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Abstract
A novel approach is developed using experimental data

from the structural testing of a physical system.to.identify a.. .

reduced order model and its error for a robust controller de-
sign. There are three steps involved in the approach. First, an
approximately balanced model is identified using the Eigen-
system Realization Algorithm which is an identification algo-
rithm. Second, the model error is calculated and described
in frequency domain in terms of the Heo norm. Third, a
pole placement technique in combination with a Ho, control
method is applied to design a controller for the considered
system. A set of experimental data from an existing setup,
namely the Mini-Mast system, is used to illustrate and verify
the approach developed in this paper.

Introduction

Constructing a suitable mathematical model for a dy-
namic system is a major task in the fields of structure analysis
and control design for vibration suppression. The difficulty
of estimating and describing the model error,! which is a
necessity for a robust controller design,>~12 is even more
severe than that of constructing a mathematical model. In

the past, system identification techniques such as. the Eigen-...

system Realization Algorithm (ERA)!3~1® have been de-
veloped, using experimental data from the modal testing of
large space structures, for constructing a mathematical model
either for a controller design or for modal parameter iden-
tification including frequencies, damping and mode shapes.
Yet, the model error issue has rarely been addressed.

The multi-input/multi-output time domain ERA tech-
nique was originally developed for modal parameter identifi-
cation and successfully applied to the modal testing of large
space structures. The ERA technique'®* uses the singular
values of a finite Hankel matrix formed by impulse response

* Principal Scientist, Structural Dynamics Branch,
Associate Fellow AIAA,

+ Research Associate, Department of Mechanical
Engineering, Old Dominion University, Member AIAA.

functions to determine the system order and further reduce
the noise effect on the realized system model by truncating
some small singular values. The retained singular values
are dominated by the system signals and the order of the
system is determined by the number of the retained singular
values. On the other hand, the truncated singular values
are dominated by noise and hence may be used to estimate
a noise-related model emor bound. Defining the model
error bound to be the maximum truncated singular value is
equivalent to defining a Ho, error bound for the realized
system model. Once the Ho, error bound is obtained, a
Ho, control method® may be readily applied to derive a
robust controller design for the system represented by the
realized model. General speaking, the Ho, control methods
are optimal frequency domain algorithms which compute the
feedback control law by minimizing the maximum singular
value of the system transfer function. It is known that
the Ho, control methods address the full range of stability
margin, sensitivity, and robust optimization. This paper is
motivated by the strong connection between the ERA system
identification method and the Hoo control methods. It seems
natural to integrate together the system identification method
with the control methods so that a robust controller design

‘can be achieved directly using the experimental data,

The objective of this paper is to develop a method using
experimental data from measurements of a structural testing
to identify a reduced order model and its error for a robust
controller design to suppress the vibrational motion of the
structure. The approach is to integrate the Eigensystem Re-
alization Algorithm with the Ho, robust control methods.
This paper is written to outline the fundamental concepts
from different disciplines and then integrate them together,
while including advanced materials. In the first section, Han-
kel singular values of a linear system in frequency domain are
discussed and the relation with the ERA Finite-Hankel singu-
lar values is described. In the second section, the ERA algo-
rithm is briefly introduced and the convergence of its model
realization to the balanced realization!®2 is described and
discussed. The balanced realization has been widely used for
model reduction2® and robust controller designs. In the third
section, the Hoo control methods are briefly described. In
the fourth section, the ERA/H, control algorithm is shown
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including two numerical examples. The ERA reduced real-
ized model is chosen as the H,, control design model and
the estimated model error is used to compute the weighting
matrices for a robust controller design. In the fifth section,
an example is given using an existing experimental setup, the
NASA Langley Mini-Mast system, to illustrate the ERA/Ho
control algorithm.

Hankel and Finite-Hankel Singular Values
of a Linear System

Computation of the model error bound is a key element
in developing robust control systems. The model error bound
can be expressed and described in many different ways

including the Hankel singular values of the system.transfer...

function matrix, In this section, the Hankel and Finite-
Hankel singular values of a linear, time-invariant dynamical
system are discussed. Consider the linear system

Z(t) = Az(t) + Bu(?t) (1)
y(t) = Cz(t) 1))

where z is an n X 1 state vector, u is an m X 1 input vector,
yisalx1 output vector and A, B,and C are n Xn,nxm,
and [ X n system matrices, respectively. The transfer function
of this system is

G(s) = C(sI - A)™1B. 3)

If the system is stable, i.e. all the eigenvalues of A are in the
left half-plane, then the controllability and the observability
grammians are defined as

P= f" exp( At)BB" exp( A" t)dt
0
and
Q= [’ ezp(A*1)C* Cezp( At)dt @
where P and @ satisfy the Lyapunov equations
AP+ PA* + BB =0

and
A'Q+QA+C'C=0. 5
Here the superscript * is used herein to indicate the complex
conjugate of the variable so marked.
Hankel Singular Values
The Hankel singular values of this system are defined as

ai(G(s) = (NP2, XN2Xp  ©

where J; is the ith eigenvalue. Now, consider the discrete-
time state-space model

z(t+1) = Az(t) + Bu(t) o)

¥t = Cx(1). ®
If this system is stable then the discrete controllability and
observability grammians are defined as

P= Y ABBA*

0<k<oo
and
Q= Z AkCC Ak ©)

L v 0<k<oo
which satisfy the discrete Lyapunov equations

P-APA* = BB
and

Q-A'PA=C"C. (10)

The 2 transform of this discrete system is given as

G(z) = C(zI - A)7'B ¢3))

or in series expansion
w »
G(z) = ZY}Z""I
+=0

where Y; = CA'B, i = 0, 1, 2,... are impulse response
functions and usually referred to as the Markov parameters
associated with the model (A, B, ). The Hankel singular
values of G(z) are defined as

%:(G(2)) = (N(PQNY2. (12)

Because a discrete-time model is related to a continuous-time
model by an invariant step time response, the grammians in
the discrete time domain are equivalent to the grammians
in the continuous time domain.}30 Therefore the Hankel
singular values for the continuous-time and discrete-time
models are identical.

Next it will be shown how the Hankel singular values
are related to the singular values of a Hankel matrix in
the discrete-time case. Consider a discrete-time infinite
Hanke! matrix whose (i,j)th block is the Markov parameter
Yi4j-2 = CA**9~2B. The Hankel matrix is written as

Yo 1 ... Y
, 2 ... Y,

H=W,W. = : : : (13)
o Y )



where

W, = [C,A°C", . A*CH,. )"

and

W, = (B, AB,.., A*B,..). (14)

It can be shown that P = W,W? and that Q = W; W,
satisfy Eq. (10). The singular values of H are

oi(H) = (N D) = N(WS W WoWe)! 2. 15)
In this equation, A\j(W; Wy W, W,) means that

W2 W Wo Wy = N (16)
where y; is the eigenvector carresponding to the eigenvalue
). Pre-multiplying Eq. (16) by W, and defining z; =Wy
yields

WW, Wy Woz; = Xz an
Because Eqs. (16) and (17) produce the same eigenvalues,
Eq. (15) can be written as

oi(H) = (N(WW W Wa))2 = (N(PQ)Y2. (19)

Hence the Hankel singular values of G(2), Eq. (11), which
is formed from impulse response functions, are the singular
values of H, Eq. (13). Again note that the Hankel matrix
H in (13) is infinite dimensional. It is, of course, impracti-
cal to solve for the Hankel singular values from an infinite
dimensional Hankel matrix H. If system matrices A, B,
and C are exactly known, the Hankel singular values can be
obtained by solving Eq. (12). In practice, however, flexi-
ble structures are subjected to uncertainties to certain extent.
Experiments are conducted to verify the matrices A, Band
C. In general, experimental data of inputs and outputs are
stored in terms of the system transfer function (frequency

domain) which is equivalent to the impulse response func--

tions (Markov parameter) (discrete-time domain). Therefore,
from a practical point of view, the Hankel singular values
can be approximately computed from a Hankel matrix that is
formed by a finite number of Markov parameters. The ques-
tion arises how much error one expects to have if the Hankel
singular values are computed from a finite-dimensional Han-
kel matrix. This question will be answered in the following
section.

Finite-Hankel Singular Values

In this section, the singular values obtained from a Finite-
Hankel matrix are compared with the Hankel singular values.
First a Finite-Hankel matrix is defined as

ao=| 1 (19)
Yr-—l Y, Yr+a-—2

where Y; is the Markov parameter. An extended matrix of
the Finite-Hankel matrix H(0) is defined as

Yo 1 Y,.1 O
n oy Y, 0
woo | I "
n=1Y_, Y ... Yoz O @)
0 0o ... 0 0
It is obvious that
oi(HY,) = 0i(H(0)). @1)
The Hankel matrix H in Eq. (13) can be written as
H=HS,+ H,, 22)
where
0o ... 0 Y,
0 0 Yos1
H:‘l = 0 . 0 }/'.+'_1 ’ (23)
Yeis

. .. Y"+l—1

the left upper r X s blocks of H:, are 0 and the other
blocks are the same as H. Next it will be shown that
the Finite-Hankel singular values converges to the Hankel

- singular values. Consider the system with the single-input

and single-output transfer function G(s) that is real rational,
scalar-valued, strictly proper and analytic in Re s > 0. Then
the Markov parameter Y; can be expressed as

k
Y‘ = cheiljbt (24)
i=1

where k is the system order, A, is the j —th eigenvalue with
negative real part and Az is the measurement time increment.
The norm of Y; satisfies the following inequality

Yi| Sce™, =i, i2mn (25)
where ¢ and ) are positive real constants, and n; is a positive
integer. Using singular value inequalities?! yields

oi(H) < 0i(H,) + o1(Hyy). (26)
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Letr>n; +1and s> n;+ 1 then

o0
o'l(H:'o) < lIH:l!I = r;:‘za‘:‘gl:lyﬁ-j—l'

00 o 0o

=M< Y WIS Y ke @)
=
1

i=n;+1 i=n;+1

- c
ce~Mdt = ——e~Mni <

< —
_ At t,".
where ¢ is a positive real number. For any small £ > 0,
there exists an n; which makes Eq. (27) true. Combination
of Egs. (21), (26) and (27) yields

oi(H) — oy(H,,) < o3(HS,) < oy(H) + 01(—5:.)'

or
oi(H) — e £ 0;(H(0)) < 0i(H) +e. (28)

Equation (28) shows that the Finite-Hankel singular values
converge to the Hankel singular values. The proof can be
easily extended for the multi-input/multi-output system.

The finite-Hankel matrix is the basis for the Eigensystem
Realization Algorithm (ERA) which can be used to identify
a system model for modal parameter (system eigenvalues)
identification or controller designs. The Markov parameters
Y, are the impulse response functions which may be obtained
experimentally.

Eigensystem Realization Algorithm (ERA)
and Model Reduction

The problem of constructing a suitable mathematical
model for a dynamic system is a major task for a control

engineer as well as a structural engineer. For structural anal- -

yses and controller designs experimental data from structural
testing are used to either verify an analytical model or di-
rectly determine a mathematical model. The ERA is an algo-
rithm which computes a mathematical model directly from
experimental data. In this section, the basic ERA formula-
tions are briefly discussed and the relation between the ERA
realization and the balanced realization is derived. Note that
balanced realization has been frequently used for model re-
duction,

Basic ERA Formulations

The ERA algorithm uses the singular value decomposi-
tion of a Hankel matrix to determine a system model under
test. Consider the discrete-time state-space model as given
by Eq. (8). Let the input y be the impulse input at an ini-
tial time such that its components satisfy %(0) = 1, (¢ =
1,..,m) and u(k) = 0, (k = 1,...). The time domain de-
scription is given by the Markov parameters!4, i.e. impulse

4

response functions,

Y, = CA*B. (29)
Note that there are many other ways to obtain the impulse
response functions experimentally. For example, inverting
a transfer function from the frequency domain to the time
domain will generate the impulse response functions. The
algorithm begins by forming the r X s block matrix (gener-
alized Finite-Hankel matrix)

YYL }ICI:H Y;/-H—l
Hiy=| = H (30)
T Yk+r—1 Yk+r | Yk+r+c—2
The Finite-Hankel matrix H(k) can be expressed as
H(k) = A*W, @)
where
&
v=| % |, w=1B48.. 48,
CA-r-l

V. and W, are the observability and controllabiliny matrices,
respectively. Assume that there exists a matrix /', such that
W HV; = I (2)

where I, is an identity matrix of order n. Equations (31)
and (32) imply ‘

H(0)H H(0) = V,W,H'V,W, = V;,W, = H(0). (33)

Thus H' is the pseudo inverse of H(0). A solution for H
can be obtained as follows. Use singular value decomposi-
tion to the matrix H(0)
H(0)=UzVT (34)
where the columns of U and V are orthonormal and ¥ is
diagonal with positive elements [0y, 03, ...,0n). The pseudo
inverse can be computed as
H =[V|="'U7). (35)

Define 0, as the null matrix of order m, I, an identity
matrix, EL = [In,0m, ...,0m]. From Egs. (31), (32), and



(35), a minimal realization can be obtained from

Y(k+1) = ETH(k)Ep = E]V:A*W,Ep
T ' ak !
= EJV:W,H VrAWsH VrW;Ep
= E}'U:ll?[z:-1/2UTH(1)V2-1/’]"21/2VTE,,.
(36)
The triple [£-1/2vTR()VE-1/2, £1/2vTE,, EJULS!?]is a
minimum realization. This is the basic ERA formulation.

For a finite dimensional and linear time-invariant system,
an exact system realization can be obtained by the ERA algo-
rithm from noise-free measurements.14 The ERA algorithm
is accurate and efficient, particularly for low noise levels,
and produces a minimum order realization. It is a power-

ful identification algorithm. - However,-if significant noises * -

are present in the measurements, caution must be taken to
identify a proper order for the system model.

Relation Between ERA and Balanced Realizations

In this section, the relation between ERA and Balanced
Realizations is derived. Examination of Egs. (31) and (34)
indicates that the observability matrix and controllability
matrix can be written as

V, = UZY? and W, =V/*VT. (37)
The equality UTU = I = VTV implies that
VIV, =cV2TUsA =1
and
w,WT = s1/2yTyvst? = 5. (38)
Combination of Egs. (14) and (31) yields
C
( CA \
:'_ V.
G VoA
W, = : = wAZr 39)
CAr-1 :
CAzr

\ i

and

W.=[B AB..A*"'B A'B .. A%"'B AB.)
— W, AW, AMW,.).

The observability and controllability grammians can thus be

written as
Q = Wg‘wa
=vTve+ AN TVIVAT + ATV VAP 4 .
=E+(@ANTEA" + (A*)TEA? + ..
and
p=ww?l
=wowT + wwI(anT + Alww] (A7 + ..
=% +132(AS)T+A2$2(A23)T+

(40)

If the system is stable, all the eigenvalues of A should be
inside the unit circle, ie., |\(4)| < 1. Therefore, for a
stable system, there exists a value of n such that |X;(A™)| is
less than ¢ for a given . Equation (28) implies

lim I=ZXe 41

r—00, 8—00

where T is the T in Eq. (34) when r and s approach oo,
which, in turn from Eq. (40), yields

P= =%

m im
r—00, 00 r—o0, §700
and

lim
r—00, §—00

Y=Y (42)

r—ootl>l,n¢1—ooo Q -
Thus the ERA realization converges to the balanced realiza-
tion. So far the realization order is assumed to be identical
to the true one. If the realization system order v is lower
than the true one n, Eq. (36) implies that Cy is the I X v
left block of Cp,, Ay is the v X 7 left-upper block of Apn
and B is the y X m upper block of B,. Since the ERA
realization [An, Bn, Cn] converges to the balanced realiza-
tion [As, By,Cs). Ay, By and Cy should converge to the
corresponding blocks of Ay, By and Cy, respectively. From
Eq. (42) and the balanced realization!20, one obtains
=l Jim Q=TL @D

Iim
r—00, §—00

where P, and Q. are the controllability and observability
grammians of [Ay, By, C,] and T is the 7 X 7 left-upper
block matrix of To. The y-order ERA realization converges
to the vy-order balanced realization. It is concluded that
the reduced ERA model converges to the reduced balanced
model.

H,, Robust Controller Designs

The H,, control methods are optimal frequency domain
algorithms?=4, which address the full range of stability
margin, sensitivity, and robust criteria. In this section, a
brief description of H* control methods is given.



A block diagram of the H, design algorithm is presented
in Fig. 1. The closed-loop transfer function matrices (u; to
three outputs yq, uz and y) are expressed as

S(s) = (I + L(s)™? (44)
R(s) = F(s)(I + L(s))™! (45)
T(s) = L(s)(I + L(s))™! (46)

where L(s) = G(3)F(s), G(s) is defined in Eq. (3), and
F(s) is the controller transfer function matrix. The matrices
S(s) and T'(s) are known as the sensitivity and complemen-
tary sensitivity, respectively. The singular values of these
matrices can be used to quantify the stability margins and
performance of the system. In the Hoo controller design,
the weighting function matrix W} (jw) is used to weight the
sensitivity so that
a(S(jw)) < Wy ' (jw)l @7

where &( ) means the maximum singular values of ( ). The
quantity |Wy 1 (jw)| is the desired disturbance attenuation.

The plant uncertainty can be considered as additive
uncertainty A4 or multiplicative uncertainty Apy. The
stability margin of the additive uncertainty must satisfy

o(Ba(jw))a(R(jw)) < 1.

If the weighting function matrix W3 (jw) is chosen such that

[Wa(jw)| 2 #(Aa(iw))

(48)

and
[Wa(jw)lo(R(jw)) <1 49

then the inequality Eq. (48) holds. The disturbance attenua-
tion and additive stability margin designs can be combined
into a single H,, problem as

T lloo < 1

Tyu = (v“‘f;fz) 1)

and this combination is called the H, additive perturbation
control design. Similarly, the Ho, multiplicative perturba-
tion control design can be derived as

”Tllwl "00 S 1

w1 S
Tvl“l - (‘W;T) .
A detailed examination of Hq, design methods can be found
in Ref. 7. In the next section, a combined ERA/Hq,

(50)

where

(52)

where
(53)

]

control algorithm is developed and discussed including some
numerical examples.

ERA/H,, Control Algorithm

This section shows a control design algorithm which
combines the features of both ERA and H,, control methods.
The flowchart of this algorithm is shown in Fig. 2.

To use the ERA/H, algorithm, a set of experimental
input and output data is required. The model error between
the reduced ERA model and the full ERA model is used for a
Hy, controller design. The full ERA model is defined as the
model of maximum order which can be obtained by the ERA.
For noise-free measurements, if not impossible in practice,
the full ERA model is the exact system model. For noisy

- measurements; the order-of the full ERA model is equal to

either the number of columns or the number of rows in the
Finite-Hankel matrix whichever is less. The reduced ERA
model is the model reduced from the full model such as the
triple [A,, By, C,) shown in the last paragraph of the ERA
Section.

It has been shown that the ERA models converge to
the balanced models. The 7-th order reduced balanced
model G,(s) of an n-th full order system ((s) satisfies the
following error bound!

0(G(jw) - Ge(jw)) <2 ) o; (54)

i=k+1

where &( ) is the maximum singular value of ( ) and o; is
the ith Hankel singular value of G(s). This equation pro-
vides the H,, error bound for the reduced model. There
are two different Ho, control designs, namely the additive
perturbation control design!! and the multiplicative pertur-
bation control design.!? Numerical examples are used in the
following to illustrate the ERA/H oo control algorithm for the
two different designs.

ERA/Hy, Additive Perturbation Control Design

In this design the closed-loop transfer function must
satisfy the inequality

ITyull <1 (55)
where W.S
- 1
T = waR (56)

and u is the input, y is the output, and W} and W; are
appropriate weighting functions. The sensitivity matrix §
tends to be dominated by the sensitivity of low frequency
modes (or dominant modes). An appropriate weighting
function W] is the inverse of the desired sensitivity. The
weighting function matrix W2 is chosen to penalize the
control action at high frequencies (or residual modes) as well
as incorporate other robustness constraints. One of the design



goals is to assure that unmodelled high frequency dynamics
will not destabilize the closed-loop systems. Some examples
of choosing weighting functions can be found in Refs. 10
and 11.

Let the system impulse response measurement be gener-
ated by the following equation

4
y(ts) = Y aezp(Gits)sin(uiti) (57

i=1

where the system parameters are listed in Table 1.

~ TABLE1 |
i 1 2 3 4

g 10 02 004 001
G 02 03 04 05

w 30 SO 70 80

For illustration, the measurements are assumed to be
noise free. The Finite-Hankel matrix size is chosen as
40 X 45. Figure 3 shows the singular-value Bode plots
of the full model transfer function G, the reduced model
transfer function G, and the model error AG =G - Gj.
Here G, of order 4 is the transfer function obtained by the
ERA algorithm. The model error AG is an additive model
error. The additive robustness weighting function W, and
the sensitivity weighting function Wj are chosen as

0.0058 + 1

_ _ 0.045+0.005
~ 0.4s+40.01’

3= 700018 +1

Figure 4 shows the Bode plots of AG and W3, whereas
Fig. 5 shows the Bode plots of W; and W3. The Bode plot
of Ty, is shown in Fig. 6, in which the gain margin is 5.2
db and the phase margin is 56.6 degree.

W

ERA/H,, Multiplicative Perturbation Control Design

In this design, the closed-loop transfer function must

satisfy
- I Tyull <1

(WS
By = (WsT)
and W, and Ws are appropriate weighting functions. The
system measurements and the Finite-Hankel matrix are the
same as in the above example. Figure 7 shows the design

robustness WaG and model error. The design weighting
matrices are chosen as

(58

where
(59)

0.006s + 1

B 0.04s 4+ 0.01
~ 0.2s+0.01°

Wy=10x10"7, W3= .
2 » 3% T0001s + 1

241

Figure 8 shows the Bode plots of the weighting matrices.
The Bode plot of the closed-loop transfer function Tvu is
shown in Figure 9, in which the gain margin is 6.0 db and
the phase margin is 54.2 degree.

The ERA/H, control algorithm provides robust control
designs directly from experimental input and output data.
First, the ERA algorithm is used to compute an appropriate
reduced balanced model and its error in terms of the Heo
norm. Then, the model error norm is used to select the Hyo
control weighting matrices for a robust controller design. In
the next section, the ERA/Hoo, algorithm is applied to an
experimental setup, i.¢. the Mini-Mast system??, for further
illustration of the concept developed in this paper.

ERA/H,; Application: The Mini-Mast System

In this section, the ERA/H o, algorithm is used to design
robust controllers for the Mini-Mast system?? with two in-
puts (torgue wheels) and two outputs (displacement sensors).
Mini-Mast is a 20-meter-long, deployable/retractable truss
located in the Structural Dynamics Research Laboratory at
NASA Langley Research Center. Mini-Mast was designed
and built to high standards typical of spacecraft hardware
which was constructed from graphite-epoxy tubes, titanium
joints, and precision fabrication techniques.?3 It is used as
a ground test article for research in the areas of structural
analysis, system identification,24 and control of large space
structures. The sinusoid inputs with the frequencies close
to the system natural frequencies are used to excite the sys-
tem. The system has five modes less than 7 Hz and the
lowest frequency is about 0.86 Hz. The design strategy is as
follows:

1. A time domain least squares technique?® is used to
compute Markov parameters from input and output
measurement data.

2. A Finite-Hanke! matrix is formed from the Markov
parameters and the ERA is used to compute a reduced
model and its model error.

3. A H, control method is applied to design a robust
controller. When applying the ERA, the discrete
time increment should be adjusted to compute an
accurate model within the frequency range of interest.
Figure 10 shows the singular value Bode plot of the
ERA model transfer function. The singular value
Bode plots of the model error (solid lines) and the
designed additive robustness (dashed lines) are shown
in Fig. 11.

In MATLAB?, the Ho, control computations are
performed by using the recent Glover-Doyle “2-Riccati”
formulae.}? After the Hoo control design is executed, the
closed-loop system keeps the open-loop stable complex
eigenvalue pairs and reflects the open-loop unstable complex
eigenvalue pairs. Because the identified open-loop model of
the Mini-Mast system has small positive damping (system
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modes) or negative damping (noise modes) for most complex
eigenvalues, the H, closed-loop system will then have low
damping. To improve this condition, a multivariable bilinear
transform® can be used to shift the open-loop eigenvalues
before applying the Ho, control methods. The process of
the bilinear transform is described below:

1. The system model and the design weighting functions
are shifted with a real value .

2. The H,, design methods are used to design a con-
troller for the shifted system.

3. Either the closed-loop system is shifted back by —a
or the controller is used in the original nonshifted
system,

4. Check the singular values of the closed-loop transfer

function matrix Ty, EQ. (56), which should.be.less. ..

than one.

In the process of applying the bilinear transform, several
problems listed below are found.

1. The original system has a Ho control solution
with appropriate design weighting functions, but the
shifted system with the shifted weighting functions
does not always have a H, control design solution.

2. The singular values of the closed-loop system in-
crease significantly when the imaginary axis has a
positive shift.

To improve the above problems, a different technique which
is equivalent to a pole placement technique is developed
yielding freedom for assigning each closed-loop eigenvalue
independently. Let the system state matrix be diagonalized
such that

A=0"14v (60)

where ¥ is the eigenvector matrix. Let the closed-loop state
matrix be represented as

A=¥(A+ Any!

where Al is a semipositive diagonal matrix. The design
strategy is as follows.

1. Use A as the state matrix for the Hoo controller
design.

2. Apply the controller to the original system,

3. Check whether this control design satisfies the Hoo

constraint equation, Eq. (55).

Figure 12 shows the singular value Bode plot of a Hoo
design transfer function Ty, with a specified matrix Al
which is not shown. The matrix Al provides more than
10% damping for the first mode. Next, the computational
simulation is used to check the performance of the above
design. The solid lines in Fig. 13 are the first 5-sec
experimental outputs. In these plots, y;; represents the
ith output with the jth input. The outputs from the ERA
reduced model using the same inputs as the experimental
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data are plotted in dashed lines. The inputs are tumed off
after 5 seconds. The open-loop and closed-loop responses
are compared in Fig. 14. The solid lines in Fig. 14 are the
open-loop free decay responses, whereas the closed-loop free
responses are plotted in dashed lines. The first closed-loop
mode has more than 10% damping.

In this ERA/Ho, control design, the following items are
observed.

1. This algorithm can be used to design a robust con-
troller directly from a set of experimental input and
output data,

2. The controller order is the sum of the model order
and weighting function order. Economical controllers
may be obtainable through the use of appropriate

- model reduction-techniques.

3. If the identified low frequency modes are somewhat
accurate, the robustness weighting can cover signifi-
cant high frequency model errors.

4, The additive matrix Al can be used to assign the
closed-loop dampings and frequencies for the modes
of interest.

5. An analytical model is not required.

Concluding Remarks

In this paper, the Eigensystem Realization Algorithm is
integrated with the Ho, control methods to develop a tech-
nique for controller designs of flexible structures. The tech-
nique starts with a set of input and output data obtained from
vibration tests of a physical system. The set of data is then
used to identify a reduced model and assess its error bound.
The reduced model describes the physical system, whereas
the error bound characterizes the system and measurement
uncertainties. Both reduced model and error bound are used
to design a robust controller to attenuate the vibrational mo-
tion of the physical system. Since experimental data are
used, actuator dynamics, sensor dynamics and filter dynam-
ics are included in the identification of the reduced model
and thus in the controller designs. This approach is believed
to provide the reduced model with fidelity. Numerical sim-
ulations for control of an experimental setup (the Mini-Mast
system) indicate that this approach is very promising for use
in control of flexible structures. Note that experimental mod-
els are used in these simulations. The controllers which are
successfully demonstrated in the simulations will be tested
in the Mini-Mast system to verify the approach developed in
this paper.
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