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Abstract

Damage states in laminated composites were studied by considering the model problem of a
Jaminated beam subjected to three-point bending. A combination of experimental and theore-
tical research techniques was used to correlate the experimental resuits with the analytical
stress distributions. The analytical solution procedure was based on the stress formulation ap-
proach of the mathematical theory of elasticity. The solution procedure is capable of calculating
the ply-level stresses and beam displacements for any laminated beam of finite length using the
generalized plane deformation or plane stress state assumption. The beam lamination can be
any arbitrary combination of monoclinic, orthotropic, transversely-isotropic, and isotropic layers.
Prior to conducting the experimental phase of the study the results from preliminary analyses
were examined. Significant effects in the ply-level stress distributions were seen depending on
the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking se-

quence was used.

The experimental investigation was conducted to determine the different damage modes in
laminated three-point bend specimens. The test matrix consisted of three-point bend specimens
of 0° unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the
damage initiation loads and ultimate failure loads were studied, and their relation to damage
susceptibility and damage tolerance of the beam configuration was discussed. Damage modes
were identified by visual inspection of the damaged specimens using an optical microscope.

The four fundamental damage mechanisms identified were delaminations. matrix cracking, fiber
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breakage, and crushing. The correlation study between the experimental results and the ana-
Iytical results were performed for the midspan deflection, indentation. damage modes, and
damage susceptibility. The correlation was primarily based on the distribution of the in-plane
component of shear stress, t,,. The exceptions were for the case of a very small aspect ratio
(less than 1.0) where the crushing model of damage was predicted based on the maximum
contact pressure, and for very large aspect ratios (greater than 12.0) where a maximum tensile

bending stress criterion was used for predicting the damage initiation loads.
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Chapter |

Introduction

Composites, although they benefit from being lighter and stiffer than most commonly used
metals, are highly susceptible to damage induced by impact loads. Of primary interest is the
type of damage occurring beneath the surface of contact which often cannot be detected by
visual inspection. This includes any damage that may occur on the back surface which cor-
responds to the interior of a composite structure not accessible for visual inspection. In a
laminated composite, the type of damage generally varies as it progresses through the
structure depending on the stacking sequence and ply orientation. The manner in which the
damage changes from one ply to another is important in determining failure modes and the

residual response of the structure.

This study is aimed at investigating the damage modes in a laminated beam which is sub-
jected to a concentrated load that simulates an impact condition. The motivation behind this
study along with the research objectives are pkesented in this chapter. A statement of the
problem.-and the apprecach used ic sclve the problem are alsc cutlined. A review of the lit-
erature on analytical solution methodologies and damage descripiions in composite Seams

is given in Chapter 2. A brief review is also given for the contact problem involving anisotropic
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bodies. Chapter 3 contains the formuiation and solution procedure used for finding the
stresses and displacements in a laminated beam under a quasi-static distributed load simu-
lating a low velocity impact. The formulation is based on the mathematical theory of elasticity
using a stress function approach. Preliminary results presented in Chapter 4 illustrate the
effect of geometry, shear coupling, and stacking sequence on the stress distributions in the
beam. These are in the form of either through-the-thickness stress distributions or stress
contours. The experimental phase of the investigation is outlined in Chapter 5, where the test
matrix and testing procedure are described. The resulting load versus displacement curves
and indentations are given. Also, the damage initiation and ultimate failure loads are deter-
mined, and a discussion of the damage susceptibility and damage tolerance of the laminated
beams is provided. On the basis of visual observations the type of damage occurring in each
specimen is described and documented. In Chapter 6 the correlation between analytical
predictions for the stress distributions and experimental resuits is presented. The relationship
between load and displacement is correlated using a stepwise incremental loading procedure
and a nonlinear relationship between the applied increment of load and the contact patch.
The experimentally observed damage and damage susceptibility is explained in terms of the
predicted local stress states. Remarks which summarize this investigation are offered in

Chapter 7.

1.1 Motivation

1.1.1 Damage and Damage Tolerance

The capability of a structure to sustain load after it has been subjected to an impact which

produces damage is a measure of the structure’s damage tolerance. In order to design a
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structure which is considered to be damage tolerant, its résponse to a specific damage in-
ducing impact load and residual strength must be predictable. Equally important, however,
is the predictability of the damage initiation, i.e, extent and nature of the initial induced dam-
age. Any factors affecting initiation of damage, subsequent growth and/or arrest, and stability
must be determined in order to assess a structure’s susceptibility to damage and damage
tolerance. This information is also beneficial in making service life predictions and for deter-
mining inspection intervals. Composite cylinders such as a solid rocket booster and stiffened
panels found in aircraft fuselages are two of the most commonly addressed composite struc-
tures. Knowledge of the local stress distributions in the vicinity of the impact location during
and after the impact is needed to describe and understand the impact induced damage, and

to predict the structural response of these structures.

Response of composite laminates to impact damage has been studied mostly experimentally,
resulting in empirical relations for the residual strength as a function of the impact energy,
or resulting in the development of threshold curves for the residual strength. However, in
order to develop a damage tolerance criterion for prediction of residual strength of any lami-
nate under a prescribed impact load, an appropriate theoretical model based on complete
understanding of the type and extent of the initial damage and progression of the initial dam-
age upon subsequent loading is required. A theoretical model for a structure should consider
geometric effects, the influence of stiffeners or boundary conditions on the stress state, and
the effect of loading paths or applied tractions. The two most important material character-
istics of a composite structure required for predicting residual strength are its material prop-

erties and strengths in the principal material directions.

In the case of a laminated composite structure, the local or ply-level stress state in the
neighborhood of the impacted area and the stacking sequence are important factors to be
considered in understanding damage susceptibility and damage tolerance. To completely
define the ply-levei stress state in an arbitrary laminated structure, modifications are needed

to existing analytical tools for calculating stress distributions and displacements. Determining
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the local three-dimensional stress states in an entire composite structure requires very com-
plicated and expensive forms of analyses. Also, the testing of typical structural composite
geometries for experimentally determining the damage around an impact site is very expen-
sive and limited to a small number of test specimens. Coﬁsequently, depending on the type
of structure and loading being considered, different analytical models and ideal geometries
are desirable. Once the impact-induced damage has been characterized for ideal cases, this
will form a basis which can then be extended to more complicated composite structures. For
example, to study the local behavior and damage state between two stiffeners of a stiffened
panel in a fuselage, a three dimensional analysis based on plate theory assumptions could
be used. However, in some instances additional assumptions can be made on the stress state
which further simplifies the analysis and reduces the problem to two dimensions. Conse-
quently, the basis for a better understanding of a composite’s structural response to impact
loads, and associated damage mechanisms and failure modes may be generated by analyzing

the ideal geometry of a laminated beam.

1.1.2 Quasi-static Loading

A major concern over the past decade has been with the response of a composite structure
subjected to foreign object impact damage (FOD). This includes the extent of damage in a
composite structure resulting from FOD and its residual strength. In trying to solve this
problem, a better understanding of the contact phenomenon resulting from an impact load is
needed. There are various types of applied loadings which can produce damage in a com-
posite structure depending on the impact velocity, dimension and shape of the foreign object,
and the relative hardnesses of the two contacting bodies. The failure mode and extent of
damage strongly depends on the contact force which is imposed on the composite structure.
The field of impact dynamics generally deals with small diémeter objects and high velocity

impactors, e.g., projectiles, where the duration of impact is small compared to the structure’s
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period of natural vibration. For this type of loading, the transient response of the structure is
required and the propagation of stress waves must be considered. The damage resulting from

high velocity impacts is generally very localized and concentrated near the contact area.

The experimental determination of dynamic contact forces is difficult because of the wide
range of load parameters and penetration effects. However, for low velocity impacts involving
large diameter objects, the damage due to impact can be simulated using a quasi-static
loading which is easier to monitor and control in a test environment. If the duration of impact
is long compared to the structure’s period of natural vibration, the local deformations occur
elastostatically and elastodynamic effects can be neglected. In this case, a quasi-static load-
ing can be applied to the structure and the results of a static analysis will accurately represent
the local stresses and structural response in the neighborhood of the contact area for this kind
of loading. An experimental investigation based on quasi-static loading was performed by
Yang and Sun [1] which resulted in a static indentation law for composite laminates. This was
an empirical approach which modelled the experimental data by power laws. For a special
case of the Hertz contact problem, where a rigid isotropic sphere is in contact with an elastic

isotropic half-space, the contact force is proportional to the indentation raised to the 3/2 power

(2.
F=ka" (1)

where n=23/2, F is the contact force, « is the indentation, and k is the proportionality constant
which depends on the properties of the contacting bodies. Yang and Sun’s results showed
that n=3/2 was also valid for a graphite/epoxy laminate and a steel indenter. Subsequent
work by Tan and Sun [3] used this static indentation law for an impact analysis of a laminated
composite plate. Based on their experimental results and comparisons with a dynamic finite
element analysis, the static indentation law was shown to be valid for low velocity impacts.
A quasi-static approach was also used by Schonberg, Keer, and Woo [4] for studying low ve-

locity impact of transversely-isotropic beams and plates. In addition, C. C. Poe Jr. [5] simu-
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lated low velocity impact damage in a thick graphite/epoxy laminate using quasi-static loading

conditions.

1.2 Objectives

The present investigation is concerned with simulating low velocity impact loading on a com-
posite structure using a quasi-static approach. The problem under consideration treats the
composite structure as a model problem using a laminated beam for the analysis and exper-
iments. The beam is finite in length (see Figure 1) and consists of a specified lamination
containing layers which are either monoclinic, orthotropic, transversely-isotropic, or isotropic.
The applied load is located at the midspan and is representative of the contact stress distrib-
ution resulting from static indentation. In comparison to the Hertz problem, the contact is
between a rigid cylinder and a layered elastic beam. Damage states in laminated beams
produced by a quasi-statically applied load are studied by conducting experiments on three-

point bend specimen geometries.

The major objective of this investigation is to develop a better understanding of damage states
and the damage susceptibility of laminated three-point bend specimens under quasi-static
loading. A structure’s susceptibility to damage is a measure of how easily damage is induced.
Once damage is present in a structure, the question of how well it is tolerated with regard to
ultimate failure needs to be addressed. Therefore, the objective of the present study also in-
cludes the investigation of a laminated beam’s tolerance to damage. As mentioned above, the
approach selected is a combination of theoretical and experimental research. The objective
of the theoretical portion is to develop the necessary analytical tools for determining sub-
laminae stress states near points of concentrated ioading and study the effects of stacking

sequence, specimen geometry, and boundary conditions on the locai stress distributions. For
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Figure 1. Laminated beam geometry.
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the experimental phase of the research, the objective is to identify damage modes from an
extensive testing program. The initial damage is defined to occur when the laminated beam
first experiences a reduction in load carrying capacity. The test matrix covers a wide range
of specimen thickness to length and thickness to support-span ratios, and various lamination
sequences. Subsequent correlations between the observed local damage in the test speci-
mens and their corresponding damage initiation loads with predicted sub-laminae stress dis-

tributions are made.
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Chapter Il

Literature Review

Several investigative tools are required to study the damage produced by low velocity impact
in composite laminates using a quasi-static approach. Different ways of treating the boundary
conditions and applied loadings, and different solution procedures may be considered in de-
veloping a theoretical model for analyzing laminated beams. Analytically, the solution should
provide the stress distributions and displacements in a faminated beam, both globally and
locally in the vicinity of the applied load. Experimentally, the descriptions of damage and the
changes in damage modes for different beam geometries should be investigated. Based on
the analytical stress distributions corresponding to an experimentally measured load and
correlation with observed damage states, a better understanding of the initiation of damage
and damage susceptibility in composite beams subjected to a quasi-static load can be ob-

tained.
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2.1 Stress Analysis

The stress distributions and displacements in a composite beam which is subjected to a con-
centrated load have been determined by past researchers using various techniques and ap-
proximations. To obtain local and interlaminar stresses composite beams must be considered
as layered media and a ply-level analysis must be performed. Global responses can be ob-
tained by modelling the beam as being homogeneous with anisotropic properties. An over-
view of the approaches taken can be divided into three categories. Analytical techniques in
the mathematical theory of elasticity are the foundations ior one approach. The second ap-
proach is based on numerical techniques for solving the elasticity equations, such as the finite
element method or finite differences. The last approach which has been used is an extension
of classical laminated plate theory to the problem of a beam in bending. Whichever approach
is used, solutions to problems associated with concentrated loads in the form of a point or line
load must deal with a singularity at the contact point. However, a point load is an idealized
case, whereas, the actual test conditions correspond to some type of distributed load. The
determination of the applied loading distribution requires an investigation of the contact

problem for anisotropic bodies.

2.1.1 Analytical Techniques

2.1.1.1 Problem Formulation

Elasticity solutions to two-dimensional problems are either based on a displacement formu-
lation or expressed in terms of stress functions. The displacement formutation is used for

solving a class of boundary-value problems where the displacements are prescribed on the
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surface of an elastic body. The resulting internal stresses and displacements at every point
in the body are found by solving the system of Navier’s equations. The governing Navier’s
equations [6] are obtained by expressing the equilibrium equations in terms of displacements.
For this class of problems, compatibility is satisfied by the assumed form of the disblacements.
A second class of boundary-value problems in elasticity is considered when the applied
tractions are given on the surface of the body. The governing equations are the Beltrami-
Mitchell equations [6] formulated in terms of stresses. A stress function is defined in terms
of the stress components which identically satisfies the equilibrium equations. Since not ev-
ery solution to the equilibrium equations will satisfy compatibility, the compatibility equations

are employed to derive the governing differential equations.

Three analytical techniques which have been used to solve boundary-value problems in
elasticity are: series expansions, transform techniques (both finite and infinite), and influence
function techniques. In general, exact elasticity solutions using the above techniques only
exist for ideal geometries and usually involve infinite regions. For example, a Fourier series
expansion or Fourier transform technique works for rectanguiar geometries. Finite bounda-
ries are often treated by making approximating assumptions and both homogeneous and
layered media can be considered. For a laminated beam, anisotropic elasticity solutions are
obtained for a single layer and then continuity of tractions and displacements at the interfaces

are imposed.

2.1.1.2 Influence Function Approach

Influence function techniques result in the reduction of the problem to a system of integral
equations in terms of some unknown variable, e.g., distribution of tractions. This was the
approach used by Benjumea and Sikarskie [7] to solve severa! problems in plane orthotropic
elasticity. The solution for a plane orthotropic region subjecied to surface tractions was for-

mulated using two different influence (Green’s) functions, i.) functions which were defined to
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be singular on the boundary, ii.}) functions which were singular in the interior, both of which
are only known for simple regions. Fredholm integral equations of the first kind were obtained
when singuiar functions on the boundary were considered. For isotropic materiais these are
easily converted to the second kind which is the form suitable for numerical calculations.
However, for the case of orthotropic materials, this is much more difficult and singular func-
tions in the interior were considered. The major limitation of this approach is that it is difficult

to obtain the influence functions for complicated geometries.

Rizzo and Shippy [8] determined the stress distributions in an orthotropic body using the
modified potential theory and an adaptation to anisotropic elasticity. They used Green’s sol-
ution [9] to the governing field equations of plane anisotropic elasticity and then coupled this
with a desired soiution corresponding to the given boundary conditions through Betti’s recip-
rocal theorem [6). For a well posed mixed boundary value problem, this produced a singular
vector integral equation defined on the boundary of an arbitrary orthotropic body. Once this
integral equation was solved for the unknown boundary tractions and/or displacements not
initially prescribed, the displacement field was obtained by a boundary integral of the
Somigliana type (Love [10]). Numerical results were presented for the problems of an ellip-
tical inclusion in an infinite matrix, an infinite orthotropic plate with a hole subjected to
hydrostatic pressure, and an orthotropic ring subjected to uniform shear on its inner boundary

and a fixed outer boundary.

In contrast to the biharmonic formulations of elasticity, deriving a system of integral equations
is not limited to two-dimensional stress states and is easily applied to multiply-connected
domains, e.g., inclusions. If numerical techniques are used in the integral equation method
then it has an advantage over a finite element formulation in that it produces a system of al-
gebraic equations which is of lower order. This is because the equations are applicable on
the boundary of the region being considered and ndt in the interior. However, the coefficient
matrix is not banded as in the case of the finite element method and the techniques used for

solving banded systems of equations cannot be applied. Only single-layered beams were
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analyzed in References [7] and [8] and numerical integration techniques are generally re-
quired when more complicated geometries are being considered. Therefore, to perform a
layered analysis for an arbitrary laminated beam by solving a system of integral equations

would be computational inefficient.

2.1.1.3 Stress Function Approach

Many types of problems in the mathematical theory of elasticity have been solved for isotropic
materials using stress functions. This generally involves the use of Fourier series for periodic
lcading and Fourier integrals for nonperiodic loading with harmonic functions. The distribution
of shear stresses in unidirectional composite beams under three-point flexure was studied by
Tarnopoiskii, et al [11] using a stress function approach, taking into account the local effects
of loading and anisotropy. The assumed form of the stress function satisfied the boundary
conditions around a rectangular region cut-out from an infinite half-plane. Solutions were
obtained for homogeneous isotropic and anisotropic regions, and comparisons were made
between the two. Results of Reference [11] showed that the shear stress profile through the
thickness for the anisotropic case differed considerably from being parabolic. Also, the results
showed that by increasing the span length-to-depth aspect ratio of an anisotropic beam the
maximum shear stress was reduced and the location was shifted toward the mid-plane, x=0
(see Figure 1). Furthermore, the maximum shear stress was shown to increase if the stiffness

of the material in transverse tension/compression was increased.

Conway [12] studied several problems for orthotropic p>lane stress using the Airy’s stress
function and made anziogies with the isotropic cases. In particular, he analyzed a deep beam
using a doubly infinite system of equations. The final solution to this set of equations was
shown to be similar to Timoshenko’s bending of a uniformiy loaded clamped rectangular plate.
Kasano, et al {13] extended Conway’s work [12] for a two-dimensional Fourier series elasticity

analysis of an orthotropic beam under three-point bending. The concentrated loads and sup-
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ports were represented by a uniform stress distributed over a small length using a Fourier
series, and hyperbolic functions represented the through the thickness part of the soiution.
A similar approach was used by Whitney [14] for a finite length, single layer orthotropic beam
under three or four-point bending. The uni:mown constants in the expression for the stress
function were determined from the boundary conditions and interfacial continuity. The
boundary conditions were exactly satisfied on the top and bottom surfaces but the bending
stress conditions on the ends of the beam were only approximately satisfied. Sullivan and
Van Oene [15] considered the case of a generally orthotropic beam, i.e., unidirectional with
off-axis fibers, under plane stress conditions. This was based on Whitney’'s work [14] where
the stresses were derived from a stress function which satisfied the orthotropic analogue of

the biharmonic equation and a Fourier series representation.

Kasano, et al [16] also investigated solutions to two-dimensional orthotropic elasticity prob-
lems using stress functions but in the form of Fourier integrals. Kasano considered the
problem of an infinitely long orthotropic beam subjected to a concentrated load. In general,
a singular point exists at the location of a concentrated load and the solution is in terms of
divergent integrals. However, by using a transformation of coordinates and superimposing the
solution for an orthotropic half-plane subjected to a concentrated load, a solution was ob-
tained as the sum of a closed form integral and a convergent integral. The boundary condi-
tions were satisfied by using the method of Fourier transforms to determine the form of the
stress function. Yu [17] studied the local effects of a concentrated load applied to an infinitely
long orthotropic beam by also considering an integral form of Airy’s stress function. The
problem of an infinite beam in bending was solved using superposition of the Boussinesq-
Flamant problem for an infinite-half orthotropic plane under a singular load with the problem
of an infinite strip cut out of the half-plane. The solution of the Boussinesg-Flamant system
with reverse loading was superimposed on the bottom- surface of the infinite strip. "The
boundary conditions were represented by Foﬁrier integrals and consequently the solution was

also in terms of Fourier integrals.
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it was stated previously that Airy’s stress function can be expressed in terms of Fourier series
or Fourier integrals depending on the periodicity of the applied loading. A polynomial Airy’s
stress function was shown by Rao [18] to be suitable for analyzing rectangular laminated
beams under a polynomial type of loading. The beam had clamped-clamped boundary con-
ditions and each layer was assumed to be specially orthotropic in a state of generalized plane
stress. The effects of relative stiffness and thickness of layers, boundary conditions, and

continuity conditions at the interfaces were investigated.

Various solution procedures have been discussed using the stress function approach in the
mathematical theory of elasticity. The primary limitation in applying these approaches to the
problem of an arbitrary laminated beam subjecied to three-point bending are the ideal ge-
ometries previously considered and the assumed boundary conditions. Solutions have been
obtained for infinite strips or layered infinite regions. Finite geometries have been modelled
by a rectangular cut-out region of an infinite half-plane or for only a single layer. Also, none
of the approaches for a layered medium take into account the local effects of the support re-

actions.

2.1.1.4 Displacement-based Solutions

The problem of determining stresses and strains in an isotropic beam of rectangular cross-
section under any system of load when the problem could be reduced to two dimensions was
thoroughly investigated by Filon [19] using a Fourier series expansion. A displacement for-
mulation was used where the solution to Navier’'s equations was expressed in terms of un-
known functions. The unknown functions were then determined using a Fourier series
expansion in terms of hyperbolic and circular functions. The Fourier transform technique is
based on transforming the governing differential equations, e.g., Navier's equations

{Chatterjee, et al [20] ). to the Fourier domain using the Fourier transform. Expressions for the

Literature Review 15



stresses and displacements are obtained in the transformed domain and then transformed

back to the real domain.

An exact solution within the framework of linear elasticity was obtained by Pagano [21] for ihe
probiem of cylindrical bending of a laminated plate. Orthotropic layers whose axes of mate>ria|
symmetry were parallel to the plate axes were considered and a state of plane strain was
assumed. The plate was simply-supported on the ends and a normal traction was applied on
the upper surface. Results were compared with classical lamination theory (CLT) and it was
shown that for large aspect ratios CLT converged to the elasticity solution. A more general
type of loading, which included approximating a point load by a uniformly distributed load over
a smail finite distance, was considered by Pagano and Wang [22] using the cylindrical bending
model along with a Fourier analysis. The effect of shear coupling in cylindrical bending of an
anisotropic laminated plate was also investigated by Pagano [23]. For general conditions of
material symmetry, a state of plane strain cannot exist and a generalized plane deformation
analysis was used. As discussed by Leknitskii {24], none of the six stress components vanish
identically for this material state. The solution was obtained using a displacement formulation
where a displacement field was assumed which satisfied the governing field equations and the
the boundary conditions. The governing differential equations were then derived from the
equilibrium equations using the constitutive and strain-displacement relationships. Applying
the problem of cylindrical bending to the problem of a laminated beam subjected to three-
point bending is limited by the assumed boundary conditions. The ends of the beam, i.e., x=0
and L (see Figure 1), are assumed to be simply-supported along the entire end-face of the
beam from z=-h/2 to z=h/2, and the resultant she_ar force at the ends of the beam, i.e., the
integral of the ., shear stress distribution through the thickness at x=0 and L, maintains
global equilibrium with the applied loading on the top surface. Consequently, overhang effects

and the effects of supporting the beam on the bottom surface cannot be considered.
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2.1.2 Numerical Approaches

2.1.2.1 Finite Element Method

An aiternative to the analytical approaches discussed in the previous sections is to use nu-
merical methods to solve the governing elasticity equations. The finite element method was
used by Berg, Tirosh, and Israeli [25] to study the validity of the ASTM D 2344 short beam
shear test (SBS) for composites. This standard test was designed for isotropic beams and is
based on Bernoulli-Euler beam theory. Classicai beam theory predicts a paraboiic through-
the-thickness shear stress distribution and the standard test assumes the failure to be domi-
nated by this stress component. Therefore, the measured load at which fracture occurs
determines the interlayer shear strength of the material. A finite element analysis was per-
formed in Ref. [25] for a unidirectional beam having a span length-to-height aspect ratio, a/h,
of four using an orthotropic elastoplastic continuum model. The fibers were oriented parallel
to the x-axis (see Figure 1). The contact force was assumed to be a uniformly distributed
traction over a small arc length, d. The results of this investigation showed that the actual
in-plane shear stress distribution, 1., does not differ much from beam theory at a location
midway between the support and the loading nose. However, classical Bernoulli-Euler beam
theory does fail to properly describe the distribution and location of maximum shear stress
on planes closer to the contact point. The results presented also predicted a large transverse
compressive stress, o, which causes fracture to take place under conditions of combined
compression and shear in the vicinity of the loading nose. Consequently, the measured frac-
ture Iogd cannot be used in determining the shear strength of the material because this is not
a pure shear failure. In some cases, large compressive bending stresses, o,,, were predicted
under the applied Ioadrs which could produce a pure compression dominated failure in the

form of fiber microbuckling.
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2.1.2.2 Finite Differences

Sandorff (26] studied St. Venant effects in orthotropic beams using the finite difference method
to determine stresses and displacements. He considered a state of plane stress and used a
stress formulation approach where the equations of equilibrium were identically satisfied by
defining an Airy’s stress function. Invoking compatibility for a two-dimensional stress state
resulted in a biharmonic equation to solve for the Airy’s stress function. The governing
biharmonic equation for the plane problem of orthotropy was shown by Mitchell [27] to have
the same form as the biharmonic equation of the plane isotropic problem. The difierential
operator was equivalent to the isotrcpic problem but in the orthotropic case the constant co-
eflicients were different. In Reference [26], the solution to the biharmonic equation was ex-
pressed as a boundary value problem for an orthogonal matrix of interior points and then
relaxation techniques were applied. The elasticity equations and constitutive relations were
then expressed in finite difference form to find the stresses and displacements. Only
unidirectional beams having fibers parallel to the x-axis (see Figure 1) were analyzed. How-
ever, as stated in Reference [26], for many cases the same approach applies to multi-ply
laminates if the behavior is approximated by assuming the beam to be homogeneous, spe-
cially orthotropic. The external load was expressed by a triangular load distribution using a
3-term finite difference approximation. The results for the transverse stress, i.e., o, , direclly
under the external load were shown to be about 15% higher than that predicted from the
Boussinesqg-Flamant relation [28] for a semi-infinite region. The through-the-thickness dis-
tribution for the shear stress, t, , at a cross-section adjacent to the loading, showed the
maximum value to be located just below the top surface of the beam. This was a severe de-
viation from the parabolic shear stress distribution obtained from Bernoulli-Euler beam theory.
Also, the bending stress, g, distribution through-the-thickness was shown to have a large
deviation from beam theory with a3 peak compressive value approximately three times greater.
The stress distribution results presented in Reference [26] showed that St. Venant effects were

more important in composite materials. If the net-section warpage was large and
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unrestrained, the bending stress varied linearly through the thickness, and if warpage was
restrained the distribution was nonlinear. Overhang effects were also studied for short beam
shear specimens, concluding that too short of an overhang would result in beam failure before
the fracture load associated with the interlayer shear strength of the material was reached.
Consequently, the stress state was not dominated by the shear stress and the failure mode
was not due to pure shear. This result was based on the net bending moment being zero at
the support and in the overhang but the constraint against warpage provided by the overhang
together with the introduction of a reaction load at the support caused local disturbances in

the normal and shear stress distributions. This type of behavior acted to increase the beam’s

effective stifiness.

The numerical techniques discussed above illustrated the St. Venant effects in composite
beams and the shortcomings of classical beam theory for calculating stresses. |n comparison
to an isotropic beam, the stress concentrations resulting from the applied loading and sup-
ports extended over a larger portion of the beam. However, only unidirectional homogeneous
orthotropic beams under plane stress conditions were considered. As previously discussed
for numerical evaluation of a system of integral equations, using these methods to perform a
layered analysis would be computationally inefficient and not recommended due to the large

finite element mesh or finite difference grid required.

2.1.3 CLT Approaches

Whitney, et al [29] analyzed the flexural test specimen for laminated composite materials by
considering the beam as a special case of a laminated plate. Assumptions were made based
on classical lamination theory and a pure bending type of loading was applied, i.e.,
M,#0, M, = M, =0 (see Figure 2). For beams having a large length to Width ratio, a/b, it was

assumed that the component of displacement in the z-direction depended only on the x-
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coordinate, i.e., w=w(x). The work of Reference [29] basically dealt with defining the bending
properties of composites for simply-supported beams under three or four-point bending. The
effects of transverse shear deformations were included and a shear correction term was de-
fined which was equivalent to the correction term in Timoshenko beam theory. Accounting for
transvere shearing deformations provided additional beam deflections and made the beam
less stiff, which was shown by Whitney and Pagano [30] to be important for composite beams
in three-point bending. The beam’s stiffness was calculated using homogeneous isotropic
beam equations which were modified to account for stacking sequence. This was analagous
to Pagano’s work [31] where he concluded that layered beams in which plies were oriented
symmetrically about the midplane and the orthotropic axes of material symmetry were paraltel
to the beam edges, i.e., 0° or 90° plies, could be analyzed by classical beam theory with the
bending stiffness El being replaced by an equivalent stifiness using an effective bending
modulus. The effective bending modulus was a function of stacking sequence and depended
on the D, terms defined by lamination theory. Similar results were obtained by Adams and
Miller [32] for the influence of transverse shear in hybrid composite materials. The analysis
used by these authors was also derived from classical laminated anisotropic plate theory with
an extension to include effects of transverse shear in the three-point beam bending problem.
The approach was based on an approximate method developed for thick laminated plates
having an assumed displacement field corresponding to the conditions of cylindrical bending,
i.e., plane strain in the xz-plane with applied transverse tractions being constant in the y-
direction. The laminates were assumed to be symmetric and when off-axis plies were in-
cluded the D,; and D, terms were assumed to be small and neglected for simplications. Also,
for the case of a generalized plane strain analysis the three strain components, &, Yy Vi WEIE
neglected. The presented results included beam deflections, flexural moduli, flexural energy
and shear strain energy. The transverse shearing stresses were shown to have a predomi-
nant effect on the flexural modulus and the strain energy. It should be noted that the highly
anisotropic nature of composite beams causes them to be more dependent upon transverse

shearing stresses when subjected to three-point flexure than similarly loaded homogeneous
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isotropic beams. The major limitation of a CLT based approach is the beam or plate theory

solutions presented above cannot model the local effects due to transversely applied loads.

2.1.4 Contact Problems

2.1.4.1 Isotropic

In order to accurately describe and understand the possible damage states in a composite
beam), the actual stress distribution and deformations under the loading nose and at the sup-
port points must be investigated for prescribing the boundary conditions in the analytical
model. Hertz [2] in 1881 determined the stresses produced when two smooth bodies are
pressed together. He solved this problem for the case of isotropic bodies by making suitabie
approximating assumptions and applying some known results of potential theory. The basic
Hertz problem has been predominantly utilized for isotropic bodies where the elastic contact

stress problem has been defined to be Hertzian if:

1. Bodies are homogeneous, isotropic, cbey Hooke’s law and experience small strains and
rotations.

2. Contacting surfaces are frictionless

3. Dimensions of the deformed contact patch remain small compared to the principal radii
of the undeformed surfaces.

4. Deformations are related to the stresses in the contact zones as predicted by the linear
theory of elasticity for half-spaces.

5. Contacting surfaces are continuous, and may be represented by second degree
polynomials prior to deformation.

2.1.4.2 Anisotropic

For anisotropic bodies, the basic Hertz problem was not considered for many years presum-

ably because it couid not be reduced to a potential theory problem except for the transversely
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isotropic case. Svekio [33] showed that a Hertzian approximation for a tfansversely isotropic
body produced a normal component of surface displacement due to a concentrated normal
load which was inversely proportional to the radial distance measured from the load point.
Green and Zerna [9] studied the two-dimensional anisotropic contact problem for the case of
indentaton by a rigid punch. Willis [34] considered the Hertz probiem for generally anisotropic
bodies using the Fourier transform method. The functional form of the pressure distribution
between the bodies was found explicitly and determination of the resulting displacements
was reduced to numerically evaluating contour integrals. For isotropic bodies, Hertz reduced
the problem by the semi-inverse method of assuming that the contact area was an ellipse with
an elliptical pressure distribution. This tvpe of distribution was known to give the correct form
of displacements according to potential theory. Willis {34] showed that by assuming an ellip-
tical distribution for the general case of anisotropy the correct form of displacements could
also be obtained. Chen [35] also assumed Hertzian contact to find the stresses in anisotropic
materials due to indentation. He showed that in certain important practical situations the
stress functions for isotropic and for anisotropic materials were of the same form. Conse-
quently, the expressions for the pressure distribution underneath the punch were independent
of the material properties of the half-space. For the anisotropic case it was shown that the
stress distributions inside the body were generally not symmetric even though the external
loading was. Chen presented results in the form of maximum shear stress contours where the
largest value occurred on the axes of symmetry at a depth of approximately 4/10 the contact
width for the case of isotropy. Conversely, for anisotropic materials the largest value did not

necessarily lie on the axis of symmetry.

Another solution for plane anisotropic contact problems was developed by Miller [36] using
the Green’s function approach. The problem was assumed to be for two anisotropic cylinders
in coniact and included the effects of sliding friction. The method used was based on complex
variable techniques in elasticity and the solution was expressed in terms of piecewise analytic

functions. This was a mixed boundary value problem due to the contact between two
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anisotropic bodies. The solution obtained included the displacements corresponding to the
singular solution of a concentrated force in an anisotropic half-plane. Sankar [37,38] derived
an approximate Green’s function for the surface displacements in an orthotropic beam by
superposition of the haif-plane solution and beam theory. For small contact lengths he as-
sumed that the contact stress distribution was elliptical, i.e., Hertzian. A relationship between
the contact force and contact length was derived and was seen to be significantly affected by
the curvature of the deflected beam. Therefore, this relationship was revised by considering
contact between two curved bodies. In his approach, elasticity equations were used to de-
scribe the local behavior and beam theory was used for the global behavior. The Young’s
modulus, E, controls beam behavior with the 1-direction corresponding to the beam axis,
whereas, E, controis local deformations with the 2-direction corresponding to the direction of
the applied contact force. Consequently, for small E,/E, values the local indentation dominated
and the deviation from the Hertzian solution was small. Inclusion of shear deformations in-
creased the contact area for a given contact force but reduced the amount of indentation, i.e.,
shear deformations added to the beam bending effects. Similar effects were seen for higher

length to width ratios.

2.2 Damage Descriptions

Failure mechanisms and damage due to either static bending or low velocity impact have
been investigated by several authors for the case of simply-supported composite beams. Two
distinct modes were reported by Parry and Wronski [39] as failure mechanisms in
unidirectional carbon fiber composite beams. One was a tensile mode which resulted from
fiber breaks and debonding. The second was a compression mode combining fiber shear
and/or buckling with compression creases or kinking. Kinking is a mechanism of transverse

deformation where shear takes place initially parailel to the principal stress axis. Kink bands

Literature Review 24



generally develop in a diagonal fashion from rotation and failure of fibers by buckling, and

eventually lead to the formation of interlaminar cracks.

Shih and Ebert [40] defined flexural failure mechanisms for unidirectional glass/epoxy beams
under four-point bending. A flexural tensile mechanism was described by fiber pull-out,
transverse matrix cracking, and longitudinal matrix cracking. Microbuckling of fibers was the
predominant flexural compressive mechanism. A tensile failure due to flexure was associated
with a strong interfacial shear strength, whereas, a poor interfacial shear strength led to a
shear failure mode. [t was also noted that the dependence of interlaminar shear strength on
interfacial shear strength was larger than that of the longitudinal compressive strength which

in turn was larger than that of the longitudinal tensiie strength.

Two different failure modes were identified by Tarnopolskii, et al [11], for three-point bending
of a composite beam made of glass-plastic materials. One was layer separation and the
second was peeling of surface layers within the compression zone followed by global fracture.
This was said to be caused by a local loss of stability with an accompanying breakdown of the

polymer interlayer.

The effect of fiber orientation on the impact strength of off-axis composites was studied by
Mallick and Broutman [41]. The material system was E-glass/epoxy and both static and dy-
namic flexure were considered. The static results indicated a "lift-off” phenomenon in off-axis
specimens, i.e., as the load increased the specimens twisted which lifted the corners off the
supports. For the dynamic flexure tests, the progression of damage was described by cracks
initially forming parallel to the off-axis fibers causing the 0° fibers to break which eventually

led to failure.

Greszczuk and Chao [42) investigated low-velocity (FOD) impact damage in graphite fiber re-
inforced composites using a quasi-dynamic approach. This approach involved determining

the time-dependent surface pressure distribution under the impactor, time-dependent internal
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stresses in the target caused by the surface pressure, and failure modes in the target caused
by the internal stresses. Analytical studies were performed for different material systems to
determine the influence of fiber and matrix properties on the impact response. A failure cri-
terion based on distortional energy theory showed that the matrix properties strongly influ-
enced the extent of damage and a high strength, low modulus matrix was required to minimize
damage. In general, thin laminates failed on bottom due to bending stresses and thick lami-
nates failed near the top due to contact stresses. Greszczuk also concluded that an accurate

determination of the damage zone required a multi-layer heterogeneous orthotropic analysis.

Browning et al [43] performed an SEM investigation on a thick 50-ply short beam shear (SBS)
specimen made of AS-1/3502 graphite/epoxy, and tested with a span length-to-depth aspect
ratio of 4. The failure surface was characterized by resin deformation and microcracking. The
failure surface features of the resin deformation were similar to fracture surfaces related to
interlaminar failure. The microcracks appeared predominately at the fiber-resin interface,
circumferentially surrounded the fiber, and radiated out into the matrix. Short beam shear
tests were also conducted for thin 16-ply beams of the same material and aspect ratio and the
test specimens consistently failed in a non-shear dominated mode. The only evidence of
damage was local indentation under the loading nose. Therefore, it was concluded that al-
though the SBS test is widely used for characterizing interlaminar failure and measuring
“apparent” interlaminar shear strength, thin unidirectional beams usually do not fail in this

manner and thick specimens or alternative test procedures must be used.

2.3 Summary

To investigate low velocity impact damage in composite beams using a quasi-static approach

the knowledge of local stress states and an understanding of failure mechanisms is required.
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The review of published work by previous researchers indicated shortcomings in their ap-
proaches which resulted in the inability to accurately and efficiently predict the stress distrib-
utions in a finite length laminated beam which contained off-axis layers. Primarily, solutions
for homogeneous and/or infinite regions were developed which cannot pfedict ply-level stress
distributions nor account for end-face boundary conditions associated with a finite region. For
a layered analysis the numerical techniques required in using an influence function approach
or finite elements are computationally inefficient. However, the distribution of stresses in a
three-point bend specimen having an arbitrary lamination sequence and a finite length can
be obtained by combining different aspects from several of the previously discussed analytical
approaches. In the following Chapter, Whitney’s solution [14], which was developed for a finite
length orthotropic unidirectional beam and included the reactions at the support points, is
extended to the case of a laminated beam. To properly account for the presence of off-axis
plies in the lamination sequence, the stress-function based plane strain solution in [14] is
modified for a state of generalized plane deformation. This approach parallels Pagano’s
displacement-based cylindrical bending analysis [23] which had the shortcoming of requiring
the beam to be simply-supported only at the ends, i.e., no overhang. The concentrated loads
located at the three contact points are modelled by assuming Hertzian contact, e.g., an ellip-
tical distribution over the contact length, instead of the uniform distribution assumed in [14]
and [23]. Once the stresses are known and experiments have been conducted to ascertain
the location and type of damage, a correlation study between the theoretical and experimental
results can be performed. The results of the correlation study should provide a better

understanding of damage in laminated composite beams.
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Chapter Il

Analytical Procedure

3.1 Introduction

The determination of stresses in the interior of an elastic body when the tractions are specified
on the surface of the body is a well defined problem in the theory of elasticity. The
boundary-value problem being considered is illustrated in Figure 3, where the tractions,
T7)(x). are given on the surface of the body S, and the body force, F(x), is given in the interior

of the body. The governing equations are:

Equilibrium:

O'UJ + F‘ = 0 (1)
Constitutive relationship:

oy = Cijent ()
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Strain-Displacement:
- 1
ey =5 Wy +u) (3)

Compatibility:
ekt + Eirig — Eikgr — Eitak =90 )

In using a stress formulation approach, a stress function or functions can be defined which
will identically satisfy the equations of equilibrium. However, not every solution to the equi-
librium equations will satisfy compatibility and the compatibility equations must be employed.
The governing equation or equations are obtained by substituting the constitutive relation-
ships into the compatibility equations and simplifying the expressions using the equilibrium

equations.

Since one can always find a particular integral to the inhomogeneous equations when F,# 0
and since the equations are linear, assume that a particular solution is known and set F, =
0. For the case of isotropic bodies and a two-dimensional stress state, the equations of

equilibrium are identically satisfied by defining an Airy’s stress function, U(x,z), as follows:

_ duxa) _ ux2) _ Fuxa)
T 822 = ax® 2T T axaz

Fxx (%)
The problem can then be reduced to the fundamental biharmonic boundary value problem of
finding U(x,z) such that:

VU=0in® (a)

6
U,= 1,(S) aregivenonC (b) ®

where C is the part of boundary S where the tractions are prescribed. For the case of
anisotropic bodies and general conditions of material symmetry (see Lekhnitskii {24]) equation

(6) is no longer valid and a second stress function must be defined. In the case of a laminated
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Figure 3. First fundamaental boundary-value problem in elasticity.
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medium the solution to this problem is applied to the individual layers and continuity of

tractions and displacements at the interfaces is imposed.

Pagano [21,22,23] has derived plane strain and generalized plane deformation elasticity sol-
utions for the cylindrical bending problem using a displacement formulation. However, the
assumed form of the displacements cannot be used in cases where the ends of the beam are
allowed to extend beyond the supports. In the t;ylindrical bending problem the simple sup-
ports are approximated by the particular boundary conditions that Pagano uses and the re-
sultant shear stress distribution on the end faces of the beam maintains global equilibrium
with the applied loading. Whitney’s [14] approach includes the effects of an overhang but only
for a homogeneous single-layered orthotropic beam under plane strain or plane stress con-
ditions. In the present investigation a solution for an arbitrary laminated beam of finite length
is obtained by extending Whitney’s previous development for plane strain to generalized plane

deformation in order to account for the possibility of including off-axis plies.

3.2 Solution for Monoclinic Layers

3.2.1 Governing Differential Equations

Following Whitney’s [14] analysis and using a stress formulation, the prescribed tractions are
expressed by infinite Fourier series and the solution is obtained in terms of two nondimen-
sional stress functions. A state of generalized plane deformation in the xz-plane {see Figure
4) is considered in order to satisfy the three equilibrium equations for a monoclinic layer. For
the case of orthotropic, transversely-isotropic , and isotropic layers the solution reduces to the

form obtained by considering plane strain conditions.
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For the generalized plane deformation analysis, the three displacement components, u, v, and

w in the x, y, and z directions, respectively, are assumed to be only functions of the in-plane

coordinates, x and z.

U =u(x,z)
v =v(x.2) M
w = w(x,2)

Consequently, the only vanishing component of strain is ¢, and o,, can then be expressed in
terms of the other stress components. This results in a reduced 5 x § compliance matrix
similar in form to the plane strain reduced compliance matrix and the constitutive equations

become:

Ex Ry Ri3 0 0 Ryg ok

£z Ria Ryy 0 0 Ry(z
Prf=[¢7's e o i)
Yxz 0 0 Ri Rss 0O Txz

Yxy Rig Rsg 0 0 Rgg ™

where R, are related to the transformed compliances as follows:

R,;=8,- Sgs"" ij=138
22
Ry = Su4 (9)
Ry = Sus
Rss = Sss

This resulting constitutive relationship now reflects the shear coupling between the in-plane
normal strains and the out-of-plane shear stresses. It should also be noted that none of the
stress components vanish identically. For the case of plane stress in the x-z plane, R, is

simply replaced by §,,. the transformed compliance matrix.

The six components of stress are functions of x and z only, and the three equations of equi-

librium become:
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ox 5z =0
arxy aryz
ax t 3z =0
91, OG0y
x T oz 0

(10)

These equations are identically satisfied by defining two nondimensional stress functions, ®

and ¥, as follows:

P 3o >

o.=8— =

PRI o8 =T 5eay

Y oy
T ey 1T T 5

bh? bd _ bh
0{—_—Pa d’xx 0" —E'dzz T;’,—?sz

and the nondimensional coordinate system is defined to be:

{.._._x_ -2 Y
L "h *T%

(1

(12)

(13)

The Cartesian coordinate system used and beam dimensions are shown in Figure 4 and the

remaining nondimensional quantities in the above expressions are:

=9 g2 p_L
b=T S=nm R=%

(14)

A direct consequence of the generalized plane deformation formulation is that twe of the

compatibility equations are not identically satisfied. Using the differential operator notation
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given by Lekhnilskii [24], the resulting governing coupled partial differential equations are

given by:

LO+L¥=0 (a)

15
LO+L,¥Y=0 (b (15)
where the differential operators are defined as:
8 2 & 3
Le=RyR* <— 4 (2Ry3 + Rss)R° —— + Ryy —
4 11 an4 1 6525)12 664
3 3
Ly=RygR> —5 + (Ras + Res)R 16
6 5’13 afzan ( )
2 2
2 8 é
Ly=RggR*  ——= + Ryy—5
6 6112 44 a{z

Note, that for an orthotropic layer, Ry, Ry, and R, are zero, the L, differential operator van-
ishes and the two partial differential equations become uncoupled. This is also the case for
transversely-isotropic and isotropic layers. For monoclinic layers and generalized plane de-
formation, a sixth order partial differential equation is obtained by eliminating one of the stress

functions in equations (15a) and (15b), e.g.,
(Lely — LD =0 (17)

It is easily shown that the second stress function, ¥, must also satisfy an equation having this

form.

3.2.2 Solution For Stress Functions

Solutions for the stress functions are found by assuming they have the form of a polynomial
plus an infinite series which is expressed in terms of an unknown function through the thick-

ness and a trigonometric function along the span. These forms are chosen in a way which

Analytical Procedure 35



allows for satisfaction of the governing partial differential equation and the applied traction
conditions. The solution for ¢ was given by Whitney [14] and is repeated here for the purpose

of clarity.

O n)=A, 5 tBo5 +Co5 + ng(n) cos pp,é (18)

- m=1

where p, =2mn , A, B, and C, are unknown constants, and g,,(y) has the same form given
by Whitney but now involves a summation of six terms corresponding to the six roots of the
characteristic equation. Substituting this expression for the stress function into equation (17),

the solution for g,,(n) is of the form:

6
gmn) = ZK”’/( cosh 4jupn + sinh Aamn) (19)
=1

where u =%"- and K., are unknown constants, and 4, are the roots of the following charac-

teristic equation:
—A+Br4+CciP+D=0 (20)
where

2
A=Rie — R11Res
8 = 2R16(Rag + Ras) — Res(2R13 + Rss) — Ry1Ray

(21
2
C = R33Reg + Ruu(2Ry3 + Rss) — (Ryg + Rys)
Using the change of variable,
y=12-25 {22)

the characteristic equation is reduced to a cubic equation having the form:
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Y4y +s=0 (23)

where

2 ~
r=-B,_C
3A \ (24)
<__28 _c¢c8 D
274% 342 A
For most commonly used composite materials, the relationship
2 3
s r
) + 2 <0 (25)

is true and equation (23) will have three real and unequal roots. For materials having prop-
erties such that this quantity is positive the roots will be imaginary. If the quantity in equation
(25) is zero there will be repeating roots. The resulting values for the case of real character-

istic roots in equation (23) are:

Y= 2\/—T—r cos{% [¢+2(— 1)7:]} j=123 (26)

where

¢ = cos™! [ _—_s\/_2_7; ] 2N

3
2(~-r)2

Substituting equation (26) into equation (22) results in six distinct characteristic roots occurring
in plus and minus pairs. By redefining the unknown constants, K, , to simplify the ex-
pressions when evaluated at the interfaces, i.e., n = + %, the solution for g,(n) can be rewrit-

ten in the following form:
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3

cosh Aun sinh Au..n
m jJHm
Gmin) = Z(Amj'——[j“; + By —m— (28)

j=1 2 2

where A, and B, are unknown constants.

The solution for the second stress function, ¥ , can be found by assuming a form similar to

the first stress function which was given in equation (18), i.e.,

2 o0
n
H(E ) = Dol + Egn + Fo et D i) €05 Py (29)
M=
where D, E,, and F, are another set of unknown constants. As stated previously, this function

must also satisfy a sixth order partial differential equation of the form given by equation (17)

and the solution for h_(n) can immediately be written as:

3
cosh A u.m sinh A u_n
E Hm Hm
hm(n) = Cm/ F + Dm] P (30)
h LT sinh 2
= cosh—3 2

where C,, and D,, are unknown constants and 1, are the same roots of the characteristic
equation determined previously. The two stress functions were shown to be coupled in
equations (15a) and (15b) and by substituting equations (18) and (29) into equation (15b) it can
be shown that the following relationships must exist between the unknown constants.

i

Hm
Cmy=L;pmcoth — Bmy 31)
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Ajp

jom
R
Fo=— ———R;: RC, (33)

where

Rys + Ras — Right ) &)
o) o

3.2.3 Stresses

Now by substituting the nondimensional forms of the two stress functions given in equations
(18) and {29) into equation {11) the following expressions for the stresses in a monoclinic layer

can be found.

) 3
cosh Lun sinh A,un
op = L o+ Con + u2 22 Am,____Lm_+Bm,__/T_ cos ppé » (35)
S ! / 1j#m ’ lj#m
prer fr cosh 2 sinh 3

cosh Liumn sinh 4pupmn \ ) 36
Pl Am e B T SR Y
cosh 2 sinh 5

m=1 =1
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oo
1 2 sinh ljﬂmn cosh 1,-um'1 )
=R Z pm'lI(Aml Lt + By Ly Sinpmé (37
M=

. m
e cosh 3 sinh 2
00 3 .
E : z cosh Lu,n sinh Aun
16 jem jm
ey E,— R " RCyn + ’l/l‘mmeJ(Amj T mf P €os p,,&(38)
g i~ m
=1 =1 cosh - sinh 2

sinh djum cosh dumn
=-D,+ 2 A = 48 sin 39
T o Z meL;( mj Lt mj Xt Pmé (39)
2

3
et J=1 cosh ) sinh

3.2.4 Displacements

Since this is a stress formulation, the corresponding displacement field is found by integrating

the strains.

ux,2) = f £xdX + uy(2)
v(x,2) = J.y xydX + v,(2) - (40)

w(x,z) = Jazdz + wy(x)
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By expressing the strains in terms of the nondimensional stresses, the equations for the

nondimensional disptacement components are obtained as follows:

— R —
u@g.m= (RHRS": +'_f—;l o, + R,st{x)df + Uo(n) (41)

) /_ R, _
V(f, ﬂ) = KR16RSO{ + % 0" + R%thz)d: + Vo(ﬂ) (42)
w(E.n= | (RS +Bs LR dn + wy(§) (43)
M= 13 O’{ Rﬂ ary 361{x n [}
where
_  Ep _ Ep _ &b -
u=—P—u v=—P—v w=-—P—w Rij=RUEZ (44)

The unknown functions of integration in equations (41), (42), and (43) are determined in the
following manner. The function u,(n) is determined from the symmetry condition on the x-

displacement component about the midspan of the beam, i.e.,
u(%2,m)=0 (45)

The functions v,() and w,({) are determined by requiring that the displacements be compat-

ible with the following constitutive relationships.
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aw ou

- 1t 5 3z =¥z = Rdsfyz + Rssty, (46)
LA R R : 4
62 =Yyz = RaqTyz + Rystyy (47)

Note that the expression for the out-of-plane displacement component, v, given by equation
(42), was obtained by integrating the shear strain ¥x along the length of the beam. Satisfying
equations (46) and (47) produces two constants of integration. The constant obtained from
integrating equation (46) with respect to x is solved for by using the rigid support condition,

ie.,
W(f.-'/,)=o (48)

Integrating equation (47) with respect to z produces a constant in the expression for the v
displacement component which is a rigid body translation term and is set equal to zero to
prevent any rigid body motion in the y-direction. Performing the integrations and satisfying

the above conditions gives the following displacements for a monoclinic layer.

—
= _| 5 p2 = _ Rig .2 = = ,
U=1RRBo+| Ry — 5 JR°Con+ RuisAo + RigRE, (6 — %)

66
hi inh A “9)
cosh A un sinh Ay n
1Hm - m .
ZZ(R11A -R13+R161]Lj)( ml—l—ﬁ-Bm/——-l—)pmsmpmf
ihm . iHm
mat = 2 . sinh 3
e = . = Rua
v=(R16R By + RygA, + RegRE, )e——ooq
(50)

cosh Liun _sinh Au,n

“jHm Hm .

z E (Righ? = Rag + Resd )| A T +Bm 5, |Pmsinpmé
T sinh ==

pewr R cosh —— > . 2
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5 5 =2
- = = RsgRie n’ = PR ¢
W=R13RBo'1+<R13‘_RT1—>RCoT+ R11——§'1— Ra‘—;—(é—fz)
66 66

R33
+ — AO” + R3GEO" R“Dof + G

z : z : sinh 1 cosh 4
HmN -ikmN
Hm . -iHm
cosh > sinh 2

m=1 j=1

1)

where
= . B _  RagRis \, € ~ R \.3C o
Go=R13RTo‘(R13—'RT‘ R‘go"*' Riy—%— IR 70(52—52)
\ 66 66/
§33 Ao 5 Eo

(52)

- — A Au
(Rwlj - l_:;a + R36Lj>(Am, tanh -—in — Bpjcoth —121 )pm COS Pmds

3.3 Solution for Orthotropic Layers

3.3.1 Governing Differential Equations

For orthotropic, transversely isotropic, and isotropic layers the solutions for the stresses and
displacements are obtained in exactly the same manner outlined above with two noteworthy
exceptions. The stress functions become uncoupled and in the case of transversely-isotropic
and isotropic layers, the characteristic equation has repeated roots. The out-of-plane shear

stress components are now uncoupled from the in-plane strain components as a result of the
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planes of material symmetry associated with these layers. Considering a state of generaiized

plane deformation in the xz-plane, the constitutive relationships can be written as:

tx Ri1 Riz 0 J(ou
&z > = R13 R33 0 Oz . (53)
Yxz 0 0 Rssl{*x
Yyz Ry O Tyz
oot =[5 el o

where R; are the reduced plane strain compliance terms, defined as follows:

Ry=5§,— S;fs’? ij=13
22
Ry =Sy (55)
Rss = Sss
Res = Seg

Again for the case of plane stress in the xz-plane the R, are replaced by §,, the transformed

compliance terms.

Following the same procedure as for the monoclinic layers, the two compatibility equations
which need to be satisfied result in two uncoupled partial differential equations in terms of the
stress functions.

L4¢=0

LY =0 (58)
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3.3.2 Solution for Stress Functions

The corresponding characteristic equations are:

Ry4A* = (2R43 + Rss)A2 + Ryy =0
Regd2 — R4y =0

For an orthotropic layer, the roots to these equations are:

(2R43 + Rss)i\/(mn + Rsg)* — 4Ry4Ra3

27 2Ry,

The expressions for the stress functions can now be written as:

8,

A c -
(¢ n) =—29- E24+—=y +'8—°n3 + ng(n) cos pmé

2

m=1

W(E.m) = Dol + Eqn + ) fim(n) €08 P

m=1

where the constant F, appearing in equation (29) is now zero and

- cosh dumn 8 sinh A
Gmin) mj Kbt my At
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(58)

(59)

(60)

(61)

(62)
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cosh daupm sinh Aaun

hm(n) =Ama Bmy———— (63)

3.3.3 Stresses

Substituting equations (60) and (61) into equation (11) gives the expressions for the in-plane
stress components; g, , o,, and 7, which are the same as for a monoclinic layer but with the

summation on j being irom 1to 2. The out-of-piane shear stresses for an orthotropic layer are:

o0
sinh 1 cosh 4
T{x = EO + laﬁ‘m Am—y"nl + B’"3 _;“ﬂ cos pmc (64)
3Hm . 3Hm
cosh sinh
m=1 2 2
00
cosh dyupn sinh Ay n )
Ton=—Do + E pm<Am3 —;3#:1 + Bma —A—al:n— sin pmé (69)
o cosh — sinh

For transversely isotropic or isotropic layers in the xz-plane, S,, = S, S, = Sy, Si = S, and

§, =25, — S‘-,,) . which results in the following equality:
2 2
(2R3 + Rgs)” — 4Ry =0 (66)

Therefore, the characteristic equation in equation (57} will have repeated roots and the sol-

ution for the function g,(n) becomes:
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cosh dyiumn sinh Ayupm

Im(n) = (Amy + Amn) ————— + Bm + Bmo) ————— (67)
Aipm L AbEm
cosh sinh
2 2
where
2R+ R
2 _ €N43 T Rss
'11 - 2R11 (68)

The expression for h_(n) is the same as given by equation (63) but with 2, =1 . Note, that for

an isotropic layer the root A, will also be equal to 1. The stresses can now be written as:

o0
R 2 2
=3 {Bo +Con+ Zlmmgm(n) €OS Pmé
m=1
00 (69)
sinh 4 cosh 4
+ 2221;1,,,(Am2 -——;”fi +8m ——;i"-’-’-> cos pmé}
cosh —2 sinh 1Em
m=1 2 2
00
o, = ﬂ{Ao - prngm(n) cos pmé} (70)
m=1
o0
2 .
Pmis sinh dyumn cosh Ayumn )
Toy = "’; ’V(A,m + Amon) —TL + (Bm1 + Bman) —Tﬂ— sin p¢
1Hm . 14m
— (. cosh 2 sinh 2 o
cosh 4 sinh 4 ’
+ ) o g S )
Sy . 1#m
cosh sinh
m=1 2 2
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and the equations for 7, and 7,, are the same as for an orthotropic layer given by equations

(64) and (65).

3.3.4 Displacements

The constitutive relationships in equations (53) and (54) and the strain/displacement equations

(3) are used to obtain the following integral expressions for the displacements.

_ ~ R

U= (RHRSG; + T an>d{ + Uy(n) (72)
V= J ResRg,dE + vo(n) (73)

__1{=z R

W= (R13Sa‘ + —F_?ﬂ— o’,7>dn + wo(&) (74)

The functions u,, v,, and w, are found by using equations (45) and (48), but the displacements

must now be compatible with:
Yxz = RssTxz (79)
Yyz = Raaty, (76)
The resulting displacements for an orthotropic layer are:
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-[r R11 (B, + Con) + RyaAoJ(& — %)

cosh Ajupm sinh A;umn )]
SOST A mT jm , (
E E Pm(R114] "R13)( L +Bmy——— |sinpmé
. jHm
cosh 2 sinh 3

m=1  j=1

- R
= RegRE & — —T;“— Don

o0

, 78)
-5- — sinh daumn cosh dapmn \ (
+ Rssla(Amg ——_}. L + Bm3 —_——_) “ sin pmf
3Hm : “3Hm
cosh 2 sinh 2

m=1

= n’ Ras iz Co 2
W=R13R(50’1+Co‘2—)+TAo'I+R RnT(f‘f)‘*'Go

00 2
— Ras sinh djumn cosh Ajumn
+ Pm R13lf__)._ Amj——i——+8mj——— cos pmé
/) jH4m ) lj“m
cosh 2 sinh 2

m=1 j=1

(79)

where

00 2
—_ §33 )Vl"m l}ﬂm (80)
+ Pmi Ryakj— -5 Am, tanh — - Bmcoth —5 ) cos Pmdo
Y]

The displacements for transversely isotropic and isotropic layers are:

7 = [Ry4R* (B, + Com) + RyaAoJ(€ — 1)

o0
- 5 = _
+ Z(Rnh — R13)Gm(mPm Sin pmé
et (81)
_ sinh 2 cosh 2
+2R4R ) 4 Amg 1T L B Em? ) sin pmt
: AMbim . A
cosh sinh
m=1 2 2
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- R
V= RuRE ——=-Don

= . 82)
- sinh A cosh A (
Aatm . A3upm
cosh sinh
M= 2
2 —
R R - C
W= R,gn(son +C, —"2—) + R Agn + ROy L (6~ ) + G,
OO
—_ R_33 sinh :11[1 n cosh 4 mn
+ me<R13’l1 - —)_1' )[(Am1 + Aman) ___l”:n__ + (Bm1 + Bmam) —# cos ,(Jé?lg
. m . m
ooy cosh - sinh ———
o0
_ R cosh 2 sinh A
+ RZ(Rm + %)(Amz -—;l:‘L" + By __;#_nm) COS ppé
4 cosh —=—m sinh Libm
m= 2 2
where
Iy Bo Co —33 Ao 35 co 2
Go= 13R(T'T) *TR 2 YRRump -8
o0
_ R,
+R Rz + —:;3— (Bma — Ama) €OS ppda
43 (84)
m=1
_ R. A A B p)
+ me<R1311 - /—313 >l:(Am1 - -2L2) tanh % - (B,,,1 - Tmz )coth 1:"’ ] COS P by
m=1

The above expressions for the in-plane stresses and displacements in orthotropic,
transversely-isotropic, and isotropic layers are identical to the expressions obtained if the

following plane strain assumptions are made:
(85)

5y=yxy=yyz=0

Then the out-of-pléne displacement, v, and the two out-of-plane shear stress components, T,y

and r,,, become zero and only one stress function is required in the formulation. Also, if the
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coupling terms in the generalized plane deformation analysis for a monoclinic layer are as-
sumed to be small, i.e., neglecting shear coupling effects, then the above orthotropic solution
becomes an approximate solution which assumes plane strain conditions for an off-axis ply.
In this case, the out-of-plane shear stresses are nonzero and are expressed in terms of the
in-plane stress components using equation (8), i.e.,
T fﬁf
- X
T Ru® (86)

_ Ri6oxx + Ra6922
Ty = —

Res

3.4 Solution for Laminated Beam

3.4.1 Determination of Unknown Constants

For a laminated beam containing N layers, the previously derived solutions for the stresses
and displacements are applied to each individual layer. For the k* layer, the six unknown
coefficients, A% and B%) in equations (28), {62), (63), and (67) are determined from the bound-
ary conditions on the top and bottom surfaces and from the continuity of stresses and dis-
placements at the interfaces. The applied tractions acting on the top surface and at the two
supports satisfy global equilibrium and are initially assumed to be uniformly distributed over

a distance d and expanded into an infinite series as follows (see Figure 4):

(&) =— -i-Z— <-§- + 2Zp—1m- sin p,;ﬂ COS ppmd; COS pmé> i=12 (87)
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where &, = V2 for three-point bending and 4, =—Z—, and where i equals 1 and 2 for the top and

bottom surfaces, respectively.

The boundary conditions are:

oPe. ) =22 10)

o0& — ) =22 1)
t8,(6, %) =0
& — ) =0
(& %) =0
e ~ %) =0

The interfacial continuity conditions are:

o'\ (e. =) = o8+, )
e, =) =14, )
&, = ) =15 e, )

g ) =a* ¢, v)

7, —vy = N )

w0, —va) = g, )
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(81)

(82)

(83

(94)

(89

(96)

(87)

(98)

(89)
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Applying these condtions results in a 6N x 6N system of linear algebraic equations, corre-
sponding to the infinite series part of the expressions, which is solved for the 6N unknown

constants. The nonseries terms in these conditions result in:

AW =_10 (100)
0¥ =00 (101)

fork = 1toNandina (4N -1) x { 4N - 1) system of linear algebraic equations in terms of
B®, C% |, E®, and G¥ ( the constant of integration obtained when integrating ¢, for k # N ).
There are 4N unknowns yet to be determined, therefore four more equations are needed.
Three equations are obtained by applying the traction free end-face boundary conditons at
= 0 or 1. Due to the symmetry of the problem only { = 0 is considered. These conditions
are approximately satisfied by requiring that the resultant normal force, resultant shear force,

and resultant moment vanish in the integral sense and not pointwise, i.e.,

N
%
ZJ‘ o¥%(0, n)dn =0 (102)
k=1 —%
N
Y
ZJ 0. n)an =0 (103)
k=1 —%
N
Ya
yj o420, m)n +7")dn = 0 (104)
/ |

Analytical Procedure 53



where ) is the nondimensional distance measured from the midpiane of the beam to the

center of the k ply (see Figure 5). Performing the integration results in:

M
Z<Bf,") + 225’3‘,‘,’,") =0 (105)
N M
Z(Ef,") + 225‘,,‘,") =0 (106)
k=1 m=1
N M M
Z(c“,“) + 1226‘,,‘," + 12708%) 4 247 E‘,,’,") =0 (107)
P M= m=1
where, for a monoclinic layer:
. Aul)
Bl = ZA}"’A,’?A,‘,’,‘} tanh " (108)
=1
2 200,00
EN = meL}“)Af,‘,‘} tanh —’2—— (109)
=1
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209,00
cw - s,‘,’,‘}(z}")ufg’coth ’2 —2> (110)

j=

For an orthotropic layer, 'B—ﬁ’ and C%® are the same as the monoclinic case but with the range

on the j index being from 1 to 2, and
EW =¥ (111)

m

For transversely isotropic and isctropic layers the expressicns beccme:

W00 goy o 209,00

Bl = %G AT tanh -+ % (lqk)pff,)colh —+ 2) (112)
A0 200,00 20 ®

CW = 40ul) 2% tanh =2 4 B 0ullcotn - — 2 (113)

and the value for E,?," is the same as an orthotropic layer given in equation (111). The last
equation is obtained by applying the rigid support condition to the N* layer. This corresponds

to using either equation (52), (80), or (84), depending on the type of layer.

3.4.2 Program Development

A program was written to perform the required numerical calculations in the above solution
procedure. The material properties, beam geometry, and ply dimensions are input along with
the desired loading. Once the reduced compliances are calculated, the characteristic roots
are determined. A check is made to make sure that the material properties are such that real

roots are obtained. The 6N x 6N system of linear equations is setup and solved for the 6N
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Figure 5. Local coordinate system,
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unknowns using an algorithm for unsymmetric banded coefficient matrices. If M terms are
needed in the infinite series for convergence, then this system is solved M times. Conver-
gence was based on the agreement between the applied traction on the top surface and the
resulting o, stress distribution along this same surface. Figure 6 shows the case for M equal
to 50 terms where the applied load is uniformly distributed over a distance d=0.02 in. and the
resulting o, distribution has been normalized by the applied stress. This figure demonstrates
that more terms are needed in the truncated series as the maximum value of o, underesti-
mates the applied value and exhibits an oscillating behavior. In Figure 7, 400 terms were used
in the series and a much better correlation with the applied loading is obtained. Similar re-
sults were also obtained for the bottom surface tractions at the two support locations. Once
these 6N unknowns are resolved the remaining 4N unknowns are found by solving the 4N x
4N system of linear equations. This system only needs to be solved once but does not have
the advantage of being assembled into a banded form. The resulting stress distributions and
displacement fields in the Cartesian coordinate system are then calculated either through the

thickness, along the span, or contours.

Verification of the program was carried out by checking global equilibrium at constant x
cross-sections and at constant z cross-sections. This included checking the resulting stresses
to see if they satisfied the applied boundary conditions. The solution was also verified to be
independent of material properties fcr an isotropic layer and in addition, the satisfaction of
interfacial stress and displacement continuity was checked. Additional confirmation was
achieved by comparing the results for an orthotropic beam with the results presented by
Whitney [14]. In the case of transversely-isotropic and isotropic layers, and for the generalized
plane deformation state i.n off-axis plies, the results were compared with an infinite beam
solution derived on the basis of the infinite Fourier transform technique [20]. In each of these

comparisons extremely good correiation was demonstrated.
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Figure 6. Fourier series representation of uniform load (M=50 terms).
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Figure 7. Fourler series representation of uniform load (M =400 terms).
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Chapter IV

Preliminary Analytical Results

4.1 Introduction

In order to ascertain the dependence of the local or sublaminae stress states on the beam
geometry, support conditions, and external tractions, the solution procedure developed in
Chapter 3 was applied to various laminated and unidirectional three-point bend specimens.
The principal specimen parameters studied were the fiber orientation, stacking sequence,
distance between the supports, and the type of external loading expressed in terms of the
boundary conditions. The effect of shear coupling resulting from the presence of off-axis layers
on the local stress state was also determined. As mentioned previously in the derivation, the
type of laminae can be either isotropic, transversely-isotropic in the xz-plane (see Figure 4),
orthotropic, or monoclinic, i.e., an off-axis ply in the xy-plane. The stacking sequence can in-
clude any combination of these and be either interspersed or grouped. ~Layers which have
fibers oriented parallel to the -x-axis. i.e., 0°, are orthotropic. A transversely-isotropic layer is

characterized by fibers running parallel to the y-axis, i.e., 90°. The distance between the
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supports is associated with the amount of beam overhang and also defines an aspect ratio

as the span length divided by the overall heigth of the beam, i.e., a/h.

In the development of the elasticity solution, a laminated beam subjected to three-point
bending was modelled by specifying applied tractions at the two support points which, along
with the loading on the top surface and the traction free end-face conditions, satisfied global
equilibrium. In the investigation of shear coupling effects, beams with no overhang are
studied and the analytical results from the elasticity solution are compared with Pagano’s [23]
solution for cylindrical bending. In the cylindricél bending problem, the boundary conditions
for three-point bending ares approximated and the resultant shear stress distributions on the
end faces of the beam maintain global equilibrium with the applied loading. The conse-

quences of expressing the boundary conditions in these two different ways is addressed.

4.2 Preliminary Analyses

4.2.1 Through the Thickness Distributions

The initial numerical calculations which employed the elasticity solution showed how the dif-
ferent in-plane stress components varied through the thickness of a unidirectional 0° beam.
The material system used for this analysis was AS4/3501-6 Graphite/Epoxy. The material

properties in the principal material directions were:
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E, = 21.0MSI

E, =15MsS/
Ey=1.5MS]
Gy =08 MS/
Gy3 =0.8 MS!/
Gy3 =0.4 MS!
vy =0.3

v43 =03

vy3 = 0.55

The beam had an overall length of L=3.2 inches and a height of h=0.16 inches. The applied
tractions on the top surface and at the supports were assumed to be uniformly distributed over
a small finite distance d which was taken to be equal to 0.02 in.. This was the same value used
by Whitney in his resuits using an elasticity solution for an orthotropic beam [14]. Distributions
for the bending stress, o,,, normalized by the applied stress, for four different aspect ratios:
a’/h=20.0, 10.0, 1.0, and 0.5 are shown in Figure 8. These results are for a x-location which
corresponds to the termination point of the uniformly distributed load. The maximum
compressive and tensile values occur on the top and bottom surfaces, respectively, and are
largest for the aspect ratio of 20.0 where bending effects govern the beam’s global response.
However, the magnitudes of the maximum tensile and compressive stresses are different and
the distribution is nonlinear. This differs from the classical beam theory results which predicts
a linear distribution and equal magnitudes of maximum compressive and tensile stresses.
For the four different aspect ratios considered, the magnitude of the maximum bending stress
predicted by the elasticity solution is approximately three times greater than the value ob-
tained from beam theory. However, this is a localized effect and at a sufficient distance away
from the concentrated load the classical beam theory results are recovered. For aspect ratios
less than or equal to 1.0, the bending stress is approximately zero except for areas located

close to the bottom surface and especialy the top surface.

The distribution through the thickness of the normal cohponent of stress, o, for the same

x-location as in Figure 8, normalized with respect to the applied stress, is presented in Figure
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"~ 9. The maximum value for this stress component occurs at the top surface and when the as-
pect ratio is less than or equal to 1.0 the effect of the bottom support changes the distribution
as seen in éigure 9. The magnitude of the maximum value when normalized by the applied
stress is equal to 0.5 at this x-location due to the Fourier series representation of a uniformly
distributed load. There is no significant change in the distribution through the thickness until
the distance between the supports becomes less than the height of the beam. The shear
stress, r,,, distribution through the thickness, normalized with respect to the applied stress,
behaves much in the same fashion as the normal stress o, at the given x-location. This is
demonstrated in Figure 10, which shows that the maximum value occurs below the top surface
and not at the midplane of the laminate as predicted from beam theory. Also, the distribution
is not parabolic as classical beam theory results indicate. However, as in the case for the
bending stress, the elasticity solution for t,, coincides with beam theory at a sufficient distance

away from the load point and the supports.

4.2.2 Shear Stress Contours

A better illustration of the local stresses in the vicinity of the applied load is needed because
siress components in this area vary rapidly in both the x and z directions. This was accom-
plished by plotting stress contours in the neighborhood of the applied load for different types
of beams. Of particular interest was the in-plane shear stress, t, , which exhibited a rapid
change in magnitude close to the top surface of the beam (see Figure 10). The four types of
laminates analyzed were: isotropic, 0° unidirectional, cross-ply, and quasi-isotropic. The
overail beam dimensions were the same as used in obtaining the previous results with the
span length-to-depth aspect ratio, a/h, being equal to 1.0. Also, the applied tractions were still
assumed to be uniformly distributed over a distance d =0.02 inches. Figure 11 shows the re-
sulting t,, stress contour for the case of an isotropic beam. The maximum value has a mag-

nitude of 14 psi for a unit applied load and is located at the point of discontinuity in the surface
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tractions and just below the top surface. For the same loading conditions, the solution for the
0° unidirectional beam predicts a larger maximum value for the shear stress r,, and shifts the
location of the maximum stress closer towards the upper surface of the beam, as shown in
Figure 12. This is in agreement with observed shear failures seen in previously published
experimental results [39]. The contour plot in Figure 13 shows the effect of placing a
transversely-isotropic, i.e., 90°, ply below a top layer which has a fiber orientation of 0°. n
comparison with the unidirectional 0° beam results, the magnitude and location of the maxi-
mum shear stress are relatively unaffected. For the case of a quasi-isotropic laminate having
a stacking sequence.of [0/+45/90]; . the magnitude of the maximum shear stress increases
slightly up to 20 ksi, as illustrated in Figure 14, but the location remains the same as in the

0° beam.

Another component of stress or, in this case, combination of stresses of concern is the maxi-
mum shear stress, t,,, in the xz-plane which acts on the plane bisecting the angle between
the two principal stresses. Some of the experimental results published in the literature (cf.
Reference [5]) have attributed one of the basic failure modes in beams to the location and
magnitude of the maximum shear stress. Figure 15 presents the maximum shear stress
contour for an isotropic beam which is subjected to a unit load and has an aspect ratio of 1.0.
This figure illustrates that the maximum shear stress contour is symmetric about the midspan
of the beam and the maximum contour is located approximately 0.01 inches below the top
surface. In comparison, Figure 16 shows that for a 0° unidirectional beam having the same
geometry and subjected to the same loading, the maximum shear stress occurs on the top
surface with very high gradients in the neighborhood of the applied load. Also, the magnitude
is aimost three times greater in' comparison with the results for the isotropic beam. The larger
magnitude is associated with the bending component of stress, o,, . having a much larger
value in the 0° composite beam when comparéd to an isotropic beam subjected to the same

loading.
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4.3 Shear Coupling Effects

To study the effect of shear coupling on the stress state in a laminated beam under thrée-point
bending, unidirectional beams which had different aspect ratios and different fiber orientations
were examined. First, the dependence of different stress components and their corresponding
maximum values, and the dependence of the midspan deflection on the beam geometry were
investigated for different aspect ratios. The aspect ratios considered for this study ranged
from a/h=3.125 up to 18.75. The beams were all unidirectional with no overhang and the
applied loading was uniformly distributed over a small finite distance, d=0.02 inches, as in the
preceding cases. The analysis was carried out for 0°, 30°, 60° , and 80° fiber orientations.
Second, the dependence of local stresses and deformations on the fiber orientation of a
unidirectional beam were determined. For this part of the analysis the smailest and the
largest aspect ratios, a’/h =3.125 and a/h =18.75, respectively, were considered. The beam’s
response was investigated using both the two-dimensional elasticity analysis developed in the
present study and by the cylindrical bending analysis discussed by Pagano [23]. As described
in the beginning of this chapter, the two approaches apply different boundary conditions to
satisfy global equilibrium. The two different analyses were performed in the shear-coupling
investigation to study the effect of different end-face boundary conditions on the results. The
effect of shear coupling in both of the above investigations was determined by calculating the
difference between the results based on plane strain assumptions and the generalized plane
deformation results. This was used as the determining factor because the piane strain as-
sumptions neglect the effect of any shear coupling by using an orthotropic soiution for the

beams having fibers oriented at an off-axis angle.
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4.3.1 Beam Deflection

' The maximum midplane deflection at the beam’s midspan is plotted as a function of aspect
"ratio in Figure 17 for the four different fiber orientations stated earlier. The deflections have
been normalized with respect to the classical beam theory resuits using the axial Young'’s
modulus of the beam, i.e., E,. For the off-axis beams, this required rotating the properties in
the principal material directions to the Cartesian xyz-coordinate system. Recalling Figure 4,
the aspect ratio of the beam is defined as the beam’s span length divided by the height, i.e.,
a/h. Figure 17 illustrates that the results for the generalized plane deformation and plane
strain analyses coincide for 0° and 80° fiber oriented beams. This is because the solution for
the two different strain states reduces to the same form in these two particular cases. For the
off-axis cases the plane strain analysis predicts larger displacements than the generalized
plane deformation solution. One reason the plane strain results are larger is because the
out-of-plane shearing strains, i.e., y, and y,, are assumed to be zero for a state of plane
strain. Consequently, a larger portion of the work input to the system is expended for the w
deflection, rather than strain energy stored due to the out-of-plane, i.e., y-direction, defor-
mations, and larger displacements in the z-direction are produced. Also, this figure shows
that the plane strain laminated beam results approach the classical beam theory value, i.e.,
a normalized disptacement equal to 1.0, for very high aspect ratios. This is true even for the
off-axis beams where the plane strain assumption has neglected any effect of shear coupling.
With a generalized plane deformation analysis, on the other hand, the deflection approaches
a constant value as the aspect ratio becomes large which is less than the beam theory value.
This constant value is different for the two off-axis fiber orientations considered. it should also
be noted that for aspect ratios as high as 12, the deflection in the 0° beam is still about 40%
iarger than the value predicted from classical beam theory which neglects shear defor-

mations.
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The percentage difference between generalized plane deformation and plane strain for the
two off-axis beams as a function of aspect ratio is plotted in Figure 18 and shows that the dif-
ference approaches a cohstant value as the aspect ratio of the beam increases. This behavior
is the same for both the laminated Seam analysis developed in the present study and the cy-
lindrical bending analysis of Pagand [23]. However, the effect of shear coupling is greater for
the cylindrical bending type of boundary conditions. The difference between generalized
plane deformation and plane strain is less for the smaller aspect ratios than for the larger
aspect ratios, i.e., the effect of shear coupling on the deflection is less severe in beams having
small aspect ratios. This is true because for smali aspect ratios the beam deflection is pri-
marily due to shear deformations in the xz-plane rather than the bending deformation, and
shear deformations in the xz-plane are not expected to be affected by the plane strain as-
sumptions. In addition, high aspect ratio beams have larger bending stresses than small as-
pect ratio beams, and the magnitude of the bending stress is significantly influenced by having

the fibers oriented at some off-axis angle.

Presented in Figure 19 are the differences, Aw, between the generalized plane deformation
results for the deflection and the corresponding plane strain results as a function of fiber ori-
entation, for two aspect ratios. For the small aspect ratio of a’/h=23.125, the maximum differ-
ence between generalized plane deformation and plane strain occurs at a fiber orientation of
approximately 40°. The maximum difference occurs for fibers oriented at approximately 35°
for the large aspect ratio of a/h=18.75. The large variatioh in the difference between gener-
alized plane deformation and plane strain as the angle of the fibers changes shows that the
effect of shear coupling on the midspan deflection strongly depends on the fiber orientation.
The greatest difference, 70%, is seen for an aspect ratio of a/h=18.75 and the cylindrical
bending analysis. Also, for the entire range of fiber angies, excluding 0° and 90°, the cylin-
drical bending results are affected more by shear coupling in comparison with the present
beam solution. Additionally, for the range of aspect ratios studied and all fiber orientations,

if shear coupling effects are not accounted for in the cylindrical bending and present laminated
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beam analyses then larger midspan beam deflections are predicted. One further note, the
present laminated beam solution predicts larger deflections than the cylindrical bending

analysis for all aspect ratios and fiber orientations considered.

4.3.2 Normal Stresses

The maximum compressive bending stress, o,,, which occurs on the top surface and at the
midspan of the beam, was normalized with respect to the classical beam theory result and
plotted as a function of aspect ratio in Figure 20. For the 30° and GO° beams it is seen that the
generalized plane deformation analysis predicts larger bending stresses when compared to
the plane strain results. This behavior is seen in Figure 20 to be true for the entire range of
aspect ratios considered and is opposite of what was seen in the midspan deflection. That is,
accounting for the shear coupling effects in off-axis beams increases the bending stress. Ex-
amining the curves for the off-axis beams and considering a given aspect ratio, the bending
stress predicted from the plane strain analysis is closer to the classical beam theory value,
i.e.. a normalized stress value of 1.0, than the result obtained from the generalized plane de-
formation analysis. Figure 21 shows the difference between generalized plane deformation
and plane strain for five of the stress components as a function of aspect ratio for the case
of a beam having fibers oriented at 30°. The same results but for a fiber orientation of 60° are
given in Figure 22. These two figures show that the difference between generalized plane
deformation and plane strain for o, is greater for smaller aspect ratios. For the range of as-
pect ratios considered, this difference is larger for the case of the 30° beam than for the 60°
beam. The difference between generalized plane deformation and plane strain for the bend-
ing stress is plotted versus the fiber angle in:Figure 23. For the two different aspect ratios,
a/h equa! to 18.75 and 3.125, the cylindrical bending results for the bending stress are less
than the values obtained from the present iaminated beam analysis for all fiber orientations.

For an aspect ratio of a/h =18.75, the maximum difference between generalized plane defor-
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mation and plane strain is for a fiber orientation of approximately 25°. For the case of a small

aspect ratio, a’/h =3.125, this maximum difference occurs at about 30°.

The maximum value of the out-of-plane normal component of stress, a,, , which is located on
the top surface of the beam, was normalized with respect to the applied stress, P/bd, and
plotted versus the aspect ratio in Figure 24. It is seen that this component of stress is larger
for the off-axis fiber oriented beams than for the 0° and 90° unidirectional beams for all aspect
ratios. For the case of a 0° fiber orientation, a,, is seen to be independent of the aspect ratio.
This figure also shows that the plane strain analysis predicts a larger o, stress component
than does generalized plane deformation for all aspect ratios for both the 30° and 60° beams,
i.e., neglecting shear coupling overestimates the o,, stress. For the off-axis fiber orientations
the magnitude of the out-of-plane normal stress increases as the aspect ratio of the beam in-
creases. This increase is seen to be much larger for the case of a beam with a fiber
orientaton of 60° when compared to a 30° beam. Figures 21 and 22 show that the difference
between generalized plane deformation and plane strain for o, increases as the aspect ratio
of the beam is increased. Accordingly, the g, stress component is affected more by shear
coupling in the higher aspect ratio beams. In Figure 25 the difference between the generalized
plane deformation result and the plane strain result for the out-of-plane normal stress is
plotted as a function of fiber orientation. Note that there is no significant difference between
the cylindrical bending results and the present laminated beam results. For the case of a
small aspect ratio, a’h =3.125, the plane strain analysis predicts larger values of o, as com-
pared to the generalized plane deformation analysis for fibers oriented at angles up to 65°.
For fiber orientations between 65° and 90° the generalized plane deformation analysis predicts
larger values. When the aspect ratio of the beam is large, i.e., a/h=18.75, the above result
is also true except now the change in sign of the difference occurs at a fiber orientation of
approximately 73°. For both of these aspect ratios the shear coupling effects on the compo-
nent of stress o,, are maximum for the unidirectional beams having a fiber orientation some-

where between 35° and 45°.
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4.3.3 Shear Stresses

The rﬁaximum in-plane shear stress, r,, was shown in Section 4.2.2 to be located below the
top surface of the beam and underneath the point of discontinuity of loading on the top sur-
face. This differs from the classical beam theory result, which as previously stated, predicts
a parabolic stress distribution through the thickness and a maximurm value located at the
midplane of the beam. Also, the expression for r,, derived from classical beam theory is in-
dependent of the x-coordinate, i.e., position along the span of the beam which differs from the
elasticity solution. The dependence of the maximum in-plane shear stress on the aspect ratio
of the beam is shown in Figure 26 for the four different fiber orientations. These maximum
values have been normalized with respect to the maximum value calculated from beam the-
ory. As was shown for the bending component of stress, generalized plane deformation pre-
dicts a larger component of shear stress in comparison to plane strain for all the different fiber
orientations and aspect ratios. Consequently, shear coupling effects produce an increase in
the in-plane component of shear stress. Also, this figure shows that the results for r_ from
the laminated beam analysis developed in the present study are larger than the classical
beam theory results and never approach the beam theory prediction even for very high aspect
ratios. It should be noted that the location dependence has been relaxed for the normalization
used in this figure. In other words, the maximum beam theory value is not at the same lo-
cation as the maximum shear stress value determined from the laminated beam analysis.
Referring back to Figures 21 and 22, the difference between generalized plane deformation
and plane strain for =, and a given fiber orientation does not depend strongly on the aspect
ratio of the beam. This difference is approximately constant up to an aspect ratio of 10, then
slightly increases as the aspect ratio is increased. The effect of fiber orientation on the dif-
ference between the in-plane shear stresses for generalized plane deformation and plane
strain is demonstrated in Figure 27. This figure also shows that this difference, i.e., the effect

of shear coupling, is greater for the present laminated beam analysis than for the case of cy-
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lindrical bending when the beam has a large aspect ratio. For beams having a small aspect

ratio, the cylindrical bending analysis predicts larger shear coupling effects.

For the 0° and 90° unidirectional beams the out-of-plane shear stresses, 7,, and 7, are zero. .
Recall that for these types of beams the generalized plane deformation analysis is reduced
to the form of a plane strain analysis. For the case of an off-axis fiber oriented beam, the
maximum valu'e for ,, is located on the top surface of the beam. The maximum value for the
other out-of-plane shear stress, 1, is located beneath the top surface near the point of dis-
continuity in the applied loading as in the case of the in-plane shear, r,,. Since the component
of shear stress t,, is not a quantity normally associated with classical beam theory, the results
for the maximum values have been normalized with respect to the applied loading and are
shown as a function of beam aspect ratio in Figure 28. This figure shows that for the two dif-
ferent off-axis orientations and for all aspect ratios the plane strain analysis predicts larger
values for t,, than does the generalized plane deformation. Therefore, if shear coupling ef-
fects are neglected then the magnitudes for =, will be over estimated. Also, the magnitude
of the maximum value of r, increases as the aspect ratio of the beam increases. For the
plane strain results this increase is larger for the case of a beam having a fiber orientation
of 30° when compared to the 60° beam. This increase is smaller when the generalized plane
deformation results are considered. The difference between generalized plane deformation
and plane strain as a function of the aspect ratio for t,, is similar in behavior to that of the
out-of-plane normal stress, o,, as shown in Figures 21 and 22. In Figure 29 the difference be-
tween generalized plane deformation and plane strain for r,, is plotted versus the fiber angle.
Similar conclusions which were drawn from Figure 27 concerning the out-of-plane normal

stress a,, apply also to 1, as seen from Figure 29.

The other out-of-plane component of shear stress, 1, is much smaller in magnitude when
compared to the other twc shear stresses. Its maximum value was normalized with respect
to the applied stress and plotted in Figure 30 for the two off-axis beams as a function of aspect

ratio. The magnitude of ¢, decreases slightly as the aspect ratio of the beam is increased.
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For both the 30° and 60° beams the generalized plane deformation analysis predicts larger
values than plane strain for all aspect ratios. In reference to Figures 21 and 22, the difference
between generalized plane deformation and plane strain for 1,, i5 seen to increase as the
beam aspect ratio is increased. Figure 31 shows how this difference between generalized
plane deformation and plane strain depends on the fiber orientation for two different aspect
ratios. For both the large aspect ratio and the smali aspect ratio, the present laminated beam
analysis predicts a smaller difference than the cylindrical bending analysis for all fiber orien-
tations. For the small aspect ratio and for fiber orientations greater than about 68¢, the plane
strain analysis gives larger values of 7,, than does generalized plane deformation. Similar
observations hold for the large aspect ratio, with the plane strain values being greater than

the generalized plane deformation values for angles greater than approximately 73°.

4.4 Stacking Sequence Effects

As outlined in the introductory comments of this chaper, one phase of the analytical investi-
gation consisted of determining stacking sequence effects on the local stress state. Conse-
quently, supplementary studies were conducted for a series of quasi-isotropic laminated
beams to ascertain the effects of grouping plies together. The lamination sequences were:
(0/45/ — 45/S0]s , [04/45,/ — 45¢/90,]5, [0/60/ — 60],s, and [04/60,/ — 604]s. The [0/+45/90] se-
ries of beams had an overall length L equal to 4.8 inches and height h of 0.24 inches, whereas,
the [0/160] beams were 3.6 inches in length and had a height of 0.18 inches. In accordance
with the earlier investigations in Section 4.2, the overall lengths were chosen such that when
the supports were located at the ends of the beam the span length-to-depth aspect ratio was
equal to 20.0. The different dimensions were a direct consequence of maintainingrthe same
aspect ratio between the two series of beams for the purpose of making comparisons.

Through-the-thickness stress distributions were generated at an x-location which corre-
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sponded to the point of discontinuity in the applied traction on the top surface and compar-
isons were made between the different laminates. Also, in accordance with the earlier
investigations, four different a/h aspect ratios were considered, i.e., 20.0, 10.0, 1.0, 0.5. For the
three components of stress which are continuous across the interfaces, i.e., 05, T, 7y, there
were no significant changes in the distribution through the thickness between the different
aspect ratios until the a/h aspect ratio became less than or equal to 1.0. The opposite was
seen for the stress components in the xy-plane (Figure 4), i.e., 0. 0, 7,,, which are discon-
tinuous stress components, where the distribution through the thickness strongly depended

on the aspect ratio when it was greater than 1.0.

4.4.1 Discontinuous Interfacial Stresses

Comparisons between the bending stress, o, distribution through-the-thickness, normalized
by the applied stress, for the grouped and interspersed [0/45/-45/90) laminates are shown in
Figures 32 and 33, for beam aspect ratios of a/h =20.0 and 1.0, respectively. In the case of the
larger aspect ratio, the maximum compressive bending stress located at the top surface is
reduced when the plies are grouped together. In addition, grouping the plies together reduces
the magnitude of the bending stress in the off-axis plies. Conversely, when the aspect ratio
equals 1.0 the magnitude is approximately the same between the grouped laminate and the
interspersed laminate. Similar behavior was seen for the [0/60/-60} laminates. Figure 34
shows the maximum compressive bending stress, normalized with respect to the applied
stress, as a function of beam aspect ratio for the four different laminates. For aspect ratios
which are characteristic of slender beams, i.e., a/h > 10, the maximum compressive bending
stress strongly depends on the stacking sequence and the ply thickness. Also, the quasi-
isotropic laminates containing +60 plies have a larger bending stress in comparison to the

+45 cases.

Preliminary Analytical Results 97



+ 74 s
1 6/h=20.0 Vi
- V /
0.080 +
{ [
1 /
0.040 —+
£ 0.000
~ {
4 — — . [0 /45 /-45 /90
~0.040 l 067457 7%/ 20%6ls
4 ———— [0/45/-45/90
1 (0/45/-45/ Jes
T |
—-0.080 +
/ ' :
=0.120 et
-8 -6 -4 -2 0] 2 4 6 8

o /(P/bd)

Figure 32.  Through-the-thickness distribution for Oy Normalized by the applled stress for
a/h=20.0.

Preliminary Analytical Resuits



0.120

\

A
I

0.080 l—

T a/h=1.0 gf'
7
-
-
u|
»|

0.040 +

DN L

£ 0.000
N +
+ -_— 0 /45 /—45 /9C
—-0.040 4+ [6/ 6/ 6/ G]S
4 0/45/—45/90
_ (0/45/-45/90]
—-0.080 +
4 /
-0.120 4——+—+—+——+—+—F+—t—+—+——+——+—+—+—
-2 -1 0 1 2
o P/bd
L/ (P/53)

Figure 33.  Through-the-thickness distribution for s, normalized by the applied stress for
a/h=1.0.

Preliminary Analytical Results



o,/ (P/bd)
[#)} o
1 1 L 1 I 1 i L ] I
+ ———t —
\o\p\

A
o
4T A
1 o
1 O—O [0 /45 /-45 /90
T [s/ s/ 5/ G]S
2 —:'. e—eo [0/45/-45/90]65
] A—A [0 /60 /-60
4 fo./ &/ 60
T A — A [0/60/-60
1 {o/80/ ]ss
0 -ttt
0 S 10 15 20 25

Figure 34. Maximum compressive bending stress normalized by the applied stress as a function
of aspect ratio,

Preliminary Analytical Results 100



The results for the out-of-plane normal stress,'aw, normalized by the applied stress, for the
grouped and interspersed [0/45/-45/90] laminates having an aspect ratio, a’/h =20.0, are shown
in Figure 35. For an aspect ratio equal to 1.0 the results are presented in Figure 36. Figures
35 and 36 show that grouping plies together significantly reduces the magnitude of o,, in the
off-axis plies. This was also true for the [0/60/-60] laminates analyzed. The maximum value
of o,, is located at the first interface below the top surface for both the grouped and inter-
spersed laminates and for a/h > 1.0. The magnitudes of o,,, normalized by the applied stress,
at the location of the first interface in the four different laminates are plotted in Figure 37 as
a function of the aspect ratio. The results for the [0/60/-60] laminates are slightly smaller in
comparison to the [0/45/-45/90] results in both the grouped and interspersed cases. This fig-
ure also demonstrates that grouping the plies together significantly reduces the magnitude
of o,, at the location corresponding to the first interface, especially for the larger aspect ratios.
As the aspect ratio of the beam becomes small, the effects of the ply thickness and the
stacking sequence are reduced. Similar conclusions can be drawn from Figures 38, 39, and

40, where the results are presented for the r,, component of stress.

4.4.2 Continuous Interfacial Stresses

A comparison of the results for the through-the-thickness distribution of ¢, normalized by the
applied stress, for the grouped laminates with [0/45/-45/90] and {0/60/-60] stacking sequences
are presented in Figure 41. The results shown are at an x-location which corresponds to the
point of discontinuity in the applied load on the top surface. For this component of stress there
was not a significant difference between the grouped and interspersed cases. The results for
the beams having an aspect ratio of 0.5 show the effect of the applied tractions located at the
bottom surface supports. In both the large aspect ratio case, a/h =200, and the small case,
a/h=0.5, the local effects of the applied traction»on the top surface diminish more rapidly in

the [0/45/-45/90] laminates in comparison to the |0/60/-60} laminates.
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As previously mentioned, for the given x-location the through the thickness distributions for
the two shear ;tress components, T, 7, are not a strong function of the aspect ratio until this
ratio becomes less than 1.0. Even for cases when a’h < 1.0, the only effect is in the form of
a very localized disturbance in the neighborhood of the bottom support. The through the
thickness distributions for t,,, normalized with respect to the applied stress, in the four differ-
ent types of laminates are compared in Figure 42 for an aspect ratio equal to 20.0. The dis-
tributions are for an x-location which corresponds to the point of discontinuity in the applied
loading. Similar results are shown in Figure 43 for the other component of shear stress, i.e.,

7. The maximum value for 1 is shown in Figure 42 to be located directly beneath the top

-
surface of the beam. The magnitude of 7, is slightly reduced by grouping the plies together
and is smaller in the [0/45/-45/90] laminates. Figure 43 shows that the grouped laminates
have a significantly smaller maximum value for r,, in comparison to the interspersed lami-

nates. Also, the magnitude for r, is smaller in the [0/45/-45/90] laminates compared to the

[0/60/-60] case.

4.5 Closing Comments

The analytical results presented in this chapter were obtained using the elasticity solution
developed in Chapter 3 for analyzing various laminated beams. The local stress states were
determined for variéus beam geometries subjected to three-point bend loading conditions.
The preliminary analyses investigated the geometric, shear coupling, and stac_:king sequence
effects on the stress distributions. Significant effects were seen in the displacements and the
local stresses depending on the fiber orientation, span length-to-depth aspect ratio, and

whether or not a grouped or interspersed stacking sequence was used.
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It was shown that for a unidirectional 0° beam the bending component of stress, o,,, largely
depended on the distance between the supports, whereas, the normal component of stress,
o, and the in-plane shear stress, 1, were insensitive to this distance until it became less
than the overall height of the beam. The location and magnitude of the maximum shear
stress, 1, , was demonstrated to be a function of the stacking sequence or type of beam. The
location of the maximum shear stress was shown to be below the top surface and associated
with very high gradients in the vicinity of the concentrated load. The maximum shear stress
contour for a 0° unidirectional beam was shifted closer to the top surface and had a larger
magnitude when compared to an isotropic beam solution. In considering a cross-ply beam, the
80° ply beneath the top 0° ply had a negligible effect on the magnitude and location of the
maximum shear stress. For the quasi-isotropic case, the 45° layer produced a slight increase

in the magnitude of the maximum shear stress.

When unidirectional laminates consisting of monoclinic layers were considered, i.e., off-axis
plies, the results presented showed significant shear coupling effects for a wide range of off-
axis fiber orientations. The generalized plane deformation analysis predicted smaller
midspan beam deflections in comparison to the plane strain predictions. Consequently, a
plane strain analysis which neglects shear coupling effects due to the presence of off-axis
layers, makes the beam appear to be softer. These effects decreased as the span length-to-
depth aspect ratio of the beam decreased. As mentioned previously, for this type of layer
none of the stress components vanished and it was shown that the maximum out-of-plane
shear stress, t,,, had a larger magnitude than its in-plane counterpart, r,. Also, an increase
in the bending stress, o,,, was seen as a result of shear coupling in off-axis beams. These
results clearly demonstrate the importance of including shear coupling effects in the analysis

by performing the more complicated generalized piane deformation analysis.

The effect of stacking seguence on the local stress state was analyzed by considering grouped
and interspersed layers in laminated beams having either a [0/+45/90] or [0/+60] basic ply

grouping. The components of stress which are continuous across the interfaces of a lami-
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nated beam were seen to be independent of the span Iength-to-depth aspect ratio when this
ratio was greater than 1.0 and for an x-location which corresponded to the point of disconti-
nuity in the applied loading. Conversely, the distribution of the discontinuous stresses in the
beam strongly depended on the span length-to-depth aspect ratio. When comparing the stress
distributions in a grouped stacking sequence beam to those in an interspersed beam, the ef-
fect of grouping layers of equal fiber orientation together was demonstrated by a reduction in
the maximum bending stress and a reduction in the magnitude of 7, in the off-axis plies.
However, these grouping effects on the stress state decreased as the span length-to-depth

aspect ratio of the beam was made smaller.

As a result of the preliminary analytical investigation, the local stress dependencies described
above indicated that different lamination sequences would require testing in the experimental
phase of the study. The testing of three-point bend specimens having similar geometries to
the beams analyzed in this chapter is an essential part of describing and understanding
damage in laminated composite beams. Once the type and location of damage has been
identified, and the corresponding applied load at initiation of damage measured, the results

can be correlated with the theoretical predictions for the local stress states.
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Chapter V

Experimental Investigation

3.1 Testing Program

The analytical procedure developed in Chapter 3 has the capability of predicting the local
stress distributions in a laminated beam subjected to surface tractions which are represented
by a Fourier series expansion. Results were presented in Chapter 4 for the case of a load
uniformly distributed over a small finite distance at the midspan. The reactions at the two
support points were also modelled by a uniformly distributed load. To investigate the damage
initiation and damage mode in laminated beams, the local stress distributions need to be
correlated with the predominant form of initial damage observed for a given beam geometry.
This involves determining components of stress or combinations of stresses that are associ-

ated with the experimentally observed damage states. Therefore, the second phase of the

point bend specimens to investigate the damage initiation, forms of damage, and effects of the

initial damage on the ultimate failure. Effects of different geometries and lamination param-
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eters on the damage initiation load and final failure load as well as damage modes were in-
vestigated. Also, beam geometries which experienced extensive damage before the actual
ultimate failure occurred were identified. In these cases, the actual stresses in the beams at
failure may drastically differ from the predicted stresses using a linear elastic analysis. Then
the analytical approach used in the correlation study would not be valid for computing the lo-

cal stress states at load levels greater than the damage initiation load.

The test matrix for the experimental investigation contained eight different quasi-isotropic
stacking sequences, one cross-ply Iaminéte, and one unidirectional lay-up, as shown in Table
1 This matrix was based on the consideration of possible effects of lamination sequence,
beam thickness, distance between support points, and layer thickness on the beam’s re-
sponse. Thus, the test matrix was classified into four groups aimed towards studying these
effects. The first classification group considered different classes of laminates and consisted
of the 0° unidirectional beams, the cross-ply beams, and the thickest interspersed quasi-
isotropic laminates, i.e., [0/+45/90]),5 and [0/+60];s. The second group included the quasi-
isotropic laminates with the total number of layers being different and addressed the effects
of the beam’s thickness on the response. In reference to Table 1, the second group was
comprised of the [0/£45/90],s, [0/+45/90],ss. [0/£45/90]s . [0/460],ss . [0/460],s. and
[0/+60],s laminates. The effects of stacking sequence and layer thickness were studied by
considering interspersed and grouped stacking sequences. Therefore, group three contained
the following laminates: [0/£45/90),s . [Os/45s/ — 455/90s]ss. [0/460],s. and [0g/60s/ — 60s];s.
The fourth group actually encompassed the entire test matrix and pertained to the investi-

gation of span length effects on the beam’s response.

The overall beam dimensions were 6.0 inches in length, 1.0 inch wide, and had a thickness
which corresponded to the total number of plies. The beams were tested using four different
distances between supports, e.g., 5.5, 3.0, 1.0, and 0.5 inches. This produced a range of aspect
ratios, a’h (see Figure 4, Chapter 3), from approximately 0.5 up to 25.0. Note that the ASTM

standard short beam shear test recommends a span length-to-depth ratio of 5.0. Two tests
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were conducted for each configuration, one monotonically up to the initiation of damage fol-
lowed by unloading and one monotonically up to ultimate failure. The initiation of damage
was experimentally defined to be either the point at which the first drop in load was experi-
enced or when the first audible sound of cracking was heard. Only the ultimate failure test

was conducted for the [(0/90),/(30/0),],s cross-ply laminated beams.

The beam specimens were cut from 8.0 x 12.0 inch panels of AS4/3501-6 Graphite/Epoxy. The
laminates were layed-up by the Composites Model and Development Section (CMDS) at NASA
Langiey Research Center. Prior to machining the specimens, all panels were C-scanned by
the Materials Processing and Development Section (MPDS) at NASA Langley Research Center
and were judged to be satisfactory. It should be noted that of the 10 panels processed, the
[0s/454/ — 45,/90,]s and [0/+60],s laminates showed the highest percentage of voids. All
specimens were measured using a vernier caliper to determine the final dimensions after
machining. Five measurements were taken across the width and the thickness, and their av-

erage values documented.

The identification of damage in the specimens and failure modes was based on the data col-
lected during the testing and post-test inspection of the specimens using an optical micro-
scope. The magnitude of through-the-thickness deformation plus the indentation under the
load was experimentally determined by calculating the difference between the top and bottom
surface displacements. This will be discussed in more detail later on in this chapter. The
damage was documented by taking photomicrographs of the edges of the specimens in order
to illustrate the type and location of damage. A Nikon SMZ-10 stereoscopic microscope was
used in conjunction with a Nikon Microflex HFX photomicrographic attachfnent and Polaroid

4 X 5 land film.

Experimental Investigation 116



Table 1. Test Matrix

Stacking h a,/h a,/h ayh a/h
Sequence {in)
[0/445/90] s 1.00 5.50 3.00 1.00 0.50
[0s/45s/ — 45¢/905]ss 1.00 5.50 3.00 1.00 0.50
[0/+45/90]ss 0.60 9.17 5.00 1.67 0.83
[0/445/90]s 0.24 22,92 12.5 4.17 2.08
[0/460],4s 1.05 5.24 2.86 0.95 0.48
[04/60s/ — 605];s 1.05 524 - 286 0.95 0.48
[0/£60] s 0.60 9.17 5.00 1.67 0.83
[0/£60],s 0.24 22.92 12.5 417 2.08
[04s0] 0.75 7.33 4.00 1.33 0.67
[(0/90)4/(30/0)1ss 0.96 5.73 3.12 1.04 0.52

5.2 Testing Procedure

Based on the preliminary analytical results presented in Chapter 4, the various specimen ge-
ometries outlined in the above test matrix were expected to produce different forms of dam-
age. Testing such a wide range of geometries was facilitated by designing a test fixture for
three-point bending. The key features of the test fixture were varying support locations and
easy interchangability of contact radii. A slotted base plate was used for mounting and posi-
tioning the two bottom surface supports. The supports were located equidistance from the
centerline of the load point and secured in place using recessed bolts on the bottom of the
base plate. A one inch diameter hole was drilled in the center of the base plate for insertion
of a DCDT dis;;Iacement transducer for the measurement of the bottom surface displacement
relative to the support points. The transducer was held in place with a set-screw. The loading

nose was attached to a 1% inch by 2 inch rectangular steel bar using four Y inch diameter
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boits. The two supports and loading nose had a Y inch radius, were 1% inches wide, and
were measured to have a Rockwell hardness of 20 on the C-scale. The photograph in Figure

44 shows the details of the fixture and a typical beam specimen geometry.

The rectangular steel bar was mounted between two L-shaped gripping plates. The gripping
plates were part of the crosshead arrangement on a MTS 100 Kip hydraulic test stand used for
conducting the tests. The set-up for the testing equipment, test fixture, and data acquisition
are shown in Figure 45. All of the specimens were tested with the 100 kip MTS Controller on
| stroke control and with the function generator ramp rate set at 1.3 mm/min. This is the loading
rate recommended by the ASTM D 2344-84 standard for short beam shear tests. The load and
stroke ranges for each test depended on the beam geometry of the particular specimen being

tested.

The experimentally collected data consisted of the applied load, and both top surface and
bottom surface beam displacements. The bottom displacement was measured by the DCDT
displacement transducer mounted on the base plate as previously described (see Figure 44).
Transducers having different ranges were used depending on the distance between the sup-
port points. For the specimens tested with a span length of 5.5 inches and 3.0 inches a
transducer having + 0.100 inches of travel was employed. For a 1.0 inch span length a
transducer having a range of + 0.050 inch was used because the size of the + 0.100 inch
transducer body was greater than the thickness of the base plate. Consequently, the supports
could not be placed an inch apart without interfering with the transducer body. When the span
length equaled 0.5 inches no transducer could be placed between the support points to
measure bottom surface displacements. When a transducer was used it was in conjunction
with a DCDT Summing Amplifier. Initially, it was assumed that the compliance of the machine
and test fixture were negligible and that the stroke motion would accurately represent the top
displacement. However, when testing specimens with small aspect ratios, the resulting smal!
order of magnitude beam deflections were such that the compliance or so-called "lost motion”

of the system had to be properly taken into account.
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Figure 44. Three-point bend test fixture.
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Figure 45. Testing equipment and experimental set-up.
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Two different data acquisition units were used over the course of the testing program for col-
lecting and storing the experimental data. Data from the preliminary tests was recorded using
a Hewlett-Packard 3497A data acquisition unit and a Hewlett-Packard 9134/9826 computer.
The data was subsequently converted to an IBM format for post-processing. The remaining
tests utilized a Nicolet 4094 Digital Oscilloscope, XF-44 Disk Drive, and 4563 Plug-in Controls
as shown in the center portion of Figure 45. The voltage versus time output format of the
Nicolet system was converted to a time based load versus displacement format using the
Vu-Point software package. The data was then writen to an ASCIll file for further post-

processing.

5.3 Results

5.3.1 Displacements

The coliected experimental data was post-processed in order to generate applied load versus
beam displacement and load versus local deformation, i.e., indentation curves. As discussed
in the previous section, two displacement measurements were taken, one from a DCDT dis-
placement transducer and one from the stroke of the MTS testing machine. However, the
measured displacements cannot be directly compared with the deformations predicted from
the analytical solution. The transducer reading, for example, contained the summation of
three components of displacement; the amount of bottom surface beam deflection at the
midspan, the amount of indentation at the supports, and an intangible gquantity related to the
test fixture deformation. The summation of five displacement gquantities was possibly re-

corded for the stroke measurement; the amount of indentation under the loading nose, the
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indentation at the support points, the “lost motion” due to the machine compliance, fixture

related deformations, plus the beam deflection.

In order to compare the displacements calculated from the elasticity solution with the exper-
imentally measured deformations one needs to isolate the part of the calculated displace-
ments which corresponds to the experimentally measured quantities. Different components
of the experimentally measured displacements at the top and bottom beam surfaces, i.e.,
stroke (As) and DCDT (4,), respectively, are shown in Figure 46 and can be written math-

ematically as:
A$=6s+6~+6m+wb (1)
AD=63+6G+ Wb (2)

where, as previously discussed, é, = support indentation, §, = nose indentation, §,, = ma-
chine compliance plus fixture related deformations, 64 = fixture related deformations, and W,

= bottom surface beam deflection. Subtracting equation (2) from equation (1) results in:
As—Ap=dy+6y—dy4 (3
Rewriting this equation:
(As=dm) = (8p—65) =8y (4)

The amount of top surface indentation and deformation can now be found by taking the dif-
ference between the stroke and DCDT readings which have been adjusted for the system re-
lated motion by subtracting the machine compliance and fixture related deformations,

respectively, i.e., equation (4).

The combined compliance of the MTS load frame, the crosshead system which included the
L-shaped gripping plates, and the loading nose attached to the rectangular steel bar was ex-

perimentally determined by compressing the loading nose directly on the ram. To prevent

Experimental Investigation 122



:64._
— -

Figure 46. Measured displacement quantities in three-point bend specimen.
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any damage to the ram’s surface and to account for the base piate appendage of the test fix-
ture a one inch steel plate was actually used as the contacting surface. The only remaining
unaccounted for parts were the two supports. Consequently, a special three-point bend test
was conducted to include any support related displacements. A block specimen was ma-
chined, from 4130 steel heat treated to a Rockwell hardness of 40, to an overall length L=2.0
inches, a height of 2.0 inches, and a width of 1.0 inch. The block was then subjected to
three-point bend loading conditions with a span length of 1.5 inches. For this geometry, and
recalling that the supports and loading nose only had a hardness of 20, there will be negligible
bottom surface beam deflection and no indentation at the contact points. Therefore, any
measured displacement will be related to motions in the test equipment and fixture them-
selves and not associated with any beam response. Figure 47 shows how the measured
stroke motion (4,,) and displacement transducer reading (64) varied as a function of the applied
load. When the load P was less than 13 kips an empirical relationship which fits the exper-

imental data is given by:

dg = —5.3578x10"> + 1.7268x107°P — 4.5208x10 —4P? + 6.4143x10~5P> — 4.3591x10~p*
+1.1273x107p%

- _ _ (5)
Sm = 1.8374x107° + 1.0906x107%P — 4.5661x10~3P + 1.1926x10~3P° — 1.8566x10~4P*
+ 1.6756x10™°P° — 8.0416x10~7P® + 1.5818x10~2p7
and when P was greater than 13 kips this relationship becomes:
89 =13.0021x10"> + 1.1486x10°P + 8.5327x107%P2 — 1.6137x10~7P> 6

= 8.1801x107" + 1.0855x10™°P — 1.6512x10~°P2 + 2.0153x10~" P>

The two relationships given by equations (5) and (6) were used to calculate the displacements
unrelated to beam bending as a function of load intensity, which were then subtracted from
the stroke and trénsducer measurements. Consequently, the displacements which are pre-
sented in Appendix A, Figures 89 through 128, include the beam deflection plus unknown
amounts of indentation plus local deformations at the two supports and under the loading

nose. The load-displacement results are presented for both the damage initiation test and the
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ultimate failure test. All of the figures, 83-128, illustrate an excellent repeatability in the curves

for the results of the two tasts conducted with identical beam geometries.

The top surface displacements in the first four figures of Appendix A, 89-92 , are shown in
Figure 48 and demonstrate that the 0° unidirectional beams have a nonlinear load-
displacement relationshirp for the four aspect ratios tested. In the smaller aspect ratio beams
the nonlinear behavior is not thought to be structure related but to be a result of nonlinear
contact effects and matrix nonlinearity in the vicinity of the loading nose. When the specimens
have a larger aspect ratio, the nonlinearity is thought to be related to the shear deformations
and the material nonlinearity due to the softening behavior of graphite/epoxy under axial
compression. For the large aspect ratio beams the response is governed by bending effects
and compressive bending stresses exist above the midplane of the beam. Consequently, the
softening behavior generally observed in uniaxial compression specimens is also seen in

beam specimens due to the compressive bending stresses.

The results presented in Figures 93-128 of Appendix A are the load-displacement curves for
the cross-ply and quasi-isotropic beams. All of these curves demonstrate a linear load-
displacement relationship up to the initiation of damage, disregarding the initial nonlinear
portion of the curves. The only exceptions to this type of behavior are seen for the 1.0 inch
span length cross-ply beam, and the 0.5 inch span length [0/+45/90],s and [0/+60],0s speci-
mens, in Figures 95, 108, and 122, respectively. Recall that the initiation of damage was de-
fined to occur when the applied loading first experiences a reduction in magnitude. The initial
nonlinear portion of the curves is believed to be a result of very localized contact related

deformations and unrelated to the beam’s global response.

The applied load is plotted as a function of the indentation calculated from equation (4), dy, for
all tested laminates in Figures 129 through 137 of Appendix A. The results tend to show the
local indentation at the top surface to be independent of the span length and the stacking se-

quence up until damage has been initiated. The indentation at the supports, 4,, can be ex-
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Figure 47. . Load versus experimental displacements for a 4130 steel beam having an aspect ratlo
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pressed in terms of the indentation at the top surface in the following manner. Assuming a
Hertzian type of pressure distribution at the contact points and a spherical indenter, the in-
dentation under the load nose, é,, will be proportional to the contact force raised to the two-

thirds power (Love [10]), i.e.,
Sy = kPP (M

where the proportionality constant, k,, depends on the material system of the beam. Using
equation (7), the unknown indentation at the support points, 6, , can be expressed in terms
of the top surface indentation, 4,. Since the force at the supports is equal to one half of the

applied load on the top surface, the indentation at the supports, 4, is:

Ss=k( 5 )= (3 ) en ®)

For the case of a cylindrical indenter, Sankar [37] showed that the indentation will be propor-
tional to the contact force raised to the one-half power. Therefore, for three-point bend ex-

periments the 2/3 power in equations (7) and (8) should be replaced by 1/2.

5.3.2 Ultimate Failure Loads

Figures 49 through 51 show the dependence of the maximum load on the span length-to-depth
aspect ratio and the type of laminate. As previously discussed in this chapter, the test matrix
was classified into four different groups. The results for the first group are presented in Figure »
49 and illustrate the ultimate load as a function of aspect ratin for different classes of lami-
nates. When comparing the cross-ply results to the unidirectional 0° results it is observed that
the cross-ply laminates have a gi’eater load carrying capacity for the smaller aspect ratios but
have a lower ultimate load than the unidirectional beam results as the aspect ratio becomes

large. The dependence of the ultimate load on the a/h aspect ratio for the two quasi-isotropic
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laminates shown in Figure 49, i.e., [0/+45/90],ss and [0/+60]ss. is similar. For the larger as-
pect ratios the two quasi-isotropic stacking sequences have ultimate failure loads which are
comparable to the cross-ply beam results. However, as the span length-to-depth aspect ratio
is reduced the quasi-isotropic beams have larger ultimate |6ads in comparison to both the 0°

unidirectional and cross-ply beam results.

The second group of beams was classified on the premise of studying beam thickness effects
and the results for the ultimate load as a function of aspect ratio are shown in Figure 50.
According to the test matrix given in Table 1, the {0/+45/90] and [0/+60] repetitive ply
groupings were used to lay-up laminated beams having three different overail thicknesses of
1,00, 0.60, and 0.24 inches. In Figure 50, the open symbols are for the [0/+45/90] quasi-
isotropic laminates and the filled symbols are for the [0/£50] quasi-isotropic laminates. Also,
the circles correspond to the 1.00 inch thick beams, the triangles represent the 0.60 inch thick
beams, and the squares are for the 0.24 inch thick beams. Similar to what was stated above
for the quasi-isotropic laminates in Figure 48, for a given beam thickness the dependence of
the ultimate load on a’/h is much the same between the [0/+45/90] and [0/£60] !aminates.
The only exception being for the case of a 0.24 inch thick beam having an aspect ratio of 2.08
where the [0/+60],s beam’s ultimate load is almost double that of the [0/£45/90]¢ beam. The
results presented in Figure 50 show that the beam’s thickness significantly affects the re-
lationship between the ultimate load and the aspect ratio. This figure illustrates that for a
given a/h aspect ratio the three different beam thicknesses produce three different failure
loads. For example, for an aspect ratio of approximately 5.0 the ultimate failure loads for the
[0/460] beams with thicknesses of 1.05, 0.6, and 0.24 inches were 10.51, 8.54, and 3.05 kips,
respectively. However, the difference in the failure loads is seen to decrease as the aspect
ratio of the beam increases. Consequently, the a/h ratio does not uniquely describe the failure
loads and caution must be exercised whnen using the span length-to-depth aspect ratio as a

nondimensional scaling parameter, especially for the case of small a/h ratios.
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Figure 51 illustrates the effect of grouping plies together on the ultimate load, i.e.. the effect
of increasing the relative thickness of a given ply orientation with respect to the laminate
thickness. The laminates in the third classification group were considered and the resuits for
the uitimate load as a function of a/h are shown in this figure. The open symbols correspond
to the interspersed stacking sequence, whereas the filled symbols are for the grouped stack-
ing sequence. The [0/445/90] laminates are represented by circles and the [0/1+60] laminates
by triangles. For the range of aspect ratios tested and for both of the quasi-isotropic lami-
nates, grouping the plies together reduced the ultimate load when compared to the ungrouped
laminates having the same tota) number of plies. The percentage of ioad reduction was larger
for the [0/+45/90] laminates than for the [0/£60] laminates except for the case of an aspect
ratio equal to 0.50. Also, the percentage of load reduction decreases as the aspect ratio of
both the quasi-isotropic beams is reduced. The [0/+45/90] 1aminates have a maximum re-
duction of 51% for the largest aspect ratio tested, decreasing to 0% for the smaliest aspect
ratio. A 26% reduction is seen for the largest aspect ratio [0/+60] beam and decreases to
approximately 15% for the remaining aspect ratios tested. It is also interesting to note that
as stated before the two different quasi-isotropic laminates have similar load carry capability

if the layers are distributed throughout the laminate.

5.3.3 Damage Susceptibility

The susceptibility of a taminated beam to damage when subjected to an applied load is a
measure of how easily damage is induced. The damage susceptibility of the three-point bend
specimens was determined by investigating the dependence of the damage initiation load on
the aspect ratio for the different lay-ups. As in the case for the ultimate loads presented
above, the classification scheme for the test matrix is used for presenting the experimental
data in Figures 52 through 54. The damage susceptibility for different classes of laminates is

shown in Figure 52, beam thickness effects in Figure 53, and stacking sequence effects in
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Figure 49. Ultimate failure load as a function of span length-to-depth aspect ratio for different
classes of laminates.
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Figure 54. From Figure 52 and for a large aspect ratio, the cross-ply beam is seen to be the
most susceptible to damage in comparison to the 0° unidirectional beam. For the smallest
aspect ratio tested, the 0° unidirectional beam is more damage susceptible than the cross-ply
and quasi-isotropic laminates. When comparing the two quasi-isotropic laminates, Figure 52
shows that the [0/+45/90],4 laminated beam is more susceptibie to damage than the
[0/:1:50];;5 beam when the span length-to-depth aspect ratio is greater than 2.50. When the
aspect ratio becomes less than 2.50 the dependence of the damage initiation load on a/h
demonstrates the [0/160],; beams to be more damage susceptible than the [0/445/90] 5,

beams.

Figure 53 illustrates the dependence of the damage initiation load on the aspect ratio for the
six quasi-isotropic laminates having an interspersed stacking sequence. For the entire range
of aspect ratios tested, the 0.24 inch thick beams are seen to be the most damage susceptible
for a given a/h ratio. Also, the dependence of the damage initiation load on a/h is the same
for the [0/145/90],s and [0/160],s laminates. The results for the 0.60 inch thick beams indicate
that the [0/+45/90],y; laminated beams have a lower damage initiation load than the
[0/£60],s beams for a/h between 1.0 and 8.0, and are therefore more damage susceptible.
In comparison to the previous discussion for the ultimate faifure loads, the beam thickness
effects on the dependence of the damage initiation load on a’/h are seen to be even more
significant. In other words, for a given a/h the differences between the damage initiation loads
for the different beam thicknesses are greater than the differences seen in the ultimate failure

loads.

The effects of grouping plies together on the damage susceptibility are depicted by the results
in Figure 54. In this figure, the damage initiation load is plotted as a function of the aspect
ratio for the grouped and interspersed quasi-isotropic stacking sequences. Similar trends are
seen in the dependence of the damage initiation load on a/h as were described for the ulti-
mate failure loads. The grouped stacking sequences are otscrved to be more damage sus-

ceptible than the corresponding interspersed laminates. Also, for the larger aspect ratios,
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Figure 54 shows that the [0/45/ — 45/90] laminates are more susceptible to damage in com-

parison to the [0/60/ — 60] laminated beams.

5.3.4 Damage Tolerance

Once damage is present in the laminated beam, how well it is tolerated with regard to ultimate
failure defines the beams tolerance to damage. A measure of a laminated beam’s tolerance
to damage is the ratio of the load which produces the initial damage to the load measured at
ultimate failure. A ratio equal to one would correspond to a bcam configuraticn which is
considered to be highly damage intolerant. On the other hand, a value less than one would
mean the beam is still capable of carrying loads or resistant to the applied load once damage
has initiated. For the 0° unidirectional beams the ratio of initial damage load to the ultimate
load was approximately equal to one, i.e., intolerant to damage, except for the case of an as-
pect ratio equal to 0.67, where this ratio was 0.89. As a result of the beam thickness effects
described above, comparisons between the different stacking sequences in Table 1 must be

restricted to beams having equivalent thicknesses.

The dependence of the damage tolerance, as defined above, on the beam’s a/h aspect ratio
is shown in Figure 55 for the beams having an overall thickness approximately equal to 1.0.
There is some scatter in the data, especially for the cross-ply results, but it appears that for
a span length-to-depth aspect ratio greater than 5.0 and for the three-point bend specimen
configuration these laminates will have a low damage tolerance. When the aspect ratio is
reduced, the beam’s resistance to the applied load increases after the initial damage has
occurred until the span length-to-depth aspect ratio becomes equal to 1.0. The damage tol-
erance then begins to decrease for smaller span'length-to-depth aspect ratios, e.g., the ratio
of the damage initiation load to the ultimate failure load for the [0/445/90],ss beams was equal

to 0.81 for a/h=1.0 and 0.92 for a/h=0.5. The results presented in Figure 55 also show that
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Figure 52. Damage Initiation load as a function of span length-to-depth aspect ratio for different
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for aspect ratios greater than 1.0 the [0,/60f — 60];s laminated beam has the largest damage
tolerance. For aspect ratios smaller than 1.0, the [0/45s/ — 455/905)5s grouped stacking se-
quence is more tolerant to damage than the other 1.0 inch thick laminates. However, for a/h
greater than 3.0 this laminate has a low damage tolerance. When comparing the two inter-
spersed quasi-isotropic laminates, the dependence of the damage tolerance on the a/h aspect
ratio is very much the same. In addition, for the range of aspect ratios shown in Figure 99, the

cross-ply beam in general is the least tolerant to damage.

For the case of a 0.6 inch thick beam, the resuits are presented in Figure 56. With the ex-
ception of a very small a/h aspect ratio, the [0/4£60],s laminate is seen to have a very fow
damage tolerance. The dependence of the damage tolerance on a/h for the [0/+£45/90]:ss
beam has a contrasting behavior to that of the [0/+60]),s beam and is very similar to the 1.0
inch thick [0/+45/90], beam. The [0/+45/90],ss stacking sequence is seen to be damage
intolerant for a large a/h but as a/h decreases the tolerance to damage increases. Figure 57
illustrates the dependence of the damage tolerance on the aspect ratio for the 0.24 inch thick
beams. The results indicate that both the [0/+45/90]s and the [0/£60],s laminates have a
very low damage tolerance for the entire range of aspect ratios tested. The only exception
being, as in the case of the [0/160],,s beam discussed above, for the [0/+60],s beam having

an a/h aspect ratio equal to 2.08.

5.4 Damage Descriptions

After the specimens were tested and their damage initiation and_maximum failure loads re-
corded, they were inspected for damage using the optical microscope as described previ-
ously. Flexural failure mechanisms, which have been reported in the literature and discussed

in Chapter 2, can generally be classified in terms of three basic modes: tensile mode,
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Figure 56. Damage tolerance for the laminated beams having an overall height equal to 0.6
Inches.
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Figure 57. Damage tolerance for the laminated beams having an overall height equal to 0.24
inches.

Experimental Investigation 142



compressive mode, and/or shear mode. Combinations of the three basic modes have also
been observed in failed specimens. The predominant combined mode discussed in the liter-
ature involves compression and shear in the form of kink bands in unidirectionally-aligned
carbon-fiber reinforced plastic beams and has reportedly led to interlaminar failures [39]. It
was also stated that for a constant span length and varying beam thicknesses, thin laminates
generally failed on bottom due to tensile bending stresses, whereas, thick laminates faited
near the top due to contact stresses [42]. The visual inspection of the damaged specimens
was performed to determined which laminate geometries given in Table 1 were associated
with each of the basic modes stated above. Also, the inspection was carried out to indentify

any previously unreported damage modes corresponding to a pariicular geometry.

5.4.1 Unidirectional Beams

For the case of a 0° unidirectional beam having an aspect ratio of a/h=7.33 the initiation of
damage was very localized, located directly under the loading nose, and in the form of fiber
buckling. Subsequently, testing the same beam configuration monotonically to failure
produced shear kink bands which originated at the top surface in the vicinity of the applied
load. In addition to the kink band formations, delaminations which extended to the end face
of the beam were seen at approximately h/3 down from the top surface and at the midplane
(z=0.0). The observed kink band appeared to occur after the beam delaminated at the
midplane. The midplane delamination in effect created two thinner beams which under the
three-point bend loading experienced an increased compressive bending stress which
buckied the fibers. Also, it should be noted that the delamination or longitudinai split in the
xy-piane did not remain at a constant z-location across the width of the specimen but seemed

to cross from one layer to another, as shown in Figure 58.
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When the span length-to-depth aspect ratio of a 0° unidirectional beam was reduced to 4,
damage was initiated by longitudinal cracks occurring at approximately 1/3 of the beam’s total
thickness down from the top surface. Ultimate failure for this beam geometry corresponded
to the longitudinal cracks described above forming a delamination. There were also through
the thickness or transverse cracks in the xz-plane of the beam (see Figure 58) which traversed
the entire beam length. However, there was no evidence of fibers buckling as in the case of
the previous beam. This may be attributed to the existence of large compressive stresses
along the fiber direction for large a/h ratio specimens. Similar types of damage were ob-
served when the supports were located 1.0 inches apart which corresponded to an aspect
ratio of 1.33. Short longitudinal cracks were seen at 1/3 of the beam’s thickness down from
the top and at the midplane but no large delaminations were present. A transverse crack
through the thickness, as depicted in Figure 58, was the predominant form of damage. There
was no distinquishable difference between the observed damage states in the beam tested for
damage initiation and in the beam tested up to uitimate failure. Further reducing the span
length-to-depth aspect ratio to 0.67 yielded much the same observable damage but with the
addition of short longitudinal cracks appearing near the bottom surface between the two

supports.

5.4.2 Cross-Ply Beams

The next series of beams to be visually inspected under the microscope were the
[(0/90),/(90/0),],s cross-ply beams for which only the monotonic test to failure was conducted.
For the specimen tested with an aspect ratio of 5.73, a kink band consisting of buckled fibers
in the 0° plies under the loading nose (similar to the unidirectional beam) and matrix cracks
in the adjacent 90° plies were observed. The kink band was located in the vicinity of the ap-
plied load and terminated at the first 80/30 interface, 16 plies down from the top surface, where

a delamination was seen as depicted in the photograph of Figure 59. A second delamination
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was present at the first 30/90 interface past the midplane with no evidence of fiber buckling
or matrix cracking. Positioning the supports for an aspect ratio of 3.12 resulted in similar
forms of damage but having a diﬁerent location in the beam. Sandwiched between two de-
laminations which occurred at depths corresponding to 32 and 48 ply thicknesses was the
formation of a kink band. A second kink band was seen to be located at a depth of 80 plies
which traversed 32 plies before another delamination was present. Both bands of broken fi-

bers and matrix cracks were located near the midspan of the beam.

The type of damage observed in the specimens changed when the span length-to-depth as-
pect ratio was reduced to 1.04. The type of damage was predominately shear related and
there was no longer any evidence of kink band formations. Matrix cracking in the 90° plies
and short interlayer seperations appeared throughout the entire depth of the beam between
the support locations as shown in Figure 60. For the beams tested with an aspect ratio equal
to 0.52 there was severe crushing of the beam under the loading nose. The damage was
concentrated around the contact area with no evidence of damage beneath the first grouping

of 16 plies.

5.4.3 Quasi-Isotropic Beams, [0/45/-45/90]

All of the remaining beams to be investigated were quasi-isotropic laminates. For the
[0/+45/90],4s Specimens, the damage states were primarily shear related in the form of matrix
cracks and delaminations. When the aspect ratio was equal to 5.5, the damage initiation test
resulted in a delamination at the third 90/0 interface from the top surface of the beam. For the
monotonic test up to failure, fiber breakage was seen in conjunction with matrix cracking in
the off-axis and 90° layers. There were also short longitudinal cracks appearing at the inter-
faces adjacent to the matrix cracking. This type of damage started under the loading nose

and continued along an approximately 45° path until the fourth repeating ply sequence was
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Figure 60. Matrix cracks and short delaminations in a cross-ply beam.
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reached where a delamination occurred at the 45/-45 interface. Ultimately, the beam com-

pletely delaminated at the midplane.

The predominant damage seen for the case of an aspect ratio equal to 3.0 was in the form of
delaminations. In the damage initiation test the beam delaminated at the fifth 0/45 interface
down from the top surface. The second test, which was up to failure, produced additional
delaminations in the fifth repetitive ply sequence and at the midplane. For the beams tested
with an aspect ratio equal to 1.0, damage was initiated by matrix cracking in the off-axis plies
located in the top two ply groupings as shown in Figure 61. Post-test inspection of the beam
loaded to ultimate failure showed extensive damage in the top eight layers in the vicinity of
the applied load. There were matrix cracks in the off-axis plies and a large delamination at
the first 90/0 interface. The matrix cracking continued beneath this delamination and was
observed in other off-axis and 90° plies extending all the way to the support location at the
bottom surface. For an aspect ratio of 0.5, there was no discernable difference between the
damage initiation test and the ultimate failure test as both specimens were severely crushed

in the first 24 layers under the load.

The next two series of beams to be visually inspected for damage were the [0/+45/90],ss and
[0/+45/30],s laminated beams. These two jaminates contained the same basic ply grouping
as the previous ones but had overall heights of 0.60 and 0.24 inches, respectively. Conse-
quently, a broader range of span length-to-depth aspect ratios was achieved as shown in Ta-
ble 1. For the [0/+45/90],ss laminated beam having an aspect ratio of 9.17, the damage was
similar to the [0/+45/90],s beam tested with an aspect ratio equal to 5.5. Damage was initi-
ated by a delamination at the third 90/0 interface from the top surface. The ultimate failure test
produced matrix cracks in the +45° and 90° plies which started where the loading nose lost

contact with the top surface énd terminated at a depth of 12 plies.

Moving the supports to achieve an aspect ratic of 5.00 resulted in a combination of delami-

nations and matrix cracks. The specimen tested for damage initiation delaminated at the
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Figure 81. Matrix cracking in the off-axis plies of a quasi-isotropic beam.
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interfaces adjacent to the 90° plies located at the midplane as shown in Figure 62. In addition
to this delamination, the presence of matrix cracks in the 90° plies located at the beam’s
midplane were observed in the specimen tested up to ultimate failure. The observed damage
for the case of an aspect ratio equal to 1.67 was much the same with the initiat delamination
occurring at the midplane. However, the ultimate failure test showed extensive matrix crack-
ing in the 90° plies located away from the midplane in comparison to the beam having an as-
pect ratio of 5.00 where the cracks were concentrated at the midplane. As described for the
0.5 aspect ratio 1.0 inch thick [0/145/90]ss beam, for an aspect ratio of 0.83 there was severe

crushing and delaminations in the top 16 layers under the point of load application.

The damage in the 48-ply 0.24 inch thick [0/1+45/90]ss laminated beams can be characterized
as follows. When the span length-to-depth aspect ratio was equal to 22.92, visual inspection
of the specimen tested for damage initiation yielded no observable damage. The second
specimen tested experienced ultimate failure as a result of extensive damage located at the
back-face. This was in the form of a tensile failure mode with the 0° fibers breaking and nu-
merous delaminations in the bottom half of the beam, all of which occurred at interfaces as-
sociated with a 0° ply. Also, there were matrix cracks located in the +45° off-axis plies and
the 90° plies located below the midplane. For the beam geometries tested with an aspect ratio
of 12.50 the observed initial and ultimate failure damage states were very similar to the dam-

age described for the previous beam geometry.

In cases where the beam had an aspect ratio equal to 4.17 the damage was initiated by matrix
cracks in the third 90° ply located from the bottom surface and half-way between the load and
support points as depicted by the photograph in Figure 63. In conjunction with the matrix
cracks there were short delaminations at the interfaces located above and below the 90° ply
stated above. When an identical specimen geometry was tested up to ultimate failure the type
of observed damage was the same as seen in the damage initiation test but was more ex-
tensive throughout the beam. The damage state in the 2.08 aspect ratio beams was much the

same as described for the 4.17 aspect ratio specimens.
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Figure 62. Delaminations near the midplane of a quasi-isotropic beam.
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Figure 63. Matrix cracks in a 90 degree ply for a quasi-isotropic beam.
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5.4.4 Quasi-lIsotropic Beams, [0/60/-60]

The next series of laminated beams tested were also quasi-isotropic but differed in that their
stacking sequence was based on a 0/460 ply gréuping. The thickest beams studied were the
[0/£60],s laminates which were approximately the same thickness as the 1.0 inch thick
[0/+45/90],ss beams. When the span length-to-depth aspect ratio was equal to 5.24 the dam-
age, shown in Figure 64, could be characterized by an initial delamination at the third -60/0
interface from the top surface. Visual inspection of the beam after being tested to ultimate
failure showed additional damage with a kink band starting to form under the load point.
Below the initial delamination there were broken fibers in the next three 0° layers in conjunc-
tion with matrix cracks in the +60° plies and several small delaminations. The type of damage
described above resembles the mode observed for the [0/+45/90),.s beam having an aspect

ratio of 5.5.

When the 2.86 aspect ratio beams were tested, the primary form of damage was a delami-
nation which was comparatively the same as in the [0/+45/90],4s specimens. The damage
initiation test showed a delamination occurring at the fifth -60/0 interface relative to the top
surface. Several other delaminations were seen when a second specimen was tested up to
ultimate failure. Reducing the aspect ratio to 0.95 produced initial damage in the form of a
delamination at the first -60/0 interface. In the test for ultimate failure the beam was severely
crushed under the applied load. Moving the supports for an aspect ratio of 0.48 resulted in a
similar damage state with crushing of the top two ply groupings for both the damage initiation

test and the uftimate failure test.

The [0/+60],s beams tested had the same span length-to-depth aspect ratios as the
[0/+45/90],5; beams listed in Table 1. Figure 85 illustrates that the initial damage for the 9.17
aspect ratio beams was in the form of matrix cracking in the top +60° ply grouping located

approximately where the loading nose lost contact with the top surface. A delamination was
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Figure 64. Delamination near the top surface of a quasi-isotroplc beam.
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also seen at the first -60/0 interface adjacent to the matrix cracks. Additional damage oc-
curred in the ultimate failure test when the third and fourth 0° fayers from the top surface
buckied. When the span length-to-depth aspect ratio was equal to 5.00 and the damage initi-
ation test was performed, the specimen delaminated at the seventh -60/0 interface from the
top surface. The ultimate failure of an identical specimen produced added damage in the form
of a kink band with fiber buckling and matrix cracks seen in the layers above the initial de-
lamination. The only observable damage in the specimens having an aspect ratio equal to
1.67, for both the initiation of damage and ultimate failure tests, was a small delamination at
the fourth -60/0 interface under the loading nose. Forthe case of a 0.83 aspect ratio specimen,
damage was initiated by a very localized delamination directly under the load at the first and
second 0/60 interface from the top surface. Severe crushing under the load, fiber breakage,

and numerous delaminations in the first 24 plies were seen in the specimen tested to failure.

Visual inspection of the failed [0/+60],s specimens produced the following forms of damage.
The initiation of damage in the 22.92 aspect ratio beam was a delamination located at the fifth
0/60 interface from the bottom surface. Ultimate failure for this beam geometry was associ-
ated with back-face damage consisting of a combination of tensile and shear failure modes
with fiber breakage, matrix cracking, and delaminations in the bottom five ply groupings.
Positioning the supports for an aspect ratio of 12.50 changed the initiation of damage to a short
delamination at the midplane and was located approximately half-way between the load and
support points. The specimen which was tested monotonically to failure showed very little
additional damage other than the type seen in the damage initiation test. It should be noted
that it was difficult to assess the extent of damage in these specimens because of the large

number of voids that were present.

In the specimen tested up to the initiation of damage and having an aspect ratio equal to 417,
cracks were observed in the +60° plies located at the midplane as shown in Figure 66. Testing
a second specimen to failure produced the same type of damage as was seen in the damage

initiation test. Similar damage states were observed when the span length-to-depth aspect
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Figure 65. Matrix cracks in the off-axis plies of a quasl-isotropic beam.
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ratio was reduced to 2.08 but the damage was more extensive. At ultimate failure the matrix

cracks in the +60° plies extended along a line from the load point to the support point.

5.4.5 Quasi-Isotropic Beams, Grouped Stacking Sequence

By grouping five plies together having the same fiber orientation, e.g., [0,/45,/ — 45,/90,],, the
overall height of the beam did not change in comparison to the [0/+45/90],s5 laminate. This
was also true for the 210 ply laminates based on the 0/+60 ply grouping. For the grouped
[0s/45¢/ — 45,/90,],5 stacking sequence and an aspect ratio of 5.5, the initial damage is shown
in Figure 67 and was a combination of delaminations and matrix cracks in the 90g and off-axis
layers located at the midplane of the beam and close to the midspan. The same type of
damage was seen in the specimen tested monotonically to failure with the delaminations and
matrix cracks being larger in number. The specimens having a [04/60,/ — 60,],s grouped
stacking sequence and tested with an aspect ratio equal to 5.5 had similar damage charac-
teristics. Damage in the beams having a grouped stacking sequence differed from the inter-
spersed case by not having fiber breakage in the top 0° plies. Also, in contrast to the damage
being located near the top surface for the interspersed beams, the damage was concentrated

more at the midplane for the grouped stacking sequence.

For the case of a beam having an aspect ratio of 3.0, the observed initial damage in both of
the grouped laminates was in the form of matrix cracks in the 90g and off-axis plies located
at the midplane. The ultimate failure of the specimens was associated with an extensive
branching_ or staircase pattern of matrix cracks and short longitudinal cracks at the adjacent
interfaces and is illustrated in Figure 68. The effect of grouping plies together on the damage
charzacteristics was a change from a predominantly interlaminar shear mode for the inter-

spersed specimens to a matrix shear mode.
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Figure 66. Matrix cracks in the off-axis plies of a quasi-isotropic beam.
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Figure 67. Matrix cracks and delaminations in a quasl-isotropic beam.
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Testing the 1.0 aspect ratio specimen, and conducting the test for damage initiation, produced
the same type of damage as described for the 3.0 aspect ratio beam. However, the matrix
cracks were located in the first ply grouping near the applied load. The ultimate failure test
showed no additional damage. The observed damage modes for the grouped stacking se-
quence were very similar to the previously described damage modes in the beams having an
interspersed lamination. When the span length-to-depth aspect ratio was equal to 0.5, the
initial damage consisted of the same matrix cracks as described for the case of an aspect ratio
equal to 1.0. When identical specimens were tested up to failure, the beams experienced
crushing in the first repetitive ply sequence, e.g., 05/455/ —455/905 and 0,/605/ —60,. Compar-
atively, this was the same type of damage as described for the interspersed beams. Conse-
quently, increasing the effective layer thickness by grouping plies together did not significantly
alter the observed damage states for the shorter span length-to-depth aspect ratios of 1.0 and

0.5.

5.5 Summary

The experimental investigation was conducted in order to define the damage states in various
laminated beam geometries subjected to three-point bend loading conditions. The exper-
imental data consisted of top and bottom surface displacements at the midspan and the ap-
plied load. After reducing the data, load-displacement and load-indentation plots were
generated and the damage initiation load and uitimate failure load defined. The behavior of
the load-displacement and load-indentation curves was categorized as being linear yp to the
initiation of damage with the exception of the 0° unidirectional beams. The dependence of the
initial damage and ultimate failure loads on the beam’s span length-to-depth aspect ratio were

identified. Also, the damage susceptibility and the damage tolerance of the tested laminates
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were discussed. In general, it was shown that the damage initiation load and ultimate failure

load decreased as the beam’s a/h aspect ratio increased.

To investigate the effects of stacking sequence, beam thickness, and relative layer thickness
on the load dependencies stated above, the different laminated beams in the test matrix were
classified into four groups. The results showed that there were significant beam thickness
effects and that the a/h aspect ratio did not uniquely define the damage initiation nor the ulti-
mate failure load. For a given a/h aspect ratio, the 0.24 inch thick beams had the lowest ulti-
mate load and were the most susceptible to damage. However, the beam thickness effects
described above decreaéed as the aspect ratio increased. Also, it was shown that increasing
the relative layer thickness in a laminated beam increased its damage susceptibility and de-
creased its load carrying capacity. In addition, the grouped [04/45/ — 454/90s]ss beams had
lower ultimate loads and were more susceptible to damage than the [0s/604/ — 604, beams.
When the laminates had an interspersed stacking sequence and the same thickness, their
load carrying capabilities were similar. For the laminates having a thickness approximately
equal to 1.0 inches, the [0,/60s/ — 60s],5 stacking sequence was the most tolerant to damage,
whereas the cross-ply beams were the least tolerant. In general, the damage tolerance was

seen to decrease with increasing aspect ratio.

A post-test visual inspection of the damaged specimens was conducted using an optical mi-
croscope and photomicrographs were taken to document the damage. The damage which
was observed indicated that several different mechanisms can occur depending on the beam
geometry and stacking sequence. The dependence of the type of damage on the beam con-
figuration is summarized in Table 2 for the unidirectional and cross-ply beams, and in Tables
3 and 4 for the [0/+45/90] and [0/+60] quasi-isotropic beams, respectively. The observed in-
itial damage in each specimen is indicated by a superscript "i", whereas, the remaining

marked boxes correspond to subsequent damage seen in the ultimate failure test. Also, when

the observed damage was concentrated at one particular location, the location is noted in
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parentheses. In specimens where the damage was extensive or occurred at several different

locations, no mention is made of any location.

The 0° unidirectional orthotropic beams failed by either buckling of fibers and delaminations
or transverse splitting. The change in the observed damage from a midspan delamination to
a transverse split occurred when the span length-to-depth ratio became less than 40. The
appearance of kink bands and delaminations were typical for the higher aspect ratio cross-ply
beams. For the cases when the span length was less than 3.0 inches, matrix cracking in the
J0° plies was the predominant form of damage. For the quasi-isotropic laminates, the initial
damage states were comprised of either delaminations, matrix cracks in the off-axis and 90°
plies, or a combination of these two. Initial damage in the form of delaminations was primarily
seen in the interspersed stacking sequences and when the overall beam thickness was equal
to 1.0 and 0.6 inches. When a grouped stacking sequence was used and when the 0.24 inch
thick interspersed laminated beams were tested the initial damage was generally in the form
of matrix cracks in the off-axis plies. Also, for the 0.24 inch thick specimens having an aspect
ratio equal to 22.92 or 12.50, a tensile failure mode was observed with damage occurring at
the back-face and fibers breaking in the bottom 0° plies. Based on these observations it was
expected that a detailed investigation of the local stress distributions would be required in

order to explain the damage seen in the laminated beams.
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Chapter VI

Analytical/Experimental Correlation

The results of the experimental program for testing laminated beams under quasi-static
three-point bend loading conditions were presented in the previous chapter. The post-test
inspections of the damaged specimens yielded the primary failure modes and types of dam-
age which occurred in the beams. In order to correlate the analytically predicted stresses and
displacements, using the solution procedure given in Chapter 3, with the experimental data
the applied boundary conditions must simulate the actual test conditions as accurately as
possible. The solution previously derived was based on a stress formulation in the math-
ematical theory of elasticity with the tractions being prescribed on the boundary. Therefore,
the applied tractions must represent the manner in which load was introduced into the spec-
imens during testing. The loading nose and supports have a finite radius of curvature creating
contact between a rigid cylinder and a laminated beam. No attempt is made here to explicitly
solve the associated mixed boundary-value contact problem but merely to utilize previously

published results to model the traction distributions in the contact region.
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6.1 Modelling of Boundary Conditions

6.1.1 Elliptical Stress Distribution

When the radius of the indenter, i.e., loading nose and supports, is small compared to the
curvature of the target, i.e., beam, the Hertzian solution for the contact stress distribution on
an orthotropic half-plane can be used. This is an elliptical type of distribution {34} which can

be expressed as follows:

2P X—=C/ \2 d d
I(x)l-:_ftdb 1—4( d > C'—‘Z_'SXSC'+'2_ )

=0 OSX<C'—’%

where P is the applied contact force, b is the beam’s width, ¢, is the distance from the origin
to the center of the ellipse, and d is the contact length (see Figure 69). The subscript i ranges
from 1 to 2 and corresponds to the top and bottom surfaces, respectively. For three-point bend
loading conditions, ¢, = % Following the solution procedure in Chapter 3, equation (1) must
be written in the form of a Fourier series expansion and in terms of the nondimensional co-
ordinate system. The Fourier series coefficients were determined using the Guassian

quadrature numerical integration technique with the following resuit:

M
N
2
no=-2 {% + 2L zzwmn) cos me} @
m=1 -

where
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/ dt
’;(tn) =4/1- ‘3 cos pm( 2_Ln + ‘Si) (3)

and where w, and ¢, are the corresponding Gauss weights and points, respectively. The re-
maining quantities are the same as previously defined in Chapter 3, e.g., M=400 terms which
was determined based on the convergence study. As shown in Figure 69, the major axis of
the elliptical stress distrit;ution is proportional to the applied load and the minor axis is equal

to the associated contact length.

6.1.2 Contact Length

A relationship between the applied contact force and the resulting contact length was derived
by Sankar [37] for the contact between a rigid cylinder and an orthotropic beam. The solution
was obtained by considering approximate Green’s functions for the surface displacements in
an orthotropic half-plane and subsequently superposing these with beam theory deflections.
His results are presented here and were implemented to theoretically determine the contact

length for a given load. The contact length is related to the load and beam material properties

by:

d= (4)

where

=Ra ,_ 1, .3
=Es =2bh _ ®)
1 '11 + 12
"= n="7F ®
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and where R is the indenter radius. The beam dimensions b, h, and a were given in Figure

4, and 1,, are the roots to the following characteristic equation:
SyA% = (2543 + Sss)A% + S33=0 )

where the S; are the compliance terms in the principal material directions. it should also be
noted that for a small indenter radius the contact length of equation (4) may be approximated

using the following relationship:

4P
7;' (8)

Q
4

For the purpose of correlating the experimental data with this analysis, an estimate of the
contact length was obtained experimentaily by placing pieces of carbon paper and graph pa-
per between the loading nose and the beam’s top surface. The decision to verify the theore-
tical contact length was made after the test program was initiated. Consequently, the contact
lengths for the 0° unidirectional, cross-ply, [0/+45/90],s5, and the [0s/45/ — 45,/90;]5s laminates
are not included in the experimental results. For the remaining stacking sequences in Table
1, the carbon replica of the contact patch was measured and compared with the value from
equation (4). The results are given in Figure 70 for all of the aspect ratios tested and for both
the damage initiation test and the ultimate failure test. The results shown in Figure 70 illus-
trate a satisfactory correlation between theory and experiment for the contact length, espe-
cially for the lightly loaded specimens. The scatter in the experimental data may be attributed
to the beam’s textured surface finish. Consequently, it was difficult to exactly measure the
contact length due to the ill-defined boundaries of the carbon transferred to the graph paper
near the edge of the contact area. The discrepancy which occurred for tpe higher load levels
is thought to be the result of damage and crushing of the beam’s top surface. It should also
be noted that the experimentally measured contact length did not appear to depend on the

stacking sequence of the beam.
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6.2 Displacements

The elliptical traction distribution given by equation (2) and the contact length given by
equation (4) were used in analytically predicting the beam displacements and stresses. The
elasticity solution was based on the assumption of linear elastic material behavior but
equation (4) shows that a nonlinear relationship exists between the applied load and the
contact length. To account for this noniinearity, a step-wise incremental loading procedure
was implemented, where for a given applied load jncrement the corresponding contact length
was calculated using equation (4). The top and bottom surface displacements were then cal-
culated at the midspan and then another load step was used. Essentially this procedure

modelled the nonlinear response in a piece-wise linear fashion.

6.2.1 Midspan Deflection

The load versus displacement plots in Figure 89-92 of Appendix A are the experimental results
for the 0° unidirectional beams corresponding to the four different aspect ratios listed in Tabie
1. The incremental procedure discussed above was used to analyze the unidirectional beams
and the theoretical midspan displacemenis are compared to the experimental results in Fig-
ures 71-74. The experimental procedure described in Chapter 5 measured displacements at
both the top and bottom surfaces of the beam. Therefore, the elasticity solutions for the w
displacement were caiculated at z equal to h/2 and -h/2 (see Figure 4). As discussed in
Chapter 5, the experimental curves have been corrected for machine and fixture related dis-

placements.

The resuits presented in Figure 71 are for an aspect ratio equal to 7.33. Reasonably good

agreement between the theoretical predictions and the experimental data is demonstrated in
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the initial linear portions of the plots. This is true for both the top and bottom surface dis-
placements. For beam geometries corresponding to aspect ratios of 4.00, 1.33, and 0.67
inches, the load versus displacement relationships are shown in Figures 72, 73, and 74, re-
spectively. In specimens having small a/h aspect ratios, the beam’s response is governed
by local deformations and the bending effects are negligible. Therefore, the poor correlation
‘between the elasticity solution and the experimental displacements is believed to partially be
a result of local nonlinear effects at the support points and under the loading nose. Also, the
damage described in Chapter 5 indicated the existance of a three-dimensional stress state.
Consequently, the two-dimensional linear elastic analysis cannct accurately predict the local
displacements for these particular beam configurations. In addition, there is some uncertainty
in the experimentally measured quantities and the actual boundary conditions associated with
the test environment. Similar discrepancies were seen between the experimental and the-

oretical displacements in the other laminated beams which were tested.

6.2.2 Indentation

in the classical problem considered by Hertz [2], i.e., contact between two solid isotropic
bodies, the amount of indentation was defined as the relative displacement of the two centers
of mass of the two contacting bodies. This quantity was discussed in Chapter 1 to be pro-
portional to the contact force raised to the two-thirds power for both isotropic bodies [2] and

for graphite/epoxy laminates [1] with a spherical steel indenter.

Sankar [37) considered the contact problem between a rigid cylinder and an orthotropic beam
as previously described in Section 6.1.2 for determining the contact length. In addition, Sankar
derived an expression for the amount of indentation at the top surface of the beam. This ap-

proach was based on modifying an orthotropic half-plane solution to account for the beam
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deflection. The equation derived by Sankar [37] for the indentation in an orthotropic half-plane

is given by:

o= 4Pk, dlz /1-(25)2{@ | — ¢l —log | —g-—él}d: (18)

nd
—d/2

where d is the contact length given by equation (4) and k, is defined in equation (6). For a
given contact length, d, the indentation in an orthotropic beam was derived by Sankar [37] to

be equal to:

Xp
ap=———7 (19)
3 chd
4

where y and k. are given by equations (5) and (6), respectively. Sankar noted that the lower
limit on the beam’s span length-to-depth aspect ratio was approximately 8 for this technique
to be valid. This was based on using classical beam theory as an approximation to the global
response. An upper limit was stated to exist which corresponded to the case of a very slender

beam whose response was governed by beam deflections and not the local indentation.

The amount of indentation can also be obtained using the elasticity solution presented in
Chapter 3. The following expression which was used assumes the indentation to be equal to
the difference between the top and bottom surface displacements at the midspan of the beam,

i.e.,

ay =w(L[2,h[2) - w(L|2, —h/2) (20)

The use of equation (20) is analagous to the experimental procedure described in Chapter 5
which led to the results illustrated in Figures 129-137 of Appendix A. Quaiitatively, the exper-

imental results in Figures 129-137 indicate the indentation to be independent of the span
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length-to-depth aspect ratio and also independent of the stacking sequence. In Figure 75, the
relationships between the applied load and the indentation calculated from equation {20) are
Ashown for a 0° unidirectional beam having various aspect ratios. For a’/h > 1, the theoretical
results presented in this figure demonstrate the insensitivity of the indentation to the aspect
ratio as stated above for the experimental results. However, a poor correlation between the
elasticity solution and the experimental data is illustrated in Figure 76. The results depicted
are for a 0° unidirectional beam having a 3.0 inch span length which corresponds to an aspect
ratio of 4.0. Sankar’s solution given by equation (19) is also shown in Figure 76 and also re-
sults in a large discrepancy between theory and experiment. Similar behavior was seen in

the analytical/experimental correlation for the other laminates.

Predictions for the indentation based on Sankar's equation are larger than the experimental
values, whereas the elasticity solution for a laminated beam underestimates the indentation.
The discrepancy between Sankar’s theory and the experiment is thought to be partially due
to approximating the global response by the classical beam theory. The results from the
elasticity solution developed in the present study are based on the difference between the top
and bottom surface displacements. Consequently, the same correlation difficulties which

were discussed for the midspan deflection also apply to the indentation.

The results presented for the midspan beam deflection and the top surface indentation illus-
trated the difficulties encountered in achieving a good correlation between theoretical pred-
ictions and experimental data. Numerous attempts aimed towards improving this correlation
were made. Analytically, the elasticity solution for the w-component of displacement was
verified using the resuits from a three-dimensional FEM model for a 0° unidirectional beam.
Satisfactory agreement was seen for the z-displacement along the entire span tength and for
both top and bottom surfaces. Analytically and experimentally, displacements must be cal-
culated and measured relative to some fixed point in space in order to be meaningful. The
elasticity solution developed in Chapter 3 assumed rigid supports and a rigid loading nose,

Whereas in the test environment the load frame and test fixture are nonrigid. However, the
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effects of a nonrigid load frame and test fixture were presumably taken into account as dis-
cussed in Chapter 5. Subsequently, it was verified that the experimental and analytical results
were measured relative to the same point. Nevertheless, as previously stated there is still
some uncertainty in the experimentally measured quantities and the modeliing of the actual

boundary conditions.

6.3 Damage Initiation

The objective of the present study is to develop methodologies which can be used to obtain
a better understanding of damage in laminated composite beams. A combined
experimental/analytical approach is used where the analytical procedure for calculating ply-
level stress states was presented in Chapter 3. For the beam configurations given in Table I,
the damage susceptibility, ultimate failure loads, and initial damage modes were exper-
imentally determined and the results presented in Chapter 5. The experimental results and
an analysis of the different test specimen geometries can both be used to rank the damage
susceptibility of the different laminates and capture the different damage modes. In correlat-
ing the experimental and analytical results, the discrepancies discussed above between the
experimental and theoretical displacements are not expected to affect the accuracy of ana-

Iytically ranking the different laminates.

Correlating the predicted stress distributions with the initation loads for different damage
states can be approached several different ways. One approach is to choose a component
of stress or combinatiqn of stresses, on the basis of one experiment, which might have caused
initiation of damage at a given load level. The experimentally measured damage initiation
load is then used to analytically determine the magnitude of the chosen stress component at

the damage site to be used in predicting the damage initiation load for the observed mode.
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On the basis of this criterion, load magnitudes are then calculated which would cause damage
initiation in other specimen geometries. An alternative approach is similar to the procedure
described above but averages the resuits from all specimen geometries that have the same
type of initial damage. The damage criterion is then based on the average value of the chosen
stress component,-and the analysis applied to beam geometries which were not tested to
_determine their damage initiation load. The predicted loads are then plotted as a function of
the span length-to-depth aspect ratio, a/h, to use as damage initiation envelopes. If there are
specimens which exhibit the same type of damage for a given range of a/h aspect ratios then
the predictive model should produce a damage envelope which agrees with the experiments.
If the type of damage changes beyond a certain range of a/h aspect ratios then another curve

is generated to predict damage initiation based on a different criterion.

Damage initiation loads were calculated for the 0° unidirectional beams using the first ap-
proach discussed above and the results from the a/h =7.33 aspect ratio beam geometry. For
the remaining stacking sequences, the second approach was implemented using the following
procedure. The summary of different damage states given in Tables 2, 3, and 4 demonstrated
that the investigation of several different damage mechanisms was required to predict the
damage initiation loads. Subsequently, the damaged specimens were classified into four
groups on the basis of similar damage mechanisms. The first group consisted of ali the lam-
inated beams which had a span length-to-depth aspect ratio less than 1.00 (see Table 1). The
type of damage observed in these laminates was in the form of localized crushing and a
maximum contact pressure was assumed to be an applicable damage criterion. The second
group of laminates was on the opposite end of the spectrum for the range of aspect ratios
considered, i.e., a/h greater than 12.0. Four different beam configurations were included in
this group, the [0/+45/90],s and {0/460],s stacking sequences having aspect ratios equal to
12.50 and 22.92, all of which experienced a tensile failure mode. Consequently, the postulated
criterion for predicting the damage initiation loads was based on a maximum tensile bending

stress located at the back-face of the beam. The third class of beams was comprised of
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laminate geometries which corresponded to initial damage in ihe form of a delamination.
Finally, when the initial damage was described by matrix cracks in the 90° or off-axis plies the
ﬁeam configuration was classified into the fourth group. For the specific stacking sequences
and aspect ratios in the last two groups refer back to Tables‘2, 3, and 4. The postulated
damage Initiation criteria for the third and fourth groups will be discussed later in this chapter.
The next step in the procedure was to analytically determine the local stress states which
corresponded to the damage initiation foad and the damage location. Depending on the type
of damage which was similar in each group, the results were examined to determine thg

component and magnitude of stress to use as a damage initiation criterion.

6.3.1 Unidirectional Beams

The observed damage states reported in Chapter 5 for the 0° unidirectional beams consisted
primarily of delaminations at z=h/6 and at the midplane for the largest aspect ratios tested.
Also, the results for the experimentally measured loads showed the damage initiation load to
be equal to the uitimate failure load. Consequently, the criterion used for predicting damage
initiation also applies for predicting ultimate failure and can be based on the magnitude of
interlaminar shear stress, 7,,, which causes a delamination. For the smaller aspect ratio
beams tested, the observed damage was a transverse splitting in the xz-plane which seemed
to initiate under the loading nose. Based on the two-dimensional elasticity analysis, calcu-
lated normal stresses along the x-direction under the loading nose are compressive and
therefore can not cause splitting. Also, experimental observations indicate that, as opposed
to the deformation patterns assumed by plane strain or generalized plane deformations, there
is significant local out-of-piane deformation in the vicinity of the load nose. These observa-
tions suggest that the actual stress distribution under the load nose is three-dimensional and.
complex. It is possible that the observed splitting initiates slightly away from the load nose

due to tensile stresses resuiting from the local out-of-plane deformations. Therefore, the
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two-dimensional analysis developed in Chapter 3 would not be expected to accurately predict

the observed splitting failures.

For the prediction of delaminations the magnitude of the maximum shear stress, 1, is used
as a damage initiation criterion. The a/h =7.33 beam configuration was analyzed to determine
the magnitude of 1, at the midplane of the beam when subjected to the damage initiation load.
The distribution of shear stress, 7,,, along the beam’s span and at the midplane shows the
maximum value to be located half-way between the midspan and the supports. For a 0°
unidirectional beam the global coordinates and material coordinates coincide and the t,
component of stress is equivalent to ;. The calculated maximum value was in good agree-
ment with reported shear strengths of approximately 10 ksi for this material system. Conse-
quently, a shear strength value, Sy, equal to 10 ksi was used to determine the applied load
which would produce an interlaminar shear stress at the midplane having a magnitude of
S, This criterion was also applied to other 0° unidirectional beams having different span
lengths. The correlation between the predicted loads as a function of beam aspect ratio and
the experimental results are shown in Figure 77. it is seen that the maximum shear stress
criterion slightly over predicts the damage initiation load for the highest aspect ratio tested

but in general a satisfactory correlation between theory and experiment was achieved.

6.3.2 Crushing Mode

For the elliptical traction distribution described in Section 6.1.1, the maximum contact pressure

is equal to:

2P
Pmax = 7pd (21)
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where P, is the damage initiation load, b=1.0 for a unit width, and d is equal to the contact
length. The results for the maximum contact pressure calculated from equation (21) for the
beams having an aspect ratio less than 1.0 are shown in Figure 78. The results range from
a minimum of 54.623 ksi for the cross-ply beam to a maximum of 75.734 for the [0/+45/90]ss
beam. A criterion based on an average maximum contact pressure for the seven beams in-
cluded in this group would predict damage initiation if the contact pressure was larger then
63.5 ksi. However, instead of a criterion based on an average value, a threshold value couid
be used which would predict crushing of a beam’s top surface if the applied contact pressure

exceeded 54 ksi.

An isotropic beam having similar geometry would likely fail along a slip line associated with
the plane of maximum shear stress. In Chapter 4, it was shown that for an orthotropic beam
the maximum shear stress contour was located directly under the loading nose and very high
gradients existed. Therefore, a possible alternative to the contact pressure criterion for pre-
dicting the crushing damage mode would be a maximum shear stress criterion. For this group
of seven beams, an average maximum shear stress value of 52.1 ksi was calculated at d/2

away from the midspan and near the top surface.

6.3.3 Tensile Mode

The magnitude of the tensile bending stress in the bottom 0° plies was assumed to be an ap-
propriate damage initiation criterion for the second group of beams. The analytical stress
calculations for the four beams in this group had an average maximum bending stress of 280
ksi when the beams were subjected to their damage initiation loads. A commonly reported
value for the uniaxial tensile strength of an AS4/3501-6 graphite/epoxy 0° specimen is 300 ksi.
The damage initiation loads which would produce an ultimate tensile bending stress of 300

ksi in the bottom 0° ply were determined. The results for the [0/+45/90],s beams having a/h
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equal to 22.97 and 12.50 were 0.97 kips and 1.75 kips. respectively. For the [0/+60],; beams
having the same aspect ratios the results were 0.95 kips and 1.71 kips. These results are
approximately 9% larger than the experimental results. Consequently, the damage initiation
criterion based on the maximum tensile bending stress equal to 300 ksi accurately predicted

the damage initiation loads for this group of specimens.

6.3.4 Delamination Mode

The third group of laminates was classified on the basis of a delamination type of damage
mode. The proposed criterion for predicting the damage initiation loads was based on the
interlaminar shear stress distribution along the interface which corresponded to the !ocation
of the delamination. In general, for the case of a large aspect ratio beam the delaminations
were close to the midplane. The interlaminar shear stress, r,,. at that point is maximum
half-way between the load and support points and the normal component of stress, o, is ap-
proximately equal to zero. However, as the aspect ratio becomes small, the delaminations
occur at an interface which is above the midplane. The distribution of the interlaminar shear
stress along these interfaces showed the maximum value to be located closer to the midspan
and the applied loading. Consequently, the location of the maximum interlaminar shear stress
coincided with a compressive normal stress, o, which would prevent the delamination.
Moving along an interface which is located close to the top surface, away from the midspan
and the load nose, the magnitudes of the compressive normal stress and the interlaminar
shear stress decrease. Therefore, when evaluating the analytical results for the interlaminar
shear stress distribution the z-location of the'interface corresponding to the observed delam-
ination is an important parameter in developing a valid damage criterion. For the smaller
aspect ratios, the z-location of the delamination led to a damage initiation criterion being
based on a magnitude of interlaminar shear which was not an absoiuie maximum