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ABSTRACT

Kerekes, John Paul. Ph.D., Purdue University, August 1989. Modeling,
Simulation, and Analysis of Optical Remote Sensing Systems. Major Professor:
David A. Landgrebe.

Remote Sensing of the Earth's resources from space-based sensors has
evolved in the past twenty years from a scientific experiment to a commonly
used technological tool. The scientific applications and engineering aspects of
remote sensing systems have been studied extensively. However, most of
these studies have been aimed at understanding individual aspects of the
remote sensing process while relatively few have studied their interrelations.

A motivation for studying these interrelationships has arisen with the
advent of highly sophisticated configurable sensors as part of the Earth
Observin System (EOS) proposed by NASA for the 1990's. These instruments
represent a tremendous advance in sensor technology with data gathered in
nearly 200 spectral bands, and with the ability for scientists to specify many
observational parameters. It will be increasingly necessary for users of remote
sensing systems to understand the tradeotfs and interrelationships of system
parameters.

in this report, two approaches to investigating remote sensing systems
are developed. In one approach, detailed models of the scene, the sensor, and
the processing aspects of the system are implemented in a discrete simulation.
This approach is useful in creating simulated images with desired
characteristics for use in sensor or processing algorithm development.
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A less complete, but computationally simpler method based on a
parametric model of the system is also developed. In this analytical model the
various informational classes are parameterized by their spectral mean vector
and covariance matrix. These class statistics are modified by models for the
atmosphere, the sensor, and processing algorithms and an estimate made of
the resulting classification accuracy among the informational classes.

Application of these models is made to the study of the proposed High
Resolution Imaging Spectrometer (HIRIS). The interrelationships among
observational conditions, sensor effects, and processing choices are
investigated with several interesting results.

Reduced classification accuracy in hazy atmospheres is seen to be due
not only to sensor noise, but also to the increased path radiance scattered from
the surface.

The effect of the atmosphere is also seen in its relationship to view angle.
In clear atmospheres, increasing the zenith view angle is seen to result in an
increase in classification accuracy due to the reduced scene variation as the
ground size of image pixels is increased. However, in hazy atmospheres the
reduced transmittance and increased path radiance counter this effect and
result in decreased accuracy with increasing view angle.

The relationship between the Signal-to-Noise Ratio (SNR) and
classification accuracy is seen to depend in a complex manner on spatial
parameters and feature selection. Higher SNR values are seen 1o not always
result in higher accuracies, and even in cases of low SNR feature sets chosen
appropriately can lead to high accuracies.



1 Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

1.1 Background and Objective of the Investigation

Remote sensing is defined (Swain and Davis, 1978) as "...the science of
deriving information about an object from measurements made at a distance
from the object, i.e., without actually coming in contact with it." In the context of
observing the Earth, the sensing instruments have evolved from cameras
tethered to balloons, aerial multispectral scanners, to satellite-borne imaging
arrays. Applications have been many, and remote sensing of the Earth for land
resource analysis has developed into a common and useful technological tool.

Countless projects have used remotely sensed data to assess crop
production (MacDonald and Hall, 1978), crop disease (MacDonald, et al.,
1972), urban growth (Jensen, 1981), and wetland acreage (Carter and
Schubert, 1974) as a few examples. The technology of remote sensing has
been studied extensively and is well documented in texts by Swain and Davis
(1978), Colwell (1983), Richards (1986), and Asrar (1989).

While the various aspects of the remote sensing process have been well
documented, the interrelationships among these process components have
been studied comparatively little, especially in regard to sources of error or
noise in the process. Landgrebe and Malaret (1986) looked at the effect of
sensor noise on classification error in one of the few studies of this type, but
there are many more parameters and effects that interrelate.

A motivation for studying these interrelationships has arisen with the
forthcoming deployment of configurable sensors. As part of the Earth Observing
System (EOS) program of the 1990's, several instruments will allow the
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capability for a scientist to specify the observational conditions under which
data are to be collected. It will become increasingly important to develop an
understanding of how various parameters affect the collection of data and the
resulting ability to extract the desired information.

The objectives of this report are to further this understanding of the
remote sensing process through the following efforts:

. Document and model the remote sensing process from an overall
systems perspective.

- Develop tools based on these models to allow the study of the
interrelationships of system parameters.

. Investigate these interrelationships through the application of these
tools to a variety of system configurations.

In this initial chapter, the concept of a remote sensing system is defined
and described. Previous methods of studying the remote sensing process as a
éystem are reviewed and commented upon. A description of the report
organization then concludes the chapter.

1.2 Remote Sensing System Description

In this research, the term remote sensing will be used in the context of
satellite- or aircraft-based imaging sensors that produce a digital image of the
surface of the Earth below for land cover or Earth resource analysis. The
imaging sensor will cover only the reflective portion of the optical spectrum with
wavelengths approximately from 0.4 umto 2.4 um. This context includes many
of the current and near future remote sensing instruments such as Landsat
MSS and TM, SPOT, and HIRIS. The land use application of the imagery
represents a significant application of the technology.

A pictorial description of a remote sensing system is given in Figure 1.1.
This figure gives an overall view of the remote sensing process starting with the
ilumination provided by the sun. This incoming radiance passes through the
atmosphere before being reflected from the Earth's surface in a manner
indicative of the surface material. The reflected light then passes again through
the atmosphere before entering the input aperture of the sensing instrument.
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Figure 1.1 Remote Sensing System Pictorial Description.
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At the sensor, the incoming optical energy is sampled spatially and
spectrally in the process of being converted to an electrical signal. This signal
is then amplified and quantized into discrete levels producing a multispectral
scene characterization that is then transmitted to the processing facility.

At the processing stage, geometric registration and calibration may be
performed on the image in order to be able to compare the data to other data
sets. Feature extraction may also be performed to reduce the dimensionality of
the data and to increase the separability of the various informational classes in
the image. Lastly, the image undergoes a classification and interpretation
stage, most often done with a computer under the supervision of a trained
analyst using ancillary information about the scene.

The entire remote sensing process can be viewed as a system whose
inputs include a vast variety of sources and forms. Everything from the position
of the sun in the sky, the quality of the atmosphere, the spectral and spatial
responses of the sensor, to the training fields selected by the analyst, etc., will
influence the state of the system. The output of such a system is generally a
spatial map assigning each discrete location in the scene to an appropriate
land information class. Other outputs may be the amount of area covered by
each class in the scene or the classification accuracy between the resulting
classified map and the known ground truth of the scene.

In using this definition of a remote sensing system, it must be realized
that it is a representation of the real world, and as such cannot be complete in
characterizing all the inputs, states, or outputs. In this research, the problem is
constrained by defining the system as well as one is able to do. It is an
accepted fact that the system description will be incomplete and lacking;
however, the model developed will represent the best that can be done from the
current knowledge base and can be used as a starting point to increase system
understanding.

To more fully describe a remote sensing system, it is helpful to begin to
break the system down with natural boundaries between the various
component systems. In Figure 1.1 we can readily see the system as being
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comprised of three major subsystems: the scene, the sensor, and the
processing subsystems. This division helps in providing structure to the system
and facilitates identification of various components of the system.

The scene consists of all spectral and spatial sources and variations that
contribute to the spectral radiance present at the input to the sensor. The
sensor includes all spatial, spectral, and electrical effects of transforming the
incident spectral radiance into a spatially and spectrally sampled discrete
image. The processing subsystem consists of all possible forms of processing
applied to the image to obtain the desired information.

Within this scene, sensor, and processing structure it is possible to further
decompose these subsystems into major components and variations. As with
all systems, there are components that represent desired, or signal, states or
variations, and there are those that represent undesired, or noise, states or
variations. Figure 1.2 shows a taxonomy of components and effects that can
degrade the system. This structure is further described in Kerekes and
Landgrebe (1987), and has grown out of the work reported by Anuta (1970).
Likewise, a comparable taxonomy may be developed for signal, or desired,
variations and states that contribute to the output of the system. Figure 1.3 is a
signal taxonomy of such effects.

These taxonomies offer a framework in which remote sensing system
effects can be grouped and located. The categories under the main
subsystems delineate sources of major contributions to the system state. In
some cases, effects or sources are listed in both signal and noise structures.
These dual listings exemplify one of the major problems in understanding
remote sensing systems. Depending on what type of information is desired,
sources or effects may indeed represent both noise and signal effects.

After the system has been broken down into identifiable portions, one
can take these blocks and build them back up into an overall system model.
Through the synergism possible from this combination of models and their
application the overall understanding of the entire process can be improved.
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1.3 Related Work

The systems approach to the remote sensing process has been of
interest for many years. In a tutorial paper by Landgrebe (1971), the ditferences
between image based (photogrammetry) and numerically oriented remote
sensing systems were described. The important factors to consider from an
information point of view were delineated and described. The work described
there helped to shape the ideas that are implemented in this research.

There have been many previous optical system simulation studies
reported in the literature, including those done in the context of civilian remote
sensing and those in a military context. Table 1.1 provides an overview of such
studies including the reference and key characteristics of each.

Those studies fall into one of three categories: Landsat TM sensor
parameter studies, basic parameter studies, and military studies. The Landsat
TM sensor parameter studies were performed in preparation and analysis of the
performance of Landsat-D Thematic Mapper. The basic parameter studies are
ones that are most closely related to what the research in this report considers.
They represent studies showing the tradeoffs of various system parameters and
their effects on some output measure, usually classification error. A few military
system studies are included to represent the unclassified literature in optical
system simulation.

The combination of several characteristics of the research presented in
this report distinguishes it from these previous studies. It presents a
sophisticated framework in which detailed models of the various components of
the system may be implemented. Flexibility has been built in to allow for
expansion and growth. High spectral resolution has been used throughout the
model in simulating the next generation of imaging spectrometers.. Models from
the scene, the sensor, and the processing portions have been integrated to
create the ability to study cross system parameter interrelationship effects on the
classification and noise performance. All of these features together make it an
unique contribution to remote sensing science.
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1.4 Report Organlzation

In this chapter, the objectives of the research were stated as being to
document, model, and investigate the effects of various remote sensing system
parameters on system performance. Also, the concept of a remote sensing
system was defined. Chapter two discusses models and algorithms useful in
simulating the remote sensing system process. Chapter three presents an
alternative system model based on a parametric description of the system state,
using analytical equations to describe the effect of the various system
components. Chapter four presents results of applying these models to various
system configurations based on an imaging spectrometer and studying the
effect of system parameters on noise and classification performance. Chapter
five concludes the report by discussing the results of these studies and possible
future extensions of the work.
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CHAPTER 2

REMOTE SENSING SYSTEM MODELING AND SIMULATION

2.1 Overview of System Model

In the modeling of a complex process, the goal is often to represent the
process faithfully while reducing the complexity of the description. In the
development of a model, we observe the process, take data measurements,
and formulate an abstraction from these observations and data. This model
then describes the process under varying conditions without having actually to
duplicate it. Thus, the model serves as a documentation of our understanding
of the process, as well as a tool useful in gaining insight into its operation. The
models presented in this chapter serve both of these purposes.

The modeling of a system may be done at many levels of abstraction.
The lowest level is the system itself. However this represents little knowledge of
the system and is often impractical to use in studying its operation. The next
level is with the use of detailed models of system components and simulation of
the system operation. This chapter discusses component models useful in such
a simulation. A still higher abstraction is a parametric and analytic description
of the system. Chapter three presents a system model based on this type of a
description.

The modeling of an optical remote sensing system is challenging
because of its complexity. However, through the use of the taxonomies
developed in the previous chapter this can be reduced to a manageable task.
In chapter one the remote sensing process is described as a system and further
divided into three subsystems: the scene, the sensor, and the processing
subsystems. Figure 2.1 shows this division in the context of a system mode! that
is described in this chapter for the simulation of the remote sensing process.
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The following sections detail the models used for the scene, the sensor,
and the processing subsystems. In each section various approaches to
modeling or describing the processes involved are discussed. Section 2.2
discusses considerations in modeling the surface reflectance and the
atmospheric effects and presents the model used in this report for simulating the
scene. Section 2.3 describes the effects on the scene radiance introduced by
the sensor, in both the remote sensing process and the simulation. Section 2.4
discusses approaches to extracting information from a multispectral image, as
well as describing the options available in the simulation. Section 2.5
summarizes the models presented in this chapter.

2.2 Scene Models

The scene subsystem is by far the most complex, varied, and unknown of
the remote sensing process. It is understood that no model can accurately
represent all of the complex variations that make up the spectral radiance
present at the input of the sensor. However, through the use of various
simplifying assumptions, developing such a model becomes a reasonable task.
In this section, approaches to modeling the scene are discussed.

From the taxonomies of chapter one, the scene is seen to consist of the
solar illumination and atmospheric effects, the surface reflectance, and the
goniometric effects due to the angles of illumination and view. In developing a
model for the scene, models for the solar illumination and atmosphere, along
with the surface reflectance are used, while the goniometric effects are
embedded within the relationships between these two components. Figure 2.2
presents a block diagram of the basic scene model structure.

Solar Surface Upward Scene
Atmospheric Spectral
INlumination [ Reflectance > Effe?:ts R:diance

Figure 2.2 Scene Model Block Diagram.
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To further describe the modeling of the scene, the rest of this section is
divided into two parts. Section 2.2.1 discusses modeling of the surface in
general terms, as well as describing in detail a model used to simulate the
surface reflectance. Section 2.2.2 then discusses the solar illumination and the
atmospheric effects present in optical remote sensing systems and their
simulation implementation.

2.2.1 Surface Reflectance Modeling

In this section various methods of representing the reflectance of the
surface are presented. The discussion begins with the most general way of
describing this reflectance, followed by approaches using deterministic canopy
models, and then concludes with models developed from the statistics of field
reflectances. The model chosen for implementation in the simulation is then
discussed.

The most general measurement of the reflectance of a surface is given by
the Spectral Bidirectional Reflectance Distribution Function (SBRDF). This
function is defined (chapter two of Swain and Davis, 1978) as in equation 2.1.

dL, (6

q)view) 1
pl(esolar’(psolar’eview’q)view) = dEx(O

view' sr (2'1)

solar’¢solar)

Here, L,(8yiew-Oview) i the reflected spectral radiance observed at angles
Bview Oview: @nd Ex(Osolar9solar) is the incident spectral irradiance at angles
Bsolar Psolar- The geometry used here and in the rest of the report is shown in
Figure 2.3.
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? Sensor

solar

Figure 2.3 Scene Geometry.

The quantities 8445, and 6., are the zenith angles as measured from
local vertical, while ¢¢42r and 6,0, are the azimuthal angles as measured from
North on a map.

The SBRDF gives the reflectance of an object from all angles of
incidence and view and thus is the most complete representation of the surface
reflectance. However, the accurate measurement of the SBRDF is a difficult
task and few studies have been made.

A problem in obtaining the SBRDF arises due to spatial considerations.
Typically, in remote sensing applications the scene is sampled spatially across
two dimensions at some surface cell size Gy by Gy. A rectangular coordinate
system is overlaid and an aggregate reflectance is obtained over each
individual cell at spatial location (x,y). An aggregate SBRDF is then a function
of not only the geometry involved, but also the surface resolution cell size, the
location in the scene, and the various materials contained within the cell.
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Aggregate SBRDF = Px,ag(Gx»Gyvxvyvesolar»¢solarieview-¢view) (2.2)

Since the surface cell size Gy by Gy, may be a number of meters square
in typical remote sensing data sets, the measurement of the aggregate SBRDF
on the surface is very inconvenient. Shibayma and Wiegand (1985) and lrons,
Ranson, and Daughtry (1988) have reported some measurements of this type,
but for limited crop species and over few wavelength intervals.

Thus, while the use of the measured SBRDF is the most complete way of
representing the reflectance of the surface, it is impractical to use because of
the difficultly in obtaining complete data for various cover types.

Strahler, Woodcock, and Smith (1986) discussed modeling of the scene
for land resource remote sensing applications and divided surface models into
two types: deterministic canopy models and stochastic image processing
models. The term canopy comes about because these models attempt to
calculate the SBRDF of vegetation by using radiative transport theory.
Differential equations are used to compute the reflectance/transmittance of the
several layers of leaves in a vegetative canopy.

Some examples of canopy models are the AGR model (Allen, Gayle, and
Richardson 1970), the Suits model (Suits 1972a) with extensions for azimuthal
(Suits 1972b) and row effects (Suits 1982), the SAIL model (Verhoef 1984), and
the models by Park and Deering (1982), Cooper, Smith and Pitts (1982), and
Kimes and Kirchner (1982). All of these models are based upon having precise
knowledge of the reflectance, transmittance, and orientation of the leaves in
each layer of the canopy. A model that used probability distributions in
describing the orientations of the layers was described in Smith and Oliver
(1974).

All of these canopy models, however, only consider the reflectance within
a single surface cell, assuming the entire area covered by a particular surface
type is homogeneous and with no regard to the spatial variability typical of
almost all remotely sensed scenes. While they are capable of accurately
modeling the SBRDF of a particular surface material, their lack of spatial
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information limits their applicability for the type of system study undertaken in
this research. However, it certainly would be conceivable, if one had the
appropriate data, to extend a canopy model to be able to contain spatial
information and develop a very accurate surface reflectance model.
Unfortunately, this type of detailed database does not exist at the present time.

Image processing models, on the other hand, are not concerned with the
reflectance structure within a scene resolution cell, but rather how the
reflectances vary spatially and spectrally from cell to cell. In these models, the
spectral reflectances of a surface area are taken to be multidimensional (across
the spectral domain) random vectors with spectral and spatial correlation.
While these models are usually developed from imagery that represent the
radiance over an area, it can be assumed that the reflectances of the surface
cells vary similarly in the spatial sense as do the image pixels. Also, the
reflectance within each cell is assumed to be independent of illumination or
viewing angle. This is known as Lambertian reflectance (Swain and Davis,
1978).

In the use of image processing models for the surface reflectance two
assumptions are gen‘erally made about the spectral and spatial variation in the
scene. The multispectral reflectance vectors are usually assumed to be
samples from an M-dimensional multivariate normal (or Gaussian) probability
distribution function. The form of this distribution is shown in equation 2.3.

S I
PXyXp0eeni Xy ) = ! eXp{%(X-X)TE (X-X)} (2.3)

a1zl

Here, X={xq,xp,...,.x)T data vector, X is the mean vector, and X is the

covariance matrix.

The work that is often cited in justifying this assumption is that of Crane,
Malila, and Richardson (1972). They worked with 12 band MSS data that was
transformed to its principle component space and reduced to three bands.
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Since the transformation produces uncorrelated variables, they tested each of
the three bands for goodness-of-fit to Gaussian random variables. While the
results showed a fairly good fit to the univariate Gaussian model, they ignored
the fact that just because these random variables were Gaussian, that did not
mean that the original 12 dimensional random vectors were multivariate
Gaussian. This comes about because of the fact that combining Gaussian
random variables into a vector does not necessarily result in jointly Gaussian
random vectors. A much better test would be to use the procedures discussed
in Koziol (1983) or Smith and Jain (1988) to check for multivariate normality.

Some early work done at LARS found the Gaussian assumption not to
hold under the Chi-Square goodness-of-fit test. Members of the LARS Staff
(1969) found that the Gaussian assumption did not hold for several
multispectral data sets gathered from an airborne scanner. The results of this
study may have been affected by the particular data they considered, or even
the histogram cell interval used in the distribution test.

Nevertheless, the Gaussian assumption results in much simpler
methods of generating and analyzing the data than those based upon more
accurate, yet computational complex models.

Remotely sensed images have also been shown to have a pixel to pixel
spatial correlation. Kettig (1975) used this fact in development of the ECHO
spatial classifier. Also, Mobasseri (1978) developed a multispectral spatial
model that was a separable (across and down scene) exponential model. This
spatial model used by Mobasseri is specified by its spatial autocorrelation
function R,,(t,n) for the scene reflectance r, as given in equation 2.4.

E{ Oty ) F R (rm)=¢ g ol (2.4)

Here, a,, and b,, are the across scene and down scene correlation
parameters for wavelength m, and 1 and n are the respective scene cell lag

values. The coordinates (x,y) are the scene cell location.
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Equation 2.4 may also be written in terms of the autocorrelation
coefficients, p, = e2 and py =€, as in equation 2.5.

fd - Anl
Rmm(‘f,ﬂ) = pn:\t.x pm_y (25)

This form of autocorrelation for a random field is equivalent to that of a
wide-sense Markov random field with the neighbor set consisting of the quarter-
plane causal neighbors, {(0,-1), (-1,0), (-1,-1)} (chapter seven of Rosenfeld and
Kak, 1982). This is also equivalent to a two-dimensional autoregressive (AR)
model (Delp, et al., 1979) as given by equation 2.6.

r(x,y) = C1r(x-1y) + Car(x,y-1) +C3 r(x-1,y-1) + oy z{(x,y) (2.6)

Here,

X,y - high resolution spatial column, row index in scene

Cq=px

Ca=py

C3 = -pxpy

oy - standard deviation of Gaussian driving process, computed to retain
unit variance for r (See algorithm given in Appendix A)

z(x,y) - independent Gaussian random numbers with unit variance and
zero mean.

Given arbitrary initial conditions, the AR model can easily generate a
reflectance array with the desired spatial correlation. Other methods also exist
to generate a random field with the spatial model of equation 2.4. Mobasseri
(1978) used a Fourier-based technique, and Chellappa (1981) studied methods
of generating spatially correlated arrays using arbitrary neighborhoods.

Using the Least Squared Error (LSE) estimation technique for the AR
coefficients as described in Delp, et al., (1979) some typical coefficients for the
AR model were calculated. Table 2.1 shows these typical values of the spatial
parameters for a variety of scene types, computed from a line scanner image of
an infrared band.



Chapter 2 - Remote Sensing System 20
Modeling and Simulation

Table 2.1 Typical Spatial Model Parameters.

Full cover vegetation C4=0.63 C,=0.55 C3=-0.35
Just emergent row crops C4=0.63 C,=0.70 Cs=-0.44
Bare soil field C4=0.57 C,=0.72 Ca=-0.41

A problem with using line scanner imagery to compute the spatial
statistics is that there is correlation introduced by the instrument itself, and as a
result, computing the statistics from the image data does not truly represent the
correlation of the original scene. This is difficult to prevent, as with any imaging
sensor this effect will be present. It is known, however, (Papoulis, 1984) that the
output correlation is greater than the input correlation for a linear system with
the response similar to imaging systems. Thus, one can reasonably assume
that the actual pixel to pixel correlation of the original scene was slightly less
than that which was computed from the imagery.

An alternative method of gathering data to estimate spatial correlation is
to use an instrument such as the Field Spectrometer System (FSS) described in
Hixson, et al., (1978). With this instrument, spectral reflectance measurements
were made with a spectral resolution of approximately 20 nm, and a ground
field of view of approximately 25 meters. The instrument was mounted ina
helicopter and flown over fields at a height of approximately 60 meters. The
instrument made spectral radiance measurements that were converted into
reflectance by comparison to the radiance measured over a known calibration
panel. The report by Biehl, et al., (1982) describes the database of reflectance
data measured by this and other instruments.

A comparison of the spatial correlation of imagery and spectrometer
samples was made for two fields from Hand Courty, South Dakota. Both
aircraft line scanner imagery and FSS reflectance data were obtained over
fields 168 and 288 on July 26, 1978. Field 168 was mostly bare soil, while field
288 was ripe Millet with nearly 100% ground cover. The spatial correlation of
the imagery was done in the same direction and over the same area that the
FSS had acquired data. The direction was along the flightline for both
instruments. Since the aircraft imagery had a ground field of view of
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approximately eight meters, the correlation coefficients for the aircraft imagery
were calculated at both one and three pixel lag values to be able to compare
the coefficients with those of the FSS at a similar intersample distances. The
correlation coefficients are computed with the estimate given in equation 2.7.

N-1

n=1

Here, 1 is the lag value, N is the number of data samples and X is the
sample mean. Table 2.2 shows the spatial correlation coefficients for two
wavelengths in each field and two pixel distances of the aircraft scanner.

Table 2.2 Spatial Correlation Coefficients for Hand County, South Dakota.

“Field  [Wavelength| Aircraft | Aircraft FSS
Number 8 Meters | 24 Meters | 25 Meters
168 0.56 um 0.82 0.31 0.28
Bare Soil 1.00 um 0.87 0.53 0.48

288 0.56 um 0.61 0.44 0.25
Ripe Millet 1.00 um 0.67 0.20 0.16

The results of Table 2.2 show that as the distance between samples
increase, the correlation coefficient decreases. Also, there seems to be a
significantly higher correlation among the imagery pixels as compared to those
of the spectrometer, even when they are computed using samples a similar
distance apart. Thus, there does appear to be an increase in the correlation
coefficient due to the characteristics of the line scanner.
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To investigate the typical variation of the correlation across the spectrum,
the spatial correlation coefficient was computed from some FSS data of a winter
wheat field (number 151) from Finney County, Kansas taken on May 3, 1977.
The wheat was beginning to ripen and there was approximately 30% ground
cover. There were 58 samples across the field, each about 20 meters apan.
The correlation coefficient for t=1 as calculated in equation 2.7 for each

wavelength is shown in figure 2.4.

1.0
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Figure 2.4 Correlation Coefficients of Winter Wheat Field.

The large peak around 1.4 and 1.9 um is due to substituting 0.1% for the
reflectance in the water absorption bands of the data. The other large peaks
are also due to atmospheric absorption bands. The flat segments are from
repeated values used in the plot due to the uneven spectral sampling of the
FSS. For most of the wavelengths the correlation coefficient ranges around
0.85. This correlation among samples is significantly higher than those of Table
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2.2. This is indicative of the high variability in correlation among surface cover
types and conditions.

While the exponential model! is one way of modeling spatial correlation,
spatial models based on fractal geometry (Mandlebrot 1977, 1982, Gleick 1987,
and Peitgen and Saupe 1988) have emerged as a powerful method for
modeling natural phenomena. This is partly because its mathematical
construction is similar to what is observed in natural scenes. In two spatial
dimensions, the fractal random field r(x,y) has the property shown in equation
2.8, where D is the fractal dimension (2<D<3).

13-D
E{ | rix,y,) - r(x,,y1>12} o { (%= x,) +(y, - yg"] (2.8)

That is, the variance of the difference between pixel locations is
proportional to the distance raised to a fractional power. Several experiments
were conducted to measure the fractal dimension of typical agricultural scenes.
Values for D ranged around 2.610.1 for several cover types. See Dodd (1987)
for an example in using fractal concepts to generate multispectral texture by
computing the fractal dimension D from principle component images.

While several methods have been discussed for generating scenes with
spatial correlation, the autoregressive model was chosen for implementation in
the simulation. This model is efficient in generating a simulated reflectance
array using computer-generated random numbers. Table 2.3 presents an
overview of the technique used to simulate the surface reflectance, while the
paragraphs following describe these steps in detail.
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Table 2.3 Sequence in Generating a Simulated Surface Reflectance Array.

Step 1. Define scene size and class boundaries.

Step 2. Obtain spatial and spectral statistics of
reflectance data for each class.

Step 3. Generate spatial correlated reflectance
arrays for each wavelength, with each array
being spectrally uncorrelated.

Step 4. Transform each reflectance vector to have
the proper mean and covariance for the
appropriate class.

Step 5. Interpolate resulting spectral reflectance
vector to the desired spectral resolution of
scene.

The scene is first defined by determining its size, X columns by Y rows,
where each location (x,y) is a square scene cell with the distance on one side
specified in meters. Each of these scene cells are assigned to one of the K
classes. Class boundaries are specified by the upper left index and lower right
index of the rectangular area containing the class. N

Reflectance data for each class used in the simulation is obtained from
the database of FSS measurements. Over the wavelength range considered in
this report there are 60 wavelength samples in the FSS data. Thus, the spectral
statistics are 60 dimensional. The across scene and down scene spatial
coefficients are estimated from imagery over scenes similar to the one being
simulated. Typically, the same spatial correlation is assumed for each
wavelength, while no wavelength-to-wavelength spatial crosscorrelation is
specified.

The AR model is used to generate the spatially correlated reflectance
cells within the area defined for each class k, and for each wavelength band m
as shown in equation 2.9,
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I’m(x,y) = Px |'m(x'1 vY) + Py rm(er'1) - pxpy rm(x'1 :Y'1) + Gy Z(XrY) (2~9)
where the symbols are defined as in equation 2.6.

The individual arrays {r.,(x,y)} are arranged as a spectral vector array,
{R(x.y)}. Reflectance data of each class k are used to compute the mean vectors

l—)k and covariance matrices Ek. The eigenvalues and eigenvectors of these
covariance matrices are then computed and arranged as diagonal matrices Ak

and column matrices (Dk, respectively. The surface reflectance array {P(x,y)} is

then obtained by using equation 2.10, where for each scene cell location (x.y)
the appropriate class transformation is applied.

x N'-.A

P(xy) =P _+ (I)k A, R(xy) (2.10)

The resultant reflectance array will be multivariate Gaussian with the
mean and covariance of the original class statistics, and be spatially correlated
according to the exponential model of equation 2.4.

While the FSS reflectance data covers the entire range from 0.4 to 2.4
um, the wavelength sampling is uneven, ranging from 20 nm to 50 nm. In order
to have a uniform spectral resolution for the scene model, an interpolation is
performed on each spectral reflectance vector to yield 201 wavelengths spaced
at 10 nm intervals. The algorithm used to perform this interpolation is given in
Appendix B.

2.2.2 Solar and Atmospheric Modeling

In this section, the modeling of the solar illumination and the atmospheric
effects present in optical remote sensing systems is discussed. Following a
preliminary list of references to work in this area, a general model of the
atmosphere is presented. This is followed by a discussion of measures of
atmospheric quality. The model used in the simulation is then presented, along
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with several curves showing the effect of various parameters on the
atmospheric model. The section concludes with a comparison of the model
atmosphere with real measurements for a particular test site.

The solar extraterrestrial flux and the atmosphere have been studied
extensively over the years. Accurate measurements of the solar curve have
been made and are well documented in the literature. For example,
publications by Thekaekara (1974) and Bird (1982) contain solar standard
curves. Discussions of the atmosphere may be found in chapter two of Swain
and Davis (1978), Chahine (1983), and chapters five and six of Wolfe and Zissis
(1978). Atmospheric simulation models have been reported in Kneizys, et al,,
(1983, 1988), Turner (1983), Diner and Martonchik (1984), and Herman and
Browning (1975) among others.

The atmospheric effect on spectral radiance consists of two main
mechanisms, scattering and absorption. Scattering is mainly due to the
presence of particles in the atmosphere, while absorption comes about due to
the energy transfer from the optical radiation to molecular motion of atmospheric
gases. Both of these effects are wavelength dependent.

Figure 2.5 gives a pictorial view of the various atmospheric effects on the
spectral radiance received by the sensor.
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Figure 2.5 Atmospheric Effects on Spectral Radiance Received by Sensor.

From this figure, several main factors are seen to contribute to the
radiance received by the sensor. The exoatmospheric spectral irradiance,
Ex.Exor IS attenuated and scattered by the atmosphere before reaching the
surface as the direct spectral irradiance Ex Direct- Some of this scattered
radiation also reaches the surface as Ea pifiuses the diffuse spectral irradiance (or
skylight irradiance.) The reflected spectral radiance L surtace Passes through
the atmosphere and is attenuated by the spectral transmittance Ty atm of the
atmosphere. Also, some of the solar irradiance that is scattered by the
atmosphere finds its way into the sensor field of view as Ly patn, the path
spectral radiance. This path radiance also includes that which may have been
reflected off of the nearby surface (adjacency effect) before being scattered into
the sensor field of view, as well as the background radiation of the atmosphere.

These factors contribute to the spectral radiance of the scene, as
received by the sensor, in a manner described by equation 2.11.
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[

_1fcos(e_ YE . +E . 1
Ll,Sensor =T l solar’ —A,Direct )..DlﬂuseJ R;‘ Tk.Atm + LLPa’th (2.11)

Here, R, is the spectral reflectance of the surface. In the most general
sense it is the Spectral Bidirectional Reflectance Factor (SBRF) that gives the
reflectance for all angles of incidence and viewing. The other factors also
depend upon the angles of illumination and viewing as well as the quality of the
atmosphere.

Several other important aspects of the real atmosphere also influence
the values in equation 2.11. One is the spatial dependence of the atmospheric
scattering and absorption effects. The make-up of the atmosphere is not
constant over a scene; however, it is unclear how the atmosphere changes from
pixel to pixel over typical pixel sizes (20-30 meters), and is usually assumed to
be constant. Another spatial effect of the atmosphere is the blurring that can be
introduced by the scattering in the atmosphere. Kaufman (1985) has studied
the atmosphere from this point of view, suggesting that the atmosphere be
modeled with a spatial modulation transfer function (Goodman, 1978) similar to
those used in the modeling of sensors. This could be implemented in the model
in a spatial convolution with the scene radiance. Yet another effect that is often
ignored is the time dependence of the atmospheric effects. Fast moving gases
exist in the upper atmosphere and cause a changing effect on the scattering
and absorption over the field of view of the sensor. The movement of clouds is
an example of this time dependence.

The quality of the atmosphere may be represented by several different

measures. The fundamental parameter for atmospheric quality is the spectral
optical thickness t,. The spectral transmittance Ty aym Of the atmosphere

between two points x4 and x, is defined by equation 2.12 where B(A,z) is the
volume extinction-coefficient with units of Km-1.
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Taam =€%P| - jm’z) dz (2.12)

The integral inside the exponent of this equation is known as the spectral
optical thickness 1, and is defined in equation 2.13.

T, = jﬁ(k,z) dz (2.13)

Visibility is also often used as a measure of the clarity of the atmosphere
and is defined (Kneizys, et al., 1983) by "the greatest distance at which it is just
possible to see and identify with the unaided eye in the daytime a dark object
against the horizon sky." The surface meteorological range V, is related to
visibility (usually by a factor of 1£0.3), but defined numerically, rather than by
subjective judgement. For the typical atmospheres used in this repon, it is
assumed that the two terms can be used interchangeably. Surface
meteorological range is related to the volume extinction-coefficient at A=0.55
um through equation 2.14.

3.912
V=5 = Km (2.14)
A=0.55

Surface meteorological range (or visibility) is the measure commonly
used in remote sensing for atmospheric quality. However, some experiments
specify the optical thickness (also called optical depth for a vertical path). Data
from Elterman (1970) was used to find an empirical relationship between optical
thickness and visibility. Figure 2.6 shows points from Elterman's data along
with a best fit curve. These data points are for A = 0.55 um. Optical thickness is
also dependent upon wavelength. Data from Elterman (1968) was plotted in
Figure 2.7 along with a best fit curve for the empirical data. This relationship is
for a surface meteorological range of 25 Km.
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Figure 2.6 Optical Thickness 1 vs. Visibility.
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Figure 2.7 Optical Thickness vs. Wavelength.
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These empirical relationships were used to derive equation 2.15 relating
spectral optical thickness to meteorological range and wavelength.

-1.328, -0.656
T, (V) = 1350V (2.15)

This equation is assumed to be valid only over optical wavelengths and
meteorological ranges from 2 to 50 Km.

In this research the solar and atmospheric model is implemented with the
use of the computer code LOWTRAN 7 (Kneizys, et al., 1988). The program
LOWTRAN has evolved over the years from simply an atmospheric
transmittance code to one that is now capable of computing direct solar
irradiance and multiply scattered atmospheric radiance.

LOWTRAN uses radiative transfer theory to compute the transmittance
and radiance in each of 32 layers of the atmosphere. Well documented data
tables embedded within the program give accurate spectral transmittance and
radiance values at minimum wavenumber intervals of 20 cm-!. This model
compares favorably to ones developed by Diner and Martonchik (1984), and
Herman and Browning (1975), because of its continuous spectral coverage and
its inclusion of narrow absorption bands due to the various constituents of the
atmosphere. A partial list of controllable parameters for LOWTRAN 7 is
contained in Table 2.4.

Table 2.4 Example LOWTRAN 7 Parameters

Solar position

Meteorological range

Surface albedo

Atmospheric haze

Altitude of observer

Zenith angle of observer
Wavelength range and increment
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LOWTRAN 7 is used along with the models discussed below for the
diffuse irradiance and path radiance to compute the radiance received by the
sensor. Appendix C contains the input file format used in the calls to
LOWTRAN.

The spectral radiance present at the input to the sensor model in the
simulation program is computed as in equation 2.16.
1
Ll,Sensor (X’Y) =T EhTotal P(X’Y) TAtm + L)L,Path (2'16)

The generation of the three atmospheric components of this equation is
discussed below, while the spectral reflectance array P(x,y) is as calculated in

section 2.2.1.

1. JTotal Spectral Irradiance. This is the total downwelling spectral

irradiance Ej 1ot that is incident at the surface, and is equal to the sum of the
direct and diffuse irradiances as shown in equation 2.17.

E cos(0

A, Total = solar) El,Direct + El,Diﬂuse (2-17)

Since LOWTRAN does not have an option to generate the diffuse
component, a model was obtained from Chahine (1983). There, the total
surface spectral irradiance Ej 1o1a IS Shown to be related to the direct spectral
irradiance through the curve given in Figure 2.8. Also shown in the figure is an
exponential model derived from the data.
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Figure 2.8 Ratio of Direct to Total Irradiance vs. Total Optical Path Length.

The total optical path length o1 IS related to the optical thickness by
multiplying by sec(6,,) as in equation 2.18.

Tp,x(vn’esolar) = Tl(Vn)SeC(esolar) (2.18)

This relationship between direct and total irradiance is given as a
function of the total optical thickness of the atmosphere in equation 2.19. Thus,
equation 2.19 can be used in conjunction with equation 2.15 to obtain the total
surface spectral irradiance from the direct spectral irradiance, the surface
meteorological range, the diffuse irradiance constant, and the solar zenith

angle.

Oorar)

COS(Bsolar) E).,Direct (VT\' solar

(2.19)

E (Vp 0, ) =
ATotal © " “solar exp[ -KD TX(VTI) sec(esolar)]
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The diffuse irradiance constant Kp is dependent upon the type of
atmosphere and the overall surface reflectance. In the discussion by Chahine
(1983) from which Figure 2 8 was taken, the author stated that the curve was for
a nonabsorbing atmosphere and surface albedo < 15%. It was also indicated
that for absorbing atmospheres and higher albedoes the curve would be
steeper. While no specific values were given in the reference, Table 2.5 shows
some estimates of K for different conditions. The model shown in Figure 2.8
was with Kp = 0.73.

Table 2.5 Diffuse Irradiance Constant Values.

Kp Type of Atmosphere Surtace Reflectance
0.73 nonabsorbing low ( < 15%)
0.84 absorbing low ( < 15%)
1.00 absorbing medium (15 - 30 %)
1.26 absorbing high (> 30%)
2. MMMLI@M This is directly computed using

LOWTRAN for a path from the surface to the sensor. This may be a vertical or
slant path through the atmosphere, depending on the zenith angle of the
sensor. It represents the path loss due to scattering and absorption.

3. Path _Spectral Radiance. This is computed by using two calls to
LOWTRAN. It is called once for a surface albedo of 0 and once for an albedo of
1. The total path radiance received by the sensor is then computed by
interpolating between these extremes as in equation 2.20, where (x,y,m)
specifies the spatial location x,y and wavelength m. pp, ave(X.y) is the average
surface reflectance for wavelength m in the neighborhood of Xx.y. In
implementing this model in the simulation the entire scene is used in computing

pm,ave(X’Y)-

alb=0

l_alb-1 alb=0
Lk,Path(x’y'm) = Lx,Path (m) + pm.ave(x'Y) ° k,Path(m) ) x,Path(m) (2.20)
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This formulation of path radiance allows for its dependence on the
surface reflectance. This does not truly represent the situation in the real
system, as the path radiance there ig dependent upon the reflectance of the
surface for each particular path the illumination follows before arriving at the
sensor, and there are many paths the illumination may take. However, this
simple linear model offers good compromise between accuracy and
computational complexity.

On the following pages, examples of how various scene parameters

affect these atmospheric model components. For these examples the default
parameters of Table 2.6 were used.

Table 2.6 Default Values of Atmospheric Parameters.

[Parameter Default

Model 1976 U.S. Standard
Atmospheric Haze Rural Extinction
Surface Meteorological Range 16 Km

Diffuse Irradiance Constant 0.73

Solar Zenith Angle 300

View Zenith Angle 00

Surface Albedo 0.10

The following figures 2.9 through 2.14 show the direct, diffuse, and total
spectral irradiance for several meteorological ranges and solar zenith angles.
The curves for the diffuse irradiance were computed as the difference between
the total and direct spectral iradiances. Figures 2.15 and 2.16 show how
atmospheric transmittance varies for several meteorological ranges and view
angles. Figures 2.17 through 2.20 show how the path radiance component is
affected by meteorological range, solar angle, view angle and surface albedo.
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Figure 2.9 Effect of Meteorological Range on Direct Solar Spectral Irradiance.
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Figure 2.10 Effect of Solar Zenith Angle on Direct Solar Spectral Irradiance.
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Figure 2.13 Effect of Meteorological Range on Diffuse Solar Spectral Irradiance.
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Figure 2.14 Effect of Solar Zenith Angle on Diffuse Solar Spectral Irradiance.
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Figure 2.19 Effect of Sensor Zenith Angle on Path Spectral Radiance.
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These curves give an indication how the components of the atmospheric
model vary under different conditions. In general, they show how a hazier
atmosphere will allow less radiance to be received by the sensor from the
surface, yet increases the path radiance, and how the angle of illumination or
view can decrease the signal radiance as well as increase the path radiance.
The path radiance is also seen to increase with surface albedo.

An experiment was performed to test the suitability of the atmospheric
model by comparing the radiance received by a satellite to that simulated by the
model from a description of the scene conditions and the reflectance of the
surface. A test site in Hand County, South Dakota was chosen from data
gathered as part of the LACIE program (Hixson, et al., 1978). On July 26, 1978,
reflectance data was gathered at approximately the same time as the Landsat 2
MSS passed over the area. The parameters of these sensors are shown in
Table 2.7.

Table 2.7 Data Set for Hand County, South Dakota, July 26,1978.

Landsat 2 Multispectral Scanner

Spectral Channels 4 bands, 0.4 - 1.1 um
Scene 21281-16232
Altitude 918 Km
Ground Size of IFOV 80 Meters
Time 1623 GMT
Helicopter Field Spectrometer System
Spectral Channels 60 bands, 0.4 - 2.4 um
Altitude 60 Meters
Ground Size of FOV 25 Meters
Time 1505 - 1601 GMT

A particular area having four large nearly square fields was selected for
test. Table 2.8 contains the field numbers from the LACIE experiment and the
crop types.
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Table 2.8 Description of Test Fields.

[ Field Number | _ Crop Type Ground Cover
Field 290 Spring Wheat 30 Percent
Field 168 Millet 10 Percent
Field 289 Spring Wheat 30 Percent
Field 288 Millet 90 Percent

In order to compute the radiances received by the MSS, a table of
conversion constants was obtained from the work by Richardson, et al., (1980).
Table 2.9 shows the A; and B; used to compute from the digital counts DC, the
radiance present at the input of Landsat 2 MSS in band i. Equation 2.21 shows
how these constants are used to compute the radiance. The units of A are
mW/(cm?2-sr-digital count) and for B are mW/(cmZ2-sr).

Table 2.9 Conversion Constants Between Radiance and Digital Counts.

——

—Bang A B
1 0.0201 0.08
2 0.0134 0.06
3 0.0115 0.06
4 0.0603 0.11
Li = Ai DCi + Bi (2.21)

In generating the simulated radiance, the atmospheric model described
earlier in this chapter was used with the radiances integrated over the nominal
wavelength intervals of each band of the MSS sensor. Thus, the radiance in
each band i was generated as in equation 2.22.

1 1 . 0 0
L= 7 B vota Tiam B+ [ Lipah Li.PathJ R+ L pan (2.22)
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Here, R; is the average reflectance in band i. Table 2.10 gives the
atmospheric and goniometric conditions present at the time of observations.

Table 2.10 Scene Conditions at Time of Observations.

MeteorologicaTﬁEnge (Vp) 31 Km
Solar Zenith Angle (05o1ar) 390
Solar Azimuth Angle (¢sojar) 1190
Diffuse Irradiance Constant (Kp) 1.26

Table 2.11 contains the LOWTRAN settings used in generating the
simulated atmospheric effects.

Table 2.11 LOWTRAN Settings for Experiment.

Atmospheric Model 1976 U. S. Standard
Atmospheric Haze Rural Extinction
Atmospheric Scattering Multiple

Aerosol Phase Functions Mie-generated

Aerosol Profile Background Stratospheric

All other LOWTRAN parameters were set to zero, or the default. Table
2.12 shows the atmospheric components generated by LOWTRAN for each of
the spectral bands, while Table 2.13 compares the simulated to the actual
radiances received by the satellite.
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Table 2.12 Atmospheric Components for the Hand County Test Site.

mW mwW mwW
Band ETotal(csz Tatm I'F'ath-‘[cmz - er LF'a""-(’(cmz - er

1 16.296 0.684 1.131 0.248
2 14.036 0.746 0.735 0.128
3 10.843 0.764 0.434 0.068
4 19.329 | 0.774 0.524 0.071

Table 2.13 Comparison of Actual and Simulated Radiances (in mW/(cm2-sr)) for
Test Site in Hand County, SD.

FSS |MSS Average| Landsat | Simulated Percent
Reflectancd Digital Count | Radiance | Radiance Error
Field 290
Band 1 0.063 215 0.512 0.527 +2.9
Band 2 0.083 26.9 0.421 0.455 +8.1
Band 3 0.166 44.2 0.568 0.566 -0.4
Band 4 0.240 20.7 1.358 1.323 -2.6
Field 168
Band 1 0.068 23.7 0.556 0.549 -1.3
Band 2 0.088 31.0 0.475 0.475 0.0
Band 3 0.121 36.8 0.483 0.431 -10.8
Band 4 0.182 16.6 1.111 1.020 -8.2
Field 289
Band 1 0.058 22.1 0.524 0.505 -3.6
Band 2 0.078 27.6 0.430 0.435 +1.2
Band 3 0.143 43.2 0.557 0.497 -10.8
Band 4 0.208 20. 1.322 1.156 -12.6
Field 288
Band 1 0.043 18.3 0.448 0.439 -2.0
Band 2 0.031 14.8 0.258 0.250 -3.1
Band 3 0.252 66.1 0.820 0.825 +0.6
Band 4 0.388 36.6 2.317 2.094 -9.6

A scatter plot of the simulated radiances versus the measured ones s
shown in Figure 2.21. The solid line is a best linear fit to the points with a
regression coefficient of 0.99, while the dashed line represents the ideal of
equal radiances.




Chapter 2 - Remote Sensing System

Modeling and Simulation

Simulated Radiances

46

25

2.0 1

154

1.04

0.5 1

0.0
0.0

0.5

1.0

1.5

2.0

2.5

Landsat Radiances

Figure 2.21. Plot of Landsat vs. Simulated Radiances.

The error between the Landsat and the simulated radiances seems to be
equally distributed (+ and -) for bands 1 and 2, while the radiances in bands 3
and 4 seem to be consistently underestimated by the model. The greater error
at the longer wavelengths may be due to several factors. The diffuse irradiance
component may be on the low side because of the high reflectances of the
surrounding area. Also, LOWTRAN may be underestimating the path radiance

calculation.

Overall, there seems to be a close match between the Landsat radiance
and the simulated radiance. It would seem then, that this atmospheric mode! is
reasonably satistactory.



47 Chapter 2 - Remote Sensing System
Modeling and Simulation

2.3 Sensor Modeling

The sensor portion of optical remote sensing systems performs the task
of sampling the continuous spectral radiance of the scene in the spectral,
spatial, radiometric, and temporal domains. This results in a digital
multispectral image of a scene at a certain moment in time, with a discrete
number for the radiance at each spot in the scene and for each spectral region.

The modeling of imaging sensors can be quite complex indeed. One
may consider the propagation of the optical waves through the sensor optics
(including aberrations), the conversion from light to electrons in the detector
material, and the effects in the signal conditioning electronics. Goodman (1968)
provides a good discussion of the propagation of optical waves in imaging
systems from a linear systems point of view. Texts by Hudson (1969), Pinson
(1985), and Wyatt (1987), and chapter eight of Colwell (1983) cover the entire
detection process from the optical system through the detector electronics.

In this research, the modeling of sensors is approached from a lumped
systems perspective. Figure 2.22 shows a block diagram of the major
components of a multispectral sensor.

SCENE
SPECTRAL
RADIANCE

SPATIAL SPECTRAL
RESPONSE RESPONSE

ELECTRICAL A/D
NOISE CONVERSION

Figure 2.22 Sensor System Components.
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The scene is sampled spatially by its being imaged onto a detector array
that is either scanned sequentially down the scene, or consists of a focal plane
array that gathers the two-dimensional image in a small but finite time interval.
These sampled pixels are also dispersed onto separate detectors for each
spectral band to the perform the spectral sampling.

The signals from these detectors are then amplified (electrical noise
effects occur here) and calibrated before being quantized into discrete values.

The model shown here is very general and could be enhanced to include
very detailed effects such as the aberrations in the optical propagation in the
optical system, spatial misalignment of the detectors, or electrical bandwidth of
the amplifiers. But in this repor, the model will be relatively simple within this
generality. The model will be limited to a simple point spread function for the
spatial response, a simple multiplication of the sensor response for the spectral
response, and a noise model containing electrical noise, calibration error, and
quantization effects.

In the following subsections 2.3.1 and 2.3.2, models are presented for the
sampling and noise processes. In subsection 2.3.3, a detailed model is
presented for a future remote sensing imaging spectrometer. Appendix D
contains complete descriptions of several multispectral scanners. In subsection
2.3.4, the computation of radiometric performance measures is discussed.

2.3.1 Sampling Eftfects

In the creation of the digital image the continuous spectral radiance of the
scene is sampled spatially, spectrally, and radiometrically (ie., A/D conversion).
The following paragraphs describe these forms of sampling.

1. Spatial Sampling. The optical Point Spread Function (PSF) is the two-
dimensional analog of the system impulse response in linear system theory
(Goodman, 1968). It is the response of the optical system to an infinitely bright
point source, usually represented by the Dirac delta function &(x,y).
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In the simulation model, no parametric form for the PSF is assumed.
Rather, a table of values derived from measurements of the real devices is used
to define the PSF. Thus, this form includes many of the aberrations present in
the instrument optics.

The discrete representation of the response of the optical system is given
by equation 2.23. The PSF h(u,v) is represented as the product of separable
line spread functions h,(), and hy(+). across the two spatial dimensions. The

response is normalized to unit area by dividing by the area under it.

O+1  P+1
h,(0)h,(p) 8(u - g, ,v-g,) (2.23)

_ 1
h(U,V) = (Ax gx)(Ay gy) : :
o=1 p=

Where,
(u,v) - spatial domain locations (meters)
Ay - sum of across scene line spread function coefficients
Ay - sum of down scene line spread function coefficients
gx = AUH - ground interval between h,, coefficients (meters)
gy = AVH - ground interval between hy coefficients (meters)
AU - angular distance between h, coefficients (radians)
AV - angular distance between h, coefficients (radians)

H - height of sensor (meters).

Also, O+1 and P+1 represent the number of coefficients in the across
scan and down track line spread functions, respectively, and h,(P/2) and
hy(O/2) contain the maximum response.

Equation 2.23 gives the response for a vertical viewing sensor. For
sensor zenith angles > 0°, the distance on the ground between the coefficients
must be rotated by the azimuthal angle dview, @nd scaled by the zenith angle
Bview. This is shown in equation 2.24.
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In applying this spatial response to the scene spectral radiance function
derived in section 2.2.3, equation 2.25 is used. This equation is repeated for all
image pixel locations (i,j) and scene wavelengths m.

GxGy O+1 P+ (isx - 0Q;, ij - pg'y m]

sV = R GG 2o & s G T Gy

| 0g Pgy

Sy and Sy are the across scene and down track sampling intervals for the
image pixels. In the case of off-nadir viewing these also must be scaled and
rotated as the ground coefficient intervals were in equation 2.24. Note that
since the scene radiance array has discrete pixel locations all index quotients
are rounded to the nearest integer. Also, at the edges, the extreme row or
column is repeated as necessary to allow for the complete application of the
spatial response.

The PSF is often approximated by a truncated Gaussian curve.
Measured PSF's often are nonsymmetrical and can include ringing at the tails
of the response; thus the Gaussian shape does not truly represent the actual
PSF. Although in some cases, it can be close enough to justify its use in
theoretical modeling.

2. Spectral Sampling. The spectral response of a multispectral sensor
consists of the continuous response of each channel to the spectral radiance
received by the sensor. In the simulation, the application of the discrete
response to the incoming spectral radiance Ly sensor(ij,m) is as shown in

equation 2.26.
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N N o §(m)
leage (L3l = Alz LX,Sensor (ij,m) _rim. (2.26)

m=1

Where,
AA - scene wavelength increment in um
si(m) - normalized response of band | to spectral wavelength m
Limage(i.j,!) - radiance received by band | at pixel location (i,j)
Li sensor(i.j,m) - incoming spectral radiance from pixel location (i,j)
at wavelength m
N(l) - normalizing factor for nominal bandwidth variations.

The normalizing factor N(l) is the ratio between the actual bandwidth as
measured by the area under the normalized response curve and the nominal
bandwidth of the channel. This factor is often necessary to match the published
gain setting between the real instrument and a modeled version. Price (1987)
discusses calibration problems of this sort and presents tables of the actual
bandwidth for several multispectral scanners.

For the imaging spectrometers modeled in this report, the spectral
resolution of the sensor is the same as the scene. Thus, for these sensors there
is only one term present in equation 2.26.

3. Radiometric Sampling. After the continuous spectral radiance across

the scene has been sampled spectrally, and spatially, and the noise (discussed
in the following subsection) has been added in, the received value is converted
to a discrete level by equation 2.27.

Lnsgelth) g }

d(i,j,) = nint{_f_° (2°-1) (2.27)

Fult

Here, Q is the number of radiometric bits of the sensor, and Lryn, is the
published full scale equivalent radiance for sensor band I. This introduces



Chapter 2 - Remote Sensing System 52
Modaling and Simulation

quantization noise uniformly distributed with an equivalent radiance variance
shown in equation 2.28 for each sensor band.

Leu, (2.28)

1
quant,l 12 20_ 1

2.3.2 Electrical Noise Modeling

Malaret (1982) performed a study of the general noise effects in
multispectral sensor systems and their impact on data analysis. In this
research, his model for the electrical noise present in these types of sensors will
be used, augmented by models for radiometric and calibration errors. Figure
5 23 contains a block diagram of this noise mode! showing the signal
dependent shot noise, thermal noise, radiometric error, and calibration error.

Absolute Relative
- Radiometric Shot ||Thermal| —#{Calibration
Error Noise || Noise Error
Incoming l Detector
Radiance Output

Figure 2.23 Noise Model of Sensor.

In his work, Malaret showed how the shot noise in a multispectral sensor
can be modeled as a zero mean Gaussian process with its variance
proportional to the signal level (assuming the typical signal levels associated
with Landsat sensors.) In this research, the shot noise signal dependence is
implemented by having the variance of a Gaussian random number generator
proportional to the signal level. These random numbers are then added to the
signal level.
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Thermal noise has been shown to have a Gaussian distribution also with
zero mean and a variance proportional to the product of detector temperature,
bandwidth, and resistance. These factors are assumed to be relatively
constant, and thus the level of the thermal noise is fixed. It is implemented as a
Gaussianly distributed random number added in to the signal level received by
the sensor.

Two types of radiometric error are found in the sensor system, absolute
and relative calibration error. Absolute errors imply a deterministic change in
output level, while relative errors are manifested as stochastic noise. Table
2.14 shows several causes for these errors and the type of error produced.

Table 2.14 Sources and Types of Radiometric Errors.

Error Source Error Type
Change in transmittance of optics absolute
Change in gain of detector amplifiers absolute
Change in characteristics of calibration standard absolute
Change in detector quantum efficiency relative

Absolute errors are introduced in the model through additive offset. The
level of error is constant across the detectors, but is signal and wavelength
dependent. The model for the relative calibration error has been developed
under the assumption that each detector channel in the imaging array may
undergo a random and independent change in its response over time. Thus,
the radiance level required for a given output may differ from detector to
detector.

From the statistics given in Castle, et al. (1984) it was determined that the
actual output of detectors may vary as much as 1% from the calibrated output
given the same input. Assuming an uniform distribution for this error, then the
multiplier for the uniform random number generator would be chosen to be +1%
of the signal level. The standard deviation of this error is given in equation 2.29.
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_2°0.01 {signal level }

cal [12 (2.29)

Depending on the spatial arrangement of the detectors, the relative
calibration error may be constant in one spatial direction. For example, a linear
array of detectors may cause relative errors across the image, but since the rest
of the image is formed by the motion of the sensor platform, the relative error is
constant down the columns of the image. This may cause a vertical striping
effect. Or, for a line scanning detector array, the striping may be horizontal as
was found in early Landsat MSS sensors. Thus, in implementing the calibration
error model, the type and arrangement of detectors must be considered.

2.3.3 HIRIS Model

In this subsection, a model for the High Resolution Imaging Spectrometer
(HIRIS) is presented. The instrument is described in Goetz and Herring (1989).
HIRIS is meant to be used in an on-demand mode of operation, gathering data
at the request of a science investigator. Kerekes and Landgrebe (1989a)
present a full description of this instrument and its performance. Table 2.15
contains a brief overview of the instrument and its general design parameters.

Table 2.15 HIRIS Functional Parameters.

Design Altitude 705 Km
Ground IFOV 30m
Swath Width 20 Km
Spectral Coverage 0.4-2.5um
192 Bands
Average Spectral Sample Interval
0.4-1.0um 9.4 nm
1.0-2.5um 11.7 nm
Pointing
Down-track +60°/-30°
Cross-track +20°/-20°
Data Encoding 12 bits/pixel
Maximum Internal Data Rate 512 MBPS
Maximum Output Data Rate 300 MBPS

Image Motion Compensation Gain 1,2,4,0r8
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For this research the model shown in Figure 2.24 is used for the HIRIS
instrument. This model version has 201 equally spaced (10 nm intervals)
spectral bands from 0.4 to 2.4 Hm and includes most major spectral, spatial, and

radiometric effects of the instrument.

OPTICS

Incoming Optics Spatial
Spectral > . > ; _.C )
Rgdiance Transmission Focusing

DETECTOR

Detector Shot Read
@'J Response Noise \’H Noise _’@

[ 1

Dark
IMC Current

SIGNAL CONDITIONING

3

Signal Relative AD Output
@H Scaling %ﬁ Cagbratlon —® Conversion [—® Digital
rror

Figure 2.24 HIRIS Model Block Diagram.
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Instrument parameters have been obtained from a progress report by
JPL (1987). These parameter levels are based upon preliminary specifications
and prototype testing. The following paragraphs and figures detail the blocks in
the overall diagram and present relevant parameter values.

The sensor has two detector arrays to cover the entire spectral response.
The Very Near Infrared (VNIR) array covers 0.4 - 1.0 um, while the Short Wave
Infrared (SWIR) array covers 1.0 - 2.5 um. The scene is imaged line by line as
the sensor passes over. Each scene line is sampled spectrally by being
dispersed across the detector arrays.

The spectral transmittance of the instrument optics is shown in Figure
2 25. Note the low response at the spectral gap between the VNIR and the
SWIR arrays at 1.0 um.

0.5

0.4 1
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0.24

Spectral Transmission

0.1

0.0

L | L v L v 1 ¥ L] A T M L) L] v
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Figure 2.25 Spectral Transmittance of Optics.

The normalized spatial response of the optics and field stop is assumed
to be similar to the that of the Landsat Thematic Mapper instrument, as they both
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have a Ground Instantaneous Field of View (GIFOV) of 30 meters. Figure 2.26
shows the measured down scene and across scene normalized responses as a
function of angular distance for the TM, taken from Markham (1985). The data
points shown are the discrete values used in the simulation. At the nominal
altitude of the HIRIS instrument, the distance on the ground between these
points is approximately seven meters.

1.2

———— Across Scene
evscsanggraenee DOW" SCGI’IO

Normalized Response

Angular Distance (microradians)

Figure 2.26 Normalized Spatial Response.

The radiometric conversion from the incoming spectral radiance
(mW/em2-sr-um) is accomplished by dividing by 1000 mw/Ww, multiplying by the
transmittance of the optics and by the AQ (the product of the detector area and
the solid angle of view) of the optics. The output of the optics model P,, the
incident spectral power, is then in units of watts/um. The AQ used in the model

is 1.44 x 10-6 cm2-sr.

The spectral guantum efficiency m of the detectors is shown in Figure
2.27. The incident spectral power P, at wavelength A is converted to a number

of electrons S at the detector by the integration of the incident photon level over
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the pixel integration time. Thus, the overall radiometric conversion is shown in
equation (2.30).

1000 mW A
S= Ll,Scene ° -——1——\N—— e AQ e Toptics eAdLeTe FE ot (2.30)

Where,
AX = 0.01 um, wavelength interval of spectral samples
A = wavelength of interest (um)
h = 6.62 x 10-34 Joule-sec, Planck's constant
¢ = 3 x 108 meters/sec, the speed of light

t = 0.0045 seconds, pixel integration time
n = detector quantum efficiency.

Since the noise level data and full scale specifications were obtained in
terms of number of electrons, the signal level is stated in these same terms and

is unitless.
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Figure 2.27 Spectral Quantum Efficiency.
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The Image Motion Compensation (IMC) is implemented through
movement of the down-track pointing mirror to offset the platform speed and
effectively multiply the pixel integration time by the gain state selected: 2,4, 0r8.

The noise in this model consists of a deterministic dark signal level and
absolute radiometric error, and random shot noise, read noise, and relative
calibration error. Thermal noise has been found to be insignificant. All noise is
considered to be stochasticly independent between noise types and spectral
bands. Table 2.16 contains several parameters of the detector arrays.

Table 2.16 Parameters of Detector Arrays in Terms of Electrons (e-).

YNIR SWIR
Dark Current 0 e 27000 e-
Read Noise Standard Deviation 300 e- 1000 e-
Full Scale Level 577,395 e- 1,441,440 e-

The dark current is simply added to the received signal level in the
model. The absolute radiometric error is included in the detector portion of the
model by multiplying the total signal by (1 + Eg), where ER is the decimal level of
error. Read noise is added in as a zero mean Gaussian random number with a
standard deviation as in Table 2.16. Within each detector array, the read noise
level is assumed to be constant over wavelength.

The shot noise in the model consists of zero mean Gaussian random
numbers with a standard deviation equal to a function of the total signal level in
the detectors. This total signal is comprised of the incoming radiance, and the
dark current level mentioned above. Figure 2.28 shows several points relating
total signal and shot noise levels taken from the JPL report, along with a curve
showing the square root of the total signal. It can be seen that the shot noise
level is almost exactly the square root of the total signal level.
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Figure 2.28 Shot Noise vs. Signal Level.

Thus, the standard deviation of the shot noise process is given by
equation 2.31.

/s (2.31)

0-shot =

S' is the total (sum of received signal and dark current) detector signal
level in electrons. Note that this relationship is assumed to be independent of
wavelength.

The relative calibration error is implemented by adding in uniform
random numbers with zero mean and a standard deviation as was given in
equation 2.29.
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The conversion from the e- levels S" (received signal plus noise and
calibration error) to a digital number (DN) occurs as in equation 2.32.

DN = nim{m%"—F- (2°. 1]} (2.32)

where,
IMC = IMC Gain State
F = Full Scale Electron Level (shown in Table 2.16)
Q = Number of radiometric bits (nominally 12)

The division by the IMC gain state is included to preserve the dynamic
range of the detectors over the various gain states.

2.3.4 Radiometric Performance Measures

Several measures of the radiometric performance of remote sensing
instruments are commonly used. All of these measures are a function of
wavelength, atmospheric conditions, sensor response, and sensor electrical
noise. In this subsection, two common ones are described and defined as they
are used in this research.

Noise Equivalent change in Reflectance (NEAp) is used in identifying the
smallest differences in the surface reflectance that are detectable by the sensor.
It is defined as being the equivalent change in the reflectance of the surface to
match the total noise level in the sensor. In terms of the parameters used in this
repont, this is given in equation 2.33. Note that these parameters are dependent
upon the sensor spectral band for which the calculation is being made.

NEAp _ \/oihot + ot2herm + 0'fzead + (’guam + 02cz-ll

1
T EA,TotaI Tk,Ath (A)

(2.33)

B() is the conversion from incident spectral radiance to the signal level
in the detector for the appropriate band. For general multispectral scanners,
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this is the summation given in equation 2.26, while for the HIRIS model it is the
right side of equation 2.30. ine resulting signal level is then scaled by the
absolute radiometric error (1+ER).

The Signal-to-Noise Ratio (SNR) is another common measure of
performance of a remote sensing instrument. Itis commonly expressed as the
log of the ratio of the signal level of interest to the total noise level.

In many Earth resource analysis remote sensing applications, the output
product is some form of classification map of the observed area. The
classification is usually obtained by a computer algorithm that uses the mean
and covariances of the multispectral image data to distinguish between the
classes. Thus, in this application not only are signal levels important, but so are
signal power variations.

In this report, two types of SNR are defined. One based on the mean
signal level, while the other is based on the covariance of the received signal.
The voltage SNR is useful for determining the dynamic range required of the
sensor, while the power SNR is useful for studying the sensitivity of the sensor
in discriminating among surface class types.

The voltage SNR is defined for a sensor band by dividing the mean
signal level in that band by the square root of the sum of the noise levels for that
band, as in equation 2.34.

1 -
T E).,ToialTAtm P B(K)

B R R

shot therm read quant cal

(2.34)

Voltage SNR = 20 log.

Here, P is the mean reflectance of the surface, and B(L) is defined as
above. The power SNR is defined for one wavelength m in the HIRIS model to
be as in equation 2.35.
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1
o2/ 7w E l_m)T
Power SNR = 10 log, , ™ EaTotal Taam B (2.35)
oihot cy‘r?aad + oiuant

Here, o2 is the variance of the surface reflectance for wavelength m. In

calculating the SNR for a particular scene, the mean and variance of the surface
reflectance are usually calculated from the combined data set of all classes
represented in the scene.

In computing the power SNR for the multispectral scanners, or for
features derived from the HIRIS sensor by combining bands, the signal levels
cannot be simply added because of the band-to-band correlation present in the
reflectance data. In these cases, the signal variance is the sum of the individual
variances, plus terms due to the covariance between each pair of wavelengths
m and n, combined in the feature as in equation 2.36.

MM
ZZ"mn B*(A=m) B*(A=n)

Combined Power SNR = 10 log, , ——
P 4R +R 4P+

shot therm read quant cal
(2.36)

M_ is the number of wavelengths combined for the band or feature, while
B*(A) is the product of the radiance received from a completely reflecting
surface and the conversion to the signal level in the sensor for the appropriate
wavelength. The m,n entry in the reflectance spectral covariance matrix is
denoted here as op,,. Also, the noise variances as used here are the sum of the
individual wavelength variances combined appropriately.

2.4. Processing

Processing plays the most important role in remote sensing systems as it
is the part that provides the information that the system is designed to acquire.
Aspects of processing in remote sensing are discussed in chapters 17 through
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24 of Colwell (1983), chapters three through six of Swain and Davis (1978), and
in the text by Richards {1986). Numerous other texts and articles have been

published dealing with the processing of reinotely sensed images.

Table 2.17 shows a list of typical functions used in the processing of
remotely sensed images. The task of the processing portion of the system is to
take the multispectral image from the sensor, and any other input data or
algorithms, and then compute an output information product. This product may
be a classification map showing to which of the informational classes each pixel
belongs, or it may be a summary of the total area within the image that belongs
to each of the classes. The processing functions shown in Table 2.17 aid in
this task by allowing the information to be obtained efficiently and accurately.

Table 2.17 Example Processing Functions.

Processing Type

Example

Radiometric

Calibration

Scaling

Compression/
Decompression

Geometric

Registration
Resampling

Data Reduction

Feature Extraction
Feature Compression

Class Separability

Training Field Selection
Interclass Distance
Intraciass Distance

Classification

Unsupervised (Clustering)
Supervised
Class Area Measures

In the rest of this section these processing functions are discussed, and
where appropriate, models are presented for use in the simulation of remote

sensing systems.
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2.4.1 Radiometric Processing

The goal of radiometric processing is to allow accurate and repeatable
calibration of the radiance levels represented by the digital numbers in the
multispectral image. This is important when comparing images over the same
area from different dates or sensors. Price (1987) discusses the accurate
calibration of several sensors for comparative purposes. Papers by Fischel
(1984), Murphy, et al., (1984), and Castle, et al., (1984) discuss the calibration
of the Landsat Thematic Mapper sensor.

For modeling purposes, the calibration models presented in section 2.3.2
are useful in studying the effect of these radiometric errors.

2.4.2 Geometric Processing

Geometric processing is generally concerned with correcting spatial
distortions in the multispectral image due to scanning variations, detector
misalignment, or view angle effects. The aim of such processing is again to
allow comparison of images, or to match images to other forms of spatial data
such as topographical or land use maps.

Spatial distortions are often corrected by developing a mapping function
from the image to the control map by using identifiable features (control points)
in the scene. Pixels in between these points are often resampled to give a
desired spatial resolution. The papers by Park, et al., (1982 and 1984), and
Schowengerdt, et al., (1984) discuss the effects of these corrections.

Another form of geometric distortion is known as misregistration, and is
due to the effective misalignment of detectors of the various spectral bands.
This may occur due to distortion in the imaging optics, or to the physical location
of the detectors. It effectively causes the pixels of different bands to be imaged
from a slightly different part of the scene. Misregistration has been studied by
Cicone, et al., (1976), Billingsley (1982), and Swain, et al., (1982). In the study
by Swain, et al., it was found that misregistration by as little as 0.3 pixels can
affect classification accuracy.
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Although they would be relatively straightforward to implement in the
sensor spatial model, these forms of geometric distortion were not studied in
this research.

2.4.3 Data Reduction

In most cases it is either necessary, or at least advantageous, to reduce
the amount of data in a multispectral image without diminishing the
informational content. In the case of the upcoming HIRIS instrument the normal
operating mode produces data at a rate exceeding the capabilities of the
satellite's communication channel, thus necessitating some form of on-board
editing. For lower dimensional sensors such as Landsat TM or aircraft
scanners, it has been shown that under conditions of limited training samples,
classification accuracy decreases as more spectral bands are used in the
classification (see Hughes, 1968, and Chandrasekaran, 1975.)

This data reduction may be accomplished spatially, spectrally, or by
reducing the radiometric resolution of the data. The spatial reduction may be as
simple as deleting every other pixel or reducing the swath width of the sensor,
or as complex as a scheme described in Ghassemian (1988) which retains
much of the spatial detail in the image while reducing the data to a set of
features. Reducing the radiometric resolution may be used and usually will not
increase the noise level significantly, unless the quantization error becomes the
dominant source of noise in the image.

Spectral reduction through the Karhunen-Loeve (or principal component)
transformation was studied in Ready and Wintz (1974). This method has proved
to be useful in reducing dimensionality while retaining class separability, even
in cases of limited training samples (Kalayeh, et al., 1983, and Muasher and
Landgrebe, 1983). However, it requires computation of the eigenstructure of
the covariance matrix and thus is not easily implemented at high data rates.

With the advent of imaging spectrometers such as HIRIS, on-board
feature selection algorithms that can be implemented through simple
programmable operations, such as summations, have been studied. Chen and
Landgrebe (1988) have extended a method first proposed by Wiersma and
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Landgrebe (1980) to select spectral regions to be combined. The algorithm
uses training samples from similar data, or ground reflectance, and selects
wavelengths to be combined based upon the eigenfunctions of the spectral
covariance matrix. A simple set of summation coefficients may then be
transmitted to the satellite and used to reduce the data rate. Factors of data
reduction of 10 or more have been found to be possible with little loss in the
class recognition accuracy (Chen, 1988).

In the simulation program developed in this report, data reduction may be
accomplished for the HIRIS model through the combination or weighted
summation of spectral bands.

2.4.4 Class Separability Measures

Class separability measures are computed from the statistics of known
class samples, and are used to obtain an idea of the statistical distance
between informational classes. These measures have been studied both as a
feature selection technique (Swain and King, 1973), as well as an estimate of
error probability (Kailath, 1967, and Whitsitt and Landgrebe, 1977.)

Many of these separability measures are for two classes, and are
computed from the mean vectors and covariance matrices. As an example, the
Bhattacharyya distance B, is given in equation 2.37 between class k and class

| with mean vectors Z, and £, , and covariance matrices X, and X,.

'y .y . z +X
ka%(z'zl} (—k;——') [z_k'2|]+;_—loge —{2—2‘,?’- (2.37)
k| [<

Multiclass separability measures can be obtained from apriori class
probability weighted pairwise summations of such two class separability
measures. Whitsitt and Landgrebe (1977) discuss this and other ways of
measuring multiclass separability.
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Fukanaga (1972) also presents a multiclass separability measure that is
used in canonical analysis to reduce the dimensionality of data through a linear
transformation (Merembeck and Turner, 1980). This measure Jg is described

by equation 2.38.

J_=trS,S (2.38)

where,

In these equations, Py is the apriori probability of class k, and the mean
vectors and covariance matrices are noted above.

In the simulation program, both a pairwise summation of the
Bhattacharyya distance and the Fukanaga multiclass measure are
implemented. The class statistics are computed from designated areas within
the known class areas.

2.4.5 Classification Algorithms

The classification of a multispectral image into informational classes may
be done in an unsupervised manner by a computer algorithm, or in a
supervised approach by an analyst working interactively with the computer. In
either case, the accuracy of such a classification can then be computed by
comparing the resulting class map to a known class map of the area.
Classification accuracy has also been estimated from the class statistics.
Fukanaga and Krile (1969) present an analytical method for estimating
accuracy in the two class Gaussian case, while Whitsitt and Landgrebe (1977)
discuss several considerations in multiclass error estimation.
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In unsupervised classification, the data vectors are grouped into
separable classes through clustering algorithms (Duda and Hart, 1973.) These
algorithms group data vectors that are “similar® in a statistical sense into
spectral classes. These spectral classes are then either subdivided or
combined to form the desired informational classes.

Supervised classification is done by developing training statistics, either
through locating known class areas in the image, or by applying a clustering
algorithm to help identify possible classes. Various classification algorithms
can then be applied to all of the pixels in the image and assign them to an
informational class.

For the simulation program, a supervised classification technique using
the Maximum Likelihood (ML) classification algorithm has been implemented.
The ML classifier uses the standard Gaussian assumption with class aprioti
probabilities dependent on the numbers of pixels in each class. Since the
scene is defined in the simulation, the class boundaries are known in the image
and a classification accuracy can be computed directly. Class statistics are
computed from designated training areas. The classification can be done on the
original image, or on the compressed image if the sensor was an imaging
spectrometer type.

The classifier works by assigning each pixel the class label that provides
the maximum value of probability as coming from that class. That is, a pixel
Z(i,j) is assigned to class k' if gi(i,j) > gi(i.,j) for all classes k in the scene, where
gk is defined in equation 2.39. L is the dimension of the class statistics.

P

1/
(2m) |Z,]

, Y P L ——
g,(i) = > exp --ﬂZ(LJ)-ZkJ Ek[Z(u)-ZkJ

(2.39)

2.5 Summary and Discussion
In this chapter, the modeling of optical remote sensing systems has been
discussed from a general viewpoint as well as one of simulation. The models
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discussed represent an understanding of the system. Obviously, these models
cannot describe all of the effects and processes in the real system, but they
represent a level of understanding of duplicating the real world in the computer
laboratory.

Table 2.18 presents a summary of the various aspects of the remote
sensing system that have had models described in this chapter and
implemented in the system simulation program RSSIM (Kerekes and
Landgrebe, 1989D).

Table 2.18 Summary of System Parameters Implemented in Simulation.

Scene Sensor Processing
Spectral Means Spatial Response Training Field Selection
Spectral Covariance Spectral Response Feature Selection
Spatial Correlation Electrical Noise Class Separability

(Shot, Thermal, and Read)
Spatial Layout Absolute Radiometric Errof Class Accuracy
Direct Solar Irradiance Relative Calibration Error | Classification Map
Diffuse Solar Irradiance Radiometric Resolution
Atmospheric Transmittance Detector Gain
Scattered Path Radiance
Zenith Angle of Sun

Zenith Angle of Sensor

Meteorological Range

While there are many effects not described in this table, it represents a
comprehensive framework from which to study their interrelated effects on
system performance.
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CHAPTER 3

ANALYTICAL SYSTEM MODEL

3.1 Model Overview

The system model described in chapter two gave a tool to allow accurate
modeling and simulation of a remote sensing system. However, because of the
flexibility and completeness, it may represent too much detail for some system
studies. A simpler approach may be obtained by using some of the component
models described in chapter two, and the work of several previous researchers,
to develop a purely analytical system model.

Figure 3.1 shows a block diagram of the analytical model presented in
this chapter. At each stage in the system model, the mean vector and
covariance matrix of each class are modified by the function in that block.

Reflectance

Statistics Atmospheric Spatial Spectral
—® Effects [ Effects [P Effects

Feature Classification
Noise Error Accuracy

Selection
Model —> (Optional) —®| Estimation ——%

Figure 3.1 Analytical System Model Block Diagram.
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A brief description of these blocks and their assumptions is given in the
following paragraphs.

Reflectance Statistics - Each surface cover class is assumed to be
multivariate Gaussian described by the mean vector and covariance matrix of

the reflectance. The surface reflectance is also assumed to have a separable
exponential spatial correlation.

Solar lllumination and Atmosphere - The linear atmospheric effects
model described in chapter two is used here.

Spatial Effects - The spatial response of the sensor is assumed to have
the shape of a Gaussian probability distribution function and be circularly
symmaetric.

Spectral Effects - This is a linear transformation to convert the scene
spectral radiance to the received signal in the spectral bands of the sensor. In
the case of the HIRIS model, the spectral resolutions are equal and this matrix is
diagonal.

Noise Model - The various types of noise described in chapter two are
added in here. They are assumed to be zero mean, and uncorrelated between
noise type and spectral band.

Feature Selection - This is another linear transformation, and is used to
combine sensor bands together for spectral compression.

Error Estimation - The pairwise Bhattacharyya distance is calculated from
the modified class statistics, and used to estimate the error. Equal apriori
probabilities are assumed and the multiclass error is the sum of the pairwise
errors.

A listing of the FORTRAN program implementing the model discussed in
this chapter for the model HIRIS sensor is included in Appendix E.
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3.2 Analytical Expressions

This section presents the equations that form the analytical model. The
model first applies the system functions to the statistics of each of the K classes,
then computes the pairwise error estimates.

3.2.1 Reflectance Statistics

The surface reflectance is assumed to be spectrally multivariate
Gaussian with a spatial correlation described by a separable exponential
model.

The spectral reflectance statistics are computed from the database of
FSS field spectra. To take full advantage of the spectral resolution considered
in this research, the data is first interpolated to 10 nm wavelength spacing by
using the algorithm presented in Appendix B. Thus, for each class k the mean

vector X_k and the covariance matrix Zk will have M = 201 dimensions.

The spatial model has a crosscorrelation function for wavelengths m and
n as shown in equation 3.1.

WL
Ron (tm=e ™ ¢ (3.1)

This form yields spatial crosscorrelation coefficients pyn x for across the
scene, and pr,,,, for down scene as shown in equations 3.2 and 3.3.
“38mn
Pmnx =€ (3.2)

B bmn
Pmny =€ (3.3)

For the model! implemented in this chapter, the spatial correlation
coefficients have been assumed to be constant across all spectral wavelengths.
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3.2.2 Atmospheric Effects
The atmospheric effects model converts the scene reflectance to the

spectral radiance received by the sensor. Equation 3.4 shows the spectral
radiance L, received by the sensor.

0 1 0
Li=LgX+ Lypan ¥ [LA'Pa‘h ) lepa‘h} Xa (34)

X is the surface reflectance in the sensor IFOV, while X, is the average
reflectance around this area and represents the source of the adjacency effect
discussed in chapter two. For this model, the adjacent reflectance Xa IS
considered to be the average reflectance of all K classes. It is also considered
to be uncorrelated with the reflectance within the sensor IFOV.

1 0 ,
Lk,Path' and Lx,Pam are the path spectral radiance components for surface

albedoes of 1 and 0, respectively. Ly s, the spectral radiance reflected from a

perfectly reflecting surface, is as shown in equation 3.5.

L = fcos(e

1
‘s %l solar) ExDirect * Ek,DiﬁusaJ T (3.5)

AAtm

Thus after the application of the atmospheric effects function, the mean
and covariance of the signal radiance is as follows. The mean spectral
radiance is given by equation 3.6.

— 0 10 o

Li=b X+ Lipan® L pah "A (3-6)

-0 . . .
Ly patn 1S the difference between the path radiances for a surface albedo

of 1 and 0. The spectral radiance covariance matrix ZLkis derived as follows

for each row m, column n entry G mpn-



75 Chapter 3 - Analytical System Modal

GL,mn = E{(Lm B Lm] (Ln B E;)} (3.7)
0 1-0 — 0 10 ——
(Lm,SXm+Lm,Path+Lm,Path Am l'm,S M “m,Path” ~m,Path A,m]'
=E
0 1-0 5,0 1-0 (3.8)
{Ln,SXN+Ln,Path+Ln,PathXA,n ) n,SXn-Ln,Path- n,Path A,nJ

1-0 1-0
= 3.9
Lm,ScX,mn n,S + Lm.Path c)-A,mn Ln,Path ( )

Here, oy, is the mn entry of the reflectance covariance matrix Zk, while
Oa,mn IS the mn entry of the covariance matrix ZA of the averaged reflectance,
which is given in equation 3.10.

ZA=_1_[Z +2 +...+ZK) (3.10)

K2

In the derivation of ZA’ the reflectances averaged are considered to be

uncorrelated with each other.

3.2.3 Spatial Effects

The spatial effects function uses the results of Mobasseri, et al., (1978) to
modify the spectral radiance covariance matrix. The separable exponential
spatial correlation model of equation 3.1 is assumed for the scene, along with a
Gaussian PSF for the sensor as shown in equation 3.11.

2 2
u +v
hiu) = 12 exp[ 2 ] (3.11)

Since o, is related to the size of the sensor IFOV in scene cells, as the
sensor look angle changes it must be modified to reflect the change in ground
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size of the IFOV. The spatial direction that this occurs is dependent upon the
relative azimuthal angle of the sensor and the ground reference axis. For
simplicity, the sensor azimuth is defined to be 0°. Thus, in terms of 1y, and
Foyr parameters used below in the weighting function, o, is modified as in

equations 3.12, and 3.13.

=120, (3.12)
/2,
Foy = Cos(ewew) (3.13)

Mobasseri defined a weighting matrix W, that is a function of the spatial
model and PSF parameters. Following his results, the sensor spatial response

modifies each mn entry in ZL;L as in equation 3.14.
GL,mn = WS 0L,mn (3'14)

Where,

2

2
mn a- +b (3.15)
W, =4 exp{(_m”_z_’—“ﬂ] Fo.x ro'y} erfc(arg ) erfc(br, y)

and, erfc(+) is defined as in equation 3.16.

J‘f ‘52‘ (3.16)

erfc(a) = —1:‘
2

Since the spatial correlation coefficients have been assumed to be
constant across spectral wavelengths, the parameter W " is constant for all
mn. If one uses differing a and b, care must be taken to ensure the resulting
covariance matrix remains nonsingular.
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S
Thus, equation 3.14 gives a new ZL that represents the spectral
A

radiance covariance matrix after application of the spatial effects. The mean
spectral radiance vector is unchanged by the spatial model as shown in
equation 3.17.

s — 3.17
L =L, (3.17)

3.2.4 Spectral Effects

The sensor spectral effects are applied by a linear transformation matrix
B which converts the spectral radiance to the signal levels in each of the sensor
image bands. For the line scanner sensors with L bands, this matrix is L rows
by M columns, with each row consisting of the normalized response of that band
to each of the M wavelengths of the spectral radiance. Also, each entry in the
matrix is multiplied by AX, the spectral resolution of the spectral radiance

vectors. The resuiting signals will be in terms of radiances. Thus, this matrix B is
formed as in equation 3.18.

[ Band 1 Response™ |

Band 2 Response

. (3.18)

_Band L Response_|
LxM

For the HIRIS imaging spectrometer with the same spectral resolution as
the scene, the matrix will be diagonal M by M with each entry b, as shown in

equation 3.19.

A
bmmzAQoAkoh—cotoTopﬁcso‘n (3.19)
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The various symbols are defined in section 2.3.3 of chapter two. The
resulting signal will be in electrons.

For either sensor type, the mean received signal vector is thus obtained
by

— S
S=8BL, (3.20)

while the signal covariance is as shown in equation 3.21.

ZS=BZiBT
A (3.21)

3.2.5 Noise Model

The noise effects are modeled as zero mean random processes, except
for the deterministic absolute radiometric error Eg and detector dark current D.
These deterministic effects are added directly to the mean signal vector to yield

the noisy mean vector Y as in equation 3.22.

Y=S(1+E)+D (3.22)

The random noise sources modeled include shot noise, thermal noise,
read noise, quantization error, and relative calibration error. The form of these
models was discussed in section 2.3.2 of chapter two. In his thesis, Malaret
(1982) showed how these sources of noise affect the covariance matrix of the
signals received by the sensor. The result used here is that while some of the
noise may be dependent upon the signa! (shot and calibration error), they are
still uncorrelated with the signal and the variances add directly. Also, each
noise source is assumed to be independent of the others and uncorrelated from
spectral band to spectral band. Thus, the signal covariance is modified as in
equation 3.23.



79 Chapter 3 - Analytical System Model

2 =(1+ER)2 ZS + A + A A

Y therm shot +

A + Acal (3.23)

read + quant

Here, the A's are diagonal matrices of the variances in each sensor

band of the various noise sources.

3.2.6 Feature Selection

Feature selection is optionally applied by combining the sensor bands
according a weighting matrix F to create the features Z as in equations 3.24 and
3.25.

Z=FY (3.24)

Z Y (3.25)

To transform the L-dimensional vectors Y to the N-dimensional feature
space, F is N rows by L columns of weighting coefficients. For the spectral
feature compression scheme described in section 2.4.3 of chapter two, these
coefficients are just 0 and 1 to appropriately skip or combine the sensor bands.

As an example, consider a transformation for the output of the HIRIS
model to two features. Let feature 1 be the combination of the first five
wavelengths 0.40 - 0.44 um, while feature 2 be the combination of the last five
wavelengths 2.36 - 2.40 um. The matrix F for this example is shown in equation

3.26.

. [1111100...000000}

0000000..011111 (3.26)

2x201

3.2.7 Error Estimation

After the class statistics of each class has been modified by the above
functions, an estimate of the probability of error is made. Whitsitt (1977)
discussed a pairwise error estimate based upon the mean and covariance
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statistics and found it to be closely related to the actual classification error.
Equation 3.27 shows this estimate of probability of error P, which uses the

Bhattacharyya distance B, between classes k and | defined in section 2.4.4 ot
chapter two.

ool 75, 0

Whitsitt also discussed an upper bound on the probability of error in the
multiclass case as being the sum of the pairwise error estimates. Thus, in the
model the following estimate for the classification accuracy ﬁ’c (in percent) is

used.
K K Kl
ﬁc =100 1- E E P (3.28)

Since the summation of the pairwise errors is an upper bound, this
estimate of the classification accuracy will be pessimistic in multiclass
experiments.

3.3 Comparison Between the Analytical and Simulation Models

While the analytical model offers the advantages of being simpler, and
computationally more efficient, it lacks in being able to accurately represent the
real world as compared to the simulation model. Table 3.1 lists several factors
that the analytical model is not able to represent at present.

Table 3.1 System Factors Not Included In Analytical Model.

Size and Spatial Arrangements of Fields
Mixed Pixels at Field Borders

Non Gaussian Sensor PSF

Training Field Selection and Size
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These factors can be significant. Section 4.3 of chapter four presents
some results of comparing the accuracy estimate of the analytical and
simulation models.

Another difference between the modeling approaches is that the
analytical model works in a parametric space, while the simulation model
produces multispectral images that can be displayed and processed like real
ones. This advantage of the simulation approach is useful for the development
of processing algorithms when "real” data is not available.
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CHAPTER 4

APPLICATION TO
IMAGING SPECTROMETER SYSTEM ANALYSIS

4.1 Introduction

In this chapter, the system models presented in this report are applied to
the study of system performance using a proposed imaging spectrometer. The
HIRIS (Goetz and Herring, 1989) instrument is proposed as part of the Earth
Observing System program that will drive the international remote sensing effort
into the 1990's. It was chosen for study for the following reasons.

* It leads the next generation of sophisticated remote sensing
instruments.

* Being in the design phase, its performance can only be predicted
through modeling and simulation.

« Since it will be operated in an on-demand mode, it is important to
develop an understanding of the system performance under varying
observational conditions.

* Because of its flexibility of parameters, it may be used to simulate
other sophisticated sensors and study their performance.

* The complexity of the instrument puts it close to the fundamental limits
of technology, and its study helps gain a basic understanding of the
remote sensing process.

The following sections describe the performance of this instrument for a
variety of system configurations and performance measures. The first part
presents the radiometric performance of the sensor with curves showing the
Signal-to-Noise Ratio (SNR) and Noise Equivalent Change in Reflectance
(NEAp) under a variety of conditions. It is followed by a comparison of the
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performance of the simulation and analytical modeling approaches to system
analysis. This section is included to illustrate the limits of each approach. The
rest of the chapter explores the effect on classification performance of several
system parameters.

For many of the experiments performed in this chapter, the reflectance
statistics used were from a test site in Finney County, Kansas. Table 4.1
provides a description of this data set.

Table 4.1 Kansas Winter Wheat Data Set.

Location Finney County, Kansas

Date May 3, 1977

LARS Experiment Number 77102207

LARS Data Tape Number 4260

Spectral Classes Number of Fields Number of Samples
Winter Wheat 25 ‘ 658

Summer Fallow 6 211

Unknown 39 682

4.2 Radiometric Performance

To gain an understanding of the radiometric performance of HIRIS under
a variety of conditions, the model described in chapter two was used to examine
their effect on SNR and NEAp.

For the results included in this section, the system configuration shown in
Table 4.2 was used as a baseline. The solar illumination and atmospheric
effects were obtained using the LOWTRAN 7 computer code.

Before presenting the results of these noise studies, it may be helpful to
present an example of instrument performance for a typical vegetative scene.
Reflectance data from all three classes from the data set of Table 4.1 were
combined to form a new data ensemble. The mean reflectance and variation of
this ensemble are plotted in Figure 4.1.
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Table 4.2 Radiometric Study Baseline System Configuration.

Atmospheric Model 1976 US Standard
Haze Parameter Rural Extinction
Aerosols Mie-Generated
Diffuse Irradiance Constant 0.84
Surface Meteorological Range 16 Km
Solar Zenith Angle 300
Solar Azimuth Angle 1800
View Zenith Angle 0o
View Azimuth Angle Qe
Surface Albedo 0.10
IMC Gain State 1
Shot and Read Noise Nominal
Radiometric and Calibration Error 0%
Radiometric Resolution 12 bits

50

Mean + Std Dev
Mean Reflectance
404 --e-eee- Mean - Sid Dev

30 4

20

Reflectance (%)

10 o

0

T T T
04 06 08 10 1.

Wavelength

Figure 4.1 Mean and Variation of the Surface Reflectance of the Kansas
Winter Wheat Data Set of Table 4.1.
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To obtain an idea of how this reflectance is modified by the atmosphere
and sensor response, a simulated image was created using the baseline
system configuration. The resulting mean digital counts and their variation are
shown in Figure 4.2. Several effects are immediately noticeable. The
absorption bands of the atmosphere are present, as well as a reversal in the

relative values of the visible and infrared amplitudes. This reversal is due to the
effects of the solar illumination and gain settings of the sensor.

1400

1200 - _-ﬁ" ................ Mean + Std Dev
i * Mean
i memmeee Mean - Std Dev
1000 -

gooq &

600

Digital Counts

400

200 1

0 A—r——p——r—r—r——r—TTT— 7T

04 06 08 10 1.2 14 16 18 20 22 24

Wavelength

Figure 4.2 Mean and Variation of the Image Vector as Received by HIRIS.

The voltage and power SNR for this configuration and typical surface
reflectance are shown in Figure 4.3. The power SNR shown here and in the
rest of the chapter was calculated with the signal covariances scaled by the
spatial weight function W’:n discussed in chapter three. The NEAp is shown in
Figure 4.4.
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Figure 4.3 Voltage and Power SNR for Typical Reflectance.
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Figure 4.4 NEAp for Typical Reflectance.
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The following Figures 4.5 through 4 22 show the Voltage SNR and NEAp
variations as a function of the parameters shown in Table 4.3.

Table 4.3 Radiometric Performance Parameters Studied and Their Variations.

Meteorological Range 2,4,8,16,32 Km
Solar Zenith Angle ge, 300, 60°
View Zenith Angle 0°, 30°, 6Q°
Surface Albedo 0.03, 0.10, 0.30
Shot Noise Level 0.25,1.0, 4.0
Read Noise Level 0.25,1.0, 4.0
Radiometric Resolution 8, 12, 16 bits

IMC Gain State 1,2,4,8

Relative Calibration Error Level 0.0, 0.5, 1.0, 2.0%
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Figure 4.5 SNR for Varying Meteorological Ranges.
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Figure 4.14 NEAp for Varying Factors of Shot Noise.
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Figure 4.17 SNR for Varying Radiometric Resolution. The SNR
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Figure 4.18 NEAp for Various Radiometric Resolutions. The
NEAp for 12 and 16 Bits is Identical.
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Figure 4.20 NEAp for Various IMC Gain Settings.
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These figures show much about the radiometric performance of the
HIRIS instrument for the various parameters studied. A common observation
from all of these results is the presence of the many absorption bands in the
atmosphere. The main water absorption bands around 1.4 and 1.9 um make
these wavelengths and those nearby useless, while the several other
absorption bands present reduce the utility of those wavelengths for sensing of
the Earth's surface. The following paragraphs discuss the effect of each of the
parameters studied.

Meteorological Range (Figures 4.5 and 4.6). In general, a decreasing

meteorological range results in a lower SNR and higher NEAp, but the effect is
seen to be much more significant in the visible and near infrared spectral
regions. This parameter's effect becomes significant at ranges less than 16 Km.

Solar Zenith Angle (Figures 4.7 and 4.8). This angle is seen to have little
effect at zenith angles less than 30°. At angles greater than this, the effect on
SNR is constant across the wavelength, while the effect on NEAp is seen to be
greater at the longer wavelengths. This is due to the lower signal levels at
these wavelengths which require a greater Ap to match the dominant read

noise (see below).

Yiew Zenith Angle (Figures 4.9 and 4.10). The effect of this angle is also
minimal for angles less than 30°. At angles higher than this, the effect is
greatest in the visible region because the path radiance (which increases with
zenith angle) is more significant at these wavelengths.

Surface Albedo (Figures 4.11 and 4.12). While this parameter has a
significant effect on SNR, its effect on NEAp is minimal. In the calculation of
NEAp, the only term that depends on albedo is the shot noise. Since shot noise
is most significant in the visible wavelengths (see below), the effect of albedo on
NEAp is only noticeable there.

Shot and Read Noise (Figures 4.13, 4.14, 4.15, and 4.16). Both the SNR

and NEAp curves show that shot noise has a more significant effect over the
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VNIR array wavelengths (0.4 - 1.0 um), while read noise is dominant in the
SWIR array (1.0 - 2.4 um).

Radiometric Resolution (Figures 4.17 and 4.18). The nominal
radiometric resolution of 12 bits yields a quantization error that is not significant

when compared to the other noise sources. However, at 8 bits of resolution, the
quantization error becomes significant. Also, it can be seen from the NEAp
curves that this error is more significant at the lower signal levels of the longer
wavelengths.

lmage Motion Compensation (Figures 4.19 and 4.20). At higher gain

states of IMC the SNR curves show a constant improvement across all
wavelengths. Looking at the NEAp curves, it can be seen that the improvement

in detecting the Ap of the surface is greater for the lower signal levels of the long
wavelengths.

Relative Calibration Error (Figures 4.21 and 4.22). Since the calibration

error is signal dependent, its effect is seen to be greater for the higher signal
levels of the visible wavelengths. At these shorter wavelengths 1% error is
significant, while at the longer wavelengths the error is not significant until
levels of nearly 5%.

4.3 Comparison of Simulation and Analytic Model Performance

Several experiments were performed to be able to compare the results
between the simulation and analytical models. The system configuration was
matched as closely as possible for the comparison.

A test scene was defined to be 80 rows by 80 columns of scene cells and
divided at the middle into two classes. The reflectance data used for these
classes were the Summer Fallow, and Unknown class from the data set
described in Table 4.1. These classes were chosen for their low separability.
Table 4.4 gives the details of the system configuration used in the test.
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Table 4.4. System Configuration for Comparison Test

Diffuse Constant
Solar Zenith Angle
View Zenith Angle

Across scene spatial correlation p,

Down scene spatial correlation Py
Ground Size of Scene Cells

Sensor (HIRIS Model)
Spatial Radius

Simulator PSF IFQV
Point Spread Function
Read Noise Level
Shot Noise Level
IMC Gain State
Relative Calibration Error
Absolute Radiometric Error
Radiometric Resolution

[Scene
Surface Meteorological Range
Atmospheric Model! 1976 US Standard
Haze Parameter Rural Extinction

15 Meters

Analytical model r, 1.4 Scene Cells
30 Meters
Gaussian

Processing
Training Fields 100% of Class Area
Feature Selection First 6 Features of Table 4.5

Figure 4.23 shows an image of this scene with the model HIRIS sensor at
A=1.70 um. This image was created using a scene cell ground size of 30
meters, resulting in 80 columns and 80 rows. The division between the classes
is barely visible along a vertical line in the center of the image. However, the
two classes are well separable when several features are used in the

classification algorithm.
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Figure 4.23 Simulated image of Comparison Test Scene at A=1 .70 um.
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In Chen's thesis (Chen and Landgrebe, 1988), he listed the feature set
that his algorithm designed for the data set of Table 4.1. This feature set is
shown in Table 4.5 following.

Table 4.5 Optimal Feature Set for Kansas Winter Wheat Data Set.

Feature Wavelength (um)
0.70 -0.92
1.98 -2.20
2.20-2.40
0.66 - 0.84
1.48 - 1.64
0.52 - 0.66
1.64 -1.78
1.16 - 1.28
0.96 - 1.06
1.04-1.12
0.94 - 1.00
0.44 - 0.50
1.12-1.16
0.92-0.96
0.40 -0.44
1.00 - 1.04

—
COOONONHLWN =

Y
—

— b e ek
DO WN

For each of these tests, the simulation model was run five times and the
resulting accuracies averaged together. Also, the classification accuracy shown
is the average of the two individual class accuracies.

For the base system configuration shown in Table 4.4, the accuracies
obtained are shown in Table 4.6. The values are with 1% of each other,
indicating that, at least for this configuration, the simulation model and the
analytic model predict similar performance.

Table 4.6. Classification Accuracy of Base System Configuration.

Simulation Model 88.06%
Analytical Model 87.78%
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The first test was to compare the effect on accuracy of the spatial model
parameters. Figure 4.24 shows the result of changing the spatial correlation p =

py = py of the scene cells.

96

—_——  Simulalion
04 - soseneefeaneer Analyhc

92

90 4

88

Classification Accuracy (%)

86 v T v T \ T v
0.0 0.2 0.4 0.6 0.8

Spatial Correlation Coefficient

Figure 4.24 Classification Accuracy vs. Scene Spatial Correlation Coefficient.

As can be seen, the simulation model and analytical model track the
change in accuracy due to the spatial correlation. This validates the
equivalence of the autoregressive and exponential spatial models, and
supports the work by Mobasseri in analyzing the effect of the spatial model on
class spectral statistics.

Another comparison test of the spatial model was performed by allowing
the ground size of the scene cells to change and observing the effect on
classification performance. The change in scene cell size for the simulation
model is equivaleht to changing the PSF radius of the analytical model. The
IFOV of the sensor was held constant at 30 meters in the simulation model.
Table 4.7 presents the increments used in this experiment.
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Table 4.7. Increments Used in Ground Size Experiment.

round Si I ius of Analytic PSF (r Iting Im iz
30 Meters 0.7 cells 80 rows by 80 columns
15 Meters 1.4 cells 40 rows by 40 columns
7 Meters 2.8 cells 20 rows by 20 columns
4 Meters 5.6 cells 10 rows by 10 columns
2 Meters 11.2 cells 5 rows by 5 columns

Figure 4.25 shows the results of this experiment. Both models show an
increase in accuracy as the scene cell size decreases. However, while the
analytical model continues this trend at cell sizes less than 10 meters, the
simulation model shows the effects of mixed pixels at the border between the
classes and reduced training set size to dramatically reduce the accuracy.

——f—  Analytic
—®— Simulation

100-[—~
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-
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30 40

Scene Cell Size {meters)

Figure 4.25 Classification Accuracy vs. Ground Size of Scene Cells.

The next test was to compare the effect of sensor view angle on the
performance predicted by each model. The results are shown in Figure 4.26.
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Figure 4.26 Classification Accuracy vs. Sensor View Angle.

The analytical model shows a slight continuous decrease in accuracy,
while the simulation model seems to seesaw with a slightly decreasing trend.
There are two offsetting effects on the system as the viewing angle increases.
There is the increase in path radiance which results in higher shot noise and
decreasing accuracy, while the ground size of the sensor IFOV increases
thereby decreasing the variation in the scene and increasing accuracy.

In the analytical model this change in ground size happens
continuously, while in the simulation model it is a discrete change as scene
cells are combined in integer increments. In this case, for angles 0°, 15°, and
30°, four scene cells are within the sensor IFOV, while at 45° six are combined,
and at 60° eight fill the field of view. As the number of scene cells within the
IFOV increases, the size of the resulting image decreases, and fewer pixels
result for each class. This can also affect the accuracy through mixed pixel
effects.
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It is important to point out that the surface model used in both the
simulation and analytic models does not account for variation in reflectance with
illumination and view angle. Thus, this experiment does not predict how actual
classification accuracy may be affected by the changing view angle in a general
sense, but it does serve to illustrate factors that may influence the result.

Another test was done to compare the accuracy obtained when using a

Gaussian versus the measured shape of the PSF of the sensor. Table 4.8
shows the result of the simulation model using the two PSF types.

Table 4.8 Classification Accuracies of Gaussian vs. Measured PSF.

Gaussian PSF 90.15%
Tabulated PSF 89.75%

The assumption of a Gaussian shape is seen to give a slightly higher
accuracy than when using the actual curve of the sensor. Thus, assuming a
Gaussian PSF is seen to be slightly optimistic.

An experiment was also performed to illustrate the effect of reducing the
number of training samples used for the classifier. Each of the two classes has
800 pixels in the image produced during the simulation. The result is shown in
Figure 4.27.

Obviously, the analytical model shows no effect, as it is only based on the
class statistics and no "training” is involved. The simulation mode! shows the
decreased accuracy as fewer samples are used. This illustrates one of the
limitations of the analytical model in representing the real system.
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Figure 4.27 Classification Accuracy vs. Number of Training Samples.

In general, the simulation and analytical models compare well. In some
cases, the differences between the two are indicative of real world constraints,
while in others the difference is artificial due to limitations of the model. The
results concerning the scene cell sizes and the training samples show
limitations of the analytical model. The irregular shape of the simulation result
for the view angle effects show the potential problems in using a discrete
simulation. Both approaches have their advantages, however, and with the
proper interpretation can be used productively.

4.4 System Parameter Studies
In this section results are presented showing the effect of system
parameters on SNR and classification accuracy using the analytical model.

The scene reflectance was the Kansas Winter Wheat data set of Table
4.1. Table 4.9 shows the baseline system configuration used in this study.
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Table 4.10 shows the parameters that were varied and the range of their
variation. Figures 4.28 through 4.51 show the results of these experiments.

Table 4.9 System Configuration for Parameter Studies.

Scene

Atmospheric Model
Haze Parameter
Diffuse Constant
Solar Zenith Angle
View Zenith Angle

Sensor (HIRIS Model)

Read Noise Level
Shot Noise Level
IMC Gain State

Processing
Feature Selection

Surface Meteorological Range

Across and Down Scene Spatial Correlation

Spatial Radius (analytical mode! fo)

Relative Calibration Error
Absolute Radiometric Error
Radiometric Resolution

16 Km

1976 US Standard
Rural Extinction
0.84
30°
00
0.6

1.4 Scene Cells
Nominal
Nominal

1
0.5%
0%

12 Bits

First 6 Features of Table 4.5

Table 4.10 Parameters Studied and Their Variation in Section 4.4.

Spatial Correlation
Meteorological Range
Solar Zenith Angle

View Zenith Angle
Sensor IFOV On a Side
Shot Noise Factor

Read Noise Factor

IMC Gain State

Number of Bits

Relative Calibration Error
Absolute Radiometric Error
Number of Features

0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90
2,4,8,16,32Km

0°, 15°, 30°, 45°, 60°

0°, 15°, 30°, 45°, 60°

1,2, 4,8, 16 Scene Cells
0,0.5,1.0,2.0,4.0
0,0.5,1.0,2.0,4.0

1,2,4,8

6, 8,10, 12, 14, 16
0,05,1.0,2.0,40%
-10,-5,-2,0,2,5, 10 %
1 through 16
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In computing the SNR value
chapter two for a feature was extended for combining all of the feature
Also, in computing the power

computing one value.

function W, described in chapter thre
The reflectance statistics used in these computations were

data set. The results of these experiments are summarize

Table 4.11 Summary Results for System P
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s, the method described in section 2.3.4 of

s and

SNR, the weighting
e was used to modify the class variances.
for the combined
din Table 4.11.

arameter Experiments.

System Parameter Figures Voltage Power Accuracy
(Increasing) SNR SNR
Scene
Spatial Correlation 4.28, 4.29 |No Change Increase |Decrease
Meteorological Range 4.30, 4.31| Increase Increase | Increase
Solar Zenith Angle 4.32, 4.33| Decrease Decrease | Decrease
View Zenith Angle 4.34, 4.35| Decrease Decrease | Increase
Sensor
Sensor Radius 4.36, 4.37 |[No Change | Decrease increase
Shot Noise 4.38, 4.39 | Decrease Decrease |Decrease
Read Noise 4.40, 4.41 | Decrease Decrease |Decrease
IMC Gain 4.42,4.43| Increase Increase Increase
Radiometric Resolution 4.44,4.45| Increase Increase Increase
Relative Calibration Error 4.46, 4.47 | Decrease Decrease |Decrease
Absolute Radiometric Error 4.48, 4.49| Increase Increase increase
Processing
Number of Features 450, 4.51| Increase Increase Increase

In Figures 4.52 and 4.53, the res
scatter plot to show the relationships between C

signal-to-noise ratio. As can be seen, there is no

there appears a significant trend of higher class

higher SNR, it is not always the case.

The spatial correlation and sensor IFOV ra

While their variation had a

power SNR, the effect was opposite.
noise mode! only through the modification of the signal cov

ults of this section are displayed in a
lassification accuracy and
direct relationship. While
ification accuracy resulting from

dius are cases in point.

significant effect on both classification accuracy and

there is no effect on voltage SNR.

These spatial parameters come into the
ariance matrix thus
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These results are mostly intuitively appealing, except for the sensor view
angle. Figure 4.35 contained two curves. The one labelled "with scaling” was
obtained using the 1/cos(6,ew) Scaling of the ground size of the sensor IFOV as
Byiew Was changed. The other curve labelled "without scaling” did not. It shows
the effects due solely to the decreased atmospheric transmittance and
increased path radiance. Thus, it seems the increase in accuracy due to the
IFOV scaling overrides the decrease due to the atmospheric effects. Of course,
this experiment assumes a Lambertian surface reflectance and no effects due to
field size and mixed pixels. Also, the atmosphere chosen was relatively clear.
In the next section results are presented to show that in hazier atmospheres, the
effect of the atmosphere on view angle is much more pronounced.

4.5 Interrelated Parameter Effects

In this section results showing the interrelated effects of parameters are
presented. The analytical model is again utilized and the system configuration
is as defined in section 4.4. The parameters studied and their variation are
given in Table 4.12 below.

Table 4.12 Parameter Interrelationship Studies.

Meteorological Range and Sensor View Angle (8sorar = 0°)
Meteorological Range and Sensor View Angle (8sopar = 30°)

Meteorological Range and Sensor View Angle (B5g1ar = 60°)
Spatial Correlation and Sensor IFOV Size
Meteorological Range and Shot Noise
Meteorological Range and Read Noise
Meteorological Range and IMC

Meteorological Range and Number of Bits
Meteorological Range and Noise Sources Alone
Solar Zenith Angle and Shot Noise

Sensor View Angle and Shot Noise

Solar Zenith Angle and IMC

Sensor View Angle and IMC

Meteorological Range and Number of Features
Solar Zenith Angle and Number of Features
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The results of these experiments are discussed in the following
paragraphs.

Figures 4.54 through 4.56 help understand the relationships between
meteorological range, sensor view angle, and solar zenith angle. In clear
atmospheres, the increase in accuracy due to the geometry of higher view
angles is evident. However, as the atmosphere becomes hazy, the decreased
signal levels and increased path radiance become dominant and accuracy is
then decreased for higher view angles. The effects due to the atmosphere are
seen to be more significant for higher solar zenith angles.

Figure 4.57 shows a complex relationship between the spatial correlation
of scene cells, and the number of cells in a sensor IFOV side. With increasing
correlation, the accuracy for small cells (many cells per IFOV side) falls sharply
before decreasing at a constant rate, while the accuracy for large scene cells
(few cells per IFOV side) remains constant before falling sharply at high
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correlations. While this result shows the tradeoffs on classification accuracy of
scene cell size and spatial correlation for constant sensor IFQV, it is interesting
to consider this in the light of the results of Table 2.2, There it was shown that
spatial correlation decreases with increasing scene cell size. Thus, for typical
remote sensing data sets large scene cells have low spatial correlation, while
small cells have high correlation. These tradeoffs form an imaginary horizontal
line across Figure 4.57 and indicate that classification accuracy is relatively
independent of scene cell size.

Figures 4.58 and 4.59 show that the effects due to increased noise are
more significant in hazy atmospheres, while Figure 4.60 shows the
improvement by using IMC to be greater in hazy atmospheres. Figure 4.61
demonstrates how the increase in quantization error of fewer radiometric bits
can be more significant in hazy atmospheres.

In Figure 4.62, it can be seen that the read noise and relative calibration
errors are more significant for all meteorological ranges, while the effect of shot
noise is greater at low ranges due to the increase in path radiance. It is
interesting to compare the effect of the atmosphere with NO noise sources
present shown here with that of Landgrebe and Malaret (1986). Their result
showed the atmosphere had no effect when no sensor noise was present, while
Figure 4.62 shows a significant effect. The difference in these results is due to
the path radiance model used in this report. Malaret's model considered path
radiance as a constant additive source, while the model used here is
dependent upon the surface reflectance. Figure 4.69 shows the effect of the
atmosphere with and without sensor noise for the system model modified to
remove the surface reflectance dependence on path radiance. As can be
seen, the atmosphere has little effect on accuracy when this dependence is
removed. It is known that path radiance is dependent upon surface reflectance
in the real world, thus the results shown in Figure 4.62 are judged to be more
realistic.
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Figures 4.63 and 4.64 contain some interesting results. In Figure 4.63,
the effect of shot noise is seen to be greater at high solar zenith angles, while in
Figure 4.64, just the opposite is seen for high view angles. In both cases, the
effect due to the shot noise alone is to decrease accuracy more at higher
angles, but for the view angle case the increase in accuracy due to the
geometry overrides the shot noise effect.

Figure 4.65 shows how the IMC can be used to overcome the
combination of low signal levels and high read noise 10 actually increase
accuracy at high solar zenith angles. In Figure 4.66, a similar effect is seen as
the IMC increases accuracy by a greater amount at high view angles.

Figures 4.67 and 4.68 show how, up to @ point, more features can be
used in classification to overcome the effects of the atmosphere or solar angle.
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However, it can be seen that the accuracy increases level out after a certain
number of features and increases beyond that level are not significant.

Overall, the results of these experiments show the complex interaction of
system parameters in determining their effect on classification accuracy. This
demonstrates the importance of considering the interdependence of parameters
when considering their specification in the design of a remote sensing
experiment.

4.6 Feature Selection Experiments

Several sets of six features (shown in Table 4.13) were used to evaluate
their classification performance for a variety of system parameter variations and
scenes. This section presents the results of these experiments.

Table 4.13 Wavelength Bands Combined for the Various Feature Sets. The
Various Feature Sets are Defined as SFD = Spectral Feature. Desigq Algorithm,

Feature SFD ™ WSNR NSNR SSFD | SSNR
1 0.52-0.66 [ 0.45-0.52 0.40-0.70 [0.57-0.56 | 059 0.54
2 0.66-0.84 | 0.52-0.60 0.77-0.90 (0.81-0.86 | 0.75 0.84
3 0.70-0.92 | 0.63-0.69 1.00-1.10 {1.02-1.07 | 0.81 1.04
4 1.48-1.64 | 0.76-0.90 1.15-1.30 |1.20-1.25 1.56 1.11
S 1.98-2.20 | 1.45-1.75 1.50-1.74 11.59-164| 210 1.61
6 2.20-2.40 | 2.08-2.35 1.97-2.40 |2.16-2.21 2.30 | 2.19

The SNR features were chosen based upon Spectral regions of high
SNR. These various sets were chosen to see how classification accuracy and
combined signal-to-noise ratios compared. Figure 4.70 shows the voltage and
power SNR for the various feature sets and the combined reflectance statistics
of the data set in Table 4.1, while Figure 4.71 shows the resultant classification
accuracy for the baseline system of Table 4.9.
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In this case, the SFD features performed the best for this data set, even
though they did not have highest SNR. However, since they were derived from
the data used to generate the scene, it is expected that they perform well.

Several experiments were run to compare the performance of the various
feature sets over varying scene conditions. Figures 4.72, 4.73, and 4.74 show
the classification performance of the feature sets for various meteorological
ranges, solar zenith angles, and view angles.
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Figure 4.72 Feature Set Performance vs. Meteorological Range.

From these curves, it can be seen that the features derived from high
SNR regions are less susceptible to changes in the scene parameters.
However, they give overall less accuracy than the features obtained from the
SFD algorithm. Also, the features that are obtained from only one spectral band
perform poorly under all conditions.
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Figure 4.74 Feature Set Performance vs. View Angle.
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The robustness of the spectral feature design algorithm was then studied
by comparing the accuracy of the various feature sets in classifying a scene
created from a different data set than that from which the features were derived.
A scene was created from reflectance data of three varieties of spring wheat.
Table 4.14 gives the specific fields from the LARS field data base.

Table 4.14. Classes and fields used to compute statistics for the Spring Wheat
test scene. The datais from Hand County, South Dakota, on July 26, 1978.

Classes Field Number of Observations

Spring Wheat 118 13
154 29
199 28
291 28
292 16

Total = 114
SW 1809 296 28
303 58

Total = 86
SW Mix 75 13
281 55

Total = 68

The system configuration was as shown in Table 4.9. Figure 4.75 shows
the voltage and power SNR of the Spring Wheat test scene for the various
feature sets, while Figure 4.76 presents the resulting classification accuracy.

In all cases, the features formed from the wavelengths used in the
Landsat TM and the ones from high SNR regions performed the best.
Compared to these feature sets, the SFD feature set did not perform as well.
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These results imply that over varying scenes the features derived from
the reflectance of a different crop type perform less well at classification than
features derived from signal-to-noise regions of the instrument, or even the
wavelength bands used in the Thematic Mapper. This is not surprising since
the SFD procedure is intended to be case-specific; it is intended to provide
features optimal for its design case, as compared to being optimal in the
general case. |

4.7 Summary and Conclusions

In this chapter the system models presented in chapters two and three
have been applied to the study of a remote sensing system based on the
proposed imaging spectrometer HIRIS. System performance measured by
signal-to-noise ratios and classification accuracy has been studied under a
variety of system parameter configurations. While the results of these
experiments have been discussed at the end of each of the sections, the
following paragraphs briefly summarize the main conclusions.

In section 4.2 the Signal-to-Noise Ratio (SNR) and Noise Equivalent
Change in Reflectance (NEAp) of HIRIS was studied. The results illustrated
how the atmosphere affects each of the spectral bands, and what noise sources
are the most dominant under a variety of conditions. Hazier atmospheres were
seen to have more significant effects on the shorter wavelength bands than the
longer wavelengths. Shot noise was seen to be more significant at the high
signal levels at the wavelengths of the VNIR detector array, while read noise
was the dominant noise source in the longer wavelengths of the SWIR array.

Section 4.3 investigated the similarities and differences between the
simulation model of chapter two and the analytical model of chapter three. The
results indicated that the approaches gave similar results, except in cases
where mixed pixels or the training of a classifier were involved.

Section 4.4 presented the results of applying the analytical model to the
study of the individual effect of several parameters on SNR and classification
accuracy. The results generally showed a trend of increased SNR resulting in
increased accuracy, except for parameters involved with spatial variation. Here,
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the spatial parameters resulting in lower power SNR gave an increase in
classification by increasing the separability of the classes.

In section 4.5 the interdependence of system parameters was
investigated. Significant relationships were seen between system parameters,
especially those involving pixel size variations and signal dependent noise.

Section 4.6 presented several results comparing various methods of
choosing spectral feature sets under a variety of system conditions. The results
indicated that feature sets based on high SNR were the most robust under
system parameter variations, but feature sets derived from the original
reflectance data were optimum for scenes created from that data.

These results have been presented to show the relative importance of
the system parameters. In no way are these results intended to be used to
predict the actual performance of the system. Rather, they are useful in
discovering the relative effects and tradeoffs in specifying the various
parameters.
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CHAPTER 5
CONCLUSIONS AND

SUGGESTIONS FOR FURTHER WORK

In pursuing this research, the goals were to: 1) document and model the
remote sensing process from an overall systems perspective; 2) develop a tool
to allow the study of the interrelationships of identifiable system parameters; 3)
apply this tool to the study of optical remote sensing systems.

Chapters one and two described the remote sensing process from a
systems perspective. It was seen to be comprised of three major components:
the scene, the sensor, and the processing algorithms. Modeling of these
components was discussed from a general point of view, and a framework was
described for implementing a subset of these models in a simulation of the
entire system. The simulation used the scene models to produce a spectral
radiance function over a defined scene consisting of various informational
classes arranged spatially. The sensor models then converted this function into
a digital multispectral image, similar to that produced by real sensors. Various
processing algorithms were then applied to this image to extract a performance
measure of the system.

Chapter three presented an alternative to the simulation approach with
the development of a parametric model to describe the remote sensing process.
This model used analytical equations to describe the effects of the various
system parameters.

Each of these approaches are useful as a tool to study remote sensing
systems, and the choice of their use is dependent upon the goal of the study.
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The simulation method is useful in the following example cases.

* The spatial layout of the various classes is of interest.

* A particular scene or image is desired to be simulated under a variety
of conditions.

* An image with desired characteristics is needed for the study of
various processing algorithms.

* One scene needs to have several different sensors applied to it to
compare the resulting images.

* It is desired to use a very accurate and detailed model for the sensor
spatial, spectral, and noise effects.

* Itis desired to introduce spatial effects in the scene such as clouds,
shadows, or in the sensor such as geometric distortion or
misregistration.

The parametric model is useful for the following examples.

* Parameter tradeoff studies where detail of models can be sacrificed
for speed of results.

* The scene has a large number of classes with no particular
constraints on spatial layout.

These are only a few of the possible uses of both approaches, but they
are listed to illustrate some of the kinds of studies that are possible under the
modeling framework developed in this report.

Chapter four presented a detailed study of the system performance of a
future imaging spectrometer. The goals were to évaluate the noise and
classification performance of the instrument under a variety of system
configurations. For the majority of the results, the analytical model was
implemented. This allowed the tradeoff study of several parameters to help
determine the interrelationships among them. Although the results were for the
particular instrument and scene defined, the general trends were observed and
are believed to hold for similar systems.
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Some of the significant results of this study of HIRIS include the following.

. Atmospheric visibility and scattered path radiance influence the
sensitivity of the instrument to ground reflectance changes much more
in the visible wavelengths than in the infrared.

. While classification accuracy is usually related directly to SNR, it is
not always the case.

. The effect of the atmosphere on sensor viewing angle varies
significantly with visibility.

« Lower classification accuracies in hazy atmospheres are not only
because of noise sources in the sensor, but also the increased path
radiance scattered from the surface.

« While feature sets chosen from spectral regions of high SNR are
robust across system parameter variations, feature sets derived using
analytical approaches from field databases perform optimally for
scenes created from the data.

The work presented here has been but one step on the road to modeling
and understanding optical remote sensing systems. It has built upon the work
of many previous researchers, and hopefully, will stand as a foundation for
future efforts.

While almost every component of the system model could be improved,
several particular areas deserve to be pointed out. The surface reflectance
model assumption of Lambertian reflectance could be replaced by a description
of the bidirectional reflectance. Embedded within this function should be the
spectral and spatial variation of the reflectance. Another assumption used in
the scene spatial model that needs work is the spatial crosscorrelation between
high spectral resolution reflectance data.

Two aspects of the atmospheric model could be extended. The
relationship between the total surface irradiance and the direct irradiance
needs to be more adequately defined. Also, spatial blurring and spatial
variability of the atmosphere could be implemented.
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Geometric distortion and spectral band misregistration could be
implemented in the sensor model.

This simulation approach could be used today to generate realistic high
dimensional multispectral images for use in processing algorithm study. These
may be studies of hyperspectral image display or classification algorithm
development.

These are but a few of the possible extensions and uses of the modeling
approaches. Indeed, it would seem to be an axiom of modeling that one can
always improve one's model, especially when part of the subject is the natural
world.
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Appendix A Expected variance of a Two Dimensional
Autoregressive Process

This appendix provides a straightforward method of computing the
expected variance of a two dimensional autoregressive (AR) process. While the
method is similar to discussions presented in Friedlander (1984) and Kay
(1985), it is developed here in the context of image modeling and presented in
an intuitively simple manner.

The zero mean Mth order AR process y(k) is defined as in equation A.1.

M
Y9 = Y. O ylem) + u(k)  k=t..N (A.1)
mat :
where
y(k) - process data value at point k in sequence
6, - model coefficient at lag m
u(k) - Gaussian white noise sequence with zero mean and variance

o2
The process will be stationary if the zeros of F(z) lie outside of the unit
circle in the complex plane, where F(z) is defined as in equation A.2.

M

F(z)=1-0,2-8,2"-...-6Z (A.2)

Autoregressive models have been applied to image modelling and
compression (Delp, Kashyap, and Mitchell 1979) through the use of a line
scanning formulation. The two-dimensional image is row concatenated to form
a one dimensional sequence. Figure A.1 shows the arrangement for a quarter
plane AR model appliedtoa P row x P column image.
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y(i-1,j-1) y(i-1.j)

(1.1)

y(ij-1) L S y(i.)

(P.P)
V) = 80,y Y1) +8, 5 y(-1.0) + 0, | y(11) + (i) +y, .

Figure A.1 Quarter-Plane Image AR Model.

This model may be reformulated as a one dimensional sequence by
letting the index k = (i-1 )P +j. This is shown in equation A.3.

y(k) = 8,y(k-1) + 8,y(k-P) + Op,1Y(k-P-1) + u(k) +y,000  for k=P+1,... p2 (A.3)

The AR model is now of order M = P + 1, but with only coefficients 9, 6p,
and 8p, 4 being nonzero. Also, the initial conditions of the model become the

first row and the first pixel of the second row. Usually these are set to the mean
of the image as in equation A.4.

Y(K) =Ymean for k=1,2,... P+1. (A.4)

The Yule-Walker (YW) equations are obtained by multiplying equation
A.1 by y(k-1) and taking the expectation. This results in equation A.5.

M
E{y(k) y(c-n} = E{ Zﬂm y(k-m) y(k-1) + u(k) y(k-l)} (A.5)

m=1
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For | > 0, this results in equation A.6,

M
3 () = ) 6 & () (A.6)
ma=1

where oy2(l) is the covariance between data points | l1ags apart. This
result comes about due to the stationarity of the process and the fact that u(k) is

an uncorrelated sequence.
Writing equation A.5 for I=1 to M and normalizing by the variance oy2 =

c,2(0), we obtain the YW relations as equation A.7.

P, = e1 + 92p1 + -+ ()Mpm_1

p, = 8Py * 0, + 8,0 + ¥ Oy Pp-2
(A7)

Py = 91 Pma ¥ B,Py * Oy

Observe that in the above we have used the fact that po = 1,and thatp.y =
py. Also, note that
oy (m)

Pm = 02
Y

Equation A.7 can be reformulated as in equation A.8.

— Py —91_1

P, 0,
[ ) all -
| lM M 0, ®Bj =) (A.8)

L_ pM_. L-eM—.
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Where ,M x M IS an M x M identity matrix, ang @A and @B are defined
as follows,
r—92 0,- 8,0
0,6, - -6,00 [00....9¢
6100---0
®A= - 0,0 0 6,0 0-.-..90
M @B = 2 1 Y
eM 0. . ... 0 .
—0 0 - . ... 0. O 8, 6, 0_
The elements of @ A and @B can be filled by the following pPseudo-code.
For @A’
fori=1to M{
forj=1toM{
it (i+] < M) then © Alid) = 8,
else @A(i,j) =0
}
}
For @B.
fori=1toM{
forj=1to M {
if (i-j > 1) then Oplij) = 0,
else @B(i,j) =0

}

}
Equation A.8 is in the form
autocorrelation coefficients p,, Po,

standard linear algebra routine.

of a system of linear equations, and the
- PM, €an then be obtained by using any
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Using the relationship between the coefficients, the autocorrelations, and
the process variance from Box and Jenkins (1970), we can solve for the
variance of the process as in equation A.9.

o
M
1- Zempm (A-9)

m=

05-——'
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Appendix B Interpolation Algorithm

The following routine was used to convert the 60 dimensional FSS
reflectance into the 201 dimensional vectors used in the system models. The
FSS data covered 0.4 to 2.40 Hm, in spectral samples ranging from 20 nm to 50

nm. The system model uses a constant 10 nm wavelength spacing across this
range.

The conversion is accomplished by first placing samples that correspond
directly in wavelength, then performing several levels of interpolation to match
the wavelength spacing as closely as possible.

The two arrays are defined as fssref(1:60), the FSS reflectance, and
hiref(1:201), the resulting interpolated array.

c Do direct placements first

hiref(l)=fssref(1)

do 10 i=2,8

10 hiref(2*i)=fssref(i)
do 20 i=9,11

20 hiref(2*i+l)=fssref(i)
do 30 i=12,13

30 hiref(2*i+2)=fssref(i)
do 40 i=14,18

40 hiref(2*i+3)=fssref(i)
do 50 i=19,28

S0 hiref(2*i+2)=fssref(i)

hiref(59)=fssref(29)
do 60 i=30,34
60 hiref(2*i+3)=fssref(i)
hiref(75)=fssref(35)
hiref(80)=fssref(36)
do 62 i=37,60
62 hiref(S*(i—37)+84)=fssref(i)

[e]

Next interpolate simply

[e]

do 70 i=1,7

70 hiref(z*i+l)=0.5*(fssref(i)+fssref(i+1))
do 80 i=8,11
80 hiref(z*i+2)=0.5*(fssref(i)+fssref(i+l))

hiref(27)=0.5*(fssref(12)+fssref(13))
do 90 i=13,17

90 hiref(2*i+4)=0.5*(fssref(i)+fssref(i+1))
do 100 i=19,27
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100 hiref (2*i+3)=0.5* (fssref (i) +fssref (i+l))
hiref(61)=0.5*(fssref(29)+fssref(30))
do 110 i=30,33
110 hiref(2*i+4)=0.5*(fssref(i)+fssref(i+l))
hiref (73)=0.5* (fssref (34)+fssref (39))
hiref (77)=0.5* (fssref (35) +fssref (36))
hiref (82)=0.5*% (fssref (36)+fssref (37))
hiref (87)=0.5% (fssref (37) +fssxref (38))
do 115 i=38,59

115 hiref (5% (i-38)+91)=0.5* (fssref (i)+fssref (i+l))
c

c Now interpolate interpolations

c

hiref(2)=0.5*(hiref(l)+hiref(3))
hiref(17)-0.5*(hiref(16)+hiref(18))
hiref(25)=0.5*(hiref(24)+hiref(26))
hiref(29)=0.5*(hiref(28)+hiref(30))
hiref(60)=0.5*(hiref(59)+hiref(61))
hiref (62)=0.5* (hiref (61)+hiref (63))
do 120 i=72,78,2
120 hiref(i)=0.5*(hiref(i-l)+hiref(i+1))

hiref(81)=0.5* (hiref (80) +hiref (82))
hiref(83)=0.5*(hiref(82)+hiref(84))
do 125 i=86,92,2

125 hiref(i)=0.5* (hiref(i-1)+hiref (i+1))
do 130 i=110,195,5
130 hiref(i)=0.5*(hiref(i—1)+hiref(i+1))
c
c Now interpolate interpolations of the interpolations
c

hiref (79)=0.5* (hiref (78)+hiref (80))

hiref (85)=0.5* (hiref (84)+hiref (86))

hiref (93)=0.5% (hiref(92)+hiref (34))
do 135 i=112,197,5

135 hiref(i)=0.5* (hiref (i-1)+hiref (i+2))
do 140 i=113,198,5
140 hiref (i)=0.5* (hiref (i-1)+hiref (i+1))
c
c Set water absorption bands to 0.001
c
do 143 i=96,106
143 hiref(i)=0.001
do 147 i=146,156
147 hiref (i)=0.001
c
c Set up repeated values
c

hiref (95)=hiref (94)
hiref (107)=hiref (109)
hiref (108)=hiref (109)
hiref (145)=hiref (144)
hiref (157)=hiref (159)
hiref (158)=hiref (159)
hiref (200)=hiref (199)
hiref (201)=hiref (199)
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Appendix C LOWTRAN 7 Input File

The atmospheric simulation program LOWTRAN 7 is implemented in the
simulation by setting up an input file, calling the program through a UNIX
system command, then reading the resultant output file created.

The following variables and default values were used in the
implementation of LOWTRAN 7. See Kneizys, et al., (1988) for a complete
description.

ANGLE - Angle parameter
DV - Incremental wavenumber
GNDALT - Attitude of surface
H1 - Initial altitude
H2 - Final altitude
ICLD - Cirrus cloud parameter
ICSTL - Ocean parameter
IEMSCT - Execution mode parameter
= 0 program calculates transmittance
= 1 program calculates atmospheric radiance
= 2 program calculates atmospheric and singly scattered solar/lunar radiance
= 3 program calculates directly transmitted solar irradiance
IHAZE - Atmospheric haze parameter
= 0 for a clear atmosphere
= 1 for a rural atmosphere
=5 for an urban atmosphere
IM - Radiosonde parameter
IMULT - Muttiple scattering obmrol parameter
= 0 program executed without multiple scattering
=1 program e;ecuted with multiple scattering
IPARM - Geometry specification controlling parameter
IPH - Aerosol phase function parameter
IRPT - repetition parameter
= 0 no more input cards follow
= 1 more input cards follow
ISEASN - season parameter (O=default)
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ISOURC - Extraterrestrial source parameter
= 0 source is sun
= 1 source is moon
ITYPE - Atmospheric path parameter
= 1 for a horizontal path
= 2 for a vertical or slant path between two altitudes
= 3 for a vertical or slant path to space
IVSA - Vertical structure algorithm parameter
IVULCN - Volcanic activity parameter
M1 through M6 - Altitude profile parameters
MODEL - Atmospheric model type parameter
= 1 selects Tropical Model Atmosphere
= 2 selects Mid!atitude Summer
= 3 selects Midlatitude Winter
= 4 selects Subarctic Summer
= § selects Subarctic Winter
= 6 selects 1976 U. S. Standard
NOPRT - Normal operation parameter
PARM1 - Azimuthal angle between observer and sun
PARM2 - Solar zenith angle (=050)ar)
RAINRT - Rain rate parameter
SALB - Surface albedo
V1 - Initial wavenumber

V2 - Final wavenumber
VIS - Surface meteorological range (=Vy)

The following default values were used for the experiments and
simulations used in this report.

GNDALT=0 /" Surface at sea level */

ICLD=0 * No clouds */

ICSTL=1 /* No effect, only used over oceans */
IDAY=180 /* Day of year */

IHAZE=1 /* Rural atmosphere */

IM=0 /* No radiosonde data */
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IMULT = 1
ISEASN=0
ISOURC
IVSA=0
IVULCN=0
M1=0
M2=0
M3=0
MODEL=6
NOPRT=1

RAINRT=0.0
V|S=Vn

Four calls to LOWTRAN are set up within the input file. The first call
calculates the direct solar spectral irradiance at the surface.
calculates the transmittance of the path from the surface to the sensor. The third
and fourth calls calculate the path radiance seen b
albedoes of 0 and 1. LOWTRAN reads from an input file named TAPES. The

164

/* Multiple scattering */

/* Season determined by MODEL */
/* Source is Sun */

/* Vent. Structure Algorithm not used */
/* No volcanic profile */

/* Normal operation */

/* Normal operation */

/* Normal operation */

/" 1976 U. S. Standard atmosphere */
/" Normal operation */

/* No rain */

lines below labelled CARD contain the actual variables in the file TAPES.

The following lines set up the direct solar irradiance call.

ITYPE=3
IEMSCT=3
H1=0.0
ANGLE=0g45,

IRPT=1

CARD 1 MODEL,ITYPE,IEMSCT,IMULT,M1,M2,M3,M4,M5,M6,MDEF,IM,

NOPRT,SALB

CARD 2 IHAZE,ISEASN,IVULCN,ICSTL,ICLD,IVSA,VIS,RAINRT,GNDALT

CARD 3 H1, ANGLE, ISOURC
CARD 4 V1i,v2 DV
CARD S5 IRPT

The second

y the sensor for surface
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The following lines set up the transmittance call.

ITYPE=2
IEMSCT=0

H1=0.0
H2=H /* Altitude of sensor */

IRPT=1

CARD 6 MODEL,ITYPE JEMSCT,IMULT M1 M2,M3,M4,M5 M6,MDEF,IM,

NOPRT,SALB

CARD 7 IHAZE,ISEASN,IVULCN,ICSTL,ICLD,IVSA,VIS,RAINRT,GNDALT

CARD 8
CARD 9
CARD 1

CARD 1

CARD 1
CARD 1
CARD 1
CARD 1
CARD 1

H1,H2,ANGLE
V1i,v2,DV
0 IRPT

The following lines set up one path radiance call.

ITYPE=2

IEMSCT=2

Hi=H

ANGLE=180.0 - 8 jiew
IPARM=2

IPH=2

PARM1=(dview 9solar)’2
PARM2=8g0ar

SALB=0.0 for=10%

1 MODEL,|ITYPE,IEMSCT,IMULT M1 ,M2,M3,M4,M5 M6 MDEF ,IM,
NOPRT,SALB

2 IHAZE,!SEASN.IVULCN,ICSTL,|CLD,IVSA,VIS,RAINRT,GNDALT

3 H1,ANGLE,LEN

4 IPARM,IPH,IDAY,ISOURC

5 PARM1,PARM2

6 Vi,v2,DV
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CARD 17 IRPT

The program generates a file named TAPE7? with the output data. Since
LOWTRAN uses wavenumber increments across the spectrum, a conversion is
done to put the result into wavelength units. Since the resolution of the call to
LOWTRAN results in one or more wavenumber samples per wavelength
interval, this conversion is accomplished by averaging over the appropriate
wavenumbers to obtain the resulting wavelength value.
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Appendix D Sensor Descriptions

In the following descriptions the radiance levels are given in mW/(cm2-
sr). The shot noise constants are computed from data and can be used to
compute the standard deviation as in equation D.1.

Ot = Kshot ,/Signal Level (D.1)

D.1. Modular Multispectral Scanner

This is an airborne sensor flown for LARS in the early 1970s. The
spectral response and noise levels were estimated from data given in the report
by NASA's Johnson Space Center (1974). Details are given in Tables D.1 and
D.2, and Figures D.1, and D.2. The noise values are estimated assuming
equivalent shot and thermal noise for one-half full scale radiance signals.

Table D.1 MMS General Parameters.

Altitude 3030 Meters
Sampling Interval 2.3 millirads
Number of Bands 10

Number of Bits 8

Table D.2 MMS Band and Noise Parameters.

Full Scale Shot Noise Thermal Noise
Band Radiance Constant Equivalent Radiance
1 0.338 0.0151 0.00450
2 0.640 0.0042 0.00160
3 1.114 0.0039 0.00160
4 1.253 0.0037 0.00150
5 1.314 0.0035 0.00150
6 1.333 0.0028 0.00150
7 1.170 0.0024 0.00140
8 1.020 0.0018 0.00140
9 0.983 0.0034 0.00300
10 0.259 0.0061 0.00250
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The spatial response of the MMS is assumed to be Gaussian with a
standard deviation of 1.25 milliradians.

D.2. Landsat MSS

The following data are for the Landsat MSS instrument. The spectral
response was taken from Markham and Barker (1983), the spatial response
from Markham (1985), and the noise levels set similar to those of the Thematic
Mapper instrument. The rest of the information is from Salomonson, ot al.
(1980).

Table D.3 MSS General Parameters.

Altitude 918 Kilometers
Sampling Interval 63 yradians across scan

88 pradians down scene

Number of Bands 4
Number of Bits 7 (6 for band 4)

Table D.4 MSS Band and Noise Parameters.

Full Scale Shot Noise Thermal Noise
Band | Radiance Constant Equivalent Radiance
1 2.48 0.008 0.006
2 2.00 0.007 0.005
3 1.76 0.005 0.005
4 4.60 0.005 0.010

L S
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" D.3. Landsat Thematic Mapper
The data presented here are for the first six bands of the Landsat TM
instrument. The spectral response was taken from Markham and Barker (1985),
the spatial response from Markham (1985), and the noise levels from Malaret
(1982). The rest of the information is from Salomonson, et al., (1980).

Table D.5 TM General Parameters.

ititude 705 Kilometers
Sampling Interval 43 pradians across scan
h 43 pradians down scene
s Number of Bands 6
Number of Bits 8

Table D.6 TM Band and Noise Parameters.

ull Scale Bhot Noise Thermal Noise
Band | Radiance Constant Equivalent Radiance
1 1.06 0.0073 0.00752
2 2.54 0.0079 0.00529
3 1.46 0.0066 0.00448
< 4 3.26 0.0049 0.00360
5 0.64 0.0055 0.00333
8 0.48 0.0127 0.00600
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Appendix E Analytical System Model Program Listing

ci*****t****t*********t*****k********************t*************t********

C
[
c
[+]
C
(o]
Cc
[+
[
c
(o]
[+
c
c
[o]
[~
Cc
c
[
[o]
C
C
(o]
c
c
[+
Cc
c
c
(o]
c
c
c
(]
c
[
C
o4
(o]
[
(]
[
C
c
(o]
c
(]
[
c
c
[+
c
(]
[o]

RSANA John Kerekes May 29, 1989

This program will compute the performance of a remote sensing
system based on scene reflectance and system parameters.

It is based on analytic models developed by whitsitt (1977),
Mobasseri (1978),and Malaret {(1982) . It uses reflectance
statistics obtained by the FSS and interpolated to 201 dimensions
to work with the model HIRIS sensor. Feature selection based on
combining bands is used to reduce the dimensionality. Tables
generated by LOWTRAN 7 provide the atmospheric data under 125
combinations of surface meteorological range, solar zenith angle,
and view zenith angle. Classification accuracy is assessed through
a function of the Bhattacharyya distance between classes.

The program uses several data files as described below.

vrefstat™ - Mean and covariance of reflectance for each class

wecdesc” - Parameter file describing scene

wirrad" - Table of total surface jrradiance for varying
meteorological ranges and sun angles

“rrans"” - Table of atmospheric transmittance for varying
meteorological ranges and view angles

"prad0" - Table of path radiance for surface reflectance of 0, for
varying meteorological ranges, solar angles, and view angles

npradl™ - Table of path radiance for surface reflectance of 1, for
varying meteorclogical ranges, solar angles, and view angles

nsenstat” - Parameter file describing sensor

nfeaset" - Table of processing features

The format for these files is as follows.

"refstat” .
Repeated for each class are the following
(al0) Class Name
(201£f8.4) Mean Reflectance
201 rows of (201f8.4) Covariance Matrix

"scdesc”
(i3) Number of classes
(f4.2) Across scene spatial correlation coefficient
(f4.2) Down scene spatial correlation coefficient
(i3) Meteorological range table index
(i3) Solar zenith angle table index
(i4) View zenith angle table index

"irrad"
Repeated for 5 solar angles (0% 15°, 30°, 45°, and 60°)
Repeated 201 times for spectral wavelengths
S(f7.2,al) Spectral irradiance for 5 Met Ranges
separated by tabs (2,4,8,16, and 32 Km)
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C
C
C
(o
C
C
C
C
C
C
C
o
¢
C
C
o]
Cc
[
C
C
C
C
C
(o4
C
C
C
(o
C
[
(o4
[od
C
C
C
C
c
[
C
(o]
C
C
C
(o]
C
C
C
C
C
(o]
C
C
[
C
C
(]

“trans"
Repeated for 5 view angles (0°, 15°, 30°, 45°, and 60°)
Repeated 201 times for Spectral wavelengths
5(£7.4,a1) Atm. Transmittance for 5 Met Ranges
Separated by tabs (2,4,8,16, and 32 Km)

"pradO"
Repeated for 5 view angles (0°, 15°, 30°, 45°, and 60°)
Repeated for 5 solar angles (0°, 15°, 30°, 45°, and 60°)

Repeated 201 times for spectral wavelengths
5{(£f7.4,al) Path Radiance for 5 Met Ranges
Separated by tabs (2,4,8,16, and 32 Km)

Ilpradl "
Repeated for 5 view angles (0°, 15°, 30°, 45°, and 60°)
Repeated for 5 solar angles (0°, 15°, 30°, 45°, and 60°)

Repeated 201 times for spectral wavelengths
S(£7.4,al) Path Radiance for 5 Met Ranges
Separated by tabs (2,4,8,16,and 32 Km)

"senstat"
(al24,a6) Label, Sensor Name
(a24,£4.1) Label, PSF Radius (xrg)
(a24,1i3) Label, IMC Gain State
(a24,£11.1) Label, System Response Constant
(a24,2f£8.1) Label, VNIR and SWIR Dark Current
(a24,£8.1) Label, Shot Noise Factor
(a24,2£8.1) Label, VNIR and SWIR Read Noise Std. Deviations
(a24,2f8.1) Label, VNIR and SWIR Quantization Noise St.Dvs.
(a24,£8.3) Label, Relative Calibration Error
(a24,£8.3) Label, Absolute Calibration Error
Repeated for 201 Wavelengths
(a24,£7.4) Label, Sensor Spectral Band Response

"feaset"
(a24,i4) Label, Number of Features to Use
Repeated for each feature '
(a24,2i4) Label, Feature Beginning and Ending Band

Variables Used Include the Following:

absrad - level of absolute radiometric error (in decimal)

averef - average of class reflectances {(in decimal)

avecov - covariance of average of reflectances {in decimal)

calstd - level of relative calibration error vector (in decimal)

dark - dark level current in detectors (in electrons)

feacov - Covariance of feature set

feamat - feature selection matrix

feamean - mean of feature set

feaset - table of band edges for feature selection

gcon - conversion vector of received power to electrons
(electrons/watt)

irrad - table of total spectral irradiance at surface (mW/cmz—mm)
irrad(wavelength,met range, sun, angle)
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mr - index for meteorological range

mu - Bhattacharyya distance

pcsum - overall average probability correct (in percent)

prad0 - table of path radiance when albedo=0 (mW/cmZ—mm—sr)
prad0 (wavelength, met range, sun angle, view angle)

pradl - table of path radiance when albedo=1 (mW/cmz—mm-sr)
pradl (wavelength, met range, sun angle, view angle)

probcor - pairwise probability of correct (in decimal)

quantstd - variance of quantization noise (in electrons)

readstd - variance of read noise vector (in electrons)

refmean - mean reflectance array (in percent)

refcov - covariance of reflectance (in percentz)

rhox - across scene spatial correlation coefficient

rhoy - down scene spatial correlation coefficient

ro - sqrt(2) times the PSF radius in scene cells

senrsp - sensor response (product of optics transmittance and
quantum efficiency)

shtfac - shot noise factor

shotstd - standard deviation of shot noise vector(in electrons)

sigcov - covariance of received signal (in electrons?)

sigmean - mean of received signal (in electrons)

sigrad - signal radiance for 100% reflecting surface(in electrons)

sysrsp - system reésponse constant {product of AQ, A\, and 1l/hc)

thsun - index of solar zenith angle

thvew - index of view zenith angle

trans - table of atmospheric transmittance
trans (wavelength, met range, view angle)

ws - spatial weight

IMSL version 10.0 routines used include the following:

erfc{x) - compute the error function complement of x
1ftsf(*) - matrix factorization
1fdsf(*) - compute determinant given matrix factorization

linrg(*) - compute the inverse of a real general matrix

program rsana
parametct(irbrk-sl,maxcls=4,maxdimsZOl,maxfea=16,maxopt=5)
character*l tc

character*6 senname

character*10 covtype

character*24 label

integer feaset (maxfea,?2)

integer imc,ipvt(maxfea),mr,numcls,numfea,thsun,thvew
real absrad, averef (maxdim)

real avecov (maxdim,maxdim)

real calval

real calstd(maxdim)

real dark(2),detl,det2,detave,detl, detk

real fac(maxfea,maxfea)

real feamat (maxfea,maxdim)

real feacov(maxfea,maxfea,maxcls),feamean(maxfea,maxcls)
real feacovk(maxfea,maxfea),feacovl(maxfea,maxfea)

real gcon (maxdim)
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real irrad(maxdim,maxopt,maxopt),mu
real mxdiff(maxfea),matave(maxfea,maxfea),matinv(maxfea,maxfea)
real pcsum

real pradO(maxdim,maxopt,maxopt,maxopt)

real pradl(maxdim,maxopt,maxopt,maxopt)

real pthdif (maxdim)

real probcor(maxcls,maxcls)

real quantstd(2), readstd (2)

real refcov(maxdim,maxdim,maxcls),refmean(maxdim,maxcls)
real ro,roa,rob,rhox,rhoy,senrsp(maxdim)

real shtfac,shotstd(maxdim)

real sigrad (maxdim)

real sigmean(maxdim),sigcov(maxdim,maxdim)

real ws,sysrsp

real temp,tmpmean(maxdim),tmpcov(maxdim,maxdim)

real tmpvec (maxdim)

real trans(maxdim,maxopt,maxopt)

c
c
c
c
c**********************************************************************t
c
c READ IN DATA PARAMETER FILES AND SET UP ARRAYS
z*************i*********************************************************
c
c Read in scene description and reflectance data
c
open(unit=3,file=“scdesc")
rewind (3)
read(3, ' (i3) ')numcls
read(3, ' (£4.2) ') rhox
read(3,'(f4.2)')rhoy
read(3, ' (i3) ")mr
read(3, ' (i3) ')thsun
read(3, ' (i3) ') thvew
close (3)
open(unit=4,file="refstat")
rewind (4)
do 10 k=1, numcls
read(4,'(a10)')covtype
read(4,'(201f8.4)')(refmean(i,k),i=1,maxdim)
do 20 j=1,maxdim
read(4,'(201f8.4)')(refcov(i,j,k),i=1,maxdim)
20 continue
10 continue
close(4)
c
c Read in atmospheric data files
c

open(unit=10,file="irrad")
rewind (10)
do 30 1=1,maxopt
do 30 i=1,maxdim
read(lO,'(5(f7.2,a1))')irrad(i,l,l),tc,irrad(i,Z,l),tc,
+ irrad(i,3,l),tc,irrad(i,4,l),tc,irrad(i,S,l)
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continue

close(10)

open (unit=11, file="trans")

rewind(11l)

do 40 1=1,maxopt

do 40 i=1,maxdim
read(ll,'(5(f7.4,a1))')trans(i,l,l),tc,trans(i,2,1),tc,

+ trans(i,3,1),tc,trans(i,4,l),tc,trans(i,s,l)

continue

close(1ll)

open (unit=12, file="prad0")

rewind (12)

do 50 1=1,maxopt

do 50 m=1,maxopt

do 50 i=1,maxdim
read(12,'(5(f7.4,a1))')pradO(i,l,m,l),tc,pradO(i,Z,m,l),tc,

+ pradO(i,3,m,l),tc,pradO(i,4,m,l),tc,pradO(i,S,m,l)

continue
close (12)
open(unit=13, file="pradl")
rewind(13)
do 60 1l=1,maxopt
do 60 m=1,maxopt
do 60 i=1,maxdim
read(13,'(5(f7.4,a1))')pradl(i,l,m,l),tc,pradl(i,2,m,l),tc,
pradl (i, 3,m,1),tc,pradl (i, 4,m, 1), tc,pradl (i,5,m, 1)
continue
close(13)

Read in sensor parameter file

open (unit=14, file="senstat")
rewind (14)
read (14, ' (a24,a6)')label, senname
read (14, '(a24,£f4.1)"')label, ro
read (14, ' (a24,1i3) ")1label, imc
read (14, '(a24,£11.1)"')label, sysrsp
read(14,'(324,2fa.1)')label,dark(l),dark(Z)
read(14,'(a24,2f8.1)')label,shtfac
read(14,'(a24,2f8.1)')1abel,readstd(1),readstd(Z)
read(l4,'(324,2f8.1)')label,quantstd(l),quantstd(Z)
read(14,'(a24,f8.3)')label,calval
read(14,' (a24,£8.3)')label, absrad
do 70 i=1,maxdim
read(l4,'(a24,f7.4)‘)label,senrsp(i)
continue
close (14)

Read in feature file and fill up feature matrix

open (unit=15,file="feaset™)

rewind(15)

read(ls,'(a24,i4)')label,numfea

do 80 m=1,numfea
read(lS,'(a24,i4,i4)')label,feaset(m,l),feaset(m,Z)
continue

close(15)
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100
90
C
c

do 90 m=1, numfea
do 100 i=1,maxdim
feamat (m,i)=0.0
if(i.ge.feaset(m,l).and.i.le.feaset(m,2))
feamat (m,1)=1.0
continue
continue

c***********************************************************************

(o]
o]
C

SET UP CONVERSION AND SCALING VECTORS

c****t******************************************************************

o4

o
(=}

o000 o0a0~

(o]
C

pi=4.0*atan(1.0)

do 110 i=1,maxdim
gcon(i)=0.01*(0.4+(i—1)*0.01)*sysrsp*senrsp(i)*imc
sigrad(i)=(1.0/pi)*irrad(i,mr,thsun)*trans(i,mr,thvew)
pthdif(i)=pradl(i,mr,thsun,thvew)—prado(i,mr,thsun,thvew)
continue

Compute spatial weighting function
(Note, assume all bands have same spatial correlation)
(IMSL erfc function is 2 times erfc() as defined in thesis,

a = -1.0*alog{rhox)

b = ~l.0*alog(rhoy)

roa=ro

rob=ro/cos(((thvew-l)*lS.O*pi)/lS0.0)
temp=4.0*exp(((a*a+b*b)/2.0)*roa*rob)
ws=temp*0.5*erfc((a*roa)/sqrt(Z.O))*O.S*erfc((b*rob)/sqrt(Z.O))

c*************************‘k****k******t***************i*****************

(o]
C
Cc
C

COMPUTE AVERAGE REFLECTANCE FOR USE IN PATH
RADIANCE MODEL

c*k***********‘k****************************‘k****************************

C
(o)

130

120

150

do 120 i=1,maxdim
averef (i)=0.0
do 130 k=1, numcls
averef(i)=averef(i)+refmean(i,k)
continue
averef(i)=(averef(i)/float(numcls))/100.0
continue
do 140 i=1,maxdim
do 140 j=1,maxdim
avecov (i, j)=0.0
do 150 k=1, numcls
avecov(i,j)=avecov(i,j)+refcov(i,j,k)
continue
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avecov(i,j)=(avecov(i,j)/float(numcls*numcls))/10000.0
140 continue

C
c*************************************t**********t**********************

C
c COMPUTE FEATURE SPACE STATISTICS FOR EACH CLASS

[o]
c*******************************************************************i***

C

c Loop for all classes START CLASS LOOP 1
c
do 390 k=1,numcls
c
c Copy reflectance stats to temp files and convert from %
c
do 200 i=1,maxdim
tmpmean(i)=refmean(i,k)/100.0
do 210 j=1,maxdim
tmpcov(i,j)=refcov(i,j,k)/10000.0
210 continue
200 continue
c
c Compute signal mean
c
do 220 i=1,maxdim
sigmean(i)=gcon(i)*(sigrad(i)*tmpmean(i)+
+ pthdif(i)*averef(i)+prad0(i,mr,thsun,thvew))
sigmean(i)=sigmean(i)*(1.0+absrad)
if(i.le.irbrk) then
sigmean(i)=sigmean(i)+dark(1)
else
sigmean(i)=sigmean(i)+dark(2)
endif
220 continue
c
c Compute signal covariance
c

do 230 i=1,maxdim
do 240 j=1,maxdim
sigcov(i,j)=tmpcov(i,j)*gcon(i)*gcon(j)*sigrad(i)*
+ sigrad(j)+pthdif(i)*pthdif(j)*avecov(i,j)*
+ gcon (i) *gcon (3)
sigcov(i,j)=sigcov(i,j)*(1.0+absrad)*(1.0+absrad)
240 continue

230 continue

c

c Apply spatial weighting function
c

do 250 i=1,maxdim
do 260 j=1,maxdim
sigcov(i,j)=w3*sigcov(i,j)

260 continue

250 continue

c

c Compute signal dependent noise standard deviations
C .

do 270 i=1,maxdim
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shotstd(i)=shtfac*sqrt(sigmean(i))
calstd(i)=calval*sigmean(i)*(2.0/sqrt(12.0))

270 continue
c
c Add noise variances to signal variances
c
do 280 i=1,maxdim
sigcov(i,i)=sigcov(i,i)+shotstd(i)*shotstd(i)
sigcov(i,i)=sigcov(i,i)+calstd(i)*calstd(i)
if(i.le.irbrk) then
sigcov(i,i)=sigcov(i,i)+readstd(l)*readstd(l)
sigcov(i,i)=sigcov(i,i)+quantstd(l)*quantstd(l)
+ *imc*ime
else
sigcov(i,i)=sigcov(i,i)+readstd(2)*readstd(Z)
sigcov(i,i)=sigcov(i,i)+quantstd(2)*quantstd(Z)
+ *imc*imc
endif
280 continue
c
C Transform to feature space
c

do 290 m=1, numfea
feamean (m, k)=0.0
do 300 i=1,maxdim
feamean(m,k)=feamean(m,k)+feamat(m,i)*sigmean(i)
300 continue
290 continue
do 310 i=1,maxdim
do 320 m=1, numfea
tmpcov(i,m)=0.0
do 330 j=1,maxdim
tmpcov(i,m)=tmpcov(i,m)+sigcov(i,j)*feamat(m,j)

330 continue
320 continue
310 continue

do 340 m=1,numfea
do 350 n=1, numfea
feacov{m,n,k)=0.0
do 360 i=1,maxdim
feacov(m,n,k)=feacov(m,n,k)+feamat(m,i)*tmpcov(i,n)
360 continue

350 continue
340 continue

390 continue

c

] END CLASS LOOP 1

c
c*********************************************k*************************
c

o] COMPUTE PAIRWISE BHATTACHARYYA DISTANCE

c

c

c Scale feature statistics to prevent overflow

c

temp=0.1*feamean(1,1)
do 393 k=1, numcls



396
395
393

410

420

440
430

450

400
c
c
c
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do 395 m=1,numfea
feamean (m, k) =feamean (m, k) /temp
do 396 n=1,numfea
feacov (m,n, k)=feacov(m,n, k) / (temp*temp)
continue
continue
continue

BEGIN CLASS LOOP 2

do 400 k=1,numcls
do 400 1=1,numcls
if(l.eq.k) goto 400
do 410 m=1,numfea
mxdiff (m) =feamean (m, k) ~-feamean (m, 1)
continue
do 420 m=1,numfea
do 420 n=1,numfea
matave (m,n)=(feacov (m,n, k) +feacov(m,n, 1)) /2.0
feacovk {m,n})=feacov(m,n, k)
feacovl (m,n)=feacov(m,n, 1)
continue
call 1ftsf (numfea, feacovk,maxfea, fac,maxfea,ipvt)
call 1fdsf (numfea, fac,maxfea,ipvt,detl,det2)
detk=det1*10.0**det2
call 1ftsf (numfea, feacovl,maxfea, fac,maxfea,ipvt)
call 1fdsf (numfea, fac,maxfea, ipvt,detl,det2)
detl=detl1*10.0**det2
call 1ftsf (numfea,matave,maxfea, fac,maxfea,ipvt)
call 1fdsf (numfea, fac,maxfea,ipvt,detl,det?2)
detave=det1*10.0**det?2
call linrg(numfea,matave,maxfea,matinv,maxfea)
do 430 m=1,numfea
tmpvec {m)=0.0
do 440 n=1,numfea
tmpvec (m) =tmpvec (m) +matinv {m,n) *mxdiff (n)
continue
continue
mu=0.0
do 450 m=1, numfea
mu=rau+mxdiff (m) *tmpvec (m)
continue
mu=(mu/8.0)+0.5%alog (detave/ (sqrt (detk) *sqrt (detl)}))
probcor(k,1)=1.0-0.5*erfc(sqrt (mu))
continue

END CLASS LOOP 2

c*************************************:k*****i**********************‘k****

C
(o]
(]

COMPUTE OVERALL PROBABILITY CORRECT

c*******************************************‘k**’k‘k***********************

C

G OO0

Output results
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pcsum=0.0
do 500 k=1,numcls
do 500 1=1,numcls
if(l.le.k) goto 500
probcor (k,1)=probcor(k,1)*100.0
print*, "The Pc of class ", k," and class ",1," was ",
+ probcor(k, 1)
pcsum=pcsumt+probcor(k, 1)

500 continue
pcsum=100.0—(100.0*((numcls*(numcls-l))/Z)-pcsum)
print*, "The overall Pc was ", pcsum
stop
end




