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ABSTRACT

Kerekes, John Paul. Ph.D., Purdue University, August 1989. Modeling,
Simulation, and Analysis of Optical Remote Sensing Systems. Major Professor:
David A. Landgrebe.

Remote Sensing of the Earth's resources from space-based sensors has

evolved in the past twenty years from a scientific experiment to a commonly

used technological tool. The scientific applications and engineering aspects of

remote sensing systems have been studied extensively. However, most of

these studies have been aimed at understanding individual aspects of the

remote sensing process while relatively few have studied their interrelations.

A motivation for studying these interrelationships has arisen with the

advent of highly sophisticated configurable sensors as part of the Earth

Observin System (EOS) proposed by NASA for the 1990's. These instruments

represent a tremendous advance in sensor technology with data gathered in

nearly 200 spectral bands, and with the ability for scientists to specify many

observational parameters, tt will be increasingly necessary for users of remote

sensing systems to understand the tradeoffs and interrelationships of system

parameters.

In this report, two approaches to investigating remote sensing systems

are developed. In one approach, detailed models of the scene, the sensor, and

the processing aspects of the system are implemented in a discrete simulation.

This approach is useful in creating simulated images with desired

characteristics for use in sensor or processing algorithm development.





XVIII

A less complete, but computationally simpler method based on a

parametric model of the system is also developed. In this analytical model the

various informational classes are parameterized by their spectral mean vector

and covariance matrix. These class statistics are modified by models for the

atmosphere, the sensor, and processing algorithms and an estimate made of

the resulting classification accuracy among the informational classes.

Application of these models is made to the study of the proposed High

Resolution Imaging Spectrometer (HIRIS). The interrelationships among

observational conditions, sensor effects, and processing choices are

investigated with several interesting results.

Reduced classification accuracy in hazy atmospheres is seen to be due

not only to sensor noise, but also to the increased path radiance scattered from

the surface.

The effect of the atmosphere is also seen in its relationship to view angle.

In clear atmospheres, increasing the zenith view angle is seen to result in an

increase in classification accuracy due to the reduced scene variation as the

ground size of image pixels is increased. However, in hazy atmospheres the

reduced transmittance and increased path radiance counter this effect and

result in decreased accuracy with increasing view angle.

The relationship between the Signal-to-Noise Ratio (SNR) and

classification accuracy is seen to depend in a complex manner on spatial

parameters and feature selection. Higher SNR values are seen to not always

result in higher accuracies, and even in cases of low SNR feature sets chosen

appropriately can lead to high accuracies.



1 Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

1.1 Background and Objective of the Investigation

Remote sensing is defined (Swain and Davis, 1978) as "...the science of

deriving information about an object from measurements made at a distance

from the object, i.e., without actually coming in contact with it." In the context of

observing the Earth, the sensing instruments have evolved from cameras

tethered to balloons, aerial multispectral scanners, to satellite-borne imaging

arrays. Applications have been many, and remote sensing of the Earth for land

resource analysis has developed into a common and useful technological tool.

Countless projects have used remotely sensed data to assess crop

production (MacDonald and Hall, 1978), crop disease (MacDonald, et al.,

1972), urban growth (Jensen, 1981), and wetland acreage (Carter and

Schubert, 1974) as a few examples. The technology of remote sensing has

been studied extensively and is well documented in texts by Swain and Davis

(1978), Colwell (1983), Richards (1986), and Asrar (1989).

While the various aspects of the remote sensing process have been well

documented, the interrelationships among these process components have

been studied comparatively little, especially in regard to sources of error or

noise in the process. Landgrebe and Malaret (1986) looked at the effect of

sensor noise on classification error in one of the few studies of this type, but

there are many more parameters and effects that interrelate.

A motivation for studying these interrelationships has arisen with the

forthcoming deployment of configurable sensors. As part of the Earth Observing

System (EOS) program of the 1990's, several instruments will allow the



Chapter 1 - Introduction 2

capability for a scientist to specify the observational conditions under which

data are to be collected. It will become increasingly important to develop an

understanding of how various parameters affect the collection of data and the

resulting ability to extract the desired information.

The objectives of this report are to further this understanding of the

remote sensing process through the following efforts:

• Document and model the remote sensing process from an overall

systems perspective.

• Develop tools based on these models to allow the study of the

interrelationships of system parameters.

• Investigate these interrelationships through the application of these

tools to a variety of system configurations.

In this initial chapter, the concept of a remote sensing system is defined

and described. Previous methods of studying the remote sensing process as a

System are reviewed and commented upon. A description of the report

organization then concludes the chapter.

1.2 Remote Sensing System Description

In this research, the term remote sensing will be used in the context of

satellite- or aircraft-based imaging sensors that produce a digital image of the

surface of the Earth below for land cover or Earth resource analysis. The

imaging sensor will cover only the reflective portion of the optical spectrum with

wavelengths approximately from 0.4 _m to 2.4 I_m. This context includes many

of the current and near future remote sensing instruments such as Landsat

MSS and TM, SPOT, and HIRIS. The land use application of the imagery

represents a significant application of the technology.

A pictorial description of a remote sensing system is given in Figure 1.1.

This figure gives an overall view of the remote sensing process starting with the

illumination provided by the sun. This incoming radiance passes through the

atmosphere before being reflected from the Earth's surface in a manner

indicative of the surface material. The reflected light then passes again through

the atmosphere before entering the input aperture of the sensing instrument.
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At the sensor, the incoming optical energy is sampled spatially and

spectrally in the process of being converted to an electrical signal. This signal

is then amplified and quantized into discrete levels producing a multispectral

scene characterization that is then transmitted to the processing facility.

At the processing

performed on the image

sets. Feature extraction

the data and to increase

the image. Lastly, the

stage, geometric registration and calibration may be

in order to be able to compare the data to other data

may also be performed to reduce the dimensionality of

the separability of the various informational classes in

image undergoes a classification and interpretation

stage, most often done with a computer under the supervision of a trained

analyst using ancillary information about the scene.

The entire remote sensing process can be viewed as a system whose

inputs include a vast variety of sources and forms. Everything from the position

of the sun in the sky, the quality of the atmosphere, the spectral and spatial

responses of the sensor, to the training fields selected by the analyst, etc., will

influence the state of the system. The output of such a system is generally a

spatial map assigning each discrete location in the scene to an appropriate

land information class. Other outputs may be the amount of area covered by

each class in the scene or the classification accuracy between the resulting

classified map and the known ground truth of the scene.

In using this definition of a remote sensing system, it must be realized

that it is a representation of the real world, and as such cannot be complete in

characterizing all the inputs, states, or outputs. In this research, the problem is

constrained by defining the system as well as one is able to do. It is an

accepted fact that the system description will be incomplete and lacking;

however, the model developed will represent the best that can be done from the

current knowledge base and can be used as a starting point to increase system

understanding.

To more fully describe a remote sensing system, it is helpful to begin to

break the system down with natural boundaries between the various

component systems. In Figure 1.1 we can readily see the system as being



5 Chapter 1 - Introduction

comprised of three major subsystems: the scene, the sensor, and the

processing subsystems. This division helps in providing structure to the system

and facilitates identification of various components of the system.

The scene consists of all spectral and spatial sources and variations that

contribute to the spectral radiance present at the input to the sensor. The

sensor includes all spatial, spectral, and electrical effects of transforming the

incident spectral radiance into a spatially and spectrally sampled discrete

image. The processing subsystem consists of all possible forms of processing

applied to the image to obtain the desired information.

Within this scene, sensor, and processing structure it is possible to further

decompose these subsystems into major components and variations. As with

all systems, there are components that represent desired, or signal, states or

variations, and there are those that represent undesired, or noise, states or

variations. Figure 1.2 shows a taxonomy of components and effects that can

degrade the system. This structure is further described in Kerekes and

Landgrebe (1987), and has grown out of the work reported by Anuta (1970).

Likewise, a comparable taxonomy may be developed for signal, or desired,

variations and states that contribute to the output of the system. Figure 1.3 is a

signal taxonomy of such effects.

These taxonomies offer a framework in which remote sensing system

effects can be grouped and located. The categories under the main

subsystems delineate sources of major contributions to the system state. In

some cases, effects or sources are listed in both signal and noise structures.

These dual listings exemplify one of the major problems in understanding

remote sensing systems. Depending on what type of information is desired,

sources or effects may indeed represent both noise and signal effects.

After the system has been broken down into identifiable portions, one

can take these blocks and build them back up into an overall system model.

Through the synergism possible from this combination of models and their

application the overall understanding of the entire process can be improved.
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1.3 Related Work

The systems approach to the remote sensing process has been of

interest for many years. In a tutorial paper by Landgrebe (1971), the differences

between image based (photogrammetry) and numerically oriented remote

sensing systems were described. The important factors to consider from an

information point of view were delineated and described. The work described

there helped to shape the ideas that are implemented in this research.

There have been many previous optical system simulation studies

reported in the literature, including those done in the context of civilian remote

sensing and those in a military context. Table 1.1 provides an overview of such

studies including the reference and key characteristics of each.

Those studies fall into one of three categories: Landsat TM sensor

parameter studies, basic parameter studies, and military studies. The Landsat

TM sensor parameter studies were performed in preparation and analysis of the

performance of Landsat-D Thematic Mapper. The basic parameter studies are

ones that are most closely related to what the research in this report considers.

They represent studies showing the tradeoffs of various system parameters and

their effects on some output measure, usually classification error. A few military

system studies are included to represent the unclassified literature in optical

system simulation.

The combination of several characteristics of the research presented in

this report distinguishes it from these previous studies. It presents a

sophisticated framework in which detailed models of the various components of

the system may be implemented. Flexibility has been built in to allow for

expansion and growth. High spectral resolution has been used throughout the

model in simulating the next generation of imaging spectrometers. Models from

the scene, the sensor, and the processing portions have been integrated to

create the ability to study cross system parameter interrelationship effects on the

classification and noise performance. All of these features together make it an

unique contribution to remote sensing science.
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1.4 Report Organization

In this chapter, the objectives of the research were stated as being to

document, model, and investigate the effects of various remote sensing system

parameters on system performance. Also, the concept of a remote sensing

system was defined. Chapter two discusses models and algorithms useful in

simulating the remote sensing system process. Chapter three presents an

alternative system model based on a parametric description of the system state,

using analytical equations to describe the effect of the various system

components. Chapter four presents results of applying these models to various

system configurations based on an imaging spectrometer and studying the

effect of system parameters on noise and classification performance. Chapter

five concludes the report by discussing the results of these studies and possible

future extensions of the work.
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CHAPTER 2

REMOTE SENSING SYSTEM MODELING AND SIMULATION

2.1 Overview of System Model

In the modeling of a complex process, the goal is often to represent the

process faithfully while reducing the complexity of the description. In the

development of a model, we observe the process, take data measurements,

and formulate an abstraction from these observations and data. This model

then describes the process under varying conditions without having actually to

duplicate it. Thus, the model serves as a documentation of our understanding

of the process, as well as a tool useful in gaining insight into its operation. The

models presented in this chapter serve both of these purposes.

The modeling of a system may be done at many levels of abstraction.

The lowest level is the system itself. However this represents little knowledge of

the system and is often impractical to use in studying its operation. The next

level is with the use of detailed models of system components and simulation of

the system operation. This chapter discusses component models useful in such

a simulation. A still higher abstraction is a parametric and analytic description

of the system. Chapter three presents a system model based on this type of a

description.

The modeling of an optical remote sensing system is challenging

because of its complexity. However, through the use of the taxonomies

developed in the previous chapter this can be reduced to a manageable task.

In chapter one the remote sensing process is described as a system and further

divided into three subsystems: the scene, the sensor, and the processing

subsystems. Figure 2.1 shows this division in the context of a system model that

is described in this chapter for the simulation of the remote sensing process.
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The following sections detail the models used for the scene, the sensor,

and the processing subsystems. In each section various approaches to

modeling or describing the processes involved are discussed. Section 2.2

discusses considerations in modeling the surface reflectance and the

atmospheric effects and presents the model used in this report for simulating the

scene. Section 2.3 describes the effects on the scene radiance introduced by

the sensor, in both the remote sensing process and the simulation. Section 2.4

discusses approaches to extracting information from a multispectral image, as

well as describing the options available in the simulation. Section 2.5

summarizes the models presented in this chapter.

2.2 Scene Models

The scene subsystem is by far the most complex, varied, and unknown of

the remote sensing process. It is understood that no model can accurately

represent all of the complex variations that make up the spectral radiance

present at the input of the sensor. However, through the use of various

simplifying assumptions, developing such a model becomes a reasonable task.

In this section, approaches to modeling the scene are discussed.

From the taxonomies of chapter one, the scene is seen to consist of the

solar illumination and atmospheric effects, the surface reflectance, and the

goniometric effects due to the angles of illumination and view. In developing a

model for the scene, models for the solar illumination and atmosphere, along

with the surface reflectance are used, while the goniometric effects are

embedded within the relationships between these two components. Figure 2.2

presents a block diagram of the basic scene model structure.

Solar
Illumination

Surface

"- Reflectance vi

Upward
Atmospheric

Effects

Figure 2.2 Scene Model Block Diagram.
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To further describe the modeling of the scene, the rest of this section is

divided into two parts. Section 2.2.1 discusses modeling of the surface in

general terms, as well as describing in detail a model used to simulate the

surface reflectance. Section 2.2.2 then discusses the solar illumination and the

atmospheric effects present in optical remote sensing systems and their

simulation implementation.

2.2.1 Surface Reflectance Modeling

In this section various methods of representing the reflectance of the

surface are presented. The discussion begins with the most general way of

describing this reflectance, followed by approaches using deterministic canopy

models, and then concludes with models developed from the statistics of field

reflectances. The model chosen for implementation in the simulation is then

discussed.

The most general measurement of the reflectance of a surface is given by

the Spectral Bidirectional Reflectance Distribution Function (SBRDF). This

function is defined (chapter two of Swain and Davis, 1978) as in equation 2.1.

P_.(esolar,$solar, eview,$view) = dLx(eview'$view) sr-1
dE;_(esoJar,_solar )

(2.1)

Here, L_.(0view,(_view) is the reflected spectral radiance observed at angles

eview, _view, and Ex(esolar,$solar ) is the incident spectral irradiance at angles

esolar, _)solar. The geometry used here and in the rest of the report is shown in

Figure 2.3.
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Z

t0 o-

solar

Figure 2.3 Scene Geometry.

The quantities {)solar and 0view are the zenith angles as measured from

local vertical, while (_solar and Cview are the azimuthal angles as measured from

North on a map.

The SBRDF gives the reflectance of an object from all angles of

incidence and view and thus is the most complete representation of the surface

reflectance. However, the accurate measurement of the SBRDF is a difficult

task and few studies have been made.

A problem in obtaining the SBRDF arises due to spatial considerations.

Typically, in remote sensing applications the scene is sampled spatially across

two dimensions at some surface cell size G x by Gy. A rectangular coordinate

system is overlaid and an aggregate reflectance is obtained over each

individual cell at spatial location (x,y). An aggregate SBRDF is then a function

of not only the geometry involved, but also the surface resolution cell size, the

location in the scene, and the various materials contained within the cell.
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Aggregate SBRDF = p_.,ag(Gx,Gy,x,Y,esolar,_)solar;eview,(I)view) (2.2)

Since the surface cell size Gx by Gy may be a number of meters square

in typical remote sensing data sets, the measurement of the aggregate SBRDF

on the surface is very inconvenient. Shibayma and Wiegand (1985) and Irons,

Ranson, and Daughtry (1988) have reported some measurements of this type,

but for limited crop species and over few wavelength intervals.

Thus, while the use of the measured SBRDF is the most complete way of

representing the reflectance of the surface, it is impractical to use because of

the difficultly in obtaining complete data for various cover types.

Strahler, Woodcock, and Smith (1986) discussed modeling of the scene

for land resource remote sensing applications and divided surface models into

two types: deterministic canopy models and stochastic image processing

models. The term canopy comes about because these models attempt to

calculate the SBRDF of vegetation by using radiative transport theory.

Differential equations are used to compute the reflectance/transmittance of the

several layers of leaves in a vegetative canopy.

Some examples of canopy models are the AGR model (Allen, Gayle, and

Richardson 1970), the Suits model (Suits 1972a) with extensions for azimuthal

(Suits 1972b) and row effects (Suits 1982), the SAIL model (Verhoef 1984), and

the models by Park and Deering (1982), Cooper, Smith and Pitts (1982), and

Kimes and Kirchner (1982). All of these models are based upon having precise

knowledge of the reflectance, transmittance, and orientation of the leaves in

each layer of the canopy. A model that used probability distributions in

describing the orientations of the layers was described in Smith and Oliver

(1974).

All of these canopy models, however, only consider the reflectance within

a single surface cell, assuming the entire area covered by a particular surface

type is homogeneous and with no regard to the spatial variability typical of

almost all remotely sensed scenes. While they are capable of accurately

modeling the SBRDF of a particular surface material, their lack of spatial
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information limits their applicability for the type of system study undertaken in

this research. However, it certainly would be conceivable, if one had the

appropriate data, to extend a canopy model to be able to contain spatial

information and develop a very accurate surface reflectance model.

Unfortunately, this type of detailed database does not exist at the present time.

Image processing models, on the other hand, are not concerned with the

reflectance structure within a scene resolution cell, but rather how the

reflectances vary spatially and spectrally from cell to cell. In these models, the

spectral reflectances of a surface area are taken to be multidimensional (across

the spectral domain) random vectors with spectral and spatial correlation.

While these models are usually developed from imagery that represent the

radiance over an area, it can be assumed that the reflectances of the surface

cells vary similarly in the spatial sense as do the image pixels. Also, the

reflectance within each cell is assumed to be independent of illumination or

viewing angle. This is known as Lambertian reflectance (Swain and Davis,

1978).

In the use of image processing models for the surface reflectance two

assumptions are generally made about the spectral and spatial variation in the

scene. The multispectral reflectance vectors are usually assumed to be

samples from an M-dimensional multivariate normal (or Gaussian) probability

distribution function. The form of this distribution is shown in equation 2.3.

/

p(x ,x2,...,xM) = ( )M( /1221)

Here, X={xl,x 2 ..... XM)T data vector, X is the mean vector, and ,_, is the

covariance matrix.

The work that is often cited in justifying this assumption is that of Crane,

Malila, and Richardson (1972). They worked with 12 band MSS data that was

transformed to its principle component space and reduced to three bands.
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Since the transformation produces uncorrelated variables, they tested each of

the three bands for goodness-of-fit to Gaussian random variables. While the

results showed a fairly good fit to the univariate Gaussian model, they ignored

the fact that just because these random variables were Gaussian, that did not

mean that the original 12 dimensional random vectors were multivariate

Gaussian. This comes about because of the fact that combining Gaussian

random variables into a vector does not necessarily result in jointly Gaussian

random vectors. A much better test would be to use the procedures discussed

in Koziol (1983) or Smith and Jain (1988) to check for multivariate normality.

Some early work done at LARS found the Gaussian assumption not to

hold under the Chi-Square goodness-of-fit test. Members of the LARS Staff

(1969) found that the Gaussian assumption did not hold for several

multispectral data sets gathered from an airborne scanner. The results of this

study may have been affected by the particular data they considered, or even

the histogram cell interval used in the distribution test.

Nevertheless, the Gaussian assumption results in much simpler

methods of generating and analyzing the data than those based upon more

accurate, yet computational complex models.

Remotely sensed images have also been shown to have a pixel to pixel

spatial correlation. Kettig (1975) used this fact in development of the ECHO

spatial classifier. Also, Mobasseri (1978) developed a multispectral spatial

model that was a separable (across and down scene) exponential model. This

spatial model used by Mobasseri is specified by its spatial autocorrelation

function Rmm('_,T1) for the scene reflectance rm as given in equation 2.4.

- a_ - br_l_ql
E{ rm(X+l:,Y+TI) rm(X,Y) } = Rmm(l:,Tl) = e e (2.4)

Here, a m and bm are the across scene and down scene correlation

parameters for wavelength m, and '_ and 11 are the respective scene cell lag

values. The coordinates (x,y) are the scene cell location.
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Equation 2.4 may also be written in terms of the autocorrelation

coefficients, Px = ea and py = e-b, as in equation 2.5.

Rmm(,_,_) p-I_l -Illl= m,x Pm.y (2.5)

This form of autocorrelation for a random field is equivalent to that of a

wide-sense Markov random field with the neighbor set consisting of the quarter-

plane causal neighbors, {(0,-1), (-1,0), (-1 ,-1)} (chapter seven of Rosenfeld and

Kak, 1982). This is also equivalent to a two-dimensional autoregressive (An)

model (Delp, et al., 1979) as given by equation 2.6.

r(x,y) = C1 r(x-l,y) + 02 r(x,y-1) +C3 r(x-l,y-1) + _u z(x,y) (2.6)

Here,

x,y - high resolution spatial column, row index in scene

C1 = Px

02 = py

C3 = "PxPy

_u - standard deviation of Gaussian driving process, computed to retain

unit variance for r (See algorithm given in Appendix A)

z(x,y) - independent Gaussian random numbers with unit variance and

zero mean.

Given arbitrary initial conditions, the AR model can easily generate a

reflectance array with the desired spatial correlation. Other methods also exist

to generate a random field with the spatial model of equation 2.4. Mobasseri

(1978) used a Fourier-based technique, and Chellappa (1981) studied methods

of generating spatially correlated arrays using arbitrary neighborhoods.

Using the Least Squared Error (LSE) estimation technique for the AR

coefficients as described in Delp, et al., (1979) some typical coefficients for the

AR model were calculated. Table 2.1 shows these typical values of the spatial

parameters for a variety of scene types, computed from a line scanner image of
an infrared band.



Chapter 2 - Remote Sensing System 20

Modeling and Simulation

Table 2.1 Typical Spatial Model Parameters.

Full cover vegetation
Just emergent row crops

Bare soil field

C 1=0.63 C2=0.55 C3= -0.35

c1=0.63 c2=0.70 c3=-0.44
c1=0.57 c2=0.72 c =-0..41

A problem with using line scanner imagery to compute the spatial

statistics is that there is correlation introduced by the instrument itself, and as a

result, computing the statistics from the image data does not truly represent the

correlation of the original scene. This is difficult to prevent, as with any imaging

sensor this effect will be present. It is known, however, (Papoulis, 1984) that the

output correlation is greater than the input correlation for a linear system with

the response similar to imaging systems. Thus, one can reasonably assume

that the actual pixel to pixel correlation of the original scene was slightly less

than that which was computed from the imagery.

An alternative method of gathering data to estimate spatial correlation is

to use an instrument such as the Field Spectrometer System (FSS) described in

Hixson, et al., (1978). With this instrument, spectral reflectance measurements

were made with a spectral resolution of approximately 20 nm, and a ground

field of view of approximately 25 meters. The instrument was mounted in a

helicopter and flown over fields at a height of approximately 60 meters. The

instrument made spectral radiance measurements that were converted into

reflectance by comparison to the radiance measured over a known calibration

panel. The report by Biehl, et al., (1982) describes the database of reflectance

data measured by this and other instruments.

A comparison of the spatial correlation of imagery and spectrometer

samples was made for two fields from Hand County, South Dakota. Both

aircraft line scanner imagery and FSS reflectance data were obtained over

fields 168 and 288 on July 26, 1978. Field 168 was mostly bare soil, while field

288 was ripe Millet with nearly 100% ground cover. The spatial correlation of

the imagery was done in the same direction and over the same area that the

FSS had acquired data. The direction was along the flightline for both

instruments. Since the aircraft imagery had a ground field of view of
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approximately eight meters, the correlation coefficients for the aircraft imagery

were calculated at both one and three pixel lag values to be able to compare

the coefficients with those of the FSS at a similar intersample distances. The

correlation coefficients are computed with the estimate given in equation 2.7.

=

N-1

n=l

(2.7)

(Xn.
n=l

Here, '_ is the lag value, N is the number of data samples and Y is the

sample mean. Table 2.2 shows the spatial correlation coefficients for two

wavelengths in each field and two pixel distances of the aircraft scanner.

Table 2.2 Spatial Correlation Coefficients for Hand County, South Dakota.

Field Wavelength Aircraft Aircraft FSS
Number 8 Meters 24 Meters 25 Meters

168

Bare Soil

0.56 p.m 0.82

1.00 Ilm 0.87

288 0.56 _m 0.61

Ripe Millet 1.00 _m 0.67

0.31

0.53

0.44

0.20

0.28

0.48

0.25

0.16

The results of Table 2.2 show that as the distance between samples

increase, the correlation coefficient decreases. Also, there seems to be a

significantly higher correlation among the imagery pixels as compared to those

of the spectrometer, even when they are computed using samples a similar

distance apart. Thus, there does appear to be an increase in the correlation

coefficient due to the characteristics of the line scanner.
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To investigate the typical variation of the correlation across the spectrum,

the spatial correlation coefficient was computed from some FSS data of a winter

wheat field (number 151) from Finney County, Kansas taken on May 3, 1977.

The wheat was beginning to ripen and there was approximately 30% ground

cover. There were 58 samples across the field, each about 20 meters apart.

The correlation coefficient for "c=1 as calculated in equation 2.7 for each

wavelength is shown in figure 2.4.
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Figure 2.4 Correlation Coefficients of Winter Wheat Field.

The large peak around 1.4 and 1.9 t_m is due to substituting 0.1% for the

reflectance in the water absorption bands of the data. The other large peaks

are also due to atmospheric absorption bands. The flat segments are from

repeated values used in the plot due to the uneven spectral sampling of the

FSS. For most of the wavelengths the correlation coefficient ranges around

0.85. This correlation among samples is significantly higher than those of Table
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2.2. This is indicativ_ of the high variability in correlation among surface cover

types and conditions.

While the exponential model is one way of modeling spatial correlation,

spatial models based on fractal geometry (Mandlebrot 1977, 1982, Gleick 1987,

and Peitgen and Saupe 1988) have emerged as a powerful method for

modeling natural phenomena. This is partly because its mathematical

construction is similar to what is observed in natural scenes. In two spatial

dimensions, the fractal random field r(x,y) has the property shown in equation

2.8, where D is the fractal dimension (2<D<3).

fE I r(x2'Y2) " r(xl'Yl) o_ _ (x 2 - xl) + (Y2- Yl ) (2.8)

That is, the variance of the difference between pixel locations is

proportional to the distance raised to a fractional power. Several experiments

were conducted to measure the fractal dimension of typical agricultural scenes.

Values for D ranged around 2.6_+0.1 for several cover types. See Dodd (1987)

for an example in using fractal concepts to generate multispectral texture by

computing the fractal dimension D from principle component images.

While several methods have been discussed for generating scenes with

spatial correlation, the autoregressive model was chosen for implementation in

the simulation. This model is efficient in generating a simulated reflectance

array using computer-generated random numbers. Table 2.3 presents an

overview of the technique used to simulate the surface reflectance, while the

paragraphs following describe these steps in detail.
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Table 2.3 Sequence in Generating a Simulated Surface Reflectance Array.

Step 1. Define scene size and class boundaries.

Step 2. Obtain spatial and spectral statistics of
reflectance data for each class.

Step 3. Generate spatial correlated reflectance
arrays for each wavelength, with each array
being spectrally uncorrelated.

Step 4. Transform each reflectance vector to have

the proper mean and covariance for the
appropriate class.

Step 5. Interpolate resulting spectral reflectance
vector to the desired spectral resolution of
scene.

The scene is first defined by determining its size, X columns by Y rows,

where each location (x,y) is a square scene cell with the distance on one side

specified in meters. Each of these scene cells are assigned to one of the K

classes. Class boundaries are specified by the upper left index and lower right

index of the rectangular area containing the class.

Reflectance data for each class used in the simulation is obtained from

the database of FSS measurements. Over the wavelength range considered in

this report there are 60 wavelength samples in the FSS data. Thus, the spectral

statistics are 60 dimensional. The across scene and down scene spatial

coefficients are estimated from imagery over scenes similar to the one being

simulated. Typically, the same spatial correlation is assumed for each

wavelength, while no wavelength-to-wavelength spatial crosscorrelation is

specified.

The AR model is used to generate the spatially correlated reflectance

cells within the area defined for each class k, and for each wavelength band m

as shown in equation 2.9,
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rm(X,Y) = Px rm(X-1 ,Y) + Py rm(X,y'l) " PxPy rm(x'l ,y-l) + Ou z(x,y) (2.9)

where the symbols are defined as in equation 2.6.

The individual arrays {rm(X,y)} are arranged as a spectral vector array,

{R(x,y)}. Reflectance data of each class k are used to compute the mean vectors

ek and covariance matrices _k. The eigenvalues and eigenvectors of these

covariance matrices are then computed and arranged as diagonal matrices ,A,k

and column matrices (_k, respectively. The surface reflectance array {P(x,y)} is

then obtained by using equation 2.10, where for each scene cell location (x,y)

the appropriate class transformation is applied.

1

2

P(x,y) = Pk + C_)k Ak R(x,y)
(2.10)

The resultant reflectance array will be multivariate Gaussian with the

mean and covariance of the original class statistics, and be spatially correlated

according to the exponential model of equation 2.4.

While the FSS reflectance data covers the entire range from 0.4 to 2.4

pm, the wavelength sampling is uneven, ranging from 20 nm to 50 nm. In order

to have a uniform spectral resolution for the scene model, an interpolation is

performed on each spectral reflectance vector to yield 201 wavelengths spaced

at 10 nm intervals. The algorithm used to perform this interpolation is given in

Appendix B.

2.2.2 Solar and Atmospheric Modeling

In this section, the modeling of the solar illumination and the atmospherio

effects present in optical remote sensing systems is discussed. Following a

preliminary list of references to work in this area, a general model of the

atmosphere is presented. This is followed by a discussion of measures of

atmospheric quality. The model used in the simulation is then presented, along
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with several curves showing the effect of various parameters on the

atmospheric model. The section concludes with a comparison of the model

atmosphere with real measurements for a particular test site.

The solar extraterrestrial flux and the atmosphere have been studied

extensively over the years. Accurate measurements of the solar curve have

been made and are well documented in the literature. For example,

publications by Thekaekara (1974) and Bird (1982) contain solar standard

curves. Discussions of the atmosphere may be found in chapter two of Swain

and Davis (1978), Chahine (1983), and chapters five and six of Wolfe and Zissis

(1978). Atmospheric simulation models have been reported in Kneizys, et al.,

(1983, 1988), Turner (1983), Diner and Martonchik (1984), and Herman and

Browning (1975) among others.

The atmospheric effect on spectral radiance consists of two main

mechanisms, scattering and absorption. Scattering is mainly due to the

presence of particles in the atmosphere, while absorption comes about due to

the energy transfer from the optical radiation to molecular motion of atmospheric

gases. Both of these effects are wavelength dependent.

Figure 2.5 gives a pictorial view of the various atmospheric effects on the

spectral radiance received by the sensor.
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Surlace

Figure 2.5 Atmospheric Effects on Spectral Radiance Received by Sensor.

From this figure, several main factors are seen to contribute to the

radiance received by the sensor. The exoatmospheric spectral irradiance,

E_.,Exo, is attenuated and scattered by the atmosphere before reaching the

surface as the direct spectral irradiance E_.,Direc t. Some of this scattered

radiation also reaches the surface as E_.,Diffuse, the diffuse spectral irradiance (or

skylight irradiance.) The reflected spectral radiance L;_.,Surface passes through

the atmosphere and is attenuated by the spectral transmittance T_.,Atm of the

atmosphere. Also, some of the solar irradiance that is scattered by the

atmosphere finds its way into the sensor field of view as L_.,eat h, the path

spectral radiance. This path radiance also includes that which may have been

reflected off of the nearby surface (adjacency effect) before being scattered into

the sensor field of view, as well as the background radiation of the atmosphere.

These factors contribute to the spectral radiance of the scene, as

received by the sensor, in a manner described by equation 2.11.
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1Fcos(e , ) +E 1
L_,sensor = -_-_. solar E_,,Direct _,,DiffuseJ Rz T;L, Atm + L_Pat h (2.1 1 )

Here, R x is the spectral reflectance of the surface. In the most general

sense it is the Spectral Bidirectional Reflectance Factor (SBRF) that gives the

reflectance for all angles of incidence and viewing. The other factors also

depend upon the angles of illumination and viewing as well as the quality of the

atmosphere.

Several other important aspects of the real atmosphere also influence

the values in equation 2.11. One is the spatial dependence of the atmospheric

scattering and absorption effects. The make-up of the atmosphere is not

constant over a scene; however, it is unclear how the atmosphere changes from

pixel to pixel over typical pixel sizes (20-30 meters), and is usually assumed to

be constant. Another spatial effect of the atmosphere is the blurring that can be

introduced by the scattering in the atmosphere. Kaufman (1985) has studied

the atmosphere from this point of view, suggesting that the atmosphere be

modeled with a spatial modulation transfer function (Goodman, 1978) similar to

those used in the modeling of sensors. This could be implemented in the model

in a spatial convolution with the scene radiance. Yet another effect that is often

ignored is the time dependence of the atmospheric effects. Fast moving gases

exist in the upper atmosphere and cause a changing effect on the scattering

and absorption over the field of view of the sensor. The movement of clouds is

an example of this time dependence.

The quality of the atmosphere may be represented by several different

measures. The fundamental parameter for atmospheric quality is the spectral

optical thickness "_z. The spectral transmittance TZ,At m of the atmosphere

between two points x 1 and x 2 is defined by equation 2.12 where J3(X,z) is the

volume extinction-coefficient with units of Km "_.
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[xf]T_.,Atm = exp - _(;L,z) dz (2.12)

The integral inside the exponent of this equation is known as the spectral

optical thickness 'ck and is defined in equation 2.13.

X2

= 113(k,z) dz
Q#

X I

(2.13)

Visibility is also often used as a measure of the clarity of the atmosphere

and is defined (Kneizys, et al., 1983) by "the greatest distance at which it is just

possible to see and identify with the unaided eye in the daytime a dark object

against the horizon sky." The surface meteorological range Vn is related to

visibility (usually by a factor of 1+0.3), but defined numerically, rather than by

subjective judgement. For the typical atmospheres used in this report, it is

assumed that the two terms can be used interchangeably. Surface

meteorological range is related to the volume extinction-coefficient at k=0.55

pm through equation 2.14.

Vn- 3.912 Km (2.14)
_X=0.55

Surface meteorological range (or visibility) is the measure commonly

used in remote sensing for atmospheric quality. However, some experiments

specify the optical thickness (also called optical depth for a vertical path). Data

from Elterman (1970) was used to find an empirical relationship between optical

thickness and visibility. Figure 2.6 shows points from Elterman's data along

with a best fit curve. These data points are for k = 0.55 #m. Optical thickness is

also dependent upon wavelength. Data from EIterman (1968) was plotted in

Figure 2.7 along with a best fit curve for the empirical data. This relationship is

for a surface meteorological range of 25 Km.
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These empirical relationships were used to derive equation 2.15 relating

spectral optical thickness to meteorological range and wavelength.

'{x(V.q) = 1.35k'l'328V_q 0'656 (2.15)

This equation is assumed to be valid only over optical wavelengths and

meteorological ranges from 2 to 50 Km.

In this research the solar and atmospheric model is implemented with the

use of the computer code LOWTRAN 7 (Kneizys, et al., 1988). The program

LOWTRAN has evolved over the years from simply an atmospheric

transmittance code to one that is now capable of computing direct solar

irradiance and multiply scattered atmospheric radiance.

LOWTRAN uses radiative transfer theory to compute the transmittance

and radiance in each of 32 layers of the atmosphere. Well documented data

tables embedded within the program give accurate spectral transmittance and

radiance values at minimum wavenumber intervals of 20 cm -1. This model

compares favorably to ones developed by Diner and Martonchik (1984), and

Herman and Browning (1975), because of its continuous spectral coverage and

its inclusion of narrow absorption bands due to the various constituents of the

atmosphere. A partial list of controllable parameters for LOWTRAN 7 is

contained in Table 2.4.

Table 2.4 Example LOWTRAN 7 Parameters

Solar position
Meteorological range
Surface albedo

Atmospheric haze
Altitude of observer

Zenith angle of observer

!Wavelength range and increment
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LOWTRAN 7 is used along with the models discussed below for the

diffuse irradiance and path radiance to compute the radiance received by the

sensor. Appendix C contains the input file format used in the calls to

LOWTRAN.

The spectral radiance present at the input to the sensor model in the

simulation program is computed as in equation 2.16.

1
L_.,Sensor (x,y) = _- E_,TotaI P(x,y) TAt m + L;_,Path (2.16)

The generation of the three atmospheric components of this equation is

discussed below, while the spectral reflectance array P(x,y) is as calculated in

section 2.2.1.

1. Total Spectral Irradiance. This is the total downwelling spectral

irradiance E_.,Total that is incident at the surface, and is equal to the sum of the

direct and diffuse irradiances as shown in equation 2.17.

E_.,Total = COS(esolar) E_.,Direct + Ex, Diffusa (2.1 7)

Since LOWTRAN does not have an option to generate the diffuse

component, a model was obtained from Chahine (1983). There, the total

surface spectral irradiance EX,TotaI is shown to be related to the direct spectral

irradiance through the curve given in Figure 2.8. Also shown in the figure is an

exponential model derived from the data.
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Figure 2.8 Ratio of Direct to Total Irradiance vs. Total Optical Path Length.

The total optical path length "Cp,;_is related to the optical thickness by

multiplying by seC(esolar) as in equation 2.18.

'tp,_.(Vq,esolar) = '_x(V_l)sec(esolar) (2.18)

This relationship between direct and total irradiance is given as a

function of the total optical thickness of the atmosphere in equation 2.19. Thus,

equation 2.19 can be used in conjunction with equation 2.15 to obtain the total

surface spectral irradiance from the direct spectral irradiance, the surface

meteorological range, the diffuse irradiance constant, and the solar zenith

angle.

Ex, TotaI (V_], (_solar) =

COS((_solar)Ex.,Oirsct (V_q, esolar)

exp[ "KD I:_.(V_)sec((_solar) ]

(2.19)
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The diffuse irradiance constant K D is dependent upon the type of

atmosphere and the overall surface reflectance. In the discussion by Chahine

(1983) from which Figure 2.8 was taken, the author stated that the curve was for

a nonabsorbing atmosphere and surface albedo < 15%. It was also indicated

that for absorbing atmospheres and higher albedoes the curve would be

steeper. While no specific values were given in the reference, Table 2.5 shows

some estimates of K D for different conditions. The model shown in Figure 2.8

was with KD = 0.73.

KD

0.73
0.84
1.00
1.26

Table 2.5 Diffuse Irradiance Constant Values.

Type of Atmosphere

nonabsorbing
absorbing
absorbing
absorbing

Surface Reflectance

low ( < 15%)
low ( < 15%)

medium (15 - 30 %)
high ( > 30%)

2. Atmospheric Spectral Transmittance. This is directly computed using

LOWTRAN for a path from the surface to the sensor. This may be a vertical or

slant path through the atmosphere, depending on the zenith angle of the

sensor. It represents the path loss due to scattering and absorption.

3. Path Spectral Radiance. This is computed by using two calls to

LOWTRAN. It is called once for a surface albedo of 0 and once for an albedo of

1. The total path radiance received by the sensor is then computed by

interpolating between these extremes as in equation 2.20, where (x,y,m)

specifies the spatial location x,y and wavelength m. pm,ave(X,y) is the average

surface reflectance for wavelength m in the neighborhood of x,y. In

implementing this model in the simulation the entire scene is used in computing

Pm,ave(X,Y).

• alb==O I alb=l alb=O "_L;L, Path(X,y,m) = L_.,Pat h (m) + Pm,ave(X,y) = L_.,Path(m) " L_.,Path(m) _ (2.20)
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This formulation of path radiance allows for its dependence on the

surface reflectance. This does not truly represent the situation in the real

system, as the path radiance there is dependent upon the reflectance of the

surface for each particular path the illumination follows before arriving at the

sensor, and there are many paths the illumination may take. However, this

simple linear model offers good compromise between accuracy and

computational complexity.

On the following pages, examples of how various scene parameters

affect these atmospheric model components. For these examples the default

parameters of Table 2.6 were used.

Table 2.6 Default Values of Atmospheric Parameters.

Parameter
Model

Atmospheric Haze
Surface Meteorological Range
Diffuse Irradiance Constant

Solar Zenith Angle

View Zenith Angle
Surface Albedo

Default

1976 U.S. Standard
Rural Extinction
16 Km
0.73

30 °
0o
0.10

The following figures 2.9 through 2.14 show the direct, diffuse, and total

spectral irradiance for several meteorological ranges and solar zenith angles.

The curves for the diffuse irradiance were computed as the difference between

the total and direct spectral irradiances. Figures 2.15 and 2.16 show how

atmospheric transmittance varies for several meteorological ranges and view

angles. Figures 2.17 through 2.20 show how the path radiance component is

affected by meteorological range, solar angle, view angle and surface albedo.
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These curves give an indication how the components of the atmospheric

model vary under different conditions. In general, they show how a hazier

atmosphere will allow less radiance to be received by the sensor from the

surface, yet increases the path radiance, and how the angle of illumination or

view can decrease the signal radiance as well as increase the path radiance.

The path radiance is also seen to increase with surface albedo.

An experiment was performed to test the suitability of the atmospheric

model by comparing the radiance received by a satellite to that simulated by the

model from a description of the scene conditions and the reflectance of the

surface. A test site in Hand County, South Dakota was chosen from data

gathered as part of the LACIE program (Hixson, et al., 1978). On July 26, 1978,

reflectance data was gathered at approximately the same time as the Landsat 2

MSS passed over the area. The parameters of these sensors are shown in

Table 2.7.

Table 2.7 Data Set for Hand County, South Dakota, July 26,1978.

Landsat 2 Multispectral Scanner

Spectral Channels
Scene
Altitude
Ground Size of IFOV
Time

4 bands, 0.4 - 1.1 _m
21281-16232
918 Km
80 Meters
1623 GMT

Helicopter Field Spectrometer System

Spectral Channels
Altitude
Ground Size of FOV
Time

60 bands, 0.4 - 2.4 I_m
60 Meters
25 Meters
1505- 1601 GMT

A particular area having four large nearly square fields was selected for

test. Table 2.8 contains the field numbers from the LACIE experiment and the

crop types.
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Table 2.8 Description of Test Fields.

Field Number
|l

Field 290
Field 168
Field 289
Field 288

Crop Type
Spring Wheat

Millet

Spring Wheat
Millet

Ground Cover

30 Percent
10 Percent
30 Percent
90 Percent

In order to compute the radiances received by the MSS, a table of

conversion constants was obtained from the work by Richardson, et al., (1980).

Table 2.9 shows the A i and Bi used to compute from the digital counts DC i the

radiance present at the input of Landsat 2 MSS in band i. Equation 2.21 shows

how these constants are used to compute the radiance. The units of A are

mW/(cm2-sr-digital count) and for B are mW/(cm2-sr).

Table 2.9 Conversion Constants Between Radiance and Digital Counts.

Band
1
2
3
4

A
0.0201
0.0134
0.01i5
0.0603

B
0.08
0.06
0.06
0.11

L. = A. DC. + B. (2.21)
I I I I

In generating the simulated radiance, the atmospheric model described

earlier in this chapter was used with the radiances integrated over the nominal

wavelength intervals of each band of the MSS sensor. Thus, the radiance in

each band i was generated as in equation 2.22.

I 1 0 1 01 Ri + Li,Pat h . Li,Pat h Ri + Li, PathL i = _- Ei,Tota I Ti,Atm (2.22)
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Here, R i is the average reflectance in band i. Table 2.10 gives the

atmospheric and goniometric conditions present at the time of observations.

Table 2.10 Scene Conditions at Time of Observations.

i Meteorological Range (V_)

Solar Zenith Angle (0solar)

Solar Azimuth Angle (¢solar)

Diffuse Irradianc e Constant (KD)

31 Km

39 o

119 o
1.26

i

Table 2.11 contains the LOWTRAN settings used in generating the

simulated atmospheric effects.

Table 2.11 LOWTRAN Settings for Experiment.

IAtmospheric Model
Atmospheric Haze
Atmospheric Scattering
Aerosol Phase Functions
Aerosol Profile

it

1976 U. S. Standard
Rural Extinction

Multiple
Mie-generated

Back_lround Stratospheric

All other LOWTRAN parameters were set to zero, or the default. Table

2.12 shows the atmospheric components generated by LOWTRAN for each of

the spectral bands, while Table 2.13 compares the simulated to the actual

radiances received by the satellite.
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Table 2.12 Atmospheric Components for the Hand County Test Site.

Band

1
2
3
4

ETotal/c--_- /

16.296
14.036
10.843

19.329 ,

Tatm

0.684
0.746
0.764
0.774

mW
!

"Path. 1, c

1.131
0.735
0.434
0.524

Lpath,OI_ 1

0.248
0.128
0.068
0.071

Table 2.13 Comparison of Actual and Simulated Radiances (in mW/(cm2-sr)) for
Test Site in Hand County, SD.

Field 290
Band 1
Band 2
Band 3
Band 4

Field 168
Band 1
Band 2
Band 3
Band 4

Field 289
Band 1
Band 2
Band 3
Band 4

Field 288
Band 1
Band 2
Band 3
Band 4

FSS
Reflectanc_

0.063
0.O83
0.166
0.240

O.068
O.O88
0.121
0.182

O.O58
O.078
0.143
0.208

O.043
0.031
0.252
0.388

MSS Average
Digital Count

21.5
26.9
44.2
20.7

23.7
31.0
36.8
16.6

22.1
27.6
43.2
20.1

Landsat
Radiance

0.512
0.421
0.568
1.358

0.556
0.475
0.483
1.111

0.524
0.430
0.557
1.322

Simulated
Radiance

O.527
0.455
0.566
1.323

0.549
0.475
0.431
1.020

0.505
0.435
0.497
1.156

Percent
Error

+2.9
+8.1
-0.4
-2.6

-1.3
0.0

-10.8
-8.2

18.3
14.8
66.1
36.6

0.448
0.258
0.820
2.317

0.439
0.250
O.825
2.094

-3.6
+1.2

-10.8
-12.6

-2.0
-3.1
+0.6
-9.6

A scatter plot of the simulated radiances versus the measured ones is

shown in Figure 2.21. The solid line is a best linear fit to the points with a

regression coefficient of 0.99, while the dashed line represents the ideal of

equal radiances.
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Figure 2.21. Plot of Landsat vs. Simulated Radiances.

The error between the Landsat and the simulated radiances seems to be

equally distributed (+ and -) for bands 1 and 2, while the radiances in bands 3

and 4 seem to be consistently underestimated by the model. The greater error

at the longer wavelengths may be due to several factors. The diffuse irradiance

component may be on the low side because of the high reflectances of the

surrounding area. Also, LOWTRAN may be underestimating the path radiance

calculation.

Overall, there seems to be a close match between the Landsat radiance

and the simulated radiance. It would seem then, that this atmospheric model is

reasonably satisfactory.
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2.3 Sensor Modeling

The sensor portion of optical remote sensing systems performs the task

of sampling the continuous spectral radiance of the scene in the spectral,

spatial, radiometric, and temporal domains. This results in a digital

multispectral image of a scene at a certain moment in time, with a discrete

number for the radiance at each spot in the scene and for each spectral region.

The modeling of imaging sensors can be quite complex indeed. One

may consider the propagation of the optical waves through the sensor optics

(including aberrations), the conversion from light to electrons in the detector

material, and the effects in the signal conditioning electronics. Goodman (1968)

provides a good discussion of the propagation of optical waves in imaging

systems from a linear systems point of view. Texts by Hudson (1969), Pinson

(1985), and Wyatt (1987), and chapter eight of Colwell (1983) cover the entire

detection process from the optical system through the detector electronics.

In this research, the modeling of sensors is approached from a lumped

systems perspective. Figure 2.22 shows a block diagram of the major

components of a multispectral sensor.

SPATIAL

RESPONSE

SPECTRAL

RESPONSE

ELECTRICAL

NOISE

A/D

CONVERSION

Figure 2.22 Sensor System Components.
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The scene is sampled spatially by its being imaged onto a detector array

that is either scanned sequentially down the scene, or consists of a focal plane

array that gathers the two-dimensional image in a small but finite time interval.

These sampled pixels are also dispersed onto separate detectors for each

spectral band to the perform the spectral sampling.

The signals from these detectors are then amplified (electrical noise

effects occur here) and calibrated before being quantized into discrete values.

The model shown here is very general and could be enhanced to include

very detailed effects such as the aberrations in the optical propagation in the

optical system, spatial misalignment of the detectors, or electrical bandwidth of

the amplifiers. But in this report, the model will be relatively simple within this

generality. The model will be limited to a simple point spread function for the

spatial response, a simple multiplication of the sensor response for the spectral

response, and a noise model containing electrical noise, calibration error, and

quantization effects.

In the following subsections 2.3.1 and 2.3.2, models are presented for the

sampling and noise processes. In subsection 2.3.3, a detailed model is

presented for a future remote sensing imaging spectrometer. Appendix D

contains complete descriptions of several multispectral scanners. In subsection

2.3.4, the computation of radiometric performance measures is discussed.

2.3.1 Sampling Effects

In the creation of the digital image the continuous spectral radiance of the

scene is sampled spatially, spectrally, and radiometrically (ie., A/D conversion).

The following paragraphs describe these forms of sampling.

1. S.Datial Sampling. The optical Point Spread Function (PSF) is the two-

dimensional analog of the system impulse response in linear system theory

(Goodman, 1968). It is the response of the optical system to an infinitely bright

point source, usually represented by the Dirac delta function 5(x,y).
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In the simulation model, no parametric form for the PSF is assumed.

Rather, a table of values derived from measurements of the real devices is used

to define the PSF. Thus, this form includes many of the aberrations present in

the instrument optics.

The discrete representation of the response of the optical system is given

by equation 2.23. The PSF h(u,v) is represented as the product of separable

line spread functions hx(- ), and hy(.), across the two spatial dimensions. The

response is normalized to unit area by dividing by the area under it.

h(u,v) = (A x gx)(Ay gy) hx(O)hy(p ) 8(u- gx, v- gy) (2.23)
o-1 p=l

Where,

(u,v) - spatial domain locations (meters)

A x - sum of across scene line spread function coefficients

Ay - sum of down scene line spread function coefficients

gx = _UH - ground interval between hx coefficients (meters)

gy = _VH - ground interval between hy coefficients (meters)

AU - angular distance between hx coefficients (radians)

AV - angular distance between hy coefficients (radians)

H - height of sensor (meters).

Also, O+1 and P+I represent the number of coefficients in the across

scan and down track line spread functions, respectively, and hx(P/2 ) and

hy(O/2) contain the maximum response.

Equation 2.23 gives the response for a vertical viewing sensor. For

sensor zenith angles > 0°, the distance on the ground between the coefficients

must be rotated by the azimuthal angle _vi_w, and scaled by the zenith angle

(}view. This is shown in equation 2.24.
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E0 I=icos0vew)sn0vow)Tigygx1
gy - sin(_view ) coS(_view)_J cOS_view)

(2.24)

In applying this spatial response to the scene spectral radiance function

derived in section 2.2.3, equation 2.25 is used. This equation is repeated for all

image pixel locations (i,j) and scene wavelengths m.

GxGy o+1 P+l _iS x - og x jSy- pgy /;)EE' . ooo ' .m
0=1 p=l

(2.25)

Sx and Sy are the across scene and down track sampling intervals for the

image pixels. In the case of off-nadir viewing these also must be scaled and

rotated as the ground coefficient intervals were in equation 2.24. Note that

since the scene radiance array has discrete pixel locations all index quotients

are rounded to the nearest integer. Also, at the edges, the extreme row or

column is repeated as necessary to allow for the complete application of the

spatial response.

The PSF is often approximated by a truncated Gaussian curve.

Measured PSF's often are nonsymmetrical and can iaclude ringing at the tails

of the response; thus the Gaussian shape does not truly represent the actual

PSF. Although in some cases, it can be close enough to justify its use in

theoretical modeling.

2. Spectral Sampling. The spectral response of a multispectral sensor

consists of the continuous response of each channel to the spectral radiance

received by the sensor. In the simulation, the application of the discrete

response to the incoming spectral radiance Lx,sensor(i,j,m ) is as shown in

equation 2.26.
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M
sl(m)

Llmag e (i,j,I) = z_._, k_.,Senso r (i,j,m) N(I)
m=l

(2.26)

Where,

,_._ - scene wavelength increment in l_m

sl(m) - normalized response of band I to spectral wavelength m

Limage(i,j,I ) - radiance received by band l at pixel location (i,j)

Lx, sensor(i,j,m ) -incoming spectral radiance from pixel location (i,j)

at wavelength m

N(I) - normalizing factor for nominal bandwidth variations.

The normalizing factor N(I) is the ratio between the actual bandwidth as

measured by the area under the normalized response curve and the nominal

bandwidth of the channel. This factor is often necessary to match the published

gain setting between the real instrument and a modeled version. Price (1987)

discusses calibration problems of this sort and presents tables of the actual

bandwidth for several multispectral scanners.

For the imaging spectrometers modeled in this report, the spectral

resolution of the sensor is the same as the scene. Thus, for these sensors there

is only one term present in equation 2.26.

3. Radiometric SamDling. After the continuous spectral radiance across

the scene has been sampled spectrally, and spatially, and the noise (discussed

in the following subsection) has been added in, the received value is converted

to a discrete level by equation 2.27.

• (2e-1)} (2.27)

Here, Q is the number of radiometric bits of the sensor, and LFulI,I is the

published full scale equivalent radiance for sensor band I. This introduces
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quantization noise uniformly distributed with an equivalent radiance variance

shown in equation 2.28 for each sensor band.

(2.28)

2.3.2 Electrical Noise Modeling

Malaret (1982) performed a study of the general noise effects in

multispectral sensor systems and their impact on data analysis. In this

research, his model for the electrical noise present in these types of sensors will

be used, augmented by models for radiometric and calibration errors. Figure

2.23 contains a block diagram of this noise model showing the signal

dependent shot noise, thermal noise, radiometric error, and calibration error.

Incoming
Radiance

AbsouteI Re'at've
Radiometric _ Shot I Thermal Calibration

Error Noise I Noise Error

=_ _j__ _ D_tectorOutput

Figure 2.23 Noise Model of Sensor.

In his work, Malaret showed how the shot noise in a multispectral sensor

can be modeled as a zero mean Gaussian process with its variance

proportional to the signal level (assuming the typical signal levels associated

with Landsat sensors.) In this research, the shot noise signal dependence is

implemented by having the variance of a Gaussian random number generator

proportional to the signal level. These random numbers are then added to the

signal level.
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Thermal noise has been shown to have a Gaussian distribution also with

zero mean and a variance proportional to the product of detector temperature,

bandwidth, and resistance. These factors are assumed to be relatively

constant, and thus the level of the thermal noise is fixed. It is implemented as a

Gaussianly distributed random number added in to the signal level received by

the sensor.

Two types of radiometric error are found in the sensor system, absolute

and relative calibration error. Absolute errors imply a deterministic change in

output level, while relative errors are manifested as stochastic noise. Table

2.14 shows several causes for these errors and the type of error produced.

Table 2.14 Sources and Types of Radiometric Errors.

Error Source

Change in transmittance of optics
Change in gain of detector amplifiers
Change in characteristics of calibration standard
Change in detector quantum efficiency

Error Type
absolute
absolute
absolute
relative

Absolute errors are introduced in the model through additive offset. The

level of error is constant across the detectors, but is signal and wavelength

dependent. The model for the relative calibration error has been developed

under the assumption that each detector channel in the imaging array may

undergo a random and independent change in its response over time. Thus,

the radiance level required for a given output may differ from detector to

detector.

From the statistics given in Castle, et al. (1984) it was determined that the

actual output of detectors may vary as much as 1% from the calibrated output

given the same input. Assuming an uniform distribution for this error, then the

multiplier for the uniform random number generator would be chosen to be ±1%

of the signal level. The standard deviation of this error is given in equation 2.29.
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2 * 0.01 {signal level}
acal- _ (2.29)

Depending on the spatial arrangement of the detectors, the relative

calibration error may be constant in one spatial direction. For example, a linear

array of detectors may cause relative errors across the image, but since the rest

of the image is formed by the motion of the sensor platform, the relative error is

constant down the columns of the image. This may cause a vertical striping

effect. Or, for a line scanning detector array, the striping may be horizontal as

was found in early Landsat MSS sensors. Thus, in implementing the calibration

error model, the type and arrangement of detectors must be considered.

2.3.3 HIRIS Model

In this subsection, a model for the High Resolution Imaging Spectrometer

(HIRIS) is presented. The instrument is described in Goetz and Herring (1989).

HIRIS is meant to be used in an on-demand mode of operation, gathering data

at the request of a science investigator. Kerekes and Landgrebe (1989a)

present a full description of this instrument and its performance. Table 2.15

contains a brief overview of the instrument and its general design parameters.

Table 2.15 HIRIS Functional Parameters.

Design Altitude
Ground IFOV
Swath Width

Spectral Coverage

Average Spectral Sample Interval

0.4 - 1.0 _m

1.0 - 2.5 _m
Pointing

Down-track

Cross-track

Data Encoding
Maximum Internal Data Rate

Maximum Output Data Rate
Image Motion Compensation Gain

705 Km
30 m
20 Km

0.4 - 2.5 I_m
192 Bands

9.4 nm

11.7 nm

+60o/-30 °

+20o/-20 °

12 bits/pixel
512 MBPS
300 MBPS

1,2, 4, or8
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For this research the model shown in Figure 2.24 is used for the HIRIS

instrument. This model version has 201 equally spaced (10 nm intervals)

spectral bands from 0.4 to 2.4 _m and includes most major spectral, spatial, and

radiometric effects of the instrument.

OPTICS

Incoming |

Spectral

Radiance /

Optics
Transmission

J Spatial

7 Focusing

DETECTOR

Detector Shot

Response Noise

Dark

Current

I Read
Noise

SIGNAL CONDITIONING

Lt' I(_ Signal [..__ RelativeScaling Calibration
Error

A/D
Conversion

Output
Digital
Number

Figure 2.24 HIRIS Model Block Diagram.
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Instrument parameters have been obtained from a progress report by

JPL (1987). These parameter levels are based upon preliminary specifications

and prototype testing. The following paragraphs and figures detail the blocks in

the overall diagram and present relevant parameter values.

The sensor has two detector arrays to cover the entire spectral response.

The Very Near Infrared (VNIR) array covers 0.4 - 1.0 p.m, while the Short Wave

Infrared (SWIR) array covers 1.0 - 2.5 _m. The scene is imaged line by line as

the sensor passes over. Each scene line is sampled spectrally by being

dispersed across the detector arrays.

The spectral transmittance of the instrument optics is shown in Figure

2.25. Note the low response at the spectral gap between the VNIR and the

SWIR arrays at 1.0 i_m.
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Figure 2.25 Spectral Transmittance of Optics.

The normalized spatial response of the optics and field stop is assumed

to be similar to the that of the Landsat Thematic Mapper instrument, as they both
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have a Ground Instantaneous Field of View (GIFOV) of 30 meters. Figure 2.26

shows the measured down scene and across scene normalized responses as a

function of angular distance for the TM, taken from Markham (1985). The data

points shown are the discrete values used in the simulation. At the nominal

altitude of the HIRIS instrument, the distance on the ground between these

points is approximately seven meters.
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The radiometric conversion from the incoming spectral radiance

(mW/cm2-sr-i_m) is accomplished by dividing by 1000 mW/W, multiplying by the

transmittance of the optics and by the A_ (the product of the detector area and

the solid angle of view) of the optics. The output of the optics model P_., the

incident spectral power, is then in units of watts/#m. The A£ used in the model

is 1.44 x 10 .6 cm2-sr.

The spectral quantum efficiency q of the detectors is shown in Figure

2.27. The incident spectral power P_. at wavelength X is converted to a number

of electrons S at the detector by the integration of the incident photon level over
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the pixel integration time. Thus, the overall radiometric conversion is shown in

equation (2.30).

S = L_.,Scene * 1000 mW • A_ * T • A_. • 11* _ • t (2.30)1 W optics

Where,

A_. = 0.01 p.m, wavelength interval of spectral samples

;L = wavelength of interest (_m)

h = 6.62 x 10 -34 Joule-sec, Planck's constant

c = 3 x 108 meters/sec, the speed of light

t = 0.0045 seconds, pixel integration time

q = detector quantum efficiency.

Since the noise level data and full scale specifications were obtained in

terms of number of electrons, the signal level is stated in these same terms and

is unitless.
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Figure 2.27 Spectral Quantum Efficiency.
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The Image Motion Compensation (IMC) is implemented through

movement of the down-track pointing mirror to offset the platform speed and

effectively multiply the pixel integration time by the gain state selected: 2, 4, or 8.

The noise in this model consists of a deterministic dark signal level and

absolute radiometric error, and random shot noise, read noise, and relative

calibration error. Thermal noise has been found to be insignificant. All noise is

considered to be stochasticly independent between noise types and spectral

bands. Table 2.16 contains several parameters of the detector arrays.

Table 2.16 Parameters of Detector Arrays in Terms of Electrons (e-).

Dark Current
Read Noise Standard Deviation
Full Scale Level

VNIR SVVlR
0 e- 27000 e-

300 e- 1000 e

577,395 e- 1,441,440 e-

The dark current is simply added to the received signal level in the

model. The absolute radiometric error is included in the detector portion of the

model by multiplying the total signal by (1 + ER), where ER is the decimal level of

error. Read noise is added in as a zero mean Gaussian random number with a

standard deviation as in Table 2.16. Within each detector array, the read noise

level is assumed to be constant over wavelength.

The shot noise in the model consists of zero mean Gaussian random

numbers with a standard deviation equal to a function of the total signal level in

the detectors. This total signal is comprised of the incoming radiance, and the

dark current level mentioned above. Figure 2.28 shows several points relating

total signal and shot noise levels taken from the JPL report, along with a curve

showing the square root of the total signal. It can be seen that the shot noise

level is almost exactly the square root of the total signal level.
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Figure 2.28 Shot Noise vs. Signal Level.

Thus, the standard deviation of the shot noise process is given by

equation 2.31.

(_shot= "/_ (2.31)

S' is the total (sum of received signal and dark current) detector signal

level in electrons. Note that this relationship is assumed to be independent of

wavelength.

The relative calibration error is implemented by adding in uniform

random numbers with zero mean and a standard deviation as was given in

equation 2.29.
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The conversion from the e-levels S" (received signal plus noise and

calibration error) to a digital number (DN) occurs as in equation 2.32.

where,

,Is' l /1DN - nin IMC oF • 2Q" 1 (2.32)

IMC = IMC Gain State

F = Full Scale Electron Level (shown in Table 2.16)

Q = Number of radiometric bits (nominally 12)

The division by the IMC gain state is included to preserve the dynamic

range of the detectors over the various gain states.

2.3.4 Radiometric Performance Measures

Several measures of the radiometric performance of remote sensing

instruments are commonly used. All of these measures are a function of

wavelength, atmospheric conditions, sensor response, and sensor electrical

noise. In this subsection, two common ones are described and defined as they

are used in this research.

Noise Equivalent change in Reflectance (NEAp) is used in identifying the

smallest differences in the surface reflectance that are detectable by the sensor.

It is defined as being the equivalent change in the reflectance of the surface to

match the total noise level in the sensor. In terms of the parameters used in this

report, this is given in equation 2.33. Note that these parameters are dependent

upon the sensor spectral band for which the calculation is being made.

_shot + O_therm + O_read + _quant + 02_1

NEAp = 1 (2.33)
_- Ex,Tota I T_.,AtmB(;L)

B(_.) is the conversion from incident spectral radiance to the signal level

in the detector for the appropriate band. For general multispectral scanners,
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this is the summation given in equation 2.26, while for the HIRIS model it is the

right side of equation 2.30. ine resulting signal level is then scaled by the

absolute radiometric error (1 +ER).

The Signal-to-Noise Ratio (SNR) is another common measure of

performance of a remote sensing instrument. It is commonly expressed as the

log of the ratio of the signal level of interest to the total noise level.

In many Earth resource analysis remote sensing applications, the output

product is some form of classification map of the observed area. The

classification is usually obtained by a computer algorithm that uses the mean

and covariances of the multispectral image data to distinguish between the

classes. Thus, in this application not only are signal levels important, but so are

signal power variations.

In this report, two types of SNR are defined. One based on the mean

signal level, while the other is based on the covariance of the received signal.

The voltage SNR is useful for determining the dynamic range required of the

sensor, white the power SNR is useful for studying the sensitivity of the sensor

in discriminating among surface class types.

The voltage SNR is defined for a sensor band by dividing the mean

signal level in that band by the square root of the sum of the noise levels for that

band, as in equation 2.34.

Voltage SNR = 20 IOglo { %/O__shot

_- Ex,TotaiTAtrn _ B(k)

+O_therm +O_re_ d +O2qquant+l_cal

(2.34)

Here, _ is the mean reflectance of the surface, and B(;L) is defined as

above. The power SNR is defined for one wavelength m in the HIRIS model to

be as in equation 2.35.



Power SNR = 10 Ioglo f

63 Chapter 2 - Remote Sensing System

Modeling and Simulation

(2.35)

Here, o2m is the variance of the surface reflectance for wavelength m. In

calculating the SNR for a particular scene, the mean and variance of the surface

reflectance are usually calculated from the combined data set of all classes

represented in the scene.

In computing the power SNR for the multispectral scanners, or for

features derived from the HIRIS sensor by combining bands, the signal levels

cannot be simply added because of the band-to-band correlation present in the

reflectance data. In these cases, the signal variance is the sum of the individual

variances, plus terms due to the covariance between each pair of wavelengths

m and n, combined in the feature as in equation 2.36.

Combined Power SNR = 10 log10 I M L M E

="<,,.--r,>
m=l n-1

O'_shot + O_therm + O_read + _quant +O2_1
2.36)

M L is the number of wavelengths combined for the band or feature, while

B+(_.) is the product of the radiance received from a completely reflecting

surface and the conversion to the signal level in the sensor for the appropriate

wavelength. The m,n entry in the reflectance spectral covariance matrix is

denoted here as O'mn. Also, the noise variances as used here are the sum of the

individual wavelength variances combined appropriately.

2.4. Processing

Processing plays the most important role in remote sensing systems as it

is the part that provides the information that the system is designed to acquire.

Aspects of processing in remote sensing are discussed in chapters 17 through
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24 of Colwell (1983), chapters three through six of Swain and Davis (1978), and

in the text by Richards (1986). Nunlerous other texts and articles have been

published dealing with the processing of remotely sensed images.

Table 2.17 shows a list of typical functions used in the processing of

remotely sensed images. The task of the processing portion of the system is to

take the multispectral image from the sensor, and any other input data or

algorithms, and then compute an output information product. This product may

be a classification map showing to which of the informational classes each pixel

belongs, or it may be a summary of the total area within the image that belongs

to each of the classes. The processing functions shown in Table 2.17 aid in

this task by allowing the information to be obtained efficiently and accurately.

Table 2.17 Example Processing Functions.

Proc?ssing Typ?

Radiometric

G'eornetric

Data Reduction

Class Separability

Classification

Example

Calibration

Scaling
Compression/

Decompression ,,,
Registration
Resamplincj
Feature Extraction

Feature Compression
Training Field Selection
Interclass Distance
Intractass Distance

Unsupervised (Clustering)
Supervised
Class Area Measures

In the rest of this section these processing functions are discussed, and

where appropriate, models are presented for use in the simulation of remote

sensing systems.
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2.4.1 Radiometric Processing

The goal of radiometric processing is to allow accurate and repeatable

calibration of the radiance levels represented by the digital numbers in the

multispectral image. This is important when comparing images over the same

area from different dates or sensors. Price (1987) discusses the accurate

calibration of several sensors for comparative purposes. Papers by Fischel

(1984), Murphy, et al., (1984), and Castle, et al., (1984) discuss the calibration

of the Landsat Thematic Mapper sensor.

For modeling purposes, the calibration models presented in section 2.3.2

are useful in studying the effect of these radiometric errors.

2.4.2 Geometric Processing

Geometric processing is generally concerned with correcting spatial

distortions in the multispectral image due to scanning variations, detector

misalignment, or view angle effects. The aim of such processing is again to

allow comparison of images, or to match images to other forms of spatial data

such as topographical or land use maps.

Spatial distortions are often corrected by developing a mapping function

from the image to the control map by using identifiable features (control points)

in the scene. Pixels in between these points are often resampled to give a

desired spatial resolution. The papers by Park, et al., (1982 and 1984), and

Schowengerdt, et al., (1984) discuss the effects of these corrections.

Another form of geometric distortion is known as misregistration, and is

due to the effective misalignment of detectors of the various spectral bands.

This may occur due to distortion in the imaging optics, or to the physical location

of the detectors. It effectively causes the pixels of different bands to be imaged

from a slightly different part of the scene. Misregistration has been studied by

Cicone, et al., (1976), Billingsley (1982), and Swain, et al., (1982). In the study

by Swain, et al., it was found that misregistration by as little as 0.3 pixels can

affect classification accuracy.



Chapter 2 - Remote Sensing Syslem 66
Modeling and Simulatioq

Although they would be relatively straightforward to implement in the

sensor spatial model, these forms of geometric distortion were not studied in

this research.

2.4.3 Data Reduction

in most cases it is either necessary, or at least advantageous, to reduce

the amount of data in a muttispectral image without diminishing the

informational content. In the case of the upcoming HIRIS instrument the normal

operating mode produces data at a rate exceeding the capabilities of the

satellite's communication channel, thus necessitating some form of on-board

editing. For lower dimensional sensors such as Landsat TM or aircraft

scanners, it has been shown that under conditions of limited training samples,

cJassificatJon accuracy decreases as more spectral bands are usecl in the

classification (see Hughes, 1968, and Chandrasekaran, 1975.)

This data reduction may be accomplished spatially, spectrally, or by

reducing the radiometric resolution of the data. The spatial reduction may be as

simple as deleting every other pixel or reducing the swath width of the sensor,

or as complex as a scheme described in Ghassemian (1988) which retains

much of the spatial detail in the image while reducing the data to a set of

features. Reducing the radiometric resolution may be used and usually will not

increase the noise level significantly, unless the quantization error becomes the

dominant source of noise in the image.

Spectral reduction through the Karhunen-Loeve (or principal component)

transformation was studied in Ready and Wintz (1974). This method has proved

to be useful in reducing dimensionality while retaining class separability, even

in cases of limited training samples (Kalayeh, et al., 1983, and Muasher and

Landgrebe, 1983). However, it requires computation of the eigenstructure of

the covariance matrix and thus is not easily implemented at high data rates.

With the advent of imaging spectrometers such as HIRIS, on-board

feature selection algorithms that can be implemented through simple

programmable operations, such as summations, have been studied. Chen and

Landgrebe (1988) have extended a method first proposed by Wiersma and
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Landgrebe (1980) to select spectral regions to be combined. The algorithm

uses training samples from similar data, or ground reflectance, and selects

wavelengths to be combined based upon the eigenfunctions of the spectral

covariance matrix. A simple set of summation coefficients may then be

transmitted to the satellite and used to reduce the data rate. Factors of data

reduction of 10 or more have been found to be possible with little loss in the

class recognition accuracy (Chen, 1988).

In the simulation program developed in this report, data reduction may be

accomplished for the HIRIS model through the combination or weighted

summation of spectral bands.

2.4.4 Class Separability Measures

Class separability measures are computed from the statistics of known

class samples, and are used to obtain an idea of the statistical distance

between informational classes. These measures have been studied both as a

feature selection technique (Swain and King, 1973), as well as an estimate of

error probability (Kailath, 1967, and Whitsitt and Landgrebe, 1977.)

Many of these separability measures are for two classes, and are

computed from the mean vectors and covariance matrices. As an example, the

Bhattacharyya distance Bkl is given in equation 2.37 between class k and class

I with mean vectors Z--k and _ , and covariance matrices _k and _l.

2
1,0ge|_l__2= (2.37)

Multiclass separability measures can be obtained from apriori class

probability weighted pairwise summations of such two class separability

measures. Whitsitt and Landgrebe (1977) discuss this and other ways of

measuring multiclass separability.
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Fukanaga (1972) also presents a multiclass separability measure that is

used in canonical analysis to reduce the dimensionality of data through a linear

transformation (Merembeck and Turner, 1980). This measure JF is described

by equation 2.38.

where,

-1

JF = tr SwS b (2.38)

K

S w = _ Pk_k

k=l

K

S b= _ Pk(Zk "z o) (Z k

k=l
K

2;=T_.,z,
k=l

- Zo) T

In these equations, Pk is the apriori probability of class k, and the mean

vectors and covariance matrices are noted above.

In the simulation program, both a pairwise summation of the

Bhattacharyya distance and the Fukanaga multiclass measure are

implemented. The class statistics are computed from designated areas within

the known class areas.

2.4.5 Classification Algorithms

The classification of a multispectral image into informational classes may

be done in an unsupervised manner by a computer algorithm, or in a

supervised approach by an analyst working interactively with the computer. In

either case, the accuracy of such a classification can then be computed by

comparing the resulting class map to a known class map of the area.

Classification accuracy has also been estimated from the class statistics.

Fukanaga and Krile (1969) present an analytical method for estimating

accuracy in the two class Gaussian case, while Whitsitt and Landgrebe (1977)

discuss several considerations in multiclass error estimation.
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In unsupervised classification, the data vectors are grouped into

separable classes through clustering algorithms (Duda and Hart, 1973.) These

algorithms group data vectors that are "similar" in a statistical sense into

spectral classes. These spectral classes are then either subdivided or

combined to form the desired informational classes.

Supervised classification is done by developing training statistics, either

through locating known class areas in the image, or by applying a clustering

algorithm to help identify possible classes. Various classification algorithms

can then be applied to all of the pixels in the image and assign them to an

informational class.

For the simulation program, a supervised classification technique using

the Maximum Likelihood (ML) classification algorithm has been implemented.

The ML classifier uses the standard Gaussian assumption with class apriori

probabilities dependent on the numbers of pixels in each class. Since the

scene is defined in the simulation, the class boundaries are known in the image

and a classification accuracy can be computed directly. Class statistics are

computed from designated training areas. The classification can be done on the

original image, or on the compressed image if the sensor was an imaging

spectrometer type.

The classifier works by assigning each pixel the class label that provides

the maximum value of probability as coming from that class. That is, a pixel

Z(i,j) is assigned to class k' if gk,(i,j) > gk(i,j) for all classes k in the scene, where

gk is defined in equation 2.39. L is the dimension of the class statistics.

gk (i'j)= " " kl _kl ('j)"

(2_) u2 I_k
(2.39)

2.5 Summary and Discussion

In this chapter, the modeling of optical remote sensing systems has been

discussed from a general viewpoint as well as one of simulation. The models
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discussed represent an understanding of the system. Obviously, these models

cannot describe all of the effects and processes in the real system, but they

represent a level of understanding of duplicating the real worlrJ in the computer

laboratory.

Table 2.18 presents a summary of the various aspects of the remote

sensing system that have had models described in this chapter and

implemented in the system simulation program RSSIM (Kerekes and

Landgrebe, 1989b).

Table 2.18 Summary of System Parameters Implemented in Simulation.

Scene

Spectral Means

Spectral Covariance

Spatial Correlation

Spatial Layout

Direct Solar Irradiance

Diffuse Solar Irradiance

Atmospheric Transmittance

Scattered Path Radiance

Zenith Angle of Sun

Zenith Angle of Sensor

Meteorological Range

Sensor

Spatial Response

Spectral Response

Electrical Noise

(Shot, Thermal, and Read)

Absolute Radiometric Erro

Relative Calibration Error

Radiometric Resolution

Detector Gain

Processing
Training Field Selection

Feature Selection

Class Separability

Class Accuracy

Classification Map

While there are many effects not described in this table, it represents a

comprehensive framework from which to study their interrelated effects on

system performance.
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CHAPTER 3

ANALYTICAL SYSTEM MODEL

3.1 Model Overview

The system model described in chapter two gave a tool to allow accurate

modeling and simulation of a remote sensing system. However, because of the

flexibility and completeness, it may represent too much detail for some system

studies. A simpler approach may be obtained by using some of the component

models described in chapter two, and the work of several previous researchers,

to develop a purely analytical system model.

Figure 3.1 shows a block diagram of the analytical model presented in

this chapter. At each stage in the system model, the mean vector and

covariance matrix of each class are modified by the function in that block.

Reflectance I

Stati_ Atm°sphericEffects

Spatial
Effects

Spectral
Effects

Noise

Model

Feature
Selection

(Optional)

Error
Estimation

Figure 3.1 Analytical System Model Block Diagram.

Classification

Accuracy

v



Chapter 3 - Analytical System Mode! 72

A brief description of these blocks and their assumptions is given in the

following paragraphs.

Reflectance Statistics - Each surface cover class is assumed to be

multivariate Gaussian described by the mean vector and covariance matrix of

the reflectance. The surface reflectance is also assumed to have a separable

exponential spatial correlation.

Solar Illumination and Atmosphere - The linear atmospheric effects

model described in chapter two is used here.

S.oatia! Effects - The spatial response of the sensor is assumed to have

the shape of a Gaussian probability distribution function and be circularly

symmetric.

Spectral _f.fects - This is a linear transformation to convert the scene

spectral radiance to the received signal in the spectral bands of the sensor. In

the case of the HIRIS model, the spectral resolutions are equal and this matrix is

diagonal.

Noise Model - The various types of noise described in chapter two are

added in here. They are assumed to be zero mean, and uncorrelated between

noise type and spectral band.

Feature Selec_iQn - This is another linear transformation, and is used to

combine sensor bands together for spectral compression.

Error Estimation - The pairwise Bhattacharyya distance is calculated from

the modified class statistics, and used to estimate the error. Equal apriori

probabilities are assumed and the multiclass error is the sum of the pairwise

errors.

A listing of the FORTRAN program implementing the model discussed in

this chapter for the model HIRIS sensor is included in Appendix E.
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3.2 Analytical Expressions

This section presents the equations that form the analytical model. The

model first applies the system functions to the statistics of each of the K classes,

then computes the pairwise error estimates.

3.2.1 Reflectance Statistics

The surface reflectance is assumed to be spectrally multivariate

Gaussian with a spatial correlation described by a separable exponential

model.

The spectral reflectance statistics are computed from the database of

FSS field spectra. To take full advantage of the spectral resolution considered

in this research, the data is first interpolated to 10 nm wavelength spacing by

using the algorithm presented in Appendix B. Thus, for each class k the mean

vector K_' and the covariance matrix _k will have M = 201 dimensions.

The spatial model has a crosscorrelation function for wavelengths m and

n as shown in equation 3.1.

- a_nI'q - branhi
Rmn ('_,TI)= e e (3.1)

This form yields spatial crosscorrelation coefficients Pmn,x for across the

scene, and Pmn,y for down scene as shown in equations 3.2 and 3.3.

- amn
Pmn,x = e (3.2)

- bran
Pmn,y = e (3.3)

For the model implemented in this chapter, the spatial correlation

coefficients have been assumed to be constant across all spectral wavelengths.
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3.2.2 Atmospheric Effects

The atmospheric effects model converts the scene reflectance to the

spectral radiance received by the sensor. Equation 3.4 shows the spectral

radiance Lz received by the sensor.

o [, o]Lx = Lx,s X + Lk,Path + L_.,Pat h " Lk,Path X A (3.4)

X is the surface reflectance in the sensor IFOV, while XA is the average

reflectance around this area and represents the source of the adjacency effect

discussed in chapter two. For this model, the adjacent reflectance XA is

considered to be the average reflectance of all K classes. It is also considered

to be uncorrelated with the reflectance within the sensor IFOV.

1 Lo
Lk,Path, and X,Path are the path spectral radiance components for surface

albedoes of 1 and 0, respectively. Lx, s, the spectral radiance reflected from a

perfectly reflecting surface, is as shown in equation 3.5.

E ]
1 [COS(0solar) Ex,oirect + X,Di_fus.]TX,Atm (3.5)LX,s -

Thus after the application of the atmospheric effects function, the mean

and covariance of the signal radiance is as follows. The mean spectral

radiance is given by equation 3.6.

-- 0 1-0

L,\ = Lz,sX + Lz,Path + Lz,Path X-A (3.6)

L 1-o
_.,Path IS the difference between the path radiances for a surface albedo

of 1 and 0. The spectral radiance covariance matrix _Lzis derived as follows

for each row m, column n entry (_L,mn"
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(3.7)

,o
" m,S m" m,Path'Lm,PathXA,m/e

=E|( o 1-o -- o 1-o --

Ln,sXn+Ln,Path+Ln,PathXA,n " n,sXn_ Ln,Path_Ln,PathXA,n/ (3.8)

1-0 1-0

: Lm,s°'X,mnLn,s + Lm,Path (_A,mn Ln,Path
(3.9)

Here, (_X,mn is the mn entry of the reflectance covariance matrix '_'_'k,while

aA,mn is the mn entry of the covariance matrix _"A of the averaged reflectance,

which is given in equation 3.10.

_-_.A= -_/_'1 + _'2 + ... + _L'KI (3.10)

In the derivation of ,T-.,A, the reflectances averaged are considered to be

uncorrelated with each other.

3.2.3 Spatial Effects

The spatial effects function uses the results of Mobasseri, et al., (1978) to

modify the spectral radiance covariance matrix. The separable exponential

spatial correlation model of equation 3.1 is assumed for the scene, along with a

Gaussian PSF for the sensor as shown in equation 3.11.

1 / U2 + V2."]

h(u,v)- 2_a2 expL 2_o_

(3.11)

Since ao is related to the size of the sensor IFOV in scene cells, as the

sensor look angle changes it must be modified to reflect the change in ground
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size of the IFOV. The spatial direction that this occurs is dependent upon the

relative azimuthal angle of the sensor and the ground reference axis. For

simplicity, the sensor azimuth is defined to be 0°. Thus, in terms of ro,x, and

to,y, parameters used below in the weighting function, c o is modified as in

equations 3.12, and 3.13.

r°,x = _ °° (3.12)

c o

ro,y - coS(Oview) (3.13)

Mobasseri defined a weighting matrix W s that is a function of the spatial

model and PSF parameters. Following his results, the sensor spatial response

modifies each mn entry in ]_Lz as in equation 3.14.

as = W_nn (3.14)L,mn O'L,mn

Where,

mnI/a22t }W s = 4 exp mn + bran ro,y ,2 ro,x erfc(aro x) erfc(bro,y) (3.15)

and, erfc(°) is defined as in equation 3.16.

2
Xc,o __

_ 1 fe 2 dx
erfc(oO _f_.

(3.16)

Since the spatial correlation coefficients have been assumed to be
mn

constant across spectral wavelengths, the parameter W s is constant for all

mn. If one uses differing a and b, care must be taken to ensure the resulting

covariance matrix remains nonsingular.
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:y--,S

Thus, equation 3.14 gives a new L_. that represents the spectral

radiance covariance matrix after application of the spatial effects. The mean

spectral radiance vector is unchanged by the spatial model as shown in

equation 3.17.

L_=[-_z (3.17)

3.2.4 Spectral Effects

The sensor spectral effects are applied by a linear transformation matrix

B which converts the spectral radiance to the signal levels in each of the sensor

image bands. For the line scanner sensors with L bands, this matrix is L rows

by M columns, with each row consisting of the normalized response of that band

to each of the M wavelengths of the spectral radiance. Also, each entry in the

matrix is multiplied by A;L, the spectral resolution of the spectral radiance

vectors. The resulting signals will be in terms of radiances. Thus, this matrix B is

formed as in equation 3.18.

B = A_

--Band 1 Response--

Band 2 Response

_Band L Response

(3.18)

LxM

For the HIRIS imaging spectrometer with the same spectral resolution as

the scene, the matrix will be diagonal M by M with each entry bmm as shown in

equation 3.19.

bmm = A.Q • AX • _ • t • Toptics • 11 (3.1 9)
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The various symbols are defined in section 2.3.3 of chapter two. The

resulting signal will be in electrons.

by

For either sensor type, the mean received signal vector is thus obtained

= B Lx (3.20)

while the signal covariance is as shown in equation 3.21.

_,s BT
_S =B L x

(3.21)

3.2.5 Noise Model

The noise effects are modeled as zero mean random processes, except

for the deterministic absolute radiometric error E R and detector dark current D.

These deterministic effects are added directly to the mean signal vector to yield

the noisy mean vector Y as in equation 3.22.

Y=S(I+ER)+D (3.22)

The random noise sources modeled include shot noise, thermal noise,

read noise, quantization error, and relative calibration error. The form of these

models was discussed in section 2.3.2 of chapter two. In his thesis, Malaret

(1982) showed how these sources of noise affect the covariance matrix of the

signals received by the sensor. The result used here is that while some of the

noise may be dependent upon the signal (shot and calibration error), they are

still uncorrelated with the signal and the variances add directly. Also, each

noise source is assumed to be independent of the others and uncorrelated from

spectral band to spectral band. Thus, the signal covariance is modified as in

equation 3.23.
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Y,y = (I+ER) 2 _S + Athe'm + A hot + Aread + Aq uan_ + Acal (3.23)

Here, the A's are diagonal matrices of the variances in each sensor

band of the various noise sources.

3.2.6 Feature Selection

Feature selection is optionally applied by combining the sensor bands

according a weighting matrix F to create the features Z as in equations 3.24 and

3.25.

2 = FY (3.24)

_',Z = F _y F T
(3.25)

To transform the L-dimensional vectors Y to the N-dimensional feature

space, F is N rows by L columns of weighting coefficients. For the spectral

feature compression scheme described in section 2.4.3 of chapter two, these

coefficients are just 0 and 1 to appropriately skip or combine the sensor bands.

As an example, consider a transformation for the output of the HIRIS

model to two features. Let feature 1 be the combination of the first five

wavelengths 0.40 - 0.44 pro, while feature 2 be the combination of the last five

wavelengths 2.36 - 2.40 pm. The matrix F for this example is shown in equation

3.26.

F=[ 111100ooooo:1000000 01 1 1 1
2x201

(3.26)

3.2.7 Error Estimation

After the class statistics of each class has been modified by the above

functions, an estimate of the probability of error is made. Whitsitt (1977)

discussed a pairwise error estimate based upon the mean and covariance

/ ; i
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statistics and found it to be closely related to the actual classification error.

Equation 3.27 shows this estimate of probability of error Po which uses the

Bhattacharyya distance Bkl between classes k and I defined in section 2.4.4 of

chapter two.

Po = erfc

Whitsitt also discussed an upper bound on the probability of error in the

multiclass case as being the sum of the pairwise error estimates. Thus, in the

model the following estimate for the classification accuracy 15c (in percent) is

used.

Pc = 100 1- L, pkel (3.28)
k=l I= l_:k J

Since the summation of the pairwise errors is an upper bound, this

estimate of the classification accuracy will be pessimistic in multiclass

experiments.

3.3 Comparison Between the Analytical and Simulation Models

While the analytical model offers the advantages of being simpler, and

computationally more efficient, it lacks in being able to accurately represent the

real world as compared to the simulation model. Table 3.1 lists several factors

that the analytical model is not able to represent at present.

Table 3.1 System Factors Not Included In Analytical Model.

Size and Spatial Arrangements of Fields
Mixed Pixels at Field Borders
Non Gaussian Sensor PSF

Training Field Selection and Size
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These factors can be significant. Section 4.3 of chapter four presents

some results of comparing the accuracy estimate of the analytical and

simulation models.

Another difference between the modeling approaches is that the

analytical model works in a parametric space, while the simulation model

produces multispectral images that can be displayed and processed like real

ones. This advantage of the simulation approach is useful for the development

of processing algorithms when "real" data is not available.
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IMAGING

CHAPTER 4

APPLICATION TO

SPECTROMETER SYSTEM ANALYSIS

4.1 Introduction

In this chapter, the system models presented in this report are applied to

the study of system performance using a proposed imaging spectrometer. The

HIRIS (Goetz and Herring, 1989) instrument is proposed as part of the Earth

Observing System program that will drive the international remote sensing effort

into the 1990's. It was chosen for study for the following reasons.

• It leads the next generation of sophisticated remote sensing

instruments.

• Being in the design phase, its performance can only be predicted

through modeling and simulation.

• Since it will be operated in an on-demand mode, it is important to

develop an understanding of the system performance under varying

observational conditions.

• Because of its flexibility of parameters, it may be used to simulate

other sophisticated sensors and study their performance.

• The complexity of the instrument puts it close to the fundamental limits

of technology, and its study helps gain a basic understanding of the

remote sensing process.

The following sections describe the performance of this instrument for a

variety of system configurations and performance measures. The first part

presents the radiometric performance of the sensor with curves showing the

Signal-to-Noise Ratio (SNR) and Noise Equivalent Change in Reflectance

(NEAp) under a variety of conditions. It is followed by a comparison of the
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performance of the simulation and analytical modeling approaches to system

analysis. This section is included to illustrate the limits of each approach. The

rest of the chapter explores the effect on classification performance of several

system parameters.

For many of the experiments performed in this chapter, the reflectance

statistics used were from a test site in Finney County, Kansas. Table 4.1

provides a description of this data set.

Table 4.1 Kansas Winter Wheat Data Set.

Location
Date

LARS Experiment Number
LARS Data Tape Number

i [

Finney County, Kansas

May 3, 1977
77102207

4260

Spectral Classes Number of Fields Number of Samples
Winter Wheat 25 658

Summer Fallow 6 211
Unknown 39 682

4.2 Radiometric Performance

To gain an understanding of the radiometric performance of HIRIS under

a variety of conditions, the model described in chapter two was used to examine

their effect on SNR and NEAp.

For the results included in this section, the system configuration shown in

Table 4.2 was used as a baseline. The solar illumination and atmospheric

effects were obtained using the LOWTRAN 7 computer code.

Before presenting the results of these noise studies, it may be helpful to

present an example of instrument performance for a typical vegetative scene.

Reflectance data from all three classes from the data set of Table 4.1 were

combined to form a new data ensemble. The mean reflectance and variation of

this ensemble are plotted in Figure 4.1.



85 Chapter 4 - Application to

Imaging Spectrometer System Analysis

Table 4.2 Radiometric Study Baseline System Configuration.

Atmospheric Model
Haze Parameter
Aerosols
Diffuse Irradiance Constant

Surface Meteorological Range
Solar Zenith Angle
Solar Azimuth Angle
View Zenith Angle
View Azimuth Angle
Surface Albedo
IMC Gain State
Shot and Read Noise
Radiometric and Calibration Error
Radiometric Resolution

u

i

1976 US Standard
Rural Extinction
Mie-Generated

0.84
16 Km

30 °
180 °

0o
0o

0.10
1

Nominal
O%

12 bits
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Figure 4.1 Mean and Variation of the Surface Reflectance of the Kansas
Winter Wheat Data Set of Table 4.1.
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To obtain an idea of how this reflectance is modified by the atmosphere

and sensor response, a simulated image was created using the baseline

system configuration. The resulting mean digital counts and their variation are

shown in Figure 4.2. Several effects are immediately noticeable. The

absorption bands of the atmosphere are present, as well as a reversal in the

relative values of the visible and infrared amplitudes. This reversal is due to the

effects of the solar illumination and gain settings of the sensor.
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"/"','C',,

, ! , | , ! , | , E • ! • i •

1.0 1.2 1.4 1,6 1.8 2.0 2.2 2.4

Wavelength

Figure 4.2 Mean and Variation of the Image Vector as Received by HIRIS.

The voltage and power SNR for this configuration and typical surface

reflectance are shown in Figure 4.3. The power SNR shown here and in the

rest of the chapter was calculated with the signal covariances scaled by the

spatial weight function W mn discussed in chapter three. The NEAp is shown in

Figure 4.4.
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The following Figures 4.5 through 4.22 show the Voltage SNR and NEAp

variations as a function of the parameters shown in Table 4.3.

Table 4.3 Radiometric Performance Parameters Studied and Their Variations.

Meteorological Range
Solar Zenith Angle
View Zenith Angle
Surface Albedo
Shot Noise Level
Read Noise Level
Radiometric Resolution
IMC Gain State
Relative Calibration Error Level

2,4,8,16,32 Km
0°, 30 °, 60 o
0o, 30 o, 60 o
0.03, 0.10, 0.30
0.25, 1.0, 4.0
0.25, 1.0, 4.0
8, 12, 16 bits
1,2,4,8
0.0, 0.5, 1.0, 2.0%
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These figures show much about the radiometric performance of the

HIRIS instrument for the various parameters studied. A common observation

from all of these results is the presence of the many absorption bands in the

atmosphere. The main water absorption bands around 1.4 and 1.9 p.m make

these wavelengths and those nearby useless, while the several other

absorption bands present reduce the utility of those wavelengths for sensing of

the Earth's surface. The following paragraphs discuss the effect of each of the

parameters studied.

Meteorological Range (Figures 4.5 and 4.6). In general, a decreasing

meteorological range results in a lower SNR and higher NEAp, but the effect is

seen to be much more significant in the visible and near infrared spectral

regions. This parameter's effect becomes significant at ranges less than 16 Km.

Solar Zenith Angle (Figures 4.7 and 4.8). This angle is seen to have little

effect at zenith angles less than 30 ° . At angles greater than this, the effect on

SNR is constant across the wavelength, while the effect on NEAp is seen to be

greater at the longer wavelengths. This is due to the lower signal levels at

these wavelengths which require a greater Ap to match the dominant read

noise (see below).

View Zenith Angle (Figures 4.9 and 4.10). The effect of this angle is also

minimal for angles less than 30 ° . At angles higher than this, the effect is

greatest in the visible region because the path radiance (which increases with

zenith angle) is more significant at these wavelengths.

;_urface Albedo (Figures 4.11 and 4.12). While this parameter has a

significant effect on SNR, its effect on NEAp is minimal. In the calculation of

NEAp, the only term that depends on albedo is the shot noise. Since shot noise

is most significant in the visible wavelengths (see below), the effect of albedo on

NEAp is only noticeable there.

Shot and Read Noise (Figures 4.t3, 4.14, 4.15, and 4.16). Both the SNR

and NEAp curves show that shot noise has a more significant effect over the
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VNIR array wavelengths (0.4 - 1.0 pro), while read noise is dominant in the

SWlR array (1.0 - 2.4 #m).

Radiometric Resolution (Figures 4.17 and 4.18). The nominal

radiometric resolution of 12 bits yields a quantization error that is not significant

when compared to the other noise sources. However, at 8 bits of resolution, the

quantization error becomes significant. Also, it can be seen from the NEAp

curves that this error is more significant at the lower signal levels of the longer

wavelengths.

Image Motion Comoensation (Figures 4.19 and 4.20). At higher gain

states of IMC the SNR curves show a constant improvement across all

wavelengths. Looking at the NEAp curves, it can be seen that the improvement

in detecting the Ap of the surface Js greater for the lower signal levels of the long

wavelengths.

.Relative Calibration Error (Figures 4.21 and 4.22). Since the calibration

error is signal dependent, its effect is seen to be greater for the higher signal

levels of the visible wavelengths. At these shorter wavelengths 1% error is

significant, while at the longer wavelengths the error is not significant until

levels of nearly 5%.

4.3 Comparison of Simulation and Analytic Model Performance

Several experiments were performed to be able to compare the results

between the simulation and analytical models. The system configuration was

matched as closely as possible for the comparison.

A test scene was defined to be 80 rows by 80 columns of scene cells and

divided at the middle into two classes. The reflectance data used for these

classes were the Summer Fallow, and Unknown class from the data set

described in Table 4.1. These classes were chosen for their low separability.

Table 4.4 gives the details of the system configuration used in the test.
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Table 4.4. System Configuration for Comparison Test

Scene
Surface Meteorological Range
Atmospheric Model
Haze Parameter
Diffuse Constant

Solar Zenith Angle
View Zenith Angle

Across scene spatial correlation Px

Down scene spatial correlation py
Ground Size of Scene Cells

Sensor (HIRIS Model)
Spatial Radius

Analytical model ro
Simulator PSF IFOV

Point Spread Function
Read Noise Level
Shot Noise Level
IMC Gain State
Relative Calibration Error
Absolute Radiometric Error
Radiometric Resolution

_rQcessing
Training Fields
Feature Selection

16 Km
1976 US Standard

Rural Extinction
0.84
30 °

0 °

0.6

0.6
15 Meters

1.4 Scene Cells
30 Meters
Gaussian

Nominal
Nominal

1
0%
O%

12 Bits

100% of Class Area
First 6 Features of Table 4.5

Figure 4.23 shows an image of this scene with the model HIRIS sensor at

;L=1.70 I.tm. This image was created using a scene cell ground size of 30

meters, resulting in 80 columns and 80 rows. The division between the classes

is barely visible along a vertical line in the center of the image. However, the

two classes are well separable when several features are used in the

classification algorithm.
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Figure 4.23 Simulated Image of Comparison Test Scene at X=1.70 #m.
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In Chen's thesis (Chen and Landgrebe, 1988), he listed the feature set

that his algorithm designed for the data set of Table 4.1. This feature set is

shown in Table 4.5 following.

Table 4.5 Optimal Feature Set for Kansas Winter Wheat Data Set.

Fe atu re Wavelength (_m)
1 0.70 -0.92
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1.98 - 2.20
2.20 - 2.40
0.66 - 0.84
1.48- 1.64
0.52 - 0.66
1.64 -1.78
1.16 - 1.28
0.96- 1.06
1.04 - 1.12
0.94- 1.00
0.44 - 0.50
1.12- 1.16
0.92 - 0.96
0.40 - 0.44
1.00 - 1.04

For each of these tests, the simulation model was run five times and the

resulting accuracies averaged together. Also, the classification accuracy shown

is the average of the two individual class accuracies.

For the base system configuration shown in Table 4.4, the accuracies

obtained are shown in Table 4.6. The values are with 1% of each other,

indicating that, at least for this configuration, the simulation model and the

analytic model predict similar performance.

Table 4.6. Classification Accuracy of Base System Configuration.

ISimulation Model 88.06% IAnalytical Model 87.78%
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The first test was to compare the effect on accuracy of the spatial model

parameters. Figure 4.24 shows the result of changing the spatial correlation p =

Px = Py of the scene cells.
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Figure 4.24 Classification Accuracy vs. Scene Spatial Correlation Coefficient.

As can be seen, the simulation model and analytical model track the

change in accuracy due to the spatial correlation. This validates the

equivalence of the autoregressive and exponential spatial models, and

supports the work by Mobasseri in analyzing the effect of the spatial model on

class spectral statistics.

Another comparison test of the spatial model was performed by allowing

the ground size of the scene cells to change and observing the effect on

classification performance. The change in scene cell size for the simulation

model is equivalent to changing the PSF radius of the analytical model. The

IFOV of the sensor was held constant at 30 meters in the simulation model.

Table 4.7 presents the increments used in this experiment.
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Table 4.7. Increments Used in Ground Size Experiment.

Ground Size of C911
30 Meters
15 Meters
7 Meters
4 Meters
2 Meters

Radius of Analytic PSF (r=_)_
0.7 cells
1.4 cells
2.8 cells
5.6 cells
11.2 cells

Resultina Image Size
80 rows by 80 columns
40 rows by 40 columns
20 rows by 20 columns
10 rows by 10 columns

5 rows by 5 columns

Figure 4.25 shows the results of this experiment. Both models show an

increase in accuracy as the scene cell size decreases. However, while the

analytical model continues this trend at cell sizes less than 10 meters, the

simulation model shows the effects of mixed pixels at the border between the

classes and reduced training set size to dramatically reduce the accuracy.
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Figure 4.25 Classification Accuracy vs. Ground Size of Scene Cells.

The next test was to compare the effect of sensor view angle on the

performance predicted by each model. The results are shown in Figure 4.26.



105 Chapter 4 - Application to
Imaging Spectrometer System Analysis

94

92
A

>,_
¢)

9o
-!

'_ 88
c
o

u 86

_ 84

82

Simulation

...... 9 ...... Analytic

0 20 40 60 80

View Angle (degrees)

Figure 4.26 Classification Accuracy vs. Sensor View Angle.

The analytical model shows a slight continuous decrease in accuracy,

while the simulation model seems to seesaw with a slightly decreasing trend.

There are two offsetting effects on the system as the viewing angle increases.

There is the increase in path radiance which results in higher shot noise and

decreasing accuracy, while the ground size of the sensor IFOV increases

thereby decreasing the variation in the scene and increasing accuracy.

In the analytical model this change in ground size happens

continuously, while in the simulation model it is a discrete change as scene

cells are combined in integer increments. In this case, for angles 0°, 15 °, and

30 °, four scene cells are within the sensor IFOV, while at 45 ° six are combined,

and at 60 ° eight fill the field of view. As the number of scene cells within the

IFOV increases, the size of the resulting image decreases, and fewer pixels

result for each class. This can also affect the accuracy through mixed pixel

effects.
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It is important to point out that the surface model used in both the

simulation and analytic models does not account for variation in reflectance with

illumination and view angle. Thus, this experiment does not predict how actual

classification accuracy may be affected by the changing view angle in a general

sense, but it does serve to illustrate factors that may influence the result.

Another test was done to compare the accuracy obtained when using a

Gaussian versus the measured shape of the PSF of the sensor. Table 4.8

shows the result of the simulation model using the two PSF types.

Table 4.8 Classification Accuracies of Gaussian vs. Measured PSF.

GaussianPSF 90.15% JTabulated PSF 89.75%

The assumption of a Gaussian shape is seen to give a slightly higher

accuracy than when using the actual curve of the sensor. Thus, assuming a

Gaussian PSF is seen to be slightly optimistic.

An experiment was also performed to illustrate the effect of reducing the

number of training samples used for the classifier. Each of the two classes has

800 pixels in the image produced during the simulation. The result is shown in

Figure 4.27.

Obviously, the analytical model shows no effect, as it is only based on the

class statistics and no "training" is involved. The simulation model shows the

decreased accuracy as fewer samples are used. This illustrates one of the

limitations of the analytical model in representing the real system.
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In general, the simulation and analytical models compare well. In some

cases, the differences between the two are indicative of real world constraints,

while in others the difference is artificial due to limitations of the model. The

results concerning the scene cell sizes and the training samples show

limitations of the analytical model. The irregular shape of the simulation result

for the view angle effects show the potential problems in using a discrete

simulation. Both approaches have their advantages, however, and with the

proper interpretation can be used productively.

4.4 System Parameter Studies

In this section results are presented showing the effect of system

parameters on SNR and classification accuracy using the analytical model.

The scene reflectance was the Kansas Winter Wheat data set of Table

4.1. Tab(e 4.9 shows the baseline system configuration used in this study.
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Table 4.10 shows the parameters that were varied and the range of their

variation. Figures 4.28 through 4.51 show the results of these experiments.

Table 4.9 System Configuration for Parameter Studies.

Scene
Surface Meteorological Range
Atmospheric Model
Haze Parameter
Diffuse Constant

Solar Zenith Angle
View Zenith Angle
Across and Down Scene Spatial Correlation

_z.ea3._.gf_(HIR iS Model)
Spatial Radius (analytical model ro)
Read Noise Level
Shot Noise Level
IMC Gain State
Relative Calibration Error
Absolute Radiometric Error
Radiometric Resolution

Processing
! Feature Selection
I

16 Km
1976 US Standard

Rural Extinction
0.84
30 °

0 °
0.6

1.4 Scene Cells

Nominal
Nominal

1
O.5%

O%
12 Bits

First 6 Features of Table 4.5
I

Table 4.10 Parameters Studied and Their Variation in Section 4.4.

I

Spatial Correlation
Meteorological Range
Solar Zenith Angle
View Zenith Angle
Sensor IFOV On a Side
Shot Noise Factor
Read Noise Factor
IMC Gain State
Number of Bits
Relative Calibration Error
Absolute Radiometric Error
Number of Features

i

0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90
2, 4, 8, 16, 32 Km
0 °, 15 °, 30 °, 45 °, 60 °
0 °, 15 °, 30 °, 45 °, 60 °
1,2, 4, 8, 16 Scene Cells
0, 0.5, 1.0, 2.0, 4.0
0, 0.5, 1.0, 2.0, 4.0
1,2,4,8
6,8,10,12,14,16
0, 0.5, 1.0, 2.0, 4.0 %
-10, -5, -2, 0, 2, 5, 10 %

1 through 16
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In computing the SNR values, the method described in section 2.3.4 of

chapter two for a feature was extended for combining all of the features and

computing one value. Also, in computing the power SNR, the weighting

function W s described in chapter three was used to modify the class variances.

The reflectance statistics used in these computations were for the combined

data set. The results of these experiments are summarized in Table 4.11.

Table 4.11 Summary Results for System Parameter Experiments.

System Parameter
(Increasing)

Scene

Spatial Correlation
Meteorological Range
Solar Zenith Angle
View Zenith Angle

Sensor
Sensor Radius
Shot Noise
Read Noise
IMC Gain
Radiometric Resolution
Relative Calibration Error
Absolute Radiometric Error

Processing
Number of Features

Figures

4.28, 4.29
4.30, 4.31
4.32, 4.33
4.34, 4.35

4.36, 4.37
4.38, 4.39
4.40, 4.41
4.42, 4.43
4.44, 4.45
4.46, 4.47
4.48, 4.49

4.5O, 4.51

Voltage
SNR

No Change
Increase

Decrease
Decrease

No Change
Decrease
Decrease
Increase
Increase

Decrease
Increase

Increase

Power
SNR

Increase
Increase

Decrease
Decrease

Decrease
Decrease
Decrease
Increase
Increase

Decrease
Increase

Increase

Accuracy

Decrease
Increase

Decrease
Increase

Increase
Decrease
Decrease
Increase
Increase

Decrease
Increase

Increase

In Figures 4.52 and 4.53, the results of this section are displayed in a

scatter plot to show the relationships between classification accuracy and

signal-to-noise ratio. As can be seen, there is no direct relationship. While

there appears a significant trend of higher classification accuracy resulting from

higher SNR, it is not always the case.

The spatial correlation and sensor IFOV radius are cases in point.

While their variation had a significant effect on both classification accuracy and

power SNR, the effect was opposite. These spatial parameters come into the

noise model only through the modification of the signal covariance matrix thus

there is no effect on voltage SNR.
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These results are mostly intuitively appealing, except for the sensor view

angle. Figure 4.35 contained two curves. The one labelled "with scaling" was

obtained using the 1/cos(ev=ew)scaling of the ground size of the sensor IFOV as

0view was changed. The other curve labelled "without scaling" did not. It shows

the effects due solely to the decreased atmospheric transmittance and

increased path radiance. Thus, it seems the increase in accuracy due to the

IFOV scaling overrides the decrease due to the atmospheric effects. Of course,

this experiment assumes a Lambertian surface reflectance and no effects due to

field size and mixed pixels. Also, the atmosphere chosen was relatively clear.

In the next section results are presented to show that in hazier atmospheres, the

effect of the atmosphere on view angle is much more pronounced.

4.5 Interrelated Parameter Effects

In this section results showing the interrelated effects of parameters are

presented. The analytical model is again utilized and the system configuration

is as defined in section 4.4. The parameters studied and their variation are

given in Table 4.12 below.

Table 4.12 Parameter Interrelationship Studies.

Meteorological Range and Sensor View Angle (0sola r = 0°)

Meteorological Range and Sensor View Angle (0sola r = 30 °)

Meteorological Range and Sensor View Angle (esola r = 60 °)
Spatial Correlation and Sensor IFOV Size
Meteorological Range and Shot Noise
Meteorological Range and Read Noise
Meteorological Range and IMC
Meteorological Range and Number of Bits
Meteorological Range and Noise Sources Alone
Solar Zenith Angle and Shot Noise
Sensor View Angle and Shot Noise
Solar Zenith Angle and IMC
Sensor View Angle and IMC
Meteorological Range and Number of Features

Solar Zenith Angle and Number of Features
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The results of these experiments are discussed in the following

paragraphs.

Figures 4.54 through 4.56 help understand the relationships between

meteorological range, sensor view angle, and solar zenith angle. In clear

atmospheres, the increase in accuracy due to the geometry of higher view

angles is evident. However, as the atmosphere becomes hazy, the decreased

signal levels and increased path radiance become dominant and accuracy is

then decreased for higher view angles. The effects due to the atmosphere are

seen to be more significant for higher solar zenith angles.

Figure 4.57 shows a complex relationship between the spatial correlation

of scene cells, and the number of cells in a sensor IFOV side. With increasing

correlation, the accuracy for small cells (many cells per IFOV side) falls sharply

before decreasing at a constant rate, while the accuracy for large scene cells

(few cells per IFOV side) remains constant before falling sharply at high
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correlations. While this result shows the tradeoffs on classification accuracy of

scene cell size and spatial correlation for constant sensor IFOV, it is interesting

to consider this in the light of the results of Table 2.2. There it was shown that

spatial correlation decreases with increasing scene cell size. Thus, for typical

remote sensing data sets large scene cells have low spatial correlation, while

small cells have high correlation. These tradeoffs form an imaginary horizontal

line across Figure 4.57 and indicate that classification accuracy is relatively

independent of scene cell size.

Figures 4.58 and 4.59 show that the effects due to increased noise are

more significant in hazy atmospheres, while Figure 4.60 shows the

improvement by using IMC to be greater in hazy atmospheres. Figure 4.61

demonstrates how the increase in quantization error of fewer radiometric bits

can be more significant in hazy atmospheres.

In Figure 4.62, it can be seen that the read noise and relative calibration

errors are more significant for all meteorological ranges, while the effect of shot

noise is greater at low ranges due to the increase in path radiance. It is

interesting to compare the effect of the atmosphere with no noise sources

present shown here with that of Landgrebe and Malaret (1986). Their result

showed the atmosphere had no effect when no sensor noise was present, while

Figure 4.62 shows a significant effect. The difference in these results is due to

the path radiance model used in this report. Malaret's model considered path

radiance as a constant additive source, while the model used here is

dependent upon the surface reflectance. Figure 4.69 shows the effect of the

atmosphere with and without sensor noise for the system model modified to

remove the surface reflectance dependence on path radiance. As can be

seen, the atmosphere has little effect on accuracy when this dependence is

removed. It is known that path radiance is dependent upon surface reflectance

in the real world, thus the results shown in Figure 4.62 are judged to be more

realistic.
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Figures 4.63 and 4.64 contain some interesting results. In Figure 4.63,

the effect of shot noise is seen to be greater at high solar zenith angles, while in

Figure 4.64, just the opposite is seen for high view angles. In both cases, the

effect due to the shot noise alone is to decrease accuracy more at higher

angles, but for the view angle case the increase in accuracy due to the

geometry overrides the shot noise effect.

Figure 4.65 shows how the IMC can be used to overcome the

combination of low signal levels and high read noise to actually increase

accuracy at high solar zenith angles. In Figure 4.66, a similar effect is seen as

the IMC increases accuracy by a greater amount at high view angles.

Figures 4.67 and 4.68 show how, up to a point, more features can be

used in classification to overcome the effects of the atmosphere or solar angle.
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However, it can be seen that the accuracy increases level out after a certain

number of features and increases beyond that level are not significant.

Overall, the results of these experiments show the complex interaction of

system parameters in determining their effect on classification accuracy. This

demonstrates the importance of considering the interdependence of parameters

when considering their specification in the design of a remote sensing

experiment.

4.6 Feature Selection Experiments

Several sets of six features (shown in Table 4.13) were used to evaluate

their classification performance for a variety of system parameter variations and

scenes. This section presents the results of these experiments.

Table 4.13 Wavelength Bands Combined for the Various Feature Sets. The
Various Feature Sets are Defined as SFD = Spectral Feature Design Algorithm,
TM = Landsat Thematic Mapper, WSNR - Wide Signal-to-Noise Ratio, NSNR =
Narrow Signal-to-Noise Ratio, SSFD = Single Band Spectral Feature, SSNR =
Single Band Signal-to-Noise Ratio.

Feature
, i

1
2
3
4
5
6

SFD
0.52-0.66
0.66-0.84
0.70-0.92
1.48-1.64
1.98-2.20
2.20-2.40

TM
0.45-0.52

0.52-0.60
0.63-0.69
0.76-0.90
1.45-1.75
2.08-2.35

WSNR

0.40-0.70
0.77-0.90
1.00-1.10
1.15-1.30
1.50-1.74
1.97-2.40

NSNR
0.51-0.56
0.81-0.86
1.02-1.07
1.20-1.25
1.59-1.64
2.16-2.21

SSFD

0.59
O.75
0.81
1.56
2.10
2.30

SSNR
0.54
0.84
1.04
1.11
1.61
2.19

The SNR features were chosen based upon spectral regions of high

SNR. These various sets were chosen to see how classification accuracy and

combined signal-to-noise ratios compared. Figure 4.70 shows the voltage and

power SNR for the various feature sets and the combined reflectance statistics

of the data set in Table 4.1, while Figure 4.71 shows the resultant classification

accuracy for the baseline system of Table 4.9.
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In this case, the SFD features performed the best for this data set, even

though they did not have highest SNR. However, since they were derived from

the data used to generate the scene, it is expected that they perform well.

Several experiments were run to compare the performance of the various

feature sets over varying scene conditions. Figures 4.72, 4.73, and 4.74 show

the classification performance of the feature sets for various meteorological

ranges, solar zenith angles, and view angles.

90

A

6o

o

70
¢.)
O

C
O 6O

8
q.

M
_ N3,

0

?

o 30 ,o

SF'D

...... •e...... TM

.... m--- WSNR

-'-t -°" NSNR

.... m.-" SSFD

----a"-- SSNR

Meteorological Range (Kin)

Figure 4.72 Feature Set Performance vs. Meteorological Range.

From these curves, it can be seen that the features derived from high

SNR regions are less susceptible to changes in the scene parameters.

However, they give overall less accuracy than the features obtained from the

SFD algorithm. Also, the features that are obtained from only one spectral band

perform poorly under all conditions.
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The robustness of the spectral feature design algorithm was then studied

by comparing the accuracy of the various feature sets in classifying a scene

created from a different data set than that from which the features were derived.

A scene was created from reflectance data of three varieties of spring wheat.

Table 4.14 gives the specific fields from the LARS field data base.

Table 4.14. Classes and fields used to compute statistics for the Spring Wheat
test scene. The data is from Hand County, South Dakota, on July 26, 1978.

Classes

Spring Wheat

SW 1809

SW Mix

Field
118
154
199
291
292

296
303

75
281

Number of Observations
13
29
28
28
16

Total = 114
28
58

Total = 86
13
55

Total = 68

The system configuration was as shown in Table 4.9. Figure 4.75 shows

the voltage and power SNR of the Spring Wheat test scene for the various

feature sets, while Figure 4.76 presents the resulting classification accuracy.

In all cases, the features formed from the wavelengths used in the

Landsat TM and the ones from high SNR regions performed the best.

Compared to these feature sets, the SFD feature set did not perform as well.
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These results imply that over varying scenes the features derived from

the reflectance of a different crop type perform less well at classification than

features derived from signal-to-noise regions of the instrument, or even the

wavelength bands used in the Thematic Mapper. This is not surprising since

the SFD procedure is intended to be case-specific; it is intended to provide

features optimal for its design case, as compared to being optimal in the

general case.

4.7 Summary and Conclusions

In this chapter the system models presented in chapters two and three

have been applied to the study of a remote sensing system based on the

proposed imaging spectrometer HIRIS. System performance measured by

signal-to-noise ratios and classification accuracy has been studied under a

variety of system parameter configurations. While the results of these

experiments have been discussed at the end of each of the sections, the

following paragraphs briefly summarize the main conclusions.

In section 4.2 the Signal-to-Noise Ratio (SNR) and Noise Equivalent

Change in Reflectance (NEAp) of HIRIS was studied. The results illustrated

how the atmosphere affects each of the spectral bands, and what noise sources

are the most dominant under a variety of conditions. •Hazier atmospheres were

seen to have more significant effects on the shorter wavelength bands than the

longer wavelengths. Shot noise was seen to be more significant at the high

signal levels at the wavelengths of the VNIR detector array, while read noise

was the dominant noise source in the longer wavelengths of the SWlR array.

Section 4.3 investigated the similarities and differences between the

simulation model of chapter two and the analytical model of chapter three. The

results indicated that the approaches gave similar results, except in cases

where mixed pixels or the training of a classifier were involved.

Section 4.4 presented the results of applying the analytical model to the

study of the individual effect of several parameters on SNR and classification

accuracy. The results generally showed a trend of increased SNR resulting in

increased accuracy, except for parameters involved with spatial variation. Here,
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the spatial parameters resulting in lower power SNR gave an increase in

classification by increasing the separability of the classes.

In section 4.5 the interdependence of system parameters was

investigated. Significant relationships were seen between system parameters,

especially those involving pixel size variations and signal dependent noise.

Section 4.6 presented several results comparing various methods of

choosing spectral feature sets under a variety of system conditions. The results

indicated that feature sets based on high SNR were the most robust under

system parameter variations, but feature sets derived from the original

reflectance data were optimum for scenes created from that data.

These results have been presented to show the relative importance of

the system parameters. In no way are these results intended to be used to

predict the actual performance of the system. Rather, they are useful in

discovering the relative effects and tradeoffs in specifying the various

parameters.
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CHAPTER 5

CONCLUSIONS AND

SUGGESTIONS FOR FURTHER WORK

In pursuing this research, the goals were to: 1) document and model the

remote sensing process from an overall systems perspective; 2) develop a tool

to allow the study of the interrelationships of identifiable system parameters; 3)

apply this tool to the study of optical remote sensing systems.

Chapters one and two described the remote sensing process from a

systems perspective. It was seen to be comprised of three major components:

the scene, the sensor, and the processing algorithms. Modeling of these

components was discussed from a general point of view, and a framework was

described for implementing a subset of these models in a simulation of the

entire system. The simulation used the scene models to produce a spectral

radiance function over a defined scene consisting of various informational

classes arranged spatially. The sensor models then converted this function into

a digital multispectral image, similar to that produced by real sensors. Various

processing algorithms were then applied to this image to extract a performance

measure of the system.

Chapter three presented an alternative to the simulation approach with

the development of a parametric model to describe the remote sensing process.

This model used analytical equations to describe the effects of the various

system parameters.

Each of these approaches are useful as a tool to study remote sensing

systems, and the choice of their use is dependent upon the goal of the study.
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The simulation method is useful in the following example cases.

• The spatial layout of the various classes is of interest.

• A particular scene or image is desired to be simulated under a variety

of conditions.

° An image with desired characteristics is needed for the study of

various processing algorithms.

• One scene needs to have several different sensors applied to it to

compare the resulting images.

• It is desired to use a very accurate and detailed model for the sensor

spatial, spectral, and noise effects.

• It is desired to introduce spatial effects in the scene such as clouds,

shadows, or in the sensor such as geometric distortion or

misregistration.

The parametric model is useful for the following examples.

• Parameter tradeoff studies where detail of models can be sacrificed

for speed of results.

• The scene has a large number of classes with no particular

constraints on spatial layout.

These are only a few of the possible uses of both approaches, but they

are listed to illustrate some of the kinds of studies that are possible under the

modeling framework developed in this report.

Chapter four presented a detailed study of the system performance of a

future imaging spectrometer. The goals were to Svaluate the noise and

classification performance of the instrument under a variety of system

configurations. For the majority of the results, the analytical model was

implemented. This allowed the tradeoff study of several parameters to help

determine the interrelationships among them. Although the results were for the

particular instrument and scene defined, the general trends were observed and

are believed to hold for similar systems.



145 Chapter 5 - Conclusions and

Suggestions for Further Work

Some of the significant results of this study of HIRIS include the following.

• Atmospheric visibility and scattered path radiance influence the

sensitivity of the instrument to ground reflectance changes much more

in the visible wavelengths than in the infrared.

• While classification accuracy is usually related directly to SNR, it is

not always the case.

° The effect of the atmosphere on sensor viewing angle varies

significantly with visibility.

• Lower classification accuracies in hazy atmospheres are not only

because of noise sources in the sensor, but also the increased path

radiance scattered from the surface.

° While feature sets chosen from spectral regions of high SNR are

robust across system parameter variations, feature sets derived using

analytical approaches from field databases perform optimally for

scenes created from the data.

The work presented here has been but one step on the road to modeling

and understanding optical remote sensing systems. It has built upon the work

of many previous researchers, and hopefully, will stand as a foundation for

future efforts.

While almost every component of the system model could be improved,

several particular areas deserve to be pointed out. The surface reflectance

model assumption of Lambertian reflectance could be replaced by a description

of the bidirectional reflectance. Embedded within this function should be the

spectral and spatial variation of the reflectance. Another assumption used in

the scene spatial model that needs work is the spatial crosscorrelation between

high spectral resolution reflectance data.

Two aspects of the atmospheric model could be extended. The

relationship between the total surface irradiance and the direct irradiance

needs to be more adequately defined. Also, spatial blurring and spatial

variability of the atmosphere could be implemented.
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Geometric distortion and spectral band misregistration could be

implemented in the sensor model.

This simulation approach could be used today to generate realistic high

dimensional multispectral images for use in processing algorithm study. These

may be studies of hyperspectral image display or classification algorithm

development.

These are but a few of the possible extensions and uses of the modeling

approaches. Indeed, it would seem to be an axiom of modeling that one can

always improve one's model, especially when part of the subject is the natural

world.
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Appendix A Expected Variance of a Two Dimensional
Autoregressive Process

This appendix provides a straightforward method of computing the

expected variance of a two dimensional autoregressive (AR) process. While the

method is similar to discussions presented in Friedlander (1984) and Kay

(1985), it is developed here in the context of image modeling and presented in

an intuitively simple manner.

The zero mean Mth order AR process y(k) is defined as in equation A.1.

where

y(k)

0m

u(k)

M

y(k) = _"_e m y(k-m) , u(k)
m=1

k=l ..... N (A.1)

- process data value at point k in sequence

model coefficient at lag m

Gaussian white noise sequence with zero mean and variance

Cu2

The process will be stationary if the zeros of F(z) lie outside of the unit

circle in the complex plane, where F(z) is defined as in equation A.2.

F(z) = 1 - e I z - 92 z2 - ... -eM z M (A.2)

Autoregressive models have been applied to image modelling and

compression (Delp, Kashyap, and Mitchell 1979) through the use of a line

scanning formulation. The two-dimensional image is row concatenated to form

a one dimensional sequence. Figure A.1 shows the arrangement for a quarter

plane AR model applied to a P row x P column image.
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y(i-l,j-1) y(i-l,j)

• P

y(i,j-1 ) I y(i,j)

(P,P)

y(i,j) = 0o,.1 y(i,j-1) + 0.1_) y(i-1 ,j) + 0.1,_1y(i-1 ,j-l) + u(i,j) + Ymean

Figure A.1 Quarter-Plane Image AR Model.

This model may be reformulated as a one dimensional sequence by

letting the index k = (i-1)P + j. This is shown in equation A.3.

y(k) = 01y(k-1 ) + 0py(k-P) + 0p.ly(k-P-1 ) + u(k) +Ymean for k=P+l .... ,p2 (A.3)

The AR model is now of order M = P + 1, but with only coefficients 01, 0p,

and 0p+ 1 being nonzero. Also, the initial conditions of the model become the

first row and the first pixel of the second row. Usually these are set to the mean

of the image as in equation A.4.

y(k) = Ymean for k = 1,2,..., P+I. (A.4)

The Yule-Walker (YW) equations are obtained by multiplying equation

A.1 by y(k-I) and taking the expectation. This results in equation A.5.

E {y(k) y(k-I)} = E 0m
y(k-m) y(k-I) + u(k) y(k-I)} (A.5)
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For I > 0, this results in equation A,6,

Appendix A - Expected Varl,,nce of a
Two Dimensional Autoregressive Proce=

M

c_y(I) - _ ern o_y(m-I) (A.6)
m-1

where Oy2(I) is the covariance between data points I lags apart. This

result comes about due to the stationarity of the process and the fact that u(k) is

an uncorrelated sequence.

Writing equation A.5 for I=1 to M and normalizing by the variance ay 2 =

a_(0), we obtain the YVV relations as equation A.7.

Pl = el + 02 Pl + "'" + eM PM-1

P2 = elPl + e2 + e3 Pl + "'" + eM PM-2

(A.7)

PM = 01 PM-1 + 02 PM-2 + "" + eM

Pl"

Observe that in the above we have used the fact that Po = 1, and that p.1 =

Also, note that

_(m)

Pm-

Equation A.7 can be reformulated as in equation A.8.

F

LIMxM

-" Pl"

P2

!F-" el --"

i

! e2
I

=I " (A.8)
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Where I M x M is an M x M identity matrix, and O A and O B are defined

as follows,
m m

0 2 0 3 • • • 0 M 0

9 3 9 4 • e M 0 0

0 M 0 .0

0 0 ..... 0
M

_.00 ..... 0._

(_B =

tram= mmm

O0 .... 0

0100... 0

02 ( 10. • • 0

• . . , , , .

..,OM. 1 0 2 e 1 0

The elements of O A and (_)B can be filled by the following pseudo-code.

For O A,

fori= 1 to M{

for j = 1 to M {

if (i+j _; M) then (_A(i,j) = ei+i

else (_A(i,j) = 0

}
}

For O B,

fori = 1 to M {

for j= 1 to M {

if (i-j > 1) then (_B(i,j) 0i.j

else (_)g(i,j)= 0

}
}

Equation A.8 is in the form of a system of linear equations, and the

autocorrelation coefficients p_, P2.... , PM, can then be obtained by using any

standard linear algebra routine.
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Using the relationship between the coefficients, the autocorrelations, and

the process variance from Box and Jenkins (1970), we can solve for the

variance of the process as in equation A.9.

O_y M

1 '____emp m

m=l

(A.9)
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Appendix B Interpolation Algorithm

The following routine was used to convert the 60 dimensional FSS

reflectance into the 201 dimensional vectors used in the system models. The

FSS data covered 0.4 to 2.40 I_m, in spectral samples ranging from 20 nm to 50

nm. The system model uses a constant 10 nm wavelength spacing across this

range.

The conversion is accomplished by first placing samples that correspond

directly in wavelength, then performing several levels of interpolation to match

the wavelength spacing as closely as possible.

The two arrays are defined as fssref(1:60), the FSS reflectance, and

hiref(1:201 ), the resulting interpolated array.

i0

20

30

40

50

6O

62

C

c

c

7O

8O

9O

Do direct placements first

hiref(1)=fssref(1)

do I0 i=2,8

hiref (2"i) =fssref (i)

do 20 i=9,11

hiref(2*i+l)=fssref (i)

do 30 i=12,13

hiref(2*i+2)=fssref(i)

do 40 i=14,18

hiref(2*i+3)=fssref(i)

do 50 i=19,28

hiref(2*i+2)=fssref(i)

hiref (59) =fssref (29)

do 60 i=30,34

hiref(2*i+3)=fssref(i)

hirer (75)=fssref(35)

hiref(80)=fssref(36)

do 62 i=37,60

hiref(5*(i-37)+84)=fssref(i)

Next interpolate simply

do 70 i=i,7

hiref(2*i+l)=0.5*(fssref(i)+fssref(i+l))

do 80 i=8,11

hiref(2*i+2)=0.5* (fssref(i)+fssref(i+l))

hiref (27) =0.5* (fssref (12) +fssref (13))

do 90 i=13,17

hiref(2*i+4)=0.5*(fssref(i)+fssref(i+l))

do 100 i=19,27
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i00

ii0

115

c

c

c

120

125

130

c

c

c

135

140

c

c

c

143

147

c

c

c

hiref (2"i+3)=0.5* (fssref (i)+fssref (i+l))

hiref (61) =0. 5* (fssref(29)+fssref(30))

do ii0 i-30,33

hiref(2*i+4)=0.5*(fssref(i)+fssref(i+l))

hiref (73) =0.5* (fssref (34) +fssref (35))

hiref (77) =0.5* (fssref (35) +fssref (36))

hiref (82) =0.5* (fssref (36) +fssref (37))

hiref (87) =0.5* (fssref (37) +fssref (38))

do 115 i=38,59

hiref (5* (i-38) +91) =0.5* (fssref (i) +fssref (i+l))

Now interpolate interpolations

hiref (2) =0. 5* (hiref (1) +hiref (3) )

hiref (17) =0.5* (hiref (16) +hiref (18))

hiref (25)=0. 5* (hiref(24)+hiref(26))

hiref (29) =0.5* (hiref (28) +hiref (30))

hiref(60)=0.5* (hiref(59)+hiref(61))

hiref (62) =0.5* (hiref (61) +hiref (63))

do 120 i=72,78,2

hiref (i)=0.5" (hiref (i-1)+hiref(i+l))

hiref (81) =0 . 5* (hiref(80)+hiref (82))

hiref(83)=0.5*(hiref(82)+hiref(84))

do 125 i=86,92,2

hiref(i)=0.5* (hiref(i-l)+hiref(i+l))

do 130 i=ii0,195,5

hiref (i) =0.5* (hiref (i-l) +hiref (i+l))

Now interpolate interpolations of the interpolations

hiref(79)=0.5*(hiref(78)+hiref(80))

hiref (85)=0. 5* (hiref(84)+hiref(86))

hiref(93)=0.5*(hiref(92)+hiref(94))

do 135 i=i12,197,5

hiref(i)=0.5*(hiref(i-1)+hiref(i+2))

do 140 i=i13,198,5

hiref (i) =0. 5* (hiref(i-1)+hiref(i+l))

Set water absorption bands to 0.001

do 143 i=96,106

hiref (i) =0. 001

do 147 i=146,156

hiref (i) =0. 001

Set up repeated values

hirer (95)=hiref (94)

hiref (107)=hiref (109)

hiref (108)=hiref (109)

hiref(145)=hiref (144)

hiref (157) =hiref (159)

hiref(158)=hiref(159)

hiref(200)=hiref(199)

hiref(201)=hiref(199)
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Appendix C LOWTRAN 7 Input File

The atmospheric simulation program LOWTRAN 7 is implemented in the

simulation by setting up an input file, calling the program through a UNIX

system command, then reading the resultant output file created.

The following variables and default values were used in the

implementation of LOWTRAN 7. See Kneizys, et al., (1988) for a complete

description.

ANGLE - Angle parameter

DV - Incremental wavenumber

GNDALT - Altitude of surface

H1 - Initial altitude

H2 - Final altitude

ICLD - Cirrus cloud parameter

ICSTL - Ocean parameter

IEMSCT- Execution mode parameter

= 0 program calculates transmittance

= 1 program calculates atmospheric radiance

= 2 program calculates atmospheric and singly scattered solar/lunar radiance

= 3 program calculates directly transmitted solar irradiance

IHAZE - Atmospheric haze parameter

= 0 tot a clear atmosphere

= 1 for a rural atmosphere

= 5 for an urban atmosphere

IM - Radiosonde parameter
J

IMULT - Multiple scattering control parameter

= 0 program executed without multiple scattering

= 1 program executed with multiple scattering

IPARM - Geometry specification controlling parameter

IPH - Aerosol phase function parameter

IRPT - repetition parameter

= 0 no more input cards follow

= 1 more input cards follow

ISEASN - season parameter (0=default)
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ISOURC - Extraterrestrial source parameter

= 0 source is sun

= 1 source is moon

ITYPE - Atmospheric path parameter

= 1 for a horizontal path

= 2 for a vertical or slant path between two altitudes

= 3 for a vertical or slant path to space

IVSA - Vertical structure algorithm parameter

IVULCN - Volcar_c activity parameter

M1 through M6 - Altitude profile parameters

MODEL - Atmospheric model type parameter

= 1 selects Tropical Model Atmosphere

= 2 selects Midlatitude Summer

= 3 selects Midlatitude Winter

= 4 selects Subarctic Summer

= 5 selects Subarctic Winter

= 6 selects 1976 U. S. Standard

NOPRT - Normal operation parameter

PARM1 - Azimuthal angle between observer and sun

PARM2 - Solar zenith angle (=esolar)

RAINRT - Rain rate parameter

SALB - Surface albedo

V1 - Initial wavenumber

V2 - Final wavenumber

VIS- Surface meteorological range (=Vq)

The following default values were used for the experiments

simulations used in this report.

GNDALT=0

ICLD=0

ICSTL=I

IDAY=180

IHAZE= 1

IM=0

P Surface at sea level */

P No clouds */

/* No effect, only used over oceans "/

/* Day of year */

/* Rural atmosphere */

/* No radiosonde data */

and
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IMULT = 1 /* Multiple scattering */

ISEASN=0 /* Season determined by MODEL */

ISOURC /* Source is Sun */

IVSA=0 /* Vert. Structure Algorithm not used */

IVULCN=0 r No volcanic profile *!

M1 =0 /* Normal operation */

M2=0 r Normal operation */

M3=0 r Normal operation *1

MODEL=6 /* 1976 U. S. Standard atmosphere */

NOPRT= 1 /* Normal operation */

RAINRT--0.0 /* No rain "/

VlS=V.q

Four calls to LOWTRAN are set up within the input file. The first call

calculates the direct solar spectral irradiance at the surface. The second

calculates the transmittance of the path from the surface to the sensor. The third

and fourth calls calculate the path radiance seen by the sensor for surface

albedoes of 0 and 1. LOWTRAN reads from an input file named TAPE5. The

lines below labelled CARD contain the actual variables in the file TAPE5.

The following lines set up the direct solar irradiance call.

ITYPE=3

IEMSCT=3

HI=0.0

ANGLE=Ssola r

IRPT=I

CARD1

CARD2

CARD3

CARD4

CARD 5

MODEL,ITYPE,IEMSCT,IMULT,M 1 ,M2,M3,M4,M5,M6,M DEF,IM,

NOPRT,SALB

IHAZE,ISEASN,IVULCN,ICSTL,ICLD,IVSA,VIS,RAINRT,GN DALT

H1, ANGLE, ISOURC

V1,V2,DV

IRPT
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The following lines set up the transmittance call.

ITYPE=2

IEMSCT=0

HI=0.0

H2=H

ANGLE=0vie w

IRPT=I

/* Altitude of sensor */

CARD6

CARD7

CARD8

CARD9

CARD10

MODEL,I1-YPE,IEMSCT,IMULT,M 1,M2,M3,M4,M5,M6,M DEF,IM,

NOPRT,SALB

IHAZE,ISEASN,IVULCN,ICSTL,ICLD,IVSA,VlS, RAINRT,GNDALT

H1 ,H2,ANGLE

V1,V2,DV

IRPT

The following lines set up one path radiance call.
I

ITYPE=2

IEMSCT=2

HI=H

ANGLE=180.0 - 0view

IPARM=2

IPH=2

PARMl=(_view-_solar)/2

PARM2=Osolar

SALB-0.0 /* or = 1.0 */

CARD11

CARD12

CARD13

CARD14

CARD15

CARD16

MODEL,ITYPE,IEMSCT,IMULT,M 1,M2,M3,M4,M5,M6,MDEF,IM,

NOPRT,SALB

IHAZE,ISEASN,IVULCN,ICSTL,ICLD,IVSA, VIS,RAINRT,GNDALT

H1,ANGLE,LEN

IPARM,IPH,IDAY, ISOURC

PARM1 ,PARM2

Vl ,V2,DV
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CARD 17 IRPT

The program generates a file named TAPE7 with the output data. Since

LOWTRAN uses wavenumber increments across the spectrum, a conversion is

done to put the result into wavelength units. Since the resolution of the call to

LOWTRAN results in one or more wavenumber samples per wavelength

interval, this conversion is accomplished by averaging over the appropriate

wavenumbers to obtain the resulting wavelength value.
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Appendix D Sensor Descriptions

In the following descriptions the radiance levels are given in mW/(cm 2-

st). The shot noise constants are computed from data and can be used to

compute the standard deviation as in equation D.I.

Oshot = Kshot _/Signal Level (O.1)

D.1. Modular Multispectral Scanner

This is an airborne sensor flown for LARS in the early 1970s. The

spectral response and noise levels were estimated from data given in the report

by NASA's Johnson Space Center (1974). Details are given in Tables D.1 and

D.2, and Figures D.1, and D.2. The noise values are estimated assuming

equivalent shot and thermal noise for one-half full scale radiance signals.

Table D.1 MMS General Parameters.

Altitude 3030 Meters

Sampling Interval 2.3 millirads
Number of Bands 10
Number of Bits 8

Table D.2 MMS Band and Noise Parameters.

Band
1
2
3
4
5
6
7
8
9

10

Full Scale
Radiance

0.338
0.640
1.114
1.253
1.314
1.333
1.170
1.020
0.983
0.259

Shot Noise
Constant

0_0151

0.0042
0.0039
0.0037
0.0035
0.OO28
0.0024
0.0018
0.0034
0.0061

Thermal Noise

Equivalent Radiance
0.00450
0.00160
0.00160
0.00150
0.00150
0.00150
0.00140
0.00140
0.00300
0.00250
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The spatial response of the MMS is assumed to be Gaussian with a

standard deviation of 1.25 milliradians.

D.2. Landsat MSS

The following data are for the Landsat MSS instrument. The spectral

response was taken from Markham and Barker (1983), the spatial response

from Markham (1985), and the noise levels set similar to those of the Thematic

Mapper instrument. The rest of the information is from Salomonson, et al.

(1980).

Table D.3 MSS General Parameters.

Altitude

Sampling Interval

Number of Bands
Number of Bits

• ill ii ii ii ii

918 Kilometers

63 p.radians across scan

88 i_radians down scene
4

7 (6 for band 4) .............

i-

Band
1
2
3
4

Table D.4 MSS Band and Noise Parameters.

Full Scale
Radiance

2.48
2.00
1.76
4.60

Sl_ot Noise
Constant

0.008
O.007
O.0O5
0.005

Thermal Noise

Ea=u!va!ent. Radiance.
0.006
0.005
0.005
0.010

= i | = ii i
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D.3. Landsat Thematic Mapper

The data presented here are for the first six bands of the Landsat TM

instrument. The spectral response was taken from Markham and Barker (1985),

the spatial response from Markham (1985), and the noise levels from Malaret

(1982). The rest of the information is from Salomonson, et al., (1980).

Table D.5 TM General Parameters.

AltltLJ'de

Sampling Interval

Number of Bands
Number of Bits

. i . i

705 Kilometers

43 i_radians across scan

43 i_radians down scene
6
8

_ Band1
2
3
4
5
6

Table D.6 TM Band and Noise Parameters.

Full Scale
Radiance

J1

1.06
2.54
1.46
3.26
0.64
0.48

Shot Noise
Constant

0.0073
0.0079
0.0066
0.oo49
0.0055
o.0127

Thermal Noise

Equivalent Radiance
0.00752
0.00529
0.00448
0.00360
0.00333
0.00600
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

C

c

c

c

c

RSANA John Kerekes May 29, 1989

This program will compute the performance of a remote sensing

system based on scene reflectance and system parameters.

It is based on analytic models developed by Whitsitt (1977),

Mobasserl (1978),and Malaret (1982). It uses reflectance

statistics obtained by the FSS and interpolated to 201 dimensions

to work with the model HIRIS sensor. Feature selection based on

combining 5ands is used to reduce the dimensionality. Tables

generated by LOWTRAN 7 provide the atmospheric data under 125

combinations of surface meteorological range, solar zenith angle,

and view zenith angle. Classification accuracy is assessed through

a function of the Bhattacharyya distance between classes.

The program uses several data files as described below.

"refstat" - Mean and covariance of reflectance for each class

"scdesc" - Parameter file describing scene

"irrad" - Table of total surface irradiance for varying

meteorological ranges and sun angles

"trans" - Table of atmospheric transmittance for varying

meteorological ranges and view angles

"prad0" - Table of path radiance for surface reflectance of 0, for

varying meteorological ranges, solar angles, and view angles

"pradl" - Table of path radiance for surface reflectance of i, for

varying meteorological ranges, solar angles, and view angles

"senstat" - Parameter file describing sensor

"feaset" - Table of processing features

The format for these files is as follows.

"refstat"

Repeated for each class are the following

(al0) Class Name

(201f8.4) Mean Reflectance

201 rows of (201f8.4) Covariance Matrix

"scdesc"

(i3) Number of classes

(f4.2) Across scene spatial correlation coefficient

(f4.2) Down scene spatial correlation coefficient

(i3) Meteorological range table index

(i3) Solar zenith angle table index

(i4) View zenith angle table index

"irrad"

Repeated for 5 solar angles (0", 15", 30 °, 45 °, and 60 °)

Repeated 201 times for spectral wavelengths

5(f7.2,al) Spectral irradiance for 5 Met Ranges

separated by tabs (2,4,8,16, and 32 Km)
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

"trans"

Repeated for 5 view angles (0 °, 15 ° , 30 ° , 45 ° , and 60 ° )

Repeated 201 times for spectral wavelengths

5(f7.4,al) Atm. Transmittance for 5 Met Ranges

separated by tabs (2,4,8,16, and 32 Km)

"prad0"

Repeated for 5 view angles (0 °, 15 ° , 30 ° , 45 °, and 60 ° )

Repeated for 5 solar angles (0 °, 15 ° , 30 ° , 45 ° , and 60 ° )

Repeated 201 times for spectral wavelengths

5(f7.4,al) Path Radiance for 5 Met Ranges

separated by tabs (2,4,8,16, and 32 Km)

"pradl"

Repeated for 5 view angles (0 °, 15 ° , 30 ° , 45 ° , and 60 ° )

Repeated for 5 solar angles (0 °, 15 ° , 30 ° , 45 ° , and 60 ° )

Repeated 201 times for spectral wavelengths

5(f7.4,al) Path Radiance for 5 Met Ranges

separated by tabs (2,4,8,16,and 32 Km)

"senstat"

(a24,a6) Label, Sensor Name

(a24,f4.1) Label, PSF Radius (r o)

(a24,i3) Label, IMC Gain State

(a24,fll.l) Label, System Response Constant

(a24,2fS.l) Label, VNIR and SWIR Dark Current

(a24,fS.l) Label, Shot Noise Factor

(a24,2fS.l) Label, VNIR and SWIR Read Noise Std. Deviations

(a24,2fS.l) Label, VNIR and SWIR Quantization Noise St.Dvs.

(a24,fS.3) Label, Relative Calibration Error

(a24,fS.3) Label, Absolute Calibration Error

Repeated for 201 Wavelengths

(a24,f7.4) Label, Sensor Spectral Band Response

"feaset"

(a24,i4) Label, Number of Features to Use

Repeated for each feature

(a24,2i4) Label, Feature Beginning and Ending Band

Variables Used Include the Following:

absrad - level of absolute radiometric error (in decimal)

averef - average of class reflectances (in decimal)

avecov - covariance of average of reflectances (in decimal)

calstd - level of relative calibration error vector (in decimal)

dark - dark level current in detectors (in electrons)

feacov - covariance of feature set

feamat - feature selection matrix

feamean - mean of feature set

feaset - table of band edges for feature selection

gcon - conversion vector of received power to electrons

(electrons/watt)

irrad - table of total spectral irradiance at surface (mW/cm2-mm)

irrad(wavelength,met range, sun, angle)



c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
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mr - index for meteorological range

mu - Bhattacharyya distance

pcsum - overall average probability correct (in percent)

prad0 - table of path radiance when albedo=0 (mW/cm2-mm-sr)

prad0(wavelength, met range, sun angle, view angle)

pradl - table of path radiance when albedo=l (mW/cm2-mm-sr)

pradl(wavelength, met range, sun angle, view angle)

probcor - pairwise probability of correct (in decimal)

quantstd - variance of quantization noise (in electrons)

readstd - variance of read noise vector (in electrons)

refmean - mean reflectance array (in percent)

refcov - covariance of reflectance (in percent 2)

rhox - across scene spatial correlation coefficient

rhoy - down scene spatial correlation coefficient

ro - sqrt(2) times the PSF radius in scene cells

senrsp - sensor rgsponse(product of optics transmittance and

quantum efficiency)

shtfac - shot noise factor

shotstd - standard deviation of shot noise vector(in electrons)

sigcov - covariance of received signal (in electrons 2)

sigmean - mean of received signal (in electrons)

sigrad - signal radiance for 100% reflecting surface(in electrons)

sysrsp - system response constant (product of A_, _k, and i/hc)

thsun - index of solar zenith angle

threw - index of view zenith angle

trans - table of atmospheric transmittance

trans(wavelength, met range, view angle)

ws - spatial weight

IMSL version 10.0 routines used include the following:

erfc(x) - compute the error function complement of x

iftsf(-) - matrix factorization

ifdsf(-) - compute determinant given matrix factorization

linrg(-) - compute the inverse of a real general matrix

program rsana

parameter(irbrk=61,maxcls=4,maxdim=201,maxfea=16,maxopt=5)

character*l tc

character*6 senname

character*10 covtype

character*24 label

integer feaset(maxfea, 2)

integer imc,ipvt(maxfea),mr,numcls,numfea,thsun, thvew

real absrad, averef(maxdim)

real avecov(maxdim, maxdim)

real calval

real calstd(maxdim)

real dark(2),detl,det2,detave, detl,detk

real fac(maxfea,maxfea)

real feamat(maxfea,maxdim)

real feacov(maxfea,maxfea,maxcls),feamean(maxfea,maxcls)

real feacovk(maxfea,maxfea),feacovl(maxfea,maxfea)

real gcon(maxdim)
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real

real

real

real

real

real

real

real

real

real

real

real

real

real

real

real

real

i rrad (maxdim, maxopt, maxopt ) ,mu

mxdif f (maxfea), matave (maxfea, maxfea), matinv (maxfea, maxfea)

pcsum

prad0 (maxdim, maxopt, maxopt, maxopt )

pradl (maxdim, maxopt, maxopt, maxopt )

pthdif (maxdim)

probcor (maxcls, maxcls)

quantstd (2), readstd(2)

refcov (maxdim, maxdim, maxcl s ), re fmean (maxdim, maxcl s )

to, roa, rob, rhox, rhoy, senrsp (maxdim)

sht fac, shotstd (maxdim)

sigrad (maxdim)

sigmean (maxdim) , sigcov (maxdim, maxdim)

ws, sysrsp

temp, tmpmean (maxdim), tmpcov (maxdim, maxdim)

tmpvec (maxdim)

t rans (maxdim, maxopt, maxopt )

c

c READ IN DATA PARAMETER FILES AND SET UP ARRAYS

c

20

i0

c

c

c

Read in scene description and reflectance data

open (unit=3,

rewind (3)

read (3, (i3)

read (3, (f4.

read (3, (f4.

read (3, (i3)

read (3, (i3)

read (3, (i3)

close (3)

open (unit=4,

rewind (4 )

do

file="scdesc")

')numcls

2)')rhox

2)')rhoy

' )mr

')thsun

')thvew

file=,'refstat ,,)

I0 k=l,numcls

read(4, ' (al0) ')covtype

read(4,'(201fS.4)') (refmean(i,k),i=l,maxdim)

do 20 j=l,maxdim

read(4,' (201f8.4)') (refcov(i,j,k),i=l,maxdim)

continue

continue

close (4)

Read in atmospheric data files

open (unit=f0, file="irrad '')

rewind (I0)

do 30 l=l,maxopt

do 30 i=l,maxdim

read(10, ' (5(f7.2,al)) ')irrad(i,l,l),tc, irrad(i,2,1),tc,

+ irrad(i,3,1),tc, irrad(i,4,1),tc,irrad(i,5,1)
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3O

4O

5O

6O

c

c

c

7O

8O

do

+

continue

close (10)

open (unit=ll, file="trans")

rewind (11 )

do 40 l-l,maxopt

do 40 i=l,maxdim

read(ll, ' (5(f7.4,al)) ')trans(i,l,l),tc,trans(i,2,1),tc,

+ trans (i, 3, i) , tc, trans (i, 4, i), tc, trans (i, 5, i)

continue

close (ii)

open (unit=f2, file="prad0" )

rewind (12 )

do 50 l=l,maxopt

do 50 m=l,maxopt

do 50 i-l,maxdim

read (12, ' (5(f7.4,a1)) ')pradO(i,l,m,l),tc,pradO(i,2,m, 1),tc,

+ prad0(i,3,m,l),tc,prad0 (i,4,m,l),tc,prad0 (i,5,m,l)

continue

close (12)

open (unit=f3, file="pradl" )

rewind (13)

do 60 l=l,maxopt i

do 60 m=l,maxopt

60 i_l, maxdim

read (13,' (5(f7.4,al)) ')pradl (i,l,m,l),tc,pradl (i,2,m,l),tc,

pradl (i,3,m,l),tc,pradl (i,4,m,l),tc,pradl (i,5,m,l)

continue

close (13)

Read in sensor parameter file

open (unit-I 4, file-"senstat" )

rewind (14)

read(14,' (a24,

read(14, ' (a24,

read(14, ' (a24,

read (14, (a24,

read (14, (a24,

read (14, (a24,

read (14, (a24,

read (14, (a24,

read (14, (a24,

a6) ' ) label, senname

f4.1) ')label,ro

i3) ' ) label, imc

fll. I) ' ) label, sysrsp

2f8. I) ') label, dark (i), dark (2)

2f8. i) ' ) label, shtfac

2f8.1) ')label, readstd(1),readstd(2)

2f8.1) ')label,quantstd(1),quantstd(2)

f8.3) ' ) label, calval

read(14, (a24,fS.3) ')label,absrad

do 70 i=l,maxdim

read(14, ' (a24,f7.4) ')label,senrsp(i)

continue

close (14 )

Read in feature file and fill up feature matrix

open (unit=15, file=" feaset")

rewind (15 )

read(15,' (a24,i4) ')label,numfea

do 80 m=l,numfea

read(15, ' (a24, i4, i4) ' ) label, feaset (m, I) , feaset (m, 2)

continue

close (15)
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178

IO0

9O

c

c

do 90 m=l,numfea

do i00 i=l,maxdim

feamat (m, i) =0.0

if (i.ge. feaset (m, i) . and.i, le. feaset (m, 2) )

+ feamat (m, i ) =I. 0

continue

continue

c

c SET UP CONVERSION AND SCALING VECTORS

c

c

II0

c

c

c

c

c

c

c

pi=4.0*atan (I. 0)

do ii0 i=l,maxdim

gcon(i)=0.01*(0.4+(i-1)*0.01)*sysrsp*senrsp(i)*imc

sigrad (i) = (i. 0/pi) *irrad (i,mr, thsun) *trans (i, mr, thvew)

pthdif (i) =pradl (i, mr, thsun, threw) -prad0 (i, mr, thsun, thvew)

continue

Compute spatial weighting function

(Note, assume all bands have same spatial correlation)

(IMSL erfc function is 2 times erfc() as defined in thesis,

and also needs a division by sqrt(2) to normalize variable)

Now implemented scaling of PSF size by view angle in y direction

a = -l.0*alog(rhox)

b = -l.0*alog(rhoy)

roa=ro

rob=ro/cos(((thvew-l)*lS.0*pi)/180.0)

temp=4.0*exp(((a*a+b*bl/2.0)*roa*rob)

ws=temp*0.5*erfc((a*roa)/sqrt(2.0))*0.5*erfc((b*rob)/sqrt(2.0))

c

c

************************************************************************

c

c COMPUTE AVERAGE REFLECTANCE FOR USE IN PATH

c RADIANCE MODEL

c

do 120 i=l,maxdim

averef(i)=0.0

do 130 k=l,numcls

averef(i)=averef(i)+refmean(i,k)

130 continue

averef(i)=(averef(i)/float(numcls))/lO0.O

120 continue

do 140 i=l,maxdim

do 140 j=l,maxdim

avecov(i,j)=0.0

do 150 k=l,numcls

avecov(i,j)=avecov(i,j)+refcov(i,j,k)

150 continue
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avecov (i, j) = (avecov (i, j) /float (numcls*numcls))/I0000.0

140 continue

c

c

c COMPUTE FEATURE SPACE STATISTICS FOR EACH CLASS

c

c

c

c

c

c

c

210

20O

c

c

c

220

c

c

c

240

230

c

c

c

260

250

c

c

c

Loop for all classes START CLASS LOOP 1

do 390 k=l,numcls

Copy reflectance stats to temp files and convert from %

do 200 i=l,maxdim

tmpmean(i)=refmean(i,k)/100.0

do 210 j=l,maxdim

tmpcov(i,j)=refcov(i,j,k)/10000.0

continue

continue

Compute signal mean

do

+

220 i=l, maxdim

sigmean (i) =gcon (i) * (sigrad (i) *tmpmean (i) +

pthdif (i) *averef (i) +prad0 (i, mr, thsun, thvew) )

sigmean (i) =sigmean (i) * (i. 0+absrad)

if (i.le.irbrk) then

sigmean (i) =sigmean (i) +dark (i)

else

sigmean (i) =sigmean (i) +dark (2)

endi f

continue

Compute signal covariance

do 230 i=l, maxdim

do 240 j=l,maxdim

sigcov (i, j) =tmpcov (i, j) *gcon (i) *gcon (j) *sigrad (i) *

sigrad(j)+pthdif(i)*pthdif(j)*avecov(i, j)*

gcon (i) *gcon (j)

sigcov (i, j) =sigcov (i, j) * (I. 0+absrad) * (i. 0+absrad)

continue

continue

Apply spatial weighting function

do 250 i=l,maxdim

do 260 j=l,maxdim

sigcov(i,j)=ws*sigcov(i,j)

continue

continue

Compute signal dependent noise standard deviations

do 270 i=l,maxdim
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180

270

c

c

c

280

c

c

c

3OO

290

330

320

310

360

350

340

390

c

c

c

shotstd (i) =shtfac*sqrt (sigmean (i))

calstd(i) =calval*sigmean (i) * (2.0/sqrt (12.0))

continue

Add noise variances to signal variances

do 280 i=l,maxdim

sigcov(i,i)=sigcov(i,i)+shotstd(i)*shotstd(i)

sigcov (i, i) =sigcov (i, i) +calstd (i) *calstd (i)

if (i.le.irbrk) then

sigcov (i, i) =sigcov (i, i) +readstd (i) *readstd (i)

sigcov (i, i) =sigcov (i, i) +quantstd (I) *quantstd (I)

*imc*imc

else

sigcov(i,i)=sigcov(i,i)+readstd(2)*readstd(2)

sigcov(i,i)=sigcov(i,i)+quantstd(2)*quantstd(2)

*imc*imc

endif

continue

Transform to feature space

do 290 m=l,numfea

feamean(m,k)=0.0

do 300 i=l,maxdim

feamean(m,k)=feamean(m,k)+feamat(m,i)*sigmean(i)

continue

continue

do 310 i=l,maxdim

do 320 m=l,numfea

tmpcov(i,m)=0.0

do 330 j=l,maxdim

tmpcov (i,m) =tmpcov (i,m) +sigcov (i, j) * feamat (m, j)

continue

continue

continue

do 340 m=l,numfea

do 350 n=l,numfea

feacov(m,n,k)=0.0

do 360 i=l,maxdim

feacov(m,n,k)=feacov(m,n,k)+feamat(m,i)*tmpcov(i,n)

continue

continue

continue

continue

END CLASS LOOP 1

COMPUTE PAIRWISE BHATTACHARYYA DISTANCE

Scale feature statistics

temp=0.1*feamean(l,l)

do 393 k=l,numcls

to prevent overflow
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396

395

393

c

c

c

410

420

440

430

45O

400

c

c

c

do 395 m=l,numfea

feamean (m, k) =feamean (m, k)/temp

do 396 n=l,numfea

feacov (m, n, k) =feacov (m, n, k) / (temp*temp)

continue

continue

continue

BEGIN CLASS LOOP 2

do

do

400 k=l,numcls

400 l=l,numcls

if(l.eq.k) goto 400

do 410 m=l,numfea

mxdiff(m)=feamean(m,k)-feamean(m,l)

continue

do 420 m=l,numfea

do 420 n=l,numfea

matave (m, n) = (feacov (m, n, k) +feacov (m, n, i) ) /2.0

feacovk (m, n) =feacov (m, n, k)

feacovl (m, n) =feacov (m, n, i)

continue

call iftsf(numfea, feacovk,maxfea, fac,maxfea,ipvt)

call ifdsf(numfea,fac,maxfea,ipvt,detl,det2)

detk=detl*10.0**det2

call iftsf(numfea, feacovl,maxfea, fac,maxfea, ipvt)

call ifdsf(numfea, fac,maxfea,ipvt,detl,det2)

detl=detl*10.0**det2

call iftsf(numfea,matave,maxfea, fac,maxfea,ipvt)

call ifdsf(numfea, fac,maxfea,ipvt,detl,det2)

detave=detl*10.0**det2

call linrg(numfea,matave,maxfea,matinv,maxfea)

do 430 m=l,numfea

tmpvec(m)=0.0

do 440 n=l,numfea

tmpvec(m)=tmpvec(m)+matinv(m,n)*mxdiff(n)

continue

continue

mu=0.0

do 450 m=l,numfea

mu=mu+mxdiff(m)*tmpvec(m)

continue

mu=(mu/8.0)+0.5*alog(detave/(sqrt(detk)*sqrt(detl)))

probcor(k,l)=l.0-0.5*erfc(sqrt(mu))

continue

END CLASS LOOP 2

c

c COMPUTE OVERALL PROBABILITY CORRECT

c

c

c

c Output results

c
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500

pcsum=0.0

do 500 k=l,numcls

do 500 l=l,numcls

if(l.le.k) goto 500

probcor (k, i) =probcor (k, i) *I00.0

print* , "The Pc of class ",k," and class ",i,"

probcor (k, i)

pcsum=pc sum+probcor (k, 1 )

continue

pcsum=100.0-(I00.0* ( (numcls* (numcls-l))/2) -pcsum)

print*, "The overall Pc was ",pcsum

stop
end

was I!

f


