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SCALING EFFECTS IN THE STATIC AND DYNAMIC RESPONSE

OF GRAPHITE-EPOXY BEAM-COLUMNS

ABSTRACT

Scale model technology represents one method of investigating

the behavior of advanced, weight-efficient composite structures un-

der a variety of loading conditions. Testing of scale models can

provide a cost effective alternative to destructive testing of

expensive composite prototypes and can be used to verify pre-

dictions obtained from finite element analyses. It is necessary, how-

ever, to understand the limitations involved in testing scale model

structures before the technique can be fully utilized. The objective

of this research is to characterize these limitations, or scaling effects,

in the large deflection response and failure of composite beams. Scale

model beams were loaded with an eccentric axial compressive load

designed to produce large bending deflections and global failure.

A dimensional analysis was performed on the composite beam-

column loading configuration to determine a model law governing

the system response. An experimental program was developed to

validate the model law under both static and dynamic loading con-

ditions. Scale model beams ranging from 1/6 to full scale were con-

structed of high modulus graphite-epoxy composite material. Lam-

inate stacking sequences including unidirectional, angle ply, cross

ply, and quasi-isotropic were tested to examine a diversity of com-

posite response and failure modes. The model beams were loaded

under scaled test conditions until catastrophic failure. A large de-

flection beam solution was developed to compare with the static

experimental results and to analyze beam failure. Also, the finite

element code DYCAST (DYnamic Crash Analysis of STructures) was

used to model both the static and impulsive beam response.

Static test results indicate that the unidirectional and cross ply

beam responses scale as predicted by the model law, even under

severe deformations. Some deviation from scaled response was



observed for the angle ply and quasi-isotropic beams due to damage
development. The large deflection beam solution and DYCAST
successfully predicted the static load versus end displacement
response. In general, failure modes were consistent between scale

models within a laminate family; however, a significant scale effect
was observed in strength. Small scale beams failed at higher
normalized end displacement levels than their full scale prototypes.
Failure theories for composites such as maximum stress, maximum
strain, and tensor polynomial, cannot predict this scale effect.
Various statistical theories and fracture mechanics approaches offer

promise in predicting the observed scale effect in strength since they
incorporate measures of absolute size.

The scale effect in strength which was evident in the static

tests was also observed in the dynamic tests. Scaling of load and
strain time histories between the scale model beams and the

prototypes was excellent for the unidirectional beams, but
inconsistent results were obtained for the angle ply, cross ply, and
quasi-isotropic beams. Again, failure modes were similar among the
scale model beams within a laminate family. The DYCAST finite

element model predicted accurately the dynamic beam response for
the full scale unidirectional beam and provided detailed plots of
deformation progression.

Results of this investigation show that valuable information can

be obtained from testing on scale model composite structures,
especially in the linear elastic response region. However, due to

scaling effects in the strength behavior of composite laminates,
caution must be used in extrapolating data taken from a scale model
test when that test involves failure of the structure.
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Chapter 1 - Introduction

1.1 Overview of Scaling Issues in Composite Structures

The high specific strength and stiffness characteristics of

composite materials have led to their application in the development

of advanced, weight-efficient military and commercial aircraft.

Currently, government, industry and universities are working in

cooperation on research programs designed to encourage the

increased use of composite materials. The objective of one such

program, the Advanced Composites Technology Program (ACT)

sponsored by the National Aeronautics and Space Administration

(NASA), is to develop and demonstrate the technology base needed

to ensure the cost-effective use of advanced composite materials in

primary structures of future aircraft [1]. The comprehensive data

base of design information which exists for metals is not yet

available for composite materials. This lack of information makes

accurate analysis using conventional finite element techniques

difficult. Consequently, composite prototypes must be fabricated and

tested as part of design evaluation. Such testing, especially if it

involves destruction of the design article, is expensive and time

consuming.

An alternate method of understanding and predicting the

response of aircraft structures under a variety of loading conditions

is through the use of scale model testing. While the application of

scale model testing is well known in fluid mechanics; for example,

wind tunnel tests on models to determine flight loads, the method

has not received as much attention as an experimental technique in

solid mechanics. However, interest in scale model testing of fiber

composite components is growing as the size and complexity of test

articles increases. In fact, the ACT program contains research efforts

to study scaling effects in the fundamental behavior of composite

coupons. Later this research will be applied to construct scale

models of innovative fuselage concepts using composite materials.



The problem of designing, building, and testing a scale model
structure constructed of advanced, fiber-reinforced composite

materials is a challenging one. Due to the complexity of the material
itself, the problem of scaling a composite component may be
examined on several levels. The most elemental approach is to scale

the constituent materials, the fiber and matrix. This approach is
similar to the technique used to fabricate reinforced concrete model
structures in which the reinforcing bars and aggregate size are scaled
[2-5]. For a typical graphite-epoxy composite material system,

scaling of the microstructure on this level would involve scaling of
fiber diameters and fiber shapes, and ensuring uniformity of fiber
spacing. Fiber volume fractions should be the same for both model

and prototype systems. However, for many structural problems, this
degree of scaling becomes impractical and unnecessary.

The composite laminate represents the next level of complexity
to examine. Scaling considerations for the laminate can be simplified

if the individual lamina properties are smeared, i.e., the

heterogeneous nature of the material is ignored on the microscopic
level and the laminate is treated as a homogeneous, orthotropic
sheet. This assumption is made when macroscopic structural aspects
of the problem are more significant than material considerations for
achieving scaled response. For example, to construct a scale model of
a stiffened panel, issues like stiffener spacing, aspect ratios, and
other construction details may influence the response to a higher

degree than minor irregularities in the microstructure of a single ply
in the laminated panel. Thus, each level of structural complexity has

its own unique set of scaling difficulties and special concerns.
In addition, it is necessary to understand how changes in the

material microstructure, including the initiation and growth of
damage, accumulate in the material and affect the overall structural
response determination at various dimensional scales. Haritos, et al
[6] have introduced the term "mesomechanics" to describe the area of

research which bridges the microstructure studies of fiber-reinforced

composites with structural mechanics theories. Unfortunately, little



research has been conducted on this topic. Test data obtained in the
laboratory on small coupon-type specimens are routinely assumed to
be valid for full scale structures with no regard for possible

distortions due to size or scale. This assumption is made even though
a size effect in failure behavior of metallic structures has been well

documented [7-10]. The limitations of scale modeling must be
identified so that tests on sub-scale composite structures will

generate valid data for predicting prototype behavior. Once the
problems involved in testing scale models are identified and
understood, the technique can be utilized as a valuable, cost-effective

design tool.

1.2 Literature Review

The objective of dimensional analysis, or similitude, is to

develop a set of dimensionless parameters which forms the scaling

law governing the correlations between the model and the prototype.

There are two basic concepts involved. First is the idea that a limited

number of fundamental dimensions exist. Ehrlich [11] proposes that

the six fundamental dimensions are distance, time, mass,

temperature, light intensity, and electrical charge. The dimensions of

all other variables are derived from these six. For example, the

dimension of force is a well-known combination of mass, distance,

and time determined by Newton's Second Law. Secondly, the

equations which describe a phenomenon must be homogeneous; that

is, the dimensions of every term in the equation must be the same.

This statement is commonly called the law of dimensional

homogeneity. The scale law may be determined either through non-

dimensionalization of the governing equations or by dimensional

analysis. Baker, Westine and Dodge [12] give an excellent

presentation of both methods and provide several applications to

solid and fluid mechanics problems. Other classical references on

dimensional analysis and similitude theory are those of Langhaar

[13], Murphy [14], Sedov [15], and Bridgman [16].

3



The first concepts of similitude theory had their origins in
Greek civilization when Euclid imposed homogeneity restrictions on
geometrical quantities. The theory was advanced by Galileo and
Descartes in the Renaissance era. However, it was Fourier in 1822

who established the foundations of dimensional analysis. He
understood the role of dimensions and the idea of dimensional

homogeneity in deriving parameters or dimensionless groups which
govern certain phenomena. After Fourier, no important development
in dimensional analysis occurred for nearly half a century until work

by Lord Rayleigh in England, Riabouchinsky in Russia, and Vaschy in
France. Each of these individuals worked independently and in
different fields of study, yet produced similar statements concerning
dimensional analysis. However, the person most associated with

model theory and dimensional analysis is E. Buckingham [17]. He
published a series of articles from 1914 through 1916 on the basic
principles of dimensional analysis including the statement of a
theorem which is commonly known today as the Pi Theorem.

Buckingham popularized dimensional analysis techniques by
demonstrating the usefulness of the theory through practical
applications. Unfortunately, development of the Pi theorem is often

attributed to Buckingham because he failed to reference previous
work by Vaschy and others. Macagno [18] has written an excellent
article on the historical development of similitude theory and he
outlines the contributions of each of the researchers mentioned

previously.

Since the time of Buckingham, the principles of dimensional
analysis have been applied in innovative ways to obtain solutions to

mechanics problems. Baker, et al, [12] have stated that model
analysis may be used to: (1) collect data to evaluate an analysis

procedure, (2) obtain quantitative data for a prototype design, (3)
generate a functional relationship to empirically solve a general
problem, (4) evaluate limitations of an expensive system already in
existence, (5) explore fundamental behavior of new phenomena, and
(6) obtain results when no other method of analysis is possible.

d
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Consequently, scale model technology has been used in space related
applications [19-24]; dynamic modelling of civil engineering

structures such as platforms, buildings, and bridges 1251; impact

analysis of vehicles for safety and crashworthiness [26-30]; and
simulations of structural response to blast loads [8,25,31,32]. The
high cost and potentially dangerous test conditions associated with
these applications make scale model testing an ideal alternative to
performing experiments on prototypes.

Previous research on testing of scale model composite
structures is limited. However, the available data generally fall into

two categories. First is the application of scale model testing to large,
complex structures. A few examples of research of this type will be
discussed. Gustafson, et al, [28] constructed one-half scale helicopter
fuselage subfloors of aluminum and graphite-epoxy composite
material to investigate the nonlinear load-deflection behavior of the

sections. The composite fuselage was designed as a one-for-one
replacement of the metal structure using the same loads criteria.
Few details of the construction of the composite section are provided
in Reference [28], but the authors state that ultimate strengths of the
metal and composite specimens were not identical due to differences

in material properties. In addition, they noted a problem in selecting
a rivet size which would provide scaling of the failure mode. Both

static and impact tests were performed on the one-half scale fuselage
sections. Although no comparisons were made to full scale data, the
authors concluded that no economic benefits could be obtained from

scale model testing due to increased labor costs associated with
construction of the test article. They stated that results obtained

from scale model impact tests would not accurately predict full-scale
response because the gravity field was not scaled. However, no data

were presented to support these conclusions.
McCullers and Naberhaus [33] describe an experimental and

analytical research effort to fabricate a flexible wing model using
composite materials. Design constraints required that the model meet
a proof load condition of twice the maximum aerodynamic load

5



expected during wind tunnel tests. Since the full scale wing was
constructed of isotropic materials, a goal of the project was to

demonstrate the superior weight and stiffness advantages of

composite materials. In addition, a design condition required that
the skin material be stronger for the model than the full-scale wing,
yet maintain the same scaled flexibility and meet compatibility

requirements. Composite materials appeared to be an ideal choice
for the skin design. Several composite material systems were
evaluated, however no material met all of the scaling requirements
exactly. As a compromise, a hybrid material of E-glass and graphite-

epoxy was chosen. Excellent agreement between the experimental
results and a finite element analysis were obtained for natural

frequencies and mode shapes of the scale model composite wing. As
in the previous example, it was not possible to study scaling effects
since the model composite structures were compared directly to
metal structures and not to full scale composite prototypes.

The problem of constructing and testing a scale model of the
Filament Wound Case (FWC) of the solid rocket motor of the Space
Shuttle was discussed by Verderaime [34]. An experimental
program consisting of hydroburst tests on filament wound bottles,

typically 20 inches in diameter, were conducted to simulate loading
conditions in the prototype which has a diameter of 12 feet and is

100 feet long. Values of in-plane stiffness calculated from
lamination theory and experimental results from the hydroburst

tests were in gross disagreement. This inconsistency made it
necessary to identify the winding parameters which significantly

alter the construction. These were found to be fiber tow spacing and
the ability of the resin to mend in the curing stage. It was concluded

that resin dependent stiffnesses were significantly less on full-scale
articles due to gaps and unmended resin areas caused by difficulty in
scaling the winding process. Verderaime recommended that either

the scaled stiffness be used with a corresponding weight penalty on
full-scale, or the winding process be adjusted to eliminate the scale

6



effect and yield test articles with consistent elastic properties for all
scaled sizes.

The second category of research which has been reported on

scaling effects in composites concerns the influence of specimen size
on failure. Often the term "scale effect" is used to describe the

influence of varying specific geometrical parameters on the
structural response. For example, Fairfull [35] studied scaling effects
in the energy absorption behavior of axially crushed composite

tubes. In his experiments the thickness-to-diameter (t/d) ratio of
the tube was found to be a critical factor for determining the mode of

crushing response, while tube length had no influence on the mean
crush load for specimens of constant cross-sectional area.
Consequently, his experimental approach concentrated on effects due
to variations in t/d and not in determining scale effects involving
material and geometric properties from replica model tests.

The scale effect in failure of composite structures has also been
analyzed using statistical methods, particularly Weibull distributions,
and fracture mechanics based theories. A review of the literature

and discussion of these two approaches will be presented separately
in Chapter 8 when the topic of scaling effects in failure behavior of

composite beams is presented.
Finally, a series of tests have been conducted recently by

Morton [36] to examine scaling effects in the dynamic response of
transversely impacted composite beams. Results from his tests
indicated that classical scaling laws apply for elastic dynamic

response, but a size effect was observed as the beams became
damaged under greater impact loads. Morton also discussed possible
scaling conflicts due to rate dependent material properties and
notch-sensitivity. A fracture mechanics hypothesis was presented to

explain the size effect in strength, although a micromechanical
damage study was not performed to verify the theory. The research

performed by Morton is important in understanding scaling effects in
composite structures because it focuses on an intermediate level

problem. As such, it bridges the gap between detailed

7



microstructural studies on a material level and the testing of large,

complicated structures on a macroscopic level.

1.3 Objective, Scope, and Approach of Research

The goal of this research is to demonstrate the validity of scale

model testing in predicting the static and dynamic response of a

typical aircraft substructure. In particular, the testing and analysis

are performed on composite beam-columns subjected to an eccentric

axial compressive load, as depicted in the schematic drawing in

Figure 1-1. This loading configuration has been studied previously

by Derian [37] and Sensmeier [38] to examine the large deflection

response and failure of composite beams subjected to both static and

impulsive loads. They chose to study the beam response because it

represents the simplest generic aircraft-type structure, i.e., the beam

could be a fuselage skin, stiffener flange, or stiffener cap. The beams

are loaded dynamically in bending to simulate conditions observed

during crash tests of aluminum fuselage sections [39]. It was

observed from aluminum fuselage drop tests that much of the impact

energy was absorbed through bending failures of the skins, stringers,

and stiffeners. Thus, this loading configuration was chosen because it

produces large flexural deformations and global failure of the beams

away from the supported ends. Derian and Sensmeier used the

eccentric beam-column configuration to study the energy absorption

capabilities of composite materials with the ultimate goal of

improving the crashworthiness of aircraft constructed of these

materials.

Another objective of this research is to develop the scaling law

which governs the static and dynamic response of the eccentrically

loaded composite beam-column, and to verify the scaling law

through an experimental program. For the static case, the

nondimensional parameters, or Pi terms, which form the scaling law

are found by nondimensionalizing the governing equations and

boundary conditions for the small deflection beam-column problem.
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A dimensional analysis based on the Pi Theorem is used to derive the

scaling law for the beam-column subjected to impact loading

conditions.

Since little previous data on scaling effects in composites have

been reported, a comprehensive experimental program was

implemented to verify the scaling law and to examine a variety of

composite beam responses and failure mechanisms. Results for four

laminate types including unidirectional, angle ply, cross ply, and

quasi-isotropic are presented for graphite-epoxy composite beams

having rectangular cross-sections. The approach taken in fabricating

the scale model beams was to adjust the number of layers for each

angular ply orientation to achieve scaling of the in-plane and

bending properties on a laminate level. No attempt was made to

scale individual fibers on a microstructural level. Replica model

beams ranging in scaled size from 1/6, 1/4, 1]3, 1/2, 2/3, 3/4, 5/6,

and full scale were tested under static load until failure. The static

load-deflection data were used to determine the test parameters

(drop height and impact mass) for the impact tests. Due to

limitations in the drop tower used to perform the impact tests, only

1/2, 2/3, 3/4, 5/6, and full scale beams were tested dynamically. In

each case, the impact tests were performed under scaled test

conditions to produce failure of the beams.

Load and strain response of the beams under both static and

dynamic loading conditions are examined to determine if significant

deviations exist between the scale models and the prototypes when

the responses are "scaled up". In addition, failure mechanisms

between scale model and prototype beams are compared.

Correlations of the test results between the scale model beams and

the prototypes should validate the model law and prove whether full

scale behavior can be predicted through inexpensive scale model

testing.

Several analytical techniques were applied to the eccentrically

loaded composite beam-column for comparison with the

experimental data and to perform failure analyses. For the static

,0
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loading case, a one dimensional large rotation "elastica" type solution
was developed to predict the beam-column response. The exact

expression relating the moment and curvature was incorporated in
the analysis, thus allowing the solution to predict large rotation

response. In addition, the nonlinear finite element structural
analysis computer program DYnamic Crash Analysis of STructures
(DYCAST) [40] was used to model the beam response. Both the
"elastica" beam solution and the DYCAST model are based on the

assumption of linear elastic, isotropic material properties for the

composite beam-column. Consequently, effective bending stiffnesses
were derived for the composite beams. To investigate the effect of

nonlinear material properties, a finite element code developed by
Sensmeier [38] was also used. His code incorporated data from

material characterization tests performed on the graphite-epoxy
system used to fabricate the test specimens. It also included width-
wise effects which become important for laminates with large bend-

twist coupling terms. For the dynamic case, the composite beam-
column impact problem was modeled using the DYCAST finite

element code. These various analytical techniques provided insight
into the beam-column response and were used to investigate scaling
effects in the failure behavior.

1.4 Organization of the Report

An overview of the procedure used to derive the scaling

parameters for the beam-column impact problem is presented in

Chapter 2. In addition, the significance of some of the Pi terms in the

scaling law and potential scaling conflicts are discussed. Details of

the dimensional analysis procedure are somewhat tedious and are

given in Appendix A.

Chapter 3 outlines the experimental program including beam

specimens, testing apparatus, instrumentation, data acquisition, and

test procedures. The chapter is divided into two main sections

describing both the static and dynamic testing.

11



The various analytical techniques used to model the composite

beam-column problem are described in Chapter 4. A small
deflection, static beam analysis is developed and the governing
equations and boundary conditions are nondimensionalized to

illustrate this technique for determining scaling parameters. A large
deflection beam analysis based on the "elastica" solution is described,
with details of the development given in Appendix B. The nonlinear

finite element code DYCAST model for both the static and dynamic
loading conditions is presented. The finite element code developed

by Sensmeier is also briefly described as applied to the eccentrically
loaded beam-column problem.

The motivation and procedures used to determine values of the
bending stiffness of the composite beams from experimental data are
discussed in Chapter 5. Results are presented in Chapters 6 and 7
from the static and impact tests, respectively. Both chapters include
descriptions of observed failure mechanisms, load and strain
responses of the scaled beams, and comparisons of the static and
dynamic experimental data with analysis. A discussion of failure

analyses and the application of failure theories for predicting scaling
effects in the strength of the composite beams are presented in
Chapter 8. Finally, a summary of the results and recommendations

for future work are highlighted in Chapter 9.

12



2.1

Chapter 2 - Dimensional Analysis

Development of Pi Terms

--::r
Two common methods are used to determine the

nondimensional parameters which form the scaling law for a given

phenomenon. These are (1) nondimensionalization of the governing

equations, and (2) application of the Pi Theorem. The first technique

is illustrated in Chapter 4 for the problem of a beam subjected to

bending with small deflections. In general, the procedure involves

expressing the governing partial or ordinary differential equations

and boundary conditions in terms of dimensionless variables. The

coefficients of terms in the resulting nondimensional equations form

the Pi terms or scaling law. This technique has been applied

extensively in the field of fluid mechanics to develop similarity

conditions for fluid flows. Familiar parameters such as the Reynolds,

Euler, Weber, and Froude numbers are Pi terms which result from

dimensional analysis based on nondimensionalization of governing

equations. For example, when the technique is applied to the Navier-

Stokes equations for an incompressible, laminar flow, it is shown that

fluid flows will be kinematically and dynamically similar if the

Reynolds number is identical for the flows [41]. This example from

fluid mechanics demonstrates that important information concerning

a physical system can be obtained without solving the governing

equations. However, one limitation of the method is that it requires

sufficient knowledge of the problem so that the governing equations

are known. Certain assumptions are implicit in the formulation of

these equations (such as neglecting body forces, or frictional forces,

or air resistance, etc.) which will limit the scope of a dimensional

analysis based on this technique.

The Pi Theorem is the more general method of the two and it is

used to develop the scaling law for the composite beam-column

configuration illustrated in Figure 1-1. The technique consists of

identifying the important physical variables relevant to the problem

13



under consideration. Each variable may be represented
dimensionally in terms of a fundamental set of units, typically either
the Force-Length-Time (F-L-T) system or the Mass-Length-Time (M-
L-T) system. The Pi Theorem is used in conjunction with the law of

dimensional homogeneity to derive the dimensionless parameters
which form the scale law. The law of dimensional homogeneity

states that an analytically derived equation which represents a
physical phenomenon must be independent of the system of units.
Consequently, the fundamental equations of physics are
dimensionally homogeneous, and all relationships derived from them
must also be dimensionally homogeneous. The Pi Theorem states

that the behavior of any physical phenomenon can be represented in
terms of independent dimensionless products, called Pi terms, which

are derived from a complete set of relevant physical parameters [12].
The number of independent Pi terms which are formed to

describe a physical system which involves n variables is equal to the

number n-q, where q is the rank of the dimensional matrix formed

by the dimensions of each variable. In general, the number q is

equal to the number of fundamental dimensions needed to describe

each of the variables, or three. The nondimensional Pi terms which

are formed by application of the Pi Theorem are products and

quotients of the original variables. The Pi terms are independent,

but not unique, and may be multiplied together to form new

corribinations which are equally acceptable. In the development of a

scale model experiment, attempts are made to ensure that the Pi

terms are identical for the model and the prototype. This may or

may not be possible given the set of variables chosen to describe the

problem. Scaling conflicts arise when Pi terms are not satisfied in an

experiment. Typically, the geometric scale factor, _., is first chosen

for the experiment. The scale factors for all other variables are then

derived in terms of the geometric scale factor from the Pi terms and

other conditions set by the experiment.

Listed in Table 2-1 are the parameters which were chosen for

the composite beam-column problem shown in Figure 1-1. Variables

14



were chosen to describe the geometry of the beam, its constitutive

behavior, and the impact conditions of the experiment. Additionally,

variables were selected to characterize the response of the beam

such as position, transverse displacement, and frequency of

vibration. A total of 24 parameters are listed in Table 2-1 and three

fundamental units (M-L-T system) are used to express their

dimensions. Thus, a total of 21 nondimensional Pi terms will be

formed by application of the Pi Theorem. Details of the procedure

used to develop the Pi terms are outlined in Appendix A and are

based on the methods presented in Reference [12]. Easier and more

elegant methods exist for developing the Pi terms in addition to the

one presented in Appendix A. For example, Barr presents an

excellent survey of several techniques in References [42-45].

The Pi terms for the beam-column impact problem are:

_1 = b/l _ 2 = h/l _3 = 1211/Defft2 7_4 =/2All/Deff

7_5 = V 7_6 = e/l _7 = Fl/Deff _8 = vt/1

_9 = E/Deft _10 = (l/3/Deff r_ll = £ _12 = M/Deft (2.1)

_13 = A/t _xl4 = gt2/l rc15 = x/l 7_16 = COt

n 17 -- w]l nl 8 = at2/l r_19 = _t _20 = "el 3/Deff t

_21 KQI5/2] D= eff

Ideally, to perform a scale model experiment, each of the Pi terms

must be the same for the model and the prototype. A variable is

designated for model or prototype by the subscripts m or p,

respectively. It is possible to form relationships among the variable
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Table 2-1. List of parameters for the dimensional analysis of the
composite beam impact problem.

VARIABLE SYMBOL DIMENSIONS
NAME (M-L-T)

Beam Length l L

Width b L

Thickness h L

Beam Mass rl M

Beam Axial Stiffness

Bending Stiffness

Poisson Ratio

Eccentricity of Load

Force of Impact

Velocity of Impactor

Energy of Impact

Stress in Beam

Strain in Beam

Applied End Moment

A 11 M/T 2

Deft ML2/T 2

v 1

e L

F ML/T 2

v L/T

E ML2/T 2

cr M/LT 2

e 1

M ML2/T 2

Time t T

Duration of Pulse A T

Gravity

Position along Beam

Frequency of vibration

Transverse Displacement

Acceleration

Strain Rate

Strain Rate Parameter

Critical Stress Intensity Factor

g L/T 2

x L

03 1/T

w L

a L/T 2

1/T

x T

KQ M/T2L 1/2

16



%

scale factors by equating Pi terms for the model and prototype. For

example, the third Pi term yields the relation:

X 3 = (12r//Defft2)m = (12r//Defft2)p (2.2)

Writing this expression in terms of the variable scale factors gives,

_Deff_ 2 = _2_,_1 (2.3)

where the symbol t with its subscript designates the scale factor for

that particular variable. For example,

kt = length of the model/length of the prototype.

The relations derived from nl through rt21 form the basis of the

scaling law. To completely develop the law, certain assumptions are

made from the experiment. First, the geometric scale factors, ks, are

chosen to be 1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6, and 1. Since _'t is

fixed for the models, it is designated ks = _,, the geometric scale

factor. Also, the same material is used to construct both the models

and the prototype. This requires that

ta_l = t (2.4)

_.q = _,3

Now, based on the relationships derived from the Pi terms together

with the scaling parameters chosen from the experiments, it is

possible to complete the scaling law.

_,b = _, _h = t _-t = k _v = 1

le = _, _,F = _2 lv = 1 IE = 13
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X,o= 1 X.E= 1 )VM = X,3 )VA= _. (2.5)

)Vg = l/X, )Vx = _V )%0 = 1/_. )VW = )V

_'a = 1/_, _,_i = I/X. _=5_ )VKQ = _.1/2

2.2 Discussion of the Pi Terms

The concept of similarity between two systems implies that

homologous positions and homologous times are related by a

constant value. When the constants of proportionality between

variables used to describe a system are known, then results from

model tests can be "scaled up" to predict prototype response.

Various types of similarity may be defined between systems

including geometric, dynamic, kinematic, and constitutive similarity.

These will be discussed in light of the dimensional analysis

performed on the composite beam-column impact problem which

was outlined in the previous section.

2.2.1 Geometric Similarity

A model is said to be geometrically similar to its prototype if

the dimensions have been scaled by the same factor. In the extreme,

geometric similarity requires that all geometric dimensions of a

system be scaled to produce an exact replica model. However, in

most cases this is impractical or impossible to achieve. For the

composite beam-column problem, geometric similarity is ensured by

fabricating beams with scaled lengths, widths, and thicknesses. In

addition, the boundary conditions are scaled by applying the same

geometric scale factor to the hinge supports which provide the offset

for the axial load. However, not all geometric dimensions involved

are scaled in proportion to the geometric scale factor. For example,

the drop height for the impact tests is distorted geometrically. It
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should be noted that this variable is not included in the list of

relevant parameters for the problem. As seen in Eq. 2.5, the impact

velocity scales as unity which implies that the velocity of the drop

mass must be the same for both the model and prototype beam

experiments. The velocity at impact is determined by the drop

height (v 2 = 2gH). Consequently, to ensure scaled velocity, the same

drop height is used for both the model and prototype tests. This

distortion is permitted since the gravitational field is not scaled.

Baker, et al [12] discuss the scaling of impact problems in terms

of two separate processes which may be decoupled. The first is the

drop mass falling in a gravitational field and the second is the impact

event and subsequent dynamic response of the beam. The beam

deformation is solely dependent on the kinetic energy of the striking

mass. The use of a free-fall drop mass is simply a convenient

technique to obtain the correct incident velocity for impact. The fact

that the structural problem is scaled in one manner and the free-fall

mass in another is due to the distortion in the gravitational field.

The scaling law given by Eq. 2.5 indicates that gravity should scale as

1/_.. This requirement is not satisfied since the gravity field was

unaltered and, thus, scales as unity. One way to interpret the gravity

distortion is to consider that if a 1/6 scale model is tested in l-g, the

influence of the gravity force is equivalent to testing the full scale

model in 1/6-g. Obviously, as the scale factor of the model is

reduced, the gravitational effect is similar to testing the full-scale

model in zero-g. This result has important implications for testing of

scale model structures for space applications as discussed in

Reference [20].

2.2.2 Dynamic and Kinematic Similarity

Kinematic similarity has been defined by Langhaar [13] as

follows: "The motions of two systems are similar if homologous

particles lie at homologous points at homologous times." Thus,

kinematic similarity implies similarity between the motions of two
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systems. For the composite beam-column problem, the scale factors

for position, time, velocity, acceleration, and frequency define
kinematic similarity between model and prototype systems. It is
noted that time scales in the same proportion as the geometric scale
factor, k. Thus, for a 1/2 scale model, events happen twice as fast in

real time as for the prototype.
Dynamic similarity between two systems exists if homologous

parts of the systems experience homologous forces. It can be shown
that if kinematic similarity exists for systems which have similar
mass distributions, then dynamic similarity is easily inferred from
Newton's Second Law. If a model and prototype are also

geometrically similar, then the scale law predicts that the forces will
scale as 7_2. Likewise, the applied moment and energy parameters
will scale as _3, as indicated in Eq. 2.5.

2.2.3 Constitutive Similarity

Models are not always constructed of the same material as the

prototype, often for reasons of cost or difficulties in fabrication.

Dissimilar material models are usually designed to have constitutive

similarity, or homologous stress-strain curves, within the loading

range of interest. All of the composite beam specimens tested in the

experimental portion of this investigation were manufactured from

the same pre-preg material system and were constructed to ensure

constitutive similarity. Details of the fabrication technique are given

in Chapter 3. Since the material density is constant for both the

model and prototype beams, it scales as unity. Then, geometric

similarity between the model beams implies that beam masses will

scale as _3. Inplane stiffness and effective bending stiffness will

scale as _. and _3, respectively, as indicated in Eq. 2.4.

The strain rate parameter, x, was included in the list of

relevant parameters to illustrate the effect of rate-sensitivity in

material behavior. Morton [36] has discussed the scaling conflicts

which arise when time-dependent material properties are introduced
÷
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into a dimensional analysis. To illustrate the problem, suppose a

material constitutive response is given by the relation

o = E(e + x_) (2.6)

From the dimensional analysis presented in the previous section it

was found that 'r scales in proportion with the geometric scale factor,

(This is reasonable since "r has the dimension of time and time

scales as X.) However, when the same material is used to construct

both the model and prototype, the strain rate constant is identical for

both systems and scales as 1.0. This scaling distortion implies that

strain rates in the model will be greater than those in the prototype.

For high strain rates, this result could cause brittle behavior in the

model while the prototype exhibits ductile behavior at corresponding

times during the loading. However, in his investigation, Morton [36]

concluded that rate effects were insignificant for the composite

material system and laminates that he tested, but noted that these

effects may become important for matrix-dominated laminates.

The scaling law, Eq. 2.5, indicates that stress conditions are the

same in the model as in the prototype, i.e., stress scales as unity.

Ideally, then, failure should occur at the same stress level and at

homologous times for the model and full scale beams. However,

deviations from this elementary approach to strength scaling have

been commonly observed. It has been well documented that small

scale models exhibit higher failure loads than full-scale prototypes.

A general discussion of this phenomenon is given by Jones [9]. One

explanation for the size effect in fracture has been developed based

on principles of linear elastic fracture mechanics. To illustrate how a

fracture mechanics model introduces a scaling conflict, the critical

stress intensity factor, KQ , is included in the dimensional analysis. KQ

is defined as the value of the stress intensity factor for which crack

growth becomes unstable. Since composite materials often exhibit

brittle fracture, it is reasonable to include a parameter such as the

critical stress intensity factor to model the failure mechanism. KQ is
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assumed to be a material property and, thus, is not dependent on
loading conditions, initial crack geometry or size, or any other

parameter. As such, KQ will have the same value for both model and
prototype beams. The dimensional analysis, however, indicates that
K Q scales in proportion to _1/2 To determine how this scaling
conflict effects stress, g21 is divided by n l0, to yield a new

nondimensional parameter which must be satisfied for both model

and prototype beams.

m p (2.7)

Rewriting this expression in terms of the variable scale factors gives"

_,o = _KQ _1/2 (2.8)

If KQ is assumed to scale as unity and the length scale factor

scales in proportion to the geometric scale factor, _., then, the stress

scale factor becomes _-1/2. This means that the stress required to

propagate a crack in a linear elastic model will be greater by a factor

of _-1/2 than the stress needed to propagate a crack in a

geometrically and constitutively similar prototype. As an example,

the stress for crack propagation in a 1/4 scale structural model will

be twice the value required for the full-scale structure.

Consequently, the model will appear to be twice as strong. This

effect has been studied in detail by Atkins and Caddell [10] and a

more complete discussion of this issue, especially as applied to the

composite beam-column problem, is provided in Chapter 8.
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Chapter 3 - Experimental Program

Details of the experimental program which was implemented to

investigate scaling effects in the large deflection response of

composite beams are outlined in this chapter. The static and

dynamic programs are separated into two main sections of the

chapter. Within each section, the fabrication and instrumentation of

beam specimens, test apparatus and procedure, and data acquisition

systems are discussed.

3.1 Static Testing

The static test program was developed to examine a wide

variety of composite behavior ranging from a very stiff to a more

flexible beam response. The four laminate types chosen for study

were unidirectional, angle ply, cross ply, and quasi-isotropic. In

addition to the variation in beam response due to stiffness

differences among these laminate families, a variation in failure

modes or mechanisms was expected. The comprehensive

experimental program outlined in the following sections was

designed to provide a broad-based foundation of information on

scaling effects in composites.

3.1.1 Beam Specimens

Beams having unidirectional, angle ply, cross ply, and quasi-

isotropic laminate stacking sequences were constructed of a Hercules*

high modulus graphite fiber and epoxy system designated as

AS4/3502 for the static and dynamic tests. Complete material

characterization tests were performed on this material system by

* Identification of commercial products and companies is used to describe
adequately the test materials. The identification of these commercial products
does not constitute endorsement, expressed or implied, of such products by the
U.S. Army or the National Aeronautics and Space Administration.
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Sensmeier [38]. The response of the material in both the fiber and
transverse material directions in tension and compression and the

inplane shear response were obtained and reported in Reference
[38]. The material exhibited varying degrees of both nonlinear and
bimodular material response. For the current research project only
the initial material moduli were considered. A summary of the

material properties as determined from material characterization
tests is given in Table 3-1.

The full scale beam dimension was chosen to be 3.0 inches

wide with a 30.0 inch gage length, and 48 plies thick with an average

ply thickness of 0.0054 inches. The total length of the full scale
beam was 34.5 inches, including the distance of the beam supported
in the hinges. The scale model beams were constructed by applying
seven different geometric scale factors including 1/6, 1/4, 1/3, 1/2,
2/3, 3/4, and 5/6 to the full scale dimensions. A set of scaled beams

is illustrated in Figure 3-1 and the dimensions and lay-ups of each
beam are listed in Table 3-2. The thickness dimension was scaled by
reducing the number of layers in each angular ply group of the full
scale laminate stacking sequence by the appropriate factor. Using
this approach, it was not possible to construct a 1/4 or 3/4 scale

quasi-isotropic beam. This technique of constructing the scale model
beams by adjusting the number of Oi-plies achieves scaling on a

macroscopic level. The inplane stiffnesses, Aij , are scaled by _., and
the bending stiffnesses, Dij, are scaled by _3. Ideally, to construct a
true replica model of the prototype beam, the microstructure should

be scaled as well as the macroscopic dimensions. This would entail
having composite manufacturers fabricate prepreg tape with scaled
fiber diameters and thicknesses. In fact, scaling on this level is
accomplished in the construction of model structures made from

reinforced concrete [2,3]. In that application both the reinforcing bar
diameter and the size of the aggregate are sized accordingly to build

models which are scaled for strength and stiffness. Practically,
however, scaling of the microstructure for advanced composites is
not feasible at this time. Since the thickness dimension for the
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Table 3-1. Material properties of AS4/3502 high modulus graphite-

epoxy.

TEST VALUE

Longitudinal Tension, E1

Transverse Tension, E2

Inplane Shear, G12

Poisson Ratio, Vl 2

19.85 (Msi)

1.43 (Msi)

0.82 (Msi)
0.293

P
_v
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Figure 3-1. Photograph of a set of scale model beams for static

testing.



TABLE 3-2. Scale model beam dimensions and lay-ups.

SCALE

BEAM

DIMENSION UNIDIRECTIONAL ANGLE PLY CROSS PLY QUASI-ISOTROPIC

bO

1/6

1/4

1/3

1/2

2/3

3/4

5/6

6/6

0.5" X 5.0" [0]8T [452/-452]S

0.75" X 7.5" [0]12T [453/-453]S

1.0" X 10.0" [0]16T [454/-454]S

1.5" X 15.0" [0124T [456/-456]S

2.0" X 20.0" [0132T [458/-458]S

2.25" X 22.5" [0136T [459/-459]S

2.5" X 25.0" [0140T [4510/-4510]S

3.0" X 30.0" [0148T [4512/-4512]S

[02/902]S

[03/903]S

[04/904]S

[06/906]S

[08/908]S

[09/909]S

[010/9010]S

[012/9012]s

[-45/0/45/90]S

[-452/02/452/902]S

[-453/03/453/903]S

[-454/04[454[904]S

[-455/05/455/905]S

[-4 56/06/456/906] S



smallest size beam is approximately two orders of magnitude greater

than the fiber diameter, the idea of scaling on the macroscopic level

is justified.

Panels having the laminate stacking sequences listed in Table

3-2 were fabricated at the Composite Model Shop of the NASA

Langley Research Center using prepreg tape. The panels were cured

according to manufacturer's specifications and C-scanned to detect

any gross defects. From the panels, six beams having the

appropriate scaled dimensions listed in Table 3-2 were machined. Of

these six, three beam specimens were designated and instrumented

for static testing and three were designated and instrumented for

dynamic testing. Slight variations were observed in the thickness

dimensions of the cured beam specimens. Generally, the 1/6 scale

beam was thicker on a per ply basis than the full scale beam for all

laminate types. The maximum deviation in normalized thickness

was approximately six percent. The measured thicknesses were used

in all calculations for each beam specimen.

A labeling system was devised for the beam specimens. The

first letter in the beam label identifies the lay-up of the beam.

Unidirectional beams begin with 'U', angle ply with 'A', cross ply with

'C', and quasi-isotropic with 'Q'. The next three to four letters

designate the scale factor of the beam. The following key shows the

nomenclature which was used:

SIX 1/6 scale

FOR 1/4 scale

THR 1/3 scale

HALF 1/2 scale

2THR 2/3 scale

3FOR 3/4 scale

5SIX 5/6 scale

FULL full scale

Finally, the last digit in the beam name is the number of the

specimen. These numbers range from 1 through 6, since six beam
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specimens were fabricated for each laminate type and size. An
example of a typical beam name would be: U2THR4. Thus, this beam
is a unidirectional, 2/3 scale beam, specimen number 4. This beam

identification system will be employed for the remainder of this

report.

3.1.2 Test Apparatus

The basic loading configuration for the scaled beams is depicted

in Figure 1-1. Each beam specimen was gripped in a set of hinges

which offset the axial load with a moderate eccentricity. A detailed

drawing of the hinge and beam attachment is shown in Figure 3-2.

Eight sets of hinges were constructed (one for each of the eight scale

factors) to ensure that the end condition was properly scaled. For

each hinge, the eccentricity, the grip length, and the total distance

from the center of the pin to the unsupported or free portion of the

beam were scaled. The hinges and face plates were fabricated from

aluminum.

The hinges were pinned to the platens of a standard load test

machine which applied the compressive vertical load. The hinged-

pinned connection allowed the beam to undergo large rotations

during deformation. Beam specimens were loaded in this manner

until catastrophic failure, defined as complete loss of load-carrying

capability. The beam-column loading configuration was chosen, in

part, because failures occur in a global fashion at the center of the

beam where the maximum bending moment occurs. Thus, failures

tend not to be introduced by local effects at the grip supports.

Although the beam was loaded as a beam-column, the bending

strains were several orders of magnitude greater than those due to

axial compression. Therefore, the beam was, essentially, in a state of

pure bending.
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Figure 3-2. Detailed drawing of the hinge-beam attachment.
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3.1.3 Instrumentation

Each beam was instrumented with back-to-back strain gages

located at distances one-quarter and two-thirds along the length of

the beam and with strain gage rosettes at the midpoint, as illustrated

in Figure 3-3. Two sizes of strain gages were employed to

accommodate the large differences in size among the beam

specimens. The 1/6 and 1/4 scale beams were instrumented with

gages having smaller effective gage lengths than those used for the

1/3 through full scale beams. All gages were standard 350 ohm

resistance gages with gage factors ranging from 2.09 to 2.17.

Vertical load was measured by a load platform located at the

base of the bottom hinge, as illustrated in Figure 3-4. The bottom

hinge was securely fastened to the load platform which was mounted

to the bottom platen of the load test machine. Two load platforms

were designed and built for measuring the vertical load applied to

the beam-column through the test machine. One had a maximum

load capacity of 100 pounds and was used for the smaller scaled

beam tests and for those tests in which small loads were expected,

i.e., the majority of the angle ply beam tests. The second load

platform had a capacity of 1000 pounds and was used for the larger

scaled beam tests. The design of the load platforms was based on a

bonded strain gage configuration. This configuration was wired such

that any side loads or bending moments which might be present due

to slight misalignments or bearing friction in the hinges would not

influence the vertical load measurement.

The distance traveled by the platens of the load test machine

during a test is defined as the end displacement for that test. End

displacement was measured by a displacement transducer attached

to the lower platen of the load test machine. A string type

potentiometer (string pot) having a maximum range of 40 inches was

used. The string was extended and attached to the upper platen of

the load test machine prior to a test. During deformation, the upper

platen was lowered and the string was drawn into the device
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Figure 3-4. Schematic drawing of front and side views of the static

test configuration.
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producing an output voltage which could be converted into a

displacement measurement. The string pot had a resolution of +/-

0.25% of full scale in the range of 2 to 5 inches, and a resolution of

+/- 0.1% of full scale for displacements greater than 20 inches.

3.1.4 Data Acquisition

A personal computer based data acquisition system was used

to collect 12 channels of data for each static beam test. The 12

channels were: load from the load platform; end displacement from

the string pot; tensile and compressive longitudinal strains at a

position located one quarter along the beam length from back-to-

back strain gages; tensile and compressive longitudinal strains at a

position located two-thirds along the beam length from back-to-back

strain gages; and tensile and compressive longitudinal, transverse,

and diagonal (along a 45 degree angle) strains from back-to-back

strain gage rosettes located at the midpoint of the beam. The analog

signals for each channel were amplified and filtered prior to being

digitized by a MetraByte model DASH-16F multifunction high speed

analog/digital I/O expansion board. The DASH-16F uses an industry

standard 12 bit successive approximation, 8 microsecond converter.

The DASH-16F board is supported by the STREAM-16 high speed

data transfer utility program and by the LOTUS Measure data

acquisition software package. LOTUS Measure software was used to

collect calibration data and initial readings for the load, end

displacement, and strain signals prior to a test. Test data were

collected at a rate of 1 Khz (83.3 Hz per channel) using the STREAM-

16 software. Digitized test data were converted to engineering units

using the calibration factors and zero readings obtained before the

test. Because of the high sampling rate of the STREAM-16 software,

a large amount of data was generated for each test making the data

files intractable. As a result, a program was written to process the

data and reduce the size of the files. Typically, the data files were

manipulated such that an initial portion of the file was unaltered, but

V
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the remainder was thinned by a factor appropriate for the size of the
file being considered.

3.1.5 Procedure

The test procedure consisted of the following steps. The beam

specimen was securely fastened to the bottom hinge support and

loosely supported in the top hinge. All instrumentation was set up

and zero condition signals were obtained on the data acquisition

system for all channels. Next, the beam was securely fastened in the

top hinge while the load was monitored. This was done to ensure that

the beam was not prestressed by a load introduced due to torque

applied to the face plates of the top hinge.

Vertical compressive load was applied to the beam specimen

by lowering the top platen of the load test machine. The platen

traveled at a constant rate of 0.2277 in/sec. The test was completed

when the beam specimen fractured catastrophically. Three replicate

beams of each scale and laminate type were tested.

3.2 Dynamic Testing

An experimental program was developed to investigate scaling

effects in the response and failure of composite beams subjected to

impact loads. An application of this research is in the area of

crashworthiness and energy absorption of generic composite

structures. The U.S. Army and NASA have initiated a comprehensive

research program to study the response of composite structures to

impact or crash-type loads [46]. The objective of the joint program is

to demonstrate the energy absorption capability of composite aircraft

components by testing increasingly complex structures. A

potentially large payoff can be realized if scale model composite

structures can be tested instead of large composite prototype

structures. The dynamic testing program outlined in the following

sections was designed and implemented to determine the validity of
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using scale model testing for studying the impact response of
composite structural elements.

3.2.1 Beam Specimens

The scale model beams described in Section 3.1.1 were also

tested under impact loading. Due to limitations of the drop tower

which was used to conduct the impact tests, only the full, 5/6, 3/4,

2/3, and 1/2 scale unidirectional, angle ply, cross ply, and quasi-

isotropic beams were tested dynamically. Table 3-2 lists the lay-ups

and dimensions of the scale model beams. Figure 3-5 is a

photograph of a set of scale model beams which were tested under

impact loads.

3.2.2 Test Apparatus

The same loading configuration shown in Figure 1-1 was

employed for the dynamic tests except that the compressive vertical

load was applied impulsively. The beam specimens were gripped in

scaled hinges, shown in Figure 3-2, which offset the axial load and

produced the large rotations and deflections in bending. A schematic

drawing of the drop tower used to perform the impact tests is shown

in Figure 3-6, and a corresponding photograph is shown in Figure 3-

7. The tower consists of four vertical steel rods ten feet long and one

inch in diameter. The rods were fastened at the bottom to a channel

section fixed to the floor and, at the top to a structural support beam

of the building. The upper hinged end of the beam was supported by

a slider which was free to move vertically along the two innermost

rods through low friction bearings. The mass car slid down the two

outermost rods on similar bearings and provided the impact force.

Contact was made between the mass car and the slider through

spherical steel impact points. High acceleration spikes at impact

were moderated by placing a section of hard rubber covered by

small lead plates on the slider/mass car impact point as shown in

Figure 3-8. The lower hinge was fastened to a load platform which
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Figure 3-5. Photograph of a set of scale model beams for

dynamic testing.
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Figure 3-6. Schematic drawing of the drop tower used for impact

testing of scale model composite beams.

38



ORTG?r'JALPAGE

BLACK AND WHITE PHO[OGRAPH

,4

!Data acquisition

Release _Y_

Impact

S!iderl,

Top hinge
support

lb
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was supported by four vertical force transducers mounted to the

lower channel section. A picture of the lower hinge connection and

load platform is depicted in Figure 3-9.

The drop tower has evolved into its current configuration after

being used by two previous researchers, Derian [37] and Sensmeier

[38], to investigate the dynamic response and energy absorption

capabilities of composite beams. Several modifications have been

made to the tower since its original construction to improve its

performance and to correct minor problems. The various upgrades

and changes to the tower are reported in References [37,38].

3.2.3 Instrumentation

Five channels of dynamic data were recorded for each test.

Tensile and compressive surface strains were recorded from back-to-

back longitudinal strain gages located at the midpoint of each beam,

as shown in Figure 3-3. End displacement of the beam was

measured using a string potentiometer displacement transducer

attached to the slider, as depicted in Figure 3-8. The string pot was

extended as the beam deformed under the impact of the dropped

mass. According to manufacturer's specifications, the string pot had

an operating range up to 300 inches/second which was greater than

any of the impact velocity test conditions. An accelerometer was

attached to the mass car to measure vertical acceleration. Vertical

load was obtained from four piezoelectric force transducers located

between the load platform and the lower channel support. The four

load cells, Kistler Model 9212, are compact, sensitive, fast-response

transducers for measuring dynamic and short-term static forces.

Each load cell was rated for a maximum load of 5000 pounds. A load

cell was placed at each corner of a four inch square underneath the

load platform. The output from each cell was summed electronically

to obtain the total vertical force reacted through the load platform.
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3.2.4 Data Acquisition

All data were recorded using the same personal computer

based data acquisition system as described in Section 3.1.4. LOTUS

Measure software was used to obtain calibration and zero readings

prior to a test. The STREAM-16 dynamic data acquisition software

package was used to collect the impact data. The analog signals were

amplified and filtered prior to sampling at a rate of 2000 Hz.

Resolution of the analog-to-digital system was 12 bits. The digital

data were converted to engineering units using the previously

determined calibrations and zero readings.

3.2.5 Procedure

The test conditions for each of the four laminate types were

determined, in part, by the results obtained from the static tests as

reported in References [47,48]. The static energy-to-failure values

were calculated from load versus end displacement plots for the full

scale unidirectional, angle ply, cross ply, and quasi-isotropic beams.

These values were then used as a guide for determining the test

conditions required to ensure failure of the beams in the impact

tests. Tables 3-3 through 3-6 present the loading parameters for the

four laminate types tested. In each case, the drop height was held

constant for all of the model beams within a laminate family. For the

angle ply, cross ply, and quasi-isotropic laminates the impact energy

was scaled by the scale factor, _3, as indicated in Eq. 2.5. This value

was divided by the drop height to determine the amount of weight to

be added to the mass car for each scale model test. For the

unidirectional laminates the impact force was scaled directly by the

factor, _2. In all cases, more weight was added to the mass car than

was actually necessary to produce beam failure.

In addition to scaling the impact mass, it was necessary to scale

the weight of the slider which supported the top hinge attachment.

This piece of hardware weighed 5.55 lbs and added a small preload
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TABLE 3-3. Impact test conditions for unidirectional scale model
beams.

UNIDIRECTIONAL

Scale Factor full 5 / 6 3 / 4 2 / 3 1 / 2

Drop Height 6 0 6 0 6 0 6 0 6 0

(in)

Impact Energy 8825.6 6120 4962 3924 2208

(in-lbs)

Impact Weight 147.1 102.1 82.7 65.4 36.8

(lbs)

Impact Velocity 215.3

(in/sec)

215.3 215.3 215.3 215.3

4
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TABLE 3-4. Impact test conditions for angle ply scale model beams.

ANGLE PLY

Scale Factor full 5 / 6 3 / 4 2 / 3 1 / 2

Drop Height 36 36 36 36 36

(in)

Impact Energy 3355.2 1941.7 1415.5 994.1 419.4

(in-lbs)

Impact Weight 93.2 53.9 39.3 27.6 11.65

(lbs)

Impact Velocity 166.8

(in/sec)

166.8 166.8 166.8 166.8
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TABLE 3-5. Impact test conditions for cross ply scale model beams.

CROSSPLY

Scale Factor full 5 / 6 3 / 4 2 / 3 1 / 2

Drop Height 4 8 4 8 4 8 4 8 4 8

(in)

Impact Energy 4473.6 2588.9 1887.3 1325.5 559.2

(in-lbs)

Impact Weight 93.2 53.9 39.3 27.6 11.65

(lbs)

Impact Velocity 192.6

(in/sec)

192.6 192.6 192.6 192.6
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TABLE 3-6. Impact test conditions for quasi-isotropic scale model
beams.

QUASI-ISOTROPIC

Scale Factor full 5/6 3/4 2/3 1/2

Drop Height 4 8 4 8 - - 4 8 4 8
(in)

Impact Energy 7046.4 4077.8 -- 2087.8 880.8
(in-lbs)

Impact Weight 146.8 84.95 -- 43.5 18.35
(lbs)

Impact Velocity 192.6

(in/sec)

192.6 -- 192.6 192.6
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to the beam specimen prior to impact. At impact the inertia of the
slider had to be considered, as well. Consequently, to ensure scaled
conditions, the slider was used alone for the 1/2 scale specimens and
mass was added to the slider for 2/3 scale specimens through full
scale.

The test procedure consisted of the following steps. First, the
correct impact and slider masses were attached to the mass car and

slider for the particular scale and type of beam to be tested. Next,
the beam was mounted in the top and bottom hinge supports and
calibration signals were recorded with no applied load. The impact
mass was raised to the correct drop height and secured. The data
acquisition system was prepared to collect data at a manual trigger
from the test operator. At time equal zero, the drop mass was
released from rest and the data system was enabled to record the
load, strain, displacement, and accelerometer time histories. In

general, two or three replicate beams of the same laminate type and
scaled size were tested dynamically.
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Chapter 4 - Beam Analysis

Several analysis techniques were used to predict the response

of the eccentrically loaded composite beam-column under both static

and dynamic loads. For the static tests, a small deflection beam

solution and a large deflection, "elastica" type beam analysis were

derived. The small deflection beam solution was used in conjunction

with experimentally determined values of load versus transverse

displacement to calculate an effective beam bending stiffness. This

work is described in more detail in Chapter 5, but the development

of the analysis is presented in this section. The small deflection

solution also provided a first approximation, linear comparison with

the nonlinear beam analysis. The large deflection beam solution

predicted the end displacement, transverse midpoint displacement,

and rotation at the hinged ends of the beam as functions of applied

load.

In addition to the beam solutions, the nonlinear finite element

structural analysis computer program DYCAST (DYnamic Crash

Analysis of STructures) [40] was used to model the composite beam-

column. DYCAST is a commercially available code developed by

Grumman Aerospace Corporation under partial support from NASA

Langley Research Center. The program incorporates material and

geometric nonlinear structural response for analyzing impact

problems. It has been used successfully to model the dynamic

response of simple structures, such as a single circular composite

frame [49], as well as large complex structures such as an entire

section of a full scale transport aircraft [50]. A static DYCAST model

was developed and correlated with the large deflection exact beam

analysis. Once verified, the model was then used for predicting the

beam response under impact loading conditions.

The beam analyses and DYCAST models mentioned previously

are one-dimensional beam solutions. To investigate the importance

of including widthwise effects and nonlinear material behavior, a

finite element code developed by Sensmeier [38] was used to model
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the composite beam-column. This code will be referred to as the

MDS2DB program for the remainder of the report.

Details of the analytical development and the finite element

modeling will be presented in the following sections.

4.1 Small Deflection Beam Analysis

4.1.1 Analytical Development

A small deflection beam analysis is derived in this section

based on the governing equilibrium equations for the problem of

elastic buckling of bars. The nomenclature used in the development

is listed in Table 4-1 and some of the important geometrical

variables are depicted in Figure 4-1. The derivation is based on the

Euler-Bernoulli assumptions, as listed in Reference 151]. Some of the

major assumptions include (1) the material is Hookean, isotropic, and

homogeneous; (2) plane sections normal to the neutral surface

remain plane and normal to the neutral surface after bending; (3) the

effect of transverse shear is negligible; and (4) the deflections are

small compared to the cross-sectional dimensions. The equilibrium

equation may be developed from the stationary value of the

potential energy, as outlined in Reference [51], or by setting the sum

of the moments on a differential beam element equal to zero. If the

energy method is used, the resulting equilibrium equation is fourth

order. The equation may be reduced to second order since the

moment and shear are prescribed at the ends of the beam. Two

successive integrations yield the resulting equation

d2w + k2w = 0

dx 2 (4.1)

where k 2, the buckling coefficient, is equal to P/El. The general

solution of this equation is

w(x) = A sin(kx) + B cos(kx) (4.2)
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Table 4-1. Nomenclature for the Small Deflection Beam Analysis

Variable Name Description

X

w

P

E

I

e

5

0t

k

m

P

axial coordinate measured along the length

of the beam, in

transverse displacement, in

axial load, lb

Young's modulus, psi

moment of inertia, in 4

initial eccentricity, in

horizontal projection of the distance from

the pin to the free portion of the beam, in

rotation angle at the end of the beam due

to applied load, rad

hinge angle, rad

buckling coefficient = _/--P/EI, in

subscript denoting a model variable

subscript denoting a prototype variable

f
I"
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Figure 4-1. Schematic drawing of the static load configuration for

small deflection analysis.
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f

where A and B are unknown constants to be found by application ' of

boundary conditions. '.

Figure 4-1 shows the eccentrically loaded beam-column, the

geometry of the hinged end connection, and coordinate system. The

variables 'x' and 'w' define position along the length of the beam and

transverse displacement, respectively. The initial eccentricity is

denoted by 'e' and the horizontal projection of the distance from the

pin to the free portion of the beam is '8'. The variable 'c_' is the

rotation angle of the end of the beam relative to the horizontal

caused by load applied to the beam-column. The angle _ is defined

by the hinge geometry, i.e.,

sin(_) = e/_-82

cos( ) = 2

(4.3)

Boundary conditions for the beam-column are found by solving for

the vertical displacement of the ends of the beam in the deformed

position. For the end at x = -L]2 this condition is

w(-L/2) = sin(o_ + (_)_-_2
(4.4)

o-

and a similar expression is written for the end of the beam at x =

L/2. Expanding the sine term using the formula for the sine of the

sum of two angles and using the small rotation assumption to

approximate the sine and cosine of o_ by

sin(a) --- o_ = d__ww
dx and cos(a) --- 1 (4.5)

yields the boundary conditions at x = -L/2

w(-L/2) = e + 8 [d-_-x]x=_L/2
(4.6)
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and at x = L/2

w(L/2) = e- 8 [d-_x Ix=L/2
(4.7)

Applying the boundary conditions, Eqs. 4.6 and 4.7, to the general

solution, Eq. 4.2, and solving for the unknown constant coefficients

gives the solution for the transverse displacement of the beam as a

function of position,

w(x) = e cos(kx)

cos(kL/2) k8 sin(kL/2) (4.8)

Some checks on the small deflection, small rotation solution were

made including: (1) midpoint slope of the deflection curve is zero at

the center of the beam, x=0, (2) rotation at either end of the beam is

the same numerical value with opposite signs, (3) for _5 = 0, the

solution degenerates to the pure eccentrically loaded beam-column

problem which has been solved in Reference [51], and, (4) for zero

applied load, k=0, the deflection curve is w(x) = e.

4.1.2 Scaling Considerations

The small deflection analysis presented in the previous section

can be used to illustrate the procedure for deriving the scaling

parameters from the governing differential equation and boundary

conditions for a simple problem. This procedure is discussed in

detail in Reference [12] and the method will be highlighted here. The

first step requires that the physical system be described adequately

by a set of equations and boundary conditions. In general this step

necessitates some insight into the physics of the problem, more than

simply a knowledge of the important parameters involved. In

writing the governing equation certain assumptions and

simplifications are incorporated which generally limit the scope of
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the problem. For the eccentrically loaded beam-column, assuming
small rotations and deflections, the governing equation is Eq. 4.1, as

derived in the previous section, and the boundary conditions are Eqs.
4.6 and 4.7.

The second step is to advance a hypothesis for obtaining a
model law based on the variables in the differential equation. This is
done by assuming relationships between the scale factors for each of
the variables. Recall from Chapter 2 that a scale factor _, is defined as

the ratio of a physical quantity in the model divided by the same
property in the prototype. For example, _,x = Xm/Xp. The hypothesis

proposed for the beam-column problem is

_x = _L

lw = _-L

kc = XL

ik = 1/IL

(4.9)

where KL is the length scale factor. This hypothesis forms a model

law for the problem; however, it is not unique. In general, other

relationships among the scale factors could have been chosen which

would also give a consistent and valid model law. It is reasonable to

choose the geometries associated with the problem to scale in the

same proportion as the length scale factor, especially when the

experiment has been designed in this manner. However, the choice

of scaling the buckling coefficient as I/KL may not seem obvious. A

logical choice might have been to scale the buckling coefficient as

unity, since the geometries are scaled in proportion to k and the

same material system is be used for both the model and prototype.

Only after following ,the next two steps would this choic4" have been

found in error.

Step three involves writing the governing equation and

boundary conditions in terms of a model system and a prototype

system with a goal of testing the hypothesis. This is accomplished by
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direct substitution.

becomes,
For the model system, the governing equation

2d2wm +kmwm = 0

dx2m (4.10)

and the boundary conditions become,

at Xm = -Lm/2

d w mWm(-Lm/2) =em + an,[-_--]
LdXm ix.,= -L,_/2 (4.11)

at x111 = Lm/2

wm(Lm/2) = em- 6mI_]
LdXm JXm= Lm/2 (4.12)

Likewise, for the prototype system, the governing equation becomes,

2
d2wp + kpwp = 0

dx2 (4.13)

and the boundary conditions become,

at xp = -Lp /2

law,_,]
Wp(-Lp/2) = ep + P[dxp_t,_,= -Lp/2

(4.]4)

at Xp = Lp /2

8 [dwp]
wp(Lp/2) = ep - P[dxpjxp= Lp/2 (4.15)

56



The final step is to verify the model law by using the hypothesis to

check the invariance of the substitution given above. To simplify the
notation, the length scale factor, _L , will be written as _. The model

law given in Eq. 4.9 becomes,

Xm = _Xp

Wm = _Wp

em= _,ep

8m = _.Sp

km = kp/_

(4.16)

Substituting these expressions for the model variables into Eq. 4.10

gives

k2pX Wpd2wp -t = 0

)_2dx2 X2 (4.17)

Cancelling values of _. from this equation yields

d2wp + k2wp = 0

dx2 (4.18)

which is identical to Eq. 4.13. If this procedure is applied to the

boundary conditions, Eqs. 4.11 and 4.12 for the model system, the

result will be that Eqs. 4.14 and 4.15 are recovered identically. This

verifies that the model law as given in Eqs. 4.9 and 4.16 is valid. The

Pi terms generated by this procedure are:

r_] = x/L 7_2 = w/L g3 = e/L /t 4 = 8/L r_5 = kL (4.19)
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Additional information can be obtained by examining rr5 in more

detail. The relationship between the model and prototype systems
based on this Pi term is

kmLm = kpLp (4.20)

Substituting for the buckling coefficient gives,

Lm 5/Pm/Emlm = Lp 5/Pp/EpIp (4.21)

Rewriting this expression in terms of the scale factors gives,

_,p_2 = _E_I (4.22)

If the beam geometry is scaled by the linear factor _. , then the

moment of inertia, I, will scale as X4. If the same material is used to

construct both the model and the prototype, then Young's modulus

will scale as unity. Using this information in Eq. 4.22 gives the result

that

_,p = _2 (4.23)

or, load will scale in proportion to the length scale factor squared.

4.1.3 Derivation of an Equivalent Bending Stiffness

The small deflection beam analysis derived in section 4.1.1 was

developed assuming homogeneous, isotropic, and Hookean material

properties, and used the familiar beam bending stiffness, El. The

bending stiffness is an important parameter for this problem since it

is used to calculate the Euler buckling load of the beam-column. The

Euler load has been defined as a characteristic load and it is used to

normalize both the analytical and experimental load data. This

section outlines the procedure to derive an equivalent bending
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stiffness for symmetric laminated composite beams in which the

beam is treated as a special case of a laminated plate. The procedure

is based on a technique presented in Reference [52] which provides a

more complete discussion on the one-dimensional analysis of

laminated composite plates.
t

The constitutive relations for symmetric laminated plates may

be reduced to the form

Mx

My

Mxy

Dll D12 DI6

D]2 D22 D26

D16 D26 D66

F x]Ky

Kxy

(4.24)

where the moments (Mi), bending stiffnesses (Dij), and curvatures

(_j) are derived from lamination theory in Reference [53]. In order

to derive a beam theory the following assumption is made:

My = Mxy = 0 (4.25)

This assumption is analogous to the plane stress assumption of

classical elasticity. It is also assumed that the beams have a high

length-to-width ratio and that the transverse displacement, w, is a

function of the axial coordinate, x, only. Applying these assumptions

to Eq. 4.24 gives

Mx = DI1Kx + DI2Ky + Dl6Kxy (4.26)

0 = Dl2_Cx + D22Ky + I)26Kxy (4.27)

0 = D16Kx + D261¢y + D66}Cxy (4.28)

Eqs. 4.27 and 4.28 are used to solve for Ky and Kxy in terms of _Cx and

the bending stiffnesses Dij,
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Ky= - D1---Z2D26 (b) Kx
D22 D22 (4.29)

and

Kxy = (_-)Kx (4.30)

where a = D12D26 - D16D22 and b = D66D22 - D26 .

The expressions for l_y and l_xy derived in Eqs. 4.29 and 4.30 above

are substituted into Eq. 4.26 to give the final result:

Mx = Dcffl,Cx (4.31)

where,

I°,2o26(a}]Def =Da,-D12, +--o22+D16( )
(4.32)

The effective bending stiffness, Deft, incorporates the bending and

twist coupling terms, D16 and D26, which are important for angle ply

and quasi-isotropic laminates.

4.2 Large Deflection Beam Analysis

A large deflection beam analysis was developed to predict the

response of the composite beam-column subjected to eccentric axial

load. The analysis is based on the "elastica" problem initially solved

by Euler during 1770-1773 for the large deflections of a tip loaded

cantilever beam. A detailed historical account of the problem is

presented in Reference [54]. The term "elastica" refers to the shape

of the elastic curve of a buckled bar when the exact differential

equation is solved. The equation is derived using the exact

expression for the curvature of a beam segment. The solution of the

"elastica" has been applied to a number of physical problems and

some examples of these are reported in References [55-58]. The text

qb
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by Frisch-Fay [59] provides a thorough treatment of the large

deflections of flexible beams under a variety of loading conditions

and end restraints. A brief outline of the solution procedure for the

"elastica" problem is given in Timoshenko [60] along with numerical

results for a slender rod fixed at one end and free at the other.

Sathyamoorthy [61] presents an excellent overview paper in

which he surveys recent advances in the nonlinear analysis of beams

including both exact solutions and finite element analyses. In

general, the incorporation of material and geometric nonlinearities

has increased to meet the demand for more realistic physical models.

This is especially true for advanced fiber reinforced composite

structures. The high stiffness and strength behavior of composite

material systems allows structural designs which routinely perform

under conditions of large deformations. For the eccentrically loaded

beam-column problem, the inclusion of the geometric nonlinearity is

required due to the large end rotations experienced by the beam.

However, material nonlinearity and bimodularity are neglected. This

assumption is based on results of Sensmeier's analysis which found

that including nonlinear material effects produced little

improvement in load and strain predictions.

Highlights of the development of the large deflection solution

including the derivation of the governing equation and boundary

conditions are presented in the following section. More complete

details are presented in Appendix B. The solution was coded into a

FORTRAN computer program to analyze the various laminate stacking

sequences and sizes of the model beams and to perform a stress

analysis for failure prediction.

4.2.1 Analytical Development

A schematic drawing of the beam-column loading configuration

is depicted in Figure 4-2 and a list of the nomenclature used in the

large deflection beam analysis is listed in Table 4-2. The governing

differential equation is derived by writing an expression for the
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Table 4-2. Nomenclature for the Large Deflection Beam Analysis

Variable Name Description

X

Y

0

P

E

5

Ot

M

L

axial coordinate

transverse coordinate

distance along the beam length

rotation angle at any point along the beam

axial load

Young's modulus

moment of inertia

initial eccentricity

horizontal projection of the distance from

the pin to the free portion of the beam

rotation angle at the end of the beam due

to applied load

hinge angle

moment

total beam length
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equilibrium of moments about the hinge pin, shown as point O in

Figure 4-2.

M0 = M + Py + P_e 2 + 8 2 sin(¢ + or) = 0
(4.33)

The moment at an arbitrary point along the length of the beam is

equal to the flexural rigidity times the curvature,

M=EI dO

d s (4.34)

where d0/ds represents the exact expression for the curvature of a

beam segment. Substituting the constitutive equation, Eq. 4.34, into

Eq. 4.33 gives

EId-O0 +py+PaCe 2-/ +82 sin(_+ot)=0
ds (4.35)

Differentiating Eq. 4.35 with respect to s and assuming that the load

and end rotation are independent of s gives

EI d20 + P dy = 0

ds 2 ds (4.36)

From the geometry of a differential beam segment, it is seen that

d y _ sin0

d s (4.37)

Substituting Eq. 4.37 into 4.36 and using the notation for the

buckling coefficient, k 2 = P/EI, gives the governing differential

equation,

d20 + kZsin0 = 0

ds 2 (4.38)
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l["

This equation has the same form as the governing differential

equation for the oscillations of a pendulum. The analogy between

the large deflections of a bar loaded only at its ends and the rotation

of a rigid body about a fixed point is called the Kirchhoff dynamical

analogy. A discussion of this analogy is presented in Reference [58].

The order of the differential equation is reduced by integrating

Eq. 4.38

(4.39)

resulting in a first-order differential equation"

dO_ = +_,V2(k2cosO/+ C)
d s (4.40)

Because the order of the differential equation has been reduced, only

one boundary condition is required to solve for the constant, C. The

boundary condition is found by solving for the moment at the hinge-

beam connection point where s=0.

M(O) = -P sin(O + oO_/e 2 + 52 (4.41)

Using the identity for sin(0+o_) and incorporating the hinge

geometry gives the resulting boundary condition,

M(O) = -P e cosot - P _5sinot (4.42)

The moment at s=0 is equal to the flexural rigidity times the

curvature evaluated at that point,

M(0)= EI [d-_s-s] =-P e coso_-P 5sin_
0=_ (4.43)

or,
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IdesJ = -k2 e coso_- k2 8 sinot
o=_ (4.44)

t

The unknown constant in Eq. 4.40 can now be evaluated by applying

the boundary condition, Eq. 4.44. The constant is found to be

C =1/2 [k2(e cosot + 8 sina)] 2- k2coso_ (4.45)

Substituting for C into the governing differential equation, Eq. 4.40,

yields,

dO =_k 3/2[cos0-coso_ + 1/2 k2(e coscz + 8sino_) 2]
ds (4.46)

Note that since d0/ds is always negative, as seen in Figure 4-2, the

positive sign has been dropped from the equation. The solution of

Eq. 4.46 is accomplished by introducing a change of variable in the

following manner,

sin(0/2) = A sin (4.47)

where

A = )/sin2ot/2 + 1/4 k2(e coso_ + 8 sino_) 2
(4.48)

Utilizing a series of trigonometric relationships, Eq. 4.46 can be

expressed in terms of the new variable in the following form;

ds z -

k ffl - A 2 sin2_
(4.49)

This equation may be integrated to give the total length of the beam,
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a

0 =- et f _ =_ct
L = d s = 2/k d_t

=c_ 3/1 A 2 sin 2
J_¢= 0

where the upper limit on the integration of • is given by,

(4.50)

gtot = sin.1 [sin (o_/2)]
A (4.51)

The integral appearing in Eq. 4.50 is known as the complete elliptic

integral of the first kind and is designated as F(A,_ot). Thus,

kL/2 = F(A,vo 0 (4.52)

Values of the elliptic integral are tabulated in mathematical

handbooks for monotonically increasing values of the parameters A

and _o_. In addition, numerical integration techniques can be used to

determine the value of the elliptic integral for known values of A

and _o_.

The transverse midpoint deflection of the beam is found from

the definition,

d y _ sin0 = 2 sin(0/2) cos(0/2)
ds 4.53)

Introducing the change of variable given by Eq. 4.47 and using Eq.

4.48, it is possible to write Eq. 4.53 as,

dy _2A sin_/1 A 2 sin 2

d s (4.54)

The expression derived for ds in Eq. 4.49 is substituted into Eq. 4.54

to give the resulting equation,

dy = -2A/k sin_ d_ (4.55)
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Integrating this equation and applying the appropriate boundary

conditions gives the solution for the transverse midpoint

displacement of the beam as

Ymid = _-k-_[ 1 - cOSWc,]
(4.56)

In a similar manner, the total axial shortening of the beam can

be found from

d__z_x= cos 0 = -1 + 2 cos2(0/2)
ds (4.57)

This equation is transformed by the same variable transformation

given by equations 4.47 and 4.48 and by a series of trigonometric

relationships to give the integral equation

fl _a d_Xtota 1 -- - 2/k 3/1 - A 2 sin2_

+ 4/k _/1 A 2 sin 2 _t d_

(4.58)

The first integral in Eq. 4.58 is simply the complete elliptic integral of

the first kind which was found previously in Eq. 4.50. The second

integral which appears in Eq. 4.58 has the form of the complete

elliptic integral of the second kind and is designated as E(A,_ta).

Values of the complete elliptic integral of the second kind are also

tabulated in mathematical handbooks for discrete values of the

parameters A and _t,_. Substituting results from Eq. 4.50 and using

the notation for the elliptic integral in Eq. 4.58 gives the final result

Xtota 1 = -L + 4/k E(A,_,_) (4.59)

The transverse midpoint displacement, total axial shortening,

and end rotation form the solution for the eccentrically loaded beam-

Ib
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column problem. The rotation angle, c_, and the total axial shortening,

Xtotal , were used to predict the end displacement of the beam for

comparison with the experimental results. As shown in Figure 4-3,

the end displacement of the beam is defined as the axial distance

traveled by the hinge pin and is denoted in the figure as Aexp. This

distance was measured by displacement transducers during the

experiments. The end displacement is given by the equation,

Aexp = L- Xtota l + 2 [8(1-cos o_) + e sin or] (4.60)

In a similar manner, the rotation of the hinges must be accounted for

in comparing the small deflection and large deflection predictions for

transverse midpoint displacement. When referred to the

undeformed axis as shown in Figure 4-3, the transverse midpoint

displacement is given by the following equation,

Ycxp = Ymid + e(cos o_ - 1) + _5sin ot (4.61)

4.2.2 Solution Algorithm

An examination of the solution developed in the previous

section indicates that three unknowns exist. These are the rotation

angle, o_; the midpoint transverse displacement, Ymid; and, the total

axial shortening, Xtotal. A solution algorithm was programmed to

determine these unknowns given thd beam length, beam bending

stiffness, hinge geometry, and the loading conditions applied to the

beam. A flowchart of the solution algorithm is presented in Figure 4-

4. The program is divided into three main sections. The first section

allows the user to input material properties, the angular ply

orientations, and the geometry of the particular laminated beam to

be studied. The program calculates an equivalent beam bending

stiffness as derived in Eq. 4.32 from a laminate analysis. The Euler
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Figure 4-4.

Solution Algorithm Flowchart

I Input Material Properties and Angle Orientations

i
I Calculate Lamina Stiffness and Compliance Matrices

1
I o.,cu,ateABeMa.,,andEqu,va,entEng,neer,ngPropo.,esI

I Input Beam Geometry-length, width, thickness I

t

t
I Input Initial Load Ratio, Ending Load Ratio, and Increment J

I Search Elliptic Integral Table for all values of kL/2and store each pair of parameters

I Solve for the pair of parameters which satisfy Eq. 3 58 I

1
Use Slmpson's Rule to solve for the Elliptic Integral

of the Second Kind I

Calculate rotation angle, transvarse midpoint displacement, /

/

and total axial shorteoIng J

Determlne Mx and Nx for the load step at the laminate midpoint 1

1
Calculate mldplane strains and curvatures, and surface strains I

I

I

Calculate ply stresses and perform failure analysis I

Next Load ]
Step

Solution algorithm flowchart.
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load is determined and the initial load ratio, final load ratio, and load

increment are input.

The next section of the program calculates the rotation angle,

midpoint transverse displacement, and total axial shortening for the

initial value of the load ratio, and for each load increment following

until the final load ratio is achieved. For the particular value of the

load at a given load step, the program calculates the value of the

buckling coefficient, k, and the value of the elliptic integral of the

first kind, as derived in Eq. 4.52. A routine is employed to search the

table of values of elliptic integrals of the first kind for all parameters

A and _ which contain the known value of the elliptic integral for

the particular load step. Interpolation between values in the table is

necessary to get the correct parameters. The program next

determines which of the pairs of parameters (A,xcet) are the correct

ones for the problem by substituting each pair into Eq. 4.48. The

pair which best solves this equation is chosen. Once the values of A

and _a are known, the midpoint transverse displacement, Ymid, is

found from Eq. 4.56. The total axial shortening, x total is found from

Eq. 4.59 where the elliptic integral of the second kind, E(A,_c_), is

determined by numerical integration using Simpson's Rule since the

limits of integration and the parameter A are known. The rotation

angle, o_, is found simply by substituting the values of A and _tc_ into

Eq. 4.51 and solving. Having determined or, Ymid, and Xtotal, the end

displacement given by Eq. 4.60 and the midpoint displficement given

by Eq. 4.61 are now solved for direct comparison with the

experimental results.

The final portion of the program performs a stress and failure

analysis based on the load and displacement results determined

previously. For each load step an equivalent applied moment, Mx,

and axial thrust, Nx, are calculated at the midpoint of the beam.

From lamination theory, the midplane strains and curvatures are

determined as well as surface strains for comparison with the strain

gage experimental data. Again, using lamination theory, ply stresses
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are determined and _failure criteria including maximum strain,

maximum stress, and Tsai-Wu are applied on a layer-by-layer basis.

The solution algorithm depends heavily on the table of values

for the elliptic integral of the first kind. A separate routine was

written to calculate the values in the table using Simpson's Rule of

numerical integration. Initially, the table was determined for angle

increments of 1 degree, resulting in a table of 90 x 90 values, which

is typical of the tables printed in mathematical handbooks. However,

it was found that the solution appeared to "stair-step" for low values

of the load due to the crudeness of the table and the interpolation

techniques. The table of elliptic integrals was recalculated for 1/2

degree increments, resulting in a table of 180 x 180 values, which
smoothed the solution considerably, but greatly increased the

running time of the program. Finally, the table was further refined

for every 1/10 degree increments from zero to 90 degrees and the

stair-step effect was virtually eliminated. Figures 4-5 and 4-6
illustrate the effect of refining the elliptic integral table on the load

versus midpoint displacement and end displacement response,

respectively. The stair step effect is negligible, even for the most
course elliptic integral table for load ratios greater than 0.4.

However, it was necessary to remove the stair-step effect for low

values of load ratio since the analysis was used to derive equivalent
beam bending stiffnesses empirically. More details of the bending

stiffness determination are presented in Chapter 5.

4.2.3 Agreement Between the Large Deflection Beam-

Column Solution Algorithm and "Eiastica" Solution

In order to verify the large deflection beam-column solution

derived in section 4.2.1 and programmed in section 4.2.2, a case was

considered in which the hinged end conditions were simplified to

solve the problem of a pinned beam-column. This was accomplished

by setting the eccentricity and delta parameters of Figure 4-1 equal

to zero. The large deflection solution for this problem is presented in
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Timoshenko [60]. Figures 4-7, 4-8, arid 4-9 are, respectively,

comparisons of the normalized load versus end displacement, load

versus midpoint displacement, and load versus rotation angle results

from the large deflection beam analysis and the data presented in

Timoshenko for a pinned beam-column. The large deflection beam

analysis predicts exactly the solution for the pinned beam-column

problem, thus validating the solution algorithm for this simplified
case.

4.2.4 Agreement with Small Deflection Beam Solution

Figure 4-10 is a plot of the normalized midpoint transverse

displacement versus load ratio for the small deflection beam solution

and the large deflection "elastica" solution. The small and large

deflection analyses agree exactly for load ratios (defined as load

divided by Euler load) less than 0.4. However, for higher load ratios,

the small deflection solution increases rapidly and becomes

unbounded at a load ratio of approximately 0.5. The large deflection

solution remains bounded and continues to predict the midpoint

displacement response. For the eccentrically loaded beam-column

problem under consideration, the maximum normalized midpoint

displacement is approximately 0.5 which represents the point at

which the ends of the beam touch. The value is actually slightly

greater than 0.5, since the geometry of the hinges during rotation

adds to the midpoint displacement as measured from the initial

unloaded configuration.

4.3 Finite Element Analysis

4.3.1 DYCAST Static and Dynamic Model

In addition to the small and large deflection beam analyses

presented in the previous sections, the nonlinear finite element

structural analysis computer program DYCAST was used to model the

composite beam-column. The DYCAST code was used to model both
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the static and dynamic beam response. The composite laminate was

discretized into 60 beam elements which were constrained to permit

only planar deformations, i.e., no twisting or warping of the cross

section was allowed. The hinges at the top and bottom of the beam

were modeled by two rigid beam elements each. The model assumed

pinned conditions at the attachment point between the hinge and the

load machine, and clamped conditions between the hinge and beam.

DYCAST allows only isotropic material properties for beam elements,

therefore equivalent isotropic properties were determined for each

of the composite laminates tested using lamination theory as outlined

in Section 4.1.3. Thus, the bending stiffness used in the DYCAST

model was the same as that used in the small and large deflection

beam analyses. The complete model including the hinge supports

had 192 degrees of freedom.

For the static loading condition, the applied load was increased

incrementally at the top of the beam using a static full Newton

iterative technique in which the stiffness matrix was updated in each

iteration. The full Newton procedure was required since the

modified Newton method which updated the stiffness matrix for each

load step failed to converge in the nonlinear region of the response

curve, Figure 4-11 is a plot comparing the static normalized load

versus end displacement response from a DYCAST and large

deflection exact beam analysis. The DYCAST beam model and the

large deflection beam analysis agree for all values of load ratio thus

validating the finite element model.

For the dynamic loading condition, the impact was modeled by

applying ,an initial velocity to a lumped mass representing the mass

car and slider at the top of the beam. The value of the initial velocity

was calculated from conservation of linear momentum principles. To

validate that the velocity value used for the model was correct, the

end displacement experimental data were differentiated with time.

The velocity after impact obtained in this manner was subsequently

used as the initial velocity to improve the model and to give better

correlation with experimental strain data. The implicit Newmark-
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Beta time integration method was used' and the stiffness matrix was

updated for each time step.

4.3.2 Geometric and Material Nonlinear Beam Analysis

(incorporating width-wise effects)

Sensmeier [38] developed a geometric and materially nonlinear

finite element analysis to model the large deflection flexural

response of eccentrically loaded beam-columns. The composite beam

configuration he tested and for which he developed the analysis

represents the two-thirds scale model beam of this investigation. His

analysis will be referred to as the MDS2DB program and it was

developed using an incremental, noniterative finite element based on

the Kantrovich method. A co-rotational solution technique was

employed. Width-wise effects were included by assuming specific

forms of the displacements across the widih of the beam. In

addition, the model included nonlinear material behavior as

determined from material characterization tests on the AS4/3502

graphite-epoxy system. The eccentrically loaded composite beam-

columns were modeled using the MDS2DB program to investigate the

importance of material nonlinearity and width-wise effects for the

laminates included in this investigation.

Sensmeier found that inclusion of nonlinear material behavior

was important in predicting the load-deflection response of

unidirectional laminates, while width-wise effects were determined

to be more important for laminates with off-axis plies. The finite

element model also successfully predicted the difference in strain

magnitudes on the tensile and compressive sides of the beams. He

found that the strain difference was due to a combination of material

nonlinearity and width-wise effects. The width-wise effects were

highly dependent on the a_ount of bend-twist coupling present in

the composite laminate under consideration.

Figures 4-12 through 4-15 are plots of the normalized load-

displacement responses for 2/3 scale unidirectional, angle ply, cross
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ply, and quasi-isotropic beams comparing the MDS2DB and large

deflection beam solutions, respectively. Since the large deflection
beam analysis does not permit nonlinear material-properties, the

MDS2BD analysis for each laminate was performed using the linear
material properties. Thus, the plots illustrate the the importance of

including width-wise effects for each of the four laminate types

under consideration. Excellent agreement is obtained for the

unidirectional and cross ply laminates, as shown in Figures 4-12 and

4-14, which is expected since these laminates have no D16 or D26

bend- twist coupling stiffnesses. However, the angle ply laminate, as

shown in Figure 4-13, exhibits a large bend-twist coupling term and

the inclusion of width-wise effects gives a significantly stiffer load-
deflection response than the large deflection beam analysis. The

inclusion of width-wise effects leads to a slightly stiffer response for
the quasi-isotropic laminate, as seen in Figure 4-15, since the bend-

twist coupling stiffness is not large. The tendency of the MDS2DB

solution to stiffen and deviate from the large deflection beam

analysis, as evident in Figures 4-12 and 4-13, for end

displacement/length values greater than 0.80 is due to a numerical

instability and does not represent a physical phenomenon.
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Figure 4-12. Comparison of normalized load versus end displacement

predictions for a unidirectional 2/3 scale beam using

MDS2DB analysis and the large deflection beam solution.
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Figure 4-13. Comparison of normalized load versus end displacement

predictions for an angle ply 2/3 scale beam using

MDS2DB analysis and the large deflection beam solution.
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Figure 4-14. Comparison of normalized load versus end displacement

predictions for a cross ply 2/3 scale beam using

MDS2DB analysis and the large deflection beam solution.
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Figure 4-15. Comparison of normalized load versus end displacement

predictions for a quasi-isotropic 2/3 scale beam using

MDS2DB analysis and the large deflection beam solution.
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Chapter 5. Investigation of Beam Bending Stiffness

5.1 Motivation

The Euler load has been chosen as a characteristic load of the

eccentrically loaded beam-column problem and is used to normalize

the load data for both the experiment and the various analytical

techniques. The Euler load is given by:

Peu = 7z2Deff b

L 2 (5.1)

where b is the beam width and L is the beam length. The effective

bending stiffness, Deft, may be derived from Eq. 4.32 for any

laminate if the angular ply orientations, laminate thickness, and the

material moduli are known. Once the bending stiffness is calculated,

the Euler load is found from Eq. 5.1.

Figure 5-1 shows the experimental normalized load versus end

displacement results for a set of scaled unidirectional beams. For

each beam specimen the Euler load was determined from Eq. 5.1

using the effective bending stiffness as calculated from lamination

theory. The material moduli used to calculate the bending stiffnesses

were obtained from material characterization tests and are given in

Table 3-1. The plot of Figure 5-1 indicates that the response of the

model beams scales for low values of the load ratio. However, as the

deflections become large, the beam load-deflection behavior deviates

from a scaled response. The slopes of the response curves are

similar, yet some beams appear stiffer than others. No recognizable

pattern is observed in the response curves, i.e., the smaller beams

are not necessarily stiffer than the larger ones or vise versa.

Figure 5-2 is a plot of the 1/6 and full scale unidirectional

beam normalized load-displacement response plotted with the large

deflection beam analysis and the DYCAST model results. Good

agreement is obtained between the experimental data and the two

analyses for low load values. But, the analyses overpredict the beam
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Figure 5-1. Experimental load versus end displacement results for

unidirectional 1/6 through full scale. (Euler load is cal-

culated using lamination theory predictions of beam

bending stiffness.)
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Figure 5-2. Unidirectional 1/6 and full scale beam normalized load

versus end displacement data with DYCAST and large

deflection beam analyses. (Euler load is calculated using

lamination theory prediction of beana bending stiffness.)

86



response by as much as twenty per cent for higher load ratios, even

though the analyses predict the character of the response curve well.
The trends indicated in Figures 5-1 and 5-2 for the

unidirectional beams are typical of the angle ply, cross ply, and

quasi-isotropic beams as well. Similar plots for these laminates are

provided in Reference [62]. The Euler load is the only nonempirical

quantity used to construct these plots. If the Euler load as

determined from lamination theory is incorrect, it could explain the

deviation from scaled response seen in Figure 5-1 and the poor

agreement between the analyses and the experimental data seen in
Figure 5-2. Since the effective bending stiffness, Deff, is the only

component of the Euler load which could be in error, an experimental

program was initiated to verify that the effective bending stiffness

based on lamination theory is, in fact, the bending stiffness exhibited

by the scale model beams in the lab. A brief description of the

experimental program and results of that investigation are presented

in this chapter.

5.2 Experimental Program to Determine Effective Beam

Bending Stiffness

Tests were performed on a set of 1/6, 1/4, and 1/3 scale model

beams of unidirectional, angle ply, cross ply, and quasi-isotropic

laminate stacking sequences to determine the effective beam

bending stiffness. The beams were supported in scaled hinges, as

described in Chapter 3, which offset the axial load and produced

bending deformations. The upper hinge was fixed to a rigid support.

A load cell was mounted under the lower hinge support which was

attached to a high-precision stage for accurate position adjustments.

From an initially straight configuration, a small end displacement

was applied to the beam specimen. Measurements of vertical load

and transverse midpoint displacement were recorded. The end

displacement was increased and new readings were made for a total

of approximately 25 measurements. The maximum load never
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exceeded 0.2 times the Euler load of the beam as calculated from

lamination theory. Thus, all measurements were taken in the load-

deflection regime where small deflection beam assumptions were
valid.

The equation for the transverse displacement of a beam

assuming small displacements has been derived in Section 4.1.1 and

is written as Eq. 4.8. In this equation, the out-of-plane displacement

at any location along the beam may be found for a specific hinge

geometry, load, beam length, and beam bending stiffness (EI). This

equation was rearranged such that the bending stiffness could be

found for a given load, transverse midpoint displacement, beam

length, and hinge geometry. An equivalent bending stiffness was

determined for each set of data points (load and transverse midpoint
displacement) from a beam test and the values were averaged to

give the experimentally determined bending stiffness for that beam.

5.3 Comparison of Experimentally Determined Beam

Bending Stiffness with Lamination Theory Prediction

The experimentally determined bending stiffnesses of each of

the beams tested are listed in Table 5-1 along with their dimensions,

laminate stacking sequences, and the value of the bending stiffness

determined from lamination theory. The percentage differences

between lamination theory and experiment are listed in the last

column of Table 5-1. These results show that the bending stiffness

derived from lamination theory can differ from the experimentally

determined value by as much as 25 per cent. Predictions of bending

stiffness were not consistently better or worse for a particular

laminate family (unidirectional, angle ply, cross ply, and quasi-

isotropic) or for a particular scale factor (1/6, 1/4, and 1/3). In

general, lamination theory does not give reliable predictions of beam

bending stiffness when compared to the measured values. It is

reasonable to conclude that discrepancies between the lamination

theory predictions for bending stiffness and the actual values are

88



Table 5-1. Experimentally Determined Beam Bending Stiffness

Scale

Factor
Lay-up Beam Beam Beam Bending Stiffness Bending Stiffness

Length Width Thickness Lamination Theory Experiment
in in in lb-in 2 lb-in 2

Percent

Difference

1/6

1/6

1/6

1/6

1/4

1/4

1/4

1/3

1/3

1/3

1/3

[o]
[45/-45]

[0/90]

[-45/0/45/901

[45/-45]

[0/90]

[01

[45/-45]

[0/90]

[-45/0/45/90]

5 0.5 .049 97.89 95.28

5 0.5 .044 9.28 7.14

5 0.5 .048 81.15 64.28

5 0.5 .045 30.03 34.20

7.5 0.75 .071 444.03 353.23

7.5 0.75 .0715 59.71 61.46

7.5 0.75 .066 316.42 289.97

10 1.0 .087 1089.30 911.26

10 1.0 .086 138.53 173.13

1 0 1.0 .086 933.39 823.99

1 0 1.0 .086 419.15 425.60

2.7

23.1

20.8

-13.9

20.5

-2.9

8.4

16.3

-25.0

11.7

-1.5
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responsible for the anomalies seen in the load-deflection response

curves of Figures 5-1 and 5-2.

The disparity between lamination theory prediction for

bending stiffness and the experimentally determined values is not

unusual. Whitney [63] has published data comparing the elastic

modulus determined from 4-point bending tests with theoretical

values for graphite-epoxy quasi-isotropic laminates. Tests were

conducted on laminates with various stacking sequences of 0 °, +45 °,

and 90 ° orientations. The difference between experiment and theory

for modulus measurements of symmetric, 8 ply beams ranged from

13 to 21 per cent error, a variation typical of the results seen in the

bending stiffness determination experiments reported here. In

contrast, modulus values obtained from tensile tests of the same

laminates showed good agreement with lamination theory

predictions.

5.4 Empirical Determination of Effective Bending Stiffness

of Scaled Composite Beams from Static Load Response

Results of the bending stiffness experiments indicate that it is

necessary to use empirical means to solve for the bending stiffness of

each scale model beam tested. Since transverse midpoint

displacement measurements were not made during the tests, the

small deflection analysis could not be used to solve for the bending

stiffness. Instead, a technique was employed in which the large

deflection beam analysis was matched graphically to the

experimental load versus end displacement response. The

normalizing factor for the load, the Euler load, was adjusted until the

analysis and experiment agreed for small values of load ratio, i.e.,

less than load ratios of 0.4. The effective beam bending stiffness was

found by solving Eq. 5.1 using the Euler load value determined from

the matching technique.

The experimentally determined values of bending stiffness and

the lamination theory predictions are given in Table 5-2 for each of
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Table 5-2.

BEAM LABEL

Bending Stiffness Values Determincd from Lamination
Experiment for Scaled Composite Beams

Theory and

LAY-UP SCALE Deff*b Deff*b

FACTOR (LAM) (EXP)

USIX1
USIX3

USIX5

AVERAGE

UFOR1
UFOR3

UFOR5

AVERAGE

UTHR1
UTHR3

UTHR5

AVERAGE

UHALF1
UHALF3

UHALF5

AVERAGE

U2THR1
U2THR3

U2THR5

AVERAGE

U3FOR1
U3FOR3

U3FOR5

AVERAGE

U5SIX1
U5SIX3

U5S1X5

AVERAGE

UFULL1
UFULL3

UFULL5

AVERAGE

[018

[0112

[0116

[0]24

[0132

[0]36

[0140

[0]48

1/6 82.27 65.75
1/6 84.06 66.00

1/6 80.51 65.85

82.28 65.87

1/4 370.47 319.50
1/4 375.92 326.45

1/4 395.87 333.38
.....................

380.75 326.44

1/3 1003.70 855.00
1/3 1033.90 860.00

1/3 1121.10 910.00
............................

1052.90 875.00

1/2 5368.65 4650.00
1/2 5686.05 4980.00

1/2 5123.55 4785.00
..............................

5392.75 4805.00

2/3 17082.20 15460.00
2/3 17428.40 16020.00

2/3 16834.20 15800.00
.............................

17114.93 15760.00

3/4 27175.50 22860.00
3/4 27742.50 26005.50

3/4 27956.25 26416.50
................................

27624.75 25094.00

5/6 43830.00 37750.00
5/6 40335.00 39937.50

5/6 41870.00 38875.00
..................................

42011.67 38854.17

1 83256.00 68970.00
1 87888.00 82200.00

1 80040.00 81300.00
..................................

83728.00 77490.00
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BEAM LABEL

Table

LAY-UP

5-2. Continued

SCALE
FACSI'OR

Deff*b

(LAM)

Deff*b

(EXP)

ASIX1
ASIX3

ASIX5

AVERAGE

AFOR1
AFOR3

AFOR5

AVERAGE

ATHR1
ATHR3

ATHR5

AVERAGE

AHALF1

AHALF3

AHALF5

AVERAGE

A2THR1
A2THR3

A2THR5

AVERAGE

A3FOR1
A3FOR3

A3FOR5

AVERAGE

A5SIX1

A5SIX3

A5SIX5

AVERAGE

AFULL1
AFULL3

AFULL5

AVERAGE

1452/-4521S

[453/-453]S

1454/-454]S

[456/-456]S

[458/-458]S

[459/-459]S

14510/-45101S

[4512/-4512]S

1/6
1/6

1/6

1/4
1/4

1/4

1/3
1/3

1/3

1/2

1/2

1/2

2/3
2/3

2/3

3/4

3/4

3/4

5/6
5/6

5/6

1
1

/ 1

10.60
10.39

10.74

10.58

56.03
56.03

55.31

55.79

137.08
143.42

140.96

140.49

680.31
747.96

721.05

716.44

2247.60
2362.60

2306.60

2305.60

3522.83
4079.03

3727.58

3776.48

5487.00
5890.50

5771.50

5716.33

10833.90
11307.90

11395.80

11179.20

11.00
11.00

11.10

11.03

54.00
56.33

57.08

55.80

150.00
144.82

148.00

147.61

630.00

690.00

667.50

662.50

1934.00
2410.00

2430.00

2258.00

3375.00
3926.25

3757.50

3686.25

4275.00
5087.50

5375.00

4912.50

9150.00
10170.00

9795.00

9705.00

92



BEAM LABEL

Table

LAY-UP

5-2. Continucd

SCALE
FACI'OR

Dcff*b

(LAM)

Deff*b

(EXP)

CSIX1
CSIX3

CSIX5

AVERAGE

CFOR1
CFOR3

CFOR5

AVERAGE

CTHR1
CTHR3

CTHR5

AVERAGE

CHALFI ,
CHALF3

CHALF5

AVERAGE

C2THR1
C2THR3

C2THR5

AVERAGE

C3FOR 1
C3FOR3
C3FOR5

AVERAGE

C5SIX1
C5SIX3

C5SIX5

AVERAGE

CFULL 1
CFULL3

CFULL5

AVERAGE

[02/902]S

[03/903]S

[04/9041S

[06/906]S

[08/908]S

[09/-909]S

[010/9010]S

[012/90121S

1/6
1/6

1/6

114
1/4

1/4

1/3
1/3

1/3

1/2
112

1/2

2/3
2/3

2/3

3/4
314

3/4

5/6
5/6

5/6

70.65
68.21

70.65

69.83

299.93
295.33

309.27

301.51

949.79
949.79
944.26

947.95

4526.55
4854.60

4725.30

4702.15

15108.20
14856.20

15021.00

14995.13

23421.50
23674.50

23798.25

23634.75

39062.50
40502.50

39062.50

39542.50

10833.90
11307.90

11395.80

11179.20

55.17

54.39
57.50

55.69

243.75
243.38

233.87

240.33

814.50
772.50

785.60

790.87

3937.50
4104.75

4125.95

4056.07

13274.00
13950.00

13700.00

13641.33

21960.00
22461.21

22050.00

22157.07

34242.50
35875.00

34875.00

34997.50

61860.00

71250.00

68400.00

67170.00
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BEAM LABEL

Table

LAY-UP

5-2. Continued

SCALE
FACTOR

Deff*b

(LAM)

Deff*b

(EXP)

QSIX1
QSlX3
QSIX5

AVERAGE

QHR1
QHR3

QHR5

AVERAGE

QHALF1
QHALF3

QHALF5

AVERAGE

Q2THR1
Q2THR3

Q2THR5

AVERAGE

Q5S1X1
Q5SIX3

Q5SIX5

AVERAGE

QFULLI
QFULL3

QFULL5

AVERAGE

[-45/0/45/90] S

[-452/02/452/9021S

[-453/03/453/903] S

[ -454/04/454/904 ]S

1-455/05/455/905]S

[-456/06]456/906 ] S

1/6
1/6

I/6

1/3
1/3

1/3

1/2
1/2

1/2

2/3
2/3

2/3

5/6
5/6

5/6

29.36
29.04

29.69

29.36

441.48
438.94

441.48

440.63

2256.30
2299.35

2239.20

2264.95

7267.00
7043.20

7474.80

7261.67

16602.50
15476.00

14990.25

16356.25

33558.00
35016.00

35421.00

34665.00

24.00
23.25

24.88

24.04

395.00
402.50

389.00

395.50

1942.50
1981.50

1980.00

1968.00

6100.00
6600.00
6400.00

6366.67

15125.00
15802.50

15412.50

15446.67

30600.00
32550.00

32850.00

32000.00
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the scaled composite beams which were tested statically. When the

experimentally determined values of bending stiffness are used to

calculate the Euler load and normalize the load-end displacement

response, the anomalies seen in Figures 5-1 and 5-2 for the

unidirectional beams disappear. This is evident in Figure 5-3 which

is a plot of the normalized load versus end displacement data of 1/6

through full scale unidirectional beams, similar to Figure 5-1 except

that the experimental bending stiffness was used to calculate the

Euler load. As seen in the figure, the load response curves scale until

failure occurs. Figure 5-4 is a plot of the large deflection beam

solution and DYCAST beam analysis with the normalized 1/6 and full

scale unidirectional beam load response. This figure indicates that

the two analyses predict the load response well when the

experimental data are normalized by the Euler load which is

determined empirically.

The effective bending stiffness values determined for each

scaled beam can be used to investigate scaling effects in the elastic

response. In Figures 5-5 through 5-8, the bending stiffness values

from Table 5-2 have been multiplied by the appropriate scale factor

(1/_. 4) and normalized by the full scale value and plotted versus

scale factor for the unidirectional, angle ply, cross ply, and quasi-

isotropic laminates, respectively. Any significant deviations from the

straight line at one in each figure may be interpreted as a scale

effect. Results for the unidirectional, cross ply and quasi-isotropic

laminates (Figures 5-5, 5-7, and 5-8) show deviations of less than

10% from scaled response. This variation can be explained through

minor differences in thicknesses of the fabricated beams and

experimental error. However, the angle ply laminates, shown in

Figure 5-6, exhibit a large scale effect in the bending stiffness

response. The smaller beams are significantly stiffer than the full

scale beams. This finding reinforces the importance of using the

empirical bending stiffness in normalizing the load-displacement

data for the angle ply laminates, and indicates that more research is
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Figure 5-3. Experimental load versus end displacement results for

unidirectional 1/6 through full scale beams. (Euler load

is determined empirically using matching technique.)
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Figure 5-4. Unidirectional 1/6 and full scale beam normalized load

versus end displacement data with DYCAST and large

deflection beam analyses. (Euler load is determined

empirically using the matching technique.)
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needed to verify the observed scale effect in elastic response for this

family of laminates.
Because Derian [37] and Sensmeier [38] performed similar tests

on eccentrically loaded composite beams using the same graphite-

epoxy material system, it is useful to examine their approach to the

composite beam constitutive behavior. Derian [37] conducted a

series of static tests and observed a significant difference between

tensile and compressive surface strain magnitudes at the midpoint of

the beams. This finding led him to hypothesize that the material
exhibited either a nonlinear elastic or bimodular elastic material

behavior. He performed static tests to determine empirically the

bending tensile and compressive moduli. Results of these tests
indicated that the laminates he tested exhibited, to a first

approximation, a bimodular material response. Comparisons
between lamination theory predictions of bending stiffnesses derived

from tensile and compressive moduli and the empirically determined

values showed significant differences, especially for the compression

modulus. Derian used the empirically determined flexural moduli in

a finite element program to predict the deformation response of the
beams with moderate success. Derian concluded that classical

lamination theory cannot be used with confidence for the prediction

of the large deformation response of laminated beams.
In contrast to Derian's empirical approach, Sensmeier [38]

performed material characterization tests on the graphite-epoxy

system (AS4/3502) which was used to fabricate the beam specimens.

His purpose was to determine if the material did, indeed, exhibit

nonlinear or bimodular stress-strain behavior and to incorporate the

material constitutive response into a finite element model. The
experimental curves were approximated by polynomials, and the

algebraic expressions were programmed into the finite element

model. The material constitutive behavior was implemented for each

load step by determining the current strain state in each ply of each

beam element. Once the ply strain state is known, the tangent
modulus of the stress-strain curve was found for that strain level.
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The ply stiffnesses were then used to calculate a laminate stiffness

matrix for each element. The updated element stiffness matrix was

used for the next load increment. Thus, in this step-wise fashion, the

model incorporated the stress-strain response in both tension and

compression as determined from material characterization tests.

Using this approach, Sensmeier achieved excellent agreement for
unidirectional thick (30 ply) laminates for both load and strain

response. The model also predicted the large difference in tensile

and compressive surface strain for a ((30/0/-30)5)S laminate.

However, in general, the finite element model overpredicted the

load-end displacement response, in one case by as much as 20%.

Sensmeier concluded that the most critical factor in predicting both

the load and strain response was not the nonlinear constitutive
behavior, but the inclusion of width-wise degrees of freedom. This

was particularly true for laminates with off-axis plies exhibiting

large bend-twist coupling behavior.

In conclusion, the effective bending stiffness which was found

by applying the matching technique to the static load-displacement

data may be thought of as a structural stiffness. As such, it

incorporates the effects of (1) microcracking and other defects in the
beam, (2) width-wise responses, (3) nonlinear and bimodular

material behavior, and (4) misalignments and minor variations in the

test conditions. The empirical approach is a means of determining

the beam stiffness since none of the effects mentioned previously
can be isolated from the problem.
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Chapter 6 - Static Test Results

Experimental results from the static testing program are

presented for the four laminate types and range of scaled sizes of

composite beam-columns. Scale effects in the load and strain

response of the beams are investigated and the damage mechanisms

are discussed for each of the laminate families. The various

analytical models described in Chapter 4 are compared to the

experimental results.

The normalized load versus end displacement response is

discussed for the unidirectional, angle ply, cross ply, and quasi-

isotropic scale model beams. The vertical load is normalized by the

Euler column buckling load for each beam. The Euler load was

calculated using an effective bending stiffness which was determined

by matching the large deflection beam analysis to the experimental

data for each beam. The procedure used to find the effective beam

bending stiffnesses is described more fully in Chapter 5 and the

values are listed in Table 5-2. It was necessary to find the effective

bending stiffness empirically since values determined from

lamination theory were not sufficiently accurate. The end

displacement data are normalized by the gage length of the beam

specimens which are listed in Table 3-2.

Static tests were performed on three replicate beams for each

laminate type and scaled size. In general, the unidirectional, cross

ply, and quasi-isotropic beams showed little deviation in the load-

deflection responses among the replicate beams. More variation was

seen in the load-deflection response of the angle p12¢ beams;

however, this was not unexpected since the response of these

laminates is sensitive to initial damage in the form of matrix cracks,

and the response is affected by damage sustained during loading.

The load and strain response of all the replicate beams are plotted in

Appendix C. These plots illustrate the deviations in beam response

and failure among the replicates. The results from a single,
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representative test are presented for each laminate type and size of
beam.

6.1 Unidirectional Beams

6.1.1 Load-Deflection Response

Normalized load versus end displacement results are shown in

Figure 6-1 for the unidirectional beams. The data for beams ranging

in scale from 1/6 through full scale appear to fall on a single curve.

For small values of the load ratio, typically less than 0.4, this

indicates that the beam response scales for small deflections. As the

load ratio increases, the response becomes nonlinear and the beams

undergo large rotations and deflections. In fact, the 116 scale beam

fails at an end displacement ratio of 0.95 which means that the ends

of the beam are close to touching one another when failure occurs.

Yet, even under these severe deformations, no deviations from scaled

response are observed. However, a scale effect in strength is evident

in the plot of Figure 6-1. The small scale beams fail at higher

normalized load and end displacement levels than the full scale

beam. For the unidirectional beams, the 1/6 scale beam fails at an

end displacement ratio two times greater than that of the full scale

beam and at a significantly higher load ratio. The data indicate that

as the beam size decreases from the full scale prototype, the failure

loads increase correspondingly. In addition, the failures occur at

higher values of end displacement and are dispersed at fairly regular

intervals for the 5/6, 3/4, 2/3, 1/2, 1/3, 1/4, and 1/6 scale beams.

The average failure load ratios, loads, end displacement ratios, and

strains are listed in Table 6-1 for the scale model unidirectional

beams.
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Figure 6-1. Normalized load versus end displacement experimental

results for unidirectional 1/6 through full scale model

beams
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Table 6-1. Average failure loads, displacements, and strains for scaled

unidirectional beams.

Scale

Factor

1/6

1/4

1/3

1/2

2/3

3/4

5/6

Full

UNIDIRECTIONAL

Failure

Load

(lbs)

17.4

42.0

62.6

142.4

271.8

351.8

406.4

524.1

Failure

Load

Ratio

.67

.73

.72

.68

.69

.69

.67

.62

End Disp.

Ratio

.98

.91

.86

.74

.75

.74

.68

.54

Failure Strain

Tension

(microin/in)

gage failures

Failure Strain

Compression

(microin/in)

gage failures

17169.9

15624.9

14080.5

13481.9

14436.3

13498.2

11315.5

-20097.8

-18160.7

-17006.8

-16684.1

-16610.3

-15402.5

-12387.8
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6.1.2 Strain-Deflection Response

Tensile and compressive midpoint strain versus normalized

end displacement are plotted for the unidirectional scale model

beams in Figure 6-2. The strain measurements were recorded

directly from strain gages applied to the tensile and compressive

surfaces of the beams at their midspan. Since strain is a

dimensionless quantity, no normalizing factor is required to make

comparisons between data for the different scale model beams. Only

a slight variation from scaled response is evident in the plot of Figure

6-2. The strain response is bounded by the 1/4 scale beam data

which exhibits the highest strain magnitude, and by the full scale

beam data which exhibits the lowest strain magnitude. However, the

maximum deviation between the strain responses for these two

beams is approximately five per cent. Failure strains are listed in

Table 6-1 and indicate that as beam size decreases the failure strain

increases. In fact, the tensile and compressive failure strains for the

1/4 scale unidirectional beams are 52% and 62% higher, respectively,

than the full scale failure strains. The strain response for the 1/6

scale beam, as shown in Figure 6-2, is a gage failure and does not

represent failure of the beam.

It is also observed from Figure 6-2 and Table 6-1 that the

compressive strain response and failure strains for the various scale

model beams are greater in magnitude than the corresponding

tensile strains. To illustrate the difference in strain magnitudes, the

absolute value of the compressive strain is plotted with the tensile

strain for the '1/4 scale unidirectional beam in Figure 6-3(a). The

percentage difference between strain magnitudes is plotted in Figure

6-3(b) as a function of end displacement ratio. The difference

between compression and tensile strain magnitudes was also

observed by Derian [37] and Sensmeier [38]. Sensmeier reported

that the difference in strain magnitudes increased linearly with end

displacement until failure for the unidirectional beams he tested. He

also noted that the percentage difference in failure strain magnitudes
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model beams.
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for a 30-ply unidirectional laminate was approximately 13%. Figure
6-3 indicates that the strain response of the unidirectional 1/4 scale

beam yields consistent results with those of Sensmeier.
On first examination, it seems reasonable to assume that the

difference in compressive and tensile strain magnitudes may be

attributed to the axial load which produces a strain component that

effectively adds to the compressive strain and subtracts from the
tensile strain. However, the strain component due to the axial load is

two orders of magnitude less than the measured surface strains and

cannot account for the large observed differences. Sensmeier

examined nonlinear material properties and width-wise effects as

factors which contribute to the strain phenomenon. He found that

for a unidirectional 30-ply laminate the incorporation of nonlinear
material properties was essential for predicting the difference in

strain magnitudes, while width-wise effects appeared to have little
influence. These factors will be studied in more detail in the next

section when the Sensmeier finite element analysis (MDS2DB) is

compared to the experimental data from this investigation.

6.1.3 Comparison of Experiment with Analysis

Predictions of the normalized load-deflection response from the

large deflection "elastica" beam analysis and the DYCAST finite

element model are plotted with experimental data from the 1/4 and

full scale unidirectional beams in Figure 6-4. Excellent agreement

between both analysis techniques and the experimental data is

achieved. The analytical response predictions are slightly stiffer

than the 1/4 scale beam experimental data for end displacement

ratios greater than 0.5. For large end displacement ratios, a loss of

stiffness due to matrix cracking and fiber breakage is expected.

However, the material properties in the analyses are not degraded to

account for this effect and remain linear elastic until failure. For the

unidirectional beams, this assumption does not introduce a

significant error in the model.
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It is also interesting to note that the matching technique which

was used to derive an effective bending stiffness for the beams was

performed for load ratios less than 0.4 and end displacement ratios

less than 0.05. Yet, the Euler load calculated from this procedure was

used to normalize all of the load data for the specific beam. The

excellent agreement obtained over the entire loading range indicates

that the technique is an effective means of finding the bending

stiffness empirically.

Based on the results of Figure 6-4, it appears that a one

dimensional, linear elastic model which accounts for large deflections

is adequate to model the eccentrically loaded beam-column problem

for unidirectional laminates. The key issue for successfully modeling

the response of the unidirectional laminates is to use the correct

bending stiffness for the beam. The importance of this factor is

illustrated in Figure 6-5. The MDS2DB finite element program was

used to model the 1/4 scale unidirectional beam. Results of the load-

deflection response are plotted in Figure 6-5 along with the

experimental data. Since the MDS2DB code incorporates width-wise

effects and can include nonlinear material properties, the analytical

and experimental load data were not normalized by the Euler load to

avoid confusion. The MDS2DB model using linear material properties

overpredicted the experimental data by 21% at an end displacement

ratio of 0.6. The model was rerun using the nonlinear material

property capabilities of the code with no measurable improvement.

The strain response predictions from the large rotation beam

analysis and DYCAST are plotted in Figure 6-6 with the experimental

strain data from the 1/4 and full scale unidirectional beams.

Agreement between the two analyses is excellent. The analyses tend

to overpredict the tension side strain slightly for large end

displacement ratios, and tend to underpredict the response on the

compression side. This trend is expected since the difference

between tensile and compression strain magnitudes increases as the

end displacement ratio increases, as indicated in Figure 6-3(b).

Neither the large rotation beam analysis or DYCAST can predict the
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difference in tensile and compressive strains which may be
attributed to nonlinear material behavior or width-wise effects.

Figure 6-7 is a plot of the 1/4 scale unidirectional strain data with a

MDS2DB analysis using linear material properties. The MDS2BD finite

element model had better success at predicting the compressive

strains than the beam solution or DYCAST, but also slightly
overpredicted the tensile strain. The MDS2DB model was also run

using nonlinear material properties with no significant change in the

strain response. A comparison of the results from Figures 6-6 and 6-

7 indicates that including width-wise effects leads to a slight
improvement in predicting the strain response for unidirectional

laminates. It is anticipated that this effect will become more

important for laminates containing off-axis plies which exhibit bend-
twist interaction behavior.

6.1.4 Failure Mechanisms

The unidirectional beams failed through fiber fractures near

the midpoint of the beam and by splitting along the longitudinal axis

of the beam. This failure mode is illustrated in Figure 6-8 which is a

photograph of the three 1/3 scale unidirectional beams tested under

static load. Damage was occurring during loading since audible

events could be heard; however, final fracture occurred

catastrophically at the midspan of the beam and resulted in complete

loss of load carrying capability. Figure 6-8 shows that this failure

mode is consistent between replicate beams of the same size and lay-

up. Figure 6-9 indicates that the failure mode is typical of all the

unidirectional beams 1/6 through full scale. Consequently, failure

modes appear to be independent of specimen size for the

unidirectional laminates.

/'
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Figure 6-8. Photograph of failed unidirectional 1/3 scale beams,
three replicates.

Figure 6-9. Photograph of a set of failed unidirectional beams 1/6

through full scale.

113



6.2 Angle Ply Beams

6.2.1 Load-Deflection Response

The normalized load versus end displacement response for

each of the scale model angle ply beams (1/6 through full scale) is

plotted in Figure 6-10. For load ratios less than 0.4, the load

responses of the scale model beams fall on the same curve as

expected based on the technique used to determine the beam

bending stiffness. As indicated in Figure 4-10, the load ratio value of

0.4 marks the load level where small deflection beam theory is no

longer valid. For load ratios higher than 0.4 the beams undergo large

deflections and end rotations. At this point, the large scale angle ply

beams (full, 5/6 and 3/4 scale) developed matrix cracks which

resulted in a severe loss of stiffness and early failure. These failures

occurred at an end displacement ratio of approximately 0.1. In

general, as the size of the beams decreased, the load level at which

matrix cracking initiated increased slightly. Consequently, the

smaller scale beams supported higher loads with less stiffness

reduction and failed at greater end displacement ratios. In fact, the

1/6 scale angle ply beam failed at an end displacement ratio six

times greater than the full scale beam. The unevenness of the load

response seen in Figure 6-10 for the 1/6 and 1/4 scale beams is an

artifact of the data collection system and instrumentation used to

measure the test parameters, and is not an experimental

phenomenon. Failure loads, load ratios, end displacement ratios, and

tensile and compressive strains are listed in Table 6-2 for each of the

scale model angle ply beams.

6.2.2 Strain-Deflection Response

The experimental strain-deflection response is plotted in Figure

6-11 for the scale model angle ply beams. Strain measurements

were recorded from gages attached on the tensile and compressive
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Table 6-2. Average failure loads, displacements, and strains for scaled

angle ply beams.

Scale

Factor

1/6

1/4

I/3

1/2

2/3

3/4

5/6

Full

Failure Failure

Load Load

(Ibs) Ratio

1.96 .45

4.35 .44

6.43 .44

11.8 .41

19.5 .35

28.3 .39

26.0 .34

37.5 .35

ANGLE PLY

End Disp.

Ratio

.67

.47

.36

.21

.16

.11

.15

.11

Failure Strain

Tension

(microin/in)

17448.0

12236.8

9592.9

6243.2

8360.9

4592.6

6570.4

5453.8

Failure Strain

Compression

(microin/in)

-16618.6

-13636.6

-11266.8

-7916.6

-7424.9

-5177.4

-7731.4

-4556.1
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Figure 6-11. Midpoint strain versus end displacement/length exper-

imental results for angle ply 1/6 through full

scale model beams.
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sides of each beam at midspan. The data shoran in Figure 6-11

indicate that the strain response of angle ply beams does not scale in

a consistent manner for large deflections. The tensile strain readings

for the full, 5/6, and 2/3 scale beams suggest a sudden increase in

beam stiffness which is not observed for the other scale model

beams. This stiffening effect occurs at end displacement ratios

where the load data indicate a loss of beam stiffness (Figure 6-10).

The effect is not seen in the compression side strain for those same

beams. Strain data from compression side gages for the 1/6, 1/4,

1/3, and 1/2 scale beams indicate that strain magnitudes increase as

the size of the beam increases. However, the compressive strain data

for the 2/3, 3/4, 5/6, and full scale beams do not follow this trend.

The tensile strain data from the 1/6, 1/4, 1/3, and 1/2 scale beams

show the opposite behavior. Strain magnitudes tend to increase as

the size of the beams decreases. However, the tensile strain data for

the 2/3, 3/4, 5/6, and full scale beams indicate that this trend is not

consistent for the larger scale model beams.

Although the data are not as consistent, the failure strains

listed in Table 6-2 show that the angle ply laminates exhibit the

same trend as the unidirectional beams that failure strains increase

as beam size decreases. However, unlike the unidirectional beams,

the large difference in compression and tensile side strain

magnitudes was not observed. To illustrate this, Figure 6-12(a)

contains a plot of the tensile strain and the absolute value of the

compressive side strain versus end displacement ratio for the 1/6

scale angle ply beam. Little difference in strain magnitudes is seen.

Figure 6-12(b) shows that the maximum difference in strain

magnitudes is about 5 per cent and that the compression strain

magnitude is actually less than the tensile strain magnitude for end

displacement ratios greater than 0.4.

118



7

Z

0

r_

Z

b-,
[12

10000

12000

600O

" COMPRESSION SIDE

1o.o 0.2 o'.4 o'.8 o.8
END DISPLACEMENT / LENGTH

(a) Compressive and tensile midpoint strain-displacement results

for a 1/6 scale angle ply beam.

r_
L)

r_

r_

10

5

0

i

-5 !

l
h

-10 1 r

0.0 0.2 0.4 016 0.6

END DISPLACEMENT / LENGTH

(b) Percent difference in compressive and tensile strain magnitudes

versus displacement ratio for a 1/6 scale angle ply beam.

Figure 6-12. Midpoint strain-displacement data for angle ply

1/6 scale model beam.
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6.2.3 Comparison of Experiment with Analysis

The large deflection "elastica" beam solution and the DYCAST

finite element analysis are compared with the normalized load

response for the 1/6 and full scale angle ply beams in Figure 6-13.

Agreement between analysis and experiment is excellent up to a load

ratio of 0.4. At this point, the full scale beam experiences a loss in

stiffness which is reflected in the load response. The same effect

occurs for the 1/6 scale beam, but at a slightly higher load ratio.

Also, the reduction in stiffness is not as severe in the 1/6 scale beam

and the load response flattens until ultimate beam failure occurs at

an end displacement ratio of 0.67. Since neither the beam solution or

DYCAST possessed the capability to predict and model the effect of

matrix cracking on beam stiffness, the analytical results yielded a

much stiffer response for load ratios higher than 0.4.

It is possible that the load response behavior of the angle ply

laminates is influenced by width-wise effects which are not

accounted for in the beam solution or DYCAST analysis. Sensmeier

[38] found that it was necessary to include width-wise degrees-of-

freedom in his finite element model to successfully predict the load

and strain response of laminates with large bend-twist coupling

terms. Since the angle ply laminates have large D16 and D26 bending

stiffnesses, a model of the eccentrically-loaded 1/6 scale angle ply

beam was developed for the MDS2DB finite element code. Load-

deflection results are presented in Figure 6-14 from the analysis

using linear material properties and experiment. It is evident from

the plot that the MDS2DB model grossly overpredicts the load

response of the 1/6 scale angle ply beam. The possible influence of

width-wise effects on the load response is masked by the loss of

beam stiffness due to matrix cracks. A MDS2DB model of the angle

ply beam was run using nonlinear material properties and initial

results showed that the load response was less stiff than the linear

case. However, due to computation difficulties the model would not

produce results for end displacement ratios greater than 0.1.
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A comparison of the large deflection beam solution and DYCAST

analytical predictions for midpoint surface strain with the

experimental data from the 1/6 and full scale angle ply beams is

presented in Figure 6-15. The analyses do not predict the stiffening

effect seen in the full scale tensile gage. It is assumed that this

behavior is anomalous and due to partial failure of the gage. In

general, excellent agreement is obtained between the analyses and

experimental data. The analyses tend to overpredict the tensile side

strain and underpredict the compressive side strain for end

displacement ratios greater than 0.3 by approximately 15%. It is

interesting to compare this result with the load-deflection data
shown in Figure 6-13. It is observed that the stiffness of the beam is

significantly degraded for end displacement ratios greater than 0.05
resulting in poor agreement between the analyses and experimental

data. However, the analyses predict the strain response well. This

contradiction may be explained by the local nature of strain gage

measurements compared to the global nature of the load data. A
strain gage measures the response of the local region of material

where it is attached. The gage measures changes in location of points

on the surface of the material and is affected by the integrity of the

material only if a crack or material flaw is near to the point of

attachment of the gage. However, the load data is influenced by any

change in stiffness in the beam. The integrated effect of local

variations in stiffness along the length of the beam is reflected in the

load-deflection response.

Figure 6-16 shows the comparison of the midpoint strain

results from the MDS2DB analysis of the 1/6 scale angle ply beam

with the experimental data. The MDS2DB analysis overpredicts the
compression side strain and underpredicts the tension side strain

slightly. The inclusion of width-wise degrees of freedom in the
MDS2DB model does improve the prediction of compressive strain for

the angle ply laminate.
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response.
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6.2.4 Failure Mechanisms

Figure 6-17 contains a photograph of the three replicate 1/3

scale angle ply beams tested statically to failure under eccentric axial

load. Failure occurred by transverse matrix cracking along 45 degree

fiber directions. There was no evidence of fiber fracture in any of the

failed beams. In general, the major fracture event which resulted in

separation of the beam was located just below the midpoint of the

beam, as indicated in Figure 6-17. Since the magnitude of the

bending moment is greatest at the midpoint of the beam, the failure

location was expected there. The deviation may be due to a local

stiffening effect at the center of the beam caused by the attachment

of strain gage rosettes on both sides of the beam. Failure

mechanisms are consistent between each of the replicate beams as

shown in Figure 6-17. Figure 6-18 shows that the same failure

mechanism was evident for all of the scale model angle ply beams.

Thus, even though the failure mechanisms are much different for the

angle ply and unidirectional beams, for both laminates the mode of

failure is not dependent on specimen size.

6.3 Cross Ply Beams

6.3.1 Load-Deflection Response

The normalized load-deflection data for the scale model cross

ply beams is shown in Figure 6-19. The load response curves for

each of the beams (1/6 through full scale) fall on a single curve. This

implies that the response scales for both small and large deflections.

In fact, the load-deflection response for the cross ply laminates is

nearly identical to the unidirectional response. This is expected since

the 90 degree core plies carry little load and do not contribute

significantly to the bending stiffness of the beams. However, the

scale effect in the failure behavior of this family of laminates is

dramatic. The effect is even more severe for the cross ply laminates
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Figure 6-17. Photograph of failed angle ply 1/3 scale beams,

three replicates.
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Figure 6-18. Photograph of a set of failed angle ply beams 1/6

through full scale.
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Figure 6-19. Normalized load versus end displacement experimental

results for cross ply 1/6 through full scale model beams.
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than for the unidirectional laminates. The 1/6 scale cross ply beam

fails at an end displacement ratio of 0.96 which is approximately 10
times the value for the full scale beam. Unlike the unidirectional

beams where the failure locations were fairly evenly spaced between

the 1/6 and full scale beams, a large gap is observed in the failure

locations for the cross ply beams. The gap occurs between the 1/3

and 1/2 scale model beams. It is obvious from the large difference
in failure loads and locations between the 1/6 and full scale beams

shown in Figure 6-19 that the 90 degree plies in the cross ply
laminates cause a severe reduction in strength as the size of the

beam increases. Table 6-3 lists the average values of failure load,

load ratio, end displacement ratio, and strain for the scale model

cross ply beams. In general, the failure load ratios, end displacement
ratios, and strains increase as the size of the beam decreases.

6.3.2 Strain-Deflection Response

The scaled response seen in the load-deflection curves is also

reflected in the strain-deflection data for the scale model cross ply

beams, as shown in Figure 6-20. The strain responses do not fall on

a single curve, but the variation in strain magnitudes is less than 6%

for any value of end displacement ratio. Ultimate failure of the 1/6

scale beam is indicated by the compression gage since the tensile

gage failed prematurely. Otherwise, the large scale effect in failure

behavior which is observed in the load-deflection response is also

evident in the strain behavior. The 1/6 scale beam fails at a strain

level 5 times higher than the failure strain of the full scale beam.

The failure strain data listed in Table 6-3 indicate that the

cross ply laminates exhibit a difference in compression side and

tensile side strain magnitudes similar to the unidirectional beams.

Figure 6-21(a) contains a plot of the absolute value of the

compression strain and the tensile strain versus end displacement

ratio for the 1/4 scale cross ply beam. The percentage difference in

strain magnitudes is plotted in Figure 6-21(b). These figures show
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Table 6-3. Average failure loads, displacements, and strains for scaled

cross ply beams.

Scale

Factor

1/6

1/4

I/3

1/2

2/3

3/4

5/6

Full

Failure

Load

(lbs)

17.1

31.3

54.9

99.6

177.6

219.3

274.9

345.1

Failure

Load

Ratio

.76

.75

.71

.56

.53

.51

.50

.47

CROSS PLY

End Disp.

Ratio

.96

.95

.84

.35

.26

.19

.16

.10

Failure Strain

Tension

(microin/in)

gage failures

16729.6

15026.6

8637.6

7207.7

5925.6

5370.6

3901.0

Failure Strain

Compression

(microin/in)

-21946.5

-20963.3

-18940.5

-10136.7

-8305.4

-6762.2

-6149.3

-4223.6
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Figure 6-20. Midpoint strain versus end displacement/length exper-

imental results for cross ply 1/6 through full scale
model beams.

129



24000

Z

16000
Z

0

BOO0
Z

COMPRESSION

TENSION SIDE

I

0.0 0.2 0.4 016 0.B 1.0

END DISP_CEMEN_ / _NGTH

(a) Compressive and tensile midpoint strain-displacement results

for a 1/4 scale cross ply beam.

2O

o.o olz oi, oi_ 0'.8 _.o
END DISPLACEMENT / LENGTH

(b) Percent difference in compressive and tensile strain magnitudes

versus end displacement ratio.

Figure 6-21. Midpoint strain-displacement data for cross ply

1/4 scale model beam.
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that the difference between compression and tensile strain

magnitudes increases linearly as the end displacement increases,

and, at the point of failure, is approximately 20%. Sensmeier [38]

attributed the difference between compression and tensile side

strain magnitudes to nonlinear effects, possibly nonlinear material

properties or the influence of transverse or "anticlastic" curvature.

Using his analysis code, Sensmeier showed that laminates which have

a large D12 bending stiffness term which couples longitudinal and

transverse curvature exhibit a high degree" of anticlastic curvature.

Unfortunately, no transverse gages were applied across the width of

the beams studied in this investigation to confirm these predictions.

However, the cross ply 1/4 scale beam does show a greater

difference in strain magnitudes than the 1/4 scale unidirectional

beam. It also has a larger DI2 bending stiffness than the

unidirectional beam. This observation tends to support the

conclusion that width-wise effects contribute to the difference in

strain magnitudes between the compression and tension sides of the

beams.

6.3.3 Comparison of Experiment with Analysis

Figure 6-22 contains the 1/4 and full scale load-deflection

experimental data plotted with the load predictions from the large

deflection beam analysis and DYCAST. Agreement between the

analyses and experiment is excellent, especially for end displacement

ratios less than 0.5. For ratios higher than 0.5, the analyses tend to

slightly overpredict the load response. As the deformations become

increasingly large, the 90 degree core plies tend to develop

transverse matrix cracks which degrade the stiffness of the beam.

Neither the large deflection beam solution or the DYCAST finite

element analysis can model the reduction in beam stiffness due to

matrix cracks. Consequently, the analyses overpredict the load

response when damage of this type occurs in the beam.
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Load response predictions from the MDS2DB finite element

code are presented in Figure 6-23 along with the 1/4 scale cross ply

load-displacement experimental data. Both linear and nonlinear
material cases were modeled to examine the effect of constitutive

behavior on the load response. Both the linear and nonlinear models

significantly overpredict the load-displacement curve. The

incorporation of nonlinear material properties alters the load

response only slightly. The discrepancy between the MDS2DB

analysis and experiment is difficult to explain. However, if the

MDS2DB load data are normalized by the Euler load (54.26 lbs) which

is calculated using lamination theory, and the experimental data are

normalized by the Euler load (41.03 lbs) which is found empirically

using the matching technique, then the analysis and experiment
show excellent agreement. This observation implies that the bending

stiffnesses derived for the beam based on lamination theory are not
accurate.

Figure 6-24 shows the comparison between the large deflection

beam and DYCAST analyses and the 1/4 and full scale strain-

deflection experimental data. The agreement is generally quite good,

especially for end displacement ratios less than 0.4. As the

deflections become large, both analyses tend to overpredict the

tensile side strain and underpredict the compression side strain.

This is not unexpected since the compression and tension side strain

magnitudes diverge for increasing end displacement ratios, as

depicted in Figure 6-21(a) and (b). Better agreement is found when

the MDS2DB finite element model is compared with the experimental

results from the 1/4 scale cross ply beam, as shown in Figure 6-25.

The MDS2DB model which utilized nonlinear material properties

predicted both tensile and compressive side strain magnitudes well,

even for very large end displacement ratios. Agreement is only

slightly poorer for the model using linear material properties. A

comparison of the data presented in Figures 6-24 and 6-25

illustrates the importance of including width-wise effects for

successfully predicting the strain response of cross ply laminates.
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Figure 6-22. Comparison of large deflection beam analysis and

DYCAST load-displacement predictions with cross ply
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Figure 6-23. Comparison of MDS2DB analysis with cross ply 1/4

scale model beam load-displacement experimental

response.
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6.3.4 Failure Mechanisms

The cross ply laminates exhibited combined failure

mechanisms of transverse matrix cracking, delamination, and fiber

fracture, as shown in Figure 6-26 which contains a photograph of the

three 1/3 scale cross ply beams tested statically to failure. As the

cross ply beams experience large deflections and rotations, the 90

degree plies located at the center of the laminate developed matrix

cracks. These cracks were evenly spaced along the length of the

beam and resulted in uniform pieces of debris, some of which are

shown in Figure 6-27 for the 5/6 scale beam. Ultimate failure of the

cross ply beams was caused either by fiber fractures in the 0 degree

plies at the midspan of the beam, or by a large delamination which

developed between the 0 and 90 degree layers. Figure 6-26 shows
that failure modes were consistent between replicates of beams

having the same size and lay-up. However, photographs of a

complete set of scale model cross ply beams (Figure 6-27) indicate

that the smaller scaled beams showed more damage than the full

scale beam. The 1/6, 1/4 and 1/3 scale beams failed by matrix

cracking, longitudinal splitting, delamination, and ultimately fiber
fractures at the center of the beam. Starting with the 1/2 scale

beam, no fiber fractures were observed for the larger scale model

beams. This finding implies that the large gap between failure

locations which was seen in Figures 6-19 and 6-20 between the 1/3

and 1/2 scale beams represents a transition in failure mechanisms.

Consequently, there is a size effect in the failure mode of cross ply
laminates.

6.4 Quasi-Isotropic Beams

6.4.1 Load-Deflection Response

The load-deflection response of the scale model quasi-isotropic

beams is shown in Figure 6-28. The data fall on a single curve for
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Figure 6-26. Photograph of failed cross ply 1/3 scale beams,

three replicates.
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Figure 6-27. Photograph of a set of failed cross ply beams 1/6

through full scale.
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results for quasi-isotropic 1/6 through full scale model

beams.
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end displacement ratios less than 0.2 and load ratios less than 0.5

which indicates that the load response scales in this region. For

greater values of load and displacement, the smaller scale model

beams exhibit a stiffer load-deflection response than the larger scale

beams. The deviation from scaled response is not as dramatic as that

observed for the angle ply beams and appears to be caused by

damage which develops in the larger beams and results in a

reduction in beam stiffness. The average failure loads, load ratios,

end displacement ratios, and strains are listed in Table 6-4 for the

quasi-isotropic beams. The scale effect in strength which was noted

for the unidirectional, angle ply, and cross ply laminates is also seen

for the quasi-isotropic beams. The 1/6 scale beam fails at a load

ratio which is 40% higher than the full scale beam value and at an
end displacement ratio approximately three times the value for the

full scale beam. The failures for the scale model beams are fairly

evenly spaced between the 1/6 and full scale, i.e., there is no

apparent gap in failure locations as was observed for the cross ply
beams.

6.4.2 Strain-Deflection Response

The strain-deflection response of the quasi-isotropic beams is

shown in Figure 6-29 for one of each of the scale model beams tested

statically to failure. The results indicate that the strain response

does not scale. The curves of the different scale model beams

deviate from one another for end displacement ratios greater than

0.1. On the tensile side, the strain response is bounded by the 5/6

scale beam which exhibits the g?eatest strain magnitude for a

particular value of end displacement ratio, and the full scale beam

which exhibits the least strain magnitude. At failure, the variation in

strain is 15% between the 5/6 scale beam and the full scale beam.

On the compression side, the strain response is bounded by the 2/3

and full scale beam responses which show the greatest strain

magnitude for a given end displacement ratio, and by the 1/6 scale
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Table 6-4. Average failure loads, displacements, and strains for scaled

quasi-isotropic beams.

Scale

Factor

I/6

1/3

1/2

2/3

5/6

Full

QUASI-ISOTROPIC

Failure

Load

(lbs)

7.0

24.1

51.9

84.4

131.1

187.3

Failure

Load

Ratio

.73

.62

.60

.54

.54

.53

End Disp.

Ratio

.80

.53

.59

.37

.31

.29

Failure Strain

Tension

(microin/in)

14349.1

10583.2

gage failures

9114.3

7759.9

6875.9

Failure Strain

Compression

(micmin/in)

-17039.8

-14516.3

-14853.7

-11578.6

-9964.2

-9511.7

,/
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Figure 6-29: Midpoint strain versus end displacement/length exper-

imental results for quasi-isotropic 1/6 through full scale
model beams.
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beam response which has the least str_/fin magnitude. At failure, the

difference in strain magnitudes between the full scale beam and the

1/6 scale beam is 18%. In general the strain data do not indicate

that the larger scale model beams are experiencing any damage, as

was indicated in the load-deflection responses shown in Figure 6-28.

However, the strain response of the 1/2 scale beam does show that a

partial failure of the beam occurs on the tensile side near the

attachment of the gage. The scale effect in strength which is seen in

the load-deflection response of Figure 6-28 is also reflected in the

strain-deflection response of Figure 6-29 and in the failure data

listed in Table 6-4. The 1/6 scale quasi-isotropic beam fails at a

strain magnitude which is twice the value for the full scale beam.

The strain data listed in Table 6-4 also indicate that tensile

strain magnitudes are less than comlSression strain magnitudes at the

midspan of the beam. To illustrate the difference, the absolute value

of the compression strain is plotted with the tensile strain in Figure

6-30 (a) for the 1/6 scale quasi-isotropic beam. The percentage

difference in strain magnitudes is plotted as a function of end

displacement ratio in Figure 6-30 (b). These figures show that the

tensile and compression strain magnitudes begin to deviate from one

another at an end displacement ratio of 0.1, and they continue to

diverge in a linear fashion until ultimate beam failure. At that point

the difference is approximately 17%.

6.4.3 Comparison of Experiment with Analysis

Figure 6-31 contains a plot of the load-deflection data from the

1/6 and full scale quasi-isotropic beams with analytical predictions

from the large deflection beam solution and DYCAST finite element

model. Excellent agreement is obtained between the analyses and

experiment, even for very large end displacement ratios. The full

scale beam load response begins to deviate from the analyses and

the 1/6 scale beam response at an end displacement ratio of 0.2,

near the ultimate failure location of the beam. This flattening of the
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Figure 6-30. Midpoint strain-displacement data for unidirectional

1/6 scale model beam.
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load response is attributed to damage which is occurring in the beam

prior to failure. A similar effect is not seen in the 1/6 scale quasi-

isotropic beam load response which is slightly stiffer than predicted

by the analyses. No reduction in stiffness is observed in the 1/6

scale beam prior to failure. This observation implies that a scale
effect in failure mechanism may occur for the quasi-isotropic
laminates.

The quasi-isotropic laminates chosen for this investigation

exhibit a moderate amount of bend-twist coupling through the D16

and D26 bending stiffness terms. Consequently, the influence of

width-wise effects was investigated by modeling the 1/6 scale quasi-

isotropic beam using the MDS2DB code with both linear and

nonlinear material properties. Results from the MDS2DB analysis are

plotted with the load data from the 1/6 scale beam experiment in

Figure 6-32. The load response is not normalized by the Euler load

for this comparison. The MDS2DB analysis overpredicts the load

response by approximately 20%. Interestingly, this is the same

difference observed between the Euler load calculated from linear

material properties and lamination theory (11.72 lbs) and the Euler

load based on the empirically determined bending stiffness (9.82 lbs)

for the 1/6 scale quasi-isotropic beam. In fact, if the experimental

load data are normalized by the empirically determined Euler load

and the MDS2DB load data are normalized by the value determined

(rom lamination theory, then the experimental curve falls between

the two analytical predictions using linear and nonlinear material

properties. Again, this implies that the bending stiffness of the beam

as calculated from lamination theory is too high to accurately predict

the large deflection response.

The strain response predictions from the large deflection beam

solution and DYCAST are plotted in Figure 6-33 with the 1/6 and full

scale quasi-isotropic strain data. Both analyses show excellent

agreement with the compression strain of the 1/6 scale beam.

However, the analyses overpredict the tensile strain. This is not

unexpected since the quasi-isotropic beams exhibited a large
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Figure 6-31. Comparison of large deflection beam analysis and

DYCAST load-displacement predictions with quasi-

isotropic 1/6 and full scale beam experimental

response.
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1/6 scale model beam strain-displacement experimental

response.
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difference between tensile and compressive strain magnitudes as

shown in Figure 6-30. At failure, the tensile strain magnitude

predicted by the analyses is 18% greater than the experimental

value. Figure 6-34 shows the strain response predictions from the

MDS2DB analysis using both linear and nonlinear material properties

plotted with the 1/6 scale quasi-isotropic strain data. The MDS2DB

analyses overpredict both the tensile and compressive strain

response. Little difference is observed in the strain response

predictions due to the inclusion of nonlinear material properties. As

indicated in Figure 6-29, the strain responses for the various scale

model quasi-isotropic beams do not scale for large end displacement

ratios. Consequently, the strain response predicted by any of the

three analysis techniques falls within the range of strain behavior

observed for the scale model quasi-isotropic.beams.

6.4.4 Failure Mechanisms

The quasi-isotropic beams failed through a combination of

matrix cracking, delamination, and some fiber failures, as shown in

Figure 6-35 which contains a photograph of the three replicate 1/3

scale beams tested statically to failure. Matrix cracks developed in

the 45 degree layers and grew along lines parallel to the fibers.

Delaminations were observed between the outer 45 degree plies and

the adjacent 0 degree plies. Also, some fiber fractures were evident

in the failed 1/3 scale beams. Although the photograph in Figure 6-

35 does not give a good indication, the damaged quasi-isotropic

beams were highly curved. The sequence of failure events occurred

such that the outer 45 degree plies on the tensile side of the laminate

peeled away from the 0 degree plies. This meant that the portion of

the beam left intact was unsymmetric which resulted in the

observed curvature. Figure 6-35 indicates that the three replicate

1/3 scale beams experienced the same mode of failure. Figure 6-36

shows a photograph containing a failed quasi-isotropic beam of each

scaled size. The same failure mechanisms described for the 1/3 scale
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Figure 6-35. Photograph of failed quasi-isotropic 1/3 scale beams,

three replicates.

Figure 6-36. Photograph of a set of failed quasi-isotropic beams 1/6

through full scale.
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beams are also evident for the larger and smaller scale beams.

However, the 1/6, 1/3, and 1/2 scale model beams appear to have

sustained more damage. The outer 45 degree plies are completely

separated for these laminates and there is evidence of fiber fractures

not seen in the larger beams. The failed smaller scale beams

exhibited more curvature and twist than the larger beams.

6.5 Summary of Static Test Results

A comprehensive static testing program was performed to

investigate scaling effects in the large deflection response and failure

of graphite-epoxy composite beams. Experimental load-deflection

and strain-deflection results were presented for each of the

unidirectional, angle ply, cross ply, and quasi-isotropic laminate

families tested. In addition, the experimental results were compared

to a large deflection beam analysis and two finite element

techniques. The observed failure mechanisms were described for

each of the laminate families. The significant findings from the static

testing program are highlighted in the following list.

(1). Success in achieving scaled load and strain response is

highly dependent on the laminate stacking sequence and, in

particular, is a function of the number of 0 degree plies in the

laminate. No scaling effects were observed in the load and strain

response of the unidirectional and cross ply laminates, even under

severe deformations and rotations. However, the angle ply and

quasi-isotropic laminates deviated from scaled response due to

damage events which altered the beam stiffness. The effect was

especially dramatic for the angle ply laminates which contain no 0

degree plies.

(2). A significant scale effect in strength was observed for all

laminate families studied in this investigation. In general, the

normalized loads, end displacements, and strains at failure increased

as the size of the beam decreased from the full scale prototype to the

1/6 scale model. The scale effect in strength was particularly large
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for the cross ply laminate family in which the 1/6 scale beam failed

at a load ratio 1 1/2 times the value for the full scale beam, and at

an end displacement ratio 10 times greater than the full scale beam.

The importance of this result and a discussion of current techniques

to predict the scale effect in failure are the subject of Chapter 8.

(3). Only the cross ply laminates exhibited a scale effect in
failure mechanism, defined as a transition in failure mode based on

the size of the beam. For the case of the cross ply laminates, the
transition consisted of fiber fractures seen in the smaller scale model

beams which were not evident in the larger scale model beams. The
transition occurred between the 1/3 and 1/2 scale model beams and

resulted in a large gap in the failure locations for these beams in the
load-deflection data. No scale effect in failure mode was observed

for the unidirectional, angle ply, and quasi-isotropic laminates.

(4). The one dimensional, large deflection beam analysis which

was developed based on the "elastica" problem and the DYCAST finite

element analysis predicted the load-deflection response well for the

unidirectional, cross ply, and quasi-isotropic laminates. The angle

ply laminates experienced damage which caused a reduction in beam

stiffness. Neither the large deflection beam solution or DYCAST is

capable of modeling the effect of progressive damage on beam

stiffness and, thus, both analyses overpredicted the load response.
In general, the strain response was well predicted by the analyses
for all laminate families.

(5). The finite element code developed by Sensmeier [38] was

used to investigate the importance of including width-wise degrees

of freedigm and nonlinear material properties in predicting the load

and strain response of the laminates. The MDS2DB code consistently

overpredicted the load response. However, the strain predictions

using the nonlinear material capabilities of the code agreed well with

experiment. The MDS2DB analysis was able to model the large

difference in strain magnitudes between the tensile and compressive
sides of the beam.
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Chapter 7 - Dynamic Test Results

Results of the dynamic testing program are presented for the

scale model unidirectional, angle ply, cross ply, and quasi-isotropic

beams which were subjected to eccentric axial impact loads using an

experimental procedure described in Chapter 3. Due to limitations of

the test hardware, it was not possible to test all of the scaled sizes of

beams. Consequently, tests were performed on 1/2, 2/3, 3/4, 5/6,

and full scale beams only. The number of replicate tests which were

conducted for each size and type of beam varied from as many as

three to a single test. Consistency of the results between the

replicates was good and a single, representative test was chosen for

each size and type of beam for presentation of results.

In the following section, the load-time and strain-time histories

for each of the laminate families are examined to identify scaling

effects in the dynamic response. Also, a DYCAST finite element

analysis is compared with experimental results. The DYCAST model

was also used to predict the deformed shapes of the beam during

impact. A qualitative damage assessment of the beams is made to

characterize scaling effects in the mode of failure. Finally, the strain

responses obtained from the dynamic tests are compared with

results from the static tests for beams of the same size and laminate

family.

7.1 Comparison of Full Scale and Scale Model Load Response

The prediction of prototype load response from the scale model

experimental data is plotted with the actual full scale experimental

data for each of the laminates tested in Figures 7-1 through 7-4. The

scaling law derived in Chapter 2 indicates that impact force scales as

_2 and that time scales as _. Therefore, the scale model data were

multiplied by the appropriate scale factors and plotted on the same

graph with the full scale experimental data. Thus, the matching

technique used to determine the beam bending stiffnesses was not
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applied for the dynamic tests and the load data were not normalized

by the Euler load. Results for the unidirectional, angle ply, cross ply,

and quasi-isotropic laminates are shown in Figures 7-1 through 7-4,

respectively.

Agreement between the unidirectional scale model load
predictions and the full scale response is excellent, as shown in

Figure 7-1. The scale model beams accurately predict load spikes,

pulse duration, and sustained load. Results for the angle ply
laminates are, in general, not as good. The 3/4 scale angle ply beam

overpredicts the load spike by a factor of three, whereas the 1/2

scale beam underpredicts the load spike by approximately the same

amount, as shown in Figure 7-2. The 2/3 scale angle ply test gives

the best prediction of full scale load response, including initial load

spike and pulse duration. The angle ply beams failed almost
immediately on impact which made it difficult to determine a failure
load or an accurate time for the failure event.

Figure 7-3 shows the load response results for the cross ply

laminates. Typically, the cross ply scale model beams overpredict

the prototype load spike, by as much as 25% for the 1/2 scale test.

The 3/4 scale beam gives the best prediction of the full scale load
spike. All scale model tests accurately predict the pulse duration. In

general, however, the scale model beams exhibit a high second load
peak following the initial load spike which is not seen in the full scale

load response. The 1/2 and 2/3 scale model cross ply beams also

exhibit a sustained load prior to failure which is not seen in the 3/4,

5/6, and full scale load responses. This behavior is indicative of a

scale effect in strength since under scaled impact conditions the

larger scale model beams (greater than 3/4 scale) fail upon impact

while the smaller scale model beams are capable of sustaining the

load prior to failure.

Results for the quasi-isotropic scale model beams are presented

in Figure 7-4. The 1/2 and 5/6 scale model beams overpredict the

full scale load spike by approximately 25%, however the 2/3 scale

beam test underpredicts the full scale load spike value. The pulse
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Figure 7-3.
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Figure 7-4.
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duration is well predicted by the scale model tests. For the 1/2 and
2/3 scale model quasi-isotropic beams, a sustained load response is
observed which is not seen for the 5/6 or full scale beam.

Apparently, the 5/6 and full scale beams fail catastrophically on
impact whereas the 1/2 and 2/3 scale model beams are able to

sustain the load prior to failure. This finding is similar to the

behavior seen for the cross ply laminates and indicates a scale effect

in strength for the quasi-isotropic laminates.

7.2 Comparison of Full Scale and Scale Model Strain

Response

Figures 7-5 through 7-8 are plots comparing the midpoint

longitudinal surface strain versus time of the scale model

experimental data with the full scale beam response for the

unidirectional, angle ply, cross ply, and quasi-isotropic laminates,

respectively. Strain is a nondimensional quantity and, thus, scales as

unity. Therefore, the strain state in the model beams should be the

same as that of the prototype under scaled loading conditions. The

scale law requires that time scale as _. Consequently, the scale model

time data were multiplied by the appropriate scale factor to compare

with the full scale experimental data.

Results of the unidirectional scale model and full scale strain

responses are plotted in Figure 7-5. The full scale strain gages failed

prematurely so the failures indicated by the tensile and compressive

gages do not represent actual failure of the full scale beam. It is

evident from these plots that the strain response scales according to

the scale law. Agreement between the scale model and full scale

strain response is excellent. The dynamic strain response observed

for the unidirectional scale model beams is similar to that reported

by Derian [37] and Sensmeier [38]. Initially the tensile gage indicates

compressive strain, and the compressive gage indicates tensile

response. This effect is observed because the beam takes on the

third vibration mode shape, similar to a "w" shape, before deforming
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into the curved bending shape. Also, at any given instant of time the

magnitude of the compressive strain is g_eater than the tensile

strain, a phenomenon which was also observed for the static strain

response. Figure 7-9 contains a plot of the absolute value of the

compressive strain plotted with the tensile strain as a function of

time for the unidirectional 1/2 scale beam. The data shown in Figure

7-9 indicate that only a difference in strain magnitude is observed.

No phase shift or change in the frequency of oscillation is noted. At

failure, the percentage difference in strain magnitudes is

approximately 14%, which is similar to the value seen in the static

unidirectional test. Derian [37] attributed this effect to a shift in the

neutral axis of the beam due to bimodular material behavior.

Sensmeier [38] also observed the difference in tensile and

compressive strain magnitudes and modeled the effect by including

nonlinear material properties and width-wise degrees of freedom in

his finite element analysis. The MDS2DB code which Sensmeier

developed was written to model the static problem so the effect of

these parameters on the dynamic response could not be investigated

using his code. Another important observation is that failure strain

levels and time of failure are similar between scale models. The

failure loads, end displacement ratios, and strains are listed in Table

7-1 for each of the scaled beams tested dynamically to failure within

the four laminate families. The data for the unidirectional beams,

although limited due to gage failures for the 2/3 and full scale

beams, indicates that the large scale effect in strength which was

observed in the static tests is not seen in the impact failure response.

The strain responses for scale model and prototype angle ply

beams are plotted in Figure 7-6. As expected from the poor scaling

of the load response, the strain response also exhibits poor scaling.

With exception of the 2/3 scale beam, the angle ply scale model

beams do not predict the strain magnitudes or general shape of the

strain response of the prototype beam. The failure data listed in

Table 7-1 for the angle ply beams show that a large scale effect in

strength is not observed.
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Figure 7-6.

Midpoint Strain
(Mlcroln/in)

(Thousands)

8

4

0

-5

-10 i I

8

-5

-10

8

Angle ply 1/2 and full scale

1!

I ! I

Angle ply 2/3 and full scale

J

! ! ! i I

Angle ply 3/4 and full scale

-10 i t j , j

8 Angle ply 5/6 end full scale

0 -

! !
-fO

0 .02 .04 .06 .08 .1
Time, sec

Strain versus time plots for comparison of scale model

predictions of full scale behavior of angle ply
beams.

159



Figure 7-7.
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Figure 7-8.
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Table 7-1. Failure loads, end displacement ratios, and strains for scale model beams tested dynamically.

(Note: * indicates either premature gage failures or difficulty in determining a value from the
experimental data.)

Scale Scaled End Failure Strain Failure Strain

Laminate Factor Failure Load Displacement Tensile Compressive
(lbs) Ratio (microin/in) (microin/in)

I,,,,,,t

L_

Unidirectional

Angle Ply

Cross Ply

Quasi-lsotropic

1/2 609.6 0.76 14293 -16324
2/3 669.8 0.79 * *
3/4 503.8 0.73 14476 -16834
5/6 495.8 0.81 11196 -16533

FULL 537.0 0.61 * *

1/2 48.9 0.22 5875 -7680
2/3 39.3 0.16 7333 -7564
3/4 * 0.28 4466 -4987
5/6 * 0.26 5000 -9800

FULL * 0.21 6392 -8349

1/2 * * * *
2/3 516.8 0.16 5599 -6440
3/4 1125.3 0.07 1074 -1224
5/6 1104.5 0.07 1500 *

FULL * 0.06 1475 -1467

1/2 318.8 0.53 9333 -14040
2/3 196.4 0.48 8000 -13300
5/6 161.2 0.62 7500 -11469
Full * 0.82 6735 -10656



Figure 7-7 depicts the strain responses for the scale model and

full scale cross ply beams. The 1/2 and 2/3 scale beams predict the

full scale strain response initially, but then exhibit an increasing

strain response which deviates from the prototype beam. However,

the prototype strain response is predicted well by the 3/4 and 5/6

scale beams. The strain response shown in Figure 7-7 and the failure

data listed in Table 7-1 indicate a scale effect in strength for the

cross ply laminates. The transition occurs between the 2/3 and 3/4

scale model beams. The end displacement ratio at failure for the 2/3

scale beam is approximately twice the value for the 3/4 scale model

beam, and the failure strains are 5 times higher for the 2/3 scale

model beam than the 3/4 scale beam. However, the failure strains

and end displacement ratios are similar for the 3/4, 5/6, and full

scale cross ply beams.

The strain responses for scale model and prototype quasi-

isotropic beams are plotted in Figure 7-8. None of the scale model

beams predict the full scale strain response accurately. However, the

strain responses of the 1/2, 2/3, and 5/6 scale model beams agree

well. This finding implies that either a scale effect in strain response

exists between the full scale and scale model beams, or that the

observed strain response for the full scale quasi-isotropic beam is

anomalous. Since only one full scale quasi-isotropic beam was tested

dynamically, no additional data were available to confirm a scale

effect.

7.3 Comparison of DYCAST Analysis and Experiment

Prediction of the strain response by the DYCAST finite element

structural analysis program is plotted with the 1/2 scale

experimental data for the unidirectional beam in Figure 7-10. The

plot shows good agreement between the DYCAST analysis and the

experimental response. The analysis predicts the inversion of the

tensile and compressive strains which was observed immediately

following impact. The DYCAST analysis tends to underpredict both
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the tensile and compressive strain response prior to beam failure.

Figure 7-11 shows the DYCAST strain prediction for the quasi-

isotropic 1/2 scale beam. Excellent agreement is shown for the

compressive strain response; however, the DYCAST analysis

overpredicts the tensile strain response.

DYCAST also was used to predict the deflected shape of the

unidirectional beam. Figure 7-12 depicts a progression of the beam

deflected shapes for increasing time increments. The deflected shape

at time 0.00225 seconds illustrates the third vibration mode shape

which gives rise to the initial inverted strain measurements. By time

0.00475 seconds, the beam has already begun to assume the

characteristic curved bending shape. These deformed shapes

indicate the severe rotations and deformations experienced by the

beams during impact.

7.4 Comparison of Static and Dynamic Results

Plots of load and midpoint strain versus end displacement ratio

are shown in Figures 7-13 through 7-16 for a representative beam

from each laminate family to compare the static and dynamic test

results. As shown in Figure 7-13(a) for the 3/4 scale unidirectional

beam, the difference between the static and dynamic load responses

is the large load spike due to the impact event. Following the initial

spike, the dynamic response exhibits oscillations about 'the static

response. The value of load and end displacement ratio at failure is

approximately the same for the beams tested statically and

dynamically. The only difference between the static and dynamic

strain responses, shown in Figure 7-13(b) for the unidirectional 3/4

scale beam, is the inversion seen in the dynamic data for small end

displacement ratios. As previously discussed, this strain inversion is

due to the initial mode shape of the beam at impact. Once the beam

assumes its curved flexural shape the dynamic strain response
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Figure 7-12. DYCAST predictions for deflected shapes of full scale

unidirectional beam subjected to impact.
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'simply oscillates about the static strain response. Failure strains are

similar for both the statically and dynamically tested beams.

Figure 7-14 shows the comparison of load and strain responses

for 2/3 scale angle ply beams tested under static and dynamic

conditions. The dynamic load response for the angle ply beam also

exhibits a high load spike and then oscillates about the static

response. However, the failure event is not as pronounced for the

angle ply beam and is overshadowed in the load response by

vibrations and secondary impacts of the drop tower. A better

indication of the failure location is seen in the strain response, shown

in Figure 7-14(b). Agreement between the static and dynamic strain

response is excellent for the angle ply 2/3 scale model beam. As was

observed for the unidirectional laminates, the dynamic strain

response oscillates about the static response. Failure occurs at

approximately the same end displacement ratio for both static and

dynamic tests.

Results from static and dynamic tests on 2/3 scale cross ply

beams are show in Figure 7-15. The load response from the dynamic

test shows the large initial load spike and then follows the static load

response somewhat erratically. Agreement between the static and

dynamic strain response is more consistent. However, the 2/3 scale

cross ply beam which was tested dynamically failed at a lower end

displacement ratio than the beam which was tested statically.

Figure 7-16 illustrates a comparison between the static and

dynamic data for the 1/2 scale quasi-isotropic scale model beams.

The dynamic load response agrees well with the static load response

following the initial load spike. Similar agreement is seen between

the static and dynamic strain responses following the initial strain

inversion phenomenon. Failure events occur at nearly identical end

displacement ratios for both the statically and dynamically tested

beams.
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Figure 7-13. Comparison of static and dynamic load and strain
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response for quasi-isotropic 1/2 scale beam.
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7.5 Failure Mechanisms

The photographs shown in Figures 7-17 through 7-20 illustrate

a failed half and full scale beam for each of the unidirectional, angle

ply, cross ply, and quasi-isotropic laminates which were included in

the impact tests. Although the failure mechanisms of the four

laminate types are different from "each other, results of the impact

tests indicate that the mechanisms are similar between scaled beams

within a laminate family. Thus, failure modes appear to be

independent of specimen size. However, for some of the laminate

families, more damage was observed in the smaller scale model

beams than in the prototype.

The unidirectional beams, shown in Figure 7-17, failed by fiber

fracture near the midpoint of the beam and by splitting along the

longitudinal axis of the beam. This failure mode is typical of all the

unidirectional beams 1/2 through full scale. Figure 7-21 shows a

unidirectional full scale beam following impact but before the beam

has been removed from the drop tower. Fiber fractures and

longitudinal splitting are evident in the photograph.

Failure of the angle ply beams occurred by transverse matrix

cracking along the 45 degree fiber lines. There was no evidence of

fiber fracture, as shown in Figure 7-18.

The cross ply laminates exhibited combined failure

mechanisms of transverse matrix cracking and delamination, as

shown in Figure 7-19. The photograph indicates that, unlike the

other laminates which failed at the beam midpoint where the

maximum moment occurred, the cross ply beam failures were

initiated at the hinge connection. A large transverse matrix crack

developed at the point of attachment of-the beam with the hinge in

the 90 degree core of the laminate. This crack split the 90 degree

core and initiated a delamination between the 90 degree and 0

degree plies on the compression side of the beam. The delamination

completely separated the laminate into two sections which then

responded independently of one another. As shown in Figure 7-19,
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this failure mode was seen in both the half and full scale beams, and

was typical of the other scaled cross ply laminates as well.

The quasi-isotropic beams failed through a combination of

matrix cracking, delamination, and some fiber fracture. The

photograph of the half and full scale beams, shown in Figure 7-20,

indicates that more severe damage occurred in the half scale beam

than in the full scale beam. Transverse matrix cracks are seen in

both beams in the 45 degree plies. Also, matrix cracks developed in

the 90 degree plies which resulted in delaminations between the

adjoining layers. The half scale beam exhibits some fiber fractures in

the 0 degree plies near the midpoint of the beam which are not seen

in the full scale beam. In addition, a section of the outer 45 degree

layer has completely delaminated from the half scale beam. The full

scale beam has a series of cracks in the outer 45 degree layer along

fiber directions which have initiated at the free edge and grown

across the width of the beam.

7.6 Summary of Dynamic Test Results

Scaling effects in the large deflection dynamic response of

graphite-epoxy composite beams subjected to impact were

investigated. A series of tests on scale model composite beams

having unidirectional, angle ply, cross ply, and quasi-isotropic

laminate stacking sequences were conducted. The beams were

loaded under an eccentric axial compressive load to promote large

bending deformations and global failure. Plots comparing load and

strain time histories for each of the scale model beams within a

laminate family were presented to validate the model law. Also, the

nonlinear structural analysis computer program DYCAST was used to

model the dynamic beam response.

Significant findings from the dynamic testing program are:

(1) Load and strain responses for the unidirectional beams

scaled according to the scale law. Tests on scale model beams
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accurately predicted the full scale beam behavior. However, scaling
of the load and strain responses for the angle ply, cross ply, and

quasi-isotropic laminates was inconsistent. The load and strain

responses for the cross ply and quasi-isotropic laminates indicated a

scale effect in strength.

(2) Experimental results indicate that failure modes between

scale model beams and the prototype are similar, i.e., failure

mechanisms do not appear to be a function of specimen size.

However, the small'er scale model quasi-isotropic beams were more

severely damaged than the larger scale model beams.

(3) The DYCAST computer code successfully modeled the strain

response of the 1/2 scale unidirectional and quasi-isotropic beam.

Plots of the deformed shape of the beam during loading showed that
the inversion of the tensile and compressive strains was due to the

initial third mode vibratory response of the beam.

(4) Comparisons between static and dynamic test data from

beams of the same laminate family and scaled size indicate similar

load and strain responses. Following the initial load spike, the

dynamic load response oscillates about the static response for all of

the laminate types. Also, following the initial strain inversion,

agreement between the static and dynamic strain response is

excellent. With the exception of the cross ply beam, the failure
locations for the static and dynamic beams were nearly identical.

This finding implies that important information on the global,

dynamic response of structures subjected to impact loads can be

found from simple static testing.

180



Chapter 8 - Investigation of Failure

The experimental results presented in Chapters 6 and 7

indicate that scale model testing is a practical and efficient

alternative to full scale testing for determining the structural

response of most laminates. However, if the testing involves damage

or failure of the structure, then the absolute size of the specimen will

have a tremendous influence on the failure behavior and ultimate

strength of the structure. Composite materials are often used to

build thin, high stiffness, "minimum gage" structures which routinely

operate under large deflections and high design loads. If tests on

subscale specimens are used to determine ultimate loads for these

types of designs, then the strength of prototype structures may be

seriously overestimated due to the scale effect in failure. Additional

research is needed to study and isolate the factors responsible for

scaling effects in strength of composite laminates so that reliable

predictions can be made from scale model tests.

The large difference in failure loads, strains, and end

displacement ratios between scale models of the eccentrically loaded

beam-column demonstrates the magnitude of the size effect on

strength. The size effect in strength which is observed on the

macroscopic level is the result of damage on the microscopic level

which initiates within the laminate and develops in a certain manner

under the applied load. The accumulation of damage and interaction

of failure mechanisms eventually result in ultimate failure of the

structure. A detailed investigation of the effect of test specimen size

on failure needs to be addressed on a material level before the

phenomenon can be understood on the macroscopic level. A research

effort of this type is beyond the scope of the current study. Instead,

the focus of this chapter will be to apply commonly used failure

criteria including maximum stress, maximum strain, and Tsai-Wu

tensor polynomial, to the composite beam-column, and to

demonstrate the inability of these criteria to predict the scale effect

in strength. The use of statistical approaches and fracture mechanics
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theories for predicting the scale effect in strength will be discussed

and applied to the eccentrically loaded beam-column problem.

8.1 Failure Analysis

The one dimensional, large deflection beam solution which was

described in Chapter 4 and Appendix B is used to predict first ply

failure of the static beam-column problem for each of the laminate

families. At each load step, a value of axial compressive load (Nx)

and moment (Mx) is computed and a stress analysis is performed to

determine ply stresses in the material directions. Then, the

maximum stress, maximum strain, and Tsai-Wu tensor polynomial

theories are applied to predict first ply failure. These criteria are

described by Jones in Reference [53]. The criteria require that five

material strength properties be known including tensile fiber-

direction strength (Xt), compressive fiber-direction strength (Xc),

tensile transverse strength (Yt), compressive transverse strength

(Yc), and inplane shear strength (S). The values of failure strain are

found by dividing the strengths by the corresponding moduli. The

strength values were determined for the AS4/3502 graphite-epoxy

material system by Sensmeier from a series of material

characterization tests. His test methods and procedures are

presented in Reference [38] and the mean failure strength values are

listed in Table 8-1.

Results of the failure analysis for the unidirectional laminates

indicate that failure occurs at the midspan of the beam on the

compression side at a load ratio of 0.505 and an end displacement

ratio of 0.1834. All three failure criteria predict that failure will

occur at that load and end displacement ratio. The maximum stress

and strain criteria indicate that the compressive stress and strain in

the fiber direction exceeds the compressive strength and ultimate

compressive strain in the 0 degree ply on the outer surface. The

beam analysis indicating the predicted load and end displacement

ratios at failure is plotted with the 1/4 and full scale unidirectional
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Table 8-1. Summary of failure stresses from material character-

ization tests on AS4/3502 graphite-epoxy composite

material.

Strength Mean Failure Stress

(Ksi)

Tensile fiber-direction, X T

Compressive fiber-direction, Xc

Tensile transverse, YT

Compressive transverse, Yc

Inplane Shear, S

178.10

-132.40

7.46

-32.30

12.50
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experimental load-displacement data in Figure 8-1. As shown in the

figure, the predicted failure is conservative. This result is typical of

the findings by Derian [37] and Sensmeier [38]. In fact, Sensmeier

realized that the failure strains he observed from bending tests on

unidirectional 30 ply beams were twice as high as the failure strains
he measured from standard material characterization tests.

Consequently, he replaced the failure strains determined from

uniaxial tensile tests with the flexural values to perform the failure

analysis.

It is important to note that the failure load and end
displacement ratios for the unidirectional beams (shown in Figure 8-

1), are independent of the scaled size. The elementary approach to

scaling discussed in Chapter 2 indicates that stress and strain scale as
unity. Therefore, for geometrically similar beams, any failure

criteria based solely on stress or strain will predict a single failure

load ratio, independent of the absolute size of the beam.

Figure 8-2 shows a plot of the normalized load-displacement

response up to failure for the angle ply laminate from the beam
analysis with the 1/6 and full scale experimental load-displacement

data. The Tsai-Wu criterion was used to predict the first ply failure

which occurred in the outer 45 degree ply on the tensile side of the

beam at a load ratio of 0.517 and an end displacement ratio of 0.202.

The maximum stress and maximum strain criteria predict failure at a

higher load ratio of 0.565 and an end displacement ratio of 0.36.

Both predict a shear failure of the outer 45 degree ply on the

compression side of the beam. As shown in the figure, the analysis

overpredicts the load response. Consequently, the predicted load

ratio at failure is higher than the experimentally observed values,

even though the end displacement ratio at failure falls between the

1/6 and full scale end displacement ratios at failure.

The maximum stress and maximum strain criteria predict first

ply failure of the cross ply laminates to occur at a load ratio of 0.525

and an end displacement ratio of 0.236. A compressive failure is

predicted in the outer 0 degree ply of the beam. The Tsai-Wu
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criterion is exceeded at a higher load ratio of 0.545 and an end

displacement ratio of 0.29 in the outer 0 degree ply on the

compressive side of the beam. The failure predicted by the

maximum stress and maximum strain criteria is plotted with the

experimental load response for the 1/4 and full scale cross ply

beams in Figure 8-3. The analytical failure prediction overestimates
the full scale beam failure and is too conservative of the 1/4 scale
failure.

The Tsai-Wu failure criterion predicts that first ply failure

occurs in the 0 degree ply in compression for the quasi-isotropic

laminates at a load ratio of 0.517 and an end displacement ratio of

0.2. This failure location is shown in Figure 8-4 along with the load-

displacement response for the 1/6 and full scale quasi-isotropic
beams. The predicted failure load ratio is close to the value observed

for the full scale beam, but conservative for the 1/6 scale beam

value. The predicted end displacement ratio at failure is
conservative for both beams. The maximum stress and maximum

strain criteria also predict that the first ply failure will occur in the 0

degree ply on the compressive side of the beam, but at a higher load
ratio (0.549) and end displacement ratio (0.297).

8.2 Discussion of Failure Theories Capable of Predicting

the Scale Effect in Strength

Results of applying maximum stress, maximum strain, and

Tsai-Wu tensor polynomial failure criteria to the eccentrically loaded

beam-column problem have demonstrated that these failure criteria

cannot predict a difference in strength based on the absolute size of

the specimen. To illustrate the magnitude of the scale effect in

strength, the failure data listed in Tables 6-1 through 6-4 for the

four laminate families have been normalized by the full scale value

and plotted versus scale factor. The results are shown in Figures 8-5

through 8-8 for load ratio, end displacement ratio, tensile and

compressive strains at failure, respectively. If no scale effect in
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strength was present, then all of the data would fall on the line

drawn at 1.0. These plots indicate that a scale effect is evident even
between the full and 5/6 scale beams. The effcct increases as the

size of the beams decreases. In general, the cross ply laminate

family exhibits the largest scale effect in strength among the

laminates tested. The unidirectional laminates appear to be least

sensitive to the size effect in strength, although the effect is still

observed.

Previous researchers have attempted to model the scale effect

in strength of fiber-reinforced composite structures using either a

statistical approach or a fracture mechanics model. A discussion of

these methods and their application to the eccentrically loaded

beam-column problem will be presented in the next two sections.

8.2.1 Statistical Approaches

The application of statistical techniques for modeling the size

effect in strength of brittle materials is based on the observation that

these materials are flaw-sensitive. And, since the presence of

imperfections can be statistical in nature, it is reasonable to assume

that larger specimens will exhibit a lower strength simply because

the probability is higher that a strength-critical flaw, such as a void

or crack, is present in a greater volume of material. Typically, two

approaches are defined to model the size effect. Weakest link theory

assumes that a structure consists of a number of individual elements

arranged in series. When one of these elements fails, the entire

component .fails. In contrast, bundle theory models a structure as a

parallel arrangement of elements. When an element fails, the load is

redistributed among the remaining elements. Final failure occurs

when all of the elements have failed. Weibull statistical theory has

been applied to both the weakest link and bundle theories to develop

mathematical models for predicting the scale effect in strength. The

ultimate failure of individual graphite fibers and fiber bundles has

been successfully modeled using Weibull statistics based on the
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weakest link theory [64,65]. Consequently, this model has been

applied by other researchers to investigate the scale effect in

strength of composite test specimens.

Statistical analysis has been used to explain the higher strength

seen in composite coupons tested in flexure over those tested in

uniaxial tension I66,67]. Using Weibull theory, .Bullock [67] found

that the probability that a specimen containing a distribution of

flaws throughout its volume could survive an applied stress

distribution, c(x,y,z), is:

' °"t l
Co / dx dy dz

(8.1)

where

13 is the flaw-density exponent which characterizes the scatter

of strength data for the material

Go is the normalizing scale parameter which locates the

strength distribution

Cu is the threshold stress (usually assumed to be zero), and

V is the volume of the specimen.

For uniform tensile loading conditions and Cu assumed to be zero, Eq.

8.1 becomes:

s,_-expIv,l l
L _Col (8.2)

where the subscript t is used to identify tensile loading. For the case

of three-point bending loading conditions the stress distribution is

nonuniform and Equation 8.1 gives:
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exp{vf( ) r!
(8.3)

where the subscript f is used to identify flexural loading. For two

geometrically similar specimens (a model and a prototype) of

volumes Vm and Vp, either Equation 8.2 or 8.3 can be used to derive

the ratio of ultimate strengths for a given probability of failure:

1

(8.4)

It is interesting to note that the probability of failure of a specimen

is dependent on the stress distribution which is determined by the

loading conditions. However, the ratio of ultimate strengths for two

specimens of different sizes is the same regardless of whether the

specimens were tested under uniaxial tension or flexure. The ratio of

median failure stress in three-point flexure to that in tension is

found by setting St equal to Sf in Equations 8.2 and 8.3;

_r _ 2(13+1 )
(Yt (8.5)

If two specimens of equal volume are tested in flexure and in

tension, then by Equation 8.5, the flexural strength will be greater

than the tensile strength by the factor:
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(8.6)

Bullock applied the statistical analysis presented in Equations 8.1

through 8.6 to predict the strength behavior of graphite-epoxy

(T300/5208) composite specimens. Tests were conducted on fiber

tows, and tensile and flexural specimens to verify the analysis. An

important finding from Bullock's research is that the flaw-density

exponent, [3, which must be determined empirically, was found to be

a material constant. For the composite material system he tested, the

value of flaw-density exponent was determined to be approximately

24. Bullock showed good agreement between experiment and

analysis and concluded that less expensive flexural specimens which

are easier to test can be used to estimate ultimate tensile stresses of

composite materials.

While Bullock's results show promise for predicting the

ultimate strength of specimens which are tested under different

loading conditions, the volume term was found to overestimate the

actual volume effect for specimens of greatly different sizes. A

limitation of the method includes the requirement that the flaw-

density exponent be found empirically for each material system.

Also, no data were presented to indicate how well the model would

perform for laminates containing off-axis plies. The flaw-density

exponent, 13, would likely be influenced by the laminate stacking

sequence, especially for laminates in which failure mechanisms were

matrix dominated and not governed by fiber fractures.

The volumetric model given by Equation 8.4 is used to predict

the scale effect in strength observed in the failure response of the

eccentrically loaded beams tested in this investigation. The model is

applied even though the static test data were not intended to provide

a significant number of samples for a thorough statistical analysis.

The flaw-density exponent was calculated from results reported by

Sensmeier [38] from his material characterization tests on the
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AS4/3502 graphite-epoxy composite material. Sensmeier found the

longitudinal tensile strength to be 178.1 ksi. However, he observed

that the failure strains of the "eccentrically loaded beams were much

higher than the fail, ure strains determined from material tests on

beams loaded in uniaxial tension. Consequently, he used the flexural

failure strains to calculate a new longitudinal tensile strength which
he determined to be 340.0 ksi. These values are used in Equation 8.6
to solve for the flaw-density exponent, 13= 7.75. Results of the

volumetric ratio as calculated from Equation 8.4 are plotted in Figure

8-9 with the experimental data for each of the laminate families.
The failure stress ratios were calculated from the strain ratios listed

in Tables 6-1 through 6-4 for the four laminate types. As shown in

Figure 8-9, the volumetric ratio predicts the scale effect in tensile
strength fairly well for the unidirectional and quasi-isotropic

laminates. However, agreement between the volumetric ratio and

the angle ply and cross ply laminates is not good. This is not

unexpected since the failure mechanisms for the angle ply and cross

ply laminates are characterized by transverse matrix cracking; but,

the flaw-density exponent was determined based on tests of

unidirectional laminates which fail by fiber fracture. Obviously, the

volumetric ratio is sensitive to the failure mode and should only be

applied for laminates which exhibit similar failure mechanisms.

In summary, results indicate that the Weibull statistical model

based on the weakest link theory does predict a scale effect in

strength due to volumetric differences, and provides good agreement

on a material level in predicting the behavior of fiber tows and

unidirectional tensile coupons. The model also predicts the observed

scale effect in tensile strength for the eccentrically loaded

unidirectional and quasi-isotropic beam-columns. However, the

model lacks the sophistication needed to predict the difference in

magnitude of the scale effect in strength for laminates which do not

fail predominantly by fiber fracture.
As a final note, more advanced statistical models have been

developed using a two parameter Weibuli distribution to analyze the
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scale effect in strength and fatigue response of composite structures

[68,69]. These models have been successful in predicting scale

effects; however, they rely heavily on empirical data to determine

the Weibull shape and scale parameters. In addition, the methods

have not been applied specifically to replica models. Instead, the

effect of varying specimen width, or length, independently of the

other specimen dimensions has been studied. When the results are

examined for replica models, no noticeable strength variations are
found.

8.2.2 Fracture Mechanics Theories

Some of the basic principles of linear elastic fracture mechanics

(LEFM) have been applied to model the scale effect in strength of

composite laminates. Atkins and Caddell [10] derived a new

dimensionless group based on the mechanics of crack propagation

and fracture to scale ice-breaking resistance from tests conducted on

model ships in ice-towing tanks. And, Carpinteri and Bocca [70]

explained the transition from slow crack growth to rapid propagation

using strain energy density theory and dimensional analysis. These

are just two examples of some of the research which has been

conducted to explain the size effect in material strength.

A thorough analysis of the eccentrically loaded beam-column

problem using fracture mechanics techniques was not attempted.

However, one of the advantages of dimensional analysis is that some

insight into a problem may be gained without a rigorous or complete

mathematical solution. The stresses in the region near a sharp crack

in a body have been derived by Irwin [71] and Williams [72] and

have the general form:

_ K fij(0)
oij _ (8.7)
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where K is the crack tip stress intensity factor, r and 0 are polar

coordinates to locate a point in the stress field beyond the crack tip,

and fij is a nondimensional function of the variable 0. Irwin [71]

and Williams [72] showed that this crack tip stress field is

independent of the loading. Thus, all cracks will have the same stress

field and will only differ by the intensity factor, K, from one problem

to lhe next. The form of the stress intensity factor is found by

performing an elastic stress analysis of the particular problem.

Many of the functional forms for K have been calculated and

tabulated. However, the exact form of the stress intensity factor is

not required to understand how it contributes to the scale effect in

strength. A theory of fracture mechanics states that a crack will

become unstable when the crack tip stress intensity factor reaches

the critical value, KQ. The critical stress intensity factor is assumed to

be a material constant and may be found experimentally through

standard materials tests. KQ was included in the list of parameters

used to perform a dimensional analysis for the beam-column impact

problem in Chapter 2. From that analysis, a scaling conflict was

found since it was impossible to scale stress as unity and have KQ

scale as unity at the same time. If KQ is assumed to be a material

constant (_,KQ = 1), then stress must scale as )_-1/2

Predicted failure stresses using the fracture model are depicted

in Figure 8-10 along with the experimental data for each of the four

laminate types. The fracture ratio tends to overpredict the scale

effect in strength for the smaller scale model unidirectional and

quasi-isotropic laminates, and underpredicts the effect for the angle

ply and cross ply laminates. The cross ply laminate response

deviates from the fracture ratio model by the largest amount,

especially for the smaller scale model beams. In general, the

fracture ratio is capable of predicting a scale effect in strength; but,

like the volumetric model, the fracture model does not predict any

variation in the scale effect due to differences in laminate stacking

sequence. Results presented in Figure 8-10 show that a model which
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predicts the scale effect in strength must incorporate some measure

of the failure mechanism of the laminate to be successful.

Results presented in this section have shown that the scale

effect in strength cannot be explained simply by statistical models or

fracture mechanics theories. However, research by Crossman [73],

Wang [74], and Laws [75] on the effects of transverse matrix cracking

on the final fracture of cross ply laminates suggests that a model

which incorporates both theories is needed. A statistical approach is

used to determine which microflaws within the 90 degree core of the

laminate will coalesce to form a transverse matrix crack given a

random distribution of flaws and flaw sizes. Once a crack has

formed, fracture mechanics theories are applied to determine the

stability of the crack given the loading condition. The progression of

crack formation and stability are continually monitored for increased

loading conditions. In addition, the model developed by Laws [75]

will predict loss of stiffness as a function of crack density. A model

of this type has been used to successfully predict the ultimate tensile

failure of cross ply laminates in which the number of 90 degree plies

was varied from 2 to 16. These laminates are not replica models

since the number of 0 degree plies was not adjusted in the same

proportion as the number of 90 degree plies. However, the success

of the model indicates that it may be able to accurately predict the

scale effect in strength for laminates of varying sizes and stacking

sequences.
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Chapter 9 - Summary and Recommendations

The objective of this study was to characterize scaling effects in

the static and dynamic large deflection response and failure of

graphite-epoxy composite beam-columns. To accomplish this

objective, a comprehensive testing program was conducted on a wide

range of scale model beams and a variety of laminate stacking

sequences representing different stiffnesses and failure modes. The

scale model beams were tested under an eccentric axial compressive

load designed to produce large bending deflections and global failure.

Both static and impulsive loading conditions were applied. A

dimensional analysis was performed on the composite beam-column

loading configuration to determine a model law governing the system

response. The model beams were loaded under scaled test conditions

until catastrophic failure. Comparisons of the load and strain data for

the scale model beams were made to identify scaling effects in the

beam response. Also, a qualitative assessment of the damaged

beams was made to determine if beam size influenced the mode of

failure.

Various analysis techniques were used to model the

eccentrically loaded beam-column. For the static case, a one-

dimensional, large deflection beam solution was derived based on the

"elastica" problem. The beam solution assumes linear elastic material

properties and incorporates the exact expression for beam curvature.

The nonlinear structural analysis finite element program DYCAST

(DYnamic Crash Analysis of STructures) was used to model the beam-

column under both static and impulsive loading conditions. Finally, a

finite element analysis which was developed specifically for the

beam-column problem was used to study the importance of including

width-wise degrees of freedom and nonlinear material properties on

the beam response. A stress analysis was incorporated into the large

deflection beam solution to apply failure criteria including maximum

stress, maximum strain, and Tsai-Wu tensor polyr_omial to predict

beam failure. Statistical approaches and fracture mechanics theories
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were also discussed as possible methods foI predicting the observed

scale effect in strength.

The major findings from this investigation are summarized and

suggestions for further work are discussed in the following sections

of this chapter.

9.1 Summary of Research

Major conclusions and findings from the experimental and

analytical study which was conducted to characterize scaling effects

in the large deflection static and dynamic response of composite

beam-columns are listed below.

(1.) No scaling effects were observed in the static load and

strain response of the unidirectional and cross ply laminates, even

for very large deflections and rotations. However, the angle ply and

quasi-isotropic laminates deviated from scaled response due to

damage events which altered the beam stiffness. These results

indicate that the success of achieving scaled response is dependent

on the laminate stacking sequence with the best results seen for

laminates with a large percentage of 0 degree plies.

(2.) Lamination theory predictions of effective bending

stiffnesses based on material properties of the AS4/3502 system

were found to be in error by as much as 25 percent. Consequently,

the Euler load for each of the scale model beams was calculated using

an effective bending stiffness which was determined semi-

empirically. The bending stiffnesses were found by matching the

analysis an,d. experimental data in the small deflection response

region. A comparison of the normalized bending stiffnesses for each

of the scaled model beams indicated that no scale effect exists in

elastic behavior for the unidirectional, cross ply, and quasi-isotropic

laminates. However, a significant scale effect was seen for the angle

ply laminates in which the smaller scale model beams were much

stiffer than the full scale beam.
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(3.) A scale effect in strength was observed for all four

laminate types (unidirectional, angle ply, cross ply, and quasi-

isotropic) tested under static loading conditions. In general, the

failure loads, end displacement ratios, and strains increased as the

scale factor decreased. This result implies that data generated from

tests on scale model specimens will overestimate ultimate loads of

prototype structures.
(4.) In general, the failure mechanisms of the laminates tested

were independent of the specimen size. The one exception was the

cross ply laminate family which exhibited a transition in failure
mechanism between the 1/3 and 1/2 scale model beams. The
smaller scale model beams contained fiber fractures not seen in the

beams of 1/2 scale or larger. The transition in failure mechanism

was evident in the load and strain response.

(5.) Both the large deflection beam solution and DYCAST finite

element analysis predicted the load-deflection response well for the

unidirectional, cross ply, and quasi-isotropic laminates. The angle

ply laminates experienced damage which caused a reduction in beam

stiffness and affected the load response. Neither the beam solution

or DYCAST analysis could model the partially damaged beam and,

thus, overpredicted the load behavior.

(6.) The finite element analysis developed by Sensmeier which
includes the effect of width-wise degrees of freedom and nonlinear

material properties consistently overpredicted the load response for
each of the laminates tested. However, the analysis was able to

predict the difference in compressive and tensile strain magnitudes

which was observed in the experimental strain response for the four
laminate families tested.

(7.) The unidirectional beams tested under impulsive loading

conditions showed excellent scaled response. However, inconsistent

results were obtained for the angle ply, cross ply, and quasi-isotropic

laminates. A scale effect in strength was also evident under dynamic

loading conditions. The mode of failure between scaled beams within

a laminate family was independent of beam size; however, the
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smaller scale model quasi-isotropic beams appeared to be more

severely damaged.
(8.) The DYCAST finite element model successfully predicted

the dynamic strain response of the unidirectional and quasi-isotropic

1/2 scale model beams, including the initial inversion of tensile and

compressive strains, upon impact. In addition, the DYCAST code

provided valuable plots of the deformed shape of the beams during

loading.

(9.) Comparisons between the dynamic and static data for
beams of the same scaled size and laminate type indicated similar

responses following the initial load spike and strain inversion due to

the impact. This finding implies that valuable insight into the global,
dynamic response of structures subjected to impact can be found

from tests under static loading conditions.

(10.) Analysis of beam failure using maximum stress,
maximum strain, and Tsai-Wu tensor polynomial criteria showed

that these theories cannot predict the scale effect in strength.
(11.) The scale effect in strength which was observed for the

eccentrically loaded beam-columns cannot be explained by simple
statistical models based on Weibull distributions of flaw-densities

and the weakest link approach, or by fracture mechanics models

based on the critical stress intensity factor. Both of these approaches

can predict a scale effect in strength, but do not account for

variations in the magnitude of the scale effect due to differences in

laminate stacking sequences.

9.2 Recommendations for Future Research

Results of this investigation show that tests on scale model

composite structures can provide valuable information on the

response of prototype structures, ttowever, if the testing involves

failure or damage to the laminate, then scale model data will

overpredict the strength of the full scale structure based on the

observed size effect in strength. Consequently, any failure criteria
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used to predict strength of a composite structure should allow for the
size effect. As discussed in Chapter 8, the failure models which

incorporate both statistical and fracture mechanics theories possess

the capabilities to successfully analyze the size effect and should be

applied to this problem.

The scale model beams tested in this investigation were

fabricated to achieve scaling on a ply level by increasing the number

of plies at each orientation in the laminate stacking sequence.

However, in some cases it may not be possible to construct an exact

scale model of a composite laminate on a ply level. For example, in

this study it was not possible to fabricate a 1/4 or 3/4 scale model

quasi-isotropic beam. In other cases, it may not be necessary to test

an exact replica model as long as the stiffness is scaled. Composites

which are scaled on a sub-laminate level may be acceptable for such

cases. Tests on composite laminates which are not scaled on a ply-

by-ply basis should be conducted to identify scaling issues for these

types of models.

In general, the results of the experimental program indicate

that no scaling effects are present in the elastic response. This

finding implies that the elastic moduli are not a function of specimen

size. However, to verify this observation, a series of material

characterization tests should be performed on replica model coupon

specimens.

The impact tests which were performed as part of this

investigation were conducted under conditions to ensure failure of

the beams. As such, it was difficult to study the effects of impact on

the initiation and growth of damage in the scale model beams. A

testing program in which dynamic loads are applied to produce an

elastic response, and then gradually increased to promote beam

failure, should be performed. A systematic approach such as this

would provide more detailed information on the size effect in

strength of laminates under impact loading conditions.

The angle ply laminates were included in this study primarily

for academic interest since most structural composite laminates
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contain some 0 and 90 degree plies. However, the poor agreement

between the analyses and experimental load-deflection results for

these laminates illustrates that analytical models need to include

stiffness reduction schemes when transverse matrix cracking occurs.

The DYCAST finite element code, in particular, is currently being

upgraded to incorporate laminated composite elements and will

include partial ply failure capabilities.

Finally, the composite beam-column under eccentric axial

compressive load was chosen for study because it represented a

simple structural configuration, yet possessed some interesting

features such as large deflections, combined tensile and compressive

loading, and global failures. If a more complex system had been
studied, it would have been difficult to isolate size effects from the
effects of other structural details. However, the benefits of scale

model technology must be demonstrated for real engineering
structures. Thus, research of this type should be expanded to include

other structural elements with increasing levels of complexity.
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Appendix A. Dimensional Analysis of Beam-Column

Impact Problem

A stepwise approach for determining the Pi terms, or

nondimensional parameters, which form the scaling law for the

beam-column impact problem, depicted in Figure 1-1, is presented.

More complete details of the procedure are outlined in Baker, et al

[12].

The first step involves listing lhe variables associated with the

problem, along with a symbol for the variable and its dimension in

either the M-L-T or F-L-T system. The list for the beam-column

impact configuration is given in "Fable 2-1. Next, the statement of

dimensional homogeneity is written.

MOL°T 0 = l a1 ba2 ha3 rla4 A]Sl I_e_fV a7 e as F a9 valo Eall (lal2 Ea13 Mal,

ta15 A a16 ga_7 Xal8 o)a19 wa20 aa21 _a22 ,_a23 iF a24lXQ (A.1)

Substituting the dimensional equivalent of each variable symbol into

Equation A.1 yields;

_ 2 2 a6...a7M°L°T ° (L) a_ (L) a2 (L) a3 (M) a, (M/T2) a' (ML /T ) (1)

(L) a8 (ML/T2) a9 (L/T) a_° (ML2/T2) a_ (M/LT2) a_2

(1)a_3 (ML2/T2) a14 (T) a_' (T) a16 (L/T2) alv (L) a_

(I/T) a'9 (L) a2° (L/T2) TM (l/T) TM (T) a23 (M/T2L1/2) a24 (A.2)

The right hand side of Equation A.2 may be rearranged by grouping

the exponents of the length, mass and time dimensions together.

Using this procedure it is now possible to equate the exponents of

mass, length, and time on both sides of Equation A.2. The following

three equations result.

M: a4+a 5 +a 6 +a 9 +all +a12+a14 +a24 =0 (A.3)
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L:

T:

al + a2 + a3 + 2a6 + as + a9 + alo + al_ - a12

+ 2a14 + al 7 + a18 +' a20 + a21 1/2a24 = 0

-2a5 - 2a6 - 2a9 - alo - 2all - 2a12 - 2a_4 + a_5

+ a_6 - 2a17 - a_9 - 2a2_ - a22 + a23 - 2a24 = 0

(A.4)

(A.5)

This system of equations may be solved for any three of the

coefficients, ai, in terms of the others. In this case, coefficients al, a6,

and a15 are chosen to be eliminated. This choice is fairly arbitrary

since other coefficients could have been eliminated with equally

acceptable results. However, it is required that the three equations

(A.3 A.5) be independent; otherwise, additional Pi terms must be

formed. One check to verify this is to require that the determinant

of the coefficient matrix for the three coefficients chosen to be

eliminated be nonzero. For the coefficients al, a6, and a15 this

requirement is met as shown in equation A.6.

det

0 1 0

1 2 0

0 -2 1

= -1(1-0) = -1

(A.6)

Solving for al, a6, and a15 from Equations A.3 - A.5 yields;

a 1 = -a 2 + -a 3 + 2a4 + 2a5 + a9 + 3a12 - a 8

- alo - a17 - a_8 - a20 - a21 + 5/2a24

a 6 =-[a 4 + a 5 + a 9 +all + a12 + a14 + a24]

(A.7)

(A.8)

and,

a15 = -2a4 + alO - a16 + 2a17 + a19 + 2a21 + a22 - a23 (A.9)
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Equations A.7 - A.9 are substituted into the equation of dimensional

homogeneity, Equation A.1.

MOLOT 0 _/[-a2 + -a3 + 2a4 + 2as + a9 + 3a12 - a8 - aH_ - a17 - als - a2o - a21 + 5/2a24]

a5 --- [a4 + as + a9 + a_l + a12 + ala + a24]
ba2 ha3 _]a4 A 11 Deft

va7 ea8 Fa9 valoEall t_a12 ea_3 Ma_4

t[-2a4 + alo - al6 + 2a17 + al9 + 2a21 + a22 - aza]

A a16 ga17 xal8 o)a19 wa20 aa21 _a22 ,_a23v a24
JXQ (A.IO)

The equation above is now rearranged by collecting the variables

having the same exponent.

I] 21] la4 I/2A 1 l la5 [via7//la8 [D_ff] a9MOL°T0=Ib]a2 [/]a3LDeff3 L Deff J

[E]a lr 31al2 [M]al,
[E/_]a 1° [_effJ l_ff.J [E]al3 [_effJ

[,,la,6 rWl
LtJ [_--J [1-J[xla18[0_t]al9 [--l-J

I- 5 / 2 ]a2a

[t_a la2_ [_;t]a22 Lt j [ _cff i1
(A.11)

The Pi terms are the groups enclosed inside each bracket, and are

listed separately in Chapter 2 as Equation 2.1.

The model law for the beam-column problem can be developed

from the nondimensional parameters by equating the Pi term for the

model with the Pi term for the prototype. The notation for the scale

factor for a particular variable is given by _, with a subscript which

identifies the variable. As an example, the scale factor for the

bending stiffness is given by,
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_Deff --
Deft (model) = Deft m

Deff (prototype) Deft p (A.12)

Examining the Pi terms

bm b E
Ill: -

lm lp

systematically in this

_b = _,l

manner gives;

(A.13)

Y12: hm hp

lm lp

)_h = _-l

(A.14)

]-I3:
12"qm _ l 2 rlp

Deft m t 2 bet," p t2

=* k_X n

(A.15)

I-I4:
lm2A l 1m _ lpA 11p

Deft m Deft p
= kDeff

(A.16)

1-[5" Vm - Vp :=:> _.v=l
(A.17)

i-i6: em ep

lm lp

_,c = _l

(A.18)

I-I7:
Fmlm _ Fplp

Deff m Deft p
kF)£1 = _'Ddf

(A.19)

1-I8:
Vmtm _ Vptp

lm lp

kvkt = kl

(A.20)

II9:
Em _ Ep

Deft m Deft p
_E = kDeff

(A.21)
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1-I10:

Deft m Deft p
= XD_f

(A.22)

Fill: Em= Ep =¢, (A.23)

1-I12:
Mm _ Mp

Deft m Deft p
_'M = _'Deff

(A.24)

1-I13:
Am _ Ap

tm tp
_-a = Xt

(A.25)

1-I 14:
gm [2 _ gpt_

lm lp (A.26)

1-I15:
Xm _ Xp

lm lp
= _l

(A.27)

1-/16" 0_mtm = _ptp k,o = 1/kt
(A.28)

I-I17:
Wm _ Wp

lm lp (A.29)

I-I18:
.mt2m_ .pt ,

lm lp (A.30)

1-I19: _mtm = Cptp k_ = 1/_ t (A.31)

1-120:
"_m _ _P

tm tp
= kt

(A.32)

H21:
KQmlm 5 / 2 _ KQplp5 / 2

Deft m Deft p

_'KQ_'_/2 = _'Deff

(A.33)
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The equations A.13 through A.33 form the basis of the model law.

To validate the model law an experiment was designed in which the
geometric scale factor, kt, was chosen to have discrete values of 1/6,

1/4, 1_3, 1/2, 2/3, 3/4, 5/6, and 1. Typically the geometric scale
factor, )_t, is designated as simply k. The experiment was performed

using the same material system for the prototype beams as for the

models. These requirements of the experiment, namely that

geometry scales according to k and material properties scale as 1,

force the following scale factors to become fixed.

_All = k

(A.34)

kl = _.

The known scale factors given in A.34 can now be used to fully

derive the scaling law based on Equations A.13 through A.33.

Pi Term Scale Law

H l" kb = )_l = _ _-b = _,.

H2: Xh = _-I = k _h =

H3:

X2X3 3 2=k kt

kt 2 = _2

_.t = )2

H4: k_'All = kDeff no new info.
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1-I5:

l-I6:

1-/7:

I-I8:

1-I9:

YllO:

I]11.

I-I12:

I]15:

1-I16:

II17:

I-I18:

I-I 19:

1-I20:

1-I21:

_.v=l

kv_,t = _l = _-

_LE = _,Deff = _3

_ = _Deff

_.v=l

k_ = 1/)_t

)_v=l

_v=l

_.o= 1

_.E = 1

ka = 1/k

X_ = 1/k

_-KQ = _1/2

219



Appendix B. Large Deflection "Exact" Solution Development

This appendix presents more complete details of the

development of the large deflection beam analysis which is outlined

in section 4.2. Variable definitions are given in Table 4-2. The

appendix is divided into three sections which are: (1) development

of the governing equation, (2) development of the boundary

conditions, and (3) solution development.

B.1 Development of the Governing Equation

Writing the summation of moments about point O in Figure 4-2

gives,

Mo = M + P y + P _e 2 + 8 2 sin(0 + or) = 0
(B.1)

Substituting the constitutive relation M = EI d0/ds gives,

EI dO + p y + P ./.re 2 + _2 sin(O + or) = 0
ds (B.2)

Differentiating this expression with respect to s yields"

EI d20 + p d_ff_Y: 0

ds 2 ds (B.3)

From the geometry of a differential beam segment dy/ds = sin0.

Also, the notation for the buckling coefficient, k 2 = P/EI, is now

introduced. The resulting second order differential equation

becomes,

d20 + k2sin0 = 0

ds 2 (B.4)

Equation B.4 may be integrated with respect to 0 to reduce the order

of the differential equation.
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f620fd01 f_s 2 _-_s! ds = -k2sinO dO
(B.5)

1 [dO 12 = k2cosO + C
2-_ds! (B.6)

resulting in the final form of the governing differential equation

=_+ff{ coso +c
ds (B.7)

where C is a constant of integration which

application of boundary conditions. The

condition is derived in the next section.

must be found by

necessary boundary

B.2 Derivation of Boundary Condition

The boundary condition is found by solving for the moment at

the hinge-beam connection point, or s = 0. At this point, y -- 0 and 0 =

Q-t- OL

M(s=0) = - P sin(0 + or) _/e 2 + 8 2
(B.8)

(B.10)

Expanding the sine term gives;

M(0) =- P _/e 2 + 82 [sin_ cosot + cos_ sin(x] (B.9)

But, from the hinge geometry, the sin@ and cos@ terms are given by,

sin_ - e and cos_ - g

_/e 2 + 82 _e 2 + 82

Substituting these relations into Equation B.9 gives,

221



M_0)= pre2+_2Fe cos_+ _si°_]

Simplifying,

M(0) = - P [e cosot + _5sino_]

(B.11)

(B.12)

The moment is expressed in terms of the beam curvature through

the constitutive relationship resulting in,

M(s=0)=EI[d_s ] =-[Pecosot +PSsinot]
0=Or (B.13)

Dividing by the flexural rigidity gives the boundary condition in final
form:

d-_s-s] = - k2e coso_ - k28 sinot
0=_ (B.14)

B.3 Solution Development

The boundary condition given by Equation B.14 can be applied

to the governing differential equation, Equation B.7, to solve for the

constant of integration, C.

[d-_sj = +f2- Vk2cosot + C = - k2e cosot - k25 sinot
0=ft

Squaring both sides of the equation and solving for C yields,

C : l--[k2(e cosa + 6 sina)]2 - k2coso_
2

Substituting for C into the governing equation, B.7, gives,

d0ds --+f2-_/k2cOs0 - k2c°s°t + 1--[k22 (e cosot + _5sinot)] 2

(B.15)

(B.16)

(B.17)
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Rearranging and expanding some of the terms in Equation B.17 gives,

dO _ '_- k "_/cos0- coset + 1. k 2 (e cosec + 15sinot) 2
ds Y 2 (B.18)

Substituting the trigonometric relationship,

cos0 = 1 - 2sin 2-0-
2 (B.19)

into Equation B.18 gives,

dO = -2 k q/sin 2g- - sin 20 4 1 k 2 (e cosot + 15sinec) 2
d s V 2 2 4 (B.20)

A transformation of Variables is introduced to simplify the solution

of Equation B.20.

Define,

sinO= q/sin2_+ 1 k 2 (e cosec + 8 sin_) 2 sin_
2 Y 2 4 (B.21)

where

/sin2_ + 1__ k 2 (e cosR + 8 sinot) 2 = A
2 4 (B.22)

Thus,

sin ° = A sin_
2 (B.23)

Substituting the change of variables into the governing equation,

B.20, gives,

/ 223



dO2k_/Esin2_+,k2_eco,_+_,in_)21l,ds 2 4

dO _ 2k A 3/1 - sin2_ =- 2kA cos_
ds

sin2v)
(B.24)

(B.25)

Equation B.25 may be inverted to solve for the differential beam

segment length, ds,

ds - -dO

2 kAcos_ (B.26)

This expression cannot be integrated until dO is written in terms of

the new variable gt. That relationship is found by taking the

differential of Equation B.23,

to give

d[sin2= A sin_]
(B.27)

Finally, dO is expressed in terms of _t in the following manner,

dO - 2 A cos_ d_t

cos 0-

2 (B.29)

Substituting the expression for dO (B.29) into the differential

equation for beam length, Equation B.26, gives

ds - - d_

k cos 0

2 (B.30)
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Solving for the cos0/2 in terms of the variable, _,

cos 0--= _/1 - sin 2-0- = 3/1 - A2sin2_2 2

Substituting this expression into Equation B.30 gives,

ds =
- d_¢

k _/1 - A2sin2_t

03.31)

(B.32)

The total length of the beam is found by integrating ds from 0 = o_ to

t9 =-o_,

L= ds

Substituting Equation B.32 for ds gives,

(B.33)

f0_=-a - d_
L= ds=

=a k _/1 - A2sin2_

Using symmetry conditions yields,

(B.34)

L =---jo _/1 - A2sin2_g
=0 03.35)

The upper and lower limits of the above integral must be expressed

is terms of the variable, _, before the integral can be solved. By

considering Equation B.23, it is found that at 0 = 0, _ = 0.

Substituting 0 = o_ in Equation B.23 establishes the upper limit:

225



atO =o_,

sin2_= [sin20t+l k2 (e coso_+8 sino02t sin2_2 L 2 4 (B.36)

sin_
sin_ - 2

or A (B.37)

Let xCc,be the notation for the value of _ when 0 = c_.

/sina--I

sin

Thus,

(B.38)

Substituting the limits of integration into Equation B.35 gives the
final result:

9=-a ds = L
=O_

d_t

A2sin2_

(B.39)

The integral of equation B.39 is the complete elliptic integral of the

first kind and is denoted as;

k L _ F(A,_a)
2 (B.40)

The solution for the midpoint deflection comes from

consideration of the geometry of a beam segment. From Figure 2 of

section 3.2, it can be shown that

d__yy= sin0 = 2 sin 0-- cos 0--

d s 2 2 (B.41)
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Substituting Equation B.23 for the sin0/2 term and Equation B.31 for

the cos0/2, allows the above equation to be written in terms of the

new variable, _.

dy = 2 A sin_ ffl - A2sin2_ ds (B.42)

Substituting Equation B.32 for ds gives

dy =
- 2A sin_t d_

k (B.43)

This equation may be integrated from 0 = o_ to 0 = 0 to give the

midpoint displacement.

Ymid "- f0 _=° f0°=a 2 A sin_ d_dy=
=_ =o k

(B.44)

The limits on integration are expressed in terms of the variable, _,

such that at 0 equal 0, _ = 0; and at 0 = o_, _g = _a, where _ta is given by

Equation B.38. The integral for the midpoint displacement becomes,

Ymid = fv _'=v= sinv d_
2 A

=o k
(B.45)

Integrating Equation B.45 gives

= 2_A. [_cosy] TM = 2__AA[1 - cosva]Ymid
k o k (B.46)

Based on the definition given in Equation B.38, the costa is found to

be,
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A 2 sin2_
costa = 2

A

Thus, in final form, the midpoint transverse displacement is,

Ymid = 1 - 2
A

(B.47)

(B.48)

The solution for the total axial shortening of the beam is found

by integrating the differential displacement, dx, along the length of

the beam. From Figure 2 of section 3.2, it can be shown that,

dx _ cos0 = - 1 + 2 COS 20--

d s 2 (B.49)

or,

dx =(-1 + 2 COS22_--) ds

Substituting Equation B.30 for ds yields,

dx = dg _ 2 cosg__ d_

k cos 9- k 2
2

(B.50)

(B.5I)

Rewriting the cos0/2 in terms of the sin0/2 gives,

dx = dgt 2 ,_/1 sin 20-- dg/

k "_/1 sin20_ k V 2
V 2 (B.52)

Substituting Equation B.23 for the sin0/2 in terms of the new

variable, g, gives,
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dx = d_ _ 2 _/1 A2sin2_ d_

k a/1 - A2sin2_ k
(B.53)

The total axial shortening, Xtotal, is found by integrating Equation B.53

from 0 = ot to 0 =-or. By symmetry, this operation is equivalent to

multiplying the integral by 2 and integrating from _ = 0 to _ = _c,.

dig

ffl - A2sin2_

+4( v=wt_ 1 - A2sin2_ d_

k Jr=0

(B.54)

The first integral of Equation B.54 has the form of the complete

elliptic integral of the first kind and may be simplified by

substituting Equation B.40. The second integral has the form of the

complete elliptic integral of the second kind and is denoted by

E(A,_a). Thus, the equation for Xtota I becomes,

X total =- L + _4_E{A,_ta)
k (B.55)
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Appendix C. Static Load and Strain Deflection Experimental
Results

This appendix contains load- and strain- displacement response

plots from static tests of unidirectional, angle ply, cross ply, and

quasi-isotropic scale model beams. Data from three replicate tests

for each scaled size and laminate type are presented. Load data have

been normalized by the Euler load which was determined empirically

by the matching technique described in Chapter 5.
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Figure C-l(b). Midpoint strain versus normalized end displacement.

Figure C-1. Static load-deflection and strain-deflection

experimental results for 1/6 scale model unidirectional

beams, 3 replicate tests.
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Figure C-2(b). Midpoint strain versus normalized end displacement.

Figure C-2. Static load-deflection and strain-deflection

experimental results for 1/4 scale model unidirectional

beams, 3 replicate tests.
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Figure C-3(a). Normalized load versus end displacement.
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Figure C-3(b). Midpoint strain versus normalized end displacement.

Figure C-3. Static load-deflection and strain-deflection

experimental results for 1/3 scale model unidirectional

beams, 3 replicate tests.
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Figure C-4(b). Midpoint strain versus normalized end displacement.

Figure C-4. Static load-deflection and strain-deflection

experimental results for 1/2 scale model unidirectional

beams, 3 replicate tests.
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Figure C-5(b). Midpoint strain versus normalized end displacement.

Figure C-5. Static load-deflection and strain-deflection

experimental results for 2/3 scale model unidirectional

beams, 3 replicate tests.
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Figure C-6(b). Midpoint strain versus normalized end displacement.

Figure C-6. Static load-deflection and strain-deflection

experimental results for 3/4 scale model unidirectional

beams, 3 replicate tests.
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Figure C-7(a). Normalized load versus end displacement.
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Figure C-7(b). Midpoint strain versus normalized end displacement.

Figure C-7. Static load-deflection and strain-deflection

experimental results for 5/6 scale model unidirectional

beams, 3 replicate tests.

237



0.75
UNIDIRECTIONAL FULL SCALE

0.50

==

¢_ 0.25
,,¢

#a/

. \#z
\#5

0.00
o.o o'.2 o'., o'.8 0.8

END DISPLACEMENT / LENGTH
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Figure C-8(b). Midpoint strain versus normalized end displacement.

Figure C-8. Static load-deflection and strain-deflection

experimental results for full scale model unidirectional

beams, 3 replicate tests.
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Figure C-9(b). Midpoint strain versus normalized end displacement.

Figure C-9. Static load-deflection and strain-deflection

experimental results for 1/6 scale model angle ply

beams, 3 replicate tests.
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Figure C-10(a). Normalized load versus end displacement.
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Figure C-10. Static load-deflection and strain-deflection

experimental results for 1/4 scale model angle ply

beams, 3 replicate tests.

240



0.5

0.4

0.3

_.l 0.2

•< 0.!
o
,..Q

0.0

0.I

ANGLE PLY 1/3 SCALE

# 1/

#3

\#5 I
I

0.4oll o'._ oi_ 0.5
END DISPLACEMENT / LENGTH

Figure C-11(a). Normalized load versus end displacement.
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Figure C-11. Static load-deflection and strain-deflection

experimental results for 1/3 scale model angle ply

beams, 3 replicate tests.
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Figure C-12(b). Midpoint strain versus normalized end

displacement.

Figure C-12. Static load-deflection and strain-deflection

experimental results for 1/2 scale model angle ply

beams, 3 replicate tests.
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Figure C-13. S}atic load-deflection and strain-deflection

experimental results for 2/3 scale model angle ply

beams, 3 replicate tests.
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Figure C-14. Static load-deflection and strain-deflection

experimental results for 3/4 scale model angle ply

beams, 3 replicate tests.
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Figure C-15(b). Midpoint strain versus normalized end

displacement.

Figure C-15. Static load-deflection and strain-deflection

experimental results for 5/6 scale model angle ply

beams, 3 replicate tests.
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Figure C-16(a). Normalized load versus end displacement.

ANGLE PLY FULL SCALE
15000 ,,

i I0000 _ \
5000

#5 f

m -5ooo

-10000

-15000 T

0.00 0.05 0.I0 0.15

END DISPLACEMENT / LENGTH

Figure C-16(b). Midpoint strain versus normalized end

displacement.

Figure C-16. Static load-deflection and strain-deflection

experimental results for full scale model angle ply

beams, 3 replicate tests.
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Figure C-17(a). Normalized load versus end displacement.
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Figure C-17(b). Midpoint strain versus normalized end

displacement.

Figure C-17. Static load-deflection and strain-deflection

experimental results for 1/6 scale model cross ply

beams, 3 replicate tests.
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Figure C-18(a).
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Figure C-18(b). Midpoint strain versus normalized end

displacement.

Figure C-18. Static load-deflection and strain-deflection

experimental results for 1/4 scale model cross ply

beams, 3 replicate tests.
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Figure C-19(b). Midpoint strain versus normalized end

displacement.

Figure C-19. Static load-deflection and strain-deflection

experimental results for 1/3 scale model cross ply

beams, 3 replicate tests.
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Figure C-20(a).
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Figure C-20(b). Midpoint strain versus normalized end

displacement.

Figure C-20. Static load-deflection and strain-deflection

experimental results for 1/2 scale model cross ply

beams, 3 replicate tests.
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Figure C-21(a).
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Figure C-21(b). Midpoint strain versus normalized end

displacement.

Figure C-21. Static load-deflection and strain-deflection

experimental results for 2/3 scale model cross ply

beams, 3 replicate tests.
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Figure C-22(b). Midpoint strain versus normalized end

displacement.

Figure C-22. Static load-deflection and strain-deflection

experimental results for 3/4 scale model cross ply

beams, 3 replicate tests.
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Figure C-23(a).
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Figure C-23(b). Midpoint strain versus normalized end

displacement.

Figure C-23. Static load-deflection and strain-deflection

experimental results for 5/6 scale model cross ply

beams, 3 replicate tests.
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Figure C-24(a). Normalized load versus end displacement.
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Figure C-24(b). Midpoint strain versus normalized end

displacement.

Figure C-24. Static load-deflection and strain-deflection

experimental results for full scale model cross ply

beams, 3 replicate tests.
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Figure C-25(a). Normalized load versus end displacement.
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Figure C-25(b). Midpoint strain versus normalized end

displacement.

Figure C-25. Static load-deflection and strain-deflection

experimental results for 1/6 scale model quasi-

isotropic beams, 3 replicate tests.
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Figure C-26(a). Normalized load versus end displacement.
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Figure C-26(b). Midpoint strain versus normalized end

displacement.

Figure C-26. Static load-deflection and strain-deflection

experimental results for 1/3 scale model quasi-

isotropic beams, 3 replicate tests.
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Figure C-27(a). Normalized load versus end displacement.
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Figure C-27(b). Midpoint strain versus normalized end

displacement.

Figure C-27. Static load-deflection and strain-deflection

experimental results for 1/2 scale model quasi-

isotropic beams, 3 replicate tests.
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Figure C-28(a). Normalized load versus end displacement.
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Figure C-28(b). Midpoint strain versus normalized end

displacement.

Figure C-28. Static load-deflection and strain-deflection

experimental results for 2/3 scale model quasi-

isotropic beams, 3 replicate tests.
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Figure C-29(a). Normalized load versus end displacement.
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Figure C-29. Static load-deflection and strain-deflection

experimental results for 5/6 scale model quasi-

isotropic beams, 3 replicate tests.

259



0.6

_, 0.4

r_

r_

,_ 0.2

0
.l

QUASI-ISOTROPIC FULL SCALE

#5/

i

0.0o.o o'.1 o'.z o.4
END DISPLACEMENT / LENGTH

%

Figure C-30(a). Normalized load versus end displacement.
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Figure C-30(b). Midpoint strain versus normalized end

displacement.

Figure C-30. Static load-deflection and strain-deflection

experimental results for full scale model quasi-

isotropic beams, 3 replicate tests.
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