
NASA Contractor Report 182039

ICASE Report No. 90-34

ICASE
RUN-TIME PARALLELIZATION AND SCHEDULING

OF LOOPS

Joel H. Saltz

Ravi Mirchandaney

Kay Crowley

Contract No. NAS1-18605

May 1990

Revised version of ICASE Report No. 88-70

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

Nalional Aeronat]lic£ and

Space Adminislralion

Langley Research Cenler

Hamplon, Virginia 2366.5-5225

..,,,__-,.,-! : _._'_) _ !_ -i]"i4_
r.'_,-" ALL _ L I,--AT I _J_'_

C '_,_,L IZA

RUN-TIME PARALLELIZATION

AND SCHEDULING OF LOOPS 1

Joe/H. Saltz

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

Ravi Mirchandaney

Kay Crowley

Dep_rtment of Computer Science

Yale University

New Haven, CT 06520

ABSTRACT

In this paper, we study run-time methods to automatically parallelize and schedule it-

erations of a do loop in certain cases, where compile-time information is inadequate. The

methods we present in this paper involve execution time prcprocessing of the loop. At

compile-time, these methods set up the framework for performing a loop dependency analy-

sis. At run-time, wavefronts of concurrently executable loop iterations arc identified. Using

this wavefront information, loop iterations are reordered for increased parallelism.

We utilize symbolic transformation rules to produce: (1) inspector procedures that per-

form execution time preprocessing and (2) executors or transformed versions of source code

loop structures. These transformed loop structures carry out the calculations planned in the

inspector procedures. We present performance results from experiments conducted on the

Encore Multimax. These results illustrate that run-time reordering of loop indices can have

a significant impact on performance. Furthermore, the overheads associated with this type of

reordering are amortized when the loop is executed several times with the same dependency

structure.

IResearchsupportedby the U.S.NavalOfficeunderGrant N00014-86-K-0310, by the NSF underGrant

ASC-8819374,aswellasby theNationalAeronauticsand SpaceAdministrationunder NASA ContractNo.

NAS1-18605 whiletheauthorswereinresidenceattheInstituteforComputer ApplicationsinScienceand

Engineering(ICASE),NASA LangleyResearchCenter,Hampton, VA 23665.

1 Introduction

Dependencies between various iterations of a do loop cannot always be characterized

during program compilation. This inability to characterize dependencies can inhibit ex-

ploitation of potential parallelism by means of the usual types of parallel loop constructs,

the doaIl or doacross loops [15] [4]. Doall loops do not impose any ordering on loop itera-

tions while doacross loops impose a partial execution order so that some of the iterations

are forced to wait for the partial or complete execution of some previous iterations. Typ-

ically doacross loops make use of a-priori knowledge of inter-iteration dependencies to

carry out required synchronizations.

Parallelization carried out during compilation is necessarily conservative; if it cannot

be shown that loop iterations can be performed concurrently, the loop iterations are se-

quentialized. Many loop nests defy compile-time parallelization because dependency pat-

terns are determined by variables or arrays initialized during program execution. Compile-

time analysis and parallelization may also fail when non-linear expressions characterize

the dependencies.

The methods we present in this paper involve execution time preprocessing of loops.

We describe a form of execution time preprocessing that is able to transform a loop

having inter-iteration dependencies into a sequence of doaU loops. At compile-time, these

methods set up the framework for performing a loop dependency analysis. At run-time,

wave fronts of concurrently executable loop iterations are identified. The original loop L

is transformed into two loops, Li and L_. The new outer loop Li is sequential, and the

new inner loop L2 involves all indices assigned to each wavefront. The transformation we

present is analogous to loop skewing 3 except that the identification of parallelism is carried

out during program execution [25]. For some loops, reordering iterations can reduce the

deleterious effects of inter-iteration dependencies on performance.

In all of the situations described above, we use symbolic transformations to produce:

(1) inspector procedures that perform execution time preprocessing and (2) executors or

transformed versions of source code loop structures. These transformed loop structures

carry out the calculations planned in the inspector procedures.

Characterizing the cost of execution time preprocessing is a critical aspect of this

research. One clear requirement is that the execution time preprocessing itself be paral-

lelizable. The wavefront scheduling mechanisms are based on a topological sort, which can

be parallelized using a version of a doacross loop. One method called global scheduling,

performs a topological sort of the index set and assigns indices to processors in a way that

evenly partitions the work in each wavefront. In each processor, indices are scheduled in

order of increasing wavefront number. The other method called local scheduling, starts out

with a fixed assignment of indices to processors and simply rearranges the local ordering

of those indices to improve parallelism.

Someof the related work in this field is described next. Lusk and Overbeek [12] imple-

ment a self-scheduledmechanism to dynamically allocatework to processors,however this

work isrestrictedto doaU loops. Polychronopoulos and Kuck [17]are concerned with the

efficientexecution of doalltype loops using run-time self-scheduling.While the efficacyof

self-schedulingforcertainclassesofproblems on shared memory machines isdemonstrated

in that paper, loops that are not doallare not addressed. Tang and Yew[24] describe a

mechanism to execute multiple nested doa]lloops,using self-scheduling.Itisshown that

for certain types of problems, self-schedulingis more efficientthan prescheduling using

staticassignment of loop iterationsto processors. KrothapaUi and Sadayappan[11] de-

scribe a method which isable to remove anti- and output-dependencies, by performing

an analysis of the reference pattern generated and using multiple copies of variablesin

order to simulate a singleassignment language. Cytron[4] discussesthe problem of how

to schedule doacross loops with lexicallybackward dependencies by introducing delays in

appropriate places in the code to ensure correctness. A linearprogramming problem is

formulated and solved in order to calculatethe minimum delays.

Loop restructuringhas been used successfullyto allow parallelizingcompilers to im-

prove parallelismand enhance performance in memory hierarchies[15],[16],[I],[5].Gen-

eralizationof some of the examples described in thispaper relieson a type of doacross

construct that for some kinds of loopsitselfrequires execution time preprocessing. De-

tails and experimental results pertaining to this preprocessed doacross can be found in

[21]. Methods of execution time loop analysis for distributed machines that are in some

respects analogous are described in [13], [10], [20]. Some numerical algorithms have been

modified using schemes that reorder operations to increase available parallelism, [2], [18],

[3],[7],[19].

As in [16], we define the following types of dependencies between two statements

$1 and S_. In these definitions, we assume that $1 is executed before $2. A true or

da_a dependency exists between statements $1 and $2, if statement $2 uses a variable

assigned by statement $1. An a,ztidependenc_/exists between the statements when $1

uses a variable that is assigned by ,92. An o_tp_tt dependency exists when non adjacent

statements $1 and $2 assign the same variable.

The remainder of this paper is organized as follows: In Section 2, we present the

docortsider loop and the transformations required to integrate this loop in a compiler

front-end. A mathematical model which compares the performance of some scheduling

strategies is presented in Section 3. Results from experiments conducted on the Encore

Multimax are given in Section 4 and we summarize our results in Section 5.

[: doconsider i=l,n

2: y(i) = rhs(i)

B: do j=low(i),high(i)

%: y(i) = y(i) - a(j)*y(column(j))

5: end do

S: end doconsider

2

Figure 1: An annotated loop

The Doconsider loop

2.1 Motivation

In many programs, e.g. iterative linear system solvers, a nest of loops may execute many

times. The results of a single run time analysis can be reused, as long as data structures

that determine dependency patterns are not overwritten. When dependency patterns in a

nest of loops do not depend on the values of variables or array elements computed within

the loop nest, we say that the nest of loops is start-time schedulable. In many cases,

when compile-time analysis fails, parallelization of start-time schedulable loops can be

performed during program execution.

Determination of when data structures can be written to during program execution

can be reasonably straightforward when the data structures are local to a procedure but is

a rather complex task when the data structures are passed to procedures or reside within

common blocks. Inter-procedural analysis is concerned with the study of such problems.

In our current implementation, the user will need to indicate that an array which

determines dependency patterns has been modified, by setting a flag. This would normally

entail a re-evaluation of the dependency structure. If mechanisnm of the type we describe

in this paper are integrated into a parallelizing compiler with effective inter-procedural

analysis, it should be possible to avoid the need to set this flag. Next, we describe the

transformations that produce the inspector and executor procedures from user code.

2.1.1 Transformations Required for the Doconsider Loop

A compiler front end transforms an annotated loop into two separate code segments.

The first code segment, the inspector, reorders and partitions loop indices, the second code

segment, the ezecutor, carries out the scheduled work. We provide a sketch of the required

transformations, using as an example a code segment that carries out a sparse triangular

solve, (Figure 1). A loop of the form shown in Figure 1, may be executed many times

during the running of a given program. Note that the data dependencies between the

1 : do i=1,n

2: mywf = 0

3: do j=low(i) ,high(i)

: mywf = max(maxwfy(y(column(j))) ,mywf)

: end do

maxwfy(i) = mywf + 1

: end do

Figure 2: A topological sort

I
r do i=l,nlocalla isched = schedule(i)

2

2a

2b

2c

3

3a

y(isched) = rhs(isched)

if(isched, eq. BARRIER)

call barrier()

else

do j=low(isched),high(isched)

index = column(j)

y(sched) = y(sched) - a(j)*y(index)

end do

end do

Figure 3: A Prescheduled loop

4

elements of V are determined by the values assigned to the data structure column during

program execution. A value of the outer loop index i, il has a dependence on another

value of the outer loop index i_. if the computation of y(il) requires y(i2). The example

code shown in Figure 1 has been chosen for ease of explanation of the transformations

we will present shortly. In practice, we can handle multiple-nested loops and much more

complex right hand side expressions.

To parallelize such loops, the method we use is as follows: We first partition the indices

of the outer loop of Figure 1 into disjoint sets Si, such that row substitutions in a set Si

may be carried out independently. To obtain the sets S,, we perform a topological sort

of the directed acyclic dependence graph G that describes the dependencies between the

outer loop indices. Stage k of this sort is performed by placing into set Sk all indices of

G not pointed to by graph edges. Following this all edges that emanated from the indices

in Sk are removed. The elements of Sk are said to belong to wave front k.

A loop L in the source code is transformed into a new loop L' designed to assign a
wavefront number to each iteration of L.. Since the wavefront number for each index is

one plus the maximum of the wavefront numbers of the indices on which it depends, L can

simply sweep sequentially through the indices and calculate the wavefront for each index.

Figure 2 illustrates the code segment used to calculate the wavefronts corresponding to

each index in line 1 of Figure 1. The wavefront corresponding to index i is stored in

maxwfy(i). The wavefront information must then be used to create a schedule of outer

loop indices to be executed by each processor.

The code segment in Figure 3 is a simplified version of an ez.ecutor corresponding to

Figure 1. This code segment runs on each processor and carries out a sequence of doall

loops in which each doall loop is separated from the next by a synchronization barrier.

The assignment of loop indices to processors is determined by the local array schedule

(line la). This array also determines the order in which loop iterations are carried out.

In addition, schedule also contains synchronization information; when an element of

schedule is equal to a constant BARRIER, a global synchronization is carried out (lines

2a,2b).

While the executor in Figure 3 will produce the correct solution if Figure 1 represents

a sparse triangular solve, the code segment does not take into account the possibility that

in the course of computing y(il) we might use y(i_) before it has been computed by this

nest of loops. We need to make sure that y(i2) is not updated before the data stored in

y(i2) is consumed. The dependence relation between y(i2) and y(i_) is an example of an

antidependency [15].

One way we can deal with antidependencies is to modify the inspector (in this case

the topological sort) so that the computation of wavefronts takes them into account.

Alternately, we can modify the executor so that we use both old and new versions of

arrays; in Figure 1 we would replace y with two arrays, yold and ynew. The executor

would then read from yold and write to ynew. Note that if the executor does not modify

5

call barrier()
Begin loop nest

2 do i=l,nlocal

3 isched = schedule(i)

y(isched) = rhs(isched)

5 do j=low(isched),high(isched)

S index = column(j)

T while (ready(index) .ne. completed)

3 y(sched) - y(sched) - a(j)*y(index)

9 end do

i0 ready(isched) = completed

l end do

end while

Figure 4: A Self-Executing loop

all elements of y, portions of array ynew must be copied into yold.

Instead of producing an executor that carries out a sequence of doall loops on consec-

utive wavefronts of topologically sorted indices, we can compute the sorted indices using

a modified doacross. We illustrate this transformation in Figure 4. The outer loop in

Figure 4 goes over the indices assigned to this processor (line 2). The shared array ready

is used to communicate the availability of array elements. When outer loop iteration

i is completed, y(schedule(i)) is available and ready(schedule(i)) is marked (line

10). In line 7 of Figure 4, a busy-wait is carried out until the array element required

for the computation is available. Note that during an invocation of the nest of loops,

each element of ready is written to only once (line 10) but can be read many times.

This form of synchronization is particularly effective in bus-based multiprocessors with

snooping caches since in such architectures the busy-waiting generates no bus traffic. Syn-

chronization mechanisms of this kind should also be quite effective in a pipelined multiple

instruction stream machines such as the (now defunct) Denelcor HEP [6], [8]. In [21] we

present details of how the modified doacross used here is implemented, in many cases, the

modified doacross loop itself can require a separate stage of execution time preprocessing;

an outline of this preprocessing and a study of associated overheads can be found in this

reference.

2.1.2 Efficient Calculation of the Topological Sort

The schedule of outer loop indices for each processor can be obtained by global scheduling,

i.e. assigning indices to processors in a way that evenly partitions the work in each

wavefront. For the running example in Figure 1, we would employ maxwfy from Figure 2

to produce a new array bywf that would list the indices in order of incrr,_.:_g wavefront

6

doconsider ii =I, N1

do i2 = I, N2

do i3 = I, N3

do im = I, Nm

z = f(il,i2,im)

A(z) = ik*B(il,..im) + A(C(..))*ij

end do

+ D(..)*A(E(..))

3 end do

9 end do

i0 end doconsider

Figure 5: More Complex Loops

number. After this, we would evenly partition the indices in each wavefront between the

processors.

Alternately we could begin with a fixedassignment ofindicesto processors and use the

wavefront information to simply rearrange the local ordering of indices in each processor

in an attempt to increase parallelism.

On the Multimax/320, the sequential execution time required for both these operations

tends to be slightly less than the cost of a single triangular solve using the same matrix.

The topological sort can be parallelized to a degree by assigning consecutive indices across

the processors and by using busy-walts to assure that variable values have been produced

before being used. While local scheduling is almost completely parallelizable, it is not clear

how one would efficiently parallelize global scheduling. The interprocessor coordination

required for this rather fine grained computation appears to be prohibitive in the absence

of a fetch-and-add primitive.

2.1.3 More Complex Loops

In Section 2.1.1, (Figure 1) we presented a simple version of the doconsider loop. We

have implemented transformations that allow us to handle more complicated nested loop

structures. The doconsider loop in Figure 5 has multiple nested do loops and a complex

right hand side expression in statement 6. Currently, some restrictions are placed on the

left hand side index variable z. For each index z, A (z) can be written to multiple times.

However, partially computed values of A(z) cannot be used to _mdate other elements of A.

Allowing partially computed values of A on the right hand side u; an assignment statement

7

suchas 6 adds significant complexity to the topological sort. Each index element z, must

be clustered with all other indices that use partially computed values of A(z) and each

such cluster must be scheduled as a unit on a single processor.

The transformation system uses a source to source compiler that employs a set of data

structures called the Blaze Intermediate Form or BIF graph to represent the parse tree [9].

On recognizing a doconsider loop, the system searches for an assignment statement of the

form shown in line 6, Figure 5. For each such statement that is encountered, an inspector

and an executor is generated. Each of these routines has n nested do loops, where n is

the nesting level of the assignment statement. The executor is analogous to that shown
in Figure 4.

2.1.4 Summary of Doconsider Transformations

We now provide a short stepwise description of the procedure which takes as input a code

of the type shown in Figure 1 and restructures it into a suitable parallel version. Steps

1 and 2 are performed at compile-time, while steps 3 and 4 are performed at run-time.

Notice that an outer loop iteration can depend upon several other iterations, as is seen

in (statement 4) of the code in Figure 1.

.

.

3.

,

From the original loop, the code for the inspector is generated by the compiler.

During program ezecution this code determines the wavefront number of each index.

The loop in Figure 1 is transformed into a self-executing or prescheduled executor.

Immediately prior to the actual execution of the loop, the inspector computes the
wavefront numbers and the indices are sorted on the basis of these wavefronts.

The actual computation is now performed by each processor on its assigned subset

of indices, using one of the executors that have been generated, in step 2.

In the next section, we describe our model problems and present mathematical ex-

pressions that illustrate the load balance obtainable with the different executors.

3 Description and Analysis of Model Problems

3.1 Model Problems

We now present analytic results obtained through the study of two model problems. In

the following section, we will present empirical results from exper;,_ents on a shared

memory multiprocessor. The loop that we use to evaluate the di_Lcr_nt scheduling and

synchronization strategies is depicted in Figure 1. The patterns of dependency between

loop iterations are controlled by the integer array column. By varying the definition of

column we are able to explore the performance achieved by our different strategies over a

wide range of dependency patterns.

Many of the sparse triangular systems that we use as model problems arise from

incompletely factored matrices that were obtained from a variety of discretized partial

differential equations. The solution of these sparse triangular systems accounts for a large

fraction of the sequential execution time of linear solvers that use Krylov methods[3].

The dependencies encountered in solving these systems inhibit the parallelization of the

outer loop of row substitutions (line 1, Figure 1). A full description of the structure of

the triangular systems used in our experiments is found in [3], a brief definition of the

problems may be found in the appendix. We also employ a simple parameterized workload

that will be used to illustrate the tradeoffs between use of prescheduled and self-executing

doconsider loops. This workload generator functions by initializing data structure column

used in the loops depicted in Figure 1.

A dependency graph is generated as follows: We begin with a domain consisting of a

2-dimensional n x m mesh of points whose connections have yet to be established. Each

point (i, j) in the mesh is assigned an index number i × n +j. We generate graphs in which

the point (i, j) is linked to all points (q, r) located within a manhattan metric distance

D; i.e. where [i - q [+ I J - r I < D. The array column is initialized so that it represents

the dependencies between the indices in a generated graph. This workload generator

generates a dependency graph in which both dependencies and antidependencies occur

because the value assigned to coluran(j) can be either less than or greater than j.

3.2 Analysis of a Model Problem

We use two model problems to compare the quality of load balance that can be obtained

using the prescheduled and the self-executing doconsider loops. We consider the first

model problem in some detail, this problem involves the solution of a lower triangular

system generated by the zero fill factorization of the matrix arising from a rectangular

mesh with a five point template. We will use a n by m domain and p < min(rrt, n)

processors. This problem is equivalent to solving the recurrence equation

z_,# = rhs, d - f_-1,1 x zi-l,j - g_,1-1 x z_,i-1 (1)

for 1 < i < rn and 1 < j g n, where f0,j = g0,# = fl,0 = gi,0 = 0. We can choose column,

low, high and aln Figure 1 so that y(i × n+j) in that loop nest is equalto zl,j in

Equation 1.

We assume that all computations required to solve the problem would require time S

on a single processor, and that computation of each iteration of the outer loop (statement

1) in Figure 1 takes time T_t_,. = S/(rnn) for this model problem. This ignores the

9

relatively minor disparities caused by the matrix rows represented by indices on the lower

and the left boundary of the domain. For each type of loop, we will now calculate an

estimate EI_ of the efficiency that would be achieved if the only source of inefficiency were

due to imperfect load balance. At the end of this section, we will briefly consider another

model problem. This problem consists of solving an n by n dense triangular matrix with

unit diagonals.

3.2.1 Load Balance with Prescheduled Doconsider

To understand the relative performance of the two types of doconsider loops for the first

model problem, we need to specify the mapping of indices onto the processors. We will

describe this mapping using the recurrence equation problem formulation in Equation 1.

The global topological sort produces a list of indices sorted by wavefront. When we

define the arrays low, high, coltmn and a in Figure 1 so that the solutions obtained are

equivalent to those in Equation 1, the topological sort produces a list L that corresponds to

arranging the indices in each wavefront in order of increasing index number. The indices

in L are assigned in a wrapped manner, i.e. the kth index in wavefront w is assigned to

processor k mod p.

When prescheduling is used, the computation is divided into wavefronts separated by

global synchronizations. Define MC(j) as the maximum number of indices computed

by any processor during wavefront j. It is clear that n + m - 1 wavefronts are required

to complete the computation. The computation time required to complete wavefront

j is equal to Tit_,.MC(j). The computation time required to complete the problem is

consequently
n+m--I

T,,,,.MC(j).
j=l

We now proceed to calculate MC(j). During wavefront j, a total ofj indices must be

computed when 1 <_ j < min(m, n). Since the indices are assigned in a wrapped manner,

When rain(re, n) < j < n + m- min(m,n), a total of min(m,n) indices must be

completed during wavefront j. Due to the wrapped assignment of indices to processors,

MC(j) = [min(rn, n)].
P

Finally when n + rn - min(m, n) < j < n + rn - 1, a total of n + m - j indices must be

computed during wavefront j so

MC(j) = in + m- j].
P

10

The computational time neededto solve the problem Tc is given by

n+m-1

To= T_,. _ MC(j)
j=l

=__ _IS m+,-X.min(j,m,n,m+n_j)]
mn i=1 P

By assumption, the sequential time to solve the problem is S = rnnTit_,.. The estimated

ei_ciency Ezb, if load imbalance were the only source of inei_clency would be s
pTc"

3.2.2 Load Balance: Self-Executing Doconsider

Much of the load imbalance we saw in the prescheduled doconsider loop can be cor-

rected. During any wavefront j _< min(m,n) - 1, where j is not a multiple of p, there

are p - j rood p idle processors. When j is a multiple of p, no processors are idle. The

failure to balance is essentially an end-effect; e.g., a wavefront has p q- 1 work units with

equal computational demands, but only p processors are available. In [14] we rearrange

the global synchronizations in a way that obtains a tradeoff between improved load bal-

ance and the costs of the global synchronizations. While that mechanism is shown to

be advantageous for some problems, rearrangement of the global synchronizations does

require an extra stage of preprocessing.

Self-execution also eliminates these end effects. In the model problem we are present-

ing here, we can see that any given row substitution in a wavefront requires only two

solution values from the previous wavefront. It is possible to concurrently compute row

substitutions in consecutive wavefronts provided that we observe the dependencies. This

is taken care of naturally since the busy-wait synchronization mechanism ensures that

dependencies are in fact observed.

We can derive an expression for Elb for the self-executing case. Assuming again that

the time required to compute the solutions is identical for all indices, only the first and

last p- 1 wavefronts contribute to load imbalance. To see this, assume that solution

values are available for indices in list L through the index that corresponds to wavefront

w, i = C, (i.e. i = C,j = w - C + 1). All indices in L up to the index corresponding to

wavefront w ÷ 1, i = C (i.e. i = C , j = w - C q- 2) will have their dependencies satisfied,

and can be calculated simultaneously. The cumulative processor idle time is consequently

p(p- 1). Elb is thus given by

mn

+ v(v- 1)
(2)

11

3.2.3 Load Balance: Doacross Loop

We now derive an expression Etb when a doacross loop is used to solve the problem. In

a doacross loop, each index k of y is assigned to processor k mod p; this corresponds to

assigning zi,j to processor (i x n + j) rood p. In this deriwtion, we assume that the time

required to multiply and subtract the terms fi-ld x zi-l,j and gi,j-1 × zld-1 is equal to

half the time Tit_ required to perform a loop iteration.

The processor q designated to compute zi,k is the same as the processor designated to

compute zi-l,,_-_l-k, 1 < k < p. As soon as a processor q finishes zi-l,,,-_,+_, it can begin

to work on zi,k. For p > 3, a pipeline effect is created so that only Tit_r/2 time is needed

to calculate each zid. Let rid represent the time at which zid is computed. It is convenient

to assume that to,/= j/2, and straightforward to establish that ti,0 = ti-l,,_-r_+3. Because

of the pipeline mentioned above, tld = tid+l q- 1/2. From this observation, we can deduce

-_(,,-r,+2) and hence that t_,,_ ,_(,,-p+2) -that t__r___.m = _ , = 2 + e__. Thus for the doacross,

Elb is equal to
2rnn

- p + 2)m+ p- 2)

Table 1 depicts the values of Etb for the model problem for domains of varying di-

mensions. We note that for values of m and n that are much larger than p, both the

prescheduled and self-executing doconsider will have a perfect load balance. The doacross

loop on the other hand exhibits an efficiency that decreases with increasing numbers of

processors with Ezb equal to 2/p. On the other hand, if m = p+ 1, and n is large relative

to rn, the self-executing doconsider achieves an Elb of 1.0 while the Etb in the prescheduled

doconsider case is only 1/2 + 1/2p. In the prescheduled doconsider, during most com-

putational wavefronts, one processor has to perform twice as much work as all the rest.

The global synchronizations required for the prescheduled doconsider force all processors

to wait for the busiest processor to finish. Because the doacross loop does not perform

index set reordering, we see a marked efficiency difference between the case m = p + 1, n
2 2 while forlarge and n -- p + 1, m large. For the n = p + 1 case, Etb is equal to _ + _ ,

m = p + 1, Etb is equal to 2/p. We obtain a better load balance using the doacross than

we do using the prescheduled doconsider when n is equal to p + 1, andre is large. When

both m and n are equal to p, we obtain a better load balance using the doacross than we

do with either type of doconsider.

Many problems of practical interest are somewhat less sparse than the model problem

analyzed here. When such a problem is to be solved using many processors, we may expect

dramatic performance differences between prescheduled and self-executing programs. To

illustrate this, we present the rather extreme (from our point of view) example of solving

a n by n dense triangular matrix having unit diagonals using n - 1 processors. Assume

T_ax_ is the time required for a floating point multiply and add. The computation time

required to solve this system using self-execution is T,a=_(n- 1). No parallelism at all is

obtained when one attempts to solve such a system when row substitutions are separated

°

12

Table 1: Model Problem Load Balance Efficiencies

Domain Prescheduled Self-Executing Doacross

Dimensions

m=n, both large

m._n=p

re=p, n large

re=p+1, n large

n=p, m large

n=p+l, m larg e

n by n full

triangular system

p=n-1

1

p/(2p-1)
1

1/2 + 1/(2p)
1

1/2 + 1/(2p)

1/p

1

p/(2p-1)
1

1

1

1

(p+l)/(2p)

2/p

2p/(3p-2)

2/p
2/p

1

2/3 + 2/(3p)

(p+l)/(2p)

by global synchronizations; each row substitution forms its own wavefront. The sequential

computation time and the prescheduled computation time are both T,,xv_ _"-1) Calcu-2 "

lated only on the basis of load balance, both the self-executing efficiency and the doacross

efficiencies Etb are n/2(n- 1) while the prescheduled Etb is 1/(n - 1).

4 Experimental Results

In this section, we provide experimental results for the performance of the inspectors and

executors described in Section 2. The experiments described in this section also high-

light the overheads associated with the inspectors and the synchronization mechanisms

employed by the executors. The following timings were done on an Encore Multimax/320

with 13 megahertz APC/02 boards and version 2.1 of the FORTRAN compiler. Parallel

efficiency is defined as the ratio between the time required to solve a problem using an

optimized sequential version and the product of the time required on the same problem

by the multiprocessor code multiplied by the number of processors.

The inspectors and executors used in our experiments were coded by hand (the ex-

periments discussed here were performed to help us decide precisely how the doconsider

transformations should be implemented). The executors used were similar to those de-

picted in Figures 3 and 4. Antidependencies were handled by writing to a new version of

array y and by evaluating a conditional to determine whether references to array y should

refer to the old or the new version of y (this was described in Section 2.1.1).

13

Table 2: Parallel

Test

Problem

Prescheduled

Time

Time and Estimates

Self-Executing Doacross
Time Time

33 21 49 34

29 23 i00 45

31 19 72 37

56 56 204 84

80 58 154 98

SPE2

SPE5

5-PT

7-PT

9-PT

for Prescheduled and Self-Executing Solves
Sort Sequential

Time Time

223

241

192

615

698

4.1 Multiprocessor Timings

4.1.1 Where Does the Time Go

In Table 2 we present multiproce_sor timings on 16 processors for lower triangular solves

arising from the incompletely factored test problem matrices. In this table we present

the time required to solve the triangular systems using self-executing and prescheduled

executors. The schedule of loop iterations was produced using global scheduling. The

execution time required by the prescheduled executor was consistently either greater than

or roughly equal to the time required by the self-executing code. The same pattern of

results was observed for a wide variety of test matrices [22]. Table 2 also depicts the the

results of timings of an optimized sequential version of the program for each of the lower

triangular systems. For most of the problems tested, the parallel efficiencles obtained were

between 50 and 70 %. This table also depicts the time required to carry out a parallelized

global scheduling, this time ranged from 20 to 60 % of the sequential execution time.

Finally in Table 2 we depict the time required to carry out a doacross version of these

triangular solves. We see that the doacross loop is consistently less efficient than either

the prescheduled or the self-executing loops. For example, the self-executing form of

the executor for the SPE5 problem required 23 milliseconds, the prescheduled executor

required 29 milliseconds, while the doacross version of the solve required 45 milliseconds.

Recall that the self-executing loop is essentially a busy-wait doacross loop with a

reordered index set. We consequently expect that the self-executing executor will exhibit

more concurrency than the busy-wait doacross loop. Since the doacross loop does not have

to perform array references to access the reordered index set, we expect that the doacross

will also be accompanied by smaller overheads. The prescheduled executor performs work

corresponding to only one wavefront at a time. We fully expect the busy-wait doacross

loop to out perform the prescheduled executor in some problems, (e.g. a dense lower

triangular solve).

We performed an operation-count based analysis of the parallelism that could be ob-

tained given a particular assignment of indices to processors when either type of executor

was employed using global scheduling. The analysis made the assumption that the load

balance could be characterized solely by the distribution and scheduling of the floating

14

Table 3:

Test

Problem

Operation Count Efficiencies and Performance Predictions

P.S°

Op. Count

S.E.

Op. Count

P.S. P.S. S.E. S.E.

Time Predict Time Predict

Time Time

33 33 21 20

29 ;30 23 22

31 31 19 18

56 56 56 57
80 84 58 58

Efficiency Efficiency

SPE2 0.52 0.89

SPE5 0.70 0.96

5-PT 0.61 0.95

7-PT 0.94 0.98

9-PT 0.78 0.97

point operations. The efficiency estimated in this manner was computed for several test

problems on 16 processors and is depicted in Table 3 as operation count efficiency. From

this analysis we were able to quantify the deleterious effects of prescheduling on load bal-

ance. To assure ourselves of the meaningfulness of the operation count efficiency metric,

we used operation count efficiencies along with estimates of other overheads to predict

parallel execution times. The methods for estimating other overheads were discussed in

some detail in [23]. We accounted for extra operations that had to be executed by the

parallel code, costs for logical and arithmetic operations required for synchronization as

well as contention for resources such as shared memory and bus access. We note from

Table 3 that self-executing methods yield superior operation count efficiencies for some

problems and that we are able to predict parallel execution times to a reasonable degree

of accuracy.

4.1.2 Results from synthetic workloads

In Figure 6, we compare the parallel efficiencies on 16 processors of the Encore Multimax

obtained using the doacross and prescheduled and self-executing doconsider executors.

We choose domain size n = m = 25 and vary the parameter D.

Recall that D = 1 produces a pattern of true dependencies identical to that in the

model problem described in Section 3.2. As D increases, we obtain increasing numbers

of true dependencies. In the limit of D = 25, we obtain a fully connected graph in

which every loop iteration depends on all earlier loop iterations. For D = 2 and above

the prescheduled executor exhibits monotonically decreasing parallel efficiencies. This

decrease is to be expected since as D increases, there is decreasing amounts of parallelism

for the prescheduled executor to exploit. When D = 1, the computation is small and the

sequential time for this problem was only 64 milliseconds, while for D = 12 the sequential

computation time was 2734 milliseconds. The relative contribution of synchronization

costs and other sources of overhead play an increasing role for small values of D. We will

examine in detail the effects of non-load balance related overheads in other experiments

to be presented later in this section.

15

07

O6

05

04
_o

O_

O2

Comparison of {}oc_)nsider ontl [}oQ£ross Loops

01

o Doocross

0 Seif-E_ecuting

t, Pre Scheduled

ctr- J 0 _

\

I t i I ' L __

0 2 4 6 8 10 12

D

Figure 6: Results from Synthetic Workload

The self-executing doconsider executor exhibited substantially higher parallel efficien-

cies than the prescheduled doconsider for all values of D. For D = 2, the parallel efficiency

for the self-executing doconsider was 0.62 while for the presclaeduled doconsider the par-

allel efficiency was 0.41. For larger values of D the parallel efficiency of the self-executing

doconsider declines; but for D = 5 and above self-executing efficiencies are consistently

approximately twice prescheduled efficiencies. The efficiency obtained using the doacross

executor for D > 2 varied in a narrow range between 0.22 and 0.24. For values of D above

11, the efficiencies obtained by using the doacross executor did not vary significantly from

those obtained using the self-executing doconsider executor.

4.1.3 Effects of Local Reordering

We are interested in evaluating the role played by the synchronization mechanism in

determining performance, when indices are not repartitioned after a topological sort.

We compared the estimated efficiency of the same partition and schedule using global

synchronization and self-executing synchronization in a matrix. Indices were assigned to

processors in a wrapped manner, i.e. for P processors index i was assigned to processor

i modulo P. The schedule was produced by performing a topological sort and scheduling

indices in each wavefront in order of increasing index number. From Figure 7, we can see

that the results obtained through the use of global synchronization can vary wildly with

16

Table 4: Global versus local sorting (self-executing)

Test Self-Executing Self-Executing Global Sort Local Sort Sequential

Problem Global Sort Local Sort Time Time Time

SPE2 21 49 30

SPE5

5-PT

7-PT

23

24

56

30

24

28

55

100

72

20'4

46

39

78

9-PT 58 63 154 101

223

241
192

615

698

the number of processors used. Often, many, if not all of the indices in a waveffont get

assigned to a single processor, resulting in sequential execution for that waveffont.

In a great many cases, data from all indices in a given wavefront are not actually

required by each index in the next wavefront. When self-executing synchronization is

employed, a pipeline sort of effect may be generated and we see substantial performance

benefits. Prescheduling on the other hand, appears to be much less robust,

4.1.4 Local v.s. Global Index Set Scheduling

We performed a set of experiments to examine the performance tradeoffs between local

and global index set scheduling defined in Section 1. We used only the self-executing

loop structures in the experiments in this section. Recall that when global index set

scheduling is used, the index set is sorted in increasing wavefront order. The index set is

then partitioned between processors in a wrapped manner. For the local sorting method,

the initial partition of indices is maintained, but their ordering is changed based upon

wavefront numbers. In [22] we present the sequential time required to solve each test

problem, the times required to perform a sequential and a parallel version of the sort

and the time required to rearrange indices globally. The time required to perform the

sequential scheduling is slightly lower than the time needed for performing a sequential

iteration. For example, in the case of SPE5, the time required to perform the sequential

sort plus the triangular solve adds up to 220 ms, while a completely sequential execution

takes 241 ms. Because we pay for the sorting only once, subsequent iterations of the code

will show a great advantage for the parallel code (23 ms vs. 240 ms on 16 processors).

The time required to produce a parallelized global schedule ranged from 17 percent to 61

percent of the time needed for a sequential iteration.

Thus, we conclude that local index set scheduling overhead does turn out to be much

less than global index set scheduling overhead, as is to be expected. Global schedul-

ing frequently but not invariably leads to slightly lower execution times than did local

scheduling. For example, in the case of SPE2, the global run time was 21 ms and the

local execution time was 30 ms but for SPE3 (not shown in Table). Global scheduling

gave a run time of 25 ms while local scheduling required 22 ms.

17

1.0

0.8

0.6

L3

Z
W

L.J

[l-

t_
W

0.ei

0.2

0.0 I

0

I

.!
/,

i

i

i

1

!

l I I I I .1] I I I
]0

PR@CESS@RS

i ;

I

15

Figure 7: Effect Of Local Ordering

18

5 Conclusions

When the data dependencies of the problem are known at compile-time, detection of

parallelism and task decomposition can automatically be performed by the compiler.

However, there are problems where the parallelism cannot be fully characterized during

compilation due to data dependencies that become manifest during run-time. In this

paper, we presented the doconsider construct and transformation rules which would allow

compilers to effectively parallelize such problems.

In this paper, we have reached the conclusion that for the types of workloads we

have investigated, loop iteration reordering can have a positive impact on performance.

The doacross related self-execution method almost always gives better results than does

prescheduling. Further, the improvement in performance that accrues as a result of global

topological sorting of indices as opposed to the less expensive local sorting, is not very

significant in the case of self-execution. Thus, we are left with a 2-dimensional solution

space, as depicted in Figure 8, which pictorially summarizes the findings reported in this

paper.

6 Appendix: Definition of Test Triangular Systems

The the triangular systems refered to in Section 3.1 were derived from the following partial

differential equation descretizations:

SPE2 This problem arises from the thermal simulation of a steam injection processes.

The grid is 6x6x5 with 6 unknowns per grid point, this yields a system with 1080

equations. The matrix is a block seven point operator with 6x6 blocks.

SPE5 This problem arises from a fully-implicit, simultaneous solution simulation of a

black oil model. It is a block seven point operator on a 16x23x3 grid with 3x3

blocks yielding 3312 equations.

5-PT The problem is a five point central difference discretization on a 63 x 63 grid; this

yields a system with 3969 equations.

7-PT The problem is a seven point central difference discretization on a 20 x 20 x 20 grid;

this yields a system with 8000 equations.

9-PT The problem is a nine point box scheme discretization on a 63 x 63 grid; this yields

a system with 3969 equations.

Acknowledgements: The authors would like to thank Dennis Cannon and Piyush

Mehrotra for supplying us with a Fortran parser linked to Blaze Intermediate Form data

structures. We would also like to thank Mike Wolfe, Doug Baxter, Martin Schultz and

19

Performance of Scheduling and Sorting Strategies

L

0

C

8

I

S

0

r Performance

t can degrade

catastrophically

Recommended:

performance reasonably

robust, low overhead

for setup

G

I

0

b

a

I

Performance

robust but

s prescheduling

o limits exploitable

r concurrency

t

Most robust alternative,

relatively high setup

time

Pre-Scheduled Self-Executing

Figure 8: Summary of Results

2O

Stan Eisenstat for helpful discussions and Bob Voigt for his careful editing of various

versions of this manuscript.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific

programs for parallel execution. In Conf. Record, 14th POPL, January 1987.

E. Anderson. Solving sparse triangular linear systems on parallel computers. Report

794, UIUC, June 1988.

D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental

study of methods for parallel preconditioned krylov methods. In Proceedings of the

1988 Hypercube Multiprocessor Conference, Pasadena CA, pages 1698,1711, January
1988.

R. Cytron. Doacross: Beyond vectorization for multiprocessors. In The Proceedings

of the ICPP, 1986, pages 836-844, 1986.

K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing data trans-

fers for complex memory systems. In Proceedings of the 1988 A CM International

Conference on Supercomputing , St. Malo France, pages 238,253, July 1988.

M. C. Gilliland and Burton J. Smith. Hep: a semaphore-synchronized multiprocessor

with central control. In Proc. 1976 Summer Computer Simulation Conf., pages 57-62,

July 1976.

A. Greenbaum. Solving sparse triangular linear systems using fortran with paralllel

extensions on the nyu ultracomputer prototype. Report 99, NYU Ultracomputer

Note, April 1986.

Harry F. Jordan. Performance measurements on hep, a pipelined mimd computer. In

Proceedings of the lOth Annual International Symposium on Computer Architecture,

SIGARCH Newsletter, volume 11, pages 207-212, 1983.

C. Koelbel. The BIF data structures user's manual, in preparation, Purdue Univer-

sity, West Lafayette, IN, 1987.

[10] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures

on distributed memory architectures (to appear in 2nd ACM SIGPLAN Symposium

on Principles Practice of Parallel Programming, March 1990),. Report 90-7, ICASE,

January 1990.

[11] V. Krothapalli and P. Sadayappan. An approach to synchronization for parallel

computing. In The Proceedings of the 1988 conference on supercomputing, St. Malo,

1988, pages 573-581, 1988.

21

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

[25]

Ewing L. Lusk and Ross A. Overbeek. A minimalist approach to portable, parallel

programming. In The Characteristics of ParaUel Algorithms, Leah damieson, Dennis

Oannon, and Robert Douglass, Editors, pages 351-362, Cambridge Mass, 1987. MIT
Press.

R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Prin-

ciples of runtime support for parallel processors. In Proceedings of the 1988 ACM

International Conference on Supercomputing, St. Malo France, pages 140-152, July
1988.

D. M. Nicol and J. H. Saltz. Delay point schedules for irregular parallel computations.

International Journal of Parallel Programming, 18(1), Feb 1989.

D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compi-

lation techniques. IEEE Trans. on Computers, 29(9):763-776, September 1980.

D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers.

CA CM, Dec 1986.

C. Polychronopoulos and D. Kuck. Guided self-scheduling: A practical scheduling

scheme for parallel supercomputers. IEEE Transactions on Computers, 1987.

J. Saltz. Methods for automated problem mapping. In The IMA Volumes in Mathe-

matics and its Applications. Volume 13: Numerical Algorithms for Modern Parallel

Computer Architectures Martin Schultz Editor. Springer-Verlag, 1988.

J. Saltz. Aggregation methods for solving sparse triangular systems on multiproces-

sors. SIAM J. Sci. and Star. Computation., 11(1):123-144, 1990.

J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time scheduling

and execution of loops on message passing machines, (to appear in Journal Parallel

and Distributed Computing, April 1990). Report 89-7, ICASE, January 1989.

J. Saltz and R. Mirchandaney. The preprocessed doacross loop. Report 90-11, ICASE

Interim Report, 1990.

J. Saltz, R. Mirchandaney, and D. Baxter. Run-time parallelization and scheduling

of loops. Report 88-70, ICASE, December 1988.

J. Saltz, R. Mirchandaney, and D. Baxter. Runtime parallelization and scheduling of

loops. In The Proceedings of the Symposium of Parallel Algorithms and Architectures,

Santa Fe, NM, June 1989.

P. Tang and P. Yew. Processor self-scheduling for multiple nested parallel loops. In

The Proceedings of the ICPP, 1986, pages 528-535, 1986.

Michael Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,

Cambridge Mass, 1989.

22

NtkJA

f. Report No, l
NASA CR- 1820 39 JICASE Report No. 90-34

4. Titleand Subtitle

Report Documentation Page

2. GovernmentAccession No. 3. Recipient'sCatalog No.

5. Report Date

RUN-TIME PARALLELIZATION AND SCHEDULING

OF LOOPS

7 Author(s)

Joel H. Saltz

Ravi Mirchandaney

Kay Crowley

9. Pedorming Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Spin,ring Agency Name and Addre_

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

15. Supp_mentaw Notes

Langley Technical Monitor:
Richard W. Barnwell

Final Report

May 1990

6. PerformingOrganization Code

8_ PerformingOrganizationReport No.

90-34

tO. Work Unit No.

_505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Type of Report and Period Covered

Contractor Report

14. Sponsortng_,gency Code

_evised version oJ _ 88-70, submitted to Trans-

actions on Computers; Excerpts in Proc. of

the Third Int. Conf. on Supercomputing, Crete

Greece, June 1989 and in Proc. of the First

Int. Symposium on Parallel Algorithms and

Architectures, Santa Fe, NM.

16. Abst_ct
In this paper, we study run-time methods to automatically parallelize and

schedule iterations of a do loop in certain cases, where compile-time information

is inadequate. The methods we present in this paper involve execution time pre-

processing of the loop. At compile-time, these methods set up the framework for

performing a loop dependency analysis. At run-time, wave fronts of concurrently

executable loop iterations are identified. Using this wavefront information, loop

iterations are reordered for increased parallelism.

We u_ilize sybolic transformation rules to produce: (i) inspector proce-

dures that perform execution time preprocessing and (2) executors or transformed

versions of source code loop structures. These transformed loop structures carry

out the calculations planned in the inspector procedures. We present performance

results from experiments conducted on the Encore Multmax. These results illustrate

that run-time reordering of loop indices can have a significant impact on perfor-

mance. Furthermore, the overheads associated with this type of reordering are

amortized when the loop is executed several times with the same dependency struc-
ture.

17. Key Words(Sug_sted byAu_or(s))

loop parallelization, shared memory,

wavefront, level set, inspector,

executor

19. $ecuri_ Cla_lf. (of this report)
Unclassified

18. O_ribut_n Statement

59 - Mathematical and Computer Sciences

(General)

61 - Computer Programming and Software

Unclassified - Unlimited

Securi_ Clessif. (o! _ page) 21. No. of N_s _ _. Price

Unclassified 24 1 A03

NASA FORM 1626 OCT

NASA-bmg_ey,z_se

