HEMODYNAMIC AND ADH RESPONSES TO CENTRAL BLOOD VOLUME SHIFTS IN CARDIAC-DENERVATED HUMANS

V.A. Convertino¹, C.A. Thompson¹, B.A. Benjamin², L.C. Keil², W.M. Savin³, E.P. Gordon³, W.L. Haskell³, J.S. Schroeder³, and H. Sandler².

¹ National Aeronautics and Space Administration
Life Sciences Research Office
Kennedy Space Center, FL 32899

and

² Biomedical Research Division
NASA-Ames Research Center
Moffett Field, CA 94035

and

³ Division of Cardiology
Stanford University School of Medicine
Stanford, CA 94304

RUNNING TITLE: CARDIAC VOLUME RECEPTORS IN MAN

Correspondance and Proofs to: Victor A. Convertino, Ph.D.
Life Sciences Research Office
Mail Code MD-RES-P
Kennedy Space Center, FL 32899
(407) 867-4237
SUMMARY

Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6° head-down tilt (HDT) followed by 30 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. In the cardiac transplant subjects, mean HR decreased (P < 0.05) from 102 bpm pre-HDT to 94 bpm during HDT and returned to 101 bpm in seated recovery while BP was slightly elevated (P < 0.05). PV was increased by 6.3 percent (P < 0.05) by the end of 30 min of HDT but returned to pre-HDT levels following seated recovery. Plasma osmolality was not altered by posture changes. Mean left ventricular end-diastolic volume increased (P < 0.05) from 90 ± 5 ml pre-HDT to 105 ± 4 ml during HDT and returned to 88 ± 5 ml in seated recovery. Plasma ADH was reduced by 28 percent (P < 0.05) by the end of HDT and returned to pre-HDT levels with seated recovery. PRA was also reduced by 28 percent
(P < 0.05) with HDT. These responses were similar to those of six normal cardiac-innervated control subjects and one heart-lung recipient. Therefore, cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

KEY WORDS: Henry-Gauer reflex; cardiac transplant; plasma volume; hemodynamic responses; antidiuretic hormone; plasma renin activity
INTRODUCTION

During water immersion, sodium and water are excreted in large amounts and are accompanied by a reduction in plasma antidiuretic hormone (ADH) (Gauer & Henry, 1983; Gauer et al., 1970). Horizontal and antiorthostatic (head-down) bedrest also result in increased excretion of sodium and water (Nixon et al., 1979) and decreased plasma renin activity (PRA), aldosterone and ADH (Epstein et al., 1975a; 1975b). However, the mechanism(s) associated with these fluid-electrolyte changes in man are not clear. According to the Henry-Gauer hypothesis (Gauer & Henry, 1983; Gauer et al., 1970), the sudden shift in fluids from the legs and abdomen into the chest and head leads to stretch of low pressure receptors (located in the atrium and/or pulmonary circulation) as evidence of an increase in total circulating blood volume. The result is a decrease in plasma ADH release from the neurohypophysis and a consequent increase in sodium and water excretion. Most of the evidence supporting this hypothesis has come from studies using the dog (Donald & Shepherd, 1978; Gauer & Henry, 1976; Linden, 1976), where the receptors have been shown to be primarily located in the atrial wall and the ADH response to be abolished by vagotomy. Recently the importance of the proposed Henry-Gauer atrial receptors in control of ADH responses to acute blood volume shifts in man has been challenged by observations that vagotomized nonhuman primates exhibit significant diuresis during water immersion (Gilmore & Zucker, 1978) and volume expansion (Peterson & Jones, 1983).
If atrial receptors contribute significantly to the control of body fluid and electrolyte regulation through ADH inhibition or stimulation, then individuals with little or no atrial afferent output, i.e., partial or complete denervated hearts, should exhibit little or no reduction in ADH when exposed to posture changes designed to induce acute blood volume shifts. Therefore, the purpose of this study was to test this hypothesis by measuring hemodynamic responses and ADH during body posture changes in one heart-lung and ten cardiac transplant recipients and compare responses to normal-innervated subjects.

METHODS

Three groups of subjects volunteered to participate in this study: 1) 9 male and 1 female cardiac transplant recipients known to have partial atrial denervation by the surgical procedure; 2) 1 male heart-lung transplant recipient known to have almost total atrial denervation and complete denervation of pulmonary low pressure receptors; and 3) 5 male and 1 female normal subjects (no history of cardiac disease by history or physical examination) who served as controls. All transplant subjects were at least one year post-surgery. Their descriptive data are presented in Table 1. Informed consent that included a detailed description of the nature of the experiment was obtained from each subject.
The subjects underwent exposure to and return from 6° head-down tilt (HDT) designed to induce cardiac volume changes by acute blood volume shifts. HDT was used because of its known effect to cause larger hemodynamic responses compared to horizontal posture (Tomaselli et al., 1987). Each subject was instrumented in the supine position during an initial 30 min period to allow for the stabilization of a baseline physiological state. The experimental protocol is presented in Fig. 1. Following a 15-min control period (pre-HDT) in the seated position, each subject assumed the lying posture at HDT for 30 min followed by a 30 min recovery consisting of a return to the upright seated position. The subjects were instructed to remain as motionless and relaxed as possible throughout the experiment.

Just prior to the initial 15-min pre-HDT period, a 21-gauge needle with polyethylene catheter was inserted into the left arm antecubital vein and plasma volume (PV) was measured with a modified Evans blue dye dilution method (Greenleaf et al., 1979). The patency of the catheter was maintained for the remainder of the experiment by occasional flushing with heparinized saline. Blood samples (10 ml) were collected without stasis at 0 and 15 min of pre-tilt, at 5, 15, and 30 min of head-down tilt, and 5, 15, and 30 min during seated recovery. Duplicate microhematocrit (Hct) determinations were made immediately after collection of each blood sample. The Hct samples were centrifuged for 12 min at 11,500 rpm in a model MB International centrifuge and read on an International Hct reader with a measurement error of +0.25%.
Raw hematocrit values were corrected for whole-body Hct by multiplication with the factor 0.91 (Chaplin et al., 1953). Percent change in plasma volume from the initial seated control position was calculated from the corrected Hct values with the equation described by Greenleaf et al. (1979). The absolute change in plasma volume at any time during the protocol was calculated by multiplying the percent change in PV by the measured PV.

Approximately 3 ml of blood were introduced into a glass tube containing lithium heparin, centrifuged at 1,200 g for 15 min, and the plasma was analyzed for osmolality by freezing point depression (Advanced Instruments). Approximately 5 ml of the blood sample were introduced into a prechilled vacuum-type collection tube containing ethylenediaminetetraacetic acid and centrifuged at 1,200 g for 15 min at 4°C. From this sample, ADH concentration was determined using the sensitive radioimmunoassay technique described by Keil and Severs (1977), and PRA was analyzed with the modified method of Haber et al. (1969) using a New England nuclear kit.

Heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressures were measured every 2 min before, during, and after tilt. Heart rate was counted from a 15-sec strip-chart ECG recording (Hewlett-Packard). Right brachial blood pressures were measured manually with a calibrated sphygmomanometer and stethoscope. Diastolic pressure was recorded as the pressure at
Korotkov-sound disappearance. Mean arterial pressure (MAP) was calculated by dividing the sum of SBP and twice DBP by 3.

A Hewlett-Packard ultrasonic echocardiography system (model 77020A) using M-mode scanning was used to determine an index of heart volume changes at 0 and 15 min of pre-tilt, 5, 15, and 30 min during headdown tilt, and 5, 15, and 30 min of seated recovery. Left ventricular dimensions were measured from the endocardial echo of the posterior left ventricular wall to the endocardial echo of the left side of the interventricular septum. Dimensions were recorded at the end of systole and diastole. These dimensions were used to compute end-diastolic (EDV) and end-systolic (ESV) volumes. Stroke volume (SV) was determined as the difference between EDV and ESV. Cardiac output (Q) was the computed product of HR and SV.

Results are presented as mean + SEM. Since this study consisted of repeated measurements of each variable for different groups, changes within each group and across groups were evaluated statistically by using a two-way analysis of variance for repeated measures. The null hypothesis was rejected when P < 0.05 and nonsignificant differences were denoted by NS. Since there was only one heart-lung transplant subject, his data were not included in the statistical analysis. We have included the data separately as a descriptive comparison against the controls and heart-transplant subjects.
RESULTS

Mean (+SE) hemodynamic and hormonal responses at the end of pre-HDT, HDT and seated recovery in the subject groups are presented in Table 1 and the mean time course of these responses is presented in Fig. 2. In the control subjects, EDV increased (P < 0.05) from pre-HDT to 30 min of HDT and returned following 30 min of seated recovery. The increase in EDV with HDT resulted in an increase (P < 0.05) in SV at min 30 of HDT with a return to pre-HDT levels at 30 min of seated recovery. Q increased (P < 0.05) with HDT despite a compensatory decrease (P < 0.05) in HR (Fig. 2). HR and Q returned to pre-HDT levels with 30 min of sitting recovery. Except for an initial elevation in SBP at 5 min of HDT (P < 0.05), SBP, DBP and MAP at were not significantly altered during body position changes (Table 2 and Fig. 2). Compared to resting control values, plasma volume was significantly increased during HDT, but returned to control levels following seated recovery. HDT provoked a 37 percent reduction (P < 0.05) in plasma ADH levels (Table 2), which returned to control values upon resumption of the seated position during recovery. PRA was decreased slightly (P < 0.05) by HDT compared to pre-HDT and remained depressed during 15 min of the seated recovery period.

The cardiac transplant subjects had higher (P < 0.05) resting heart rates, blood pressures and PRA and lower (P < 0.05) end-diastolic volume, stroke volume and circulating plasma volume compared to the control group (Table 2). However, hemodynamic
responses to tilt in the cardiac transplants were similar (NS) to those measured in the controls (Table 2 and Fig. 2). For the transplant subjects, SBP was elevated ($P < 0.05$) during the initial 5 min of HDT, but returned to pre-tilt levels by 15 min HDT and was not altered thereafter. Diastolic and mean arterial pressures were not altered by body posture changes (Fig. 2). Plasma volume and EDV increased ($P < 0.05$) following 30 min of HDT and returned to pre-tilt levels at min 30 of sitting recovery. Similar to the response in the control subjects, EDV changes in the cardiac transplant subjects resulted in increased ($P < 0.05$) SV and Q at 30 min of tilt with a return to pre-HDT levels at 30 min of seated recovery (Table 2 and Fig. 2). Plasma ADH was reduced by 28 percent ($P < 0.05$) by 30 min of HDT and returned to control levels following resumption of the upright seated position (Table 2). PRA was reduced ($P < 0.05$) by 30 min of HDT and did not return to control levels during seated recovery (Table 2). The one heart-lung transplant recipient demonstrated similar responses in plasma volume, ADH and PRA levels and hemodynamic adjustments as those measured in the cardiac transplant and control subjects (Table 2 and Fig. 2).

Initial resting plasma osmolalities of $288 + 2$ mosm/l in cardiac transplant subjects, $283 + 3$ mosm/l in controls and 284 in the heart-lung subject were not significantly altered during body position changes in any of the experimental groups throughout the protocol (Fig. 2).
DISCUSSION

In the present study, 6° head-down tilt induced an acute headward shift of fluids sufficient to enlarge the heart volume in cardiac and heart-lung transplant as well as normally-innervated control subjects as indicated by a significant 17 percent increase in echocardiographically measured left ventricular end-diastolic volume. These changes were associated with transient increases in plasma volume indicating shift of extravascular fluid to the circulation and a reduction in heart rate and insignificant changes in mean atrial pressures. In addition, all transplant and control subjects demonstrated a decrease in plasma PRA and ADH. These hemodynamic and ADH responses were reversed by the 30 min of resumed sitting following head-down tilt. Therefore our data demonstrated that cardiac and heart-lung transplant recipients have mechanisms by which ADH secretion can be altered during acute blood volume shifts.

The secretion of ADH can be affected by a number of possible stimuli including changes in plasma osmolality, the renin-angiotensin system, neurogenic factors, cardiopulmonary baroreflexes and/or arterial baroreflexes. Hyperosmolality can stimulate the release of ADH (Robertson, 1974; Robertson & Athar, 1976), but this mechanism appeared unlikely as a primary stimulus for ADH changes in this experiment since the plasma osmolality was not altered during all posture changes. Plasma renin activity could be an indirect stimulus for ADH secretion.
since angiotensin II stimulates ADH release (Ramsay et al., 1978). However, in the present study, the reduction in PRA induced by head-down tilt did not return to pre-tilt levels following resumption of upright sitting, despite the return of ADH to resting levels, suggesting that PRA changes were not related to changes in ADH. Sympathetic nervous activity may have a direct stimulating effect on the release of ADH (Chalmers & Lewis, 1951). Although plasma catecholamines were not measured in our study, sympathetic nervous activity probably contributed very little to the responses of ADH since acute central volume shifts do not appear to significantly alter catecholamine levels (Epstein et al., 1983; Stene et al., 1980). However, our results suggest that a primary stimulus for the changes observed in plasma ADH induced by acute posture changes was directly associated with significant blood volume shifts.

Considerable controversy exists as to whether the cardiopulmonary mechanoreceptors and/or the arterial baroreceptors are important in the regulation of ADH secretion in man. Although the role of atrial volume receptors in the control of ADH secretion has been demonstrated in dogs (Gauer & Henry, 1976; 1983; Gauer et al.; 1970), data from studies using the nonhuman primate have suggested that these receptors may play little role in regulating blood volume. Similar increases in atrial pressure or stretch which induced a diuresis in the dog (Fater et al., 1982; Gauer & Henry, 1976; Linden, 1976) failed to elicit any renal effects in either the anesthetized or conscious monkey (Cornish &
Gilmore, 1982; Gilmore & Zucker, 1978; Peterson et al., 1980; 1983). Furthermore, cervical vagotomy (Gilmore et al., 1979) or complete, selective cardiac denervation (Peterson & Jones, 1983) failed to attenuate the diuretic response to volume expansion or water immersion in the monkey, although ADH levels were not measured in these animals. These species differences between dogs and primates raise a question about the role of cardiac receptors in the control of ADH secretion in man.

The present study is unique in that plasma ADH levels were measured during blood volume redistributions induced by body posture changes in humans with cardiac denervation. Since our preliminary results of this study were first reported (Convertino et al., 1984), Drieu et al. (1986) have reported on the response of ADH secretion in cardiac transplant patients following a 10-12 percent plasma volume depletion induced by furosemide administration. Changes in PRA, heart rate and blood pressure observed in our cardiac transplant patients were similar to those observed in the Drieu transplant subjects. However, in contrast to our findings, they observed no change in ADH in transplant subjects compared to control subjects and concluded that cardiac receptors and innervation play a dominant role in ADH response to volume depletion in humans. Although it is unclear why we observed different ADH responses, their transplant patients had a baseline ADH level which was as high as their control subjects after volume depletion; a condition which may have blunted the response in their transplant subjects.
In contrast to the findings of Drieu et al., several investigators have reported that stimulation of cardiopulmonary mechanoreceptors by either hemorrhage (Goetz et al., 1974; Robertson, 1983) or low levels of lower body negative pressure (Goldsmith et al., 1982; Rogge & Moore, 1968) does not alter ADH levels in humans. Furthermore, Norsk et al. (1986a) demonstrated that ADH variations were weakly correlated ($r = -0.39$) with central venous pressure alterations induced by expansion or reduction of blood volume during immersion. They concluded that cardiopulmonary mechanoreceptors are not of prime importance in the regulation of ADH in man. Our data are consistent with the previous observations in the vagotomized and cardiac-denervated monkey as well as these human experiments (Goetz et al., 1974; Goldsmith et al., 1982; Norsk et al., 1986a; Robertson, 1983; Rogge & Moore, 1968) and suggest that the control of ADH secretion in man may not be completely explained by cardiac mechanoreceptor reflexes since plasma ADH changes were similar in cardiac-denervated subjects during acute blood volume shifts compared to controls.

Some caution in the interpretation of our data to indicate complete non-contribution of cardiopulmonary mechanoreceptors is provided by the knowledge that significant portions of the recipient atria may be left intact with heart transplantation (Reitz et al., 1981). It might be argued that the similar ADH responses observed in the heart transplant recipients and the
normal cardiac innervated subjects may be partly explained by stimulation of residual atrial nerve endings which remain in the small atrial cuff of the recipient heart since these areas are known to contain large numbers of atrial receptor sites (Linden, 1976). The functional capacity of this receptor area following transplantation is unknown. In all cases subjects included in this study endured severe and persistent evidence of congestive heart failure which formed a basis for their subsequent surgery. Atrial receptors had undergone prolonged periods of previous excessive stretch. To date there is no report or evidence of reinnervation of donor hearts (M. Billingham, Dept. of Cardiac Pathology, Stanford University; personal communication). Furthermore, functional tests of deep breathing and Valsalva maneuver performed by cardiac transplant patients 4-93 months post operation confirmed that vagal denervation was present (Drieu et al., 1986). Suppression of vagal tone in our subjects was also suggested by their higher resting heart rate. Finally, during heart-lung transplantation only the superior-inferior venacava junction and a small portion of the recipient right atrium are left intact resulting in removal of 80 percent or more of centrally located low pressure baroreceptors capable of contributing receptor input. Therefore, we conclude that the role of any residual receptor area in explaining the similar ADH responses between cardiac-denervated and control subjects was probably negligible since similar hemodynamic and ADH responses were observed in the heart-lung transplant recipient who represented complete cardiac denervation.
Our results and those of others (Norsk et al., 1986a; 1986b; 1987; Robertson, 1983) suggest the consideration of mechanisms other than cardiopulmonary mechanoreceptors in the control of ADH secretion in man. Reduction in arterial pressure provoked by hemorrhage combined with headup tilt (Robertson, 1983), water immersion (Norsk et al., 1986a), and termination of neck suction (Norsk et al., 1987) is associated with elevated ADH levels while increased arterial pressure induced by graded water immersion results in decreased ADH (Norsk et al., 1986b). These observations implicate an important role of high pressure baroreceptors in the response of ADH to blood volume redistribution. Our data suggest such a mechanism was involved during head-down tilt in transplant subjects since an apparent arterial baroreflex response, i.e., elevated systolic blood pressure and lower heart rate, was associated with lower ADH levels. However, these possibilities will require further study.

Lastly, increased pressure within the cranial vault may play a role. The venous pressure is a determinant of cerebral spinal fluid drainage and increased venous pressure is likely within our protocol. Elevated intracranial pressure has been measured in monkeys during water immersion and 6° HDT (L.C. Keil, personal communications). It is reasonable to suspect that an intracranial pressure sensing system within the brain provides redundancy in the regulation of ADH release when information from peripheral input is impaired.
In conclusion, the results of the present study demonstrated that the responses of heart rate, stroke volume, cardiac output, arterial blood pressure, plasma volume, osmolality, plasma renin activity and antidiuretic hormone provoked by acute redistribution of blood volume and cardiac filling induced by posture changes are similar in cardiac-denervated subjects compared to normal controls. These results suggest that cardiac and heart-lung transplant recipients have mechanisms by which blood volume can be regulated by altering plasma ADH levels. These data are consistent with the hypothesis that the control of ADH secretion during acute blood volume shifts in man cannot be explained by a role of cardiac volume receptors alone and may suggest that arterial baroreflex and/or intracranial regulatory systems contribute to the regulation of ADH release.
ACKNOWLEDGEMENTS

This research was supported in part by a contract from the National Aeronautics and Space Administration (NASA-KSC Contract NAS10-10285). The authors wish to thank Dr. W.B. Severs for his valuable suggestions in the preparation of this manuscript and the test subjects for their cooperation.
REFERENCES

TABLE 1. Subject descriptive data.

<table>
<thead>
<tr>
<th>SUBJECT GROUPS</th>
<th>N</th>
<th>AGE (yr)</th>
<th>HEIGHT (cm)</th>
<th>WEIGHT (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLS</td>
<td>6</td>
<td>44 ± 4</td>
<td>175 ± 5</td>
<td>77.2 ± 8.5</td>
</tr>
<tr>
<td>CARDIAC TRANSPLANT</td>
<td>10</td>
<td>40 ± 3</td>
<td>180 ± 2</td>
<td>73.2 ± 2.5</td>
</tr>
<tr>
<td>HEART-LUNG TRANSPLANT</td>
<td>1</td>
<td>41</td>
<td>185</td>
<td>71.8</td>
</tr>
</tbody>
</table>
TABLE 2. Hemodynamic and hormone responses at the end of sitting, 6° head-down tilt (HDT) and recovery sitting.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>CONTROLS</th>
<th>CARDIAC TRANSPLANT</th>
<th>HEART-LUNG TRANSPLANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Diastolic Volume, ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>114 ± 5</td>
<td>90 ± 5</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>138 ± 5</td>
<td>105 ± 4</td>
</tr>
<tr>
<td>30 min HDT</td>
<td>A</td>
<td>112 ± 3</td>
<td></td>
</tr>
<tr>
<td>30 min sit recovery</td>
<td>A</td>
<td>112 ± 3</td>
<td>88 ± 5</td>
</tr>
<tr>
<td>End Systolic Volume, ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>47 ± 3</td>
<td>48 ± 3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>49 ± 4</td>
<td>49 ± 3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>47 ± 3</td>
<td>46 ± 3</td>
</tr>
<tr>
<td>Stroke Volume, ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>67 ± 4</td>
<td>42 ± 4</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>89 ± 5</td>
<td>56 ± 4</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>65 ± 5</td>
<td>43 ± 4</td>
</tr>
<tr>
<td>Heart Rate, bpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>64 ± 3</td>
<td>102 ± 4</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>59 ± 4</td>
<td>94 ± 4</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>67 ± 4</td>
<td>101 ± 4</td>
</tr>
<tr>
<td>Cardiac Output, L/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>4.29 ± .35</td>
<td>4.26 ± .30</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5.25 ± .45</td>
<td>5.21 ± .39</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>4.36 ± .25</td>
<td>4.18 ± .22</td>
</tr>
<tr>
<td>Systolic Blood Pressure, mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>114 ± 4</td>
<td>130 ± 5</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>115 ± 5</td>
<td>133 ± 8</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>116 ± 6</td>
<td>131 ± 3</td>
</tr>
<tr>
<td>Diastolic Blood Pressure, mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>80 ± 4</td>
<td>99 ± 3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>82 ± 4</td>
<td>103 ± 7</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>79 ± 5</td>
<td>101 ± 2</td>
</tr>
<tr>
<td>Plasma Volume, ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>3316 ± 214</td>
<td>2926 ± 158</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3521 ± 238</td>
<td>3120 ± 180</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>3223 ± 190</td>
<td>2904 ± 151</td>
</tr>
<tr>
<td>Antidiuretic Hormone, pg/ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>3.0 ± .6</td>
<td>2.5 ± .8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.9 ± .7</td>
<td>1.8 ± .5</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>3.2 ± .9</td>
<td>3.2 ± 1.0</td>
</tr>
<tr>
<td>Renin Activity, ng Ang I/ml/hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min sit pre-HDT</td>
<td>A</td>
<td>0.9 ± .1</td>
<td>1.8 ± .3</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.4 ± .2</td>
<td>1.3 ± .2</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.4 ± .1</td>
<td>1.3 ± .3</td>
</tr>
</tbody>
</table>

Values are ± SE
A, B: denotes significant (P < .05) differences between stages; same letters are not different
† P < .05 control vs cardiac transplant values
LIST OF FIGURES

Figure 1. Experimental Protocol.

Figure 2. Hemodynamic, plasma volume (PV), osmolality and antidiuretic hormone (ADH) responses before, during and after 6° headdown tilt in normal subjects (control), cardiac transplant subjects, and in a heart-lung transplant subject. Values are means.
CONTROL SIT — 6° HEADDOWN TILT — SIT

-15 -10 -5 0 5 10 15 20 25 30

HR HR
BP BP
BS BS BS BS BS BS BS BS
EC EC EC EC EC EC EC

HR = HEART RATE MEASUREMENT
BP = SYSTOLIC AND DIASTOLIC BLOOD PRESSURE MEASUREMENT
BS = ANTECUBITAL VENOUS BLOOD SAMPLE
EC = ECHOCARDIOGRAPHIC MEASUREMENT OF LEFT VENTRICULAR END DIASTOLIC VOLUME

Figure 1
Figure 2