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Introduction

This research investigated ways in which computers can aid the decision making of

an human operator of an aerospace system. The approach taken is to aid rather than

replace the human operator, because operational experience has shown that humans can

enhance the effectiveness of systems. As systems become more automated, the role of the

operator has shifted to that of a manager and problem solver. This shift has created the

research area of how to aid the human in this role.

The remainder of this report describes published research in four areas. It

coneludes_th a discussion of the DC-8 flight simulator at Georgia Tech.
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Model-Based Online Aiding [5]

This research addressed the feasibility of adapting an existing rule-based system as

an online "coach" for controlling PLANT, a simulation of a generic process plant. KARL,

a rule-based model capable of controlling PLANT, was adapted to provide three types of

information to subjects:

1)

2)

3)

situation assessment (i.e., which operational procedure, ff any, was applicable for a

given situation);

guidance in following procedures (i.e., feedback whenever subjects' actions were

inconsistent with available procedures); and

performance feedback (based upon changes in the system's stability).

Subjects received this information online while controlling PLANT. Compared to subjects

in an earlier experiment who controlled PLANT without the benefit of the coach, these

subjects maintained a generally more stable system, scored higher on a paper-and-pencil

test of system knowledge, and were more successful in diagnosing an unfamiliar failure of

the PLANT safety system. Careful analysis of these results in light of previous research

with PLANT indicated that the reasons for these differences were not as straightforward as

they might appear. This experiment is viewed as illustrating potential benefits and

subtleties of using a rule-based model as an online coach.
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Significance Testing of Rule-Based Models [1]

Many researchers have used rule-based systems to model human problem solving.

Typically, the rule-based system has a large number of rules, each of which has several free

variables that were adjusted during the modeling process. For the most part, significance

testing of these rules has not been much of a consideration, although it should be. It is

possible to describe N data perfectly with N rules using a trivial model that simply

reproduces the data. While there is no evidence that this has happened in any of the

research reported to date, there is a certain danger of overfitting a rule-based model.

Three methods were developed for testing the statistical significance of rules and

other components of rule-based models. It was assumed that the percentage of behavior

matched (e.g., commands) was the performance measure of interest. Two of the testing

approaches, however, were not limited to this measure. They may be used to study any

performance measure, though it may be possible for a rule to produce a statistically

significant effect on one performance measure but not another. Rule testing by analysis of

variance, randomization, and contingency tables was studied, and comparisons between

these methods were developed.

I0¢nIification of Rule-Based Models of Problem Solving [6, 7]

Rule-based models have frequently been used to model human performance and

behavior. A machine learning program was used to identify the rules employed by humans

in two settings. The first setting was a collision avoidance maneuver for which the pilots

had a cockpit display of traffic information (CDTI). This data was generated from an

experiment to evaluate the effects of various CDTI displays on avoidance behavior.
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The rules produced by the machine learning program can be combined in a decision

sequence that accounts for a substantial portion of the maneuvers. When the intruder was

maintaining a constant altitude, pilots executed vertical away maneuvers even for intruders

posing no threat. This is the easiest of the maneuver decisions because it entails no

geometric complications and was used whenever possible. For intruders changing altitude,

a minority of pilots consistently checked for a threatening separation and remained on

course if none existed. Another subgroup responded to horizontal threats by uniformly

turning toward the intruder. This is a good decision if the intruder would have passed in

front but aggravates the situation for intruders which would pass behind. The remainder of

the pilots included this qualification in their decisions to turn toward the intruder. The

mirror of this strategy, turning away from intruders which would pass behind was not

observed.

The second setting was PLANT [Morris, N.M., and Rouse, W.B. (1985). 'q'he

effects of type of knowledge upon human problem solving in a process control task."

IEEE Transactions on Systems. Man. and Cybernetics, SMC-I5(6).], a simulated industrial

process in which feedstock is pumped in at one end and the finished product is pumped out

at the other. A three-by-three matrix of tanks connects PLANT input to output. Each tank

is connected by valves to all tanks in adjacent columns. The operator controls valve

positions and pumping rates for feedstock and product. Fluid dynamics are modeled

within the system causing lags and oscillations to result when valves change state, as well as

varying rates of flow due to relative tank heights. Valves trip dosed when flow exceeds

their setpoints. Failures of pumps and valves are also possible. The CRT system display

shows tanks, their levels of fluid, open valves connecting the tanks, and numerical labels

showing pumping rates and tank levels.
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In concert these features produce a complex symbolic task in which conflicting goals

relating production, system stability, long term trends, failures, and trips must be balanced

to operate the system. At peak efficiency, all valves should be open, tank levels uniform

across the system, and identically high pumping rates set for feedstock and product.

PLANT is operated by subjects through a services of iterations which a control action is

entered and the resultant updated system state displayed. The iterations from an

experimental session (-500) provide a series of "snapshots" isolating specific system states

and the responses subjects made to them.

In an initial analysis of this data [8], small sets of high coverage rules were

assembled. Cross-validation was used to assess the reliability of the selected rules.

Identified rules correctly matched 51% of control decisions in the identification sample for

subjects in the control group and 32% of the control decisions in the validation sample.

For subjects using PLANT procedures, combining symbolic (rule-based) and signal

(internal dynamic model of PLANT) processing fared better matching control decisions

52% of the time. The generality of the well-performing rules obtained prohibited the

detailed analysis of strategy possible in the CDTI case.

Deep Reasoning Fault Diagnosis [2, 3, 4, 9, 11]

This research studied the design and evaluation of knowledge-based aiding for a

human operator who must diagnose a novel fault in a dynamic, physical system. Since the

operator must employ deep reasoning about system behavior to diagnose such a fault, his

or her performance may be restricted by cognitive limitations and biases. A computer aid

based on a qualitative model of the system was built to help the operator overcome some

of these limitations. This aid differs from most expert systems in that it operates at several

levels of interaction which are believed to be more suitable for deep reasoning.
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Four aiding approaches, each of which provided unique information to the

operator, were evaluated. The aiding features were designed to help the human's causal

reasoning about the system in predicting normal system behavior (N aiding), integrating

observations into actual system behavior (O aiding), finding discrepancies between th two

(O-N aiding), or finding discrepancies between observed behavior and hypothetical

behavior (O-H aiding). Three experiments were conducted to evaluate the aiding

approaches and to investigate the nature of.deep-reasoning diagnosis. Human diagnostic

performance improved by almost a factor of two with O aiding and O-N aiding. The

results from the experiments were integrated into a model of human information

processing in causal reasoning diagnosis.

1_C-8 Flight Simulator

The failure to both complete and utilize the DC-8 flight simulator is a

disappointment. An assessment of the cost of developing the simulation should have been

prepared initially. The development breaks down into three categories: hardware, flight

simulation, and display generation. The hardware category was completed at a cost of

roughly $75,000. The flight simulation code is roughly one half done, and perhaps another

10,000 lines of code need to be written and tested. This would require one programmer-

year to produce ($50,000). Display generation would require $15,000 in hardware and

another programmer-year ($50,000). A total estimated cost of $190,000 compares

favorably with the cost of a commercial product. However, the research funding needed to

support such a facility must be larger than a single $100,000/year grant.
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ABSTRACT

The design and evaluation are presented for knowledge-based aiding for a

human operator who must diagnose a novel fault in a dynamic, physical system.

Sihce the operator must employ deep reasoning about system behavior to diag-

nose such a fault, the performance may be restricted by cognitive limitations

and biases. A computer aid based on a qualitative model of the system was

built to help the operator overcome some of his/her cognitive l_nitations.

This aid differs from most expert systems in that it operates at several lev-

els of interaction which are believed to be more suitable for deep reasoning.

Four aiding approaches, each of which provided unique information to the

operator, were evaluated. The aiding features were designed to help the

human's causal reasoning about the system in predicting normal system behavior

(N aiding), integrating observations into actual system behavior (0 aiding),

finding discrepancies between the two (O-N aiding), or finding discrepancies

between observed behavior and hypothetical behavior (O-H aiding). Three

experiments were conducted to evaluate the aiding approaches and to investi-

gate the nature of deep-reasoning diagnosis. Human diagnostic performance

improved by almost a factor of two with 0 aiding and O-N aiding. The results



from the experiments were integrated into a model of human information pro-

cessing in causal reasoning diagnosis,

INTRODUCTION

Becoming more of a monitor and supervisor in today's highly automated

systems [Rasmussen 1984], the human operator must at times be involved in

the task of diagnosing system failures, which is increasingly difficult as

the system becomes more complicated and automated. The prevalent approach

to fault diagnosis is to train the operator to have better knowledge and

experience with commonly expected faults. The training might teach the

operator to use symptoms to distinguish faults and to follow procedures to

correct them. While this approach should be successful with common faults,

it do_s not support diag_usis of novel faults.

Another, more recent approach is to support the human operator via

expert systems for diagnosis. Those expert systems are typically based on a

large collection of diagnostic rules, which associate symptoms to causes and

generate tests. As for novel failures, many expert systems for diagnosis

[Shortliffe 1976, Miller, Pople, and Myers 1984] are based on shallow rea-

soning: a set of symptoms suggests a diagnosis, This mapping is based on

experience rather than a system model. Consequently, such systems are sub-

ject to the same limitations as training and procedures. The expert system

designer has to anticipate the failure for the expert system to solve it

correctly.

2
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To diagnose an unanticipated, unexperienced fault, the operator must

rely on his/her understanding of causality of the system [Davis 1984]. Such

causal reasoning is usually a very demanding cognitive task when the system

is complex. Therefore, an intelligent aid should be able to support the

operator in causal reasoning about the system behavior. The most obvious way

to achieve this is to let the aid run its own causal model of the system and

provide the results to the human. A qualitative model of the system can be

useful for this purpose.

Another advantage of an aid based on a causal model is that it should

be more reliable and robust. The system knowledge is represented at the com-

ponent level. Because components are small and comprehendable, it should be

possible to create representations that are correct, perhaps ev_u provably

so. A system fault can be expressed as a combination of component faults

which does not require a priori identification of the system fault itself.

Thus, an aid based on a causal system model can cover a wider range of

faults.

In spite of the power of the intelligent aid, we believe there are

several reasons to keep the human in command of the problem solving. First,

the current trend of automatic diagnosis is based on large rule-bases which

are less useful in novel fault diagnosis. Second, the human and the aid may

be better able to find a solution cooperatively than either can alone. This

is possible, even necessary, because the human has better pattern recogni-

tion capabilities and can make inductive leaps. Third, in many cases, diag-

nosis is one of the subgoals and may interfere with other subgoals. For

example, when diagnosis involves operating the system (e.g., opening valves,



starting motors), it may interfere with the subgoal of system safety. The

human is better suited for the responsibility of resolving tradeoffs in pur-

suit of an overall goal. Lastly, the human may need to resolve ambiguities

inherent in the aid's model or even to extend the model.

Subovtimalities in Rum an pjO__

The aid is designed to mitigate human suboptimalities that occur during

decision-making and troubleshooting [Wickens 1984]. Two categories of

suboptimalities used here are knowledge-limited and cognition-limited. The

knowledge-limited suboptimality is simply that the operator does not fully

understand the system. Obviously, the aid's model is a basis for compensat-

ing for this problem.

Cognition-limited suboptimalities are of mor_ interest when the system

fault is novel rather than common. Novel fault diagnosis requires causal

reasoning about the system, which is a cognitively very demanding task. The

operator should repeatedly run a mental model of the system in multiple

modes as well as maintain a diagnostic procedure. The required information

processing can overload the operator's limited mental resources, especially

attention and working memory. The results may be incorrect reasoning or

inefficient use of information.

To help, the computer aid can process and display useful information so

that the operator can use it. This may improve the system performance in

two ways. First, the operator can dynamically allocate some subtasks to the

aid and concentrate on others. This leads to lessened mental workload and

improved performance on those subtasks undertaken by the operator. Second,

since the aid reasons in parallel with the human, the human can confirm



his/her results against the aid's results. When the human overlooks some

useful information or is affected by some biases, discrepancies would be

noticed between the aid's results and the operator's own. The operator may

then adopt the aid's result to be used in subsequent reasoning. For exam-

ple, when the human and the aid evaluate a hypothesis, the confirmation bias

(i.e., the tendency to seek only confirming evidences) will be prevented

since the aid, being not susceptible to this bias, would report disconfirm-

ing evidence.

It is likely that not every plausible form of aiding will improve

operator performance. Some information which is both relevant and helpful

may not be able to improve human performance because the human fails to

incorporate the information into his/her problem solving. This leads to

another question: which types of information are easily usable by the human?

Our approach to answering these questions was, first, tobuild an aid based

on the best principles available to us, and let the aid supply prospective

types of information in experimental settings to evaluate their actual aid-

ing effects. Successful and unsuccessful aiding may also provide insight on

the architecture of human information processing.

In the subsequent sections of this article, we will discuss the suit-

able form of interaction for a deep-reasoning aid, the system which served

as the context of problem, qualitative modeling of the system, the features

of the aid, the experiments and results, and a model of human information

processing in causal reasoning diagnosis. Because a literature review was

included in recently published, early report of this research [Yoon and Ham-

mer 1987], no review appears here.
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LEVELS OF INTERACTION

In the design of interaction between the aid and the human, it is

important to consider the nature of task to be aided. Deep-reasoning diag-

nosis has many subprocesses ofwhich even the problem solver may not be

aware. The aid should be able to help the human's processing without dis-

curbing or interfering with it.

To discuss appropriate forms of interaction in this situation, we stra-

tify the ways in which the human and computer interact into five levels in

terms of intrusiveness (Figure i). The two extreme (i.e., the most

intrusive) levels are the human-direct level and the computer-direct level.

In the middle, the human-suggest and the computer-suggest levels allow a

problem solver, the human or the aid, to be moderately intrusive. Finally,

there is the independent level at which neither problem solver influences

the other. This stratification is orthogonal to the levels of required

intelligence or knowledge the aid should have [Greenstein 1980].

At the human-direct level, the human assigns tasks to the computer.

For example, the computer will respond to the operator's request to perform

a subtask or to answer a question. The situation _s opposite at the

computer-direct level; the computer asks the human for some information or

to perform some tasks. The human does not have a choice other than to follow

the request.

Typical expert systems use only these two levels of interaction; some

systems use only one of the two, others use both. At either level, the

overall processing is serial and requires explicit communication. Certainly,

this property does not promote the human's deep reasoning. The difficulty

of human-direct level interaction is that the effectiveness of the aid

6



depends upon the ability of the human to decompose the overall cask into

modular subtasks [Wickens 1984]. On the other hand, at the computer-direct

level, the human does not have the freedom co pursue his/her own processing.

This would reduce the benefit to the system of having the human whose flexi-

bility and inductive and pattern recognition capabilities are superior co

those of automation.

At the human-_.gf.4L_ level of interaction, the human may impose con-

straints on the computer's processing. Examples are adjusting weights of

different criteria, modifying the computer's intermediate results, or res-

tricting the computer's attention to some area in the problem space. How-

ever_ the computer will continue its Casks without explicit assignment by

the human; only the data or criteria are modified. The _-_/Ig_

level allows the _computer to provide some information or warning to the

human. The human is free to attend or not depending on his/her assessment of

situation. The operator may postpone a response until finishing a current

line of reasoning; or, the computer can be completely ignored. Thus, the

communicatidn is allowed to be less explicit and more abstract. What

becomes a critical issue is that the suggestions by the computer need to be

compatible with the human's reasoning process.

At the j_._[f_ level, both problem solvers pursue their own problem

solving procedures without influencing each ocher. This level is almost

non-existent in conventional expert systems which employ only the two

extreme levels. When the interaction occurs at the suggest levels, however,

the independent level fills the intermissions between suggestions. While

there is no interaction, both problem solvers may be highly active in their

problem solving. At times, the deep-reasoning process needs to be supported



by interruption-free independence.

We believe that the three middle levels should facilitate more adequate

aiding to deep-reasoning tasks. At those levels, the processing is more

parallel and both problem solvers have more freedom. Two human problem

solvers would interact mostly at those levels; they would suggest, take com-

ments and hints, or be silent. Using the three levels of interaction was

one of our principles in building the aid for novel fault diagnosis.

Another related principle was to consider compatibility of aiding informa-

tion with human information processing,

THE SYSTEM AND THE TASK

The Orbital Refueling System (ORS), a NASA-designed payload on the

Space Shuttle, was selected for study [NASA 1985]. The function of the ORS

is to refuel orbiting satellites with hydrazine, with the objective of

extending their useful service life. As shown in Figure 2, the ORS fluid

system contains a variety of components such as tanks, valves, pipes, etc.

The operator controls the simulated ORS by opening and closing valves.

Transferring fuel from propellant tank I to propellant tank 2 might proceed

as follows. First, tank 2 pressure is reduced by momentarily opening valves

10, 11, 13, and 17. Second, tank 1 is pressurized by opening valves l, 3,

and 7. Gaseous nitrogen will flow out of the two small supply tanks, be

pressure regulated, and fill tank 1 on one side of the bladder. To transfer

fuel to tank 2, valves 5, 14, 15, 16, and 9 would be opened. Because this

version of the ORS was for demonstration purposesj all transfers take place

between the two large tanks rather than to a satellite fuel tank. There are

several assemblies whose purpose was not explained in the above example.

The relief valves RVl and RV2 serve as a safety pressure relief. Check



valve CVl prevents backflow into the gas system. The bladders in tank 1 and

2 serve to isolate the fuel from the propellant and also to contain the fuel

in the weightlessness of space. Some components (e.g., valves 10 and 11)

may seem redundant; they are so by design for two failure tolerance.

In discussing the ORS and the operator's actions and diagnosis, we have

found the following nomenclature useful. A _p__lfi_ is the smallest unit of

the ORS system that is modeled in isolation. Typical components include

valves, tanks, pipes, regulators, sensors, etc. The entire set of com-

ponents, working together according to the qualitative dynamics, is a £Y_a:

temo A R£._h is a connected set of components, which could be either a

graph-theoretic path or tree.

Components have s_ates. -For example, a valve may be open, closed, or

leaking. The state is what the component is actually doing. A

state is the state to which a commandable component asked to assume. For

example, a valve may be commanded open or closed. A component also has a

_ mode, such as fail-open or normal. The behavior mode describes the

states which the component takes in response to commands and external condi-

tions. For example, a fail-open valve is always open, regardless of the

command.

The operator's task is to diagnose the failure in the system. This

requires the operator to manipulate and observe the system, because a diag-

nosis cannot be determined uniquely from an observation of a state vector at

a single point in time. A solution is an assignment of states to components

9



such that the assignmenr*s behavior is always identical to system behavior.

For a single valve failure, the solution would be a normal stare for all

components save the failed valve, which might be jammed shut. The diagnosis

problem can be viewed as a combinatorial search for a stare assignment. The

search is constrained by the laws of component physics. That is, a stare

assignment to a component imposes constraints on its neighboring components.

For example, if a valve is opened and permits a flow down a pipe, the com-

ponent receiving the flow must be in a stare to accept the flow.

QUALITATIVE MODELS OF CONTINUOUS PHYSICAL PROCESSES

This section describes qualitative models: representations, the compu-

tational problems solved, and the specific needs of our aid of the qualita-

tive model.

A qualitative model is a symbolic representation of a system. Its most

basic description is of a component. A component is described in terms of

its connections to other components and its behavior. Behavior is described

in terms of the physical variables which are present at its connections.

The differentiation between the structural description (connections) and the

behavioral description is particularly important for insuring the robustness

of a qualitative model. The isolation of each component in the behavioral

description has usually been emphasized by other qualitative modeling [De

Kleer and Brown 1983]. Contrarily, our qualitative model represents the

system at both the component level and at an aggregated level as paths. The

motivation for this is the belief that a multi-level description is closer

to the operator's internal model of the process. In fact, more effective

communication between our model and the human operator was enabled by the

use of the higher level description.

I0



From a given state, the behavior of a component is described in terms

of the physical variables present at its ports. A physical variable (and

its time derivative) may take several values. The time derivative usually

has only one of three possible values: negative, zero, or positive. The

variable itself may take either nominal or ordinal values. The nominal

values usually correspond to points at which behavior (component or

material) changes. For example, water temperature would have nominal values

at freezing and boiling. Variables may also take on ordinal values (or

relationships). For example, water temperature could be taken to be greater

than freezing and less than boiling.

The nominal and ordinal values taken by physical variables are said to

occur in a _ _ [Forbus 1984, Kuipers 1984]. The quantity space

is a partial ordering on the physical variable values it contains. The par-

tial ordering occurs because not all comparisons are relevant to understand-

ing the physical system qualitatively. For example, consider a valve

between two tanks, A and B_ When the valve is opened, the resulting

behavior is determined by the pressures in two tanks. The pressure at other

unconnected points in the system is unrelated to the above behavior.

AIDING WITH A QUALITATIVE MODEL

This section describes how a qualitative model is used as a foundation

for aiding. First, each window of the interface will be described. Four

different aiding strategies and the motivation for each of them will then be

presented. Each strategy emphasizes different type of aiding information.

11



ORS_

The interface has four windows: schematic, interaction, sensor display,

and hypotheses (Figure 3). The schematic window displays a schematic

diagram of the ORS. The schematic always shows the commanded state of the

valves. The interaction window is where the operator's commands are echoed

The commands available to the operator include the fol-by the interface.

lowing:

(1)

(2)

(3)

Opening and closing valves.

Comparing two pressures. On a real physical system, the numerical

pressure could be displayed on the schematic. When a qualitative

model is used to simulate the physical system, there is no absolute

scale in general to which a pressure can be referred. Instead, a

pressure can be compared to other pressures in the system by the

relations less-than, equal-to, or greater-than.

Display of the first derivative of a pressure (positive, zero, or

negative).

And, when the corresponding aiding feature (it is described more fully in a

later section) is available,

(4) Turning the what-if model on and off.

(5) Making state assumptions in the what-if model.

The sensor display contains the output from the sensor display com-

mands: the relationship between two pressures or the first derivative of a

pressure. When appropriate aiding features are activated, suggested sensor

readings will also be displayed in this window.

12



_e hypotheses window displays a set of hypotheses that are set by the

operator. These hypotheses are simply state assignments to components (e.g.,

valve 13: leaking). Pipes, which do not have names displayed in the

schematic, are designated as left or right to named components such as

valves and orifices. For example, the pipe between valve 8 and orifice 4 is

designated either E V8 or L 04.

Based on observed human strategies of diagnosis, four aiding approaches

seemed to deserve evaluation. Each approach emphasizes different informa-

tion and uses an appropriate communication mode for the kind of information.

_j_. The first and second aiding approaches are based

on two presumed forms of operator cognitive processing. First, the operator

must observe and infer what the system is actually doing. This processing

is termed 0 (Observed) and is concerned with flows, leaks through valves,

leaks out of pipes, and the general vicinity of the fault. Secondj the

operator needs to generate normal system behavior to compare with observed

behavior. This processing is termed N (Normal). Two obvious forms of aiding

are to generate 0 and N so that the operator does not have to devote cogni-

tive processing to generating them. To produce O, the aid integrates the

information from the pressure sensors to which it has continuous access.

Like a human operator, the aid has to guess the actual behavior from the

sensor information since it does not know the real system state. In con-

trast, N is generated by the qualitative model under the assumption that

every component is in the normal behavior mode.

13



0 and N are displayed topographically. For both 0 and N, the aid

displays two forms of system behavior: equal pressure paths and mass flow

paths. The former is the set of components that should be at equal pressure

given the commanded valve positions. Whenever the operator creates an equal

pressure path by opening a valve, the path is highlighted. Similarly, a mass

flow path created by an operation is highlighted as long as it exists.

Figure 4 is an example of N display. Opening valve 9 was the latest

change. This would makes if the system were fault-frees the pressure is

equal through the highlighted path.

Figure 5 shows the same configuration as Figure 4_ except that the 0

display (rather than N) is activated. Suppose that when valve 9 was openedj

the pressure P2 began to decrease and PI increase. This leads the aid to

believe there is a mass flow from tank 2 to tank 1 (the path is highlighted)

in spite of the closed positions of valve 8 and valve 15. However, since the

aid cannot be certain which valve is leakings it highlights both paths. When

a precise conjecture is not possible, the aid will take a conservative posi-

tion as in this example. Note that 0 and N aiding cannot be used simultane-

ously.

Observed and _ _. The third aiding approach

is to suggest observations that reveal the differences between the observed

system behavior and the normal system behavior. This difference will be

referred to as O-N. The importance of O-N in ORS diagnosis was discussed in

connection with the results of our preliminary experiment [Yoon and Hammer

1987]. Such a deviation from normal behaviors when observed and correctly

interpreted, helped effectively reduce the size of the feasible hypothesis
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set. Figure 6 shows an example of this feature's display in the same situa-

tion as of Figure 4 and 5. The aid suggestsj for example, to issue a command

PI, which is to inquire the first derivative of PI. When the operator fol-

lows thism he/she will find Pl is increasing, which is opposite to the com-

manded situation (no flow should be possible from either GTK or TK2G/L).

The What-lf Model. The fourth, and the last, aiding feature is closely

related to the above. This feature can use any hypothetical behavior

(denoted by H), instead of the normal behavior, with which to difference the

observed system behavior. The operator can freely set or remove hypotheses.

Then, the aid will run a what-if model based on the hypotheses in place of

the normal model. Any discrepancies (denoted by O-H) will be reported in the

same way. If the hypothesis is incorrect and the observed and hypothesized

bevavior differ, the aid will recommend readings that indicate the differ-

ence. If the hypothesis is correct, the aid will produce no recommenda-

tions. For example, suppose valve 8 is leaking to allow a flow from tank 2

to tank I. If the operator's hypothesis is a leak in the pipe between valve

10 and II, the feature would present a display shown in Figure 7. If the

hypothesis were right, PI should not increase. In this example, P1 does

increasej so the aid recommends a reading _ P1. Also, the hypothesis does

not explain the difference between P2 and P4. Note that if no hypothesis is

stated, the recommendations would be the same as the previous example (i.e.,

O-H - O-N if H - N).

The common motivation for these aiding approaches is to perform compu-

tations _hat the operator is believed to do when diagnosing the system. As

much as these computations are related to the human's mental model, the

qualitative model in the aid may be an appropriate vehicle to help or
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replace the computations. There are two ways this approach might help.

First, the operator may have an incorrect or incomplete mental model.

Second, the operator may have difficulty integrating correct component

behavior into correct system behavior because of cognitive limitations. The

aiding approaches support different uses of the mental model: to envision

the normal or hypothetical behavior, to conjecture the actual behavior, and

to describe the difference between behaviors of two (e.g., 0 and H) models.

This does not mean the operator need not understand the system at all; he or

she still needs to understand the meaning of aid's information and select

the hypotheses.

THE EXPERIMENTS

ove_ie, of _ _

To evaluate the types of aiding information, three separate experiments

were conducted. The first experiment tested the effects of N information.

The next experiment compared the effects of 0 and O-N against unaided diag-

nosis. The last experiment focused on hypothesis testing and evaluated the

aiding effects of O-N and O-H.

The display of aiding information prevented those features from being

tested together. A subject must not be exposed to both N and 0 features

since severe interference, perhaps in the form of a carry-over effect, was

expected. This is because the display of 0 and N information is identical

but each carries a different meaning. O-H and O-N for the same reason

should not be used together. When O-H is used, it acts as O-N until the

subject expresses one or more hypotheses. This makes a direct comparison

between O-N and O-H difficult. Even if O-H really improves the performance,
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its contribution will be depend on the extent to which a subject uses it.

Therefore, a different experimental setting needs to be employed to evaluate

the potential benefit of O-H. The above considerations led to the three

separate experiments.

In all three exper/_ents, replicated Latin square designs were employed

[Edwards 1972]. Differences in the complexity of problems and differences

between users were expected to introduce large variation in the performance.

It was therefore desirable, in order to enhance the efficiency of the exper-

iments, to select problem and subject as two blocking variables. Such

designs are called within-subjects designs for each subject serves in more

than one trea_nent level,

A Latin square design, if its assumptions hold, should be more economi-

cal than a corresponding complete block design. Even withou_ considering

economy, our experiment does not a11ow a complete block design. Because a

subject should not be given a same problem more than once, he/she can be

assigned only one level of treatment for each problem.

In a Latin square design, the positions of each treatment level are

counterbalanced: namely, each treatment occurs at each test position with

equal frequency. This prevents possible practice effects from being con-

founded with treatment effects. Instead, practice effects are then con-

founded with test positions (Joe., problem). However, the problem factor is

merely a blocking variable and we were not interested in the significance of

its effects. Also, the training was designed to stabilize the subject's

performance and thus minimize learning effects.

One possible problem with a within-subject design is that the value of

an observation for one treatment may be influenced by the effects of
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treatments applied during earlier periods. When this arises_ the treatment

is referred to as having carry-over effects. The influence of this effect,

if any, may be partially compensated for by adopting a balanced Latin square

design, in which each trea_nent follows every other trea_nent the same

number of times. When the number of treatments is odd, then at least two

Latin squares are required to achieve this. This replication also permits a

larger number of data points. All our experiments were designed following

the above principles. The resulting designs are presented in Figures 8, 9

and 10.

While the balanced Latin square designs may compensate for the above

problems, they are based on several assumptions. A key question concerning

the Latin square design model is whether the effects of blocking variables

and trea_nents are additive: since there is only one observation per cell, a

Latin square design model assumes additivity to estimate the error variance.

If nonadditivity is present in the data_ the use of a model assuming addi-

tivity will lower both the significance level and the power of the test for

treatment effects. Thus, the Tukey test for additivity was conducted when-

ever we applied a model to the data [Neter and Wasserman 1974, pp.780].

While homogeneity and normality of error variance are the basic assump-

tions in an ANOVA model, it is known that the F test is not much affected by

deviation from these conditions [Lee 1975, pp.284]. However, a residual

plot of error terms against expected cell means can reveal the need for

transformation of dependent variables. Since a transformation would affect

the interpretation of treatment effects, residual plots were examined in

every analysis.
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Ta_aAaaa_ _

The purpose of this experiment was to compare N aided and unaided diag-

nosis. It is reasonable to expect diagnostic performance to be improved

when the envisionment of normal system behavior is improved. In our pre-

experimental observations, however, we observed that most subjects found

this aiding confusing or irrelevant. Since its effectiveness was doubtful

based on this observation, it was evaluated first.

Six industrial engineering students volunteered to serve as subjects.

They were trained through two sessions (total 3.5 - 4.0 hours) to acquire

enough knowledge of fluid dynamics and elements of diagnostic procedure. The

goal of our training was to teach the subjects correct causal reasoning

about the ORS and give them reasonably stabilized diagnostic skills. How-

ever, if a subject is exposed to a kind of problem several times in a short

period, the subject may develop some mechanistic diagnosis procedures that

do not require causal reasoning. When a similar problem is given, the sub-

jects may try to deal with it as a routine failure rather than a novel one.

We felt that a longer training may increase this possibility since the com-

plexity of our version of ORS is only moderate.

Training session I started with basic principles derived from fluid

dynamics. ThenD possible malfunctions for each component were discussed.

Finally, the subjects undertook a simulated ORS mission, during which envi-

sioning of normal system response was practiced. Session 2 taught elemen-

tary diagnostic procedures such as checking a sensor bias or a valve leak.

The subject then was required to plan testing procedures for five typical

hypotheses. Each developed procedure was discussed by the experimenter

until the subject developed (and understood) a correct procedure. Next,
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three real problems were given as exercises. Sessions 1 end 2 took 1.5

hours and 2 hours on the average, respectively.

The performance of the subject in the entire training sessions was

closely monitored. The first session contained many questions to ascertain

if the subject achieved proper understanding. The answers were checked dur-

ing the same session and, whenever necessary, discussed again. Problem

solving exercises were also attended by the experimenter and necessary dis-

cussion or re-explanation was provided. The result was that the initially

poorer subjects would spend more time in-training rather than end with poor

understanding. By the end of the second session, all the subjects performed

satisfactorily and showed little additional improvement in diagnostic skill.

The considerations which led to the design of experiment has been dis-

cussed in the overview section. The design for experimen_ I is shown in

Figure 8. Each group was composed of three subjects and the Latin square

was replicated three times using different problems,

Many different performance measures were tried with our data from the

pilot experiment. The number of information gathering actions (#IGA) and

the time to solve (Time) appeared to be appropriate performance measures.

Although several other measures were examined with the data, they either

turned out to have insufficient resolution or showed high correlations wifih

the above measures. Thus, the above were the most important measures in this

experiment, Time and #IGA showed virtually identical behavior both in the

examination of aptness of the ANOVA model and tests of significance.

The data collected from 36 subject-problems were first analyzed to

determine if there were significant interactions between problems and aiding

levels. The interactions were found insignificant both in time (p " .409)

20



and #IGA (p - .534). This suggested that the interaction term can be

excluded from the model and its sum of squares may be pooled with that of

error term.

The Tukey test uncovered nonadditivity in the data of both Time and

#ICA. The residual plot indicated that the cell standard deviations were

proportional to cell averages. As this is frequently the case when the cri-

terion is response time [Lee 1975, pp.291]_ a logarithmic transformation was

suggested. After the transformation, the anomaly in the residual plot was

fixed. The transformed data, both in Time and #IGA, appeared to adhere to

the homogeneity and normality requirements for ANOVA better than the origi-

nal scores. The interactions between aiding levels and problems were still

insignificant. The Tukey test was performed again with the new scores and

showed no significant nonadditivity.

The contribution of N aiding to both Time and #IGA was on the negative

side, though not significant (p - .096 and .381, respectively). On the aver-

age, it corresponds to 31% increase in Time and 13Z in #IGA.

These results may not simply be interpreted that N feature did not help

the envisionment of normal system behavior or that the role of such envi-

sionment in the diagnosis is unimportant. A proper interpretation may be

that the normal envisionment could not be helped very well by providing

external information because the process is too quick and deeply embedded in

a larger cycle of human information processing. Another possibility is that

envisioning normal system behavior was not a bottleneck in diagnostic per-

formance.

We concluded the former interpretation was very likely considering the

following. First_ most subjects, after their main sessions, stated that the
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aid was not only uninformative, but also somewhat distracting or confusing.

A subject said he wished he could get "real" system behavior rather than

"normal" behavior. Second, the fairly strong negative aiding effects could

not be explained if the aid helped only unimportant subtasks. Third, the

negative aiding effect was notably stronger in Time than in #IGA. (This was

the only occasion in which the two measures showed any notable difference in

the analysis throughout experiment I and 2.) This implies that the aid

forced the subjects to think for a longer time but did not greatly affect

their diagnostic procedure. This result supported the subjects in reporting

that the aid was confusing and distracting. Thus, we concluded that there

was interference between N information and the operators" diagnostic infor-

mation processing. Certainly, they do predict normal system behavior as a

subtask: it is obviously necessary. But, when they seek information from the

display, it-was not of normal system behavior. This observation will be

implemented in modeling of deep-reasoning diagnosis later in this paper.

The second experiment was to assess the aiding effects of O and O-N

features against unaided diagnosis. Nine new subjects: again industrial

engineering students, were recruited as volunteers. Two training sessions

which were virtually same as in the first experiment were given. In terms

of content, the only difference was that the explanation of the new features

replaced that of N feature. The design of experimentj shown in Figure 9, was

also the same except for a different number of treatment levels and replica-

tion.
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The procedure of statistical analysis was the same as in Experiment 1.

First, the interactions between aiding levels and problems were found insig-

nificant. After pooling the sum of squares for interactions into error sum

of squares, the Tukey test for additivity was performed. No significant

nonadditivity either in Time or #1GA was found. When the residual plots

were examined, however, it was indicated that both measures needed to be

logarithmically transformed. After the transformation, the new residual

plots showed stabilized error variance. Again, the interactions between aid-

ing levels and problems were insignificant. The Tukey test with the new

scores yielded a much lower F value than before the transformation, confirm-

ing that the new scores fit the assumptions of the model better.

As results of the analysis of variance, both Time (p = .0302) and #IGA

(p - .0005) showed significant effects of aiding. In Time, the improvement

(i.e., decrease in Time) on the average was 34Z by 0 aiding and 42Z by O-N

aiding. In #IGA, 0 aiding permitted 40_ decrease while O-N aiding gave 44%.

Neuman-Keuls tests were performed to de_ermine if there were significant

differences between pairs of aiding levels. Both 0 and O-N aiding levels

had significantly different means when compared to the unaided mean. This

result was identical for both Time and #IGA. In any measure, there was no

conspicuous difference between O and O-N aiding.

The obvious conclusion is that both aiding features were effective in

both measures and permitted solid enhancement of human diagnostic perfor-

mance. In contrast to the N feature, these types of information appeared to

be well accepted by the human process of diagnosis and helped the human in

some important elements for his/her performance.
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The motivation for Experiment 3 was informal observation of subjects

during Experiment 2. The effectiveness of O-N aiding in Experiment 2

appeared to decrease as the diagnosis proceeded. As is to be supported by

more elaborate analysis latera this motivated us to investigate possible

transitions between problem solving phases made by the diagnostician, Prob-

ably the most notable change in diagnosis as time passes was that the diag-

nostician began to deal with more explicit and individual hypotheses after

the feasible hypothesis set size had been sufficiently reduced. In later

phases with individual hypotheses, the characteristics of problem solvin E

may be very different than the earlier phase of narrowing down the

hypothesis set. Therefore, it was necessary to investigate the nature of

diagnostic activity and proper form of aiding with such explicit hypotheses.

Due to its unique purpose, this experiment had an important difference

in its setting from the first two experiments. In Experiments 1 and 2, the

subjects solved whole diagnosis problems starting with primary symptoms. In

the third experiment, the subjects determined whether a given hypothesis was

true. At first, instead of being told of symptoms, the subject was allowed

to perform some predetermined sensor readings which would indicate abnormal

system behavior. Then, the subject was given a hypothesis to evaluate.

Without needing to diagnose the real failure, the subject was to end the

problem solving merely saying if he/she agreed at the hypothesis.

The effects of O-N aiding and O-H aiding were evaluated against unaided

situations in two separate Latin square designs, i.e., Experiments 3-a and

3-b. They are shown in Figure I0. This was because, as mentioned earlier, it

was not possible to assign both O-N and O-H aiding levels to the same
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subject due to expected interference. Although both Time and #IGA were col-

lected, only Time was used in formal statistical analysis. Since the prob-

lems are much smaller in size than those of earlier experiments, #IGA is

usually a small integer that would not easily lend itself to meaningful sta-

tistical analysis considering the vast difference in the subjects" diagnos-

tic procedures. Otherwise, the analysis proceeded in a similar procedure as

that of previous experiments.

In the analysis of the data from Experiment 3-ap the main question was

what effects O-N aiding will have on the performance of diagnosis with a

given hypothesis. First, the interactions between aiding levels and problems

were tested and found insignificant (p - .881). Thus, a pooled error sum of

squares were used for subsequent analysis. The Tukey test for additivity

reveal_d the data were indeed additive. The residual plot also confirued

the model fitted the data quite well, It may be noted that, unlike .the

former experiments, no transformation was found necessary. The reason

perhaps lies in the nature of the problems; these problems are just elemen-

tary subtasks which the operator should do numerous times in a whole diag-

nosis. As for the whole diagnosis time, the standard deviations were pro-

portional to the means. That is_ when a problem was more complex, the varia-

tion in the actual diagnosis time tended to be larger. This tendency most

probably comes from the process of narrow_ng down the hypothesis set since

the subtask of hypothesis testing did not show this property.

The performance was somewhat worse with O-N aidin 8 than without it.

Although not significant (p - ,192), the difference on the average extended

to 15.6 seconds (overall average was 67.4 seconds). The interpretation will

be discussed with the evaluation of O-H aiding.
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Experiment 3-b proceeded the same way except O-H aiding was tried in

the place of O-N aiding. The interactions between aiding levels and problems

were negligible (p - .8593). The additivity test confirmed that the data

were additive. As in Experiment 3-a, the residual plot indicated that no

transformation was needed, surprisingly, the effects of aiding appeared to

be completely negligible (around I second, p " .9546).

The interpretation of these results is subtle. First, the O-N informa-

tion was not relevant to the operator's activity to test a given hypothesis.

The aid distracted the operator only to think about irrelevant information.

This confirmed our earlier observation in Experiment 2 that the aiding

effects of O-N information seemed to diminish as the diagnosis proceeds into

its final stage. This observation, too, became a bssis of our modeling of

deep-reasoning diagnosis which is discussed in a later section°

Then, why was O-H aiding, which must be relevant to the given

hypothesis, not effective? Two possibilities occur. First_ the O-H informa-

tion was simply not relevant to the problem solving. Otherwise_ the informa-

tion was relevant but trivial to the subjects. The first interpretation is

not consistent with our previous results that, when irrelevant information

was given to the subjects, the performance showed signs of degradation. The

remaining choice is that the information_ which is basically a set of

suggestions for interesting observation, was already known to the subjects.

That is_ they already knew what to see even without the aiding; the aid only

confirms it.

This interpretation could be further confirmed by a detailed process

analysis. In Experiments 3-a and 3-b, 32 problems were solved without aid-

ing. If O-H aiding had been provided with these problems, it would have
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suggested useful sensor reading actions 39 times. In 38 out of the 39 times

(97.4Z), the subjects collected equivalent information without it being sug-

gested. Since they were ready to gather the O-H information whenever it was

useful, the suggestions for this information by the computer were not able

to improve the performance further. Because. unlike the O-N suggestions, O-H

suggestions were just what the subjects were about to do, they were under-

stood as trivial so that no performance.decrement was caused by interfer-

ence, either.

There was also an indication that the subjects planned valve operations

and sensor readings together ahead of the actual operations. The sub jests"

collecting of O-H information was remarkably precise. There were 5 occa-

sions in which the O-H aiding, if had been given, would have suggested unin-

formative readings. Failing in only one case out of 39 to look at useful

O-H information, the subjects did not waste their time to do the uninforma-

tive sensor readings in any of the 5 occasions. Such precision may not be

possible if the subjects were simply hunting around for useful observations

by chance in scenes they just created. Most likely, the scenes were pur-

posely planned aiming at the useful information. It should be noted that

this tendency was unique and appeared only when an explicit hypothesis was

given.

To summarize, 0 aiding and O-N aiding improved the diagnosis while N

aiding did not. Actually, N aiding seemed to have negative effects. This

suggests that the operator can effectively utilize 0 information, not N

information, supplied from outside of his/her own information processing.
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The usefulness of O-N aiding seemed to decrease over time perhaps as expli-

cit hypotheses arose. In explicit hypothesis testing, O-N aiding showed a

weak negative contribution while O-H aiding did not affect the performance

at all. When weak negative effects were found, there seemed to be some

interference caused by irrelevant information. On the other hand, O-H aiding

was trivial and innocuous. The precision with which the subjects collected

O-H information indicated that, when a hypothesis was given, the operational

actions and data collection were usually planned together before the opera-

tions. This is an important observation in how the operators used their

mental models.

A MODEL OF DEEP-REASONING DIAGNOSIS

In this section, the experimental results will be integrated into a

model of novel fault diagnosis.

The overall diagnostic procedure can be viewed as a combination of two

elements: information processing tasks and a control strategy. Information

processing tasks are subprocedures of diagnosis which can be characterized

by their input, output and processes which take the input to produce the

output. The control strategy is the way in which information processing

tasks are selectedo

The emphasis in this research has been on the information processing

tasks, not the control strategy. There are several reasons for this. First,

aiding novel fault diagnosis is the goal. Such diagnosis relies on causal

reasoning about the system. To help causal reasoning, information processing

tasks in which causal reasoning is embedded need to be understood. Second,
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we wanted to evaluate an aid which would be able to help the human to over-

come cognitive limitations by some extent. While the aid would possess a

similar causal reasoning capability to a human, it would not suffer the same

cognitive limitations. This aid would be a more direct help to information

processing tasks rather than the control strategy. Third, the findings from

our research would permit insights to the structure of these information

processes since our aiding approach was to provide various types of informa-

tion which would substitute for the operator's information processing.

The emphasis on information processing led to a description of data

flows rather than a flow chart. A flow chart would depict how the chronolog-

ical sequence of various processes is controlled. In contrast, a data flow

diagram would describe the necessary information input to a process, the

_wpected output from a process, and the organization of processes through

the links of information. This diagram helps to identify necessary sub-

processes and alternative ways of automation.

A basic assumption connects our aiding experiments and the human infor-

mation processing model: the human can better incorporate external informa-

tion into his/her processing when the information becomes an alternative

input to one of the higher level processes. An information processing task

can be broken into_E.qGg£j.¢£, each of which can be broken into £%_2£ERg.ggJ_.£.

We assume that aiding information can be substituted for an entire process

more effectively than for just an individual subprocess. There are several

reasons to believe this assumption is reasonable. Because they are inner

cycles in processes, subprocesses iterate and require input at higher rates.

Also, the operator's working memory is more heavily loaded during a subpro-

cess since the status of the higher level process, as well as that of the
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subprocess itself, should be retained. With the frequent cycles and heavy

mental workload, it would be harder to perceive and apprehend externally

supplied information [Wickens 1984, Rasmussen 1984].

As far as causal reasoning of the system operation is concerned, two

directions of information processing should exist: observations to

hypotheses and hypotheses to observations. The former task takes observa-

tions as input and produces hypotheses, while the latter starts from

hypotheses and identifies necessary observations. Both tasks may be

categorized as search b._ _ according to Rasmussen's classification

[Rasmussen 1984].

This task is triggered by observations of system behavior and will be

referred to as data-driven search. It occurs when the observations were

collected without particular hypotheses or showed unexpected patterns that

fell outside hypotheses of interest. It seemed therefore natural that the

subjects performed this type of process more often in earlier phases of

diagnosis. Since O-N aiding was useful in earlier phases, the information

it supplied must be closely related to this task. The poor performance of N

aiding, however, indicates that the human's use of N information is in a

lower level subprocess, very likely to produce O-N information. Therefore,

it is suggested that there is a process which filters the observations to

pass only more interesting (i.e,, unexpected) ones to the next process: N

information is used for one of its subprocess. Obviously, there must be one

more process to complete this task. In this second process, the human tries

to come up with a set of plausible hypotheses that explain the observations,

30



Some of the interesting observations may be remembered to evaluate future

hypotheses throughout the diagnosis. The above constraints allow one to

conceive a model of the data-driven search as represented in Figure 11.

Two processes were identified. The first process is _

eions. Only the observations which passed this filtering are used in the

following process of _ _lfJ_L_£. The filtering process con-

tains a _ men_al model of the system. The reference model is a men-

tal model that produces standard behavior against which observed system

behavior is continuously compared and judged as expected or unexpected. At

first, the reference model behavior is that of normal system. As more

observations are accumulated, however, some abnormal system behavior would

also become expected even though the reason may not be understood. An

expected observation does not carry additional information and should be

filtered out as trivial. Thus, the reference model should evolve incorporat-

ing more and more observations of actual system behavior. Converging to the

actual system in its behavior, the reference model would lower she probabil-

ity of unexpected observations. Consequently, the efficiency of unplanned

observations would decrease and the data-driven search would become less

useful as the diagnosis proceeds.

In earlier phases of diagnosis, when the reference model behavior is

normal, O-N aiding replaces the whole filtering process and provides input

information to the hypotheses entertaining process. According to our basic

principle, it should be easier for the human to incorporate such information

into his information processing. This was supported by the experimental

result that O-N aiding improved the diagnostic performance. However, the

gradual departure of the reference model from normal system behavior would
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degrade the relevance of O-N aiding in the filtering. It was supported by

the observation that O-N aiding was mostly useful in earlier phases of prob-

lem solving.

0 aiding enhanced the observations which are input to the filtering

process. The enhancement is in fact presentation of observed system behavior

at a higher level of abstraction than the sensor displays [Rasmussen 1984].

For example, while the operator would normally look at individual pressure

points to check _he system behavior, 0 aiding would display a mass flow

which is not the behavior of a component, but of a path. Since this level,

being more functional, allowed more appropriate information coding for the

opera_or's use, it should improve the filtering process. The experimental

results supported this.

The prediction of normal system behavior (N aiding) is at first

equivalent to the subprocess of running the reference model. This activity

is internal to the filtering process, neither replacing a process nor pro-

viding better information to a process. As a result, there may be little

chance to improve human diagnosis by providing this information from out-

side. Actually, the experiment showed that N aiding had rather negative

effects, though not significant, perhaps due to distraction.

When given hypotheses are to be evaluated, the operator would build a

testing plan that may prove one hypothesis and disprove the rest. This task

is called _X__-_[/.iy.g_searCho Experiment 3-a indicated that, by demon-

strafing poor performance of O-N aiding_ this task was very different from

data-driven search in its information processing.
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This type of process tends to be employed more often toward the final

stage of diagnosis as the data-driven search loses its efficiency. An impor-

tant restriction of this process is that the hypothesis should be suffi-

ciently explicit for the diagnostician to perform mental simulation based on

it. There are usually too many explicit hypotheses that are feasible in

earlier phases of diagnosis. Therefore, the data-driven search may be pre-

ferred in narrowing down the feasible hypothesis set. Toward the end of

diagnosis, however, the number of feasible hypotheses would become smaller

and the need of testing the remaining hypotheses individually would

increase. Then, the hypothesis-driven search dominates the diagnosis.

In Experiment 3-b, we forced the subject to perform this process by

assigning a hypothesis to test. The experimental result that O-H aiding did

not improve the human diagnosis can be explained in this model. O-H aiding

suggested sensor readings which would show the difference between actual and

hypothetical system behavior. When the hypothesis is false, a right test

would reveal the existence of O-H behavior to disprove the hypothesis.

Thus, O-H information is certainly relevant to the hypothesis testing. It

is reasonable to expect O-H aiding to be helpful if the operator collects

observations and filters them as in the data-driven'search. If, however,

the tests are planned by predicting observable differences (as in Figure 12)

depending on whether the hypothesis is true, 0-H information is identified

before the actual testing operation. In this case, externally suggested O-H

information would only be redundant and would not improve the performance.

The latter case was supported by the experiment; _he aid gave no per-

formance improvement; the operators collected O-H information in an

extremely efficient manner even in unaided diagnoses, in which they were not
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given the suggestions by the aid. Therefore. it is safe to conclude that

the operator_ when a hypothesis is given, runs his/her mental model to

determine a test that would distinguish the given hypothesis from other

hypotheses. Figure 12 describes the model of this task.

The control strategy is both highly dynamic and individualistic.

Operators switch frequently between information processing tasks. The

selection of tasks depends on the assessment of relative efficiency and

effectiveness of different tasks in different situations. For example, if

the diagnostician is equipped with very inexpensive testing methods to check

every component directly, the cost of hypothesis-driven search will be

drastically reduced from what it is in the ORS diagnosis. This observation

suggests the possibilty that the control strategy can be changed when aiding

affects the efficiency of elementary tasks.

Although the two information processing tasks are the most important

elements, the strategy may involve other types of information processing.

Topographic search [Rasmussen 1984] can be used either to entertain

hypotheses or the necessary observations for a hypothesis. In fact_ this is

believed to be the frequent way in which the operator_ when performing

data-driven search_ selected the data to begin with.

Regarding the control strategy, the only observation we could be

assured of was that the subjects gradually transitioned from data-driven to

hypothesis-driven search as the diagnosis proceeded. This was perhaps

because the reduction of the size of feasible hypothesis set changed the

relative efficiency of two processes. For instance_ with only one
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hypothesis to deal with, explicit planning of test by hypothesis-driven

search must be more efficient. It may also be partly because, as we have

already discussed, the data-driven search lost its efficiency as observa-

tions were accumulated.

As a conclusion, the detailed modeling of information processing tasks

helped to integrate our findings and observations of human operator's novel

fault diagnosis. The models of human information processing tasks were use-

ful in explaining the aiding effects of various types of information. It

should also be useful to predict effects of aiding to be proposed in the

future. Such predictions, in turn, may be tested in experiments to verify

the model.

CONCLUSION

An aiding approach has been described and evaluated for novel fault

diagnosis in complex systems. To the best of our knowledge, this approach

is unique in the following ways. First, the emphasis is on novel rather

than routine faults. Second, it contains a qualitative model that may

correspond to the human's internal model of the system. This model

represents knowledge only of how the system behaves. Therefore, this aiding

approach does not rely on proceduralized knowledge. Third, the qualitative

model is the basis for much of the aiding that takes place.

The experimental results confirmed that a deep-reasoning diagnosis can

be aided, without disturbing the human diagnostic procedure, by providing

relevant information. However, the results also suggested that the aiding

information should be compatible with the human information processing.

This emphasizes the importance of understanding the human information pro-
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ceasing to build an effective aid. A principle of part£cular importance is

that the information from/to higher-level processes is better incorporated

into the human's information processing. The findings and observations were

integrated into an effort to model the information processing tasks for

deep-reasoning diagnosis.
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task assignment
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Figure 1. Levels of Interaction
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PI P2 P3 P4 P5 P6

Figure 8.

G! (Sl-S3) - N - N - N

G2 (S4-S6) N - N - N -

wbere N: N-aided situation

-: unaided situation

Latin Square Design for N effects in Experiment 1.
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P2 P3 P4 P5 P6

(;1 (Sl-S3) - 0 O-N - o-.-N 0

(;2 ($4-$6) 0 O-N - O - O-N

(;3 ($7-S9) O-N - 0 O-N O -

where O: O-aided situation

O-N: O-N aided situation

-: unaided situation

Latin Square Design for 0 and O-N in Experiment 2.
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Figure 10.

where A: aided situation (O-N or O-H)
-: unaided situation

Latin Square Designs for O-N and O-H effects
£n Experiment 3.
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