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Abstract functions to determine the system order and further reduce
the noise effect on the realized system model by truncatingA novel approach is developed using experimental data

.... some small singular values The retained singular valuesfrom the su'uctuml _esaag of a phy_ic.alsysmm..to.adean:ff_t-& .......... .. ,
reduced order model and its error for a robust controller de- are dominated by the system signals and the order of the

sign. There are three steps involved in the approach. First, an system is determined by the number of the retained singular

approximately balanced model is identified using the Eigen-
system Realization Algorithm which is an identification algo-
rithm. Second, the model err_ is calculated and described

infrequencydomain in termsof theHoo norm. Third, a

poleplacementtechniqueincombinationwitha Hoo control

methodisappliedtodesigna controllerfortheconsidered

system.A setofexperimentaldatafroman existingsetup,

namelytheMini-Mastsystem,isusedtoillustrateandverify

theapproachdevelopedinthispaper.

Introduction

Constructing a suitable mathematical model for a dy-
namic system is a major task in the fields of structure analysis

and control design for vibration suppression. The difficulty
of estimating and describing the model error, 1 which is a
necessity for a robust controller design, 2-12 is even more

values. On the other hand, the truncated singular values

are dominated by noise and hence may be used to estimate
a noise-related model error bound. Defining the model
error bound to be the maximum truncated singular value is
equivalent to defining a Hoe error bound for the realized
system model. Once the Hoe error bound is obtained, a
H_o control method s may be readily applied to derive a

robust controller design for the system represented by the
realized modeL General speaking, the Hao control methods
are optimal frequency domain algorithms which compute the
feedback control law by minimizing the maximum singular
value of the system transfer function. It is known that
the Hoe control methods address the full range of stability
margin, sensitivity, and robust optimization. This paper is
motivated by the strong connection between the ERA system
identification method and the Hoe control methods. It seems
natural to integrate together the system identification method

severe than that of constructing a mathematical model. In with the control methods so that a robust conu_ller design
thepast,systemidentificationtechniquessuchastlmF_.igea...._ beachieveddirectlyusingme experimentaldata.

systemRealizationAlgorithm(ERA)ts-ls havebeen de-

veloped,usingexperimentaldatafromthemodaltestingof

largespacestructures,forconstructingamathematicalmodel
eitherfora controllerdesignorformodal parameteriden-

tificationincludingfrequencies,dampingand mode shapes.

Yet,themodelerrorissuehasrarelybeenaddressed.

The multi-input/multi-output time domain ERA tech-

niquewas originally developed for modal parameter identifi-
cation and successfullyappliedtothe modaltesting of large
space structures. The ERA techniqueIsA4 uses the singular
values of a finite Hankel matrix formed by impulse response
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The objective of this paper is to develop a method using
experimental dam from measurements of a structural testing
to identify a reduced order model and its error for a robust
controller design to suppress the vibrational motion of the
smacture. The approach is to integrate the Eigensystem Re-
alization Algorithm with the Hoo robust control methods.
This paper is written to outline the fundamental concepts
from different disciplines and then integrate them together,
while including advanced materials. In the first section, Han-
kel singular values era linear system in frequency domain are
discussed and the relation with the ERA Finite-Hankel singu-
lar valuesisdescribed. In the second section, the ERA algo-
rithmisbrieflyintroducedand theconvergenceofitsmodel
realizationtothebalancedrealization19,2°isdescribedand

discussed.The balancedrealizationhasbeenwidelyusedfor
modelreduction2°androbustcontrollerdesigns.Inthethird

section, the Hoe control methods are briefly described. In

the fourth section, the ERA/H_o control algorithm is shown



including two numerical examples. The ERA reduced real-
ized model is chosen as the Hoe conu_l design model and
the estimated model error is used to compute the weighting
matrices for a robust controller design. In the fifth section,
an example is given using an existing experimental setup, the
NASA Langley Mini-Mast system, to illustrate the ERA/Hoe
control algorithm.

where Ai is the ith eigenvalue. Now, consider the discrete-
time state-space model

_(t + 1) = A_(t) + B_(t) (7)

/_(t)= C_z(t). (8)
If this system is stable then the discrete controllability and
observability grammians are defined as

P= _ AkBB'A "k
0<k<oo

_= __, A'_O'dA k (9)

Hankel and Finite-Hankel Singular Values
of a Linear System

Computation of the model error bound is a key element and
in developing robust control systems. The model errorbound
can be expressed and described in many different ways
including the Hankel singular values of the system, transfer__........
function matrix. In this section, the Hankel and Finite-

Hankel singular values of a linear, time-invariant dynamical

system are discussed. Consider the linear system

(:)_(t) = A_(t) + BuCt)

yCt)= C_zCt) (2)

where _.zis an n x 1 state vector, u is an m x 1 input vector,

£ is a 1x 1 output vectorand .4, B, andC are n x n, n x rn,
and 1X n systemmatrices,respectively. The transfer function
of this system is

(3)G(s) = C(sI - A)-XB.

Ifthesystemisstable,i.e.alltheeigenvaluesofA arcinthe
lefthalf-plane,thenthecontrollabilityand theobservability

grammiansaredefinedas

too

P =/o ezp(At)BB*ezp(A*t)dt

and

O = _-- ezp(A*t)C*Cezp(At)dt

where P and Q satisfy the Lyapunov equations

AP + PA* + BB* = 0

(4)

and

A*Q + OA + C*C = O. (5)

Here the superscript * is used herein to indicate the complex
conjugate of the variable so marked.

Hankel Singular Values

The Hankel singular values of this system are defined as

0<_k<oo

which satisfy the discrete Lyapunov equations

P - APA* = BB"

and

O - a.PA = C*C.
The z transform of this discrete system is given as

(10)

G(z) = C(zI- A)-x B (11)

or in series expansion

O0

V(z) = _-_Yiz-_-1
i=O

where Y/ = _._i/}, i = 0, I, 2, ... am impulse response
functions and usually referred to as the Marker parameters
associatedwiththe model (/1, B, G% The Hankelsingular

values ofG( z) ate defined as

a_(G(z)) = (MPQ))_/2. (12)

_,_(G(s))= (MeQ))_/2, _ > _+: (6)

Because a discrete-time model is related to a continuous-time

model by an invariant step time response, the grammians in
the discrete time domain are equivalent to the grammians
in the continuous time domain. 1,2° Therefore the Hankel

singular values for the continuous-time and discrete-time
models are identical.

Next it will be shown how the Hankel singular values

are related to the singular values of a I-Iankel matrix in
the discrete-time case. Consider a discrete-time infinite

Hankel matrix whose (i,j)th block is the Markov parameter

Yii+j-_ = CA i+i-2B. The Hankel matrix is written as

Yx Y, ... Y,

H = IV, We -- : "'. : (13)

Y, I Y, ... Y,+.-3

! :
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where

w, = {C',a'c',..., ]•
and

W_ = [B, aJ_, ..., ,_k/_, ...]. (14)

It can be shown that P = _VcWc* and that O = W_oWo

satisfy Eq. (10). The singular values of H are

a,(n3 = (N(tr H)) I/2 = (NO UW;,WoW,)) t/2. (15)

In this equation, A_CWc*W**W, Wc ) means that

(16)

where u/is the eigenvector corresponding to the eigenvalue
Ai. Pre-multiplying Eq. (16) by _Vc and defining z_ = Wc_

yields
V¢,_ W;oW,_ = _z_. (17)

Because Eqs. (16) and (17) produce the same eigenvalues,

Eq. (15) can be written as

a,(_ = (&(vc, w_'_rr¢ow,)) _/_ = (&(PO)) _/2. (18)

Hence the Hankel singular values of G(z), Eq. (I1), which
is formed from impulse response functions, are the singular

values of H, Eq. (13). Again note that the Hankel matrix

H in (13) is infinite dimensional. It is, of course, impracti-

cal to solve for the Hankel singular values from an infinite

dimensional Hankel matrix H. If system matrices A, B,

and C are exactly known, the Hankel singular values can be

obtained by solving Eq. (12). In practice, however, flexi-

ble structures are subjected to uncertainties to certain extent.

Experiments are conducted to verify the matrices A, B and

C. In general, experimental dam of inputs and outputs are

stored in terms of the system transfer function (frequency

domain) which is equivalent to the impulse response func-

tions (Markov parameter) (discrete-time domain). Therefore,

from a practical point of view, the Hankel singular values

can be approximately computed from a Hankel matrix that is

formed by a finite number of Markov parameters. The ques-
tion arises how much error one expects to have ff the Hankel

singular values are computed from a finite-dimensional Han-

kel matrix. This question will be answered in the following
section.

Finite-Hankel Singular Values

In this section, the singular values obtained from a Finite-

Hankel matrix are compared with the Hankel singular values.
First a F'mite-Hankel matrix is defined as

H(O)= Y_ Y2 ... Y,

I Y, ... Y,,-2

(19)

where Y/is the Markov parameter.
the Finite-Hankel matrix H(0) is defined as

An extended matrix of

, ÷, Y,+0._.0
0 0

It is obvious that

,,,(_,)= _,(_(o)).

The Hankel matrixH inEq. (13)can be writtenas

0 ... 0 I/,
0 ... 0 Y,+I

; ".. •

0 ... 0 Y,+o-1

Y, ... Y,+,-1 Y,+.

,°°

°,,

)
,.°

where

(20)

(21)

(22)

(23)

the left upper r X s blocks of /_r° are 0 and the other
blocks are the same as //'. Next it will be shown that

the Finite-Hankel singular values converges to the Hankel

, singular values. Consider the system with the single-input

anti. single-output transfer function G(s) that is real rational,
scalar-valued,stricdyproperand analyticinRe s > 0. Then

the Markov parameter Yi can be expressed as

k

__c .e ixiAtYi=L.,_
,4=1

(24)

where k is the system order, Ai is the j -th eigenvalue with
negative real part and At is the measurement time increment.

The norm of Yi satisfies the following inequality

IYd_<ee-x'', t, = iAt, i _> n/ (25)

where c and A are positive real constants, and ni is a positive

integer. Using singular value inequalities 21 yields

#,(n3< + (26)
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Let r > n/+ 1 and s > n/+ 1 then response functions,

O0

a1(H'r. ) < II/:/"..H= max _IYi+i_11
- i>t

- i=1

O0 O0 O0

s (I i=ni+l {=ni+l

_<--_ ce-Xtdt = _e < e

(27)

Yk = OA_B. (29)

Note that there are many other ways to obtain the impulse
response functions experimentally. For example, inverting
a transfer function from the frequency domain to the time
domain will generate the impulse response functions. The
algorithm begins by forming the r x s block matrix (gener-
alized Finite-Hankel matrix)

where _ is a positive real number. For any small _ > 0,
there exists an ni which makes Eq. (27) true. Combination

of Eqs. (20, (26) and (27) yields

_(H) - _(_.) < _(_o) ___,(_ + _(-_o)

Of

a_(_ - e < a_ca(0)) < a,(_ + e. (2s)

Equation (28) shows that the Finite-Hankel singular values
converge to the Hankel singular values. The proof can be
easily extended for the multi-input/multi-output system.

The finite-I-Iankel matrix is the basis for the Eigensystem
Realization Algorithm (ERA) which can be used to identify

a system model for modal parameter (system eigenvalues)
identification or controller designs. The Marker parameters

Y/are the impulse response functions which may be obtained
experimentally.

Etgensystem Realization Algorithm (ERA)
and Model Reduction

The problem of constructing a suitable mathematical
model for a dynamic system is a maj_ task f_ a control

engineer as well as a strucutralengineer. For structuralanal-
yses and controller designs experimental data from structural
testing are used to either verify an analytical model or dl.
rectly determine a mathematical modeL The ERA is an algo-
rithm which computes a mathematical model directly from
experimental data. In this section, the basic ERA formula-
tions are briefly discussed and the relation between the ERA
realization and the balanced realization is derived. Note that

balanced realization has been fxequently used for model re-

duction,

I_ Yl,+i ... r_+.-i )
H(k) = Yk+l Yk+2 YJ,+, .

: : i

..... \Yh+r-1 Yk+. Yk+.+.-, /

(30)

The Finite-Hankel matrix H(k) can be expressed as

H(k) = VrAkW, (31)

where

Vf We= [B AB ... A'-IB],

Vrand _ arethe observabilRyandcontrollabili_ matrices.
respectively. Assume that there exists a matrix/'/, such that

_ Vr = In (32)

whereIn isan identitymau'ixofordern. Equations(31)

and(32)imply .......

H(0)H*H(0) = VrV_rmffVrl/Vo = VrW, = H(0). (33)

Thus Ha is the pseudo inverse of H(0). A solution for HI
can be obtained as follows. Use singular value decomposi-

tion to the matrix H(O)

H(0) = USV 'r (34)

Basic ERA Formulan'ons

The ERA algorithm uses the singular value decomposi-
tion of a Hankel matrix to determine a system model under

test. Consider the discrete-time state-space model as given

by Eq. (8). Let the input II be the impulse input at an ini-
tial time such that its components satisfy ui(0) = 1, (i =

1,...,m) and u(k) = 0, (k = 1, ...). The time domain de-
scription is given by the Marlmv parameters14, i.e. impulse

where the columns of U and V are orthonormal and _ is

diagonal with positive elements [al, az, ..., an]. The pseudo
inverse can be computed as

= [v][r-xUr] (35)

Define Om as the null matrix of order m, arm an identity
matrix, ET_ = [Im,0m,...,0m]. From Eqs. (31), (32), and
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(35), a minimal realization can be obtained from

r(k+ i)= _qTU(k)_p= EqTV_kW.Ep
,'I- _ "k #

= E_VrWsFI VrA WsH VrWjEp

= E_Vrx/2[r.-1/2trTH(1)Vr.-1/2]krZ/2VrEp.
(36)

The triple [r.-I/_trTH(1)VZ-1/L r_/2vTxp, ETu_.V21is a
minimum realization. This is the basic ERA formulation.

For a finite dimensional and linear time-invariant system,

an exact system realization can be obtained by the ERA algo-

rithm from noise-free measurements. 14 The ERA algorithm

is accurate and efficient, particularly for low noise levels,

writtenas

= woTwo

= r + (_)Tr),_ + (22_)Tr;t 2r + ...

and

P = WoWT

= WsW? + _tsw_wF(A*) T + )t2sWsWT(A2S) T + ...

= E + ,AsE(_s)T + A2SE(A2S)T -t- ...

(40)

If the system is stable, all the eigenvalues of _ should be

and produces a minimum order realization. It is a power- inside the unit circle, i.e., ]Xi(A)] < 1. Therefore, for a

ful identification algorithm. However, if-sig_cant noises. _ stable system, there exists a value of n such that ]_(._n)[ is

are present in the measurements, caution must be taken to less than _ for a given f. Equation (28) implies
identify a proper order for the system model.

Relan'on Between ERA and Balanced Realizations

In this section, the relation between ERA and Balanced

Realizations is derived. Examination of Eqs. (31) and (34)

indicates that the observability matrix and controllability
matrix can be written as

lim E = Eao (41)
r--*oo t $'-'* OO

where Eoo is the E in Eq. (34) when r and s approach oo,

which, in turn from Eq. (40), yields

lim P = lira E = Eoo
f'-*OO t I"'_(_t r--_co I I_oo

V_= UEx12 and We = _3zI_v"r.

The equality UTU = I = V'rV implies that

V_r,V, = Ex/2UrU_t/2 = _,

and

W, WT, = _II2v_VEII2 = E.

Combination of Eqs. (14) and (31) yields

Wo -"

CA

CA,

OA_r-z
CA 2,

v,

(37) and
tim Q = tim E = Eoo. (42)

t'--_O0, I-'*_ g"_j I--'00

Thus the ERA realization converges to the balanced realiza-
tion. So far the realization order is assumed to be identical

to the true one. If the realization system order 7 is lower

than the true one n, Eq. (36) implies that C. t is the l x 7

left block of Cn, ,am is the 7 x 7 left-upper block of An

(38) and B. t is the 7 x m upper block of Bn. Since the ERA

realization [An, Bn, Cn] converges to the balanced realiza-

tion [A_,B_, Cs], A_, B-t and C-t should converge to the

corresponding blocks of Ac,B_ and C_, respectively. From
Eq. (42) and the balanced realization 19,20, one obtains

(39)

lira P"I = E_ lira O'l = E_ (43)
r--_c_, $--'¢00 r--_, l--+¢_

where P't and O'r are the controllability and observability

grammians of [A_, B.t, C.t] and E_ is the 7 x 7 left-upper
block matrix of Eoo. The 7-order ERA realization converges

to the 7-order balanced realization. It is concluded that

the reduced ERA model converges to the reduced balanced
model.

and

Wo = [B AB ... A'-ZB A'B ... A_'-ZB A_'B...]

= [W, A'W, A='W,...].

The observability and controllability grammians can thus be

Hoo Robust Controller Designs

The Hoo control methods are optimal frequency domain

algorithms _-4, which address the full range of stability

margin, sensitivity, and robust criteria. In this section, a

brief description of H °° control methods is given.



A blockdiagramoftheHoe designalgorithmispresented
inFig.t.The closed-looptransferfunctionmatrices(utto

threeoutputsY2,u2 and y)areexpressedas

S(s) = (I+ L(s)) -t (44)

_s) = F(s)(I + L(s)) -t (45)

T(s) = L(s)(I + L(s)) -I (46)

where L(a) = G(,)F(s), G(,) is defined in Eq. (3), and

F(a)isthe controllertransferfunctionmatrix.The matrices

S( s) and T( s) are Imown as the sensitivity and complemen-
tary sensitivity, respectively. The singular values of these
mauices can be used to quantify the stability margins and

performance of the system. In the Hoe controUer design,
the weighting function matrix W1 (jw) is used to weight the
semitivity sothat

e(S(jw))_<IWi-_x(jw)l (47)

wheree( )meansthemaximum singularvaluesof().The

quantitylreV_tl(jw)[isthedesireddisturbanceattenuation.

The plantuncertaintycan be consideredas additive
uncertaintyA A or multiplicativeuncertaintyA M. The

stabilitymarginoftheadditiveuncertaintymust satisfy

oCAa(jw) )a( R(jw) ) <_1.

If the weighting function matrix W2(jw) is chosen such that

IW2(jw)l _>8"(HA(jw))

and

IWaCiw)ls'(P,.(jw)) < 1 (49)

then the inequality Eq. (48) holds. The disturbance attenua-
tion and additive stability margin designs can be combined

intoa singleHoe problemas

IlZy,.,lloe -< X

where
(w1s 

T"m = _ W, RJ (51)

and this combination is called the Hoe additive perturbation

control design. Similarly, the Hoe multipllcative perturba-
tion controldesigncanbederived as

IITv,.,lloe -< x

where

T,t,,, { Wx S'_
= kWaTJ" (53)

A detailed examination of Hoe design methods can be found
in Ref. 7. In the next section, a combined ERA/Hoe

control algorithm is developed and discussed including some
numerical examples.

ERA/Hoe Control Algorithm

This section shows a control design algorithm which
combines the features of both ERA and Hoe control methods.
The flowchart of this algorithm is shown in Fig. 2.

To use the ERA/Hoe algorithm, a set of experimental
input and output data is required. The model error between
the reduced ERA model and the full ERA model is used for a

Hoe controller design. The full ERA model is defined as the
model of maximum order which can be obtained by the ERA.
For noise-free measurements, if not impossible in practice,
the full ERA model is the exact system model. For noisy
measurements;, the orderof the full ERAmodel is equal to
either the number of columns or the number of rows in the
Finite-Hankel matrix whichever is less. The reduced ERA
model is the model reduced from the full model such as the

triple [A_, B.t, C-t] shown in the last paragraph of the ERA
Section.

It has been shown that the ERA models converge to
the balanced models. The 7-th order reduced balanced
model G,t(s ) of an n-th full order system G(s) satisfies the
following error bound t

fl

(48) 8"(G(jw) - Gk(jw)) < 2 E cq (54)
imk+l

where 8'( ) is the maximum singular value of ( ) and o'i is
the ith Hankel singular value of G(s). This equation pro-
rides the Hoe error bound for the reduced model There
are two different Hoe control designs, namely the additive
perturbation control design n and the multiplicative pertur-
bation control design, t2 Numerical examples are used in the
following to illustrate the ERA/Hoe control algorithm for the

two different designs.

ERA�Hoe Additive Perturbation Control Design
(50)

In this design the closed-loop transfer function must
satisfy the inequality

llTu.ll___x (55)

where
f

Tu"- _W2R) (56)

and u is the input, y is the output, and Wt and W2 are
(52) appropriate weighting functions. The sensitivity matrix S

tends to be dominated by the sensitivity of low frequency
modes (or dominant modes). An appropriate weighting

function Wl is the inverse of the desired sensitivity. The
weighting function matrix W2 is chosen to penalize the
control action at high frequencies (or residual modes) as well

as incorporate other robustness constraints. One of the design

6



goals is to assure that unmodelled high frequency dynamics
will not destabilize the closed-loop systems. Some examples

of choosing weighting functions can be found in Refs. lO
and 11.

Let the system impulse response measurement be gener-

ated by the following equation

4

v(ti) = EaiezP(¢iti)sin(witi) (57)
i=1

where the system parameters are listed in Table 1.

Figure 8 shows the Bode plots of the weighting matrices.

The Bode plot of the closed-loop transfer function Ty,, is
shown in Figure 9, in which the gain margin is 6.0 db and

the phase margin is 54.2 degree.

The ERA/H_ control algorithm provides robust control

designs directly from experimental input and output data.

First, the ERA algorithm is used to compute art appropriate
reduced balanced model and its error in terms of the H_

norm. Then, the model error norm is used to select the Hoe

control weighting matrices for a robust controller design. In

the next section, the ERA/Hoo algorithm is applied to an
experimental setup, i.e, the Mini-Mast system 22, for further

illustration of the concept developed in this paper.

TABLE 1

i 1 2 3 4

a/ 1.0 0.2 0.04 0.01

_'i -0.2 -0.3 -0.4 -0.5

wi 3.0 5.0 7.0 8.0

For illustration, the measurements are assumed to be
noise free. The Finite-Hartkel matrix size is chosen as

40 x 45. Figure 3 shows the singular-value Bode plots
of the full model transfer function G, the reduced model

transfer function G_ and the model error AG =G- G_.

Here G. t of order 4 is the wansfer function obtained by the
ERA algorithm. The model error AG is an additive model

error. The additive robusmess weighting function W2 and

the sensitivity weighting function W, are chosen as

0.005a + 1 0.04s + 0.005
W,= W,=

0.45 + 0.01 ' 0.001s + 1

Figure 4 shows the Bode plots of AG and V¢_, whereas

Fig. 5 shows the Bode plotsof Wx and V¢_. The Bode plot

of Tu,_ is shown in Fig. 6, in which the gain margin is 5.2
db and the phase margin is 56.6 degree.

ERAJ Hoo Muhiplicative Perturbation Control Design

In this design, the closed-loop transfer function must

satisfy

IlTv.II__.1 (58)

where

( w,s
T,,,,= k,W,T] (59)

and W, and Ws are appropriateweightingfunctions.The

system measurements and the Finite-Hankelmatrixare the

same as in the above example. Figure 7 shows thedesign

robustness14_G 7 and model error.The designweighting

matricesare chosen as

W 1 = 0.008#+1 W 2=l.0x10 -7, W 3=
0.2, + 0.01 '

0.04, + 0.01

0.001, + 1 "

ERA/He0 Applicationr The-Mini.Mast System

In this section, the ERMHoo algorithm is used to design
robust controllers for the Mini-Mast system 22 with two in-

puts (torgue wheels) and two outputs (displacement sensors).

Mini-Mast is a 20-meter-long, deployable/retractahle truss

located in the Structural Dynamics Research Laboratory at

NASA Langley Research Center. Mini.Mast was designed

and built to high standards typical of spacecraft hardware

which was constructed from graphite-epoxy tubes, titanium
joints, and precision fabrication techniques, zs It is used as

a ground test article for research in the areas of structural
analysis, system identification, _4 and control of large space

structmes. The sinusoid inputs with the frequencies close
to the system natural frequencies are used to excite the sys-

tem. The system has five modes less than 7 Hz and the

lowest frequency is about 0.80 Hz. The design strategy is as
follows:

I. A time domain least squares technique _s is used to
compute Marker parameters from input and output
measurement data.

2. A Finite-Hankel matrix is formed from the Marker

parametersand the ERA is used to compute a reduced
model and its model error.

3. A Hoe control method is applied to design a robust

controller. When applying the ERA, the discrete

time increment should be adjusted to compute an

accurate model within the frequency range of interest

Figure 10 shows the singular value Bode plot of the

ERA model transfer function. The singular value

Bode plots of the model error (solid lines) and the

designed adgitive robustness (dashedlines) are shown
in Fig.n.

In MATLAB 7, the Hoo control computations are

performed by using the recent Glover-Doyle '°2-Riccati"

formulae, n After the Hoo control design is executed, the

closed-loop system keeps the open-loop stable complex

eigenvalue pairs and reflects the open-loop unstable complex

eigenvalue pairs. Because the identified open-loop model of

the Mini-Mast system has small positive damping (system

7



modes) or negative damping (noise modes) for most complex
eigenvalues, the Hoe closed-loop system will then have low
damping. To improve this condition, a multivarlable bilinear
Iransforms can be used to shift the open-loop eigenvalues

before applying the Hoe control methods. The process of
the bilinear transform is described below:

1. The system model and the design weighting functions
are shifted with a real value

2. The Hoe design methods are used to design a con-
troller for the shifted system.

3. Either the closed-loop system is shif_l back by -a
or the controller is used in the original nonshffted

system.
4. Check the singular values of the closed-loop transfer

function matrix Tvu, Eq. (56), which ._bouldJ_e, less _:
than one.

In the process of applying the bifinear Wansform, several

problems listed below are found.

1. The original system has a Hoe control solution
with appropriate design weighting functions, but the
shifted system with the shifted weighting functions
does not always have a Hoe conrail design solution.

2. The singular values of the closed-loop system in-
crease significandy when the imaginary axis has a

positive shift.

To improve the above problems, a different technique which
is equivalent to a polo placement technique is developed
yielding freedom for assigning each closed-loop eigenvalue
independently. Let the system state mat_ be diagonalized
such that

A = ,t-IA_ (6O)

where• istheeigenvectormatrix.Lettheclosed-loopstate

matrixberepresentedas

A= q_(A+ AI)O -I (61)

whe_ ,41 is a semipositive diagonal matrix. The design
strategy is as follows.

I. Use _ as the state matrix for the Hoe controller

design.
2. Apply the conlxoller to the original system.
3. Check whether this control design satisfies the Hoe

constraint equation, Eq. (55).

Figure 12 shows the singular value Bode plot of a Hoe
design transfer function Tu. with a specified mauix A1
which is not shown. The man-ix A1 provides more than
10% damping for the first mode. Next, the computational
simulationisusedtocheck the performance of the above

design. The solid fines in Fig. 13 arc the first 5-see
experimental outputs. In these plots, _i represents the
ith output with the jth input. The outputs f_m the ERA
reduced model using the same inputs as the experimental

data are plotted in dashed lines. The inputs are turned off
after 5 seconds. The open-loop and closed-loop responses
are compared in Fig. 14. The solid fines in Fig. 14 are the
open-loop free decay responses, whereasthe closed-loopfree
responses are plotted in dashed fines. The first closed-loop
mode has more than10% damping.

In fltis ERA/HOe control design, the following items are
observed.

1. This algorithm can be used to design a robust con-
trollerdirectly froma setofexperimentalinputand

outputdata.
2.The controllerorderisthesum ofthemodel order

andweightingfunctionorder.Economicalcontrollers

may be obtainablethroughtheuse of appropriate
model reduction"techniques.

3.Iftheidentifiedlow frequencymodes aresomewhat

accurate,therobustnessweightingcan coversignifi-

canthighfrequencymodelerrors.

4. The additive man'ix A1 can be used to assign the
closed-loop dampings and frequencies for the modes
of interest.

5. An analyticalmodel isnotrequired.

Concluding Remarks

In this paper, the Eigensystem Realization Algorithm is
integrated with the Hoe control methods to develop a tech-
nique for controller designs of flexible structures. The tech-
nique starts with a set of input and output data obtained from
vibration tests of a physical system. The set of data is then
usedtoidentify a reduced model and assess its error bound.
The reducedmodel describesthephysicalsystem,whereas

errorbound characterizesthesystemand measurement
uncertainties.Bothreducedmodelanderrorboundareused

todesignarobustcontrollertOattenuatethevibrationalmo-

tionof thephysicalsystem.Sinceexperimentaldataare
used,actuatordynamics,sensordynamicsand filterdynam-
icsareincludedin theidentificationof thereducedmodel

and thus in the controlle_designs. This approachis believed
toprovidethereducedmodelwithfidelity.Numericalsim-

ulationsforcontrolofan experimentalsetup(theMini-Mast

system)indicatethatthisapproachisverypromisingforuse

incontrolofflexiblestructures.Notethatexperimentalmod-
elsareusedinthesesimulations.The controllerswhichare

successfullydemonstratedinthesimulationswillbe tested

intheMini-Mastsystemtoverifytheapproachdevelopedin

thispaper.
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