blankets
 B. Surfaces
 C. Instrumentation
LDEF SYSTEMS SIG
DATA BASE COMPOSITION

- Vendor and OEM specifications for systems, assemblies, parts and materials
- As-built drawings, schematics, and parts lists
- Pre-flight procedures
- Pre-flight parts screening and failure analysis data
- Pre-flight acceptance, qualification and performance test data
- Pre-flight control sample test data and storage history data
- Environmental data from supporting data groups
- Flight operational history
- Support equipment calibration data
- Post-flight test plans, procedures, and supporting data
- Post-flight failure/degradation analysis reports
- Post-flight measured data

LDEF DATA ANALYSIS REPORT
OUTLINE

1 Introduction and Background
 LDEF Systems SIG
 Investigation Plan
 Data Package Format

2 Investigation Results
 General Systems
 Summary of the Investigation
 Abstracts of Specific Studies
 LDEF Systems
 Experimenter Samples
 Electrical Systems
 Summary of the Investigation
 Abstracts of Specific Studies
 LDEF Systems
 Experimenter Samples
 Mechanical Systems
 Summary of the Investigation
 Abstracts of Specific Studies
 LDEF Systems
 Experimenter Samples
 Optical Systems
 Summary of the Investigation
 Abstracts of Specific Studies
 LDEF Systems
 Experimenter Samples
 Thermal Systems
 Summary of the Investigation
 Abstracts of Specific Studies
 LDEF Systems
 Experimenter Samples

3 Cross Reference Tables and Indices

4 Assessment of the Investigation Plan
MONTHLY REPORT

OBJECTIVES

• DISSEMINATION

• SOLICITATION

MONTHLY REPORT

CONTENTS

• DATABASE STATUS
• RECENT EVENTS AND OBSERVATIONS
• PROGRAM/PROJECT COMMENTARY AND NEWS
• SIG(s) STATUS REPORT(s)
• SDIO COMMENTARY AND NEWS
• EXPERIMENTER PUBLICATION NOTICES/ABSTRACTS/NEWS
• SCHEDULE/EVENTS/MEETINGS
• PEOPLE/TRANSITIONS
LDEF SYSTEMS

PRIMARY STRUCTURE:

INTEGRATE SSIG-DEVELOPED PLANS INTO PROJECT OFFICE PROCEDURES

- VISUAL INSPECTION, WELD INSPECTION, BOLT REMOVAL
- LDEF COMPONENTS FOR STRUCTURAL ANALYSIS AT BOEING
- NO POST-FLIGHT MODAL, WEIGHT AND ALIGNMENT MEASUREMENTS

EXPERIMENT INITIATE SYSTEM (EIS)

SSIG PROPOSED VERIFICATION OF EIS RELAY STATUS PRIOR TO TRAY REMOVAL

- DISCONNECT OUTPUT CABLE AT EIS, PERFORM CONTINUITY TESTS
- MULTIMETER WILL NOT ACTIVIATE RELAYS
- ALL TEST RESULTS RELEASED TO P.O.
- FOUR EXPERIMENTS PER CONNECTOR
- NEED PI CONSENT

LDEF SYSTEMS

ENVIRONMENTAL EXPOSURE CONTROL CANISTER (EECC)

- PI'S WITH CANNISTERS HAVE BEEN CONTACTED AND COMMENTS INCORPORATED
- CANNISTER INTERNAL PRESSURE, SURGE CURRENT, SEAL, MECHANISM, HARNESS AND CONNECTORS

EXPERIMENT POWER AND DATA SYSTEM (EPDS)

- START-UP, FUNCTIONAL TESTING

VISCOUS DAMPER

- LDEF PROCEDURE FOR REMOVAL
- JSC AND/OR OEM (GE) WILL PERFORM POST-FLIGHT TESTING

GRAPPLE (ACTIVE & PASSIVE)

- JSC AND/OR OEM (SPAR) WILL PERFORM POST-FLIGHT TESTING

BATTERIES

- PROJECT OFFICE PROCEDURES GOVERN REMOVAL
- DISCHARGE EVALUATION ADDED TO NO-LOAD TESTING
INDIVIDUAL EXPERIMENT AND IMPLEMENTATION PLANS

- EXPERIMENT NO. AND TITLE
- NAME & PHONE NO. OF PI CONTACTED
- LOCATION OF EXPERIMENT ON LDEF
- DESCRIPTION OF HARDWARE OF SYSTEM SIG INTEREST
- RESULTS OF DISCUSSIONS WITH PI
- PROPOSED TEST PLAN FOR EVALUATION OF SYSTEM HARDWARE AT KSC
- POST KSC TEST PLAN AND SCHEDULE
- IDENTIFICATION OF PREFLIGHT AND CONTROL HARDWARE
- NECESSARY ACTION ITEMS PRIOR TO THE GENERAL INSPECTION AT KSC
- EDITORIAL COMMENTS
NASA
LONG DURATION EXPOSURE FACILITY

SPECIAL INVESTIGATION GROUP
PLANS
- MATERIALS SIG

BLAND A. STEIN
NASA - LANGLEY RESEARCH CENTER
CHAIRMAN, MSIG

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
LONG DURATION EXPOSURE FACILITY
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)

MATERIALS DATA ANALYSIS PLAN

BLAND A. STEIN
NASA - LANGLEY RESEARCH CENTER,
CHAIRMAN, LDEF MSIG

LDEF MATERIALS DATA ANALYSIS WORKSHOP
NASA - KENNEDY SPACE CENTER
FEBRUARY, 1990

LONG DURATION EXPOSURE FACILITY
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)

CHARTER

• INVESTIGATE THE EFFECTS OF THE 5.5-YEAR EXPOSURE IN LEO ON LDEF STRUCTURAL AND EXPERIMENT MATERIALS WHICH WERE NOT ORIGINALLY PLANNED TO BE TEST SPECIMENS

• INTEGRATE THE DATA/ANALYSES FROM THE MATERIALS EXPERIMENT TEST SPECIMENS (GENERATED BY THE PIs) WITH THE MATERIALS DATA GENERATED BY MSIG INTO AN LDEF MATERIALS DATA BASE
<table>
<thead>
<tr>
<th>NAME</th>
<th>AFFILIATION</th>
<th>ROLE/EXPERTISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bland Stein</td>
<td>NASA - LaRC</td>
<td>Chairman</td>
</tr>
<tr>
<td>Lubert Leger</td>
<td>NASA - JSC</td>
<td>Atomic Oxygen</td>
</tr>
<tr>
<td>Ann Whitaker</td>
<td>NASA - MSFC</td>
<td>Atomic Oxygen</td>
</tr>
<tr>
<td>Wayne Stuckey</td>
<td>Aerospace Corp.</td>
<td>Contamination and Radiation</td>
</tr>
<tr>
<td>Bruce Banks</td>
<td>NASA - LeRC</td>
<td>Atomic Oxygen</td>
</tr>
<tr>
<td>Wayne Slemp</td>
<td>NASA - LaRC</td>
<td>Radiation, Coatings</td>
</tr>
<tr>
<td>Jack Berengoltz</td>
<td>NASA - JPL</td>
<td>Contamination</td>
</tr>
<tr>
<td>Jack Triolo</td>
<td>NASA - GSFC</td>
<td>Space Materials and Coatings</td>
</tr>
<tr>
<td>Lou McCreight</td>
<td>Aerospace Corp.</td>
<td>Space Materials</td>
</tr>
<tr>
<td>Charles Bersch</td>
<td>IDA/SDIO</td>
<td>Space Materials</td>
</tr>
<tr>
<td>Tom Crooker</td>
<td>NASA - HQ</td>
<td>Space Materials</td>
</tr>
<tr>
<td>Phil Young</td>
<td>NASA-LaRC</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>Paul Sagalyn</td>
<td>Army MTL</td>
<td>Radiation</td>
</tr>
<tr>
<td>Sally Little</td>
<td>NASA-SSFPO</td>
<td>Space Materials</td>
</tr>
<tr>
<td>John Davis</td>
<td>NASA-MSFC</td>
<td>MAPTIS Data Base</td>
</tr>
<tr>
<td>Rod Tennyson</td>
<td>U. Toronto</td>
<td>Space Materials</td>
</tr>
<tr>
<td>Francois Levadou</td>
<td>ESTEC</td>
<td>Space Materials, Environmental Effects</td>
</tr>
<tr>
<td>Alain Paillous</td>
<td>CERT</td>
<td>Space Materials</td>
</tr>
<tr>
<td>Lou Teichman</td>
<td>NASA-LaRC</td>
<td>Executive Secretary</td>
</tr>
<tr>
<td>Jim Mason</td>
<td>NASA - GSFC</td>
<td>Liaison with Systems SIG</td>
</tr>
<tr>
<td>Bill Kinard</td>
<td>NASA - LaRC</td>
<td>Liaison with Meteoroid and Space Debris SIG</td>
</tr>
<tr>
<td>Tom Parnell</td>
<td>NASA - MSFC</td>
<td>Liaison with Induced Radiation SIG</td>
</tr>
</tbody>
</table>
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP

ANALYSIS AND DOCUMENTATION PLAN

• SYSTEMATICALLY EXAMINE IDENTICAL MATERIALS IN MULTIPLE LOCATIONS AROUND LDEF TO ESTABLISH DIRECTIONALITY OF ATOMIC OXYGEN EROSION, THERMAL EFFECTS, AND ULTRAVIOLET RADIATION DEGRADATION

• ANALYZE SELECTED SAMPLES FROM LDEF "NON-MATERIALS" EXPERIMENTS

• ESTABLISH CENTRAL MATERIALS ANALYSIS CAPABILITY
 - STANDARDIZED, NON-CONTAMINATING PROCEDURES FOR
 SAMPLING/SHIPPING/ARCHIVING
 - UNIFORM TEST/ANALYSIS PROCEDURES
 - BASIS FOR ASSESSMENT OF LABORATORY-TO-LABORATORY VARIATIONS IN MATERIALS DATA

• FOCAL POINT FOR COORDINATION OF ALL LDEF MATERIALS ANALYSES
 - SPONSOR LDEF MATERIALS WORKSHOPS/SYMPOSIA
 - GENERATE UNIFIED LDEF MATERIALS DATA BASE, INCLUDING DATA FROM PRINCIPAL INVESTIGATORS, SUPPORTING DATA GROUPS, AND SPECIAL INVESTIGATION GROUPS
LDEF Data Analysis

<table>
<thead>
<tr>
<th>THRUSTS</th>
<th>FY-89</th>
<th>FY-90</th>
<th>FY-91</th>
<th>FY-92</th>
<th>FY-93</th>
<th>EXPECTED RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDEF Retrieval</td>
<td>Planning, Retrieval and Inspection</td>
<td>LDEF Supporting Data</td>
<td>INDIVIDUAL EXPERIMENT ANALYSES BY PRINCIPAL INVESTIGATORS</td>
<td></td>
<td></td>
<td>• EARLY ASSESSMENT OF SPACE ENVIRONMENTAL EFFECTS</td>
</tr>
<tr>
<td>Environment Definition</td>
<td>LDEF Supporting Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• DEFINITION OF LDEF MISSION ENVIRONMENT</td>
</tr>
<tr>
<td>LDEF Experiment Data Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• EFFECTS OF LDEF EXPOSURE ON MATERIALS AND SYSTEMS</td>
</tr>
<tr>
<td>Special Investigations and Documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• ENHANCED MODELS FOR SPACE ENVIRONMENTAL EFFECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• SPACE ENVIRONMENTAL EFFECTS HANDBOOKS FOR LOW EARTH ORBIT EXPOSURES</td>
</tr>
</tbody>
</table>

Major Milestones

- **LDEF Retrieval and "Quick-Look Inspection" Findings**
- **Supporting Data Packages to PIs and SIGs**
- **LDEF Investigator Workshop to Compare Preliminary Data**
- **LDEF Data Conference**
- **LDEF Data and Space Environmental Effects Models Symposium**
- **LDEF Materials, Systems, and Debris Effects Data Bases Documented**
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
- KEY MILESTONES -

• SELECT MSIG PARTICIPANTS, JANUARY 1989; HOLD 4 MEETINGS IN 1989
• ADOPT MSIG PHILOSOPHY, MARCH 1989
• RECOMMEND SECURITY POLICY REGARDING MATERIALS INFORMATION TO LDEF PROGRAM OFFICE, APRIL 1989
• SELECT CONTRACTOR, INITIATE TASK CONTRACT FOR MATERIALS TESTS AND ANALYSES, MAY, 1989:
 - IDENTIFY ANALYSIS TECHNIQUES, JULY 1989
 - DEVELOP SPECIMEN SELECTION PLANS, AUGUST 1989
 - DEVELOP INITIAL SPECIMEN PRESERVATION PLANS, OCTOBER 1989
 - PRE-/POST-RETRIEVAL LIAISON WITH PIs, MAY 1989 - MARCH 1990
• SUGGEST CONTAMINATION MONITORING METHODOLOGY TO LDEF PO, SEPTEMBER 1989
• PROVIDE ATOMIC OXYGEN FLUX ESTIMATES AND PHOTOGRAPHIC SURVEY RECOMMENDATIONS TO LDEF PO, OCTOBER 1989
• DEVELOP MSIG DETAILED TEST PLAN, OCTOBER - DECEMBER 1990

LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
- KEY MILESTONES (Continued) -

• PLAN LDEF MATERIALS DATA ANALYSIS WORKSHOP, NOVEMBER - DECEMBER 1989
• DETERMINE UTILITY OF NASA-MSFC MAPTIS DATA BASE CAPABILITY FOR LDEF MATERIALS DATA BASE, JANUARY 1990
• RETRIEVE LDEF; FERRY TO KSC; INITIAL INSPECTIONS, JANUARY - FEBRUARY 1990
• CHAIR LDEF MATERIALS DATA ANALYSIS WORKSHOP AT KSC, FEBRUARY 1990
• OBTAIN MSIG SPECIMENS, FEBRUARY - MARCH 1990
• DATA GENERATION, DATA ANALYSIS, AND DATA BASING, 1990 - 1992
• MSIG REPORTS AT LDEF AND OTHER CONFERENCES, 1990 - 1993
• DEFINE, WITH PIs AND OTHER SIGs, MATERIALS DATA BASE, 1991 - 1992
• COLLATE AND DOCUMENT LDEF MATERIALS DATA BASE, 1992 - 1993
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)

- TEST PLAN OUTLINE* -

* GOALS AND PROCEDURES
* PRE-RECOVERY PREPARATIONS
* NASA - KSC OPERATION REQUIREMENTS
* ON LINE/OFF LINE EXAMINATION PROCEDURES
* IDENTIFICATION OF PRIORITY MATERIALS
* ANALYSIS/TEST PLAN FOR EACH MATERIAL TYPE
* SAMPLE HANDLING/PACKAGING/SHIPPING
* CONTAMINATION CONTROL
* LDEF MATERIALS DATA BASE
* KEY PERSONNEL
* SCHEDULE

* SEE TEST PLAN DOCUMENT FOR DETAILS
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
TEST PLAN

- GOALS AND PROCEDURES* -

GOALS

- Investigate the effects of LDEF exposures on spacecraft materials, especially those not originally intended to be material specimens
- Develop engineering data for spacecraft design
- Define mechanisms of material degradation

- Coordinate data from PIs, MSIG, and other SIGs into LDEF materials database
 - Effects of position on LDEF, orientation of LDEF, position on experiment tray
 - Comparisons with control specimen data
 - Laboratory-to-laboratory data variability

PROCEDURES

- Essential tasks at KSC de-integration
 - Detailed photographic and high-resolution video surveys of surfaces
 - Define contamination
 - Work closely with other SIGs and PIs
 - Collection and preservation of some specimens
 - Definition of additional MSIG specimens

- Extensive testing and analyses at Boeing Aerospace under contract NAS1-18224, Task 12
- Computerized data bases plus handbook(s)

* SEE TEST PLAN DOCUMENT FOR DETAILS
BOEING AEROSPACE MANAGEMENT PLAN

Program Manager
Sylvester Hill

Technical Leader
Gary Pippln

Engineering Staff
Harry Dursch

- **MSIG (TRCO)**
- **Other SIGs**
- **Principal Investors**

Mechanical Property Testing and Analysis
- Herb Lenhart
 - NDE Technologies
 - Brian Lempriere
 - Ultrasonic
 - Jim Nelson
 - Cat Scan

Chemical/Surface Analysis
- Wally Plageman

Contamination Control
- Ross Crutcher

Analysis Support
- Derek Mahaffey
- Plasma Effects
- Ray Rempt
- Atomic Oxygen
- Peter Majewski
- Meteroid and Debris Impact

Combined Effects Simulation
- Larry Fogdal

In-Situ Optical Measurements
- Chris Shaw

On-Site Support
- Operations Personnel

Photovoltaics & Electronic Device Evaluation
- Walt Devaney

LDEF MATERIALS SPECIAL INVESTIGATION GROUP (MSIG) TEST PLAN

- **PRE-RECOVERY PREPARATIONS**

- Preparation of Contamination Tape Lift Kits, Documentation, and Indexing Procedures
- Arrange for Photo and Video Documentation Equipment
- Obtain Photographs and Video from On-Orbit Retrieval Activities
- Define Specimen Labeling Key; Arrange for Labeled Packaging Materials and Documentation Forms
- Define Storage and Shipping Arrangements for MSIG Specimens
- Define KSC-Provided Equipment and Facilities
- Define MSIG/Boeing-Provided Equipment and Facilities
- Establish KSC Coordination Team and Boeing Analysis Teams
- Plan LDEF Materials Data Analysis Workshop During "LDEF Inspection Week" at KSC

* See Test Plan Document for Details
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
TEST PLAN

- LDEF EXAMINATION PROCEDURES* -

ON-LINE EXAMINATIONS

• DON'T GO IN WITH PRECONCEIVED CONCLUSIONS; OBSERVE FROM A MODERATE DISTANCE, OBSERVE FROM CLOSE DISTANCE, STEP BACK AND OBSERVE AGAIN. TRY TO "LISTEN TO LDEF'S STORY".

• ASSURE PHOTOGRAPHIC/VIDEO DOCUMENTATION OF ENTIRE LDEF AND CLOSEUPS OF ALL REGIONS OF PARTICULAR INTEREST

• COLLECT TAPELIFTS FROM STRUCTURAL SURFACES, INDEX AND DOCUMENT

• ASSURE ACCESS TO CONTAMINATION WITNESS PLATE DATA

• DOCUMENT ALL REMOVED PARTS

OFF-LINE ACTIVITIES

• COORDINATE AND PARTICIPATE IN LDEF MATERIALS DATA ANALYSIS WORKSHOP

• COORDINATE PHOTO/VIDEO SURVEYS WITH JSC/M&D SIG TEAM

• NEGOTIATE WITH PIs AND OTHER SIGs FOR HARDWARE OF INTEREST TO MSIG

• MONITOR DE-INTEGRATION; PACKAGE AND SHIP INITIAL MSIG SPECIMENS

* SEE TEST PLAN DOCUMENT FOR DETAILS

LDEF Orbital Orientation Model.
LDEF ENVIRONMENTS

LDEF SPACE ENVIRONMENT
- ATOMIC OXYGEN
- METEOROIDS, MICROMETEOROIDS, AND SPACE DEBRIS
- COSMIC DUST AND HEAVY COSMIC-RAY NUCLEI
- HEAVY IONS
- SOLAR ELECTROMAGNETIC ENERGY AND ENERGY VARIATIONS
- PROTON AND ELECTRON RADIATION

LDEF EARTH, LAUNCH, RETRIEVAL, AND FERRY ENVIRONMENTS
- ATMOSPHERIC GASES (DRY AIR)
- HUMIDITY (BUT NOT CONDENSATION)
- CONTAMINANT GASES
- CONTAMINANT PARTICLES

PRELIMINARY APPROACH TO SPECIMEN SELECTION FOR
MATERIALS ANALYSIS AND DATA BASE CREATION

MSIG SPECIMENS
- Materials not of primary interest to PIs
- Availability of extra exposed specimens
- Availability of extra control specimens

PI SPECIMENS
- Experiments with desirable locations
- Experiments with diverse materials

ANALYSIS ASSESSMENT
- Assessment of lab-to-lab variations
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
TEST PLAN

- EXAMPLES OF "NON-MATERIALS EXPERIMENT" MATERIALS SOURCES* -

• TRUNNIONS AND SCUFF PLATES
• SHUTTLE PAYLOAD BAY DEBRIS
• REFLECTORS
• TRAY FASTENERS, BOLTS, WASHERS, NUTS, PLATES, ETC.
• MATERIALS AND COATINGS IN SYSTEMS EXPERIMENTS
• MATERIALS AND COATINGS IN SCIENCE EXPERIMENTS
• THERMAL BLANKET AND OTHER PROTECTION MATERIALS
• ELECTRONIC COMPONENT MATERIALS

* SEE TEST PLAN DOCUMENT FOR DETAILS

LDEF MATERIALS FOR ANALYSIS

Materials
- Polymeric films and composites
- Metal-matrix composites
- Polished metals
- Glasses, optical filters and fibers
- Ceramics
- Solar cell materials
- Solid rocket materials

Coatings
- Black and white paints
- Anodized aluminum
- Sputter deposited coatings
- Metallic coatings
- Second-surface mirrors
- Optical solar reflectors
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
TEST PLAN

- PRIORITY MATERIALS FOR MSIG ANALYSIS *

MATERIAL TYPES

- KAPTON
- COATED AND UNCOATED TEFLOW
- THERMOSETS
- THERMOPLASTICS
- ANODIZED ALUMINUM
- STAINLESS STEEL
- BLACK AND WHITE THERMAL CONTROL PAINTS

TRAY LOCATIONS

- LEADING EDGE/TRAILING EDGE
- SPACE END/EARTH END
- 90° TO LEADING EDGE

* SEE TEST PLAN DOCUMENT FOR DETAILS

LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
TEST PLAN

- MATERIALS OF INTEREST FOR MSIG ANALYSIS *

MATERIAL TYPES

- POLYMERS
- METALS
- COMPOSITES
- CERAMICS
- COATINGS
- INSULATION
- LUBRICANTS
- ELASTOMERS/ADHESIVES/POTTING COMPOUNDS

LDEF LOCATIONS/ENVIRONMENTS OF INTEREST

- RAM EDGE/AO, UV, SOLAR WIND, THERMAL CYCLING, M&D IMPACTS
- 30°, 60°, AND 90° TO RAM EDGE/LESS AO, UV, SOLAR WIND, TC, M&D
- TRAILING EDGE/UV, SOLAR WIND, TC, M&D IMPACTS
- 30° AND 60° FROM TRAILING EDGE/UV, SOLAR WIND, M&D IMPACTS
- SPACE END/UV, SOLAR WIND, TC, M&D IMPACTS
- EARTH END/UV, SOLAR WIND, TC, M&D IMPACTS, EARTH RADIATION
- INTERNAL AND PROTECTED AREAS/VACUUM, LESS TC, RELATIVE CONTAMINATION

* SEE 18 PAGES OF TEST PLAN DOCUMENT FOR DETAILS
LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
TEST PLAN

- NONDESTRUCTIVE EXAMINATION (NDE) TECHNIQUES* -

ULTRASONIC
- PULSE ECHO
- HIGH FREQUENCY
- SURFACE WAVE

EDDY CURRENT

COMPUTED TOMOGRAPHY
- X-RAYS
- MULTIPLANE RECONSTRUCTION

* SEE TEST PLAN DOCUMENT FOR DETAILS

LDEF
MATERIALS SPECIAL INVESTIGATION GROUP (MSIG)
TEST PLAN

- TESTS FOR MATERIAL CATEGORIES* -

COMMON PROCEDURES FOR MOST MATERIALS
- VISUAL INSPECTION
- DETERMINE WEIGHT AND DIMENSIONS
- OPTICAL PHOTOMICROGRAPHY
- SURFACE ROUGHNESS (PROFIOMETER OR NOMARSKI MICROSCOPE)
- SOLAR ABSORBANCE (UV-VIS/NIR SPECTROMETER, ASTM E-424 A)
- INFRARED EMITTANCE (DB-100 IR REFLECTOMETER, ASTM E-408 A)
- TOTAL HEMISPHERICAL REFLECTANCE (UV-VIS/NIR AND FTIR SPECTROMETERS)
- OUTGASSING (STANDARD TESTS PLUS PYROLYSIS GAS CHROMATOGRAPHY)
- COATING ADHESION PEEL TESTS

ADDITIONAL TESTS FOR ORGANICS
- THERMAL CHARACTERIZATION (TGA, TMA, DMA, DSC)
- CREEP
- HARDNESS (SHORE A AND D)
- DIELECTRIC CONSTANT AND STRENGTH (MIL-STD-202)
- ELECTRICAL RESISTANCE (MIL-P-13949)
- CONFORMAL COATING ANALYSIS (MICRO-IR, DSC, TGA, ETC.)
- SOLUTION PROPERTIES (HPLC, GPC)

* SEE TEST PLAN DOCUMENT FOR DETAILS
ADDITIONAL TESTS FOR METALS

- HARDNESS (ROCKWELL AND ROCKWELL SUPERFICIAL)
- SURFACE ANALYSIS (SEM, EDS, AUGER, ESCA, X-RAY DIFFRACTION)
- RESIDUAL STRESS (X-RAY DIFFRACTION)
- MECHANICAL PROPERTIES (TENSILE, IMPACT, FRACTURE TOUGHNESS)
- FRACTURE ANALYSIS (OPTICAL MICROSCOPY, SEM, EDS)
- BULK CHEMICAL ANALYSIS (SPECTROCHEMICAL, EDS)
- METALLOGRAPHY
- OPTICAL AND THERMAL PROPERTIES (REFLECTIVITY, EMMITANCE, HEAT TRANSFER)

ADDITIONAL TESTS FOR CERAMICS AND GLASSES

- ELEMENTAL ANALYSIS (AUGER, ESCA, SIMS)
- CRYSTALLINITY (X-RAY DIFFRACTION)
- TRANSMISSION ELECTRON MICROSCOPY
- IN-SITU TRANSMITTANCE AND REFLECTANCE (CETF)
- BIDIRECTIONAL REFLECTANCE DISTRIBUTION (CETF)

* SEE TEST PLAN DOCUMENT FOR DETAILS

ADDITIONAL TESTS FOR COMPOSITES

- SURFACE EROSION AND MICROCRACKING (OPTICAL MICROGRAPHY AND SEM)
- SPECIFIC GRAVITY
- DELAMINATIONS (NDE TECHNIQUES, MICROSCOPY, AUGER, MICROPROBE)
- MECHANICAL PROPERTIES (FLEXURE, COMPRESSION, SHEAR, TOUGHNESS)
- OPTICAL PROPERTIES (EMITTANCE, ABSORPTANCE, REFLECTANCE)
- FIBER CONTENT, RESIN CONTENT, VOID CONTENT (RESIN BURNOUT, CALCULATION)
- THERMAL EXPANSION, THERMAL CONDUCTIVITY (TMA, DILATOMETRY, ASTM D1225)
- GLASS TRANSITION TEMPERATURE (DTA, ASTM D1225)
- SPECIFIC HEAT (DSC)
- OUTGASSING, VOLATILES, CONDENSIBLES (TGA, ASTM E595)
- CHEMICAL ANALYSIS (INFRARED SPECTROSCOPY)

ADDITIONAL TESTS FOR INSULATION MATERIALS

- THERMAL CONDUCTIVITY (DYNATECH, HEAT FLOW METER)
- SPECIFIC HEAT (DSC)
- COMPRESSIBILITY/RESILIENCY
- WETTABILITY/CONTACT ANGLE (GONIOMETER)
- ELECTROSTATIC CHARGING (SURFACE ELECTRICAL POTENTIAL, CONDUCTIVITY)

* SEE TEST PLAN DOCUMENT FOR DETAILS
ADDITIONAL TESTS FOR LUBRICANTS

- CREEP (VISUAL/OPTICAL EXAMINATION, INFRARED ANALYSIS)
- WEAR AND LUBRICANT CONDITION (TRIBOMETER, CHROMATOGRAPHY, SPECTROMETRY)
- PEEL (FOR SOLID FILM LUBRICANTS)

ADDITIONAL TESTS FOR THERMAL CONTROL COATINGS

- SURFACE ANALYSIS/ROUGHNESS, CRACKING (SEM, NOMARSKI MICROSCOPY)
- SURFACE ANALYSIS/CHEMISTRY (FTIR, X-RAY PHOTOELECTRON SPECTROSCOPY)
- TOTAL INTEGRATED SCATTER AND BIDIRECTIONAL REFLECTANCE DISTRIBUTION (LASER ILLUMINATION, VARYING SOURCE AND DETECTOR ANGLES)
- IN-SITU SOLAR ABSORPTANCE (COMBINED RADIATION EFFECTS TEST CHAMBER, DOUBLE PASS REFLECTANCE)
- COATING THICKNESS (PROFILOMETRY)

* SEE TEST PLAN DOCUMENT FOR DETAILS
LDEF
ENVIRONMENTAL EFFECTS ON MATERIALS
SPECIAL INVESTIGATION GROUP

- ACCOMPLISHMENTS THROUGH FEBRUARY, 1990 -

• MEETINGS HELD AT LaRC, WILLIAMSBURG, BOEING/KENT, AND KSC; MARCH, MAY, AUGUST, AND OCTOBER, 1989 (AND FEBRUARY, 1990)

• BRIEFINGS TO LDEF PRINCIPAL INVESTIGATORS, OTHER SPECIAL INVESTIGATION GROUPS, SPACE STATION M&P WORKING GROUP, SDIO/AEROSPACE CORP., AND NASA HQ

• MSIG PHILOSOPHY ADOPTED:
 - DEVELOP ENGINEERING DATA AS FIRST PRIORITY
 - DEVELOP MECHANISTIC DATA AS HIGH PRIORITY

• SECURITY POLICY REGARDING MATERIALS INFORMATION RECOMMENDED TO LDEF PROGRAM OFFICE; LDEF INSPECTION TEAM FORMED

• CONTRACTOR SELECTED, TASK CONTRACT INITIATED FOR MATERIALS TESTS AND ANALYSES
 - PRELIMINARY ANALYSIS TECHNIQUES IDENTIFIED
 - APPROACHES TO SPECIMEN SELECTION DEVELOPED
 - PLANNING, ANALYSIS, AND DOCUMENTATION TASKS INITIATED

LDEF
ENVIRONMENTAL EFFECTS ON MATERIALS
SPECIAL INVESTIGATION GROUP

- ACCOMPLISHMENTS THROUGH FEBRUARY, 1990 -
(Continued)

• SPECIAL FY89 FUNDING REQUESTED FROM NASA ASSOCIATE ADMINISTRATOR FOR AERONAUTICS AND SPACE TECHNOLOGY; JULY 1989

• MSIG CHAIRMAN INSPECTED LDEF-RELATED FACILITIES AT KSC TO ASSESS CONTAMINATION POTENTIAL; JULY 1989

• MSIG CONTAMINATION MONITORING SUGGESTIONS SENT TO LDEF PO; SEPT. 1989

• ATOMIC OXYGEN/PHOTOGRAPHIC SURVEY SUGGESTIONS SENT TO LDEF PO; OCT. 1989

• LDEF MATERIALS DATA-BASING OPTIONS REVIEWED; NASA-MSFC MAPTIS DATA BASE SELECTED FOR INITIAL ASSESSMENT; AUGUST - OCTOBER 1989

• LDEF MATERIALS DATA ANALYSIS WORKSHOP PLANNED; NOVEMBER 1989 TO JANUARY 1990

• MSIG TEST PLAN DEVELOPED AND DOCUMENTED; TRANSMITTED TO LDEF PROJECT OFFICE; DECEMBER 1989
LDEF
ENVIRONMENTAL EFFECTS ON MATERIALS
SPECIAL INVESTIGATION GROUP
- ACCOMPLISHMENTS THROUGH FEBRUARY, 1990 -
(Concluded)

• SUPPORT OF LDEF INSPECTION TEAM DURING DOWNLINK VIDEO, IN-SPACE PHOTOGRAPHY, AND INITIAL KSC INSPECTIONS; JANUARY AND FEBRUARY 1990

• PRELIMINARY IDENTIFICATION OF LDEF LEADING EDGE POSITION, FEBRUARY 1990

• MSIG SPECIMEN IDENTIFICATION; FEBRUARY AND MARCH 1990

• ASSUMED RESPONSIBILITY FOR TOTAL LDEF CONTAMINATION IDENTIFICATION AND DOCUMENTATION; FEBRUARY 1990
 - PARTICULATE CONTAMINATION (PRE-DEINTEGRATION)
 - MOLECULAR CONTAMINATION (POST-DEINTEGRATION)
NASA
LONG DURATION EXPOSURE FACILITY

SPECIAL INVESTIGATION GROUP
PLANS
- IONIZING RADIATION SIG

THOMAS A. PARNELL
NASA - MARSHALL SPACE FLIGHT CENTER
CHAIRMAN, IRSIG

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
LDEF IONIZING RADIATION SPECIAL INVESTIGATION GROUP
KSC 2-13-90

- Objectives of IRSIG
- Review Team Members
- Radiation Measurements in LDEF Experiments
- Improvements in Radiation Environments Knowledge Anticipated from LDEF
- IRSIG Plans
 - Predictions Booklet
 - Calculations Plan
 - P0006 Measurements and Analysis
 - Induced Radiation Measurements and Analysis
 - Radiations Effects Coordination
 - Coordination with Experimenters and Other SIG's

- Status

LDEF IONIZING RADIATION SIG REVIEW TEAM

Thomas A. Parnell
Marshall Space Flight Center

E.V. Benton
University of San Francisco

Gerald J. Fishman
Marshall Space Flight Center

Robert L. Kinzer
Naval Research Lab

Allan R. Smith
Lawrence Berkeley Lab

Jacob I. Trombka
Goddard Space Flight Center

James H. Adams (DOD Contract)
Naval Research Laboratory

John W. Watts
Marshall Space Flight Center

Alex Thompson
Dublin Institute for Advanced Studies

James H. Derrickson
Marshall Space Flight Center

Wolfgang Heinrich
University of Siegen

C. Lewis Sneed
Brookhaven National Lab

Clive S. Dyer (ESA Contact)
Royal Aerospace Establishment

Rodney Piercey
Mississippi State University

Denis O'Sullivan
Dublin Institute for Advanced Studies

James C. Ritter (SDIO Rep)
Naval Research Laboratory

Richard Scott (SSIG Rep)
Jet Propulsion Laboratory

Paul Sagalyn (MSIG Rep)
Army Materials Lab, Watertown, Mass.

W.H. Kinard (M&DSIG. Rep)
Langley Research Center

TONY ARMSTRONG
SAIC
LDEF IONIZING RADIATION SIG CHARTER

1. Provide Radiation Environment Predictions (Booklet)

2. Analyze Supporting Radiation Data and Induced Radio-Activity and Compare to Calculations.

4. Compare Radiation Data, when Available, from Experiments with Calculations.

5. Disseminate Results of 2-4 as Available.

7. Provide Calculations/Estimates for Specific Locations in LDEF, or for Specific Components with Suspected Radiation Effects.

IMPROVEMENTS IN RADIATION ENVIRONMENT KNOWLEDGE/CALCULATION METHODS WITH LDEF

• Effects of Directional Properties of Trapped Protons
 - Measurements of Dose with TLD's and Activation Around Flight-Direction Stabilized Spacecraft.
 - Calculations with Directional Proton Model as a Function of Position and Depth in LDEF. HETC Calculation of Activation Using Directional Proton Flux.

• Accurate Neutron Fluence and Spectrum

• Measurement of Linear Energy Transfer Spectrum Beyond the "Iron Peak" in Cosmic Rays

• Fluence, LET Spectra, and Dose of Low Energy Target Spallation Nuclides or "Star" Particles.
 - Some New Measurements
 - HETC Calculations

• More Accurate Levels of AP8 Proton Fluxes at Solar Minimum
 - Measurements of Dose with TLD's and Activation at Various Spacecraft Locations and Depth. Enhanced by Flight Direction Stability of LDEF.
 - Requires Application of Directional Proton Model (as AP8 Post Processor) and HETC Calculations. Also Requires Maximum Use of TLD's and Activation Materials in LDEF.
Radiation Detectors on LDEF

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P0004-1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P0004-2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P0006</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>M0001</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MICROSPHERE</td>
</tr>
<tr>
<td>M0002-1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>M0002-2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>M0003-12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>M0003-17</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>M0004</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>M0006</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A0015</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Agile</td>
</tr>
<tr>
<td>A0138-7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A0114-1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A0114-2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A0178</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LDEF Structure & Experiments</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Radiation Measurement Principal Categories

<table>
<thead>
<tr>
<th>Environment</th>
<th>Dosimetry/Effects</th>
<th>Astrophysics</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0004-1</td>
<td>P0004-1</td>
<td></td>
<td>NASA</td>
</tr>
<tr>
<td>P0004-2</td>
<td>P0004-2</td>
<td></td>
<td>NASA</td>
</tr>
<tr>
<td>P0006</td>
<td>P0006</td>
<td></td>
<td>NASA</td>
</tr>
<tr>
<td>M0001</td>
<td>M0001</td>
<td>M0001</td>
<td>DOD</td>
</tr>
<tr>
<td>M0002-1</td>
<td>M0002-1</td>
<td></td>
<td>DOD</td>
</tr>
<tr>
<td>M0002-2</td>
<td>M0002-2</td>
<td></td>
<td>DOD</td>
</tr>
<tr>
<td>M0003-12&17</td>
<td>M0003-12&17</td>
<td></td>
<td>DOD</td>
</tr>
<tr>
<td>A0015</td>
<td>A0015</td>
<td></td>
<td>FRG</td>
</tr>
<tr>
<td>A0138-7</td>
<td>A0138-7</td>
<td></td>
<td>FRANCE</td>
</tr>
<tr>
<td>A0114</td>
<td>A0114</td>
<td></td>
<td>NASA</td>
</tr>
<tr>
<td>A0178</td>
<td>A0178</td>
<td></td>
<td>IRELAND</td>
</tr>
<tr>
<td>Activation</td>
<td>Activation</td>
<td></td>
<td>NASA</td>
</tr>
<tr>
<td>Full-LDEF</td>
<td>Full-LDEF</td>
<td></td>
<td>DOD</td>
</tr>
</tbody>
</table>

67
THE LONG DURATION EXPOSURE FACILITY
IONIZING RADIATION PREDICTIONS (BOOKLET)

I. INTRODUCTION -- VALUE OF LDEF MEASUREMENT -- LIST OF LDEF RADIATION MEASUREMENTS

II. DESCRIPTION OF TRAPPED PARTICLES AND COSMIC RAYS IN LDEF ORBIT (REFERENCES)

III. RADIATION ABSORBED DOSE -- DEPTH DOSE AND GENERAL DESCRIPTION OF DIRECTIONAL EFFECTS
 MEASUREMENTS ON SHUTTLE COMPARED TO PREDICTIONS

IV. LET SPECTRA AND GENERAL DESCRIPTION OF "SINGLE HIT" ASPECT OF PARTICLES -- DISCUSSION OF SOURCE OF PARTICLES IN VARIOUS PARTS OF LET SPECTRUM
 MEASUREMENTS ON SHUTTLE AND COMPARISON WITH PREDICTIONS

V. NEUTRONS AND DISCUSSION OF OTHER SECONDARIES

VI. EQUIVALENT DOSE (APPROXIMATE)

VII. ACTIVATION OF MATERIALS

VIII. RADIATION EFFECTS (GENERAL)
 BULK PROPERTIES -- MECHANICAL, OPTICAL (COLOR CENTERS)
 HIGH LET ELECTRONIC PHENOMENA/SEU's AND CATASTROPHIC FAILURE
 BIOLOGICAL EFFECTS
 POSSIBILITY OF SYNERGISTIC EFFECTS WITH TEMPERATURE, UV, VACUUM

IX. RADIATION MEASUREMENT AND ANALYSIS PLAN FOR LDEF
 MEASUREMENTS IN EXPERIMENTS
 OTHERS ON S/C
 CALCULATIONS TO BE PERFORMED

X. REFERENCES
External Environment Calculations

- Geomagnetically trapped protons and electrons differential fluxes
 (Vette AP8MIN proton and AE8MIN electron environment)
- Directional proton flux
 (AP8 post-processor (Watts-MSFC))
- Galactic cosmic radiation (GCR) differential flux
 (CREME GCR environment)
- Albedo neutrons flux from atmosphere (T. Armstrong)
- Magnetic field Model

First Order Internal Environment Calculations

- Dose and dose equivalent versus shield thickness for trapped particles
 (Burrell "straight-ahead, continuous slowing down" proton dose program)
 (MSFC electron dose program based on fits to ETRAN)
- Dose and dose equivalent versus shield thickness for GCR
 (CREME)
- LET spectra for trapped protons versus shield thickness
 (CREME)
- LET spectra for GCR/anomalous component versus shield thickness
 (CREME)
Models of LDEF

- Vector mass model for dose and fluence calculations at shielding depths
- Radioactivity model from sample/mass model calculations

Activation Calculations using HETC

- Activation of experiment samples
- Activation of materials available in other experiments
- Activation of spacecraft structure samples
- Activation for a simple total spacecraft model

Secondaries Calculations using HETC

- Secondary proton spectra
- Secondary neutron spectra

Approach for LDEF Calculations
Dose LDEF Mission due to Trapped Protons and Electrons
Behind a Plane Aluminum Slab with Infinite Backing

<table>
<thead>
<tr>
<th>Thickness (g/cm²)</th>
<th>Electron (rads)</th>
<th>Proton (rads)</th>
<th>Total (rads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.53x10⁵</td>
<td>1340.</td>
<td>2.54x10⁵</td>
</tr>
<tr>
<td>0.01</td>
<td>25000.</td>
<td>712.</td>
<td>25700.</td>
</tr>
<tr>
<td>0.02</td>
<td>12100.</td>
<td>648.</td>
<td>12700.</td>
</tr>
<tr>
<td>0.03</td>
<td>7350.</td>
<td>610.</td>
<td>7060.</td>
</tr>
<tr>
<td>0.04</td>
<td>5080.</td>
<td>582.</td>
<td>5660.</td>
</tr>
<tr>
<td>0.05</td>
<td>3680.</td>
<td>560.</td>
<td>4240.</td>
</tr>
<tr>
<td>0.06</td>
<td>2760.</td>
<td>541.</td>
<td>3300.</td>
</tr>
<tr>
<td>0.08</td>
<td>1710.</td>
<td>511.</td>
<td>2220.</td>
</tr>
<tr>
<td>0.1</td>
<td>1150.</td>
<td>488.</td>
<td>1640.</td>
</tr>
<tr>
<td>0.2</td>
<td>310.</td>
<td>418.</td>
<td>728.</td>
</tr>
<tr>
<td>0.3</td>
<td>130.</td>
<td>381.</td>
<td>511.</td>
</tr>
<tr>
<td>0.4</td>
<td>69.0</td>
<td>355.</td>
<td>424.</td>
</tr>
<tr>
<td>0.5</td>
<td>40.9</td>
<td>335.</td>
<td>376.</td>
</tr>
<tr>
<td>1.0</td>
<td>4.13</td>
<td>274.</td>
<td>278.</td>
</tr>
<tr>
<td>2.0</td>
<td>0.990</td>
<td>212.</td>
<td>212.</td>
</tr>
<tr>
<td>5.0</td>
<td>5.83x10⁻²</td>
<td>130.</td>
<td>130.</td>
</tr>
<tr>
<td>10.0</td>
<td>2.96x10⁻²</td>
<td>75.3</td>
<td>75.3</td>
</tr>
<tr>
<td>20.0</td>
<td>35.0</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>30.0</td>
<td>19.6</td>
<td>19.6</td>
<td>19.6</td>
</tr>
<tr>
<td>40.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Dose LDEF Mission due to Trapped Protons and Electrons
Center of a Spherical Aluminum Shell

<table>
<thead>
<tr>
<th>Thickness (g/cm²)</th>
<th>Electron (rads)</th>
<th>Proton (rads)</th>
<th>Total (rads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.06x10⁵</td>
<td>2680.</td>
<td>5.08x10⁵</td>
</tr>
<tr>
<td>0.01</td>
<td>49900.</td>
<td>1600.</td>
<td>51500.</td>
</tr>
<tr>
<td>0.02</td>
<td>24200.</td>
<td>1480.</td>
<td>25700.</td>
</tr>
<tr>
<td>0.03</td>
<td>14700.</td>
<td>1410.</td>
<td>16100.</td>
</tr>
<tr>
<td>0.04</td>
<td>10200.</td>
<td>1360.</td>
<td>11300.</td>
</tr>
<tr>
<td>0.05</td>
<td>7350.</td>
<td>1320.</td>
<td>8670.</td>
</tr>
<tr>
<td>0.06</td>
<td>5530.</td>
<td>1290.</td>
<td>6810.</td>
</tr>
<tr>
<td>0.08</td>
<td>3420.</td>
<td>1230.</td>
<td>4640.</td>
</tr>
<tr>
<td>0.1</td>
<td>2300.</td>
<td>1180.</td>
<td>3480.</td>
</tr>
<tr>
<td>0.2</td>
<td>620.</td>
<td>1020.</td>
<td>1640.</td>
</tr>
<tr>
<td>0.3</td>
<td>260.</td>
<td>937.</td>
<td>1200.</td>
</tr>
<tr>
<td>0.4</td>
<td>138.</td>
<td>885.</td>
<td>1020.</td>
</tr>
<tr>
<td>0.5</td>
<td>81.8</td>
<td>846.</td>
<td>926.</td>
</tr>
<tr>
<td>1.0</td>
<td>8.26</td>
<td>724.</td>
<td>732.</td>
</tr>
<tr>
<td>2.0</td>
<td>0.198</td>
<td>606.</td>
<td>606.</td>
</tr>
<tr>
<td>5.0</td>
<td>0.117</td>
<td>431.</td>
<td>431.</td>
</tr>
<tr>
<td>10.0</td>
<td>5.92x10⁻²</td>
<td>292.</td>
<td>292.</td>
</tr>
<tr>
<td>30.0</td>
<td>101.</td>
<td>101.</td>
<td>101.</td>
</tr>
<tr>
<td>40.0</td>
<td>67.8</td>
<td>67.8</td>
<td>67.8</td>
</tr>
</tbody>
</table>
Trapped Proton Fluence for LDEF

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Fluence (protons/cm²-MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>2.98x10⁸</td>
</tr>
<tr>
<td>0.25</td>
<td>2.18x10⁸</td>
</tr>
<tr>
<td>0.50</td>
<td>1.60x10⁸</td>
</tr>
<tr>
<td>1.0</td>
<td>7.84x10⁷</td>
</tr>
<tr>
<td>1.5</td>
<td>3.94x10⁷</td>
</tr>
<tr>
<td>2.0</td>
<td>3.52x10⁷</td>
</tr>
<tr>
<td>2.5</td>
<td>3.15x10⁷</td>
</tr>
<tr>
<td>3.0</td>
<td>3.13x10⁷</td>
</tr>
<tr>
<td>3.75</td>
<td>3.01x10⁷</td>
</tr>
<tr>
<td>4.5</td>
<td>2.86x10⁷</td>
</tr>
<tr>
<td>6.0</td>
<td>2.94x10⁷</td>
</tr>
<tr>
<td>10.0</td>
<td>2.29x10⁷</td>
</tr>
<tr>
<td>15.0</td>
<td>1.64x10⁷</td>
</tr>
<tr>
<td>30.0</td>
<td>1.35x10⁷</td>
</tr>
<tr>
<td>50.0</td>
<td>1.24x10⁷</td>
</tr>
<tr>
<td>100.0</td>
<td>1.09x10⁷</td>
</tr>
<tr>
<td>200.0</td>
<td>5.40x10⁶</td>
</tr>
<tr>
<td>300.0</td>
<td>2.07x10⁶</td>
</tr>
<tr>
<td>400.0</td>
<td>7.72x10⁵</td>
</tr>
<tr>
<td>600.0</td>
<td>1.01x10⁵</td>
</tr>
</tbody>
</table>
Trapped Electron Fluence for LDEF

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Fluence (electrons/cm²-MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.95×10^{13}</td>
</tr>
<tr>
<td>0.25</td>
<td>2.06×10^{12}</td>
</tr>
<tr>
<td>0.50</td>
<td>2.24×10^{11}</td>
</tr>
<tr>
<td>1.0</td>
<td>2.30×10^{10}</td>
</tr>
<tr>
<td>1.5</td>
<td>6.16×10^{9}</td>
</tr>
<tr>
<td>2.0</td>
<td>2.49×10^{9}</td>
</tr>
<tr>
<td>2.5</td>
<td>1.73×10^{9}</td>
</tr>
<tr>
<td>3.0</td>
<td>5.18×10^{8}</td>
</tr>
<tr>
<td>3.75</td>
<td>2.08×10^{7}</td>
</tr>
</tbody>
</table>
Integral LET Spectra for LDEF
(J.H. Adam et al.)

Orbit:
- insertion - recovery of LDEF
- 481.5 km, - 370.4 km circular
- 28.5° inclination

Spectra Includes:
- cosmic rays (Z = 1-25)
- trapped protons (solar min.)
- anomalous component (Z = 1)

Permutations of obstructions:
- geomagnetic cutoff included
- no magnetic disturbance
- earth's shadow included
- no shielding

Average proton dose rates for 28.5° orbit for a detector behind 5 g/cm² aluminum shield with infinite backing with the plane facing in the specified directions relative to the geographic coordinates.
DATA ANALYSIS PLAN

for

LDEF EXPERIMENT P0006

Linear Energy Transfer Spectrum Measurements Experiment

October 1989

E.V. Benton
Composition of the top and bottom modules of the POSOS experiment.
OBJECTIVES

THE MAJOR SCIENTIFIC OBJECTIVES OF THE PO006 EXPERIMENT ARE AS FOLLOWS:

1. MEASURE LET SPECTRA DUE TO HZE PARTICLES AT DIFFERENT SHIELDING DEPTHS

2. OBTAIN HIGH LET (>100 keV/μm) PORTIONS OF LET SPECTRA WITH SUPERIOR STATISTICAL ACCURACY

3. MEASURE TOTAL MISSION RADIATION DOSE, NEUTRON FLUENCES AND ACTIVATION OF METAL SAMPLES

4. PERFORM VECTOR SHIELDING CALCULATIONS TO DETERMINE COMPLEX SHIELDING DISTRIBUTIONS OF LDEF EXPERIMENTS

5. CALCULATE LET SPECTRA, TOTAL RADIATION DOSES AND NEUTRON FLUENCES FOR COMPARISON WITH EXPERIMENTAL LDEF RESULTS

6. DEVELOP CALCULATIONAL METHODS TO EXTRAPOLATE THE DATA TO OTHER ORBITS

7. PERFORM CALCULATIONS OF RADIATION FIELD FOR THE SPACE STATION ORBIT

8. FROM LET SPECTRA, DETERMINE FLUENCE OF HIGH ENERGY DEPOSITION EVENTS (IN SILICON) THAT CAUSE SINGLE EVENT UPSETS (SEU) IN MICROCIRCUITS IN LDEF ORBIT

9. MEASURE FLUENCE OF RECOIL NUCLEI IN SILICON CAUSED BY PROTONS IN THE SOUTH ATLANTIC ANOMALY (NEW METHOD)

10. DETECT RADIATION EFFECTS ON BULK OR MECHANICAL PROPERTIES OF MATERIALS (LiF, POLYCARBONATE, POLYESTERS)
OTHER LDEF EXPERIMENTS HAVING UNIVERSITY OF SAN FRANCISCO RADIATION DETECTORS

I. FEODS: LINEAR ENERGY TRANSFER SPECTRUM MEASUREMENT EXPERIMENT (UNIVERSITY OF SAN FRANCISCO)

A. PMTDs
 1. CR-39 (PURE)
 2. CR-39 (WITH DOP PLASTICIZER)
 3. TUFFAK POLYCARBONATE
 4. SHEFFIELD POLYCARBONATE
 5. MELINEX POLYESTER

B. MUSCOVITE MICA

C. TLDs

D. FISSION FOIL DETECTORS
 1. 238U/MICA
 2. 232Th/MICA
 3. 209Bi/MICA
 4. 181Ta/MICA
 5. 6LiF/CR-39, with and without Gd

E. ACTIVATION FOILS
 1. Ni
 2. Ta
 3. In
 4. V

F. SILICON WAFERS WITH CR-39

II. P0004-1: SEEDS IN SPACE EXPERIMENT (G. PARK SEED CO.)

A. PMTDs
 1. CR-39
 2. TUFFAK POLYCARBONATE

B. TLDs

C. 6LiF/CR-39, with and without Gd

ORIGINAL PAGE IS OF POOR QUALITY
III. 50004-2: SPACE EXPOSED EXPERIMENT DEVELOPED FOR STUDENTS
(NASA HEADQUARTERS)

A. PNTDs
1. CR-19
2. TUFFAK POLYCARBONATE

B. TLDs

C. LIF/CR-19, with and without Gd

IV. 50015: FREE-FLYER BIOSTACK EXPERIMENT (DFVLR)

A. PNTDs
1. CR-19
2. SHEFFIELD POLYCARBONATE
3. TUFFAK POLYCARBONATE

B. MUSCOVITE MICA

C. TLDs

D. FISSION FOIL DETECTORS
1. 238U/MICA
2. 232Th/MICA
3. 209Bi/MICA
4. 181Ta/MICA
5. LIF/CR-19, with and without Gd

V. 50004: SPACE ENVIRONMENT EFFECTS ON FIBER OPTICS SYSTEMS
(AFRL)

A. PNTDs
1. CR-19
2. TUFFAK POLYCARBONATE
3. SHEFFIELD POLYCARBONATE
4. NELINEX POLYESTER

B. TLDs
<table>
<thead>
<tr>
<th>Schedule -- PO006 Analysis Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY 90</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>LDEF RECOVERY</td>
</tr>
<tr>
<td>INITIAL INSPECTION--KSC</td>
</tr>
<tr>
<td>TRAY F2 REMOVAL</td>
</tr>
<tr>
<td>PO006 BENCH ACTIVITIES</td>
</tr>
<tr>
<td>PACKAGED HARDWARE RELEASE</td>
</tr>
<tr>
<td>LABORATORY HARDWARE DELIVERY</td>
</tr>
<tr>
<td>HARDWARE DISASSEMBLY*</td>
</tr>
<tr>
<td>ACTIVATION FOILS DELIVERED TO READOUT LOCATION</td>
</tr>
<tr>
<td>READOUT OF ACTIVATION FOILS</td>
</tr>
<tr>
<td>DATA ANALYSIS OF ACTIVATION FOILS</td>
</tr>
<tr>
<td>READOUT OF TLDs</td>
</tr>
<tr>
<td>DATA ANALYSIS FOR TLDs</td>
</tr>
<tr>
<td>PROCESSING FISSION FOIL DETECTORS</td>
</tr>
<tr>
<td>READOUT OF FISSION FOIL DETECTORS</td>
</tr>
<tr>
<td>DATA ANALYSIS FOR FISSION FOIL DETECTORS</td>
</tr>
<tr>
<td>PROCESSING OF PNTDs</td>
</tr>
<tr>
<td>READOUT OF PNTDs</td>
</tr>
<tr>
<td>DATA ANALYSIS OF PNTDs</td>
</tr>
<tr>
<td>PROCESSING OF MICA DETECTORS</td>
</tr>
<tr>
<td>READOUT OF MICA DETECTORS</td>
</tr>
<tr>
<td>DATA ANALYSIS OF MICA DETECTORS</td>
</tr>
<tr>
<td>LDEF CALCULATIONS</td>
</tr>
<tr>
<td>DATA ANALYSIS FOR PO006 TOTAL EXPERIMENT</td>
</tr>
<tr>
<td>FIRST POST-RETRIEVAL I.W.G.</td>
</tr>
<tr>
<td>SECOND POST-RETRIEVAL I.W.G. AND DATA CONF. REPORTS</td>
</tr>
</tbody>
</table>

*disassemble experiment early because of activation materials
LDEF

INDUCED RADIOACTIVITY ANALYSIS PLAN

- FULL SPACECRAFT MEASUREMENTS
- INDIVIDUAL SAMPLE MEASUREMENTS
- CALCULATIONS OF SAMPLE AND SPACECRAFT MATERIAL RADIOACTIVITY AND COMPARISONS WITH MEASUREMENTS
- MASS MODEL AND RADIOACTIVITY MODEL OF SPACECRAFT
- CALCULATION OF GAMMA FLUX AND SPECTRA AT DETECTOR POINTS OF FULL SPACECRAFT MEASUREMENTS
- EXTRAPOLATION OF CALCULATIONS TO OTHER ORBITS

Gamma-ray Spectra - Packet No. 2

- The activation gamma-ray peaks are identified; all other peaks are due to background gamma-ray lines. A strong background continuum is also apparent.

![Gamma-ray Spectrum](image-url)
TABLE 1. MEASURED INDUCED RADIOACTIVITY (SKYLAB DEBRIS)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>gm MASS</th>
<th>ISOTOPE</th>
<th>ENERGY (keV)</th>
<th>HALF-LIFE</th>
<th>NET COUNTS/1000 sec</th>
<th>RE-ENTRY PLUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (6)</td>
<td>150</td>
<td>Na 22</td>
<td>1278</td>
<td>2.8 yr</td>
<td>0.50 ± .15</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td>SS (7)</td>
<td>367</td>
<td>Co 58</td>
<td>811</td>
<td>71d</td>
<td>0.49 ± .13</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mn 54</td>
<td>835</td>
<td>303d</td>
<td>4.32 ± .24</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co 56</td>
<td>847</td>
<td>77d</td>
<td>0.90 ± .16</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mn 54</td>
<td>835</td>
<td>71d</td>
<td>0.41 ± .15</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co 56</td>
<td>847</td>
<td>303d</td>
<td>2.83 ± .28</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td>SS (11)</td>
<td>175</td>
<td>Mn 54</td>
<td>835</td>
<td>77d</td>
<td>0.91 ± .18</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co 56</td>
<td>847</td>
<td>303d</td>
<td>4.14 ± .30</td>
<td>3 - 6 wks</td>
</tr>
<tr>
<td>SS (15)</td>
<td>117</td>
<td>Mn 54</td>
<td>835</td>
<td>77d</td>
<td>0.50 ± .26</td>
<td>5 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co 56</td>
<td>847</td>
<td>303d</td>
<td>2.41 ± .35</td>
<td>5 months</td>
</tr>
</tbody>
</table>

SS = STAINLESS STEEL () SAMPLE NUMBER

TABLE 2. TYPICAL SPECIFIC ACTIVITIES OF SKYLAB DEBRIS SAMPLES

<table>
<thead>
<tr>
<th>SAMPLE MATERIAL</th>
<th>ISOTOPE</th>
<th>SPECIFIC ACTIVITY* (AT RE-ENTRY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM</td>
<td>Na 22</td>
<td>1.1 DISINTEGRATIONS/sec/kg</td>
</tr>
<tr>
<td>STAINLESS STEEL</td>
<td>Co 58</td>
<td>0.8 DISINTEGRATIONS/sec/kg</td>
</tr>
<tr>
<td>STAINLESS STEEL</td>
<td>Mn 54</td>
<td>3.0 DISINTEGRATIONS/sec/kg</td>
</tr>
<tr>
<td>STAINLESS STEEL</td>
<td>Co 56</td>
<td>1.5 DISINTEGRATIONS/sec/kg</td>
</tr>
</tbody>
</table>

*ESTIMATED ACCURACY: ±30 PERCENT

LDEF
Long Duration Exposure Facility

INDUCED RADIOACTIVITY EXPERIMENT

Target Types:
I. Intentional Samples
 - Metal Targets, 2" x 2" : Ni, Co, Ta, V, In
 - Contained in : A0114 Atomic Oxygen (Gregory/Peters)
 - P0006 LET Spectra (Benton)
 - N0001 Heavy Ions (Adams)
 - N0002 Trapped Proton Spectra (AFCRL)

II. Spacecraft Structure/Components
 - Stainless Steel Trunions
 - Lead ballast Plates
 - Aluminum Structural Components

III. Components of Other Experiments Desired:
 - Samples of Metals or Alloys of High Atomic No. (>30)
 with weights over 1/2 oz.
OBJECTIVES

I. Measurements of Induced Radioactivity in Spacecraft and Experiment Materials in Low Earth Orbit
 A. Spacecraft Materials: Aluminum Alloys, Stainless Steels
 B. Experiment Materials: Copper, Germanium, Structural Alloys
 C. Activation vs. depth in a large spacecraft
 D. Activation vs. orientation in a gravity-gradient stabilized spacecraft

II. Characterization of the Nuclear-Active Particle Environment in Low Earth Orbit
 A. Proton Flux and Spectra Above 20 MeV
 B. Neutron Flux and Coarse Spectral Measurements
 C. Separation of Trapped Proton and Cosmic Ray Proton Fluxes
 D. Proton Anisotropy Measurements

III. Experimental Verification of Spacecraft Activation Computer Codes Developed for Future Programs
 A. Space Station
 B. Lunar Base
 C. Manned Mars Mission
<table>
<thead>
<tr>
<th>TARGET MATERIAL</th>
<th>MAJOR PRODUCTION MODE</th>
<th>RADIOACTIVE NUCLIDE</th>
<th>GAMMA ENERGY MeV</th>
<th>HALF LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Al27 (p, -)</td>
<td>Na22</td>
<td>1.28</td>
<td>2.6 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Be7</td>
<td>.478</td>
<td>53 d</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>Ni58 (n, p)</td>
<td>Co58</td>
<td>.810</td>
<td>71 d</td>
</tr>
<tr>
<td></td>
<td>Ni58 (p, 2p)</td>
<td>Co57</td>
<td>.122</td>
<td>270 d</td>
</tr>
<tr>
<td></td>
<td>Ni58 (p, 2pn)</td>
<td>Co56</td>
<td>.847</td>
<td>77 d</td>
</tr>
<tr>
<td></td>
<td>Fe56 (p, 2pn)</td>
<td>H54</td>
<td>.835</td>
<td>313 d</td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni58 (n, p)</td>
<td>Co58</td>
<td>.810</td>
<td>71 d</td>
</tr>
<tr>
<td></td>
<td>Ni58 (p, 2p)</td>
<td>Co57</td>
<td>.122</td>
<td>270 d</td>
</tr>
<tr>
<td></td>
<td>Ni58 (p, 2pn)</td>
<td>Co56</td>
<td>.847</td>
<td>77 d</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co59 (n, y)</td>
<td>Co60</td>
<td>1.173, etc.</td>
<td>5.26 y</td>
</tr>
<tr>
<td>Tantulum</td>
<td>Ta181 (n, y)</td>
<td>Ta182</td>
<td>1.211</td>
<td>115 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W181</td>
<td>.153, etc.</td>
<td>113 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hf181</td>
<td>.482</td>
<td>43 d</td>
</tr>
<tr>
<td>Titanium</td>
<td>Ti46 (n, p)</td>
<td>Sc46</td>
<td>.899</td>
<td>84 d</td>
</tr>
<tr>
<td></td>
<td>Ti48 (p, n)</td>
<td>V48</td>
<td>.983</td>
<td>16 d</td>
</tr>
<tr>
<td>Indium</td>
<td></td>
<td>Cd115</td>
<td>.940, etc.</td>
<td>43 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In114</td>
<td>.72, etc.</td>
<td>50 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cd113</td>
<td></td>
<td>14 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sn113</td>
<td></td>
<td>118 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ag110</td>
<td></td>
<td>260 d</td>
</tr>
<tr>
<td>Copper</td>
<td>V51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germanium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LDEF
Induced Radioactivity
Short-Lived isotopes

Remaining Activity

Days After Recovery

Bi208
Ni54
Ag104
Mn54
Bi201

Original page is of poor quality
LDEF INDUCED RADIOACTIVITY
REQUEST FOR LOAN OF OTHER EXPERIMENT MATERIALS
FOR GAMMA RAY COUNTING

<table>
<thead>
<tr>
<th>EXP. NO.</th>
<th>MATERIAL</th>
<th>DESCRIPTION</th>
<th>SIZE/WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0003*</td>
<td>Gallium Arsenide</td>
<td></td>
<td>2 x 2 x .09</td>
</tr>
<tr>
<td>M0003*</td>
<td>Molybdenum</td>
<td>Optical Mirrors (2)</td>
<td>114g</td>
</tr>
<tr>
<td>M0003*</td>
<td>Copper</td>
<td>Dia. Turned</td>
<td>100g</td>
</tr>
<tr>
<td>M0006</td>
<td>CdSe</td>
<td>Semiconductors (2)</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>M0006</td>
<td>GaAs</td>
<td>Semiconductors (7)</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>A0056</td>
<td>BaF₂</td>
<td>Substrate</td>
<td>25mm</td>
</tr>
<tr>
<td>A0056</td>
<td>Cd Telluride</td>
<td>Substrate</td>
<td>25mm dia. x 1.2mm</td>
</tr>
<tr>
<td>A0056</td>
<td>Thallium</td>
<td>Substrate</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>A0056</td>
<td>Bromoiodide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0056</td>
<td>Germanium</td>
<td>Substrate</td>
<td>25mm</td>
</tr>
<tr>
<td>A0139A</td>
<td>Copper OFHC</td>
<td>Instrumentation</td>
<td><100g</td>
</tr>
<tr>
<td>A0189</td>
<td>Copper OFHC</td>
<td>Instrumentation</td>
<td><100g</td>
</tr>
<tr>
<td>S0014</td>
<td>Gallium Arsenide</td>
<td>APEX Sample</td>
<td>1.6cm x 1.3cm</td>
</tr>
<tr>
<td>S0014</td>
<td>Copper OFHC</td>
<td>Instrumentation</td>
<td><100g</td>
</tr>
<tr>
<td>S0014</td>
<td>GaAlAs/Ga/As</td>
<td>APEX Samples (2)</td>
<td></td>
</tr>
<tr>
<td>P0003</td>
<td>Copper</td>
<td>Plate, Radiometer</td>
<td>115g</td>
</tr>
<tr>
<td>A0114</td>
<td>Copper</td>
<td>Disc.</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>EXP. NO.</td>
<td>MATERIAL</td>
<td>DESCRIPTION</td>
<td>SIZE/WT</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>A0114</td>
<td>Germanium</td>
<td>Disc.</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>A0114</td>
<td>Silver</td>
<td>Single Crystal Disc.</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>A0114</td>
<td>Silver</td>
<td>Solid Disc.</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>A0114</td>
<td>Titanium Alloy</td>
<td>6A-4B Alloy Disc.</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>A0114</td>
<td>Titanium</td>
<td>75 A Disc.</td>
<td>1" Dia.</td>
</tr>
<tr>
<td>A0187</td>
<td>Gold</td>
<td>Detector</td>
<td>?</td>
</tr>
<tr>
<td>A0178</td>
<td>Iridum</td>
<td>Foil</td>
<td>0.5mm thick</td>
</tr>
<tr>
<td>S1002</td>
<td>Titanium Alloy</td>
<td>Alloy 6V4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 4911B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMS 4928D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VFN 13307/20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN 9247</td>
<td></td>
</tr>
<tr>
<td>S1002</td>
<td>Copper</td>
<td>Electrolytic</td>
<td>?</td>
</tr>
<tr>
<td>S1001</td>
<td>Silver</td>
<td>Diode Heat Pipe</td>
<td>?</td>
</tr>
</tbody>
</table>

*NOTE 1: All samples on #M0003 have matching unexposed samples attached to the bottom of the tray. Also, since #M0003 is on four different trays, there may be more than one set of materials.

NOTE 2: These samples are desired for counting with low background gamma ray detectors as soon as feasible following de-integration of the experiments, since many nuclides of interest have short half lives. The samples can be shipped and analyzed in thin, low background radioactivity, hermetic enclosures (if required). A few materials will have some long lived radio-nuclides allowing useful analysis for several months or more following deintegration. The desired loan period for gamma ray counting is two weeks minimum. The availability of a ground control samples of the material would considerably enhance the analysis.
List of LDEF spacecraft structural and systems materials suitable for induced radioactivity studies.

This table contains only major parts; numerous other minor components such as fasteners, and small structural parts would also be of value for the induced radioactivity studies.

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Wt.(lbs.)</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunnion pins:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main (middle) (2)</td>
<td>SS 17-4 PH</td>
<td>85.4</td>
<td>815934-E</td>
</tr>
<tr>
<td>End (2)</td>
<td>SS 17-4 PH</td>
<td>52.3</td>
<td>815835-B</td>
</tr>
<tr>
<td>Keel (1)</td>
<td>SS 17-4 PH</td>
<td>61.6</td>
<td>815950-C</td>
</tr>
<tr>
<td>Ballast plates (ap. 18 total)</td>
<td>Lead</td>
<td>7.5-30</td>
<td>819225</td>
</tr>
<tr>
<td>Ballast cover plates (18)</td>
<td>Alum., 6061</td>
<td>1.9, 2.8</td>
<td>819226</td>
</tr>
<tr>
<td>Keel plate</td>
<td>Alum., 6061</td>
<td>7.75</td>
<td>815947</td>
</tr>
</tbody>
</table>
Results from 16 hours of counting with one detector on the SPACE end of LDEF compared to a background taken in the SAEF-11 high bay with no LDEF present. The line at 1274 keV comes from nuclear reactions between the aluminum on LDEF and the high-energy proton flux encountered in orbit.
Sensitivity of Various Components to the Ionization Effects of Radiation

LEDEF IRSIG TAP 2/1/90

LEDEF - RADIATION EFFECTS

- Detailed knowledge of radiation environment in LEDEF will be supplied by IRSIG
- The IRSIG will arrange consultants to advise concerning potential radiation effects in systems and materials
- Special calculations will be made for components with suspected effects
- If post flight radiation testing is desired the IRSIG will advise on particle beam to use and arrange radiation effects consultation to design the tests
- It is recommended that any required radiation effects ground tests for SEU’s, optical properties effects, displacement damage in crystalline materials etc., be performed by the relevant experimenter or SIG

ORIGINAL PAGE IS OF POOR QUALITY
LDEF SEEDS
Preliminary Estimate
Absorbed Radiation Dose
Trapped Protons and Electrons
Omnidirectional AP8 and AE8
Spherical Shield

Trapped Electrons

Trapped Protons

SEEDS Bag 1

Bag 2

Bag 3

Bag 4

Depth Grams/Centimeter

Dose RADS

Cover
<table>
<thead>
<tr>
<th>LDEF Set. No.</th>
</tr>
</thead>
</table>

LDEF IONIZING RADIATION INFORMATION REQUEST

1. **Originator:________________________ Phone:________________________**

2. **Organization/Address:**

3. **LDEF Experiment/System/Component/Material:**

4. **Tray Number/Location:**

5. **Anticipated/Observed Effect:**

6. **Suspected Radiation Component (Total Dose, High LET Particles, Neutrons, etc.):**

7. **Other Justification for Radiation Analysis:**

8. **Desired action by Ionizing Radiation SIG (Radiation calculations at suspect site, recommendation for post-flight testing, radiation effects references, etc.)**

9. Please supply detailed drawing showing component in tray and materials identification so that shielding model may be developed.

10. **Requestor Signature:________________________**
 SIG Signature:________________________

Add continuation sheets as necessary, send copies to the following:

(1) LDEF Project Office, Code 356, NASA, LaRC, Hampton, VA 23665-5225
(2) T.A. Parnell, ES62, NASA, Marshall Space Flight Center, AL 35812

NOTE: The LDEF IRSIG does not plan to perform experimental radiation effect studies on materials/components. It does plan to supply accurate information on radiation dose, flux, secondary components at suspect sites. It will also supply references to relevant literature on radiation effects, and advice concerning post-flight radiation testing.
LDEF IRSIG TAP 2/13/90

LDEF IRSIG STATUS

- IRSIG PLANS COMPLETE
- PRELIMINARY DOSE, FLUENCE AND LET MEASUREMENTS COMPLETE AND CIRCULATED
- PREDICTIONS BOOKLET IN PRESS - DISTRIBUTION 3/15/90
- RADIATION CALCULATIONS PLAN COMPLETE
- PO006 ANALYSIS PLANS COMPLETE
- INDUCED ACTIVITY ANALYSIS PLANS COMPLETE
- MEASUREMENTS OF FULL SPACECRAFT INDUCED ACTIVITY IN PROGRESS
- INDUCED ACTIVITY CALCULATIONS PLANS COMPLETE
- RADIATION EFFECTS CONSULTING PLAN IN PROGRESS

* AWAITING FUNDING
NASA LONG DURATION EXPOSURE FACILITY

OVERVIEW OF PRINCIPAL INVESTIGATOR PLANS

JAMES L. JONES, JR.

NASA - LANGLEY RESEARCH CENTER
LDEF SCIENCE MANAGER

LDEF MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
PI EXPERIMENT ACTIVITIES

KSC OPERATIONS
- PI EXPERIMENT

EXPT. DEINTEGRATION
- PI FACILITY

DATA ANALYSIS

DATA PUBLICATION

NON PLEXPTS.
- SYSTEMS
- COMPONENTS
- SAMPLES

DATA ANALYSIS

DATA PUBLICATION

SIG REQUESTS
- MATERIAL
- SYSTEM
- MICROMETEROID
- RADIATION

PI/SIG UNDERSTANDING

RETRIEVAL PLANS (COMPLETED)

• TRAY/EXPERIMENT PROCESSING

DE-INTEGRATE (IF NECESSARY)

PHOTOGRAPH FRONT & BACK

INSTALL TRAY COVERS

PACK FOR SHIPPING

DELIVER FOR SHIPPING

BATTERY REMOVAL

SELECTED EXPERI C/O OPERS.

DE-INTEGRATE (IF NECESSARY)

EXPERI POWER & DATA SYS. ACT.

OFF-LINE STS

REMOVE TO FLOOR

REMOVE TRAY COVERS
EXPERIMENTS A0134 AND S0010—BEFORE INTEGRATION ON LDEF STRUCTURE.
EXPERIMENT S1001—BEFORE INTEGRATION ON LDEF STRUCTURE.

EXPERIMENT A0054—BEFORE INTEGRATION ON LDEF STRUCTURE.
INTEGRATED TRAY C-3—BEFORE INTEGRATION ON LDEF STRUCTURE.

EXPERIMENT A0178—BEFORE INTEGRATION ON LDEF STRUCTURE.
INTEGRATED TRAY D-12—BEFORE INTEGRATION ON LDEF STRUCTURE.

EXPERIMENTS M0002 AND M0003—BEFORE INTEGRATION ON LDEF STRUCTURE.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH
TRAY G10—BEFORE INTEGRATION ON LDEF STRUCTURE.

EXPERIMENT S0014—BEFORE INTEGRATION ON LDEF STRUCTURE.
INTEGRATED TRAY E-6—BEFORE INTEGRATION ON LDEF STRUCTURE.

EXPERIMENT M0004—BEFORE INTEGRATION ON LDEF STRUCTURE.
EXPERIMENT A0138—BEFORE INTEGRATION ON LDEF STRUCTURE.
NASA
LONG DURATION EXPOSURE FACILITY

SDIO OVERVIEW

WAYNE E. WARD
U.S. AIR FORCE SYSTEMS COMMAND
MEMBER, MSIG

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
SDIO ASSESSMENT OF THE NASA LONG DURATION EXPOSURE FACILITY (LDEF)

IDENTIFICATION OF DATA/SAMPLES DESIRED

NASA/LDEF WORKSHOP
KSC
13 - 14 FEBRUARY 1990
WAYNE E. WARD

WRDC/MLBT
WRIGHT-PATTERSON AFB,
OHIO 45433-6533

SPACE ENVIRONMENTAL EFFECTS
PROGRAM OBJECTIVES

PROVIDE SELECTED, CRITICAL SPACE ENVIRONMENTAL EFFECTS DATA ON MATERIALS IN THE FORM TO ASSIST MORE CONFIDENT DESIGN OF LONG LIFE SDS SPACECRAFT

TWO PHASE EFFORT

• UTILIZE EXISTING NATIONAL RESOURCES AND CURRENT OR CURRENTLY DEVELOPMENTAL MATERIALS TO ACQUIRE ESSENTIAL DATA FOR PHASE ONE SYSTEM DESIGNS (e.g. BSTS, SSTS)

• ENHANCE AND INTEGRATE NATIONAL TESTING CAPABILITIES FOR LONG LIFE IN ALL ENVIRONMENTAL CONDITIONS

• EXPAND TESTING TO INCLUDE MATERIALS NOW IN EARLY DEVELOPMENT

• COMPLY WITH LONG LEAD TIME REQUIREMENTS BY IMMEDIATELY INITIATING SPACE FLIGHT PLANNING TO ACQUIRE ESSENTIAL DATA
SPACE ENVIRONMENTAL EFFECTS
SUMMARY

WRDC/ML: SERVE AS EXECUTING AGENT

* To plan and execute the space environmental effects program
* To manage a coordinated national effort
* To provide selected space environmental effects information for materials selection, performance and end of life predictions for near term and future SDS spacecraft
* To fill critical voids in the transition of new materials and structures technology to SDS spacecraft

SPACE ENVIRONMENTAL EFFECTS
NEEDS

- Space environmental effects on materials properties / performance must be quantified
 - Ground simulation
 - Combined effects
 - Orbital dependence
 - Orbital experiments / data
 - LDEF, Delta Star, others
 - Mathematical modeling
 - Combined effects
 - Enhanced data base
 - Standardized test methods and procedures
 - Accelerated testing

- Space environmental effects on hardness must be quantified
 - Combined environmental / hardness testing

- Results must be correlated for easy access by systems designers
- Guide materials development
SPACE ENVIRONMENTAL EFFECTS
TECHNOLOGY INSERTION WORKING GROUP (TIWG)

MEMBERSHIP

AIR FORCE	- DR. WAYNE WARD	WRDC/ML, CHAIRMAN
- DR. ED MURAD	AFGL/PHK	
- LT. DALE ATKINSON	AFWL/NTCAS	
- LT. BRIAN LILLIE	AFSTC/XLA	
SDIO	- LTC RICHARD YESENSKY	SDIO/TNK
- DR. AINSLIE YOUNG	SDIO/TNK	
- LTC CHIP HILL	SDIO/TNK	
NAVY	- MR. AL BERTRAM	NSWC/WL
NASA	- DR. DARREL TENNEY	LANGLEY RESEARCH CENTER
- DR. LUBERT LEGER	JOHNSON SPACE CENTER	
W.J. SCHAFFER	- MR. ROBERT TURNER	
AEROSPACE CORP.	- DR. GRAHAM ARNOLD	CPL
- DR. MIKE MESHISHNEK	MSL	
JET PROPULSION LAB	- DR. RANTY LIANG	SPACE MATERIALS S&T
- DR. JOHN SCOTT-MONCK	SPACE MATERIALS S&T	

LDEF: OBJECTIVES OF SDIO EFFORT

1. IDENTIFY SDIO DATA ANALYSIS REQUIREMENTS AND SAMPLE NEEDS
2. SET SDIO PRIORITIES
3. DEVELOP INPUT FOR NASA - LDEF SIG CHAIRMEN
4. SORT REQUIREMENTS BY BENEFITING PROGRAM OFFICES
PRIORITIES

I CRITICAL TO SDIO SYSTEMS AND TECHNOLOGY PROGRAMS.

II ESSENTIAL TO SDIO DATA GENERATION AND GROUND-TO-SPACE CORRELATIONS.

III SUPPORTS GENERIC RESEARCH NEEDS.

SDIO PARTICIPATION IN NASA-LDEF ORGANIZATION CHART

SDIO
(LTC YESENSKY/DR. YOUNG)

SDIO COORDINATOR
(R. TURNER)

NASA-HQ
(J. AMBRUS)

LARC PROJECT
(W. KINARD/B. LEIGHTNER/J. JONES)

MATERIALS SIG
(B. STEIN)

SDIO REP
(C. HERSCH/IDA)

SYSTEMS SIG
(J. MASON)

SDIO REP
(R. MERCER/SDIO)

M&D SIG
(W. KINARD)

SDIO REP
(LT D. ATKINSON/WL)

RADIATION SIG
(T. PARNELL)

SDIO REP
(J. RITTER/NRL)

SDI SYSTEMS REQUIREMENTS
(L. McCreight/AEROSPACE)
- SBI
- BP
- SSTs
- NPB

SDI TECHNOLOGY REQUIREMENTS
- Materials (W. Ward/WRDC)
- Power (T. Wheeler/WJSA)
- Survivability (Lt D. Atkinson/WL)
- Optics (K. Scott/AEROSPACE)
- Electronics (W. Dudney/USASDC)
- Thermal Management (W. Ward/WRDC)
SDIO PARTICIPATION IN NASA-LDEF RESPONSIBILITIES

SDIO SIG REPRESENTATIVES

- Coordinates NASA-LDEF requirements/preparation
- Provides coordinated SDIO requirements to NASA SIGs
- Provides cost estimates
- Prioritizes requirements

SDIO SDI SYSTEMS AND TECHNOLOGY REPRESENTATIVES

- Reviews experiments/LDEF spacecraft data opportunities
- Provides SDIO SIG representatives with requirements for assigned area
 - Data needs per NASA format
 - Sample needs
 - Estimate costs

SDIO - LDEF COORDINATOR

- POC for NASA LDEF project
- Shepherd's action timeline
- Supports coordination of SDIO activities, resolution of issues

STATUS OF SDIO PLANNING EFFORT

- SDIO REQUIREMENTS DEFINED

- MATERIALS OR SYSTEMS ANALYSES AND PRIORITIES ARE IDENTIFIED BY LDEF EXPERIMENT

- SAMPLE NEEDS AND TEST SEQUENCES ARE IDENTIFIED BY LDEF-EXP

- FURTHER COORDINATION NEEDS ARE IDENTIFIED BY LDEF EXPERIMENT

- NEED TO IDENTIFY IMPLEMENTATION APPROACHES

- DATA ANALYSES
- SAMPLE COLLECTION
- IMPLEMENTATION SEQUENCES (NAV\MAP\HOC)
<table>
<thead>
<tr>
<th>SDIO Code</th>
<th>TRAY #</th>
<th>TYPE OF MAT/SYS NAME/COMPANY</th>
<th>PRIORITY</th>
<th>PRIORITIZED 1 THRU n TEST/SAMPLE REQUIREMENT</th>
<th>ADDITIONAL INFORMATION NEEDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS 04</td>
<td>M0006</td>
<td>Vacuum canister</td>
<td>I</td>
<td>Stiction, lube condit, migration</td>
<td>Dry lubricant specifications</td>
</tr>
<tr>
<td>SYS 05</td>
<td>M0006</td>
<td>Detectors & shielding mat.</td>
<td>II</td>
<td>Performance (13)</td>
<td>Preflight data, control samples</td>
</tr>
<tr>
<td>SYS 06</td>
<td>M0006</td>
<td>Mechanisms</td>
<td>I</td>
<td>Contamination degradation (16)</td>
<td></td>
</tr>
<tr>
<td>SYS 07</td>
<td>M0006</td>
<td>Clocks, opt. filters, subs</td>
<td></td>
<td>Neutral particle beam surv.</td>
<td>Preflight, post-flight test data</td>
</tr>
<tr>
<td>SYS 07</td>
<td>M0006</td>
<td>Thermal paints, thermocpl</td>
<td></td>
<td>AGT and laser survivability</td>
<td>Preflight, post-flight test data</td>
</tr>
<tr>
<td>DEBO1</td>
<td>M0006</td>
<td>Mirrors-fused Si & Be</td>
<td>I</td>
<td>Evaluate Impacts (1)</td>
<td>Org. Specs., Chars. (1)</td>
</tr>
<tr>
<td>MAT 02</td>
<td>M0006</td>
<td>Mirrors-Be</td>
<td>I</td>
<td>Optical Properties / Samples</td>
<td>Collaboration with M0003</td>
</tr>
<tr>
<td>MAT 06</td>
<td>M0006</td>
<td>Electro Optics</td>
<td>I</td>
<td>Optical and T/C Tests (1)</td>
<td>Control Sample Info (1)</td>
</tr>
<tr>
<td>MAT 07</td>
<td>M0006</td>
<td>Electronics (9)</td>
<td>I</td>
<td>Materials degradation data</td>
<td></td>
</tr>
</tbody>
</table>

LEVEL III NOTES FOR SUMMARY OF TYPE OF MATERIALS OR SYSTEMS REQUESTED AND TESTS REQUIRED

<table>
<thead>
<tr>
<th>SDIO CODE</th>
<th>TRAY #</th>
<th>TYPE OF MAT/SYS NAME/COMPANY</th>
<th>PRIORITY</th>
<th>PRIORITIZED 1 THRU n TEST/SAMPLE REQUIREMENT</th>
<th>ADDITIONAL INFORMATION NEEDED</th>
</tr>
</thead>
</table>
| MAT 06 | Note (1)| | | If not performed by PI, perform the following tests. For more complex tests obtain samples from PI when his prior testing is complete:
- Visual examination under varying lighting conditions
- Contamination collection, analysis, and identification
- Total integrated scatter measurements before and after contamination removal
- Reflectance/transmittance measurements
- Analysis of defects of and causes for:
 -- separations
 -- flaking
 -- peeling
 -- other surface anomalies
- Nomarski tests of selected surfaces. | If available, obtain control samples corresponding to exposed samples provided by the PI.
Where critical tests are performed by PI, review his data and if values or calibrations uncertain, request flight and control samples be submitted to SIG for retest. |
<table>
<thead>
<tr>
<th>SDIO CODE</th>
<th>TRAY #</th>
<th>TYPE OF MATERIAL OR SYSTEM</th>
<th>PRIORITY</th>
<th>TEST/SAMPLE REQUIREMENT</th>
<th>ADDITIONAL INFORMATION NEEDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note (1)</td>
<td></td>
<td></td>
<td></td>
<td>Evaluate: Number of impacts</td>
<td>Original specifications and optical characteristics (TIS, BRDF, TMR, etc.), post retrieval optical measurements on control samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crater depths and diameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impact effects (spalling, cracking, delamination, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impactor material/compositions (especially on Be mirror)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Degradation of optical characteristics due to impacts</td>
<td></td>
</tr>
<tr>
<td>Note (2)</td>
<td></td>
<td></td>
<td></td>
<td>Evaluate: Secondary eject impacts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contamination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impactor and contamination materials/compositions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Degradation of optical characteristics due to contamination</td>
<td></td>
</tr>
</tbody>
</table>

LIMITATIONS TO THE DEFINITION OF SDIO NEEDS

- DEPTH OF REQUIREMENTS DEFINITION -- ID LIMITED BY AVAILABLE INFORMATION.
- TYPES OF MATERIALS ARE IDENTIFIED, NOT SPECIFIC SPECIMENS IN MOST CASES
- "ASSUMES" ALL TRAYS WILL BE ANALYZED
- REQUIREMENTS ARE NOT SEPARATED RELATIVE TO WHAT IS BEING DONE BY SIGs AND PI's VERSUS SDIO SPECIFIC NEEDS
- CONFLICTS / OVERLAPS BETWEEN SIGs NOT RESOLVED
- TIMELINESS OF AVAILABILITY OF DATA TO IMPACT SDI SYSTEMS
- INTERESTED IN "LEADING EDGE" SAMPLES OR BEST ALTERNATIVE
<table>
<thead>
<tr>
<th>EXPERIMENTS OF INTEREST TO SDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0019</td>
</tr>
<tr>
<td>A0034</td>
</tr>
<tr>
<td>A0044</td>
</tr>
<tr>
<td>A0056</td>
</tr>
<tr>
<td>A0114</td>
</tr>
<tr>
<td>A0134</td>
</tr>
<tr>
<td>A0138</td>
</tr>
<tr>
<td>A0147</td>
</tr>
<tr>
<td>A0172</td>
</tr>
<tr>
<td>A0178</td>
</tr>
<tr>
<td>A0187</td>
</tr>
<tr>
<td>A0201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPERIMENTS OF INTEREST TO SDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENT (LOCATION)</td>
</tr>
<tr>
<td>A0019 (D12) A0023 (various)</td>
</tr>
<tr>
<td>A0034 (C3,C9) A0038 (various)</td>
</tr>
<tr>
<td>A0044 (E5) A0054 (B4,D10)</td>
</tr>
<tr>
<td>A0056 (B8,G12) A0076 (F9)</td>
</tr>
<tr>
<td>A0114 (C3,C9) A0133 (H7)</td>
</tr>
<tr>
<td>A0134 (B9) A0135 (E5)</td>
</tr>
<tr>
<td>A0138 (B3) A0139 (G8)</td>
</tr>
<tr>
<td>A0147 (B8,G12) A0171 (A8)</td>
</tr>
<tr>
<td>A0172 (D2,G12) A0175 (A1,A7)</td>
</tr>
<tr>
<td>A0178 (various) A0180 (D12)</td>
</tr>
<tr>
<td>A0187 (various) A0189 (D2)</td>
</tr>
<tr>
<td>A0201 (various)</td>
</tr>
</tbody>
</table>
FUTURE DIRECTION AND COORDINATION

- NEED TO INTERACT FURTHER WITH SIGs AND PIs
 - IDENTIFY PLANNED PI TESTS AND ANALYSES
 - IDENTIFY PLANNED SIG TESTS AND ANALYSES
 - IDENTIFY ANY MISMATCHES BETWEEN SDIO AND NASA PLANS
- NEED TO LAYOUT A MUTUALLY AGREEABLE PROCESS FOR INTERACTION
- SOME DETAIL MISSING FOR SOME REQUIREMENTS

IMPLEMENTATION PLAN

- SDI SPACE ENVIRONMENTAL EFFECTS (SEE) PROGRAM MANAGER RESPONSIBLE FOR COORDINATION OF SDI/LDEF ACTIVITIES
 - ESTABLISH SDI/LDEF ADVISORY PANEL (SEE TIWG & SDIO SIG REPS)
- IMPROVE COORDINATION WITH NASA
 - INCREASED PARTICIPATION IN SIG ACTIVITIES
 - HELP IDENTIFY/RESOLVE DATA/SAMPLE QUESTIONS AMONG PIs/SIGs/SDI
 - DUPLICATIONS, CONFLICTS, TEST SEQUENCING, etc.
- COMMUNICATE WITH PIs
 - PI INTERESTS/DATA GENERATION PLANS
 - SDI INTERESTS/DATA AND/OR SAMPLES DESIRED
- ENSURE COOPERATIVE APPROACH
 - MAXIMIZES BENEFITS FROM RESOURCE EXPENDITURES
 - BEST WAY TO PROTECT EVERYONE'S RIGHTS AND INTERESTS
HOW CAN SDI ACQUIRE DESIRED DATA/SAMPLES?

- EXPERIMENTS/ SAMPLES BELONG TO PIs
 - TWO KINDS OF DATA: "GENERAL INTEREST" AND "SDI UNIQUE"
 - "GENERAL INTEREST"
 - IS PI PLANNING TO GET IT?
 - IF YES
 - ASSURE COMPATIBILITY OF PIs PLANS WITH "GLOBAL" PLANS
 - KEEP IN TOUCH (THROUGH SIGS)
 - IF NO
 - CAN/WOULD PI GET IT IF ASKED?
 - IF NO
 - WOULD PI AGREE TO LOAN/GIVE A SAMPLE FOR DATA GENERATION
 - BY SIG/BOEING
 - BY SOMEONE ELSE (TBD)
 - PI GETS PUBLICATION RIGHTS
 - IF NO
 - KEEP IN TOUCH
 - IF YES
 - KEEP IN TOUCH
 - IF YES
 - KEEP IN TOUCH
 - IF NO
 - "????"

- "SDI UNIQUE" DATA (e.g. SURVIVABILITY)
 - REQUEST SAMPLES FROM PIs
 - SUITABLE FOR TESTING
 - MAY NOT BE RETURNED (DEPENDS ON TESTS TO BE PERFORMED)
 - CONTROL SAMPLES MAY BE NEEDED FOR CORRELATION
 - DATA GENERATED MAY NOT BE RELEASED (MAY BE CLASSIFIED)
 - COOPERATIVE EFFORT TO MAXIMIZE DATA WHICH CAN BE OBTAINED FROM UNIQUE LDEF OPPORTUNITY
LONG DURATION EXPOSURE FACILITY

MATERIALS DATA ANALYSIS METHODOLOGY
OVERVIEW

BLAND A. STEIN
NASA - LANGLEY RESEARCH CENTER,
CHAIRMAN, LDEF MSIG

LDEF MATERIALS DATA ANALYSIS WORKSHOP
NASA - KENNEDY SPACE CENTER
FEBRUARY, 1990

LDEF launch
LDEF MATERIALS CHARACTERIZATION OPPORTUNITIES

UNIQUE MATERIALS DATA

• 5.5-year exposure in low Earth orbit
• Well-defined environmental parameters
 - Natural environment
 - Induced environments (e.g., contamination, debris)
• Large variety of materials in materials experiments, systems experiments, and science experiments

BENEFICIAL MATERIALS DATA

• Design data base for NASA, DoD, and Commercial missions
 - Space Station Freedom
 - In-Space Experiments
 - Global Change Technology Platforms/Experiments
 - SDI systems
 - Communications satellites
 - Concept studies for advanced missions
• Design data for space-based operations
• Verification of space materials environmental degradation models
• Fundamental understanding of space environmental effects
COORDINATION OF LDEF MATERIALS DATA

MATERIALS SPECIAL INVESTIGATION GROUP TASK:

>>> CONSIDER ENTIRE SPACECRAFT AS AN EXPERIMENT<<<
(Synergism: The whole is greater than the sum of its parts)

MSIG APPROACH:

• Provide central data analysis laboratory

• Encourage voluntary contribution of P.I. experiment materials for documentation, mapping, analysis, archival, and/or determination of laboratory-to-laboratory variability

• Specimen requirements
- 75% of objective can be accomplished with 10mg of sample
- 95% of objective can be accomplished with 100 - 500mg

• All experimental and analytical data will be shared with contributor

LDEF MATERIALS DATA ANALYSIS WORKSHOP
SESSION 2: MATERIALS DATA ANALYSIS METHODOLOGY DISCUSSIONS AND SESSION 3: MATERIALS ANALYSIS, DATA BASE, AND PRESERVATION

OBJECTIVE: Stimulate interest and awareness of the opportunities to expand the LDEF data base through:
• Understanding the potential of data synergism
• Voluntary contribution of materials which:
 were not originally planned to be test specimens or
 were duplicate specimens in the experiment or
 are specimens whose initial experiment objectives have been satisfied

APPROACH: Interactive discussions on analysis methodology
• Characterization
• Surface science
• Atomic oxygen
• Contamination
• Other parameters which define (or obscure) the data
• Specimen preservation and shipment
LONG DURATION EXPOSURE FACILITY

POLYMERIC MATERIALS CHARACTERIZATION

PHILIP R. YOUNG
NASA - LANGLEY RESEARCH CENTER
MEMBER, MSIG

LDEF MATERIALS DATA ANALYSIS WORKSHOP
NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
CHARACTERIZATION OPPORTUNITIES

- UNIQUE ENVIRONMENTAL EXPOSURE
- LARGE VARIETY OF MATERIALS
- DIRECT APPLICATION TO CURRENT AND FUTURE SPACE ACTIVITIES
- VERIFICATION OF ENVIRONMENTAL PERFORMANCE MODELS
- FUNDAMENTAL INSIGHTS INTO SPACE ENVIRONMENTAL EFFECTS
POLYMERS

POLYMERS

POLYIMIDE (KAPTON, PMR-15)
EPOXY (934/5208/3501)
POLYESTER (MYLAR, DACRON)
AROMATIC POLYAMIDE (KEVLAR)
POLYAMIDE (NYLON 6/6, ZYTEL)
POLYSULFONE (P-1700)
POLYCARBONATE (LEXAN)
BISMALEIMIDE (V378A)
ACRYLIC (PLEXIGLASS)
ACETAL (DELRIN)
TEFLON (FEP)
KYNAR (TFE)
VITON (POLYHEXAFLUOROPROPYLENE)
GRAPHITE FIBER (PAN)
PYRRONE

POLYOLEFIN:
POLYETHYLENE
BLACK POLETHYLENE
POLYPROPYLENE

VINYL:
POLYVINYL CHLORIDE
POLYVINYL FLUORIDE (TEDLAR)
POLYVINYLIDENEFLUORIDE
POLYSTYRENE

POLYURETHANE
POLYPARAXYLENE
PHENOLIC
CELLULOSE NITRATE
POLYDIMETHYLSILOXANE
SILICONE RUBBER
BUNA N RUBBER
NEOPRENE RUBBER

POLYOLEFIN:
POLYETHYLENE $-\text{CH}_2-\text{CH}_2-$
BLACK POLETHYLENE CH_3
POLYPROPYLENE $-\text{CH}_2-\text{CH}_2-$

VINYL:
POLYVINYL CHLORIDE $-\text{CH}_2-\text{CH}-\text{Cl}$
POLYVINYL FLUORIDE (TEDLAR) $-\text{CH}_2-\text{CH}_2-$
POLYVINYLIDENEFLUORIDE $-\text{CH}_2-\text{CF}_2-$
POLYSTYRENE $-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3$

POLYURETHANE
POLYPARAXYLENE CH_3
PHENOLIC
CELLULOSE NITRATE $\text{CH}_2=\text{CH}-\text{Cl}$
POLYDIMETHYLSILOXANE $-\text{Si}-\text{O}-\text{Si}-\text{O}-\text{Si}$ (RTV)
SILICONE RUBBER CH_3
BUNA N RUBBER $-\text{CH}_2-\text{C}=$ CH_2-
NEOPRENE RUBBER $\text{CH}_2=\text{C}=$ $\text{CH}_2-\text{C}-\text{CH}_3$
WHAT ELSE SHOULD WE DO?

- WHAT CAN BE LEARNED ABOUT SPACE ENVIRONMENTAL EFFECTS THAT HAS LASTING VALUE?
- WHAT "GOOD" SCIENCE CAN WE DO?
- WHAT ADDITIONAL WORK SHOULD BE PERFORMED TO ASSURE THAT THE "CORRECT" SCIENCE IS BEING DONE?
- WHAT IS THE "BEST" ANALYTICAL CHARACTERIZATION PLAN?

CHARACTERIZATION OF LDEF MATERIALS

OBJECTIVE: STIMULATE INTEREST AND AWARENESS OF OPPORTUNITY TO EXPAND THE LDEF DATA BASE BY CONSIDERING THE ENTIRE SPACECRAFT AS AN EXPERIMENT.

APPROACH: PRESENT DISCUSSIONS ON CHEMICAL CHARACTERIZATION, SURFACE SCIENCE, ATOMIC OXYGEN, CONTAMINATION, AND OTHER PARAMETERS WHICH DEFINE (OR OBSCURE) THE INFORMATION OF INTEREST.
OUTLINE

- RESPONSE OF POLYMERIC MATERIALS TO SPACE ENVIRONMENT
- ANALYTICAL CHARACTERIZATION
 - MOLECULAR WEIGHT
 - CHROMATOGRAPHY
 - DIFFUSE REFLECTANCE-FTIR
 - THERMAL ANALYSIS
 - MODEL COMPOUNDS

- RECOMMENDED CHARACTERIZATION PLAN

ANALYTICAL CHARACTERIZATION

MUST FOCUS ON

- DEVELOPMENT OF NEW AND IMPROVED MATERIALS
- THE LONG-LIFE CERTIFICATION OF SELECTED MATERIALS
- FUNDAMENTAL INFORMATION AT THE MOLECULAR LEVEL
 - STRONG AND WEAK CHEMICAL LINKS
 - IMPROVEMENTS TO MOLECULAR STRUCTURE
 - DEGRADATION MECHANISMS
CHARACTERIZE RESPONSE OF POLYMERIC MATERIALS TO LDEF ENVIRONMENT

- ATOMIC OXYGEN
- THERMAL CYCLING
- ULTRAVIOLET RADIATION
- IONIZING RADIATION (e⁻, p⁺)
- COSMIC RADIATION
- METEOROID AND DEBRIS
- VACUUM
- SYNERGISTIC EFFECTS

ABSORPTION OF RADIATION

<table>
<thead>
<tr>
<th>Primary processes</th>
<th>Secondary reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial effects:</td>
<td></td>
</tr>
<tr>
<td>P →→ P⁺ + e⁻</td>
<td>ionization</td>
</tr>
<tr>
<td>→→ P⁺</td>
<td>excitation</td>
</tr>
<tr>
<td>e⁻ → e⁺</td>
<td>energy loss</td>
</tr>
<tr>
<td>P⁺ + e⁺ → P</td>
<td>recombination</td>
</tr>
<tr>
<td>Subsequent effects:</td>
<td></td>
</tr>
<tr>
<td>P⁺ → R⁺ + R₂</td>
<td>homolytic cleavage</td>
</tr>
<tr>
<td>P⁺ → A⁺ + B⁻</td>
<td>heterolytic cleavage</td>
</tr>
<tr>
<td>P⁺ → C⁺ + D⁻</td>
<td>decomposition</td>
</tr>
<tr>
<td>P⁺ + P → PX + D⁺</td>
<td>ion-molecule</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R⁺ + R' - H → R - H + R'</td>
<td>abstraction</td>
</tr>
<tr>
<td>.R⁺ + R' - Cl → R - Cl + R'</td>
<td></td>
</tr>
<tr>
<td>R⁺ + CH₂ = CHR → RCH₂ - CHR' +</td>
<td>addition</td>
</tr>
<tr>
<td>Decomposition → Small molecules</td>
<td>(CO₂, HCl ...</td>
</tr>
<tr>
<td>Chain scission and crosslinking</td>
<td></td>
</tr>
</tbody>
</table>

P = Polymer
R = Radical
A, B, C, D = Other molecular species
PHOTOCHEMICAL EFFECTS

ENERGY ABSORBED BY A MOLECULE:

\[E = \frac{h \nu}{\lambda} \]

\(h \) = PLANCK'S CONSTANT
\(c \) = VELOCITY OF LIGHT
\(\nu \) = FREQUENCY
\(\lambda \) = WAVELENGTH
\(N \) = AVAGADRO'S NUMBER

CONVERT MOLECULES TO MOLES:

\[E = \frac{Nhc}{\lambda} \]

IF \(\lambda = 4000\text{Å} \), \(E = 71.5 \text{ Kcal/mole} \)
IF \(\lambda = 2500\text{Å} \), \(E = 114.4 \text{ Kcal/mole} \)

TYPICAL BOND ENERGIES (Kcal/mole):

<table>
<thead>
<tr>
<th>Bond</th>
<th>Energy (Kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>99</td>
</tr>
<tr>
<td>C-C</td>
<td>83</td>
</tr>
<tr>
<td>C=C</td>
<td>146</td>
</tr>
<tr>
<td>C-N</td>
<td>70</td>
</tr>
<tr>
<td>C=O</td>
<td>179</td>
</tr>
<tr>
<td>SiO</td>
<td>100</td>
</tr>
<tr>
<td>C=O</td>
<td>84</td>
</tr>
<tr>
<td>C-Cl</td>
<td>79</td>
</tr>
</tbody>
</table>

RESPONSE OF POLYMERS TO EXPOSURE

SMALL MOLECULE GENERATION

STRUCTURAL CHANGES

CROSSLINK

DEGRADE (CHAIN SCISSION)
INDUCED CHEMICAL CHANGES

1. CROSSLINKING
 • INCREASE IN MOLECULAR WEIGHT
 • MACROSCOPIC NETWORK
 • SOLUBLE FRACTION DECREASES WITH DOSE

2. CHAIN SCISSION
 • DECREASE IN MOLECULAR WEIGHT
 • DECREASE IN TENSILE AND FLEXURAL STRENGTH
 • EMBRITTLEMENT
 • DISSOLUTION RATE INCREASES

3. SMALL MOLECULE PRODUCTS
 • RESULTS FROM SCISSION FOLLOWED BY ABSTRACTION/RECOMBINATION
 • INFORMATION ON DEGRADATION MECHANISMS
 • CRACKING AND CRAZING (CO₂, H₂ ...)
 • CONTAMINATION (HCl ...)

4. STRUCTURAL CHANGES
 • FOLLOWS PRODUCTION OF SMALL MOLECULES AND OTHER REACTIONS
 • CHANGE IN COLOR
 • LOSS OF CRYSTALLINITY
 • MICRO- AND MACROSCOPIC DIMENSIONAL CHANGES

RESPONSE TO RADIATION DEPENDS ON STRUCTURE

VINYL POLYMERS
(CROSSLINK)

VINYLIDENE POLYMERS
(RUPTURE)

POLYETHYLENE

BUTYL RUBBER

POLYSTYRENE

POLYMETHYL STYRENE

POLYVINYL CHLORIDE

SARAN

KYNAR
EFFECT OF AROMATICITY ON RADIATION STABILITY

VISCOSITY \([\eta]\) vs. DOSE IN MEGARADS

INSOL. AT 1000 Mr

INSOL. AT 500 Mr

EFFECT OF UV RADIATION ON TENSILE STRENGTH OF MYLAR FILM

PERCENT ORIGINAL TENSILE STRENGTH vs. HOURS IRRADIATION (BH-6 UV LAMP)

ALUMINIZED MYLAR

UNPROTECTED MYLAR

TOO BRITTLE TO TEST

EFFECT OF e^- RADIATION ON TENSILE STRENGTH OF PYRRONE FILM

![Graph showing the effect of dose on yield strength in psi.]

EFFECT OF SPACE EXPOSURE ON T_g OF POLYMER FILMS

![Graph showing the effect of space exposure on T_g of various polymer films.]

MOLECULAR WEIGHT

SINGLE MOST IMPORTANT PARAMETER GOVERNING PROPERTIES OF POLYMERS

SILICONE OIL → SILLY PUTTY → SUPER BALL

(VERY LOW Mw) → (LOW Mw, LIGHTLY CROSSLINKED) → (HIGH Mw)

THE ELEMENTAL ANALYSIS OF ALL THREE MATERIALS IS IDENTICAL.

DISTRIBUTION OF MOLECULAR WEIGHT IN A TYPICAL POLYMER

\[\bar{M}_n = \frac{\sum M_i N_i}{\sum N_i} \]

\[\bar{M}_w = \frac{\sum M_i^2 N_i}{\sum M_i N_i} \]

\[\bar{M}_v = \frac{\sum M_i^{1+\alpha} N_i}{\sum (M_i N_i)^{1/\alpha}} \]
MOLECULAR WEIGHT CHARACTERIZATION

LIGHT SCATTERING (LALLS)

\[M_w = f(\text{scattering}) \]

CHROMATOGRAPHY

GPC-LALLS, GPC-DV

VISCOMETRY (DV)

\[M_v = f(\text{viscosity}) \]

OSMOMETRY

\[\pi V = M_n RT \]
SELECTED PARAMETERS AS DETERMINED BY SEVERAL TECHNIQUES ON THE SAME POLY(ARYLENE ETHER KETONE) SAMPLE

<table>
<thead>
<tr>
<th>Technique</th>
<th>\overline{M}_n (g/mole)</th>
<th>\overline{M}_w (g/mole)</th>
<th>\overline{M}_v (g/mole)</th>
<th>$[n]$ (dL/g)</th>
<th>$\overline{M}_w/\overline{M}_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane Osmometry1</td>
<td>31,700 ± 3008</td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Static LALLS</td>
<td></td>
<td>58,000 ± 30002,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57,000 ± 10002,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPC-LALLS4,9</td>
<td>26,200 ± 100</td>
<td>52,400 ± 100</td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>GPC-DV5,9</td>
<td>10,500 ± 600</td>
<td>45,000 ± 2000</td>
<td>38,000 ± 2000</td>
<td>0.52 ± 0.02</td>
<td>4.2</td>
</tr>
<tr>
<td>GPC6,9</td>
<td>19,100 ± 1000</td>
<td>69,200 ± 900</td>
<td></td>
<td>0.545 ± 0.0028</td>
<td></td>
</tr>
<tr>
<td>Solution Viscosity7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Four concentrations in anisole.

2Seven concentrations in chloroform; $dn/dc = 0.221 ± 0.001$.

3Five concentrations in chloroform; $dn/dc = 0.221 ± 0.001$.

4Two analyses, two concentrations.

5Three analyses, two concentrations.

6Three analyses, two concentrations; relative to polystyrene.

7Five concentrations in chloroform.

8Uncertainty in y-axis intercept at zero concentration.

9Chloroform mobile phase.
EFFECT OF PROCESSING ON VARIOUS MOLECULAR WEIGHT PARAMETERS FOR A POLYSULFONE

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>\bar{M}_w</th>
<th>\bar{M}_n</th>
<th>\bar{M}_v</th>
<th>\bar{M}_w/\bar{M}_n</th>
<th>$[\eta]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAT RESIN1</td>
<td>52,300</td>
<td>15,800</td>
<td>45,700</td>
<td>3.31</td>
<td>0.424</td>
</tr>
<tr>
<td>FRACTURED RESIN2</td>
<td>50,600</td>
<td>15,400</td>
<td>44,000</td>
<td>3.29</td>
<td>0.428</td>
</tr>
<tr>
<td>SOLVENT CAST FILM2</td>
<td>50,200</td>
<td>14,900</td>
<td>43,600</td>
<td>3.38</td>
<td>0.427</td>
</tr>
<tr>
<td>SOLVENT COATED PREPREG3</td>
<td>54,900</td>
<td>15,900</td>
<td>46,800</td>
<td>3.44</td>
<td>0.430</td>
</tr>
<tr>
<td>HOT MELT PREPREG3</td>
<td>53,200</td>
<td>16,300</td>
<td>45,500</td>
<td>3.27</td>
<td>0.409</td>
</tr>
<tr>
<td>COMPOSITE3</td>
<td>53,200</td>
<td>15,900</td>
<td>45,700</td>
<td>3.34</td>
<td>0.422</td>
</tr>
<tr>
<td>NEAT RESIN MOLDING3</td>
<td>54,600</td>
<td>16,700</td>
<td>47,500</td>
<td>3.27</td>
<td>0.402</td>
</tr>
</tbody>
</table>

1AVERAGE OF 5 ANALYSES
2AVERAGE OF 2 ANALYSES
3SINGLE ANALYSIS

MOLECULAR WEIGHT DISTRIBUTION FOR POLYSULFONE RESIN

![Molecular Weight Distribution Graph]
MOLECULAR WEIGHT DISTRIBUTIONS
FOR EIGHT POLY(ARYLENE ETHER KEYTONES)

SOLUBILITY OF POLYVINYLIDINE FLUORIDE IN DMAc
AS A FUNCTION OF DOSE

ANALYTICAL CHROMATOGRAM OF AP-22

CHROMATOGRAPH: ALC202/R401
COLUMN: Î”PORASIL
SOLVENT: 0.5% MeOH/CH₂Cl₂
RATE: 1.5 ml/min
SIZE: 1μl [5μg/μl]
DETECTOR: UV (254 nm)

RADIATION EFFECTS IN T300/934 COMPOSITE

THERMOMECHANICAL ANALYSIS

THERMAL VACUUM WEIGHT LOSS

DIFFUSE REFLECTANCE SPECTROSCOPY

DR-FTIR SPECTRA OF GRAPHITE/POLYSULFONE COMPOSITE
BEFORE AND AFTER RADIATION EXPOSURE

SAMPLE:
Celion 6000/P-1700

10^15 rads at RT
(1 mev e^-)

UNIRRADIATED
DR-FTIR SPECTRA OF 2-Ply T300/5208 Composite Exposed to Space Environment

DR-FTIR Spectra of Graphite/Epoxy Composite Before and After Thermal Aging

Sample: AS/501-5
Spectra of modified polyester before and after space exposure

DR-FTIR spectra of Celion 6000/LARC-160 composite before and after thermal aging

Polymer segment

Absorbance

Wavenumbers, cm\(^{-1}\)

139
EFFECT OF THERMAL AGING ON NADIMIDE MODEL COMPOUND

TRANSMITTANCE

WAVENUMBER, cm⁻¹

UNHEATED

HEATED 480°F/4 hr

ISO THERMAL WEIGHT LOSS AT 500°F

WEIGHT LOSS, 5.0 PERCENT

TIME, HOURS
MOLECULAR LEVEL EFFECTS

![Molecular Structure Diagram]

DIMENSIONS

<table>
<thead>
<tr>
<th>ATOM</th>
<th>X</th>
<th>DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C – N</td>
<td>–CH₃</td>
<td>17.95 Å</td>
</tr>
<tr>
<td></td>
<td>=C=O</td>
<td>18.65 Å</td>
</tr>
<tr>
<td>C – N</td>
<td>–CH₃</td>
<td>17.46 Å</td>
</tr>
<tr>
<td></td>
<td>=C=O</td>
<td>19.18 Å</td>
</tr>
</tbody>
</table>

GEOMETRY

<table>
<thead>
<tr>
<th>X</th>
<th>BOND ANGLE</th>
<th>TORSIONAL ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>–CH₃</td>
<td>109.54°</td>
<td>–43.3° –35.5°</td>
</tr>
<tr>
<td>=C=O</td>
<td>120.21°</td>
<td>–30.5° –24.4°</td>
</tr>
</tbody>
</table>

RECOMMENDED CHEMICAL CHARACTERIZATION

SOLUTION PROPERTIES
- **HPLC**
- **GPC**
- **LALLS/OSMOMETRY/VISCOMETRY**

SPECTROSCOPY
- **MASS**
- **UV-VIS-NIR**
- **IR**
- **MAGNETIC RESONANCE**

- SEPARATES MOLECULAR MIXTURES INTO INDIVIDUAL COMPONENTS
- SEPARATES LARGE MOLECULES ACCORDING TO SIZE
- MOLECULAR WEIGHT AND MOLECULAR WEIGHT DISTRIBUTION DETERMINATION
- IDENTIFICATION OF MOLECULAR SPECIES
- ELECTRONIC SPECTRA, CHROMOPHORE COMPOSITION, TRANSPARENCY, EXCITED STATE BEHAVIOR.
- VIBRATIONAL SPECTRA, CHEMICAL STRUCTURE, CONFORMATIONAL, CHEMICAL MODIFICATION.
- ¹H & ¹³C NMR: CHEMICAL STRUCTURE, TACTICITY, CONFORMATION, CHEMICAL MODIFICATION.
- ESR: RADICALS, TRIPLET STATE STRUCTURE AND BEHAVIOR.

DETECTS CHANGES AT THE MOLECULAR LEVEL.
RECOMMENDED PHYSICAL CHARACTERIZATION

- THERMAL/ThERMOMECHANICAL

 DSC - \(T_g, T_m, HDT, \text{CRYSTALLINITY} \)

 TBA - \(T_g, T_m, \text{MECHANICAL SPECTRUM} \)

 TMA - \(\text{CTE, HDT, } T_g, T_m \)

 DMA - \(\text{RELAXATIONS, DAMPING COEFFICIENTS, MECHANICAL SPECTRUM} \)

 TGA - \(\text{VOLATILE PRODUCTS} \)

DETECTS CHANGES IN POLYMER MACROSTRUCTURE.

CHARACTERIZATION PLAN - CONTINUED

ANALYTICAL RESULTS WILL DICTATE DIRECTION OF ADDITIONAL RESEARCH:

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>TECHNIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE CHEMISTRY</td>
<td>ESCA, (\alpha_s), EDAX, AUGER</td>
</tr>
<tr>
<td>SURFACE MORPHOLOGY</td>
<td>SEM, STEM</td>
</tr>
<tr>
<td>METAL ION MIGRATION</td>
<td>ATOMIC ABSORPTION, ICP</td>
</tr>
<tr>
<td>SURFACE MOLECULAR AND ATOMIC RESOLUTION</td>
<td>SCANNING TUNNELING MICROSCOPY</td>
</tr>
<tr>
<td>THERMOSET SOLUBLE FRACTION</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>MASS SPEC/PYROLYSIS</td>
</tr>
<tr>
<td></td>
<td>GC/PYROLYSIS</td>
</tr>
</tbody>
</table>

OBJECTIVE: MOLECULAR LEVEL RESPONSE TO ENVIRONMENTAL EXPOSURE.
CHARACTERIZATION PLAN - THERMOSETS

SAMPLE

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>MEASUREMENT</th>
<th>TECHNIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILMS</td>
<td>TRANSPARENCY, ELECTRONIC STRUCTURE</td>
<td>UV-VIS-NIR %T</td>
</tr>
<tr>
<td></td>
<td>MOLECULAR STRUCTURE</td>
<td>%T FTIR, 1H % 13C-NMR</td>
</tr>
<tr>
<td>COMPOSITES/SOLIDS</td>
<td>MOLECULAR STRUCTURE</td>
<td>DIFFUSE REFLECTANCE-SOLID STATE NMR</td>
</tr>
<tr>
<td></td>
<td>DEGRADATION/VOLATILE PRODUCTS</td>
<td>SOLVENT EXTRACTION/TGA</td>
</tr>
<tr>
<td>ALL</td>
<td>Tg, CTE, HDT, DEGREE OF CURE ...</td>
<td>DSC/TMA</td>
</tr>
<tr>
<td></td>
<td>ELEMENTAL COMPOSITION</td>
<td>CHNO</td>
</tr>
<tr>
<td></td>
<td>CRYSTALLINITY</td>
<td>X-RAY DIFFRACTION</td>
</tr>
<tr>
<td></td>
<td>SURFACE CONTAMINATION</td>
<td>MASS SPEC/BAKEOUT</td>
</tr>
</tbody>
</table>

CHARACTERIZATION PLAN - THERMOPLASTICS

IN ADDITION TO STANDARD THERMOSET ANALYSES:

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>TECHNIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROSSLINK DENSITY</td>
<td>GEL FRACTION</td>
</tr>
<tr>
<td>MOLECULAR WEIGHT: (M_n)</td>
<td>MEMBRANE OSMOMETRY</td>
</tr>
<tr>
<td>(M_w)</td>
<td>LOW ANGLE LASER LIGHT SCATTERING (LALLS)</td>
</tr>
<tr>
<td>(M_v)</td>
<td>DIFFERENTIAL VISCOMETRY (DV)</td>
</tr>
<tr>
<td>([\eta])</td>
<td>VISCOMETRY</td>
</tr>
<tr>
<td>MOLECULAR WEIGHT DISTRIBUTION</td>
<td>GPC/LALLS, GPC/DV</td>
</tr>
</tbody>
</table>
KAPTON

<table>
<thead>
<tr>
<th>ROW: 9(RAM)</th>
<th>3(TRAIL)</th>
<th>6/12(±90°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film</td>
<td>Tape</td>
<td>Washers</td>
</tr>
<tr>
<td>A0134</td>
<td>S1002</td>
<td>S1001</td>
</tr>
<tr>
<td>A0076</td>
<td>(also space end, A0133)</td>
<td></td>
</tr>
<tr>
<td>A0076</td>
<td>M0002</td>
<td>S1001</td>
</tr>
<tr>
<td>S0010</td>
<td>M0003</td>
<td>S1003</td>
</tr>
<tr>
<td>M0002</td>
<td></td>
<td>M0002</td>
</tr>
<tr>
<td>M0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(also row 10 S0115 at A0178 at 16 locations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0069</td>
<td></td>
<td>S1001</td>
</tr>
<tr>
<td>A0180</td>
<td></td>
<td>A0180</td>
</tr>
</tbody>
</table>

TEFLEX

<table>
<thead>
<tr>
<th>ROW: 9(RAM)</th>
<th>3(TRAIL)</th>
<th>6/12(90°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon, PTFE</td>
<td>Teflon</td>
<td>(also space end, A0038)</td>
</tr>
<tr>
<td>A0076</td>
<td>A0187</td>
<td>A0180</td>
</tr>
<tr>
<td>A0201</td>
<td>A0201</td>
<td>S1001</td>
</tr>
<tr>
<td>S0014</td>
<td>S0102</td>
<td>A0201</td>
</tr>
<tr>
<td>(also row 8, A0147 and row 2, A0172)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0003</td>
<td>M0003</td>
<td>M0002</td>
</tr>
<tr>
<td>S0014</td>
<td>A0138</td>
<td>S1001</td>
</tr>
<tr>
<td>(also space end, A0038)</td>
<td></td>
<td>A0038</td>
</tr>
<tr>
<td>Aluminized</td>
<td>Silvered</td>
<td>SSM</td>
</tr>
<tr>
<td>(Row 4 and 10, A0054)</td>
<td>(also A0178 at 16 locations)</td>
<td>S0010</td>
</tr>
<tr>
<td>S0114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEP AI</td>
<td>FEP</td>
<td>Viton</td>
</tr>
<tr>
<td>M0003</td>
<td>A0134</td>
<td>A0134</td>
</tr>
<tr>
<td>A0134</td>
<td>M0003</td>
<td>A0138</td>
</tr>
<tr>
<td>M0002</td>
<td>M0002</td>
<td>A0180</td>
</tr>
<tr>
<td>(also earth end, A0139-A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tedlar</td>
<td>PVF</td>
<td>PVF₂</td>
</tr>
<tr>
<td>M0003</td>
<td>M0003</td>
<td>S1002</td>
</tr>
<tr>
<td>A0134</td>
<td>S1001</td>
<td>A0180</td>
</tr>
</tbody>
</table>

145
THERMOSETS

<table>
<thead>
<tr>
<th>Material</th>
<th>Code 1</th>
<th>Code 2</th>
<th>Code 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMR-15</td>
<td>A0175</td>
<td>M0003</td>
<td></td>
</tr>
<tr>
<td>LARC-160</td>
<td>A0175</td>
<td>M0003</td>
<td></td>
</tr>
<tr>
<td>Kapton</td>
<td></td>
<td></td>
<td>already noted</td>
</tr>
<tr>
<td>Vespel</td>
<td>S1002</td>
<td>S0014</td>
<td>M0003</td>
</tr>
<tr>
<td>Gr/5208</td>
<td>A0019</td>
<td>A0134</td>
<td>A0180</td>
</tr>
<tr>
<td>Gr/3501-6</td>
<td>M0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr/934</td>
<td>A0180</td>
<td>A0171</td>
<td>A0134</td>
</tr>
<tr>
<td>Pyrrone</td>
<td>A0175</td>
<td>A0014</td>
<td>M0003</td>
</tr>
<tr>
<td></td>
<td>A0134</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMOPLASTICS

<table>
<thead>
<tr>
<th>Material</th>
<th>Code 1</th>
<th>Code 2</th>
<th>Code 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mylar, film velcro</td>
<td>A0139A</td>
<td>P0003</td>
<td>A0023</td>
</tr>
<tr>
<td></td>
<td>P0004</td>
<td>M0002</td>
<td>A0138</td>
</tr>
<tr>
<td></td>
<td>A0178 at 16 locations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysulfone, film composite</td>
<td>A0171</td>
<td>M0003</td>
<td>A0134</td>
</tr>
<tr>
<td></td>
<td>(C3000/P1700)</td>
<td></td>
<td>A0134</td>
</tr>
<tr>
<td></td>
<td>(C6000/P1700)</td>
<td></td>
<td>A0134</td>
</tr>
<tr>
<td></td>
<td>(722/P1700)</td>
<td></td>
<td>M0003</td>
</tr>
<tr>
<td></td>
<td>(T300/P1700)</td>
<td></td>
<td>M0003</td>
</tr>
<tr>
<td></td>
<td>(Gr/P1700)</td>
<td></td>
<td>M0003</td>
</tr>
<tr>
<td></td>
<td>(T300/Polyethersulfone)</td>
<td></td>
<td>M0003</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>M0001</td>
<td>M0002</td>
<td>A0015</td>
</tr>
<tr>
<td></td>
<td>A0178 at 16 locations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teflon</td>
<td></td>
<td></td>
<td>already noted</td>
</tr>
</tbody>
</table>
DESIRABLE SAMPLES FROM MATERIALS EXPERIMENTS

<table>
<thead>
<tr>
<th>EXPERIMENTAL LOCATION</th>
<th>MATERIAL</th>
<th>PI OBJECTIVE</th>
<th>REQUEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A0019 D12</td>
<td>5208/T300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. A0175 AI & A7</td>
<td>LARC-160</td>
<td>Primarily, mechanical properties</td>
<td>Broken samples</td>
</tr>
<tr>
<td></td>
<td>PMR-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>934</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. A0180 12</td>
<td>Epoxy, Kevlar, Kapton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. S1006 E6</td>
<td>Nylons, PE Mylar, Kevlar</td>
<td>Space exposure of balloon materials</td>
<td>Redundant films</td>
</tr>
<tr>
<td>5. S1003 E6</td>
<td>FEP, Kapton</td>
<td>α3/ε (no chemistry)</td>
<td>Buttons after testing</td>
</tr>
<tr>
<td>6. S1001 F12/H1</td>
<td>Kapton, Acrylics Urethanes, Silicones Epoxy, Polycarbonate PVF, Teflon</td>
<td>Heat pipe, plus films added for A0 exposure</td>
<td>Any redundant films</td>
</tr>
</tbody>
</table>

OTHER GENERAL REQUESTS

- **POLYETHYLENE**
- **POLY(ETHYLENE TEREPTHALATE)**
- **POLYSTYRENE**
- **A0178 - DUPLICATE 16 TIMES ON VEHICLE**
Paints

<table>
<thead>
<tr>
<th>Chemglaze</th>
<th>Other: White</th>
<th>Black</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>9924 (Primer)</td>
<td>S-13G</td>
<td>3M NexTel</td>
<td>AstraL P123</td>
</tr>
<tr>
<td>A-276 (White)</td>
<td>S-13Glo</td>
<td>CATALAC</td>
<td>DuPont 46971</td>
</tr>
<tr>
<td>Z-306 (Black)</td>
<td>SPEREX AP-101</td>
<td>ECCOSORB</td>
<td>DC 1200</td>
</tr>
<tr>
<td>Z-93 (White)</td>
<td>DC 92-007</td>
<td>IITRI D-111</td>
<td>Zn CHROMATE</td>
</tr>
<tr>
<td>Z-202 (White)</td>
<td>YB-71</td>
<td>3M 101-C10</td>
<td></td>
</tr>
<tr>
<td>Z-302 (White)</td>
<td>Zn O-TITINATE</td>
<td>3M CR-110</td>
<td></td>
</tr>
<tr>
<td>II-AS71 (Red)</td>
<td>MS-74</td>
<td>3M 401-C10</td>
<td></td>
</tr>
<tr>
<td>9951 (Thinner)</td>
<td>PV 100 ML 101</td>
<td>AstraL</td>
<td></td>
</tr>
</tbody>
</table>

Adhesives

Epoxy
- EPON 828 (Shell)
- 934 (Hysol)
- Epi Bond (Furane)
- Araldite (Ciba-Geigy)
- Torrseal (Varian)
- Epo-TEC 331
- ETCA E10-214
- Styecast 2850
- 3M #401 C10
- Ti-1300B
- Wasatch UH-3119

Silicone
- DC 6-1104
- DC 93500
- DC 43117
- SYLGARD 182
- SYLGARD 105
- SLYGARD 186
- RTV 602/566/655/5000

Urethane
- HYSOL EM8-1107
- SOLITANE 152/112/113/TC-700

Other
- FM 9600
- Scotch TAPE 5/465/415
- SCOTCH WELD 2216
- MYSTIC TAPE
- STYCAST 1090
- NARMCO 328
- C-34
- AF-143
- SR 585
- REDUZ BSL 312/319
- K-14
SUMMARY

- UNIQUE CHARACTERIZATION OPPORTUNITY
- MOLECULAR LEVEL INFORMATION ON POLYMERIC BEHAVIOR
- SAMPLE ARCHIVAL/DOCUMENTATION IS CRITICAL
- VOLUNTARY PARTICIPATION/CONTRIBUTION IS ENCOURAGED
SURFACE ANALYSIS USING X-RAY PHOTOELECTRON SPECTROSCOPY (XPS OR ESCA)

J. P. WIGHTMAN
CHEMISTRY DEPARTMENT
VIRGINIA TECH
BLACKSBURG, VA 24061

PHONE 703-231-5854
FAX 703-231-3971

LDEF WORKSHOP
NASA - KSC
FEBRUARY 14, 1990
ACKNOWLEDGEMENTS

Alcoa
Elf Aquitaine
NASA-LaRC (6)
ONR
Virginia

Boeing
Johnson Wax
NSF
Tioxide Intl

Mr. P. Commerçon
Dr. T. A. DeVilbiss
Dr. D. Dwight
Dr. J. O. Glanville
Dr. Y. Kang
Mr. T. Lin
Ms. K. Phillips
Dr. R. Seals
Dr. J. A. Skiles

Dr. M. E. Counts
Dr. J. G. Dillard
Dr. J. Filbey-Arney
Dr. J. S. Jen
Dr. C. U. Ko
Dr. D. J. Moyer
Ms. K. A. Sanderson
Dr. E. J. Siochi
Mr. H. F. Webster

OUTLINE

INTRODUCTION

SEM
△ EXAMPLES

XPS or ESCA

△ PRINCIPLES
△ EXPERIMENTAL
△ APPLICATIONS
Metals
Particles/Fibers
Polymers/Composites

IRS

△ EXPERIMENTAL
△ APPLICATIONS
Polymers/Composites

SUMMARY
Key to acronyms and entries

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEAPS</td>
<td>Auger-electron appearance-potential spectroscopy</td>
<td>GDOS</td>
<td>Glow-discharge optical spectroscopy</td>
</tr>
<tr>
<td>AEM</td>
<td>Auger-electron microscopy</td>
<td>HA</td>
<td>Heat of adsorption</td>
</tr>
<tr>
<td>AFS</td>
<td>Auger-electron spectroscopy</td>
<td>HED</td>
<td>High-energy electron diffraction</td>
</tr>
<tr>
<td>AIM</td>
<td>Adsorption isotherm measurements</td>
<td>IRR</td>
<td>Ion-impact radiation spectroscopy</td>
</tr>
<tr>
<td>APS</td>
<td>Appearance-potential spectroscopy</td>
<td>IXS</td>
<td>Ion-induced X-ray spectroscopy</td>
</tr>
<tr>
<td>ASW</td>
<td>Acoustic surface-wave measurements</td>
<td>IMMA</td>
<td>Ion microprobe mass analysis</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflectance</td>
<td>IMA</td>
<td>Ion microprobe X-ray analysis</td>
</tr>
<tr>
<td>BIS</td>
<td>Birefringence isochromat spectroscopy</td>
<td>INS</td>
<td>Ion-neutralization spectroscopy</td>
</tr>
<tr>
<td>CIS</td>
<td>Characteristic isochromat spectroscopy</td>
<td>IRS</td>
<td>Internal reflectance spectroscopy</td>
</tr>
<tr>
<td>CL</td>
<td>Cathodoluminescence</td>
<td>IS</td>
<td>Ionization spectroscopy</td>
</tr>
<tr>
<td>COL</td>
<td>Conductivity, IR, visible, UV, X-ray, and γ-ray absorption spectroscopy</td>
<td>ISD</td>
<td>Ion-stimulated desorption</td>
</tr>
<tr>
<td>CPD</td>
<td>Contact potential difference (work function measurements)</td>
<td>JSS</td>
<td>Ion-scattering spectroscopy</td>
</tr>
<tr>
<td>DAPS</td>
<td>Disappearance-potential spectroscopy</td>
<td>LIFED</td>
<td>Inelastic tunneling spectroscopy</td>
</tr>
<tr>
<td>EL</td>
<td>Electropermeation</td>
<td>LMF</td>
<td>Low-energy electron diffraction</td>
</tr>
<tr>
<td>ELL</td>
<td>Ellipsometry</td>
<td>LS</td>
<td>Laser microprobe</td>
</tr>
<tr>
<td>EELS</td>
<td>Electron energy-loss spectroscopy</td>
<td>MBR</td>
<td>Light scattering</td>
</tr>
<tr>
<td>EM</td>
<td>Electron microprobe</td>
<td>MBR</td>
<td>Molecular-beam reactive scattering</td>
</tr>
<tr>
<td>HS</td>
<td>Emission spectroscopy</td>
<td>MBR</td>
<td>Molecular-beam surface scattering</td>
</tr>
<tr>
<td>ESDI</td>
<td>Electron-stimulated desorption of ions</td>
<td>MBR</td>
<td>Mössbauer spectroscopy</td>
</tr>
<tr>
<td>ESDN</td>
<td>Electron-stimulated desorption of neutrals</td>
<td>MBR</td>
<td>Neutral impact radiation spectroscopy</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron-spin resonance</td>
<td>MBR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>EXAFS</td>
<td>Extended X-ray absorption fine structure</td>
<td>MBR</td>
<td>Nuclear reaction spectroscopy</td>
</tr>
<tr>
<td>FD</td>
<td>Field desorption</td>
<td>MBR</td>
<td>Photodesorption</td>
</tr>
<tr>
<td>FDM</td>
<td>Field desorption microscopy</td>
<td>MBR</td>
<td>Photoelectron microscopy</td>
</tr>
<tr>
<td>FDS</td>
<td>Field desorption spectroscopy</td>
<td>MBR</td>
<td>Photoelectron spectroscopy</td>
</tr>
<tr>
<td>FEM</td>
<td>Field-emission microscopy</td>
<td>MBR</td>
<td>Rutherford back scattering spectroscopy</td>
</tr>
<tr>
<td>FEIS</td>
<td>Field-electron energy spectroscopy</td>
<td>MBR</td>
<td>Reflection high-energy electron diffraction</td>
</tr>
<tr>
<td>FIM</td>
<td>Field-ion microscopy</td>
<td>MBR</td>
<td>Reflected secondary-ion imaging mass spectrometry</td>
</tr>
<tr>
<td>FIM-APS</td>
<td>Field-ion microscopy - atomic probe spectroscopy</td>
<td>MBR</td>
<td>Surface desorption mass spectrometry</td>
</tr>
<tr>
<td>FIS</td>
<td>Field-ion spectroscopy</td>
<td>MBR</td>
<td>Secondary-ion imaging mass spectrometry</td>
</tr>
<tr>
<td>GDMS</td>
<td>Glow-discharge mass spectroscopy</td>
<td>MBR</td>
<td>Secondary-ion mass spectrometry</td>
</tr>
</tbody>
</table>
SEM PHOTOMICROGRAPHS OF CARBON FIBER/POLYIMIDE MATRIX COMPOSITES—MOYER & WIGHTMAN.
SEM PHOTOS OF PRETREATED SURFACES

SEM PHOTOMICROGRAPHS OF CARBON FIBER/POLYIMIDE MATRIX COMPOSITES—MOYER & WIGHTMAN.
SEM PHOTOMICROGRAPHS OF KAPTON BEFORE AND AFTER EXPOSURE TO ATOMIC OXYGEN—STS 8—McGRATH.

SEM PHOTOMICROGRAPHS OF POLYIMIDE—SILOXANE BEFORE AND AFTER EXPOSURE TO ATOMIC OXYGEN—STS 8—McGRATH.
SCHEMATIC DIAGRAMS OF THE FOUR WORKHORSE SURFACE ANALYTICAL TECHNIQUES—D. M. HERCULES/J. S. JEN.

ENERGY LEVEL DIAGRAM FOR X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)—D. M. HERCULES.
SCHEMATIC DIAGRAM FOR XPS TECHNIQUE—DuPONT.

SCHEMATIC DIAGRAM OF XPS SPECTROMETER—DuPONT.

ORIGINAL PAGE IS OF POOR QUALITY
WIDE SCAN XPS SPECTRUM OF CESIUM DOPED TUNGSTEN FILAMENT—JEN & WIGHTMAN.
Narrow scan ESCA spectrum of W in Sample #1001.

NARROW SCAN XPS SPECTRUM OF THE TUNGSTEN 4F REGION—JEN & WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY
XPS ANALYSIS OF CHROMIC ACID ANODIZED TITANIUM 6-4 (Ti 6-4) ALLOY—FILBEY & WIGHTMAN.

AUGER ELECTRON SPECTROSCOPY (AES) SURVEY SCAN OF PRETREATED Ti 6-4 ADHERENDS—DITCHEK et al.
AES DEPTH PROFILE ANALYSIS OF CHROMIC ACID ANODIZED Ti 6-4 ALLOY—FILBEY & WIGHTMAN.
AES DEPTH PROFILE ANALYSIS OF ACID ETCHED Ti-6-4 ALLOY—FILBEY & WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY.
ATOMIC COMPOSITION OF ANODIZED Ti 6-4 SAMPLES

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ATOM PERCENT</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 1s</td>
<td></td>
<td>1.2</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>O 1s</td>
<td></td>
<td>13.2</td>
<td>23.6</td>
<td>16.9</td>
</tr>
<tr>
<td>V 2p_{3/2}</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>NSP*</td>
</tr>
<tr>
<td>Ti(IV) 2p_{3/2}</td>
<td></td>
<td>6.9</td>
<td>7.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Ti(0) 2p_{3/2}</td>
<td></td>
<td>NSP</td>
<td>0.4</td>
<td>NSP</td>
</tr>
<tr>
<td>N 1s</td>
<td></td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>C 1s</td>
<td></td>
<td>76.6</td>
<td>65.5</td>
<td>71.3</td>
</tr>
<tr>
<td>Cl 2p</td>
<td></td>
<td>0.4</td>
<td>0.3</td>
<td>NSP</td>
</tr>
<tr>
<td>Al 2s</td>
<td></td>
<td>1.0</td>
<td>1.3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

*NSP - no significant peak

XPS ANALYSIS OF UNBONDED (#1) AND FAILED T-PEEL SAMPLE (#2 & #3) OF Ti 6-4 ALLOY BONDED WITH EPOXY—MARCEAU, SKILES & WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY
XPS ANALYSIS OF DEGREASED AND FAILED LAP SHEAR SAMPLE (METAL AND ADHESIVE SIDES) OF GALVANIZED STEEL BONDED WITH EPOXY—COMMERÇON & WIGHTMAN.
AES SURVEY (TOP) AND DEPTH PROFILE ANALYSIS OF GALVANIZED STEEL SUBSTRATE PRIOR TO BONDING—COMMERÇON & WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY
AES SURVEY (TOP) AND DEPTH PROFILE ANALYSIS OF ADHESIVE SIDE OF GALVANIZED STEEL BONDED WITH EPOXY FOLLOWING LAP SHEAR FAILURE—COMMERCION & WIGHTMAN.
AES SURVEY (TOP) AND DEPTH PROFILE ANALYSIS OF METAL SIDE OF GALVANIZED STEEL BONDED WITH EPOXY FOLLOWING LAP SHEAR FAILURE—COMMERCION & WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY
Failure in the Metal

Cohesive Failure

Adhesive Failure

DIAGRAMS SHOWING LOCUS OF FAILURE FOR THREE GALVANIZED STEEL (GH, MS, A527) BONDED WITH EPOXY—COMMERCION & WIGHTMAN.

SEM PHOTOMICROGRAPH OF SHUTTLE EXHAUST PARTICLES COLLECTED BY AIRCRAFT ON A NUCLEOPORE FILTER—COFER & WIGHTMAN.
XPS CURVE-FITTED ALUMINUM 2P PHOTOPEAKS OF SHUTTLE EXHAUST PARTICLES—COFER & WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY
SEM PHOTOMICROGRAPHS OF MOUNT ST. HELENS (MSH) ASH—KANG & WIGHTMAN.
ESCA ATOMIC FRACTION RESULTS FOR MOUNT ST. HELENS ASH

<table>
<thead>
<tr>
<th>RATIO</th>
<th>MDL</th>
<th>VAD</th>
<th>YAK-I</th>
<th>YAK-II</th>
<th>ELL</th>
<th>GLE</th>
<th>SPO</th>
<th>AVG</th>
<th>BULK**</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/Si</td>
<td>2.8</td>
<td>3.1</td>
<td>3.4</td>
<td>2.0</td>
<td>3.4</td>
<td>3.0</td>
<td>2.6</td>
<td>3.0±0.4</td>
<td></td>
</tr>
<tr>
<td>Al/Si</td>
<td>0.43</td>
<td>0.32</td>
<td>0.20</td>
<td>0.27</td>
<td>0.32</td>
<td>0.25</td>
<td>0.44</td>
<td>0.33±0.06</td>
<td>0.30</td>
</tr>
<tr>
<td>Na/Si</td>
<td>0.13</td>
<td>0.14</td>
<td>0.085</td>
<td>0.072</td>
<td>0.14</td>
<td>0.10</td>
<td>0.16</td>
<td>0.12±0.03</td>
<td>0.14</td>
</tr>
<tr>
<td>Ca/Si</td>
<td>0.085</td>
<td>--</td>
<td>0.049</td>
<td>0.041</td>
<td>0.028</td>
<td>--</td>
<td>0.060</td>
<td>0.054±0.018</td>
<td>0.081</td>
</tr>
<tr>
<td>Cl/Si</td>
<td>0.018</td>
<td>--</td>
<td>0.11</td>
<td>--</td>
<td>0.035</td>
<td>--</td>
<td>--</td>
<td>0.054±0.037</td>
<td>--</td>
</tr>
</tbody>
</table>

Fruchter et al., Science, 209, 1116 (1980)

XPS (ESCA) ANALYSIS OF MSH ASH—KANG & WIGHTMAN.

WETTING OF COAL—GLANVILLE & WIGHTMAN.
XPS CURVE FITTED CARBON 1S PHOTOPeAKS OF COAL HEATED TO DIFFERENT TEMPERATURES IN AIR—PHILLIPS & WIGHTMAN.

OXYGEN/CARBON RATIO OF COAL DETERMINED BY XPS (ESCA) AS A FUNCTION OF PRETREATMENT TEMPERATURE—PHILLIPS & WIGHTMAN.
XPS ANALYSIS OF COMMERCIALLY AVAILABLE CARBON FIBERS—DevILBISS & WIGHTMAN.

XPS WIDE SCAN SPECTRUM OF NITROCELLULOSE LACQUER—WEBSTER & WIGHTMAN.
XPS CURVE FITTED CARBON 1S PHOTOPEAKS OF POLYETHYLENETEREPHTHALATE—DWIGHT, McGRATH & WIGHTMAN.

XPS CURVE FITTED CARBON 1S AND OXYGEN 1S PHOTOPEAKS FOR POLYMETHYL METHACRYLATE—WEBSTER & WIGHTMAN.

Original page is of poor quality.
XPS SPECTRA OF METALLIZED KAPTON
TOP—CHROMIUM AND ALUMINUM PHOTOPeAKS ON CHROMIUM SIDE
BOTTOM—CHROMIUM AND ALUMINUM PHOTOPeAKS ON ALUMINUM SIDE
—WIGHTMAN.
CARBON 1s AND SULFUR 2p XPS PHOTOPEAKS FOR POLYSULFONE (PSF) FILM (TOP SPECTRA) AND PSF FILM SPUTTERED WITH ARGON (NEXT SPECTRA)—KO & WIGHTMAN.
XPS ANGULAR STUDIES

THEORY

SCHEMATIC DIAGRAM FOR ANGLE DEPENDENT XPS STUDIES—WEBSTER.

ESCA ANALYSIS OF POLYMER FILMS

<table>
<thead>
<tr>
<th>FILM</th>
<th>O</th>
<th>O</th>
<th>C</th>
<th>C/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNEXPOSED</td>
<td>90⁰</td>
<td>0.003</td>
<td>0.997</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>90⁰</td>
<td>0.002</td>
<td>0.998</td>
<td></td>
</tr>
<tr>
<td>EXPOSED</td>
<td>90⁰</td>
<td>0.021</td>
<td>0.979</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>90⁰</td>
<td>0.023</td>
<td>0.972</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11⁰</td>
<td>0.097</td>
<td>0.903</td>
<td>9</td>
</tr>
</tbody>
</table>

XPS (ESCA) ANALYSIS OF POLYOLEFIN FILMS BEFORE AND AFTER EXPOSURE TO OXYGEN PLASMA—WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY
SILICON 2P AND SULFUR 2P XPS PHOTOPEAKS IN SILOXANE CONTAINING POLYMER—LIN, McGRATH & WIGHTMAN.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>C/O</th>
<th>C/F</th>
<th>C/S</th>
<th>C/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>KYLEBAR</td>
<td>6.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-50-0.2</td>
<td>7.1</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFEFLON</td>
<td>13.7</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFE-3A-0.2</td>
<td>13.3</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYSULPHONE</td>
<td>6.3</td>
<td>-</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>PSF-9A-0.2</td>
<td>6.0</td>
<td>-</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>POLYMETHYLACRYLATE</td>
<td>3.5</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMMA-3B-0.2</td>
<td>3.5</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL</td>
<td>1.2</td>
<td>-</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>C-5-0.2</td>
<td>1.2</td>
<td>-</td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

XPS RATIOS BEFORE [POLYMER NAME ONLY] AND AFTER [NUMBER DESIGNATION] ROAD EXPOSURE OF COATED PLATES MOUNTED ON AUTO—SIOCHI & WIGHTMAN.
SILICONE/FLUORINE RATIO AS DETERMINED BY XPS FOR SILICONE OIL MIGRATION ACROSS POLYMER SUBSTRATE—WEBSTER & WIGHTMAN.
ESCA SPECTRA OF C1s PHOTOPEAKS OF OXYGEN PLASMA PRETREATED COMPOSITES

Methanol Wash

0.5 Min Oxygen Plasma

1 Min Oxygen Plasma

2 Min Oxygen Plasma

0.5 Min Oxygen Plasma

10 Min Oxygen Plasma

20 Min Oxygen Plasma

Intensity vs. Binding Energy (eV)

XPS (ESCA) RESULTS OF OXYGEN PLASMA TREATED COMPOSITES—MOYER & WIGHTMAN.
ESCA RESULTS OF OXYGEN PLASMA PRETREATED COMPOSITES

XPS (ESCA) SPECTRA OF CARBON 1S PHOTOPEAKS OF OXYGEN PLASMA TREATED COMPOSITES—MOYER & WIGHTMAN.
(a) ATR - IRE

(b) specular - multiple reflections

(c) specular - single reflection

(d) specular - grazing angle

(e) diffuse reflectance

SRS attachments.

DIAGRAMS OF VARIOUS REFLECTANCE INFRARED ACCESSORIES—HONEYCUTT, WEBSTER, YOUNG AND WIGHTMAN.
REFLECTANCE IR SPECTRUM OF FAILED TITANIUM LAP SHEAR SAMPLE BONDED WITH POLYIMIDE ADHESIVE—COUNTS & WIGHTMAN.

PEAK ASSIGNMENTS OF BANDS OF FRACTURE SURFACES

<table>
<thead>
<tr>
<th>(\tilde{\nu}) (cm(^{-1}))</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>680</td>
<td>(\nu_{OH})</td>
</tr>
<tr>
<td>700</td>
<td>(\nu_{SO_{2}})</td>
</tr>
<tr>
<td>735</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>840</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>920</td>
<td>(\nu_{C=N})</td>
</tr>
<tr>
<td>970</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>1049</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>1200</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>1270</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>1370</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>1730</td>
<td>(\nu_{C=O})</td>
</tr>
<tr>
<td>3000</td>
<td>(\nu_{C=C})</td>
</tr>
</tbody>
</table>

*SAR = skeletal aromatic rock
REFLECTANCE IR SPECTRA OF UNEXPOSED (TOP) AND ROAD EXPOSED (BOTTOM) FLUOROPOLYMER COATED PLATES—SIOCHI & WIGHTMAN.
REFLECTANCE IR SPECTRA OF TWO THICKNESSES OF POLYMETHYL METHACRYLATE ON CHROME STEEL—WEBSTER & WIGHTMAN.

ORIGINAL PAGE IS OF POOR QUALITY.
170Å POLYSULFONE FILM - BEFORE EXPOSURE

AFTER EXPOSURE - ~100Å

DIFFERENCE SPECTRA

REFLECTANCE IR SPECTRA OF POLYSULFONE FILMS BEFORE AND AFTER EXPOSURE TO OXYGEN PLASMA—WEBSTER & WIGHTMAN.
SUMMARY

XPS (ESCA) IS A SENSITIVE SURFACE ANALYTICAL TECHNIQUE PAR EXCELLENCE GIVING ATOMIC COMPOSITION. THE TECHNIQUE

Δ IS MODERATELY FAST
Δ IS SAMPLE FORGIVING
Δ HAS GOOD SENSITIVITY FOR ALL ELEMENTS
Δ DOES DISCRIMINATE BETWEEN VALENCE STATES
Δ DOES MINIMAL SAMPLE DAMAGE

AUGER ELECTRON SPECTROSCOPY IS A USEFUL ANCILLARY TECHNIQUE FOR NON-POLYMERIC SUBSTRATES GIVING DEPTH PROFILES

INFRARED SPECTROSCOPY IS ANOTHER COMPLEMENTARY TECHNIQUE FOR POLYMER SUBSTRATES GIVING GROUP IDENTIFICATION
NASA
LONG DURATION EXPOSURE FACILITY

ATOMIC OXYGEN

BRUCE A. BANKS
NASA - LEWIS RESEARCH CENTER
MEMBER, MSIG

LDEF
MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990

PRECEDING PAGE BLANK NOT FILMED
ATOMIC OXYGEN INTERACTION WITH MATERIALS ON LDEF

Bruce A. Banks
NASA Lewis Research Center
(216) 433-2308 FTS 297-2308

LOW EARTH ORBITAL ENVIRONMENT

![Graph showing number density vs. altitude for various gases and the Shuttle.](image-url)
LDEF (Long Duration Exposure Facility) Atomic Oxygen Fluence on Forward-Facing Surfaces

Space Station AO Fluence:
- 1.5×10^{15} atoms/cm2
 (Constant Density Flight Profile)

Space Station AO Fluence:
- 3.6×10^{22} atoms/cm2
 (Constant Altitude Flight Profile)

EOIM-2 AO Fluence:
- 3.5×10^{19} atoms/cm2
 (Forty Hours Exposure at 120 n.mI.)

Atomic Oxygen Flux at 8 km sec$^{-1}$ (cm$^{-2}$ sec$^{-1}$)

Atmospheric atomic oxygen density and flux in low Earth orbit.
F10.7 SOLAR FLUX

TIME YEAR-1900

NOAA solar data

NSFC solar data

ORIGINAL PAGE IS OF POOR QUALITY

LDEF FLUX

FLUX ATOMS/CM²
LDEF EXPERIMENT INTEGRATION MODEL

<table>
<thead>
<tr>
<th>Bay Row</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A0175</td>
<td>S0001</td>
<td>Grapple</td>
</tr>
<tr>
<td>2</td>
<td>A0178</td>
<td>S0001</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A0187</td>
<td>A0138</td>
<td>A0187</td>
</tr>
<tr>
<td>4</td>
<td>A0178</td>
<td>A0054</td>
<td>S0001</td>
</tr>
<tr>
<td>5</td>
<td>S0001</td>
<td>A0178</td>
<td>A0178</td>
</tr>
<tr>
<td>6</td>
<td>S0001</td>
<td>S0001</td>
<td>A0178</td>
</tr>
<tr>
<td>7</td>
<td>A0175</td>
<td>A0178</td>
<td>S0001</td>
</tr>
<tr>
<td>8</td>
<td>A0171</td>
<td>S0001</td>
<td>A0056</td>
</tr>
<tr>
<td>9</td>
<td>S0069</td>
<td>S0010</td>
<td>A0034</td>
</tr>
<tr>
<td>10</td>
<td>A0178</td>
<td>S1005</td>
<td>A0139-A</td>
</tr>
<tr>
<td>11</td>
<td>A0187</td>
<td>S0001</td>
<td>A0178</td>
</tr>
<tr>
<td>12</td>
<td>S0001</td>
<td>A0201</td>
<td>S0109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0178</td>
<td>S0001</td>
<td>S0001</td>
</tr>
<tr>
<td>A0187/A0172</td>
<td>S0001</td>
<td>A0178</td>
</tr>
<tr>
<td>A0003/A0002</td>
<td>A1014/A1015</td>
<td>A0178</td>
</tr>
</tbody>
</table>

| Earth end (G) |
| S0001/A0139-A |

| Space end (H) |
| S0001/A0038/A0133 |

RAM
LOW EARTH ORBITAL
ATOMIC OXYGEN ENERGY DISTRIBUTION

Number of Oxygen Atoms of Energy E

Energy E, eV

ATOMIC OXYGEN RAM ENERGY

Altitude, km

Energy, eV
ATOMIC OXYGEN IMPACT VELOCITY RELATIVE TO SPACECRAFT SURFACES
(AT 333 km = 180 nmi)

- Orbital Ram Velocity, \(\vec{V}_o \)

- Atmospheric Rotation Velocity, \(\vec{V}_a \)
 - Magnitude and direction vary around orbit due to inclination, latitude, and altitude
 - Reduces ram energy by 11%
 - Reduces normal incident ram fluence by 5.6%
 - Fluence effects cancel to first order on surfaces 90° to ram

- Random Maxwellian Thermal Velocity, \(\vec{V}_T \)
 - Maxwellian tail allows atomic oxygen impact on surfaces >90° to ram
 - Reduces normal incident ram fluence by 5.6%

- Total Impact Velocity, \(\vec{V}_p = \vec{V}_o + \vec{V}_a + \vec{V}_T \)
 - Evidence of atomic oxygen attack on IDEF at 105° to ram

ATOMIC OXYGEN FLUENCE DEPENDENCE ON ARRIVAL ANGLE

Graphical representation showing fluence dependence on arrival angle.

C-3
CALCULATED ATOMIC OXYGEN FLUENCE BY SPACECRAFT ROW.

<table>
<thead>
<tr>
<th>Bay (Row)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Atomic Oxygen fluence, atoms/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A0175</td>
<td>S0001</td>
<td>Grapple</td>
<td>A0178</td>
<td>S0001</td>
<td>S0001</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A0178</td>
<td>S0001</td>
<td>A0115</td>
<td>A0178</td>
<td>S0001</td>
<td>A0178</td>
<td>6.5 x 10¹⁷</td>
</tr>
<tr>
<td>2</td>
<td>A0187</td>
<td>A0138</td>
<td>A0054</td>
<td>S0001</td>
<td>M0003</td>
<td>A0187</td>
<td>5.7 x 10¹⁷</td>
</tr>
<tr>
<td>3</td>
<td>A0178</td>
<td>A0054</td>
<td>S0001</td>
<td>M0003</td>
<td>S0001</td>
<td>A0178</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>S0001</td>
<td>A0178</td>
<td>A0178</td>
<td>A0178</td>
<td>S0001</td>
<td>S0001</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>S0001</td>
<td>S0001</td>
<td>A0178</td>
<td>S0001</td>
<td>A0178</td>
<td>S0001</td>
<td>4.0 x 10²¹</td>
</tr>
<tr>
<td>6</td>
<td>A0175</td>
<td>A0178</td>
<td>S0001</td>
<td>M0003</td>
<td>A0187</td>
<td>M0004</td>
<td>8.3 x 10²¹</td>
</tr>
<tr>
<td>7</td>
<td>A0171</td>
<td>S0001</td>
<td>A0056</td>
<td>A0044</td>
<td>S0001</td>
<td>A0038</td>
<td>3.9 x 10¹⁹</td>
</tr>
<tr>
<td>8</td>
<td>S069</td>
<td>S0010</td>
<td>A0138</td>
<td>S0001</td>
<td>S0001</td>
<td>S0001</td>
<td>4.0 x 10²¹</td>
</tr>
<tr>
<td>9</td>
<td>A0178</td>
<td>S1005</td>
<td>Grapple</td>
<td>A0054</td>
<td>A0178</td>
<td>S0001</td>
<td>9.7 x 10²¹</td>
</tr>
<tr>
<td>10</td>
<td>A0178</td>
<td>S0001</td>
<td>A0178</td>
<td>A0178</td>
<td>S0001</td>
<td>S0001</td>
<td>6.4 x 10²¹</td>
</tr>
<tr>
<td>11</td>
<td>A0187</td>
<td>S0001</td>
<td>A0178</td>
<td>A0178</td>
<td>S0001</td>
<td>S0001</td>
<td>1.4 x 10²¹</td>
</tr>
<tr>
<td>12</td>
<td>S0001</td>
<td>A0201</td>
<td>S0109</td>
<td>A0019</td>
<td>A0038</td>
<td>S1001</td>
<td>1.4 x 10²¹</td>
</tr>
</tbody>
</table>

Diagram:
- "Ram" arrow pointing to Bay 9.
- "Earth end (G)" and "Space end (H)" labels on the diagrams.

198
ATOMIC OXYGEN SURFACE INTERACTION PROCESSES

ATOMIC OXYGEN REACTION MECHANISMS

ALKANES

\[RCH_2CH_3 + O \]

 abstraction

 replacement

 insertion

\[RCH_2CH_2 + OH \rightarrow RCH_2CH_2^* + HOH \]

 recombination/further reaction/fragmentation

 volatiles (CO, H_2O, HCO, C_2H, etc.)

 fragmentation (volatiles)

ALKENES

\[RCH=CH + O \]

 abstraction

 insertion

\[\left[\begin{array}{c}
R \\
H \\
C=CH
\end{array} \right] * \]

 elimination

 epoxide formation

 triplet-singlet interconversion/rearrangement

\[\left[\begin{array}{c}
R \\
H \\
C=CH
\end{array} \right] * \]

 fragmentation (volatiles)

199
ATOMIC OXYGEN EROSION YIELDS OF VARIOUS MATERIALS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>EROSION YIELD, 10^{-24} CM^3/ATOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapton H polyimide</td>
<td>3.0</td>
</tr>
<tr>
<td>Mylar polyester</td>
<td>2.7 - 3.9</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>3.3 - 3.7</td>
</tr>
<tr>
<td>Epoxy</td>
<td>1.7</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>2.9 - 6.0</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1.7</td>
</tr>
<tr>
<td>Polysulfone</td>
<td>2.4</td>
</tr>
<tr>
<td>Urethane (black, conductive)</td>
<td>0.3</td>
</tr>
<tr>
<td>Silver</td>
<td>10.5</td>
</tr>
<tr>
<td>Carbon</td>
<td>0.9 - 1.7</td>
</tr>
<tr>
<td>Chemglaze Z306 (flat, black)</td>
<td>0.35</td>
</tr>
<tr>
<td>FEP Teflon</td>
<td>0.037</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.0</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0</td>
</tr>
<tr>
<td>Gold</td>
<td>0.0</td>
</tr>
<tr>
<td>Platinum</td>
<td>0.0</td>
</tr>
<tr>
<td>SiO_2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

MATERIAL THICKNESS LOSS
FROM OXIDATION BY ATOMIC OXYGEN

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Fluence, atoms/cm^2</th>
<th>EROSION YIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>8 & 10</td>
</tr>
<tr>
<td>Fluence, atoms/cm^2</td>
<td>1.05 x 10^{22}</td>
<td>9.08 x 10^{21}</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>Polyethylene</td>
<td>347 / 13.6</td>
</tr>
<tr>
<td></td>
<td>Kapton polyimide</td>
<td>315 / 12.4</td>
</tr>
<tr>
<td></td>
<td>Epoxy</td>
<td>179 / 7.0</td>
</tr>
<tr>
<td></td>
<td>Graphite</td>
<td>126 / 5.0</td>
</tr>
<tr>
<td></td>
<td>FEP Teflon</td>
<td>3.9 / 0.15</td>
</tr>
</tbody>
</table>
EROSION YIELDS OF VARIOUS MATERIALS EXPOSED TO ATOMIC OXYGEN IN LOW EARTH ORBIT

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>EROSION YIELD, (\times 10^{-24} \text{ cm}^3/\text{ATOM})</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (150 Å)</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>Aluminum-coated Kapton</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>Aluminum-coated Kapton</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>< 0.025</td>
<td>3</td>
</tr>
<tr>
<td>Al₂O₃ (700 Å) on Kapton H</td>
<td>< 0.02</td>
<td>4</td>
</tr>
<tr>
<td>Apiezon grease 2μm</td>
<td>> 0.625</td>
<td>5</td>
</tr>
<tr>
<td>Aquadag E [graphite in an aqueous binder]</td>
<td>1.23</td>
<td>6</td>
</tr>
<tr>
<td>Carbon</td>
<td>1.2</td>
<td>7, 1, 6, 9</td>
</tr>
<tr>
<td>Carbon (various forms)</td>
<td>0.9 - 1.7</td>
<td>10</td>
</tr>
<tr>
<td>Carbon/Kapton 100/90/37</td>
<td>1.5</td>
<td>11</td>
</tr>
<tr>
<td>401-C10 (flat black)</td>
<td>0.30</td>
<td>12</td>
</tr>
<tr>
<td>Chromium (123 Å)</td>
<td>partially eroded</td>
<td>14</td>
</tr>
<tr>
<td>Chromium (125 Å) on Kapton H</td>
<td>0.006</td>
<td>15, 16</td>
</tr>
<tr>
<td>Copper (bulk)</td>
<td>0.0</td>
<td>17</td>
</tr>
<tr>
<td>Copper (1,000 Å) on sapphire</td>
<td>0.007</td>
<td>15, 16</td>
</tr>
<tr>
<td>Copper (1,000 Å)</td>
<td>0.0064</td>
<td>14</td>
</tr>
<tr>
<td>Diamond</td>
<td>0.021</td>
<td>17</td>
</tr>
<tr>
<td>Electrodag 402 (silver in a silicone binder)</td>
<td>0.057</td>
<td>6</td>
</tr>
<tr>
<td>Electrodag 106 (graphite in an epoxy binder)</td>
<td>1.17</td>
<td>6</td>
</tr>
<tr>
<td>Epoxy</td>
<td>1.7</td>
<td>10, 16</td>
</tr>
</tbody>
</table>

Fluoropolymers:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>EROSION YIELD, (\times 10^{-24} \text{ cm}^3/\text{ATOM})</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEP Kapton</td>
<td>0.03</td>
<td>10</td>
</tr>
<tr>
<td>Kapton F</td>
<td>< 0.05</td>
<td>6</td>
</tr>
<tr>
<td>Teflon, FEP</td>
<td>0.037</td>
<td>5</td>
</tr>
<tr>
<td>Teflon, FEP</td>
<td>< 0.05</td>
<td>10</td>
</tr>
<tr>
<td>Teflon, TFE</td>
<td>< 0.05</td>
<td>10, 6</td>
</tr>
<tr>
<td>Teflon, FEP and TFE</td>
<td>0.0 and 0.2</td>
<td>15, 19</td>
</tr>
<tr>
<td>Teflon, FEP and TFE</td>
<td>0.1</td>
<td>15</td>
</tr>
<tr>
<td>Teflon</td>
<td>0.109</td>
<td>19</td>
</tr>
<tr>
<td>Teflon</td>
<td>0.8</td>
<td>15</td>
</tr>
<tr>
<td>Teflon</td>
<td>0.03</td>
<td>15</td>
</tr>
<tr>
<td>Teflon</td>
<td>< 0.03</td>
<td>9</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>EROSION YIELD, $x \times 10^{-24}$ cm2/atom</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Gold (bulk)</td>
<td>0.0</td>
<td>17</td>
</tr>
<tr>
<td>Gold</td>
<td>appears resistant</td>
<td>20</td>
</tr>
<tr>
<td>Graphite Epoxy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1034 C</td>
<td>2.1</td>
<td>10</td>
</tr>
<tr>
<td>5208/T300</td>
<td>2.6</td>
<td>10</td>
</tr>
<tr>
<td>GSFC Green</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>HOS-B75 (bare and preox)</td>
<td>0.0</td>
<td>1, 26</td>
</tr>
<tr>
<td>Indium Tin Oxide</td>
<td>0.002</td>
<td>15, 16</td>
</tr>
<tr>
<td>Indium Tin Oxide/Kapton (aluminate)</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>Iridium Film</td>
<td>0.0007</td>
<td>17</td>
</tr>
<tr>
<td>Lead</td>
<td>0.0</td>
<td>1, 26</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.0</td>
<td>1, 26</td>
</tr>
<tr>
<td>Magnesium Fluoride on glass</td>
<td>0.007</td>
<td>15, 16</td>
</tr>
<tr>
<td>Molybdenum (1,000 Å)</td>
<td>0.0056</td>
<td>4</td>
</tr>
<tr>
<td>Molybdenum (1,000 Å)</td>
<td>0.006</td>
<td>15, 16</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.0</td>
<td>1, 26</td>
</tr>
<tr>
<td>Mylar</td>
<td>3.4</td>
<td>10</td>
</tr>
<tr>
<td>Mylar</td>
<td>2.2</td>
<td>15, 19</td>
</tr>
<tr>
<td>Mylar A</td>
<td>3.9</td>
<td>15, 19, 9</td>
</tr>
<tr>
<td>Mylar A</td>
<td>1.5 - 3.9</td>
<td>15</td>
</tr>
<tr>
<td>Mylar A</td>
<td>3.7</td>
<td>18</td>
</tr>
<tr>
<td>Mylar A</td>
<td>3.4</td>
<td>21, 6</td>
</tr>
<tr>
<td>Mylar A</td>
<td>3.6</td>
<td>6</td>
</tr>
<tr>
<td>Mylar D</td>
<td>3.0</td>
<td>6</td>
</tr>
<tr>
<td>Mylar D</td>
<td>2.9</td>
<td>21</td>
</tr>
<tr>
<td>Mylar with Antiflox</td>
<td>heavily attacked</td>
<td>22</td>
</tr>
<tr>
<td>Nichrome (100 Å)</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>Nickel film</td>
<td>0.0</td>
<td>17</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.0</td>
<td>8, 26</td>
</tr>
<tr>
<td>Niobium film</td>
<td>0.0</td>
<td>17, 1</td>
</tr>
<tr>
<td>Osmium</td>
<td>0.026</td>
<td>10</td>
</tr>
<tr>
<td>Osmium</td>
<td>heavily attacked</td>
<td>20</td>
</tr>
<tr>
<td>Osmium (bulk)</td>
<td>0.314</td>
<td>17</td>
</tr>
<tr>
<td>Parylene, 2.5 μm</td>
<td>eroded away</td>
<td>22</td>
</tr>
<tr>
<td>Platinum</td>
<td>0.0</td>
<td>1, 26</td>
</tr>
<tr>
<td>Platinum</td>
<td>appears resistant</td>
<td>20</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>EROSION YIELD, (x \times 10^{-24} \text{ cm}^3/\text{ATOM})</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Platinum film</td>
<td>0.0</td>
<td>17</td>
</tr>
<tr>
<td>Polybenzimidazole</td>
<td>1.5</td>
<td>10, 7</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>6.0</td>
<td>8</td>
</tr>
<tr>
<td>Polycarbonate resin</td>
<td>2.9</td>
<td>17</td>
</tr>
<tr>
<td>Polyester - 7% Polysilane/93% Polymide</td>
<td>0.6</td>
<td>10</td>
</tr>
<tr>
<td>Polyester</td>
<td>heavily attacked</td>
<td>10, 22</td>
</tr>
<tr>
<td>Polyester with Antlock</td>
<td>heavily attacked</td>
<td>10, 22</td>
</tr>
<tr>
<td>Polyester (Pen-2,6)</td>
<td>2.9</td>
<td>23</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>3.7</td>
<td>10, 21, 16, 15</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>3.3</td>
<td>18, 6</td>
</tr>
<tr>
<td>Polyimides:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPIPSX-9</td>
<td>0.28</td>
<td>23</td>
</tr>
<tr>
<td>BPIPSX-9</td>
<td>0.071</td>
<td>24</td>
</tr>
<tr>
<td>BPIPSX-11</td>
<td>0.56</td>
<td>23</td>
</tr>
<tr>
<td>BPIPSX-11</td>
<td>0.15</td>
<td>24</td>
</tr>
<tr>
<td>BTDA-Denizdene</td>
<td>3.00</td>
<td>22</td>
</tr>
<tr>
<td>BTDA-DAF</td>
<td>2.82</td>
<td>23</td>
</tr>
<tr>
<td>BTDA-DAF</td>
<td>0.8</td>
<td>24</td>
</tr>
<tr>
<td>BTDA-mn-DS02</td>
<td>2.29</td>
<td>23</td>
</tr>
<tr>
<td>BTDA-mn-MOA</td>
<td>3.12</td>
<td>23</td>
</tr>
<tr>
<td>BTDA-py-DAUP</td>
<td>2.91</td>
<td>23</td>
</tr>
<tr>
<td>BTDA-po-ODA</td>
<td>3.97</td>
<td>23</td>
</tr>
<tr>
<td>I-DAO</td>
<td>1.80</td>
<td>23</td>
</tr>
<tr>
<td>Kapton (black)</td>
<td>1.4 - 2.2</td>
<td>15, 12</td>
</tr>
<tr>
<td>Kapton (TV blanket)</td>
<td>2.0</td>
<td>15</td>
</tr>
<tr>
<td>Kapton (TV blanket)</td>
<td>2.04</td>
<td>19</td>
</tr>
<tr>
<td>Kapton (OSS - 1 blanket)</td>
<td>2.55</td>
<td>15</td>
</tr>
<tr>
<td>Kapton (OSS - 1 blanket)</td>
<td>2.5</td>
<td>16</td>
</tr>
<tr>
<td>Kapton H</td>
<td>3.0</td>
<td>10, 15, 19, 4, 6, 9</td>
</tr>
<tr>
<td>Kapton H</td>
<td>2.4</td>
<td>15, 19</td>
</tr>
<tr>
<td>Kapton H</td>
<td>2.7</td>
<td>15, 18</td>
</tr>
<tr>
<td>Kapton H</td>
<td>1.5 - 2.8</td>
<td>15</td>
</tr>
<tr>
<td>Kapton H</td>
<td>2.0</td>
<td>18</td>
</tr>
<tr>
<td>Kapton H</td>
<td>3.1</td>
<td>18</td>
</tr>
<tr>
<td>Kapton (uncoated)</td>
<td>0.1, 0.06</td>
<td>2</td>
</tr>
<tr>
<td>GDPA-mn-DA80P</td>
<td>3.53</td>
<td>23</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>EROSION YIELD, x 10^{-24} cm^2/ATOM</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PEN-2.6</td>
<td>2.90</td>
<td>23</td>
</tr>
<tr>
<td>PMDA-pp-DAB</td>
<td>3.82</td>
<td>23</td>
</tr>
<tr>
<td>PMDA-pp-MDA</td>
<td>3.17</td>
<td>23, 24</td>
</tr>
<tr>
<td>PMDA-pp-GDA</td>
<td>4.66</td>
<td>23</td>
</tr>
<tr>
<td>Polymethylmethacrylate</td>
<td>3.1</td>
<td>16</td>
</tr>
<tr>
<td>7% Polysilane/93% Polyimide</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>25% Polysiloxane, 75% Polyimide</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>25% Polysiloxane-Polyimide</td>
<td>0.3</td>
<td>9</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1.7</td>
<td>10, 16, 9</td>
</tr>
<tr>
<td>Polysulphone</td>
<td>2.4</td>
<td>10, 16</td>
</tr>
<tr>
<td>Polyvinylidene Fluoride</td>
<td>0.6</td>
<td>9</td>
</tr>
<tr>
<td>Pyrone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMDA-DAB</td>
<td>2.5</td>
<td>23</td>
</tr>
<tr>
<td>S-13-GLO, white</td>
<td>0.0</td>
<td>12</td>
</tr>
<tr>
<td>SiO_2 (650 Å) on Kapton H</td>
<td><0.00001</td>
<td>4</td>
</tr>
<tr>
<td>SiO_2 (650 Å) with ≤ 4% PTFE</td>
<td><0.00001</td>
<td>4</td>
</tr>
<tr>
<td>SiO_2/Kapton (aluminized)</td>
<td>0.01</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>EROSION YIELD, x 10^{-24} cm^2/ATOM</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicones:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC1-2577</td>
<td>0.055</td>
<td>21</td>
</tr>
<tr>
<td>DC1-2755-coated Kapton</td>
<td>0.05</td>
<td>15</td>
</tr>
<tr>
<td>DC1-2775-coated Kapton</td>
<td><0.5</td>
<td>15</td>
</tr>
<tr>
<td>DC1-1106</td>
<td>0.0515</td>
<td>20</td>
</tr>
<tr>
<td>Grease 60 µm</td>
<td>intact but oxidized</td>
<td>25</td>
</tr>
<tr>
<td>RTV-500</td>
<td>0.443</td>
<td>21</td>
</tr>
<tr>
<td>RTV-615 (black, conductive)</td>
<td>0.0</td>
<td>20</td>
</tr>
<tr>
<td>RTV-615 (clear)</td>
<td>0.0625</td>
<td>5</td>
</tr>
<tr>
<td>RTV-670</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>RTV-5095</td>
<td>1.48</td>
<td>11</td>
</tr>
<tr>
<td>RTV-3145</td>
<td>0.128</td>
<td>1</td>
</tr>
<tr>
<td>T-650-coated Kapton</td>
<td><0.5</td>
<td>15</td>
</tr>
<tr>
<td>Siloxane Polyimide (25% Si)</td>
<td>0.3</td>
<td>7</td>
</tr>
<tr>
<td>Siloxane Polyimide (7% Si)</td>
<td>0.6</td>
<td>7</td>
</tr>
<tr>
<td>Silver</td>
<td>10.9</td>
<td>5</td>
</tr>
<tr>
<td>Tantalum</td>
<td>appears resistant</td>
<td>20</td>
</tr>
<tr>
<td>Tedlar</td>
<td>3.2</td>
<td>10</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>EROSION YIELD, x 10^{-24} cm^3/ATOM</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tedlar (clear)</td>
<td>1.3 and 3.2</td>
<td>15</td>
</tr>
<tr>
<td>Tedlar (clear)</td>
<td>3.2</td>
<td>18, 6</td>
</tr>
<tr>
<td>Tedlar (white)</td>
<td>0.4 and 0.6</td>
<td>15</td>
</tr>
<tr>
<td>Tedlar (white)</td>
<td>0.05</td>
<td>15</td>
</tr>
<tr>
<td>TiO_2, (1,000 Å)</td>
<td>0.0067</td>
<td>5</td>
</tr>
<tr>
<td>Trophet 30 (bare and preox)</td>
<td>0.0</td>
<td>1, 26</td>
</tr>
<tr>
<td>Tungsten</td>
<td>0.0</td>
<td>8, 26</td>
</tr>
<tr>
<td>Tungsten Carbide</td>
<td>0.0</td>
<td>8</td>
</tr>
<tr>
<td>YB-71 (ZOT)</td>
<td>0.0</td>
<td>7</td>
</tr>
<tr>
<td>Z302 (glossy black)</td>
<td>3.9</td>
<td>26</td>
</tr>
</tbody>
</table>
EROSION YIELD TABLE

REFERENCES

1. Marshall Space Flight Center

7. Langley Research Center

8. University of Alabama at Huntsville

11. British Aerospace

12. Whitaker, A. F. LEO atomic oxygen effects on spacecraft materials.

13. Martin Marietta

14. Lewis Research Center

16. Jet Propulsion Laboratory

References

20. Goddard Space Flight Center
21. Johnson Space Center
22. Washington University
25. Aerospace Corporation

<table>
<thead>
<tr>
<th>Material</th>
<th>Change in Optical Properties due to A/O</th>
<th>Solar Absorptance</th>
<th>Solar Emittance</th>
<th>Solar Reflectance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag/FEP</td>
<td>0.005</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>Al/Al2O3</td>
<td>-0.006</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>AlN</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Al2O3/AlN</td>
<td>-0.005</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>Al2O3/AlN</td>
<td>-0.006</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>Aluminized FEP Teflon, second surface mirror (0.025 mm thick)</td>
<td>0.05</td>
<td>-0.19</td>
<td>-</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Al Kapton</td>
<td>0.048</td>
<td>0.018</td>
<td>-</td>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>Al Kapton</td>
<td>-0.002</td>
<td>-0.007</td>
<td>-</td>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>Aluminized Kapton, second surface mirror, uncoated (0.052 mm thick)</td>
<td>-0.23</td>
<td>-0.59</td>
<td>-</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Aluminum (150 Å)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Aluminum (chronic acid oxidized)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Black, carbon-filled PTFE impregnated fiberglass (0.127 mm thick)</td>
<td>-0.16</td>
<td>-0.05</td>
<td>-</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Solar Absorptance</td>
<td>Emittance</td>
<td>Reflectance</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Black Cr on Cr on Mo</td>
<td>-</td>
<td>-</td>
<td>0.20*</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Black Ir on Mo</td>
<td>-</td>
<td>-</td>
<td>-0.75</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Black Rh on Mo (matte)</td>
<td>-</td>
<td>-</td>
<td>-0.25</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Black Rh on Mo (specular)</td>
<td>-</td>
<td>-</td>
<td>-0.50</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Dustic 463-14</td>
<td>0.01</td>
<td>0.0</td>
<td>-</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Chenglaze A276 (w/modifiers)</td>
<td>-0.006 to 0.016</td>
<td>0.02</td>
<td>-</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Chenglaze A276 (white)</td>
<td>-0.005</td>
<td>0.03</td>
<td>-0.039</td>
<td>B, C</td>
<td></td>
</tr>
<tr>
<td>Chenglaze Z004</td>
<td>0.01</td>
<td>0.0</td>
<td>-</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Chenglaze Z302 (glossy, black)</td>
<td>0.011</td>
<td>-</td>
<td>-0.01</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Chromium (123 Å)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>FEP Teflon with silver undercoat</td>
<td>0.006</td>
<td>0.0</td>
<td>-</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>GE-PD-224</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>GSFC (green)</td>
<td>-0.002</td>
<td>-</td>
<td>-</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Indium Tin Oxide coated Kapton H with aluminized backing</td>
<td>0.006</td>
<td>0.004</td>
<td>-</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>ITO ring</td>
<td>0.006</td>
<td>0.004</td>
<td>-</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>ITO (S) Sheldahl, Black/Kapton (sputtered)</td>
<td>0.01</td>
<td>0.0</td>
<td>-</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Solar Absorptance</th>
<th>Emittance</th>
<th>Reflectance</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO (VD) Sheldahl, black/Kapton (vacuum deposited)</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>J</td>
</tr>
<tr>
<td>Ir foil on Al</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>N</td>
</tr>
<tr>
<td>KAT glass</td>
<td>-</td>
<td>-</td>
<td>-0.05 to 0.1**</td>
<td>N</td>
</tr>
<tr>
<td>Kapton with aluminized backing</td>
<td>0.048</td>
<td>0.018</td>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>Kapton H (aluminized)</td>
<td>0.041</td>
<td>-</td>
<td>-0.051</td>
<td>K</td>
</tr>
<tr>
<td>Mo (polished)</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>N</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.005</td>
<td>0.0</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>-0.004</td>
<td>0.0</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>Polurethane A-276</td>
<td>0.023</td>
<td>-</td>
<td>0.01</td>
<td>I</td>
</tr>
<tr>
<td>Polurethane A276 glossy white</td>
<td>-0.002</td>
<td>-</td>
<td>0.2</td>
<td>L</td>
</tr>
<tr>
<td>Polurethane A276 with 0.5-1 mil DI 650 overcoat</td>
<td>0.002</td>
<td>-</td>
<td>-0.3</td>
<td>L</td>
</tr>
<tr>
<td>Rh foil on Al</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>N</td>
</tr>
<tr>
<td>Si3 - GLO</td>
<td>-0.005</td>
<td>0.0</td>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>SiO₂ (650 Å on Kapton H)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>E</td>
</tr>
<tr>
<td>SiO₂ ring</td>
<td>0.039</td>
<td>-0.002</td>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>Silicate MS-74</td>
<td>0.01</td>
<td>0.0</td>
<td>-</td>
<td>H, A</td>
</tr>
<tr>
<td>Material</td>
<td>Change in Optical Properties due to A/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar</td>
<td>Absorptance</td>
<td>Emittance</td>
<td>Reflectance</td>
</tr>
<tr>
<td>Silicone (black, conductive)</td>
<td>0.0</td>
<td>0.005</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Silicone RTV-602/Z302</td>
<td>-0.004</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Silicone RTV-650+TiO₂</td>
<td>0.001</td>
<td>-0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Silicone RTV-670</td>
<td>-0.004</td>
<td>-</td>
<td>0.001</td>
<td>-</td>
</tr>
<tr>
<td>Silicone S1023</td>
<td>-0.022</td>
<td>-0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siloxane coating, RTV 602/0 on</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>aluminized Kapton, second surface mirror</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substrate (0.008 mm thick coating)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti/"tiodized" alloy</td>
<td>-</td>
<td>-</td>
<td>-0.25***</td>
<td>-</td>
</tr>
<tr>
<td>Ti/"tiodized" CP</td>
<td>-</td>
<td>-</td>
<td>-0.40****</td>
<td>-</td>
</tr>
<tr>
<td>Urethane (black, conductive)</td>
<td>0.042</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urethane Inhib A-276</td>
<td>0.0</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y8-71</td>
<td>0.004</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z302 glossy black</td>
<td>0.043</td>
<td>-</td>
<td>-4.3</td>
<td>-</td>
</tr>
<tr>
<td>Z302 with MN41-1104-O overcoat</td>
<td>-0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z302 with OI 551 overcoat</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z302 with OI 650 overcoat</td>
<td>-0.001</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Z302 with RTV-602 overcoat</td>
<td>-0.004</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE:

* More reflective as a result of the exposed Mo substrate.
** Low absolute reflectance (-0.5 to 1%)
*** Contrast in different spectra between STS-8 and control. Possible aging effects on controls.
**** Aging effects similar in STS-8 and control. No exposure effect.
REFERENCES

A. NASA Goddard Space Flight Center
B. NASA Marshall Space Flight Center
C. NASA Langley Research Center
D. Whitaker, Ann F. LEO Atomic Oxygen Effects on Spacecraft Materials.
E. NASA Lewis Research Center
F. NASA Langley Research Center
G. Martin Marietta
ATOMIC OXYGEN IN PLASMA ASHERS.

ATOMIC OXYGEN EXPOSURE BY DIRECTED BEAMS.
Mass loss of fiberglass epoxy composites and Kapton as a function of effective atomic oxygen fluence (Kapton based).
ANTICIPATED SURFACE PROFILE FOR THICK ORGANIC LDEF SAMPLES.

THIN POLYMER FILMS (<5 mils)
THIN POLYMER FILMS (<5 mils)
WITH ATOMIC OXYGEN PROTECTIVE COATINGS
NASA
LONG DURATION EXPOSURE FACILITY

MATERIALS SPECIAL INVESTIGATION GROUP
MATERIALS ANALYSIS

GARY PIPPIN
BOEING AEROSPACE AND ELECTRONICS CO.
MSIG SUPPORT

LDEF
MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
LONG DURATION EXPOSURE FACILITY
MATERIALS DATA ANALYSIS

BOEING MATERIALS TEAM AT KSC DURING DEINTEGRATION PROCESS

Dr. Gary Pippin-Environmental Effects on Materials
Syl Hill-Adhesives, Composites
Roger Bourassa-TCC, Composites, Lubricants, Environmental Effects Modeling
Dr. Johnny Golden-TCC, Paints, Al Anodizing
Russ Crutcher-Particular and Molecular Analysis, Contamination Control
Harry Dursch-Tech Leader Boeing Tasks for SSIG
Bob Roper-Composites, Adhesives, Program Support
GOALS:

TO BE ABLE TO PREDICT THE PERIOD OF TIME A GIVEN MATERIAL WILL SURVIVE IN LEO

TO BE ABLE TO ESTIMATE THE ENGINEERING PERFORMANCE LIFETIME IN LEO OF SPECIFIC MATERIALS

TO UNDERSTAND THE DEGRADATION MECHANISMS IN ORDER TO PRODUCE MATERIALS MORE INHERENTLY RESISTANT TO THE LEO ENVIRONMENT

MSIG KSC WORKSHOP - FEB 1990

Tasks:

- Make Quantitative measurements of the effects of the low earth orbit environment on materials.

- Report results for inclusion into LDEF materials data base
SPECIMEN/SYSTEM ENVIRONMENTAL EXPOSURE

SPECIMEN EXPOSURE DEPENDENT ON LOCATION

12 Sides + 2 ends

Modules with/without lids

"Shadow" effects
 Depth of tray
 Oscillation of spacecraft

"Edge" effects
 Side, front of specimens

Secondary scattering

MSIG KSC WORKSHOP - FEB 1990

Unique Specimens

• One time opportunity

• Procedures selected to maximize information value

• Careful documentation of each step
HARDWARE CONDITION WILL DRIVE INVESTIGATION

COMPARISON- OPTICAL IMAGE SUBTRACTION

QUALITATIVE-TRENDS

QUANTITATIVE-NUMERICAL VALUE

SPECIFIC ITEMS

SILVER BACKED TEFLOW BLANKETS
ALUMINUM PLATES WITH A-276 & Z-306 COPPER GROUNDING STRIPS
COMPOSITES KAPTON (POLYIMIDES)
"TEFLONS"- MANY VARIETIES PIECES OF OTHER THERMAL CONTROL BLANKETS
LEXAN, PAINTS, ADHESIVES
FLUORINATED MATERIALS

PAINTS
A276
Z306
S13
YELLOW PAINT ON TRUNNIONS

ALUMINUM, STEEL

KAPTON
POLYCARBONATE (LEXAN)

COMPOSITES

COMPLETE SET ALUMINUM PLATES, TCC DISKS, BOLTS, WASHERS
AT LEAST ONE FROM EACH TRAY LOCATION
(TWO PREFERRED)

PHOTODOCUMENT ORIENTATION BEFORE REMOVAL

VARIETY OF MATERIALS WITH COMMON LOCATION DISTRIBUTION

DETAILED OPTICAL AND SURFACE CHARACTERIZATION
SURVEY CONDITION OF TEFLOM MATERIALS ON LDEF

DIMENSIONAL CHANGES WHERE POSSIBLE

SURFACE TEXTURE
COLOR-OPTICALS

OUTGASSING, CHEMICAL IDENTITY

IR SPECTRA

COPPER GROUNDING STRIPS

INTACT

WITH PIECE OF THERMAL CONTROL BLANKET ADHESIVELY ATTACHED
COPPER GROUNDING STRIPS STRUCTURE TO AO178 TRAY

EXPERIMENTAL MEASURE OF ATOMIC OXYGEN FLUX TO EACH ORIENTATION

CONTOUR OF EACH STRIP SHOWS VARIATION

MEASURE THICKNESS, DENSITY, OXIDE SPECIES, OPTICALS
PRESERVE ORIENTATION OF EACH STRIP

OPTICAL PROPERTIES

SURFACE CHEMISTRY
FUNCTIONAL GROUPS
ELEMENTAL ANALYSIS-
OXIDATION STATE
MICROCRACKING
TEXTURE
RECESSION, THICKNESS
BULK PROPERTIES
MECHANICAL
THERMAL
OUTGASSING
Properties of Interest-Composites

Non-Experimental Materials

<table>
<thead>
<tr>
<th>Property</th>
<th>Test</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Properties</td>
<td>Tensile strength, modulus, compression strength, modulus, shear strength</td>
<td>Determine end-of-life structural capability by comparing with specification requirements & historical data</td>
</tr>
<tr>
<td>CTE</td>
<td>Quartz tube or laser dilatometer</td>
<td>Determine effects on dimensional stability</td>
</tr>
<tr>
<td>Depth effects & microstructure</td>
<td>Chemical/analytical, microscopy</td>
<td>Determine degradation vs depth, extent that UV, AO are self-limiting & thermal cycling effects</td>
</tr>
</tbody>
</table>

Experimental Materials

<table>
<thead>
<tr>
<th>Property</th>
<th>Test</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth effects & microstructure</td>
<td>Chemical/analytical, microscopy</td>
<td>Determine degradation vs depth, extent that UV, AO are self-limiting & thermal cycling effects</td>
</tr>
<tr>
<td>CTE</td>
<td>Laser dilatometer</td>
<td>Determine effects of exposure & one-surface degradation</td>
</tr>
</tbody>
</table>
LDEF Thermal Control Coatings

- Engineering Properties
 - Thermal Vacuum Stability
 - Optical Characteristics
 - Adhesion
 - Abrasion Resistance

- Basic Properties
 - Chemical Changes
 - Molecular Weight
 - Dehydration
 - Oxidation State
 - Morphological Changes
 - Crystallinity or Phase Changes
 - Defects

THERMAL EMITTANCE
CORRECT TO HEMISPHERICAL

SOLAR ABSORPTANCE

SURFACE TEXTURE-SEM

SURFACE CHEMISTRY
AUGER
REFLECTANCE, IR
ESCA
Physical/Chemical Changes

- Outgassing

- Average molecular weight distributions

- Pyrolysis GC

Examine Surface of Metals For Oxidation

- Aluminum

 Depth - XPS

- Chrome - Plating on trunnions

- Steel - bolts
Insulation Materials

Optical ---- Surface properties
Thermal conductivity
Specific heat
Compressibility/resiliency
Wettability/contact ----- surface roughness, actual area

If PI requests and NASA approves, Boeing will conduct measurements on PI hardware/specimens

Test equipment not available/planned for by PI

Lab to Lab comparison

Results back to PI to publish; also included in LDEF data base
Request to PI's

- Schedule of availability of hardware/specimens
- Commitment from each PI regarding which specimens/hardware will be made available for MSIG analysis

This list is an expression of the interests of the LDEF Special Investigation Groups (SIGs). These groups were established by NASA to maximize the scientific return from the LDEF experiments, in view of LDEF's extended space exposure. At this time, the materials noted above have merely been identified for consideration by the Project. The Principal Investigators' (PIs) cooperation will be solicited in this extended research. Either the PIs could provide samples for analysis to the SIGs, or the PIs could perform the additional research with guidance provided by the SIGs.
DATA BASE

- By Experiment

- By System
 - Quantitative Data From Measurements
 - "Lessons Learned" Text Summaries
 - Recommended Practices
 - Undesirable/Forbidden Practices
 - Relate To Space Environment
NASA
LONG DURATION EXPOSURE FACILITY

MSIG/MAPTIS DATA BASE

JOHN M. DAVIS
NASA - MARSHALL SPACE FLIGHT CENTER
MEMBER, MSIG

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
MATERIALS & PROCESSES TECHNICAL INFORMATION SYSTEM

- MATERIALS AND PROCESSES TECHNICAL INFORMATION SYSTEM (MAPTIS)

1. General Information

2. Materials Properties Database
 a. Metals Properties
 b. Nonmetals Properties

3. Material Selection Handbook Database
 a. Metals Selection
 b. Nonmetals Selection
 c. Many Other Selection Categories

4. Other Special Materials Databases
 a. Standards
 b. Foreign Alloy Cross Reference
 c. Materials Usage Agreements (MUA's)
 d. 'Where Used'
 1. MSFC Shuttle Elements
 2. Spacelab
 3. Hubble Space Telescope
 4. Space Station Freedom (future)
 e. Manufacturer Codes (H4 ID's)
 f. Other Selected Databases
 1. Atomic Oxygen
 2. Materials Test Data
 3. Materials Temperature Usage
 4. Long Duration Exposure Facility (LDEF)
 5. Many Others

MATERIALS & PROCESSES TECHNICAL INFORMATION SYSTEM

- MAPTIS GENERAL INFORMATION

1. MAPTIS is a collection of databases giving information about materials and processes.

2. Databases are relational databases written with the ORACLE Database Management System.

3. MAPTIS is accessible from anywhere by user with an account.

4. MAPTIS is constantly changing - with updates and improvements Ex. New Graphics Package will be added within one year.

5. New material information is added every day.
MATERIALS & PROCESSES TECHNICAL INFORMATION SYSTEM
METALS PROPERTIES DATABASE

• Alloy Information
 - Density
 - Poisson Ratio
 - Melting Range
 - Alternate Designation
 - UNS Designation
 - Category

• Composition Information
 - Elements
 - Average Percentage
 - Minimum/Maximum Composition

• Specification Data
 - Alloy
 - Condition
 - Form
 - Material Code (MSFC Assigned Easy Reference)
 - Specification Number

• Mechanical Properties
 - Elongation
 - Tensile Strength
 - Bearing Strength
 - Bearing Yield
 - Compressive Strength
 - Bend Radius
 - Fatigue Strength
 - Hardness
 - Hydrogen Embrittlement

• General Comments on Properties
 - Corrosion Resistance
 - Formability
 - Heat Treatment & Stress Relief by Plastic Stretching
 - Machineability
 - Surface Treatment
 - Weldability

• Much More...
NONMETALS PROPERTIES DATABASE

- Identification Information
 - Designation
 - Manufacturer
 - Color
 - Description

- Chemical Classification
 - Composition
 - Category
 - Compound
 - Generic ID
 - Material Code
 - Process Method
 - Specifications (MIL Spec., etc)

- Component Parts Information
 - Designation
 - Description
 - Generic Type
 - Form
 - Mix Ratio

- Cure Information
 - Cure Cycle
 - Temperature
 - Time

- Material Properties
 - Use Temperature Range
 - Shelf Life
 - Compressive Strength
 - Shear Strength
 - Viscosity

- ETC..........................
MATERIAL SELECTION HANDBOOK DATABASE

- Material Information
 - Material Code
 - Designation
 - Composition
 - Cure
 - Use Type
 - Specifications
 - Manufacturer

- Test Results and Data
 - Corrosion
 - Liquid Oxygen
 - Hydrazine
 - High Pressure Hydrogen
 - Low Pressure Hydrogen
 - Gaseous Oxygen
 - Nitrogen Tetraoxide
 - Flammability
 - Toxicity
 - TVS

- ETC

MATERIALS & PROCESSES TECHNICAL INFORMATION SYSTEM

MAPTIS MAIN MENU

1. Properties
2. Materials Selection Handbook
3. Standards
4. Foreign Alloy Cross Reference
5. Material Usage Agreement (MUA)
6. Where Used
7. Valve and Component
8. Manufacturer Codes
9. Resource Database

Enter choice:
PRINT ALL SKewed SELECTION LIST DATA FOR ALL MATERIALS WHICH HAVE DESIGNATIONS LIKE 106RTV10

**MAPTIS SELECTION LIST DATA FOR MTRL CODE: 00128 **

<table>
<thead>
<tr>
<th>MTRL CODE: 00128</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGNATION: RUBBER SILICONE RTV 102</td>
</tr>
<tr>
<td>COMPOSITION:</td>
</tr>
<tr>
<td>GENERIC ID:</td>
</tr>
<tr>
<td>USE TYPE: RUBBER</td>
</tr>
<tr>
<td>MIN USE TEMP: -10°F</td>
</tr>
<tr>
<td>MAX USE TEMP: 350°F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIFICATION: MBO120-041</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUFACTURER: GENERAL ELECTRIC</td>
</tr>
</tbody>
</table>

FLAMMABILITY DATA

<table>
<thead>
<tr>
<th>TEST NUMBER</th>
<th>FL C</th>
<th>PCT</th>
<th>PRESS</th>
<th>THICK</th>
<th>CMBST</th>
<th>LGTH</th>
<th>BURN</th>
<th>TOT</th>
<th>SSTR</th>
<th>THICK</th>
<th>SUBSTRATE MTRL</th>
<th>CONFIG</th>
<th>DRIP</th>
<th>BRN</th>
<th>JETS</th>
<th>SPARKS</th>
<th>FUSE</th>
<th>GUARD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>W10558</td>
<td>A</td>
<td>025.9</td>
<td>014.3</td>
<td>0.008</td>
<td>0.04</td>
<td>01.40</td>
<td>A</td>
<td>A</td>
<td>0.003</td>
<td>ALUMINUM</td>
<td>SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10558</td>
<td>I</td>
<td>030.0</td>
<td>010.0</td>
<td>0.061</td>
<td>00.02</td>
<td>12.00</td>
<td>T</td>
<td>A</td>
<td>0.003</td>
<td>ALUMINUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10558</td>
<td>A</td>
<td>033.0</td>
<td>014.3</td>
<td>0.008</td>
<td>01.80</td>
<td>12.00</td>
<td>T</td>
<td>A</td>
<td>0.003</td>
<td>ALUMINUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10558</td>
<td>X</td>
<td>100.0</td>
<td>019.0</td>
<td>0.008</td>
<td>00.48</td>
<td>12.00</td>
<td>T</td>
<td>A</td>
<td>0.003</td>
<td>ALUMINUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10558</td>
<td>X</td>
<td>100.0</td>
<td>019.0</td>
<td>0.008</td>
<td>02.03</td>
<td>12.00</td>
<td>T</td>
<td>A</td>
<td>0.003</td>
<td>ALUMINUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLUID SYSTEMS DATA

<table>
<thead>
<tr>
<th>TEST NR</th>
<th>FLUID</th>
<th>RTG</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>W11006</td>
<td>A</td>
<td>NYE</td>
<td></td>
</tr>
<tr>
<td>W11006</td>
<td>A</td>
<td>MHN</td>
<td></td>
</tr>
<tr>
<td>W11006</td>
<td>X</td>
<td>M204</td>
<td></td>
</tr>
</tbody>
</table>
Oxygen Data

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Oxy Press</th>
<th>Impct Temp</th>
<th>Thick</th>
<th>Test</th>
<th>React</th>
<th>No. Tension</th>
<th>Substr Thick</th>
<th>Substrate Mtrl</th>
<th>Batch Number</th>
<th>Lot Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>B 40</td>
<td>70</td>
<td>0.007</td>
<td>PNEU</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>I 40</td>
<td>72</td>
<td>0.007</td>
<td>MECH</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oxygen Cure Data

<table>
<thead>
<tr>
<th>Test Number</th>
<th>No. Ph</th>
<th>Time</th>
<th>Temp</th>
<th>Press</th>
<th>Cure Additional Prep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>psia</td>
<td></td>
</tr>
</tbody>
</table>

Toxicity Data

<table>
<thead>
<tr>
<th>Test Number</th>
<th>SMP Wt</th>
<th>Odor</th>
<th>ODOR</th>
<th>Test Basis</th>
<th>Gas Name</th>
<th>Micro GM</th>
<th>Tox Ovr</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10556</td>
<td>00021.07</td>
<td>1.0</td>
<td>A</td>
<td>MICROGRM/GRM UNIDENTIFIED COMPONENT</td>
<td>0000000.60</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>W10557</td>
<td>00021.07</td>
<td>1.0</td>
<td>A</td>
<td>MICROGRM/GRM TERT-BUTYL ALCOHOL</td>
<td>0000000.20</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>W10558</td>
<td>00021.07</td>
<td>1.0</td>
<td>A</td>
<td>MICROGRM/GRM 1-BUTENE</td>
<td>0000000.10</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>W10558</td>
<td>00021.07</td>
<td>1.0</td>
<td>A</td>
<td>MICROGRM/GRM CARBON MONOXIDE</td>
<td>0000000.20</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

Toxicity Cure Data

<table>
<thead>
<tr>
<th>Test Number</th>
<th>No. Ph</th>
<th>Time</th>
<th>Temp</th>
<th>Press</th>
<th>Cure Additional Prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10556</td>
<td>1</td>
<td>24.00</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10557</td>
<td>1</td>
<td>24.00</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal Vacuum Stability Data

<table>
<thead>
<tr>
<th>Test Number</th>
<th>TVS Press</th>
<th>Temp</th>
<th>Mtl</th>
<th>CVM</th>
<th>Wfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZR111801</td>
<td>X 1.0E-6</td>
<td>125</td>
<td>5.45</td>
<td>1.43</td>
<td>.00</td>
</tr>
</tbody>
</table>
DESIGNATION: RTV-102
MANUFACTURER: ALLIED RESINS CORP
DESCRIPTION: READY TO USE ADHESIVE/SEALANT USES-SEALING, AEROSPACE (EXTREME TEMPERATURE)
CATEGORY:
COMPONENT:
GENERIC ID: ABDEXXX
MATERIAL CODE: 00228
PROCESS METHOD:
COLOR: WHITE

COMMENT:
COMPOSITION:

<table>
<thead>
<tr>
<th>PART DESIGNATION</th>
<th>PART DESCRIPTION</th>
<th>GENERIC TYPE</th>
<th>FORM</th>
<th>PARTS BY WGT</th>
<th>PARTS BY VOL</th>
<th>FILLER THICK (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTV 102 PART A</td>
<td>ONE PART CURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CURE:
MATERIAL SPECIFICATIONS: MIL-A-46106
MATERIAL SPECIFICATION:
PROPERTIES:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>CODE</th>
<th>VALUE</th>
<th>UNIT</th>
<th>UNIT RATING</th>
<th>TEMP</th>
<th>TIME PRESS</th>
<th>FREQ</th>
<th>THICK</th>
<th>PCT</th>
<th>OXY</th>
<th>OTHER NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td></td>
<td>0.03852</td>
<td>LB/CU IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td></td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td></td>
<td>0.0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELONGATION</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>HARDNESS</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
TEST METHOD: SNORE A

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD SHRINKAGE</td>
<td>2 PCT</td>
</tr>
<tr>
<td>SHELF LIFE</td>
<td>525600 MIN</td>
</tr>
<tr>
<td>SPECIFIC GRAVITY</td>
<td>1.07</td>
</tr>
<tr>
<td>TENSILE STRENGTH</td>
<td>350 PSI</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY</td>
<td></td>
</tr>
<tr>
<td>TY COEF</td>
<td>.12 BTU/HR/FT/DEG</td>
</tr>
<tr>
<td>THERMAL EXPANSION</td>
<td></td>
</tr>
<tr>
<td>TY COEF</td>
<td>.080015 IN/IN/DEG</td>
</tr>
<tr>
<td>VISCOSITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOFT ANISOTROPIC PASTE</td>
</tr>
<tr>
<td>VOLUME RESISTIVITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000000000 OHM-C</td>
</tr>
</tbody>
</table>

RESISTANCE CHARACTERISTICS:

PRINT ALL DATA FOR MATERIALS WHICH HAVE MATERIAL CODES LIKE 10233:

<table>
<thead>
<tr>
<th>MATERIAL CODE</th>
<th>DESIGNATION</th>
<th>THICKNESS</th>
<th>OPER TEMP MIN</th>
<th>OPER TEMP MAX</th>
<th>CURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10233</td>
<td>CR35 304L BAR ANNEALED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATION: MB0160-037

SUPPORT DATA: Z N204 + HD35 10078

PROPERTY DATA

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>CODE</th>
<th>RTG</th>
<th>PRESSURE</th>
<th>TMRESH</th>
<th>PNEU</th>
<th>MECN</th>
<th>TEMP</th>
<th>HOLD</th>
<th>IMPACT</th>
<th>IMPACT</th>
<th>DECH</th>
<th>IMPACT</th>
<th>SCC</th>
<th>CORE</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Composition Data for Alloy: Fe 304L

<table>
<thead>
<tr>
<th>Element</th>
<th>NomPct</th>
<th>MaxPct</th>
<th>MinPct</th>
<th>Comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>10</td>
</tr>
<tr>
<td>Cr</td>
<td>19</td>
<td>21</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Cu</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>Mn</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>P</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>10</td>
</tr>
<tr>
<td>S</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>10</td>
</tr>
<tr>
<td>Si</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Composition Property Comments for: Fe 304L

- **Condition**:
 - **Form**:
 - **Comment**:
 - 10 AMS 5370 specified 1.0 percent maximum only for Si. AMS 5371 gives 0.04 percent for S.
 - 80 Casting composition type CFB.
 - 81 Casting composition type CF8.
SPECIFICATION DATA:

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>CONDITION</th>
<th>FORM</th>
<th>MATERIAL CODE</th>
<th>SPECIFICATION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>BAR</td>
<td>AMS 5647</td>
<td>QQ-8-763</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>BAR</td>
<td>AMS 5647</td>
<td>QQ-8-763</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>NOT SPECIFIED</td>
<td>AMS 5511A</td>
<td>MIL-S-4043</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>PLATE</td>
<td>AMS 5511A</td>
<td>MIL-S-4043</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>SHEET</td>
<td>AMS 5511A</td>
<td>MIL-S-4043</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>SHEET</td>
<td>AMS 5511A</td>
<td>MIL-S-4043</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>STRIP</td>
<td>AMS 5511A</td>
<td>MIL-S-4043</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A</td>
<td>STRIP</td>
<td>AMS 5511A</td>
<td>MIL-S-4043</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A1</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A1</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A2</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A2</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A2</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A3</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A3</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A3</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A3</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A4</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A4</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>A4</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>CR</td>
<td>SHEET</td>
<td>MIL-S-4043</td>
<td>AMS 5511A</td>
</tr>
<tr>
<td>FE 304L</td>
<td>NULL</td>
<td>FORGING</td>
<td>AMS 5647</td>
<td>QQ-8-763</td>
</tr>
<tr>
<td>FE 304L</td>
<td>NULL</td>
<td>FORGING</td>
<td>AMS 5647</td>
<td>QQ-8-763</td>
</tr>
<tr>
<td>FE 304L</td>
<td>NULL</td>
<td>NOT SPECIFIED</td>
<td>AMS 5647</td>
<td>QQ-8-763</td>
</tr>
<tr>
<td>FE 304L</td>
<td>NULL</td>
<td>TUBE</td>
<td>AMS 5647</td>
<td>QQ-8-763</td>
</tr>
<tr>
<td>FE 304L</td>
<td>NULL</td>
<td>TUBE</td>
<td>AMS 5647</td>
<td>QQ-8-763</td>
</tr>
</tbody>
</table>

**** PROPERTY VALUES FOR ALL THE FORMS AND CONDITIONS WERE ONLY THOSE THAT WERE AVAILABLE IN THE RECOMMENDED REFERENCES.

** THE CONDITION CODES FOR STEELS, WHEN NOT AVAILABLE, WERE CREATED SOLELY FOR USE IN THIS DATABASE.

ABBREVIATIONS THAT MAY BE USED IN THE FOLLOWING TABLES

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>AVERAGE</td>
</tr>
<tr>
<td>AX</td>
<td>AXIAL</td>
</tr>
<tr>
<td>CRFC</td>
<td>CIRCUMFERENTIAL</td>
</tr>
<tr>
<td>DRW</td>
<td>DRAWN</td>
</tr>
<tr>
<td>E/D</td>
<td>RATIO OF EDGE DISTANCE TO HOLE DIAMETER</td>
</tr>
<tr>
<td>FIO</td>
<td>FOR INFORMATION ONLY</td>
</tr>
<tr>
<td>GMS</td>
<td>GRAMS PEP SQUARE INCH</td>
</tr>
<tr>
<td>GPS</td>
<td>GRAMS PEP SQUARE INCH</td>
</tr>
<tr>
<td>HLA, HLB, etc.</td>
<td>FOR EACH ALLOY, CONDITION AND FORM, THE VALUE GIVEN IS AN AVERAGE OF AT LEAST TWO TESTS OR A UNIQUE HEAT AND LOG. DESIGNATIONS ARE ARBITRARILY ASSIGNED BY THIS DATABASE SOLELY FOR COMPARISON PURPOSES.</td>
</tr>
<tr>
<td>HV</td>
<td>HYDRAULIC</td>
</tr>
<tr>
<td>IACS</td>
<td>INTERNATIONAL ANNEALED COPPER STANDARD</td>
</tr>
<tr>
<td>KGRTI</td>
<td>KSI SQUARE ROOT OF INCH</td>
</tr>
<tr>
<td>LV</td>
<td>DENOTES THE LOWEST VALUE FOR THE CROSS SECTION OF THICKNESS THAT GIVES THE CORRESPONDING PROPERTY VALUE.</td>
</tr>
<tr>
<td>MAX</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>MIN</td>
<td>MINIMUM</td>
</tr>
<tr>
<td>MPCH</td>
<td>MILLIGRAMS/SQ CM/HOUR</td>
</tr>
<tr>
<td>MFT</td>
<td>MILS PEP YEAR</td>
</tr>
<tr>
<td>MDA</td>
<td>NO DATA AVAILABLE</td>
</tr>
<tr>
<td>NOM</td>
<td>NOMINAL</td>
</tr>
<tr>
<td>SEAMLESS</td>
<td>SEAMLESS</td>
</tr>
<tr>
<td>SMLSS</td>
<td>SEAMLESS</td>
</tr>
<tr>
<td>STO</td>
<td>SINGLE TEST THICKNESS ONLY</td>
</tr>
<tr>
<td>TOLER</td>
<td>TOLERANCE</td>
</tr>
<tr>
<td>TYP</td>
<td>AVERAGE FOR ALL SIZES, THICKNESSES, FORMS AND METHOD OF MANUFACTURE.</td>
</tr>
</tbody>
</table>

BASIS DEFINITIONS

BASIS DEFINITION

ORIGINAL PAGE IS OF POOR QUALITY
AT LEAST 99 PERCENT OF THE POPULATION OF VALUES IS EXPECTED TO EQUAL OR EXCEED THE "A" BASIS MECHANICAL PROPERTY ALLOWABLE, WITH A CONFIDENCE OF 95 PERCENT.

AT LEAST 99 PERCENT OF THE POPULATION OF VALUES IS EXPECTED TO EQUAL OR EXCEED THE "B" BASIS MECHANICAL PROPERTY ALLOWABLE, WITH A CONFIDENCE OF 95 PERCENT.

THIS TYPICAL PROPERTY VALUE IS AN AVERAGE VALUE; NO STATISTICAL ASSURANCE BEING ASSOCIATED WITH IT. HOWEVER, THESE TYPICAL PROPERTIES HAVE BEEN BASED ON CONSISTENT RESULTS OF TESTS ON THREE OR MORE LOTS OF MATERIAL AND ARE USEFUL IN DESIGN. SINCE THERE ARE WELL KNOWN METHODS FOR REDUCING THESE VALUES TO MINIMUM VALUES, THE MANNER IN WHICH THESE PROPERTY VALUES ARE TO BE USED WILL BE SPECIFIED IN THE DETAILED STRUCTURAL REQUIREMENTS OF THE PROCURING OR CERTIFICATION AGENCY AND ARE THEREFORE BEYOND THE SCOPE OF THIS DATABASE.

THIS TYPICAL PROPERTY VALUE IS AN AVERAGE VALUE; NO STATISTICAL ASSURANCE BEING ASSOCIATED WITH IT. HOWEVER, THESE TYPICAL PROPERTIES HAVE BEEN BASED ON CONSISTENT RESULTS OF TESTS ON THREE OR MORE LOTS OF MATERIAL AND ARE USEFUL IN DESIGN.

FOR INFORMATION ONLY.

THE "S" BASIS MECHANICAL PROPERTY ALLOWABLE IS THE MINIMUM VALUE SPECIFIED BY THE APPROPRIATE FEDERAL, MILITARY, SAE AEROSPACE OR ASTM SPECIFICATION FOR THE MATERIAL. THE STATISTICAL ASSURANCE ASSOCIATED WITH THIS VALUE IS NOT KNOWN.

REFERENCES THAT MAY BE USED IN THE FOLLOWING TABLES

REF BOOK

1 AEROSPACE STRUCTURAL METALS HANDBOOK
2 MIL HANDBOOK 5
3 AMERICAN SOCIETY FOR METALS, METALS HDBK, 9TH EDT. VOL. 1
5 AMERICAN SOCIETY FOR METALS, METALS HDBK, 9TH EDT. VOL. 3
6 STRUCTURAL ALLOYS HANDBOOK
Mechanical Property Data for: PE 304L

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Prop Value</th>
<th>Prop Unit</th>
<th>Exp Time</th>
<th>Exp Temp</th>
<th>Test Time</th>
<th>Test Temp</th>
<th>Base Temp</th>
<th>UE Min</th>
<th>UE Max</th>
<th>SQR Min</th>
<th>SQR Max</th>
<th>INCH Min</th>
<th>INCH Max</th>
<th>L/D Conc</th>
<th>Cycle Val</th>
<th>R Creep</th>
<th>pct</th>
<th>Rup Compl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing Ultimate</td>
<td>150.0</td>
<td>KSI</td>
<td></td>
</tr>
<tr>
<td>Strength - Dry Pin</td>
<td>50.0</td>
<td>KSI</td>
<td></td>
</tr>
<tr>
<td>Bearing YIELD</td>
<td>28000.0</td>
<td>KSI AVG</td>
<td></td>
</tr>
<tr>
<td>Strength - Dry Pin</td>
<td>27.0</td>
<td>KSI MIN</td>
<td></td>
</tr>
<tr>
<td>Compressive YIELD</td>
<td>27.0</td>
<td>KSI MIN</td>
<td></td>
</tr>
<tr>
<td>Strength</td>
<td>40.0</td>
<td>% MIN</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>45.0</td>
<td>% MIN</td>
<td></td>
</tr>
<tr>
<td>Shear RIGIDITY</td>
<td>12500.0</td>
<td>KSI AVG</td>
<td></td>
</tr>
<tr>
<td>Shear Strength</td>
<td>50.0</td>
<td>KSI MIN</td>
<td></td>
</tr>
<tr>
<td>Tensile ELASTIC</td>
<td>29000.0</td>
<td>KSI AVG</td>
<td></td>
</tr>
<tr>
<td>Modulus</td>
<td>30.0</td>
<td>KSI MIN</td>
<td></td>
</tr>
<tr>
<td>Tensile YIELD</td>
<td>30.0</td>
<td>KSI MIN</td>
<td></td>
</tr>
<tr>
<td>STRENGTH</td>
<td>75.0</td>
<td>KSI MIN</td>
<td></td>
</tr>
</tbody>
</table>

Condition: A **Form:** SHEET
MECHANICAL PROPERTY DATA FOR: FE 304L

<table>
<thead>
<tr>
<th>PROPERTY NAME</th>
<th>PROPERTY VALUE</th>
<th>UNIT</th>
<th>QUAL</th>
<th>DIP</th>
<th>INCH</th>
<th>INCH</th>
<th>DEG-F</th>
<th>TEMP</th>
<th>HOURS</th>
<th>DEG-F</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULTIMATE TENSILE STRENGTH</td>
<td>75.0</td>
<td>KSI</td>
<td>MIN</td>
<td>NDA</td>
<td>NDA</td>
<td>75</td>
<td>LT</td>
<td>S</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>KSI</td>
<td>MAX</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>C</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
</tr>
</tbody>
</table>

NO MAGNETIC RECORDS FOUND FOR: FE 304L

CORROSION/STRESS CORROSION DATA FOR: FE 304L

<table>
<thead>
<tr>
<th>PROPERTY NAME</th>
<th>PROPERTY VALUE</th>
<th>UNIT</th>
<th>QUAL</th>
<th>DIP</th>
<th>INCH</th>
<th>INCH</th>
<th>DEG-F</th>
<th>TEMP</th>
<th>EXP</th>
<th>TIME</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORROSION RATE</td>
<td>2.3</td>
<td>MPCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

NO H2 EMBRITTLEMENT RECORDS FOUND FOR: FE 304L

NO MECHANICAL RECORDS FOUND FOR: FE 304L

NO MAGNETIC RECORDS FOUND FOR: FE 304L
CORROSION/STRESS CORROSION DATA FOR: FE 304L

CONDITION: A2
FORM: SHEET

<table>
<thead>
<tr>
<th>PROPERTY NAME</th>
<th>PROPERTY VALUE</th>
<th>UNIT</th>
<th>QUAL</th>
<th>DIF</th>
<th>TEST THICK</th>
<th>MEASURED SERIAL</th>
<th>TEST MIN</th>
<th>TEST MAX</th>
<th>TEST TEMP</th>
<th>EXP TEMP</th>
<th>EXP TIME</th>
<th>TEST ENVIRONMENT</th>
<th>EXP STRESS</th>
<th>PCT PIT</th>
<th>PIT</th>
<th>INTER-</th>
<th>F</th>
<th>E</th>
<th>GRAN</th>
<th>CORR</th>
<th>COM:</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORROSION RATE</td>
<td>7.7</td>
<td>MPCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NITRIC-DICHROMATE</td>
<td></td>
</tr>
</tbody>
</table>

NO H2 EMBRITTLEMENT RECORDS FOUND FOR: FE 304L
A2 SHEET

NO MECHANICAL RECORDS FOUND FOR: FE 304L
A3 SHEET

NO MAGNETIC RECORDS FOUND FOR: FE 304L
A3 SHEET

CORROSION/STRESS CORROSION DATA FOR: FE 304L

CONDITION: A3
FORM: SHEET

<table>
<thead>
<tr>
<th>PROPERTY NAME</th>
<th>PROPERTY VALUE</th>
<th>UNIT</th>
<th>QUAL</th>
<th>DIF</th>
<th>TEST THICK</th>
<th>MEASURED SERIAL</th>
<th>TEST MIN</th>
<th>TEST MAX</th>
<th>TEST TEMP</th>
<th>EXP TEMP</th>
<th>EXP TIME</th>
<th>TEST ENVIRONMENT</th>
<th>EXP STRESS</th>
<th>PCT PIT</th>
<th>PIT</th>
<th>INTER-</th>
<th>F</th>
<th>E</th>
<th>GRAN</th>
<th>CORR</th>
<th>COM:</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORROSION RATE</td>
<td>3.3</td>
<td>MPCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NITRIC-DICHROMATE</td>
<td></td>
</tr>
</tbody>
</table>

NO H2 EMBRITTLEMENT RECORDS FOUND FOR: FE 304L
A3 SHEET

NO MECHANICAL RECORDS FOUND FOR: FE 304L
A4 SHEET

NO MAGNETIC RECORDS FOUND FOR: FE 304L
A4 SHEET
Corrosion/Stress Corrosion Data for: FE 304L

<table>
<thead>
<tr>
<th>PROPERTY NAME</th>
<th>PROPERTY VALUE</th>
<th>UN</th>
<th>QUAL</th>
<th>DIR</th>
<th>TEST THICK</th>
<th>MIN THICK</th>
<th>MAX THICK</th>
<th>TEMP</th>
<th>TEST TEMP</th>
<th>EXP TIME</th>
<th>ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion Rate</td>
<td>8.9 MPCH</td>
<td></td>
<td></td>
<td></td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitric-Dichromate</td>
</tr>
</tbody>
</table>

No H2 embrittlement records found for: FE 304L

Mechanical Property Data for: FE 304L

<table>
<thead>
<tr>
<th>PROPERTY NAME</th>
<th>PROP</th>
<th>PROP</th>
<th>PROP</th>
<th>EXP</th>
<th>EX</th>
<th>TEST</th>
<th>TEST</th>
<th>TEST</th>
<th>CENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Yield Strength</td>
<td>158.0 KSI</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>78 NDA</td>
<td>C</td>
<td>0.012</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td>Ultimate Tensile Strength</td>
<td>180.0 KSI</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>-100 NDA</td>
<td>C</td>
<td>0.012</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td></td>
<td>187.0 KSI</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>-320 NDA</td>
<td>C</td>
<td>0.012</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td></td>
<td>231.0 KSI</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>-423 NDA</td>
<td>C</td>
<td>0.012</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td></td>
<td>176.0 KSI</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>78 NDA</td>
<td>C</td>
<td>0.012</td>
<td>NDA</td>
<td>NDA</td>
</tr>
</tbody>
</table>

No magnetic records found for: FE 304L
<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORROSION RESISTANCE</td>
<td>GENERAL CORROSION RESISTANCE OF THIS STEEL TO VARIOUS ATMOSPHERES, MOST ACIDS, HOT PETROLEUM PRODUCTS AND STEAM AND COMBUSTION GASES IS VERY GOOD. INTERGRANULAR CORROSION IN TYPE 304L WHEN SUBJECTED TO A NITRIC-DICHROMATE SOLUTION IS ASSOCIATED WITH THE PRESENCE OF CONTINUOUS GRAIN BOUNDARY PATHS OF EITHER SECOND PHASE OR SOLUTE-SEGREGATED REGIONS. THE SUSCEPTIBILITY OF THESE TYPES TO INTERGRANULAR CORROSION MAY BE SUBSTANTIALLY REDUCED BY SUITABLE HEAT TREATMENTS. TYPE 304L WILL BECOME SENSITIZED ONLY AFTER PROLONGED HEATING IN THIS TEMPERATURE RANGE, BUT ITS USE OVER 800 F IS NOT RECOMMENDED BECAUSE OF ITS RELATIVELY LOW STRENGTH. COMPLETE IMMUNITY FROM INTERGRANULAR CORROSION IS OBTAINED ONLY IN THE STABILIZED TYPES 321 AND 347. DEEP OCEAN BEHAVIOR OF TYPE 304L VARIES, BUT LOCAL ATTACK OFTEN TAKES PLACE. IT IS SUSCEPTIBLE TO STRESS CORROSION IN HOT DILUTE CHLORIDE SOLUTIONS. THE PRESENCE OF OXYGEN IN THE SOLUTION INCREASES THE TENDENCY TO STRESS CORROSION. MAKING THE STEELS ANODIC ACCELERATES STRESS CRACKING, WHILE CATHODIC CURRENTS PREVENT IT. THE BEST CORROSION RESISTANCE COMES FROM A CLEAN SURFACE FREE OF ALL ORGANIC AND METALLIC CONTAMINANTS. SUCH SURFACES CAN BE OBTAINED BY A THOROUGH DECREASING TREATMENT AND A NITRIC ACID RINSE. NITRIDING SIGNIFICANTLY INCREASES THE RESISTANCE TO STRESS CORROSION CRACKING. OXIDATION RESISTANCE OF THIS STEEL IS GOOD UP TO 1700 F FOR CONTINUOUS SERVICE AND UP TO 1600 F FOR INTERRMITENT SERVICE. THE PRESENCE OF HIGH PRESSURE HYDROGEN DURING LOADING TO FAILURE LEADS TO A MARKED REDUCTION IN THE TENSILE STRENGTH AND DUCTILITY OF TYPE 304L AT ROOM TEMPERATURE. THIS REDUCTION IN STRENGTH IS DEPENDENT UPON THE STATE OF STRESS AT THE ROOT OF THE NOTCH, INCREASING BOTH WITH INCREASING NOTCH SEVERITY AND WITH INCREASING HYDROGEN PRESSURE.</td>
</tr>
<tr>
<td>FORMABILITY</td>
<td>THIS STEEL HAS EXCELLENT FORMABILITY IN THE ANNEALED CONDITION, ALTHOUGH OTHER STRAIGHT 18-8 GRADES MAY BE PREFERRED FOR CERTAIN OPERATIONS. IT HAS A LOW YIELD STRENGTH AND HIGH STRAIN HARDENING CAPACITY AND REQUIRES CONSIDERABLY MORE POWER THAN CARBON STEELS. SEVERE FORMING OPERATIONS MAY REQUIRE INTERMEDIATE ANNEALS AND A FINAL ANNEAL IMMEDIATELY AFTER FORMING SHOULD BE APPLIED TO PREVENT STRESS CRACKING. STARTING FORGING TEMPERATURE 2300 F MAXIMUM, FINISHING TEMPERATURE 1500 F MINIMUM. SEVERE REDUCTIONS BELOW 1700 F SHOULD BE AVOIDED. THE CASTING CHARACTERISTICS OF THIS ALLOY ARE EXCELLENT. MANY OF THE CASTERS USE THIS COMPOSITION AS A BASE FOR MAKING COMPARISONS OF CASTING CHARACTERISTICS.</td>
</tr>
<tr>
<td>GENERAL</td>
<td>TYPE 304L IS A LOW CARBON MEMBER OF THE STRAIGHT 18-8 AUSTENITIC STAINLESS STEEL FAMILY. WITH 0.03 PERCENT MAXIMUM CARBON. IT HAS PROPERTIES SIMILAR TO THOSE OF TYPE 302 BUT THEIR CORROSION RESISTANCE IS SLIGHTLY HIGHER BECAUSE OF THE LOWER CARBON AND THE INCREASED CHROMIUM AND NICKEL CONTENTS. THE SUSCEPTIBILITY OF THIS STEEL TO INTERGRANULAR CORROSION DECREASES CONSIDERABLY WITH DECREASING CARBON CONTENT, ALTHOUGH LONG EXPOSURE TO ELEVATED TEMPERATURES MAY EVEN SENSITIZE TYPE 304L. TYPE 304L IS AVAILABLE IN ALL COMMON WROUGHT FORMS AND ALSO AS CASTINGS UNDER THE DESIGNATIONS OF CF-8 AND CF-3, RESPECTIVELY. THE WROUGHT FORMS POSSESS VERY GOOD FORMABILITY AND THE STEELS CAN BE READILY WELDED BY ALL COMMON METHODS.</td>
</tr>
<tr>
<td>HEAT TREATMENT</td>
<td>A CONDITION HEAT TREATMENT. ANNEAL AT 1800 DEG F FOR 30 MINUTES TO 1 HOUR PER INCH THICKNESS, 2 HOURS MINIMUM FOR PLATE. AIR COOL OR QUENCH DEPENDING ON SECTION SIZE. COOLING TO 800 DEG F MAXIMUM SHOULD BE WITHIN 3 MINUTES. A1) CONDITION HEAT TREATMENT. ANNEAL AT 1920 DEG F FOR 2 HOURS WATER QUENCH. A2 CONDITION HEAT TREATMENT. ANNEAL AT 1920 DEG F FOR 2 HOURS WATER QUENCH AND HEAT TO 1650 DEG F FOR 2 HOURS WATER QUENCH.</td>
</tr>
</tbody>
</table>
GENERAL COMMENTS FOR ALLOY: FE 304L

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAT TREATMENT</td>
<td>A1 CONDITION HEAT TREATMENT. ANNEAL AT 1920 DEG F FOR 2 HOURS WATER QUENCH AND HEAT TO 1170 DEG F FOR 2 HOURS WATER QUENCH. A2 CONDITION HEAT TREATMENT. ANNEAL AT 1920 DEG F FOR 2 HOURS WATER QUENCH AND HEAT TO 1110 DEG F FOR 2 HOURS WATER QUENCH. CH Condition is 50 percent cold rolled.</td>
</tr>
<tr>
<td>MACHINABILITY</td>
<td>Because of its high strain hardening, machining of austenitic stainless steels requires positive feeds, correctly contoured and sharp tools and an ample supply of coolant. While comparison with other material varies with the operation, special measures, such as chip curlers, are required to handle the very long chips formed by this steel.</td>
</tr>
<tr>
<td>SURFACE TREATMENT</td>
<td>Cleaning prior to heating and welding should include thorough removal of carbonaceous material and of any pickup of zinc or lead from dies. Contamination from these sources may reduce the corrosion resistance, cause embrittlement and susceptibility of intergranular attack during service or processing.</td>
</tr>
<tr>
<td>WELDABILITY</td>
<td>This steel can be welded readily by any of the common welding methods. Fusion welding of sheet up to 0.125 inch thick is generally done by the inert gas tungsten arc (TIG) method. The shielded metal arc welding process is preferred for sheet over 0.125 inch thick and other products. Type 304 filler rod and electrodes are used. Type 304L will become susceptible to intergranular corrosion only if subjected to heating at about 1200 F for a long time.</td>
</tr>
</tbody>
</table>
NASA
LONG DURATION EXPOSURE FACILITY

MATERIALS SPECIMEN
PRESERVATION AND
CONTAMINATION AVOIDANCE

RUSSELL CRUTCHER
BOEING AEROSPACE AND ELECTRONICS CO.
MSIG SUPPORT

LDEF
MATERIALS DATA ANALYSIS
WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
CONTAMINATION ANALYSIS

CONTAMINATION CONTROL, AND

MATERIALS SPECIMEN HANDLING

WHY

- Ground contamination control effects Orbital performance

- Orbit generated cross contamination effects Orbital performance
QUESTIONS ANSWERED: WHAT ARE -

- Effects of Ground Contaminants
- Effectiveness of Ground Cleaning Activities
- Molecular Effects of Non-Approved Materials
- Contaminating Effects of Atomic Oxygen
- Cleaning Effects of Atomic Oxygen
- Contaminating Effects of Micrometeorites and Debris

ENVIRONMENTS

- Prelaunch and Launch
- Orbital
- Re-entry and Edwards Operations
- Ferry Flight Operations
- Orbital Processing Facility
- O&C Operations
- SAEF-II
- P.I. Laboratory Clean Room
OTHER QUESTIONS: WHERE ARE -

- Effects of Reentry on Payload
- Effects of Ferry Flight on Payload
- Effects of Terrestrial Environment upon Orbit

Activated Materials

EXOLUTION

- Recovering prelaunch through Orbital data
- Identifying recovery generated debris
- Identifying recovery generated artifacts
- Identifying recent terrestrial debris
TOOLS

- Tapelift
- Witness plates
- Airborne particle counts
- Volumetric air samples
- Temperature and relative humidity data
- Swabs (NVR)
- Direct surface IR for NVR analysis
- Optical Values
- Photographic Documentation

MATERIALS CONTAMINATION CONTROL

SOURCE APPORTIONMENT

- Reference samples
- Analytical characterization
- Assemblage analysis
CONTAMINANT ANALYSIS

REFERENCE SAMPLES

- Photographs of trays
- Fines from known environments
 - Edwards
 - Debris from Shuttle Bay
 - Kennedy Space Center
- Tapelifts from known environments
- Plasticizers from tray materials
- Films from known sources
- Identification tables for knowns
TAPE LIFT SAMPLES - ALL SLIDES IN KIT 01

KIT-01 SLIDE-01 BLANKET ABOVE PURGE DUCT INITIAL SAMPLING STARBOARD.
KIT-01 SLIDE-02 BLANKET ABOVE PURGE DUCT INITIAL SAMPLING PORT.
KIT-01 SLIDE-03 BLANKET BELOW PURGE DUCT INITIAL SAMPLING PORT.
KIT-01 SLIDE-04 SLIDE-01 RESAMPLING AFTER DRYDEN PLB OPERATIONS
KIT-01 SLIDE-05 SLIDE-02 RESAMPLING AFTER DRYDEN PLB OPERATIONS
KIT-01 SLIDE-06 SLIDE-03 RESAMPLING AFTER DRYDEN PLB OPERATIONS
KIT-01 SLIDE-07 BLANKET STARBOARD SIDE NEAR ADAPTER PLATE INITIAL SAMPLING PRE-FERRY FLIGHT.
KIT-01 SLIDE-08 STARBOARD BLANKET CENTRAL SQUARE ONE AWAY FROM PSA LOCKER INITIAL SAMPLING PRE-FERRY FLIGHT
KIT-02 SLIDE-09 PORT SIDE BLANKET NEAR OPTICAL TARGET INITIAL SAMPLING PRE-FERRY FLIGHT
KIT-02 SLIDE-01 SLIDE-08 RESAMPLE AFTER LIFTING OPS AT OPF
KIT-02 SLIDE-08 SLIDE-09 RESAMPLE AFTER LIFTING OPS AT OPF
KIT-02 SLIDE-02 SAMPLE NEAR AFT PSA BLANKET AFTER LIFTING OPS AT OPF.

*SAMPLE INVALID- TOUCHED PURGE DUCT ON WAY UP.

^^^NOT RESAMPLED

ALL DRYDEN OPERATION SAMPLES ARE ON XO 576 BULKHEAD

ALL PRE AND POST FERRY OPERATIONS WERE PERFORMED ON BAY ONE SURFACES.
LDEF
TAPELIFT KIT #9
2-1-90

Tapelifts taken prior to LDEF arrival in SAEF II

SLIDE # AREA SAMPLE
1 Laminar flow bence work surface
2 Tile floor, middle area
3 Concrete floor, middle area
4 Floor of 8’ platform
5 Equipment locker, W wall, S. room
6 Tray hoist
7 Stairs of 12’ stand
8 Tone alarm “push to talk” mike boxes, E. wall
9 Krypton vent pipe, S. wall
10 LN2 tanks for GeL detectors
11 Floor tile in front of observation window, E. wall
12 Video camera and stand near air shower
13 Forklift, battery operated
14 Floor in front of airlock door, N. wall
15 Top of blue box, W. wall, 12” X 18” X 36” approx
16 Top of ladder platform, W. wall
17 Top of check-out unit, W. wall
18 Floor in front of radiation detectors (GeL-l)
19 Floor, 10’ in front of observation window
20 Floor, W. side, LDEF outline
21 Sole of clean room shoe after SAEF II tapelifts

LDEF
TAPELIFT KIT #10
2-9-90

Tapelifts taken in SAEF II DURING IMAX FILMING

SLIDE # AREA SAMPLE
1 Floor, just inside airlock door, W. wall
2 Floor, E. wall near observation window
3 Floor, W. area near air return
4 LATS, between LDEF rows D & E, E. side
5 LATS, LDEF row D, W. side
6 Floor, edge of LATS, W. side
7 Laminar flow bench work surface (bench has been turned off)
8 M&D work station, table top, at door, w. wall
9 Concrete floor, E. wall, near phone
10 Sole of Tom See's clean room shoe, during SAEF II work
11 Work table top, W. wall, near emergency exit
12 Work table, IMAX camera stuff, NW. corner
13 Video camera and stand near air shower
14 Fiber on LDEF equipment box #175B, near air shower
15 Floor of 8’ platform by LDEF boxes, NW. corner
CONTAMINANT ANALYSIS

ANALYSIS

• Begins with sample selection
• Synergism - Key to cost effectiveness
• Samples are cheaper than analysis

MATERIALS CONTAMINATION CONTROL

ANALYTICAL CHARACTERIZATION

• Optical crystallographic data
 - Color
 - Crystal type
 - Refractive indices (real and estimated imaginary)
 - "Texture"

• Morphological data
 - Shape type
 - Size

• Elemental data
CONTAMINANT ANALYSIS (Proposed)

- IR image mapping of LDEF
- Selected "Swab" samples - IR and other
- Selected interface film thickness measurements
- Direct surface IR - ATR
- Selected control areas

CONTAMINANT ANALYSIS

- LDEF Preflight Photos
- Astronauts Flight Photos
- KSC Team
 - Macro Documentary
 - Surface Texture Study
 - Debris Distribution Study
 - "Shadow" Study
 - Discoloration Study
- JSC Team
 - Microvideo
 - Macrovideo
- SDIO Optical Surfaces and Contaminants Study
- IMAX Documentary
- Thermal (IR) Video
CONTAMINATE SOURCE APPORTIONMENT

APPROACH

Witness Samples → CENTRAL FILE AND CONTAMINANT BANK
Tape Lifts
Source Samples

Light Microscopy → Electron Microscopy → IR Analysis → Other

CONTAMINATE SOURCE APPORTIONMENT

Concept
Terrestrial with Orbital Artifacts
Terrestrial without Artifacts
Extraterrestrial Impact and Surface Collection
CONTAMINATION CONTROL

- Minimize Dilution
- Minimize Cost
- Minimize Loss of Data

MATERIALS CONTAMINATION CONTROL

ISSUES

- Avoidance
- Monitoring
- Source apportionment
- Criteria for relief
MATERIALS CONTAMINATION CONTROL

AVOIDANCE

- Collection protocol
- Specimen isolation
- Specimen contamination monitoring
- Specimen inventory control
- People Control

MATERIALS CONTAMINATION CONTROL

MONITORING

- Environments
- Surfaces
- Kits to PIs
CONTAMINATION CONTROL

At Kennedy Space Center

1. Witness Plates
2. Selected Area Tape Lifts
3. Environmental Monitoring
4. Limited Exposure (Cover)
5. Packaging to Ship
6. Electrostatics

CONTAMINATION CONTROL

At Boeing

1. Clean Room Preparation of Samples
 Class 100,000 to Class 10 available
2. Clear View or Close-up Video to Outside
3. Intercom between Clean Room and Outside
4. Sample Collection and Preliminary Analysis Station
CONTAMINATION CONTROL

At P.I. Laboratories

1. Witness Plates
2. Selected Area Tape Lifts

MATERIALS CONTAMINATION CONTROL

Environments

- Controlled
 - Records available for facility
 - Exposure log for hardware (time out of container)
 - Surface samples (tapelifts)

- Uncontrolled
 - Exposure log for hardware (time out of container)
 - Surface samples (tapelifts)
CONTAMINATION CONTROL

SURFACES

- Tapelifts
 - Samples collected regularly
 - Samples processed as required
 - Samples archived with hardware until processed

- NVR Witness Plate or Surface
 - Flushed or wiped at weekly intervals or longer

MATERIALS CONTAMINATION CONTROL

KITS TO PIs

- Low cost
 - Glass slides
 - 3 M magic tape
 - Acetone
 - Beaker
 - Mountant
 - Storage box

- Small storage volume
 - 7" x 10" x 1-1/4" per 100 samples

- Simple procedure
 - Apply tape and lift
 - Soak in acetone
 - Mount in medium

- Available for detailed analysis of single particles
CONTAMINATION CONTROL

- Surface Analysis Complete

- Remaining Tests for Bulk Properties

ISSUES

- Tray handling and specimen isolation
- Documentation of precise origin
- Packaging
- Sample control
- Short term storage
- Archival preservation of samples
MATERIALS SPECIMEN CONTROL

TRAY HANDLING

- Special cart for tray
- Holding fixtures for cover, etc.
- Always two persons
- Removed from container in clean room

SPECIMEN ISOLATION

- Class 10,000 clean room or better
- Two persons, one for documentation
- Specimens labelled and packaged in clean room

MATERIALS SPECIMEN CONTROL

DOCUMENTATION OF ORIGIN

Tray Identifier

Bay A-F
Row J-12
End G-H by nearest vertical row, horizontal row

Specimen Identifier

Level I, II, III, IV, V, etc.
Position 12-36 (short axis from bottom) - (long axis from left) (in inches)
MATERIALS SPECIMEN CONTROL

PACKAGING

• Container selection
• Prelabelled containers
 - At KSC
 - To PIs
• Contingency containers
• Tapelifts
• Vacuum collection

MATERIALS SPECIMEN CONTROL

CONTAINER SELECTION

• Bags (least expensive)
• Boxes (large or heavy object support)
• Vials (small delicate object support)

ACCESSORIES

Styrofoam cushions
Dry nitrogen purge
Exterior supports
MATERIALS SPECIMEN CONTROL

SAMPLE CONTROL

- Single storage facility (temperature controlled)
- Single custodian
- Log-in, log-out procedure
- Indexed file for all samples - hard copy and computer history
LDEF SPECIMEN BOEING ENTRY LOG

<table>
<thead>
<tr>
<th>ITEM #</th>
<th>SAMPLE ID. OR DESCRIPTION</th>
<th>PROC. SEC.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY: ____________________________

Name: ____________________ Organization: ________ Laboratory: ________ Phone #: ________

DATE: ________ TIME: ________ DURATION OF PART EXPOSURE: ________ SIGNATURE: __________

RECEIVED BY: ____________________________

Name: ____________________ Signature: ___________ Date: ________ Time: ________

269
LDEF SPECIMEN REQUEST FORM

<table>
<thead>
<tr>
<th>TRAY #</th>
<th>MODULE</th>
<th>EXPERIMENT</th>
<th>REFERENCES</th>
<th>PROCEDURE #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE AND TIME NEEDED:

<table>
<thead>
<tr>
<th>ITEM #</th>
<th>SAMPLE ID OR DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requestor

<table>
<thead>
<tr>
<th>Event #</th>
<th>Date</th>
<th>Description of Activity</th>
<th>Time of Exposure</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Approval (Print)

<table>
<thead>
<tr>
<th></th>
<th>Signature</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Released By (Print)

<table>
<thead>
<tr>
<th></th>
<th>Signature</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Received By (Print)

<table>
<thead>
<tr>
<th></th>
<th>Signature</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Returned By (Print)

<table>
<thead>
<tr>
<th></th>
<th>Signature</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE DESCRIPTION OF ACTIVITY--TIME OF EXPOSURE

<table>
<thead>
<tr>
<th>Event #</th>
<th>Date</th>
<th>Description of Activity</th>
<th>Time of Exposure</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Received By (Print)

<table>
<thead>
<tr>
<th></th>
<th>Signature</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONE COPY WITH SPECIMENS

ONE COPY IN TRAY FILE

ONE COPY IN 'OUT FILE'

270
LDEF Specimen Disposition Form

<table>
<thead>
<tr>
<th>ITEM #</th>
<th>SAMPLE ID. OR DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Approval (Print)

Signature

Date

Time

Released By (Print)

Signature

Date

Time
MATERIALS SPECIMEN CONTROL

SHORT TERM STORAGE

- Samples bagged to preserve condition
- Stored in single dedicated room or locker
- Stored in controlled environment $72^\circ \pm 7^\circ$
- Single custodial responsibility

CONTAMINANT ANALYSIS

DATA TO BE PROVIDED

- Recovery to deintegration background
- Update reports
- Final report: Prelaunch to Deintegration

CONTAMINANT ANALYSIS

CURRENTLY NOT FUNDED

- Detailed NVR analysis
NASA
LONG DURATION EXPOSURE FACILITY

STORAGE AND ARCHIVAL OF EXTRATERRESTRIAL MATERIAL

MICHAEL E. ZOLENSKY
NASA - JOHNSON SPACE CENTER
MEMBER, M&DSIG

LDEF
MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
FEBRUARY 13 & 14, 1990
PLANETARY MATERIALS CURATION

RESPONSIBILITY: THREE COLLECTIONS PLUS
LUNAR - APOLLO & LUNA
ANTARCTIC METEORITES
COSMIC DUST PARTICLES
RETURNED SPACECRAFT PARTS

PURPOSE:
PRESERVE & PROTECT SAMPLES
CHARACTERIZE SAMPLES - CLASSIFY, DOCUMENT, PUBLICIZE
PROVIDE APPROPRIATE SAMPLES FOR SCIENTIFIC RESEARCH
PROVIDE SUPPORT FOR COMPLEX SAMPLING & CONSORTIA STUDIES
PROVIDE MATERIAL & INFORMATION FOR PUBLIC DISPLAY & EDUCATION

SCOPE: LUNAR
79,200 SAMPLES & SUBSAMPLES
11,000 PETROGRAPHIC THIN SECTIONS
CURRENTLY STUDIED IN 48 US AND 20 FOREIGN LABORATORIES
ABOUT 70 REQUESTS & 800 SAMPLE ALLOCATIONS PER YEAR
RESPONSIBILITY FOR SAMPLES RETURNED AFTER STUDY
LUNAR SAMPLE NEWSLETTER MAILED TO 1100 RECEPIENTS

SCOPE: METEORITES
NEW METEORITES RECEIVED & CHARACTERIZED YEARLY (670 IN 89)
21,800 SAMPLES & SUBSAMPLES
4,060 PETROGRAPHIC THIN SECTIONS
STUDIED IN 133 US AND 66 FOREIGN LABORATORIES
ABOUT 80 REQUESTS AND 700 SAMPLE ALLOCATIONS PER YEAR
ANTARCTIC METEORITE NEWSLETTER MAILED TO 500 RECEPIENTS

SCOPE: COSMIC DUST
137 COLLECTION SURFACES; 1350 CHARACTERIZED PARTICLES
CURRENTLY STUDIED IN 11 US & 9 FOREIGN LABORATORIES
76 REQUESTS SINCE 1982
LARGE AREA COLLECTORS NOW IN USE
PERFORM SOLAR MAX & LDEF PARTICLE CHARACTERIZATION
COSMIC DUST CATALOGS & NEWSLETTERS MAILED TO 300 RECEPIENTS

SCOPE: RETURNED SPACECRAFT PARTS
SOLAR MAX PARTS (DUST ON THERMAL BLANKETS & LOUVERS)
SOLAR MAX DUST SAMPLES DISTRIBUTED TO 6 INVESTIGATORS
LDEF EXPERIMENTS (PROCESSING LABORATORY IS READY)
SECTION V*

PROCEDURES FOR MEASURING IMPACT FEATURES

This section outlines the types of information and measurements, and the procedures for their acquisition for features of interest to the M&D SIG. Information acquired following the procedures outlined below will permit such data to be of significant use and compatible with similar data generated by the M&D SIG laboratories.

1.0 OPTICAL CHARACTERIZATION

1.1 Minimum Characterization -- Minimum characterization consists of acquiring a good quality color photograph of the feature(s) of interest at the earliest possible time.

1.2 Detailed Characterization -- Detailed characterization consists of acquiring various measurement on the feature(s) of interest, in addition to the color photography outlined in Paragraph 1.1. Feature measurement standards are available from the M&D SIG. Contact Michael E. Zolensky [(713) 483-5128] or Thomas H. See [(713) 483-5027] to request temporary loan of impact-feature standards.

1.2.1 Diameter -- Acquire the diameter measurement at the original target/material surface (see Figure 4). Measure and report the major and minor axes of elliptical features.

1.2.2 Depth -- Make the depth measurement from the original target/material surface (see Figure 4) to the bottom (lowest point) of the feature. When measuring the depth of an elliptical feature report the location of the deepest point within the feature; such data could then be utilized to provide directionality of the impactor. If a rim is present, provide a measurement of its height (if possible) from the original target/material surface (see Figure 4).

1.2.3 Halos -- Characterize halos by utilizing oblique lighting. Note halo type (e.g., dark, bright, spalled, etc.) and width. If the feature is non-circular, characterize its variability. A color photograph of such features should be made when ever possible.

1.2.4 Impactor Residue -- Describe impactor residues in detail. Include color, location (e.g., whether residue is within or around the impact feature, or both), size of individual grains or particles, as well as any unusual features of the material (e.g., dendritic pattern, vesicularity, etc.).

2.0 CHEMICAL CHARACTERIZATION

The material of interest for chemical characterization is the impactor or impactor residues. Such materials will generally be molten in appearance and found adhering to the target/substrate. Contamination particles, on the other hand, generally should appear as discrete, loosely adhering particles or grains predominantly located outside an impact feature, although they may be found inside as well.

An issue of extreme importance to the M&D SIG is the amount, type, and composition of any post-recovery contaminants that may have come into contact with, or may now reside on the LDEF spacecraft and/or experiment trays due to recovery, ferrying operations associated with the flight of STS-32, and/or processing of the orbiter or LDEF spacecraft. Thus, the witness plates that fly on the STS-32 mission, those placed in the payload bay during the ferrying operation from Edwards AFB to KSC, those exposed in the Vertical Processing Facility (VPF) and the LDEF Assembly & Transportation System (LATS), as well as any other witness plates that may be utilized during the LDEF processing and deintegration activities will contain vital information to which the M&D SIG must have access. Ideally, the M&D SIG would like to analyze all or a portion of each witness plate. At an absolute minimum, the M&D SIG must obtain the results of the analyses performed on the various witness plates.

2.1 Minimum Characterization -- A minimum chemical characterization consists of qualitative analysis of the impactor residue and/or grains. Report the actual chemical constituents rather than simply referring to the materials as either "meteoritic" or "man-made debris".

2.2 Detailed Characterization -- Detailed chemical characterization consists of quantitative analysis of the impactor residue and/or grains. Extremely long counts may be necessary for small particles (e.g., several thousand seconds at 20 kV) in order to minimize interference from the target/substrate materials. If possible, obtain a set of analytical standards from the M&D SIG by contacting Michael E. Zolensky [(713) 483-5128] or Thomas H. See [(713) 483-5027] to request temporary acquisition of these analytical standards.

2.2.1 Procedures -- Provide a detailed description of the analytical procedures employed in obtaining the analyses (e.g., analytical instrument, count times, accelerating voltage, beam size, standards used with an analysis of each, detector crystals, etc.).

2.2.2 Composition -- Report the weighted average of the composition of the impactor residue(s).

2.2.3 Contamination -- If recognizable particles of contamination are present, report their composition.

Should a PI or institution decide to loan or donate any materials to the M&D SIG, or should questions arise as to techniques and/or procedures listed in this document, please contact the appropriate personnel at the Johnson Space Center in Houston, Texas, or the LDEF Project Office in Hampton, Virginia. A list of M&D SIG contacts can be found in Section IX.
SECTION VII*
LDEF DATABASE

1.0 SAMPLE NUMBERING

The examination of the LDEF spacecraft for features of interest to the M&D SIG will consist of two phases. First, a preliminary examination will take place at KSC while the spacecraft is still intact and during the deintegration activities where features of about 1 mm in size or larger will be identified and documented. During the second phase, individual pieces will be transferred to JSC for microscopic examination in the Facility for the Optical Inspection of Large Surfaces (FOILS). During the secondary examination phase, features of much smaller size may be identified. For some features, the preliminary examination may be the only one possible.

In either case, the locations of the features on LDEF must be documented carefully so that their frequency, size, and distribution may be correlated with the orientation of the spacecraft, its direction of travel, and the type of surface on which the feature occurs.

The LDEF spacecraft is a 14-faced (12 sides and two ends), open-grid structure on which a series of rectangular trays used for mounting experiment hardware are attached. All parts of the spacecraft, including experiment trays, framework, and hardware will be examined for the presence of features of interest. A numbering scheme for the satellite grid has been established, in which components are identified using "Bay" and "Row" numbers (Figure 6). The geometry of the two end pieces is more complex than that of the 12 sides, and the existing numbering scheme provides for identifying only the grids to which experiment trays are affixed. The current scheme may be expanded to include the end grids by assigning row numbers in a clockwise (Earth-facing end) or counter-clockwise (space-facing end) direction.

The examination and disassembly of LDEF will yield three different types of objects which need to be tracked and described.

1.1 Primary Surfaces -- Primary surfaces consist of all space-exposed hardware from the LDEF spacecraft. They may represent an entire experiment tray, a piece of hardware (e.g., screw, clamp, etc.), or a piece of the spacecraft's structure (e.g., frame, support beam, etc.).

The primary-surface ID will consist of four parts. The first two parts indicate the Bay (A-H) and Row (01-25) of the LDEF grid from which the primary surface was removed (see Figures 6 and 7), while the third part represents the spacecraft component. The following codes are proposed for the different components from the LDEF spacecraft:

- E - Experiment Tray
- B - Support Beam
- F - Frame
- C - Clamp
- S - Screw
- J - Joint
G - Grapple Pin

T - Trunion Pin

The fourth part of the primary-surface number represents the individual component number and may be a sequentially assigned number, or it may delineate a specific orientation, as will be the case for the experiment-tray clamps (see below).

In the case that an entire experiment tray is designated to be a primary surface, the component number "00" will be assigned to it (e.g., C04E00). Any pieces of hardware constituting the framework of the spacecraft will be assigned the bay and row numbers of the tray adjacent to them (e.g., C04F00). If two trays share the same pieces of framework, as will be the case in most instances, the hardware to the left and bottom of the tray will be assigned the corresponding bay and row numbers.

All experiment trays are mounted to the LDEF spacecraft by clamps. A series of eight clamps affix the experiment trays on the 12 sides of LDEF, while experiments occupying the two ends are held in place by 12 clamps (Figure 8). In order to document an individual clamp's location around an experiment tray, the numbering scheme illustrated in Figure 8 will be utilized. Thus, if the M&D SIG were to obtain the clamp that occupies position 6 (Figure 8) on the experiment tray from C04 (Figure 7), that clamp would receive primary-surface number C04C06. Should clamps be acquired from configurations other than those depicted in Figure 8, a drawing will be made of the clamp configuration in order to illustrate the clamp's relationship with the experiment tray.

FIGURE 8

EXPERIMENT-TRAY CLAMP NUMBERING SCHEME

<table>
<thead>
<tr>
<th>SIDE TRAYS</th>
<th>END TRAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 8 7 6 5</td>
<td>1 2 3 12 11 10 9 8 7</td>
</tr>
</tbody>
</table>

A01 - F12
BAY/ROW

G01 - H25
BAY/ROW

1.2 **Features** — A *feature* is a hole, crater, or other type of impact structure which is identified on a primary surface. As features are identified, they are assigned a specific number. The numbering sequence for features begins with 1 for each primary surface. The primary-surface number plus the specific number constitute the feature number (e.g., C04E00,8; Figure 7).

1.3 **Cores** — A *core* is a piece which has been removed from a primary surface on which one or more features have been identified and numbered (i.e., pieces removed from a primary surface which have no features identified are assigned component numbers; see **Primary Surfaces**, above). Core numbers are assigned sequentially as they are generated, regardless of the primary surface from which the core was removed. The core number consists of two parts: the "LD" prefix, which is the spacecraft identifier, and a sequential number beginning with 1 (e.g., LD-1; Figure 7).
In summary, two distinct numbering systems are proposed for these objects in order to avoid ambiguity in their curation and among scientists. One system is for the primary surfaces and features, with features being a subset of the primary surfaces; the other is for the cores, or pieces which have been removed from primary surfaces.

Primary surfaces are the objects on which features are identified and from which cores are removed. Features are the objects which will be examined and described by the scientific community and in the FOILS laboratory; cores are the means by which they will be divided and transported. Once features have been identified on a surface, any piece removed, regardless of its size, will be assigned a core number. This procedure ensures that correlation between the primary-surface and feature number is maintained. Since the features will be the basic units of scientific interest, it is proposed that the LDEF grid number and component type be included in their identity so that the number will impart some information about a feature's location on LDEF. Cores will be numbered sequentially as they are produced, regardless of the primary surface from which they are removed.

2.0 DATA FILES

2.1 Primary-Surfaces File -- The primary-surfaces file will contain one record for each primary surface generated. For example, a primary-surface number will be assigned to each experiment tray, screw, clamp, or other spacecraft component which is removable as a separate unit; the shape of the component may be square, rectangular, round, oval, trapezoidal, or irregular. The orientation of the component, relative to the other components removed from the spacecraft, is recorded (the specific nomenclature for the orientation must be determined), as are the longest and shortest dimensions. The substrate is determined by the material of which the surface is made, or the material on the surface of the tray (e.g., gold, aluminum, type of plastic). The location in this column refers to one of the various NASA centers (e.g., LaRC, JSC, etc.). Fields for the original and current masses of the surface (grams) are included for accountability of the gold surfaces (Table 1).

2.2 Features File -- The features file will contain one record for each feature identified. If a feature is removed from the primary surface, the number of the core which contains the feature is recorded. The X,Y-coordinates of the feature, as determined by the scanning process are recorded as fixed units from the (0,0) reference point. Optical observations for each feature are recorded to the extent possible; not all features will be cored, and detailed descriptions regarding sizes, impact types, quantity of material, rims, and halos may not be feasible for all features.

2.3 Cores File -- The cores file will contain one record for each piece or core removed from a primary surface. The principal function of this file is to track the cores with regard to location and container. A field for the mass (grams) of the core is included for accountability of the gold surfaces (Table 1).

2.4 Allocation File -- The allocation file will contain one record for each distribution of a primary surface or core to a PI. The number of the material (primary surface or core), the name of the PI, and the date the material was allocated are recorded.

2.5 Images File -- The images file will contain one record for each image recorded during the preliminary examination of the LDEF spacecraft at KSC, as well as during subsequent processing at JSC. The image type may be a photograph, a digital image, or a video tape. The number will be the NASA photo number, or an assigned unique number or file name which identifies a video tape or digital-
image file. Fields for feature number and core number are included (Table 1) so that cross-referencing with the other LDEF database files may be implemented; however, data will not be recorded in these fields unless such information applies directly to the photograph, image file, or video tape. A field for a more detailed description is also included.

2.6 Notes File -- The notes file will be used for recording comments about trays, primary surfaces, features, and cores. Separate fields for feature and core number are included (Table 1) for cross-referencing. Only those fields relevant to particular parts need be completed (for example, if a note is about a primary surface, only the bay, row, and component fields would be completed). Fields for the name of the person entering the note and the date are included.

2.7 Chemistry File -- The chemistry file will be used to record, for individual features, the elemental composition of projectile residues, surface materials, and possible contaminants. Fields for the feature number, element, the part analyzed, the analyst, and the date of the analysis are included (Table 1). Two separate fields are included for recording the amount of element present. One is for expressing the amount as the weight percent of the element, while the other is for expressing the amount in parts per million. Data in the field for the part analyzed is restricted to specific keywords, such as "IMPACTOR", "SURFACE", or "CONTAMINATION", so that records pertaining to each of these materials may be collected and sorted by element for calculation of elemental composition. The file may contain many records for some elements for a feature and none for others.

Table 1. LDEF Database File Interaction

<table>
<thead>
<tr>
<th>PRIMARY SURFACE</th>
<th>FEATURES</th>
<th>CORES</th>
<th>ALLOCATION</th>
<th>IMAGES</th>
<th>NOTES</th>
<th>CHEMISTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface ID</td>
<td>Feature #</td>
<td>Surface ID</td>
<td>Feature #</td>
<td>Surface ID</td>
<td>Feature #</td>
<td>Surface ID</td>
</tr>
<tr>
<td>Bay</td>
<td>Surface ID</td>
<td>Bay</td>
<td>Bay</td>
<td>Bay</td>
<td>Bay</td>
<td>Bay</td>
</tr>
<tr>
<td>Row</td>
<td>Surface ID</td>
<td>Row</td>
<td>Row</td>
<td>Row</td>
<td>Row</td>
<td>Row</td>
</tr>
<tr>
<td>Component</td>
<td>Surface ID</td>
<td>Component</td>
<td>Component</td>
<td>Component</td>
<td>Component</td>
<td>Component</td>
</tr>
<tr>
<td>Compon. #</td>
<td>Surface ID</td>
<td>Compon. #</td>
<td>Compon. #</td>
<td>Compon. #</td>
<td>Compon. #</td>
<td>Compon. #</td>
</tr>
<tr>
<td>Specific #</td>
<td>Surface ID</td>
<td>Specific #</td>
<td>Specific #</td>
<td>Specific #</td>
<td>Specific #</td>
<td>Specific #</td>
</tr>
<tr>
<td>Core #</td>
<td>Surface ID</td>
<td>Core #</td>
<td>Core #</td>
<td>Core #</td>
<td>Core #</td>
<td>Core #</td>
</tr>
<tr>
<td>Coordinates</td>
<td>Surface ID</td>
<td>Coordinates</td>
<td>Coordinates</td>
<td>Coordinates</td>
<td>Coordinates</td>
<td>Coordinates</td>
</tr>
<tr>
<td>X</td>
<td>Surface ID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Surface ID</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Short Axis</td>
<td>Surface ID</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
</tr>
<tr>
<td>Substrate</td>
<td>Surface ID</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
</tr>
<tr>
<td>Location</td>
<td>Surface ID</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>Shape</td>
<td>Surface ID</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Orientation</td>
<td>Surface ID</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
</tr>
<tr>
<td>Short Axis</td>
<td>Surface ID</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
</tr>
<tr>
<td>Substrate</td>
<td>Surface ID</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
</tr>
<tr>
<td>Location</td>
<td>Surface ID</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>Shape</td>
<td>Surface ID</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Orientation</td>
<td>Surface ID</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
</tr>
<tr>
<td>Short Axis</td>
<td>Surface ID</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
</tr>
<tr>
<td>Substrate</td>
<td>Surface ID</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
</tr>
<tr>
<td>Location</td>
<td>Surface ID</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>Shape</td>
<td>Surface ID</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Orientation</td>
<td>Surface ID</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
</tr>
<tr>
<td>Short Axis</td>
<td>Surface ID</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
</tr>
<tr>
<td>Substrate</td>
<td>Surface ID</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
</tr>
<tr>
<td>Location</td>
<td>Surface ID</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>Shape</td>
<td>Surface ID</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Orientation</td>
<td>Surface ID</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
</tr>
<tr>
<td>Short Axis</td>
<td>Surface ID</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
</tr>
<tr>
<td>Substrate</td>
<td>Surface ID</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
</tr>
<tr>
<td>Location</td>
<td>Surface ID</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>Shape</td>
<td>Surface ID</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Orientation</td>
<td>Surface ID</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
</tr>
<tr>
<td>Short Axis</td>
<td>Surface ID</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
</tr>
<tr>
<td>Substrate</td>
<td>Surface ID</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
<td>Substrate</td>
</tr>
<tr>
<td>Location</td>
<td>Surface ID</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>Shape</td>
<td>Surface ID</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Orientation</td>
<td>Surface ID</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
<td>Orientation</td>
</tr>
<tr>
<td>Short Axis</td>
<td>Surface ID</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
<td>Short Axis</td>
</tr>
</tbody>
</table>
3.0 SOFTWARE REQUIREMENTS

The following are the requirements which should be considered in order to implement the proposed database system:

3.1 Multi-User Access -- Although the number of persons accessing the database will be limited initially, more than one person should be able to access the database at one time for both updating and reporting purposes. Record-locking should be used in the event that several people attempt to access the same record for writing at the same time.

3.2 Menus -- Access to the database should be configured so that updating the files and generating reports is accomplished through menus, which permit the user to have little to no knowledge of how the database software actually operates.

3.3 Multi-File Access -- The proposed design divides the data into a number of different files, with redundancy only in the identifiers for the different types of objects. The database software must have the capability of synthesizing information from one or more of these files into a single report (for example, one requirement might be to list all the features in the custody of a PI, even though locations of samples are recorded for core numbers only).

3.4 Graphics -- The data must be able to be selected and sorted to produce a variety of plots for data recording, analysis, and presentation. For example, a plot of the features on a primary surface based on the X,Y-coordinates recorded by the FOILS scanner provides a means for correlating core and feature numbers. Plots of size distribution versus frequency of impact were requirements resulting from studies of the Solar Maximum spacecraft; similar plots will be necessary for LDEF.

3.5 Weight Balancing -- If weight accountability for gold surfaces is a requirement, the software must be capable of prohibiting entry of updates for these surfaces until masses of the primary surface and cores removed from that surface total the same before and after the transaction.

3.6 Expandability -- In order to meet new requirements as they are identified, the database must be capable of being expanded or adapted, either by means of additional data files or by reformatting of existing ones.

3.7 Commonality -- The data must be usable by different types of computers and applications (e.g., mainframes, PCs, MAC's).

3.8 Access -- The database will be accessible via SPAN. Details on the procedures for gaining access to the LDEF M&D SIG database can be obtained by contacting C.B. Dardano, T.H. See, or M.E. Zolensky, at JSC.

Should a PI or institution decide to loan or donate any materials to the M&D SIG, or should questions arise as to techniques and/or procedures listed in this document, please contact the appropriate personnel at the Johnson Space Center in Houston, Texas, or the LDEF Project Office in Hampton, Virginia. A list of M&D SIG contacts can be found in Section IX.
LONG DURATION EXPOSURE FACILITY

WORKSHOP AGENDA

LDEF
MATERIALS DATA ANALYSIS WORKSHOP

NASA - KENNEDY SPACE CENTER
BUILDING M7-351, TRAINING AUDITORIUM

FEBRUARY 13 & 14, 1990
LDEF
MATERIALS DATA ANALYSIS WORKSHOP
NASA - KENNEDY SPACE CENTER
BUILDING M7-351, AUDITORIUM
FEBRUARY 13 & 14, 1990

CO-CHAIRMAN: MR. BLAND A STEIN, CHAIRMAN LDEF MSIG, NASA-LARC
CO-CHAIRMAN: DR. PHILIP R. YOUNG, NASA-LARC

AGENDA
FEBRUARY 13, 1990
8:00 A.M. Registration

Session 1 - LDEF Data Analysis Responsibilities and Plans
8:30 A.M. Workshop Introduction B. Stein, Workshop Co-Chairman
8:45 A.M. NASA Headquarters Perspective R. Hayduk, LDEF Coordinator, NASA Headquarters
8:55 A.M. LDEF Data Analysis Project Office Overview D. Tenney, Chief, Materials Division, NASA-LaRC
9:15 A.M. LDEF Project Operations B. Lightner, LDEF Manager
9:30 A.M. Supporting Data Group Plans:
- Environments
- Orbit and Orientation W. Kinard, LDEF Chief Scientist

W. Kinard, LDEF Chief Scientist
February 13, 1990

Session 1 - LDEF Data Analysis Responsibilities and Plans (continued)

10:00 A.M. Special Investigation Group Plans:
- Meteoroid and Debris SIG W. Kinard, Chairman, M&DSIG
10:50 A.M. Storage and Archival of Extraterrestrial Material M. Zolensky, NASA-JSC
11:00 A.M. Supporting Data Group Plans (Continued):
- Spacecraft Thermal W. Berrios, NASA-LaRC
11:45 A.M. Lunch

1:00 P.M. Special Investigation Group Plans (continued):
- Systems SIG J. Mason, Chairman, SSIG
- Materials SIG B. Stein, Chairman, MSIG
- Induced Radiation SIG T. Parnell, Chairman, IRSIG

4:00 P.M. Overview of Principal Investigator Plans J. Jones, LDEF Science Manager
4:40 P.M. SDIO Overview W. Ward, WRDC/MLBT

February 14, 1990

Session 2 - Materials Data Analysis Methodology Discussions

8:30 A.M. Overview B. Stein, NASA-LaRC
8:45 A.M. Discussion Topics and Leaders:
- Polymeric Materials Characterization P. Young, NASA-LaRC
- Surface Chemistry J. Wightman, Virginia Tech
- Atomic Oxygen B. Banks, NASA-LeRC

11:45 A.M. Lunch
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 3 - Materials Analysis, Data Base, and Specimen Preservation</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 P.M.</td>
<td>MSIG Materials Analysis</td>
<td>G. Piplin, Boeing Aerospace</td>
</tr>
<tr>
<td>1:40 P.M.</td>
<td>MSIG/MAFTIS Data Base</td>
<td>J. Davis, NASA-MSFC</td>
</tr>
<tr>
<td>2:20 P.M.</td>
<td>Materials Specimen Preservation and Contamination Avoidance</td>
<td>R. Crutcher, Boeing Aerospace</td>
</tr>
<tr>
<td>3:20 P.M.</td>
<td>General Discussion</td>
<td>All participants</td>
</tr>
<tr>
<td>4:00 P.M.</td>
<td></td>
<td>Adjourn</td>
</tr>
<tr>
<td>NAME</td>
<td>COMPANY OR AFFILIATION</td>
<td>ADDRESS</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ADAMS, JAMES H., JR.</td>
<td>NAVAL RESEARCH LAB</td>
<td>1450 S. ROLLING RD.</td>
</tr>
<tr>
<td>AHEARN, JOHN S.</td>
<td>MARTIN MARIETTA</td>
<td></td>
</tr>
<tr>
<td>ALBRECHT, RICHARD</td>
<td>WRDC</td>
<td></td>
</tr>
<tr>
<td>ALET, IRENEE</td>
<td>CNES</td>
<td></td>
</tr>
<tr>
<td>ALLARIO, FRANK</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>ALLBROOKS, MARTHA</td>
<td>S-CUBED</td>
<td></td>
</tr>
<tr>
<td>ALLEN, THOMAS H.</td>
<td>OCLI</td>
<td>2789 NORTHPOINT PARKWAY</td>
</tr>
<tr>
<td>ALSTON, JIM</td>
<td>GEORGE W. PARK SEED COMPANY</td>
<td>COKEBURY RD, HW 254 N</td>
</tr>
<tr>
<td>ARMSTRONG, TONY</td>
<td>SAIC</td>
<td></td>
</tr>
<tr>
<td>BABEL, HANK</td>
<td>MCDONNELL DOUGLAS</td>
<td>5301 BOLSA AVENUE</td>
</tr>
<tr>
<td>BANKS, BRUCE</td>
<td>NASA LEWIS RESEARCH CENTER</td>
<td>21000 BROOK PARK RD</td>
</tr>
<tr>
<td>BARENGLANTZ, JACK</td>
<td>JET PROPULSION LAB</td>
<td>4800 OAK GROVE</td>
</tr>
<tr>
<td>BEAUCHAMP, M.T.</td>
<td>OCLI</td>
<td>2789 NORTH POINT PKWY</td>
</tr>
<tr>
<td>BEAULJEAN, RUDOLPH</td>
<td>UNIVERSITY OF KIEL</td>
<td>2300 KIEL</td>
</tr>
<tr>
<td>BENNER, KENNETH</td>
<td>LOCKEED MISSILE & SPACE CO</td>
<td>P.O. BOX 3504</td>
</tr>
<tr>
<td>BERROS, WILLIAM M.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>BERSCH, CHARLES</td>
<td>IDA/SDIO</td>
<td>1800 N. BEAUREGARD</td>
</tr>
<tr>
<td>BJORKMAN, MICHAEL D.</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>P.O. BOX 1470</td>
</tr>
<tr>
<td>BLANKENSHIP, CHARLES P.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>BLOOM, B.</td>
<td>FAIRCHILD SPACE CO</td>
<td></td>
</tr>
<tr>
<td>BLUE, M. DONALD</td>
<td>GEORGIA TECH</td>
<td></td>
</tr>
<tr>
<td>BLUMENTHAL, JACOB</td>
<td>TRW</td>
<td>1 SPACE PARK</td>
</tr>
<tr>
<td>BOURASSA, ROGER</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>P.O. BOX 3999 M5 2E-01</td>
</tr>
<tr>
<td>BRADWELL, D.J.</td>
<td>BRITISH AEROSPACE</td>
<td>ARGYLE WAY</td>
</tr>
<tr>
<td>BRENNAN, PAT</td>
<td>UAO CORP</td>
<td></td>
</tr>
<tr>
<td>BRINKER, DAVID</td>
<td>NASA LEWIS RESEARCH CENTER</td>
<td>21000 BROOK PARK RD</td>
</tr>
<tr>
<td>BRINZA, DAVID E.</td>
<td>JET PROPULSION LAB</td>
<td>4800 OAK GROVE DR</td>
</tr>
<tr>
<td>CARLIN, PATRICK</td>
<td>WRDC/MLB</td>
<td>M/S 408</td>
</tr>
<tr>
<td>CARTER, DAVID J.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>2350 E. EL SEGUNDO BLVD</td>
</tr>
<tr>
<td>CHOBOTOV, O.</td>
<td>AEROSPACE CORPORATION</td>
<td>M/S E 473</td>
</tr>
<tr>
<td>CLARK, NATHONUS D.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>MAIL STOP 473</td>
</tr>
<tr>
<td>CLARK, LENWOOD</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>HAMPTON, VA</td>
</tr>
<tr>
<td>CRUTCHER, RUSSELL</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>P.O. BOX 3999, M5 8J-65</td>
</tr>
<tr>
<td>DAVIS, JOHN M.</td>
<td>NASA MARSHALL SPACE FLIGHT CENTER</td>
<td>M/S EH02</td>
</tr>
<tr>
<td>DONOVAN, TERRY M.</td>
<td>NAVAL WEAPONS CENTER</td>
<td>CHINA LAKE, CA</td>
</tr>
<tr>
<td>DUBER, RUSSEL</td>
<td>USAF ACADEMY</td>
<td></td>
</tr>
<tr>
<td>DURSCH, HARRY</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>P.O. BOX 3999</td>
</tr>
<tr>
<td>EDELMAN, JOEL</td>
<td>EER SYSTEMS</td>
<td>10280 AEROSPACE RD</td>
</tr>
<tr>
<td>EDWARDS, ANDREW</td>
<td>NASA HEADQUARTERS</td>
<td></td>
</tr>
<tr>
<td>EICHELMAN, GAIL</td>
<td>WRDC/MLB</td>
<td></td>
</tr>
<tr>
<td>EJSTAVELLO, A.</td>
<td>WRDC/MLB</td>
<td></td>
</tr>
<tr>
<td>FANTONI, LOUIS</td>
<td>NASA GODDARD SPACE FLIGHT CENTER</td>
<td>7324-MDAC</td>
</tr>
<tr>
<td>FISHER, GERALD</td>
<td>NASA MARSHALL SPACEFLIGHT CENTER</td>
<td></td>
</tr>
<tr>
<td>FISHMAN, LAANA</td>
<td>AEROSPACE CORPORATION</td>
<td>P.O. BOX 92957</td>
</tr>
<tr>
<td>FITZKEE, ARCHIE</td>
<td>NASA GODDARD SPACE FLIGHT CENTER</td>
<td>GREENBELT RD</td>
</tr>
<tr>
<td>FRAISSE, DIDIER</td>
<td>MATRA</td>
<td></td>
</tr>
<tr>
<td>FREDERICK, A. ROBB</td>
<td>GL - PHP</td>
<td></td>
</tr>
<tr>
<td>FUGENE, FREDRIC</td>
<td>DDS/DSD THE PENTAGON</td>
<td></td>
</tr>
<tr>
<td>GALLENTE, DONAL O.</td>
<td>GEORGIA TECH</td>
<td></td>
</tr>
<tr>
<td>GARIBOTTI, JOSEPH F.</td>
<td>KETEMA INC.</td>
<td>3611 S. HARBOR BLVD. SUITE 225</td>
</tr>
<tr>
<td>NAME</td>
<td>COMPANY OR AFFILIATION</td>
<td>ADDRESS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>GARNER, KYLE</td>
<td>LESCHOU</td>
<td>P.O. BOX 98</td>
</tr>
<tr>
<td>GARRELL, KATHLEEN</td>
<td>HERCULES</td>
<td>P.O. BOX 3999</td>
</tr>
<tr>
<td>GERBER, JAMES</td>
<td>WRCAM</td>
<td>6535 S. DAYTON</td>
</tr>
<tr>
<td>GOLDEN, JOHN L.</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>2620 WESTMINSTER BLVD.</td>
</tr>
<tr>
<td>GORDON, TIM</td>
<td>SCIENCE AND ENGINEERING ASSOCIATIONS</td>
<td>1110 W. HOLLYVALE STREET</td>
</tr>
<tr>
<td>GOWDEY, JOE C.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>90740-7644</td>
</tr>
<tr>
<td>GREENBERG, H.S.</td>
<td>ROCKWELL INTERNATIONAL SED</td>
<td>1110 W. HOLLYVALE STREET</td>
</tr>
<tr>
<td>GREENBERG, STANLEY A.</td>
<td>AEROGENT ELECTROSYSTEMS</td>
<td>UNIVERSITY OF ALABAMA</td>
</tr>
<tr>
<td>GREGORY, JOHN</td>
<td>MCDONNELL DOUGLAS ELECTRONICS SYSTEMS</td>
<td>P.O. BOX 4516</td>
</tr>
<tr>
<td>GROTE, MICHAEL</td>
<td>AEROSPACE CORPORATION</td>
<td>P.O. BOX 92597</td>
</tr>
<tr>
<td>GYVETTY, SANDRA</td>
<td>WRDC/MLB</td>
<td>4925 DUFFERN STREET</td>
</tr>
<tr>
<td>HAAS, T.W.</td>
<td>UNIVERSITY OF TORONTO</td>
<td>OAK GROVE DRIVE</td>
</tr>
<tr>
<td>HANSEN, JORN</td>
<td>JET PROPULSION LAB</td>
<td>1810 N.W. 6TH STREET</td>
</tr>
<tr>
<td>HARTMAYER, RON</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>GAINESVILLE, FL</td>
</tr>
<tr>
<td>HARVEY, GALE</td>
<td>UNIVERSITY OF FLORIDA</td>
<td>ROCHESTER, NY</td>
</tr>
<tr>
<td>HASKINS, PENNY</td>
<td>EASTMAN KODAK COMPANY</td>
<td>M.S. A08-35</td>
</tr>
<tr>
<td>HAVENSKY, KEITH</td>
<td>UNIVERSITY OF READING</td>
<td>1724 SHEFFIELD AVENUE</td>
</tr>
<tr>
<td>HAWKINS, G.J.</td>
<td>NASA HEADQUARTERS</td>
<td>M.S. A08-35</td>
</tr>
<tr>
<td>HEYER, RON</td>
<td>THE EPPLEY LABORATORY</td>
<td>P.O. BOX 3999</td>
</tr>
<tr>
<td>HICKLEY, JOHN R.</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>101 N.W. 6TH STREET</td>
</tr>
<tr>
<td>HILL, SYLVESTER</td>
<td>INSTITUTE FOR SPACE SCIENCE</td>
<td>1201 N.W. 6TH STREET</td>
</tr>
<tr>
<td>HIRKO, ROBERT J.</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>MCDONNELL DOUGLAS</td>
</tr>
<tr>
<td>HOGGATT, JOHN T.</td>
<td>AEROSPACE CORPORATION</td>
<td>P.O. BOX 518</td>
</tr>
<tr>
<td>HOLBEN, JIM</td>
<td>READING UNIVERSITY</td>
<td>3 EARLY GATE, WHITEKNIGHTS</td>
</tr>
<tr>
<td>HUNNEMAN, R.</td>
<td>UNIVERSITY OF DAYTON RESEARCH INSTITUTE</td>
<td>TOULOUSE, FRANCE</td>
</tr>
<tr>
<td>HURLEY, CHARLES J.</td>
<td>C.N.E.S.</td>
<td>WRC/MLB</td>
</tr>
<tr>
<td>JAMIN-CHANGEART, FRANCIS</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>CODE 725</td>
</tr>
<tr>
<td>JONES, MICHELE D.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>M/S A08-35</td>
</tr>
<tr>
<td>KASSEL, PHILIP</td>
<td>GODDARD SPACE FLIGHT CENTER</td>
<td>P.O. BOX 3999</td>
</tr>
<tr>
<td>KASZUBINSKI, LEONARD</td>
<td>GRUMMAN RESEARCH</td>
<td>101 N.W. 6TH STREET</td>
</tr>
<tr>
<td>KAUER, LONNY</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>3251 HANOVER STREET</td>
</tr>
<tr>
<td>KESSELMAKER, MARTIN</td>
<td>NASA JOHNSON SPACE CENTER</td>
<td>NASA HEADQUARTERS</td>
</tr>
<tr>
<td>KINARD, WILLIAM H.</td>
<td>VANDERBILT UNIVERSITY</td>
<td>P.O. BOX 9257 M 4-913</td>
</tr>
<tr>
<td>KINSEY, DON</td>
<td>AEROSPACE CORPORATION</td>
<td>P.O. BOX 229</td>
</tr>
<tr>
<td>KNIGHT, FRANK</td>
<td>ESTEC</td>
<td>3251 HANOVER STREET</td>
</tr>
<tr>
<td>LEVADOU, FRANCOIS</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td>A0171</td>
</tr>
<tr>
<td>LIGHTNER, BURT</td>
<td>NASA MARSHALL SPACE FLIGHT CENTER</td>
<td>PALO ALTO, CA</td>
</tr>
<tr>
<td>LINTON, ROGER C.</td>
<td>LOCKHEED PALO ALTO</td>
<td>94304</td>
</tr>
<tr>
<td>LITTAUER, E.</td>
<td>NASA HEADQUARTERS</td>
<td>RESTON, VA</td>
</tr>
<tr>
<td>LITTLE, SALLY</td>
<td>NASA HEADQUARTERS</td>
<td>3251 HANOVER STREET</td>
</tr>
<tr>
<td>LORIA, JOHN</td>
<td>LESCHOU</td>
<td>RM 1E49</td>
</tr>
<tr>
<td>LUNELL, VICTOR</td>
<td>DOYSNO THE PENTAGON</td>
<td>WASHINGTON, D.C.</td>
</tr>
<tr>
<td>NAME</td>
<td>COMPANY OR AFFILIATION</td>
<td>ADDRESS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>McIntosh, Roy</td>
<td>NASA Goddard Space Flight Center</td>
<td>2560 E. El Segundo Blvd.</td>
</tr>
<tr>
<td>Meehneke, M.J.</td>
<td>Aerospace Corporation</td>
<td></td>
</tr>
<tr>
<td>Migliorato, Charles J.</td>
<td>Air Force Weapons Lab KAFB</td>
<td></td>
</tr>
<tr>
<td>Miller, Emmett</td>
<td>Boeing Aerospace & Electronics</td>
<td>P.O. Box 3999, M/S 88-23</td>
</tr>
<tr>
<td>Minges, Merrill</td>
<td>Air Force Materials Lab, WADC/MLB</td>
<td></td>
</tr>
<tr>
<td>Misra, M.S.</td>
<td>Martin Marietta Astronautics</td>
<td></td>
</tr>
<tr>
<td>Moacanin, Javan</td>
<td>Jet Propulsion Lab</td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td>Murad, Edmond</td>
<td>Air Force Geophysics Laboratory</td>
<td>901 Elm Grove Road</td>
</tr>
<tr>
<td>Muto, Arthur W.</td>
<td>Eastman Kodak Company</td>
<td></td>
</tr>
<tr>
<td>Naumann, R.J.</td>
<td>NASA Marshall Space Flight Center</td>
<td></td>
</tr>
<tr>
<td>O'Sullivan, Denis</td>
<td>Dublin Institute for Advanced Studies</td>
<td></td>
</tr>
<tr>
<td>O'Neill, Stan</td>
<td>NASA Goddard Space Flight Center</td>
<td>P.O. Box 240002</td>
</tr>
<tr>
<td>Olsen, Gregory D.</td>
<td>Boeing Aerospace & Electronics</td>
<td></td>
</tr>
<tr>
<td>Pallou, A.</td>
<td>CERT- DERTS</td>
<td></td>
</tr>
<tr>
<td>Parmell, Thomas A.</td>
<td>NASA Marshall Space Flight Center</td>
<td>2800 8th Avenue, Suite 351</td>
</tr>
<tr>
<td>Perry, Art</td>
<td>American Space Technology</td>
<td>CODE 730</td>
</tr>
<tr>
<td>Picardy, Rodney B.</td>
<td>NASA Goddard Space Flight Center</td>
<td>MBB-D-3021 OTTOBRUNN</td>
</tr>
<tr>
<td>Powers, Ed</td>
<td>Boeing Aerospace & Electronics</td>
<td>2789 North Point Pkwy.</td>
</tr>
<tr>
<td>Preuss, Ludwig</td>
<td>OCL</td>
<td>WRIGHT PATTERSON AIR FORCE BASE</td>
</tr>
<tr>
<td>Rancourt, James</td>
<td>Hughes DOS</td>
<td>100 WOOSTER HGS. ROAD</td>
</tr>
<tr>
<td>Reinhardt, K.</td>
<td>NASA Langley Research Center</td>
<td>231 LEACH CENTER</td>
</tr>
<tr>
<td>Richmond, J.</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>P.O. Box 3999 M/S 88-93</td>
</tr>
<tr>
<td>Robertson, J. B.</td>
<td>NASA Goddard Space Flight Center</td>
<td>2350 E. El Segundo Blvd.</td>
</tr>
<tr>
<td>Roper, Bob</td>
<td>ARMY MATERIALS TECHNOLOGY LABORATORY</td>
<td>2350 E. El Segundo Blvd.</td>
</tr>
<tr>
<td>Rose, Frank M.</td>
<td>AFSC Weapons Laboratory</td>
<td></td>
</tr>
<tr>
<td>Sagalyn, Paul L.</td>
<td>Lockheed at NASA Langley</td>
<td></td>
</tr>
<tr>
<td>Sanchez, Anthony D.</td>
<td>Aerospace Corporation</td>
<td></td>
</tr>
<tr>
<td>Sarpiere, T.R.</td>
<td>Aerospace Institute</td>
<td></td>
</tr>
<tr>
<td>Scheiber, Jack A.</td>
<td>Boeing Aerospace & Electronics</td>
<td></td>
</tr>
<tr>
<td>Schneider, Eberhard</td>
<td>NASA Langley Research Center</td>
<td></td>
</tr>
<tr>
<td>Scholz, Arthur</td>
<td>CALDERON, John J.</td>
<td></td>
</tr>
<tr>
<td>Schuler, Andrew C.</td>
<td>Aerospace Corporation</td>
<td></td>
</tr>
<tr>
<td>Seeley, John</td>
<td>PLANNING, AFFA/CX</td>
<td></td>
</tr>
<tr>
<td>Shalar, David</td>
<td>NASA Marshall Space Flight Center</td>
<td></td>
</tr>
<tr>
<td>Skomar, Don</td>
<td>NASA Langley Research Center</td>
<td></td>
</tr>
<tr>
<td>Slemp, Wayne S.</td>
<td>NASA Langley Research Center</td>
<td></td>
</tr>
<tr>
<td>Smith, Bryan K.</td>
<td>NASA Langley Research Center</td>
<td></td>
</tr>
<tr>
<td>Snead, C.I.</td>
<td>NASA Langley Research Center</td>
<td></td>
</tr>
<tr>
<td>Steck, Bland A.</td>
<td>NASA Langley Research Center</td>
<td></td>
</tr>
<tr>
<td>Stegmeier, Mike</td>
<td>Aerospace Corporation</td>
<td></td>
</tr>
<tr>
<td>Stell, Dr. Kent</td>
<td>HEADQUARTERS AFC/AFC</td>
<td></td>
</tr>
<tr>
<td>Stowell, Dr. Kent</td>
<td>W. J. Schafer Associates</td>
<td></td>
</tr>
<tr>
<td>Straw, David C.</td>
<td>ARLINGTON, VA</td>
<td></td>
</tr>
<tr>
<td>Striganac, Thomas</td>
<td>Texas A & M University</td>
<td></td>
</tr>
<tr>
<td>Sutherland, Scott S.</td>
<td>Eastman Kodak Company</td>
<td></td>
</tr>
<tr>
<td>Sutton, Gene</td>
<td>LOCKHEED MISSILE AND SPACE LAB</td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td>COMPANY OR AFFILIATION</td>
<td>ADDRESS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>TAYLOR, EDWARD W.</td>
<td>WJE/NTCSO</td>
<td></td>
</tr>
<tr>
<td>TAYLOR, LEON V.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>TEECHMAN, LOUISE A.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>TENNEY, DARREL R.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>TENNYSON, ROD</td>
<td>UNIVERSITY OF TORONTO</td>
<td>4925 DUFFERIN STREET</td>
</tr>
<tr>
<td>THOMAS, NORMAN</td>
<td>LAWRENCE LIVERMORE NAT. LAB</td>
<td>L-350 P.O. BOX 908</td>
</tr>
<tr>
<td>THOMPSON, ALEX</td>
<td>DUBLIN INSTITUTE FOR ADVANCED STUDIES</td>
<td>G002 SPACE FLIGHT CENTER</td>
</tr>
<tr>
<td>TRIOLO, JACK</td>
<td>GODDARD SPACE FLIGHT CENTER</td>
<td>CODE 682</td>
</tr>
<tr>
<td>TROMBKA, JACOB</td>
<td>GODDARD SPACE FLIGHT CENTER</td>
<td></td>
</tr>
<tr>
<td>TRUMBLE, TERRY</td>
<td>WRDC/PO C2</td>
<td></td>
</tr>
<tr>
<td>TURNER, BOB</td>
<td>W. J. SCHAFFER ASSOCIATES</td>
<td></td>
</tr>
<tr>
<td>TURNER, R.F.</td>
<td>RUTHERFORD APPLETON LAB</td>
<td></td>
</tr>
<tr>
<td>TULYA, ALLAN J.</td>
<td>NAVAL RESEARCH LABORATORY</td>
<td></td>
</tr>
<tr>
<td>VENABLES, JOHN</td>
<td>MARTIN MARIETTA LABS</td>
<td></td>
</tr>
<tr>
<td>VILLAMONT, JOHN</td>
<td>EASTMAN KODAK COMPANY</td>
<td>1450 S. ROLLING ROAD</td>
</tr>
<tr>
<td>VYHNAI, RICHARD F.</td>
<td>ROCKWELL INTERNATIONAL</td>
<td></td>
</tr>
<tr>
<td>WADE, DONALD C.</td>
<td>NASA JOHNSON SPACE CENTER</td>
<td></td>
</tr>
<tr>
<td>WADSWORTH, GAYLE B.</td>
<td>BOEING AEROSPACE & ELECTRONICS</td>
<td>P.O. BOX 1470 M/S JY34</td>
</tr>
<tr>
<td>WARD, WAYNE E.</td>
<td>WRDC/MLBT</td>
<td></td>
</tr>
<tr>
<td>WATTS, JOHN</td>
<td>NASA MARSHALL SPACE FLIGHT CENTER</td>
<td>1810 N.W. 6TH STREET</td>
</tr>
<tr>
<td>WIEBERG, JERRY</td>
<td>INSTITUTE FOR SPACE SCIENCE</td>
<td></td>
</tr>
<tr>
<td>WHITAKER, ANN</td>
<td>NASA MARSHALL SPACE FLIGHT CENTER</td>
<td></td>
</tr>
<tr>
<td>WHITESIDE, JAMES</td>
<td>GRUMMAN CORPORATION</td>
<td></td>
</tr>
<tr>
<td>WIGHTMAN, J.</td>
<td>VIRGINIA TECH., CHEMICAL DEPT.</td>
<td>406 MEADOW VIEW DRIVE</td>
</tr>
<tr>
<td>WILKES, DON</td>
<td>AZ TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>WILSON, BRENTA K.</td>
<td>W.J. SCHAFFER ASSOCIATES</td>
<td></td>
</tr>
<tr>
<td>WOLF, JESS</td>
<td>AIRCO COATING TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>WORTMAN, J. J.</td>
<td>NC STATE UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>YOUNG, JAMES</td>
<td>TRW</td>
<td></td>
</tr>
<tr>
<td>YOUNG, ANSIE T.</td>
<td>DOD/SDIO/TNK THE PENTAGON</td>
<td></td>
</tr>
<tr>
<td>YOUNG, PHILIP R.</td>
<td>NASA LANGLEY RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>ZWEINER, JAMES M.</td>
<td>NASA MARSHALL SPACE FLIGHT CENTER</td>
<td></td>
</tr>
</tbody>
</table>
Abstract

The 5-year, 10-month flight of the Long Duration Exposure Facility (LDEF) greatly enhanced the potential value of most LDEF materials, compared to the original 1-year flight plan. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group in early 1989 to address the expanded opportunities available in the LDEF structure and on experimental trays, so that the value of all LDEF materials to current and future space missions would be assessed and documented. The LDEF Materials Data Analysis Workshop served as one step toward the realization of that responsibility and ran concurrently with activities surrounding the successful return of the spacecraft to the NASA Kennedy Space Center. This document is a compilation of visual aids utilized by speakers at the workshop.

Session 1 summarized current information on analysis responsibilities and plans and was aimed at updating the workshop attendees: the LDEF Advisory Committee, Principle Investigators, Special Investigation Group Members, and others involved in LDEF analyses or management. Sessions 2 and 3 addressed materials data analysis methodology, specimen preparation, shipment and archival, and initial plans for the LDEF Materials Data Base. A complementary objective of the workshop was to stimulate interest and awareness of opportunities to vastly expand the overall data base by considering the entire spacecraft as a materials experiment.