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Theory of Biaxial Graded-Index Optical Fiber

1. Introduction

1.1 Review of Previous Research

The optical fiber has become a much studied transmission system due to its property of
wave guidance with lc;w loss. In recent years it has been shown that introducing anisotropies
into the dielectric medium of the fiber produces several interesting features, such as control
of power flow and reduction of peak attenuation near cutoff.

Typically the analysis of wave propagation in a cylindrical dielectric waveguide such
as an optical fiber is performed using a wave equation formulation. For the simple case
of a step-index fiber a detailed analysis, including dispersion relations, cutoff conditions
and mode designations, is presented by Snitzer [1]. Paul and Shevgaonkar [2] present a
similar analysis for a uniaxial step-index fiber and also perform a perturbation analysis to
determine the modal attenuation constants. These are the only two cases for which exact
solutions are known.

For inhomogeneous fibers no exact solutions are known. For the case of an isotropic
graded-index fiber several approximate analytic solution methods are available. These ap-
proximate solutions all share the common assumption that the fiber is infinite in extent. In
addition if the permittivity is assumed to vary slowly over the distance of one wavelength
the wave equation formulation simplifies to an asssociated scalar wave equation. If the

permittivity profile is parabolic the solution to the scalar wave equation can be written

in terms of either Laguerre polynomials [3] if cylindrical coordinates are used or Hermite

1
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polynomials [4] if rectangular coordinates are used. For arbitrary permittivity profiles the
scalar wave equation can be solved using the well known WKB solution method [5], (6]. For
parabolic permittivity profiles all three solution methods give identical results. Under the
assumption that the fields are far from cutoff Kurtz and Streifer (7], [8] have shown that a
solution to the full vector problem can be written in terms of either Laguerre polynomials if
the permittivity profile is quadratic or asymptotically in terms of Bessel and Airy functions
for arbitrary permittivity profiles which decrease slowly and monotonically. A comparison
of the vector and scalar solutions for the quadratic permittivity profile implies the vector
modes can be obtained by simply renumbering the scalar modes [9]. Using the renumbered
scalar modes as a basis Hashimoto [10], [11], [12] and Ikuno [13], [14], [15] have developed
two slighly different iterative methods which can be used to solve the full vector problem
for an isotropic graded-index fiber.

An alternate formulation of the problem is to write the four first-order differential
equations for the tangential field components as a first-order matrix differential equation.
For a step-index fiber with uniaxial core and cladding Tonning [16] has shown that the
matrix formulation can be solved exactly in terms of Bessel functions. For isotropic graded-
index fibers with arbitrary permittivity profiles Yeh and Lingren [17] have indirectly used
the matrix fomulation in developing a numerical solution method based on the concept
of stratification. Using the concept of transition matrices Tonning [18] has developed a
numerical procedure which can be used to solve the matrix differential equation for isotropic

graded-index fibers.



1.2 Outline of Proposed Research

This thesis concerns itself with the general case of a biaxial graded-index fiber with a
homogeneous cladding. Two methods, wave equation and matrix differential equation, of

formulating the problem and their respective solutions will be discussed.

For the wave equation formulation of the problem it will be shown that for the case
of a diagonal permittivity tensor/%, the longitudinal electric and magnetic fields satisfy a
pair of coupled second-order differential equations. Also, a generalized dispersion relation
is derived in terms of the solutions for the longitudinal electric and magnetic fields. For the
case of a step-index fiber, either isotropic or uniaxial, these differential equations can be
solved exactly in terms of Bessel functions. For the cases of an isotropic graded-index and a
uniaxial graded-index fiber a solution using the Wentzel, Krammers and Brillouin (WKB)
approximation technique will be shown. Results for some particular permittivity profiles
will be presented. Also the WKB solutions will be compared with the vector solution found

by Kurtz and Streifer [7].

For the matrix formulation it will-be shown that the tangential components of the
electric and ma.gnetié fields satisfy a system of four first-order differential equations which
can be conveniently written in matrix form. For the special case of meridional modes the
system of equations splits into two systems of two equations. A general iterative technique,
asymptotic partitioning of systems of equations, for solving systems of differential equations
is presented. As a simple example, Bessel’s differential equation is written in matrix form
and is solved using this asymptotic technique. Low order solutions for particular exam-

ples of a biaxial and uniaxial graded-index fiber are presented. Finally numerical results
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obtained using the asymptotic technique are presented for particular examples of isotropic
and uniaxial step-index fibers and isotropic, uniaxial and biaxial graded-index fibers.

For purposes of comparison and verification a purely numeric solution method is also
presented. The algorithm used by Yeh and Lindgren [17] is improved to handle the case of

a uniaxial graded-index fiber.



2. Analytic Solutions

2.1 Introduction

Consider a circularly symmetric optical fiber with the geometry shown in figure 1. The
region 0 < p < a is referred to as the core and the region a < p < b as the cladding.
The permeability of both the core and cladding is po, the permeability of free space. The
permittivity of the cladding is €pe. where ¢p is the permittivity of free space and ¢. is the
relative permittivity of the cladding and is assumed to be a constant. The permittivity
of core is €pé, where & is the relative permittivity tensor of the core and in general is a
function of position in the core. Also it is assumed that the radius of the cladding, b, is
sufficiently large so that the fields in the cladding decay exponentially and are essentially
equal to zero at p = b. This eliminates the need to impose boundary conditions at the
air-cladding boundary.

Consider the case where the permittivity in the core, € is given by

ei(p) O 0
ép)=cotr(p)=€| O efp) O ; (2-1)
0 0 e3(p) pibz

where €;(p), €2(p) and e3(p) are the relative permittivities in the p, ¢ and z directions

respectively.

For time harmonic fields in a source free region, Maxwell’s equations can be written as

V x H = jweee, E, (2-2)
V x E = —jwuoH, (2-3)
vV-D=0, (2-4)

V-B=0, (2—5)



Figure 1 Geometry of the fiber

where ¢p and o are the permittivity and permeability of free space, and w is the angular
frequency. The problem is to find a solution for egs. (2-2) to (2-5) in cylindrical coordinates.

If the = and ¢ dependence of the fields is given by

6‘152+Jm¢,

where J is the longitudinal wavenumber and m is any integer ( because the fields are periodic

in ¢ with period 2x ), then eqs. (2-2) and (2-3) can be written in cylindrical coordinates as

1—:—}], + BHy = wepe E,, (2 - 2a)
. dH, ]
—]ﬁHp - T = Jw6062E¢, (2 - 2b)
p
1d jm .
L (pH)-2T"H = - —
pdp(P ¢) P jweoesE (2-20)
m
;E, + BEy = —wpoH,, (2 - 3a)
. dE .
]ﬁEp + "—1?: = ]wpoH¢, (2 - 3b)
1d jm .
~—(pEy) - LB, = —junoH.. 2 - 3¢)

pdp P



2.2 Wave Equation Formulation

2.2.1 Derivation of Differential Equations

Setting h = ZoH, where Zy = 1/po/¢o is the impedance of free space, eqs. (2-2a) and (2-3b)

can be written as the following system of equations in the unknowns E, and hy:
m

kofpr—ﬂh¢ = 7’1:,
dE, (2-6)

where ko = w,/€opto is the wavenumber of free space. Similarly, eqs. (2-2b) and (2-3a) can

be written as:

.dh,
koes Ey + Bh, = j &
(2-7)
m
BEg + koh, = —7E,.
Solving eqgs. (2-6) and (2-7) for E,, hy, Ey4, and h, gives
1 [mky . dEz]
= — "—hz - ﬂ s 2 - 8a
g kol e 7 dp ( )
1 ’mﬁ dEz
ho = o | 22 b, ~ jkocy ] (2 - 8b)
k2 dp
1 [mg dh,
Ey = — E. + jk , 2 -
1 -—-mkofz . dhz
h, = = E, - 38 ] 2 - 8d
? kBl P dp ( )
where
ktznzkgcﬂ-ﬂzv n=1’2 (2—9)

is the transverse wave number. Eq. (2-8) gives expressions for the transverse field compo-
nents in terms of the longitudinal components F, and h,.

The remaining two equations (2-2c) and (2-3c) can be written as

dE E j

T2 _IMp 4 jkeh, =0, (2 - 10a)
dp p P

dhd, h¢, ]m .

— — — .._._h — z = . —_

dp + P P p ]koE3E 0 (2 ].Ob)



Substitution of egs. (2-8a,c) into (2-10a), and egs. (2-8b,d) into (2-10Db) yields:

E:\', ., (K mB jko ;s
mﬂ(k—;‘,;;> +]k0(—> +k2 2E -+ h

Kl kP
- JIZ‘;’““ h, — ;:;ﬁ)}z; + jkohy = 0, (2 - 11a)
) , .
ms(g5) kol ) Ea e
j’:::’”E, - Ejh’, — jkoesE, =0 (2 11b)

where ' = d/dp. Simplifying eq. (2-11) by collecting common derivatives of E, and h, gives

the following

e (3 28 )1+ k(1 - ;g%)h,

jmp ) o k2
- = E! 2-1
kop [( ktzl ) z kt2 E , ( 20)

E] + B+ (]_n ) )’]E’ f::k ( €2 k::: )E

jmp kD) ki
1- h, —2-+h,| =0. 2-12b
+ 61 kop [( k?2) z ktl 0 ( )

In general, egs. (2-12a) and (2-12b) are coupled except for the case m = 0. This implies
that the general solutions of eqs. (2-12) are of a hybrid type with both E, # 0 and h, # 0.

Egs.(2-12) can be written in a more covenient form if we make the following substitu-

tions
f—o = K, (2 - 13)
k2 2 €1 k2 €1 — €2
1- —t = , 1- = , 2-14
ktz2 €9 — K2 kfl € — K2 ( )
ok _ 4 y-1 (2 - 15)
ky - &?
and
€ \! kZe)
n—=)} =-———<. 2-16
( ktzl) 1(e1 — &%) ( )
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It is also convenient to make a change of variable from p to the normalized radius r» where
r = p/a and a is the core radius. Using eqs. (2-13), (2-24) and (2-15), egs.(2-12) can be

rewritten as

E;+ fi(r)E, + A2 q1(r)E. = pa(r)h; + ga2(r)h., (2 -17a)
R + fa(r)h), + Azg-_,('r')hz =pi(r)E, + q1(r)E;, (2-17b)

where ' = d/dr, A? = (koa)? and

fi(r) = % T amer) = (2 - 18a)
fa(r) = } - ;;(—?)(—r_l,;; (2 - 18b)
wr= 20 - A et e
aa(r) = falr) = 7)1 - . (2~ 184
pi(r) = jn:K [616(12)__62&(:)] (2 - 18¢)
= - [l o0 -
qi(r) = —jTK’ Lz(f")(i) K_2], (2 - 18¢)
o= 385 [ w ) (2~ 180)

From egs. (2-18e) through (2-18h) we can see that the differential equations become de-
coupled for three particular cases. For so called meridional modes m is equal to zero and
from eqs. (2-18e) through (2-18h) it can be seen that p;, p;, ¢; and ¢, are also zero. For
an isotropic and uniaxial step index fibers €; and ¢, are equal and constant, therefore, from

egs. (2-18e) through (2-18h) p;, p2, ¢1 and p; are identically equal to zero.
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2.2.2 Derivation of Dispersion Relation

For the region r < 1, let the general solutions of egs. (2-17a) and (2-17b) be given by

~

E, = Ae(r), h; = Bh(r), (2-19)

where A and B are constants. Using egs. (2-8b,c) in egs. (2-8b) and (2-8¢) the tangential

components rE, and rhy can be written as

mﬂ ]k r
rEs= —5 Ae(r) + k‘; BHK/(r) (2 — 20a)
t2 t2
mp ]koelr ,
hy = h(r : - 20b
rhy = Tz Bh(r) = TR AC() (2 - 200)

where ¢'(r) = (d/dr)e(r) and h'(r) = (d/dr)h(r).

For the region © > 1, €, €, and €3 are equal to a constant €. Under these conditions
eqs. (2-17a) and (2-17b) simplify to Bessel's equations of the variable k;ar where k7 =
kZe. — B%. For guided modes we require that 8% > k2e. and that the field be of the form
e~ as r tends to infinity, with ¥ > 0. If we let 42 = —k? we can choose Km(yar), the
modified Bessel function of the second kind, as the solution which satisfies the requirement

of a decaying exponential. E, and h, can then be given by
E, = CKn(yar), h,= DKp(var), (2-21)

where C and D are constants and 72 = —k? = 82 — k2e.. From egs. (2-8b) and (2-8c) the
tangential components rEy and rhy for r > 1 are given by
m jkoT
rEy = —a—g—CKm(-yar) - %DK:,‘('yar) (2 - 22a)

mp Tko€cr
rhy = —27—2DKm(7ar) + ——(S—_;E—CK:"('yar) (2 - 22b)
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where K| (yar) = dK,(var)/d(yar).
At r = 1 the tangential components of the electric and magnetic fields, E;, h,, E4 and

hg must be continuous. Using egs. (2-19) to (2-22) the boundary condition can be written

as

0 h(1) 0 —Km(ya) B 0 )
Hose(l) FBSH()  HKa(e) EK.Ga)||c|T|o] @7
ko€ mf jhoec 8 D 0
—amme (D) aEmh) -FEEn(re) =1 Km(ya)
For a non-trivial solution to eq.(2-23) the determinant
e(1) 0 —Kpm(ya) 0
0 h(1) 0 — Kn(ya)
A: m, ] m 4 ] r 2‘—24
Flse(l) FB5H()  ZEKa(re) KL (ya) (2-24)
~dhee() GEESh) -BSK(j0) ZKm(ya)

must be identically equal to zero.
For convenience let e = e(1), h = h(1), € = €'(1), k' = K'(1), kZ,(1) = k%, Km =
K,.(ya), and K] = K] (va). By expanding the determinant and performing some algebraic

manipulations the generalized dispersion relation is given by

2 o arllpe el A e
kg (va)?  (kuna)?|(ya)?  (ke2a)? " {7a K,  (knae) e]|va K, (kgza)? b
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2.2.3 Exact Solutions

For an isotropic step index fiber ¢, €2 and €3 are all equal to the constant ¢,. Eqgs. (2-17)

then simplify to

" 1 ! 2 m?
Ez + ;Ez -+ (kta) - —TT E, = 0, (2 - 26(1)

P G 2 m?
hz + ;hz + (k,a) - 1‘—2 hz = 0, (2 - 26b)

where (ka)? = A(er - k%) or k? = e kZ - B2. E, and h, are then given by
E, = AJn(kear), h.= BJum(kear), (2-27)

where A and B are constants. By substituting eq. (2-27) into the generalized dispersion
relation given by eq. (2-25) and making use of the fact that for a step index fiber k% =

k2, = k? gives the well known dispersion relation for a step index fiber:
(_@)[ 1,1 ]2 ) [e_c Kip(30) & J:n(k,a)]
ko (a7)? 7 (ak)?]  lay Km(va) ak Jm(kea)
.[j_Kﬁi7a) _j_J;(haw

(2 - 28)

ay Km(va) = aky Jm(kea)

where 72 = 8% — e ki.

For a uniaxial step index fiber ¢; = €2 # €3 and €; and €3 are constants. Eqs. (2-17)

simplify to
B+ 1B 4+ | B (kea)? - ™l =0 (2 - 29q)
I € r?
w o, Loy 2 _ Ti _ _
Rl + rh, + {(kea) ) h,=0 (2 - 29b)

where (kia)2 = A%(e; — k2) or k} = erk§ — (2. By defining an anisotropy parameter

p? = €3/€, the solutions of egs. (2-29a) and (2-29b) are given by

E, = Aln(pkear), k.= BJ(ksar), (2 - 30)
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where A and B are constants. By using eq. (2-30) in eq. (2-25) and making use of the fact

that k% = k2, = k? the dispersion relation for a uniaxial step index fiber is given by [2]

(&) T ] = [5280m- Fie)
, [i Kin(va) LJr’n(kta)]
ay Km(ya)  aky Jm(kea)

(2 - 31)

A representative case for both an isotropic and a uniaxial step-index fiber is presented.
When m = 0 the solutions of the dispersion relations, either eq. (2-29) or (2-31), are either
transverse electric, £, = 0 or transverse magnetic, h, = 0 and are designated by the notation
TEon and TMy,, respectively where n = 1,2,3,.... When m > 0 the electric and magnetic
fields for all solutions have components in the axial direction, i.e E, # 0 and h, Z 0 and
are therefore designated as hybrid modes. A hybrid mode is arbitrarily designated as EH
(HE) if at some arbitrary reference point E, (h,) makes a larger contribution than h, (E,)
to the transverse field. A less arbitrary classification scheme, which gives the same mode
designations, based on the ratio of H, to E, at cutoff has been proposed by Snitzer(1] and
refined by Safaai and Yip[19].

As an example of an isotropic step-index fiber the relative permittivities of the core and
cladding are taken to be ¢, = n? and ¢, = n? respectively where n, = 1.515 is the refractive
index of the core and n. = 1.5 is the refractive index of the cladding. Figures 2 and 3 are
plots of the normalized propagation constant, & = (/kg, versus the normalized free space
wavenumber, A = kga for the cases m = 0 and m = 1 respectively. Two notable features
are that the TEp, and the TMy, modes are essentially degenerate except close to cutoff
and all modes except the HE;; mode have a finite non-zero cutoff frequency.

As an example of a uniaxial step-index fiber the relative permittivities in the core and
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cladding are taken to be ¢ = €; = n?, €3 = n? and ¢ = n? where n; = 1.515 is the
g 1 3 c

refractive index of the core in the p and ¢ directions, nz = 2 is the refractive index of the
core in the z direction and n. = 1.5. Figures 4 and 5 are plots of k versus koa for the cases
m=0and m=1. A comparison of egs. (2-27) and (2-30) implies that the introduction of
anisotropy into a step index fiber affects modes where E, makes the larger contribution to
the transverse fields, i.e. TMp, and EH,,, modes. A comparison of figures 2 and 4 show
that the TEo, modes for the isotropic and uniaxial step-index fibers are identical while
the TMo,, modes for the uniaxial case are displaced from the corresponding TMoyn for the
isotropic case. Comparing figures 3 and 5 it can be seen that both the EH and HE modes
for the uniaxial fiber are displaced from the corresponding mode for the isotropic fiber. As
expected the effect of the anisotropy is much more pronounced in the EH modes than in

the HE modes.
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Figure 5 Uniaxial step-index fiber: m =1

16



2.2.4 WKB Solutions

17

In order to solve eq. (2-17) for the case of an inhomogeneous fiber some simplifications

must be made. If we assume the variation in the permittivities is very small over distances

of one wavelength and the core is infinite in extent ( eliminates need to impose boundary

conditions ) then the WKB method can be used. For the case of an isotropic or uniaxial

graded-index fiber €;(r) = €2(r) and eq. (2-17) simplifies into

1
B!+ SE,+ A'qi(r)E. = 0,

1
hy + ;h,z + A%gy(r)h, =0,

where g; and g, are given by

() = ey - 7] - i
2

e(r)

gz(‘f‘) = 61(7') — K2 - 7\2_7-2

Let E, be of the form
E, = edkov(r)

then
E; - jk0¢’Ez )

By = [jkoy" - K3(&')’] B,

(2 - 32a)
(2 — 32b)
(2 — 33a)
(2 - 33b)
(2 — 34a)
(2 — 34b)
(2 - 34¢)

Substituting eq. (2-34) into (2-32a) and dropping common factor of E, gives the following

differential equation for v(r)

gko

r

jko‘l/)” _ kg(d)l)? +

¥’ + A%gy = 0.

(2 - 35)



If g, is a slowly varying functon of r then ¥(r) can be approximated by

1
¥(r) = vo(r) + E;d)l(");
and
¢I —_ wl 1 !
— %0 + Ed’la
(¢l)2 — (¢I)2 + _2_¢I¢I + l(¢l)2
[1] kO oY1 k(z) 1/

1
Y=

18

(2 - 36a)

(2 - 36b)

(2 - 36¢)

(2 - 36d)

Using eqs. (2-36a) through (2-36d) in eq. (2-35) gives the following equation relating to and

1, to the functions f, and g.

Ghowl + 0 — K3(5)? — 2kotpdy — (1)’

. :
+ ]—r—°¢{, + %wi +A%g1 =0

(2 - 37)

Recalling that A% = (koa)?, if we equate like powers of ko we obtain the following equations

for v and ¥;:

(¢(,J)2 - a2g1 =0,

JUl - 2wt + Zup = 0.

Solving eq. (2-38a) gives
o = ia/ Vai(r)dr

Eq. (2-38b) can be written as

gty d
i~ 2yl + 2 =0
J¢6 ¢1+r ]

or

i(r) = La(ref).

(2 — 38a)

(2 - 386)

(2 - 39)

(2 - 40)
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Using eqs. (2-39) and (2-40) E, can be written as

eijkoa f Vo1 (r)dr

E, = . 2-41
vrlatgy(r))* ( :
Using the same method h, can be found to be
e:tjkgaf g2(r)dr
hy = - (2 - 42)
Vrla?gx(r)]
The mode condition for a WKB solution [20},(6] requires that
T2 1
koa/ Vgi(r)dr=(n+ -2—)7r n=20,1,2,... (2-43)
LB

where 7 = 1,2 and r, and r, are the turning points (zeroes) of g;. An exact solution of
eq. (2-43) is possible only for a small number of permittivity profiles. In general, eq. (2-43)
must be solved numerically to determine the allowable modes.

Consider the case where the permittivity profiles in the core are given by
ei(r) = & {1 - 2A,-r°“] i=1,2,3 (2 - 44)

where a; is a parameter which describes the shape of the permittivity profile,

€ — € .
A; = =1,2, 2-43
2¢; ' 3 ( )

and ¢; is the relative permittivity at the center of the core. The value of the parameter
a; must be greater than or equal to one. Note that in the limit a; — oo the permittivity

profile approaches the profile for a step index fiber.

Let us consider the special case of an isotropic graded-index fiber.with a parabolic

profile. Since €;(r) = €2(r) = e3(r) = ¢,(r) eq. (2-33) reduces to

01(r) = 92(r) = 9(r) = & (r) - &* = (2 - 46)
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where

&(r) = & [1 - 2Ar’] (2 - 47)

and

€ — €¢
A= 2—-4
2e. (2~ 48)

For this choice of ¢,(r) it is possible to analytically solve eq. (2-43) to obtain the allowable

modes.

The turning points r; and ry, determined by setting g(r) = 0, are given by

€ — K2
re = —r; = 5o A m=20 (2 — 49q)

rl_-,,:\/g[Ai\/A?—ziB] m# 0 (2 — 495)
where
2
€& — K
A= Y (2 - 50a)
and
2
m
= —— — 50b
B Se.AAT (2 — 50b)

When m = 0, substituting eq. (2-46) into eq. (2-43) and integrating, using r; and r; given
by eq. (2-49a), results in the following mode condition

2

A\/m(e,—n)

2¢, A

=(n+—)1l’ m=20. (2—51)

Solving eq. (2-51) for x gives

(2n+1) m=0. (2 - 52)
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Similarly, when m # 0 substituting eq. (2-46) into eq. (2-43) and integrating gives

AV2,A (2 412 1
;, (n;rz_,l,z),,=(n+§)x m# 0. (2-53)

Substituting for r; and r; from eq. (2-49b) and solving for « results in

=\/e,-2 ierA(|m|+2n+l) m#0. (2 - 54)

K=

B
ko
Plots of k versus kga for the case m = 0,1 and 2, when n, = 1.515 and n, = 1.5 are shown

in figures 5, 6 and 7. At the present time these WKB solutions will be designated by the

notation WKB,,,, where m and n correspond to the m and n in egs. (2-52) and (2-53).

1515 ————r———r——————————r——r——r

1510

1.505 +

koa

Figure 6 WKB solution for an isotropic graded-index fiber: m=0

For the case of a uniaxial graded-index fiber ¢,(r) # €3(r) and the functions g,(r) and

g2(r), given by eq. (2-33) are not equal. Comparing eqgs. (2-33b) and (2-46) it is clear that if
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kot

Figure 7 WKB solution for an isotropic graded-index fiber:

m=1

1 515 ety ———T—

1510

1505+

1500..;.14...!...;

kod

Figure 8 WKB solution for an isotropic graded-index fiber:

m=2
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€1(r) in eq. (2-33b) is equal to ¢(r) in eq. (2-46) then the solutions of the modal condition,
eq. (2-43), when i = 2 are identical to the solutions for the isotropic case.

Again, consider the case where the relative permittivities in the core have parabolic
profiles. The solution of the mode condition, eq. (2-46), when i = 1 must be found by
numerical integration. These solutions corresponding to the solutions of eq. (2-32a) for E,
and will be designated as E,,,, modes. The solution of the mode condition when ¢ = 2 are
identical to the solutions for an isotropic graded-index fiber given by egs. (2-52) and (2-53).
These solutions correspond to solutions of eq. (2-32b) for h, and will be designated as H,,,,
modes. Figures 9 and 10 are plots of x versus koa for a uniaxial graded-index fiber for the
cases m = 0 and 1 with n; = 1.515, n3 = 2 and n. = 1.5.

It is important to remember that the E, and h, given by egs. (2-41) and (2-42) are
not solutions of the complete vector problem given by egs. (2-17) and (2-18) but are rather
solutions of a related scalar problem given by egs. (2-32) and (2-33). Assuming an infinite

core, an alternative solution of the scalar problem for an isotropic parabolic-index fiber [4],

[21] is given by

m 2 2
E,.h, =an(£) L;"(”—z)e—%(%) (2 - 55)
S0 80
and
2 2 2
B = ki€ — ?(m +2n +1) (2 - 56)
0
where m = 0,1,2,..., n = 0,1,2,..., 8 is the characteristic spot size of the medium

defined as s3 = a/ko\/2¢, A, flr is a generalized Laguerre polynomial and B,,, is a modal
constant. It can be readily seen that eqs. (2-54) and (2-56) are identical expressions for the

propagation constant 3.
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Figure 10 WKB solution for a uniaxial graded-index fiber: m=1
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Assuming an infinite core and the fields are far from cutoff a vector analysis of an

isotropic parabolic-index fiber [7], [9] gives the following for the transverse fields:

mn —

B = (7ip - $)9 ma 8 = s x B (2=
where
mF1l 2 2
i p m P -3(&
Q():q(;) Ln_:Ff(s—g)e 3 (%) (2-57)
and
Ko - Zm+2(n-1)] i=1,
2 — o “\‘ (2 - 58)

kier — H(m+ 2n), i=2,
[

wherem = 1,2,3,...,n = 1,2,3,..., and the upper(lower) sign corresponds to i = 1(i = 2).
When i = 1 it can be shown that the solutions correspond to HE modes while when ¢ = 2
the solutions correspond to EH modes. For the special case m = 0, meridional modes, it

can be shown for the TEg,, modes that

E,=0 and E,=-9%® (2 - 59a)

while for the TMg,,

E,=¥%?% and Ey;=0 (2 — 59b)

where for both TEg,, and TM,,, modes

4n
Bon = Kier = — - (2 - 60)

(4]

Comparing the scalar solutions given by egs. (2-55) and (2-56) with the vector solutions

given by eqgs. (2-57), (2-58), (2-59) and (2-60) it can be seen that

vector ﬁ:'::l?fn—l for HEmn mOdes;
B (2-61)

i ::l::-leﬂ—l for TEDYH TMOn an.d EHmn modes,

form=0,1,2,...,and n = 1,2,3,... where 83" is given by eq. (2-58) and pBrceler is given

by eq. (2-56).
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2.3 Matrix Differential Equation Formulation

2.3.1 Derivation of Differential Equation

In general the solution of eq. (2-17) is not possible except for the case of an isotropic or
uniaxial core. A direct series solution for a more general case is not possible except for the
case when m = 0. However, a series solution in this case still may not be possible due to
the poles in fi(r), f2(r), g1(r) and g2(r). The WKB solution of eq. (2-17) while useful for
determining propagation constants away from cutoff is essentially the solution of a scalar
wave equation. It also ignores the effects of electromagnetic boundary conditions and the
effects of coupling between E, and h,.

An alternative formulation [18] is to write egs. (2-2) and (2-3) as a set of four first
order differential equations in terms of the tangential field components. This formulation
preserves the vector nature of this problem and permits the use of the boundary conditions.

Eqs. (2-2) and (2-3) can be rewritten as

1 Im ‘
Ep = weoe, [;H; + ﬂHd,], (2 - 620,)
1 [m
H,=-—|—E. + H], 2-62b
o= |2 e+ o, (2~ 620)
and
dE, . .
5, = JwmoHs~ iBE (2 - 63a)
d . .
a;(pEd,) = jmE, - jwpopH, (2 - 63b)
dH, . :
= —jweoes By — jBH, (2 - 63c)
dp
d : .
—(pHy) = jmH, + jweoespk, (2 - 63d)

dp



27
where eqs. (2-62a) and (2-62b) represent two scalar equations and eqgs. (2-63a,b,c,d) repre-
sent four first order differential equations. Substituting eq. (2-62) into eq. (2-63), recognizing
that ko = w,/éopto, Zo = V/€o/po and k = B/ko and making a change of variable from p to

a normalized radius s, where s = kop = (koa)r = Ar gives

ddE; = -j%'lfh, + sie'l(ex — K?)(shg), (2 - 64a)
a%(s&) = ;—i—l(mz —e1s)h, + j?ﬁ?(Sh.ﬁ), (2 - 64)
R TR ) (2~ 64)
%(shc») = —é( ? - €eas’)E; - i%(s%)- (2 - 64d)

Eq. (2-64) can be rewritten in matrix form as

‘;—‘-s’ - %A(s)u, (2 - 65a)
where
u=(E, sEy h, shy)T (2 — 65b)
and
0 0 . -jee -Ei](el ~- k?)
2 (m? — ¢, 82 jmK
A(s) - ' 0 . O € (m 613 ) J € . (2 — 65c)
jmk —j(€z — k%) 0 0
~j(m? — e38?) —jmx 0 0

For the special case of meridional modes, m = 0, egs. (2-64) can be separated into two
systems each containing two equations. The first set corresponding to transverse magnetic

modes can be written in matrix form as

du™)
ds

- %A(TM)(s)u(TM) (2 - 66a)

where
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u™) = (B, shy)T (2 - 66b)

and

0 "L 1 — Kz
AMM)(5) = (J_essz a o )) (2 - 66¢c)

The second set corresponding to transverse electric modes can be written as

d“;:E) = LATE)(5)u(T® (2 - 67a)
where
uTE) = (b, sE,)T (2 - 67b)
and
ATE)(g) = (_?52 —.'i(fzo— Kz)) (2 - 67¢)

Egs. (2-65), (2-66) and (2-67) can be solved by several different method depending upon
the choice of permittivity profiles in the core. For the case of a step-index fiber, either
isotropic or uniaxial, an analytic solution of eq. (2-65) in terms of Bessel functions [16], [18]
is possible. This analytic solution is identical to the exact solutions given in section 2.2.3.
For the case of an isotropic graded-index fiber an approximate method using the concept
of transition matrices [16] can be used.

For the more general cases of a uniaxial or biaxial graded-index fiber these two previous
methods are not applicable. The first method can be used in an approximate manner for an
uniaxial graded-index fiber by assuming the permittivities are piecewise continuous. This
is equivalent to the stratification technique which will be discussed in section 3. The second
method can not be used for either a uniaxial or biaxial graded-index fiber because the

formulation depends upon a symmetry in the matrix A(s) which is present only for the
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isotropic case.

What is needed is a solution method which can be used with all possible types of fibers,
isotropic, uniaxial and biaxial, step or graded-index. One such method is the method of
partitioning of systems of equations [22]. This method involves transforming a system
of first order linear differential equations into a system of equations whose solutions are
easier to find. The solution obtained using this method is valid wherever the Taylor series
expansion for A(s) is valid. The form of the solution method presented in the following
section is based on the expansion of A(z) in positive powers of z in contrast to the usual
form where the expansion is in terms of positive powers of 1/z.

The reason for using this alternative formulation should now be readily apparent. If
the relative permittivities are of the form given by eq. (2-44) the poles of A(s) are located
outside the fiber core in the region » > 1. The series expansion is therefore valid for the
entire fiber core. In contrast the system obtained by writing eq. (2-17) in matrix form has

poles in the region 0 < r < 1 whenever either €;(r) or €z(r) is not a constant.
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2.3.2 Series Expansion
Consider the following system of n linear differential equations

du 1
o -z—qA(::)u(z), asz— 0 (2 - 68)

where u is a column vector, ¢ is an integer greater than or equal to 1 and Aisa N x N

matrix given by

A(z)= 2 A,z" asz— 0. (2-69)
n=0

We seek formal solutions of the form

u(z) = y(z)z° A (2 - 70)
where ¢ is a constant,
g+1 A
= _Inen -
A(z) ; "z (2-71)
with A_, = 0 for n > 0 and
o
y(z) = Zynz" asz — 0 (2-72)
n=0

Substituting eqgs. (2-69) to (2-72) into eq. (2-68) and equating powers of z, we obtain

equations to determine successively An, o and yn.



31

2.3.3 Asymptotic Partitioning of Systems of Equations

It is possible to simplify the system of equations by transforming them into some special

differential equations whose solutions are easier to find. Let
u(z) = P(z)v(z) (2-13)

where u and v are column vectors and P(z) is a N X N nonsingular matrix. Using eq. (2-73),

eq. (2-68) can be transformed into

dv 1
= ~B(z)v(z) (2~ 74)
where
B(z) = P(z)"! |A(z)P(z) - qur;i’) (2 - 75)
2992 G) _ A(2)P(2) - P(2)B(2). (2 - 76)

Choose P(z) such that B(z) has a Jordan canonical form. To do this, let

B(z) = Zan" asz — 0,

n=0 (2-77)
P(z) = Z P,z™ asz —0,

n=0

where B,, represents a Jordan canonical matrix. The left hand side of eq. (2-76) can then

be written as

[+ <]

dP(z) - — n+g—1 __ n
o) nzzjlnpmz g —é(n—qﬂ)Pn-mz (2-78)

while the right hand side of eq. (2-76) can be written as

A(z)P(z) - P(z)B(z) = ) [Z(A,Pn_, ~ P,B,,_,)] 2", (2-19)

n=0 “[=0
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Using eqs. (2-78) and (2-77) eq. (2-76) can be written as

Y (n-g+ VPacquiz”= Y |

n=gq n=0

D (AiPn - P;Bﬂ_l)] z" (2 - 80)
=0

Equating like powers of z we obtain

AcPo—PoBo=10 (2 - 81)
for z° and for z*, n > 1,
(n=g+1)Pr_gs1 = (AP —PBn) (2 - 82)
=0

where P,,_,41 = 0 for n — ¢ + 1 < 0. Rewrite eqs. (2-81) and (2-82) as

By, = P;'APo (2 - 83)
and
n-1
AP - P,Bo=(n-g+1)Pugi1— > (AniPi—PyB,)) (2 - 84)
=0

where P, is chosen so that By is a Jordan canonical matrix. Multiplying eq. (2-84) from

the left by Pg ! and pulling the first term out of the summation gives
P;AoP, - P;'P,B, =

= (n -q+ 1)P51Pn-q+1 - PO—IAnPO + PEIPQBn

(2 - 85)
n-1
- P! Z (An—iP; - PB,y)
=1
Now define the matrices W,, and F,, as
W, =P;'P, (2 - 86)

and

n-1 :
Fn=P;'A,Po+ Py ) (A. P - PB,) (2 - 87)
=1
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Eq. (2-85) can then be written as
BoW,-W,By=(n-¢+1)W,_g41+B,-F, (2 - 88)
If Po can be chosen so that Bg is diagonal then it can be seen frt;m eq. (2-16) that
(Bo); =X+ i=1,2,...,N (2 - 89)

where ); is the i’th eigenvalue of Ag. When By is a diagonal matrix the expression BoW,, —

W,.By has zeroes along its main diagonal. Eq. (2-88) can be easily satisfied by setting

_J (Fn)ys =155 _
(Bn);; = {0, i (2 — 89a)
and
(Wp); =0 forn>0. (2 —89b)

For the particular case ¢ = 1 eq. (2-88) reduces to
(Bo - nI)Wn - W.nBQ = Bn - Fn (2 - 91)
where, using w = (W,.)i; and f,';j = (Fn)ij,

(Bo—TlI) - WnBo

0 (A1 = A2 = n)wl? (A - Az - n)wl® (A - Az - n)w}?
(A2 = A1 ~ n)w?! 0 (A2 — Az — n)w?® (A2 - A3 — n)w??
(A;; - /\1 hd n)wil (A3 - Az - n)wﬁz 0 (Aa - A3 - n)wi"
Az — A —n)wil (A3 - Az — n)wi? (A3 - A3 - n)wp? 0
(2-92)
and 0 12 f13 14
n n n
21 23 24
B,-Fo=-|%1 12 8 F34 (2-93)

n
g e o
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Egs. (2-91), (2-02) and (2-93) can be used to find W,,. Note, if \;~ A;—n =0 and f/ # 0
it may not be possible to find W, and therefore it may not be possible to find a solution.

Using eqs. (2-86) to (2-90) the matrices B, and P, n = 1,2,3,... can be found using
an iterative procedure. After completing the desired number of iterations the matrices B(z)
and P(z) can be approximated by series constructed from By, and P,,n=1,2,3,.... Since
B(z) is a Jordan canonical matrix eq. (2-73) can be easily solved for the elements of the
vector v(z). Then, using eq. (2-73) the solution for the vector u in the original problem
can be found.

As an example of this solution method let us consider Bessel’s equation

d? d
223-2:—y2+zzg+(zz—m2)y=0 (2 - 94)

or equivalently

d dy 2 2y,
L (za)+(z -mf)y=0. (2 - 95)
Letting
d
y=u and 2d—z = up (2 - 96)

eq. (2-95) is transformed into

)Z(ngzz 3)(2) (2-97)

or equivalently

— = —A(z)u (2-98)

where

A0 = (e o) (2-99)
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Comparing eq. (2-98) with eq. (2-68) we see immediately that ¢ = 1. From eq. (2-99) we

have A,, = 0 for n > 2 and

0 1 0 0 0 0

A0—<mz 0), Ax—(o 0), Az—(_l 0)' (2 - 100)
If m # 0 the eigenvalues of Ay are £m and the matrices Py and Py ! can be chosen as

(1 1 4_1(m 1
P=(L 1) we mei(m 1) eom

so that
_ -1 L m 0 _

By =P, AoPo—(O —m). (2 - 102)

From eq. (2-87) we have

F, = PglAlPo =0 (2 -103)
and therefore B; = W; = P; = 0. Since B;, W, and P, are all identically equal to zero,

from eq. (2-87)

F; = P; AP = E}E ('11 ‘11) (2 - 104)
from eq. (2-90)
B= o () ‘j) (2 - 105)
and from egs. (2-91), (2-92) and (2-93)
W2=—1—( 0 'ﬁ) (2 - 106)
dm\ 753 O

Also, from eq. (2-86)

|3 L|"

1 S
P, = PWy = — ( m+1 ) (2 - 107)
4m R £

m+1 1

3

+
Notice that both W, and P, are undefined when m = t1 and as mentioned earlier a

solution may not be possible. For the moment ignore this problem with W and P; and
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proceed with the solution. It will be shown later that this problem can be alleviated by the
appropriate choice of integration constants.
Continuing the solution procedure we find F3, B3, W3 and Pj3 are all identically equal

to zero. The fourth iteration of the procedure gives

T2 S I
Fo=o0 ( oo ) (2 — 108a)
m+1 m-1 )
By= — (_#“ 0 ) (2 — 108b)
4= g 1 -
8m 0 =L
1
1 0 TP
me( . (m=tX ”) (2 - 108¢)
im+liim+2i 0
and
1 1 1
P, = T ( (m+1—)£nm+2) (m—lzr(lm—2) ) (2 _ 108d)
M\ i) (me2) mol)m-2) / .

The matrices B(z) and P(z) can be approximated as

B(z) ~ By + Bz:l'2 + B4.’I“1 (2 - 109(1)

P(I) ~ Po + Pgl‘z + P42? (2 - ].Ogb)

Substituting eq. (2-109a) for B(z) in eq.(2-74) gives

‘Z_';l - %[(Bo)u + (Ba)2° + (34)1124]01
2 4
- ) (2710
and
dvy 1 2 4
Z2 = ~[(Bo)y + (B2)yz2 + (Ba)ypzt w2
1

z? z*
_1 S 2~ 1105
z[ m+2m+8m2(m—1)} v ( 0%)
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Solving eq. (2-110) for v; and v, gives

2 2
- & [+ etem]
vi(z) = Crz™e * [ tmimt (2 - 111a)
and
—'1[1+——-——j'2 ]
vy(z) = Cpz~™e'm L P (2 - 1118)

where C; and C, are integration constants and m # 0.

Notice that v;(z) is undefined when m = —1 and v3(z) is undefined when m = 1. Also
notice that the matrices P, and P4 are undefined when m = +1 and in addition Py is
undefined when m = £2. In fact if more iterations are performed one would find that the
matrix P, is undefined when m = +1,+2,...,4k. It appears the eventual solution for
u;(z) and up(z) will always be undefined when m is an integer in the interval [—k...k]
where 2k is the number of iterations performed. This problem can be easily overcome by
setting C; = 0 when m > 0 and C; = 0 when m < 0. However, the two solutions which are
obtained are not independent solutions when m is an integer. A careful inspection of the

expressions for vy(z), v2(z), P2 and P4 show that

vg(z)‘m:_m = vy(2) (2 - 1120)
(Pe| _ =(P)y (2 - 112b)

and
(P | = (P (2 112¢)

where i = 1,2 and (P,);; is an element of P,,. Therefore, it is only necessary to consider

the solutions for m > 0.
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We can then write

(5) = G e e

Uz

1+ e [1 + z—(zz—m] e [1+——5=’ ]
m(m m(m =y
= Clz"‘ € m smim1 (2 - 113)

2 2
m-= 4(:.+1) [1 + 2m(fn+2)]
The constant C; can be determined by examining the solution of u; at z = 0 when m = 1.

When m = 1, up(z) = zdJ,/dz or

dJ;z(:c) _ uzi-’ﬂ) o [1 _ ‘%f (1 N 35_2)] e—%(u%)

but at z = 0, dJ;/dz = 1/2 and uy/z = C; therefore C; = 1/2. The solution of eq. (2-94)

for m > 0 can be written as

2
1 z?

v<==>=f“{”m[“m%m}}e_%[”m]~ - 114)

Now consider the solution of eq. (2-94) when m = 0. From egs. (2-98) and (2-99) we

have g =1, A, = 0 for n > 2,

01 0 0 0 0
ho= (0 1), = (2 0) a= (D) (2119

and A, has two eigenvalues equal to zero. Since Ay is already in Jordan canonical form let

Po=P, 1 — 1 where I is the identity matrix, so that

Bo = P;'AcPo = (g (1)) (2 - 116)

is also in Jordan canonical form. Performing four iterations of the solution procedure results
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in the following matrices:

B, =0
1/-1 1
W,=P,=-
2Ty (—2 1)
Fe B =W,=Py=0 - (2 - 117)
L, Y10 o0
F4_P01A2POZ<1 _1)
1/0 0
Bi=1 (0 —1)
1 /2 -1
wi=Po= 15 (3 22
The matrix B(z) can be written as
. [0 1
B(:z:) ~ Bg+ B41’ = 0 z4 (2 - 117)
ry
Eq. (2-74) can then be written as
d 1 ‘
% = —u (2 - 118a)
and
d 4
ﬁ = _zT"? (2 - 118b)
Solving eq. (2-118) first for v, and then for v; results in
vz(z) = C]C_z‘/ls (2 - 119(1)

and

T

v1(2) =/—cie_’4/wdz

3
= Cy+ Cre™='®1n(z) + C; / %e"‘/leln(z)d:c (2 — 1195)
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where C; and C, are integration constants. In order for v;(z) to be finite at z = 0 ( assumes
the desired solution is Jo not Ko ) the constant C; must be identically equal to zero,.or

v1(z) = C2 and va(z) = 0. The solutions of eq. (2-98) can then be written as

u(z) = P(z)v(z)
- o, ( it ) (2 - 120)

When m = 0 the solution of eq. (2-94) can be written as

y(z) = Cq (1 - ‘;—2 + %) (2 - 121)

which is simply the truncated series expansion for Jo(z).

2.3.4 Solutions for Transverse Modes

Assuming the individual elements of the matrices A(TE)(s) and A(TM)(s) can be expanded
as Taylor series, a completely general solution to eqs. (2-66) and (2-67) can be found in
terms of the coefficients from the series expansions. After two or three iterations of the
solution procedure the resulting matrices become cumbersome and further iterations are
tedious. If the form of the permittivity profiles is known in advance the iteration procedure
can often be made more manageable.

Let us assume the permittivity profiles are of the form given by eq. (2-44). In particular
choose all the profiles to have a parabolic shapeie. a; =2 i=1,2,3. It should be noted
that since €(r) and €;(r) must be equal at r = 0, it is necessary for €(0) = €(0) and
A, = A,. Since a; = a; = 2 this choice for the permittivity profiles does not strictly
contain an example of a biaxial graded-index fiber. If however, in the final result either A,

or A, but not both is set to zero then the resulting solution is a valid example of a biaxial
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graded-index fiber where either ¢;(r) has a parabolic profile and €;(r) is a constant or €;(r)
is a constant and €,(r) has a parabolic profile.

If all three permittivities have parabolic profiles then
6i(s) = (1 - 2A%%) i=1,2,3 (2 - 122)

where s = kop = koar and AY = A;/(koa)?. Substituting eq. (2-122) into the expression

for A(TM) given by eq. (2-66c) and expanding A(™) a5 a series results in A(TM) = 0 for

"= (o 5"
A< (0 AeAD
(i
-

n=1,2,3,... and

(2 - 123)
(TM

Jj€s

(2A°)2 2
—j2e3A9 0 )

0 —i(2A° " 2)

0

for n = 1,2,3,... where k%, = ¢; — x%. Similarly the expansion of A(TE) gives ASLTE) =0

(TM)

forn=1and n > 2,

0 —jk3 0 j2eA)9
a0 ) e (2 P8) g

where k%, = €, — k%, Since the two eigenvalues of both A(TM) and AE,TE) are identically
equal to zero the matrix Py in both cases must be chosen so that By is Jordan canonical

matrix. Since ASTM) and AgTE) are of the form

Ao=<8 ;) (2 - 125)

if Pg is chosen as

Po=(; 2) (2 - 126)
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then

Bo = P;'AoP, = (g (1)) (2 - 127)

where eq. (2-127) is valid for both AgTM) and AE)TE).

Since By is not a diagonal matrix the choices made in eq. (2-89b) for the elements of
W, will not in general satisfy eq. (2-88). For the particular case ¢ = 1 if the elements of
B,, are chosen using eq. (2-89a) the elements of W,, must be chosen so that eq. (2-91) is

satisfied. For a 2 X 2 matrix eq. (2-91) can be written as

(wsl-nwy wff—nwiz-w%l)z( e (2 - 128)

21 22 21 — f21
—-nw? —nw?? — w? fa 0

where wiy = (W,);; and f9 = (Fp);;. Solving eq. (2-128) for the elements of W, gives

21
21_fﬂ
w, = —-
n
21 21
ll_wn _Jn
wn.——_—2
n n
(2 - 129)
21 21
22 _ Wy _ TJn
wt = —— = 2
n n

e 2 et

n nd

Eqs. (2-66) and (2-67) can now be solved iteratively using egs. (2-86), (2-87), (2-89a) and
(2-129).
After performing N iterations the matrix B(s) for either eq. (2-66) or (2-67) can be

written in the form

_ Bn(s) 1 _ a

where

N
Bi(s)=Y_ (Bn)gs"  i=1,2. (2 - 130b)
n=1
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Note that the summation in eq. (2-130b) starts at n = 1 because (B,); = 0 7 = 1,2

Substituting eq. (2-130) into eq. (2-74) gives

~

dv 1
-a:l - ;[Bn(s)vl + v3) (2 - 131a)
d‘U2 1
i ;Bzz(s)vz : (2 - 131b)

Solving eq. (2-131) first for vy(s) then for v;(s) gives
va(s) = Cae™(®) (2 — 132a)

vi(s) = CreM) 4 / €2 a(a)-20) g (2 — 132b)
]

where

N (2 - 132¢)
Z s" )

In order for v1(s) to be finite at s = 0 it is necessary to choose C> to be identically equal

to zero in eq. (2-132). The solutions for vy(s) and vy(s) can then be written as
v1(s) = Cret”) (2 — 133a)

va(s) = 0. (2 - 133)

The solution to the original problem now is written as

¢, <11::i§3) Mi(e) (2 - 134a)

where
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N
Pij(s) =Y (Pn)is". (2 — 134b)
n=0
If four iterations are performed for the transverse magnetic case using the A&TM) ’s given

in eq. (2-123) the solutions for E, and shy can be written as

J .2 eSk?\h 2
E, = =k - =41
z € NICI{I & 4 8
e3\2kyy €3 0Fh ] o | Batnd
+ [(61) o4 +€1A3 g |5 (e” (2 — 135a)
es k¥ o e3\2ky, | € okxi] 4 ﬁ(A?K’)%‘-
= - —_—— —_ ——— —_ —_ € . 2— b
shy C’l{61 5 + (61) 16 +€1A3 o |5 (e (2 - 135b)

Similarly for the transverse electric case h, and sE, are found to be

k2 k.4 0ot
he = —jkl,Cr |1 = N2 4 KMo 2l cans (2 - 1360)
4 64
k2 4 R
8E¢ = -C; [—12\’-282 - k_]_lyﬁzsqjl €€2AgT . (2 - 1366)

An important question to ask at this time is whether or not these asymptotic solutions
correspond to any known solutions, preferably an exact solution. The only comparison
which can be made with an exact solution is for the case of either an isotropic or a uniaxial
step-index fiber. The asymptotic solutions for the transverse modes in a step-index fiber
are obtained by setting A? = 0,7 = 1,2,3 and ¢, = ¢; in eqgs. (2-135) and (2-136). For the

transverse electric case the asymptotic solutions for h, and sE, are given by

ki k3
a2 _ kN1 2 RNy 4 _
hz = ]kNlCl (1 —4 s 4+ _64 S ) (2 1370)
k12V1 2 k;\fl 4
sE, = C4 (——2 s° + ST ) (2 — 137b)

and for the transverse magnetic case E, and shy are given by

j 2 € 12V1 2 €3 2 :}Vl 4
. = =k — =LA =) AL -1
E P Nlcl[ p s“ 4+ (51) 6 8 (2 380)
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k2 €3\ 2 k4
shy = C [—:—‘:—g—ls? + (6—‘;’) —1%154] (2 — 138b)

where k%, = €; — x? for both eq. (2-137) and (2-138). From egs. (2-8b), (2-8¢) and (2-30)

the exact solutions for the transverse electric case are given by

h, = BJo(kn:18) (2 — 139a)
. s dh, . s
3E¢~Jk—§v—1z = —JmBJl(kle) (2 - 1390)

and for the transverse magnetic case the exact solution is given by

H, = BJo(, /Z-“‘kms) (2 ~ 140a)
1
, 8¢, dE, .8 /€1€3 €3
hy = o1 88 _ _VAB By ([ Zkas). 2 — 140b
Mo TI Tds T T Tkm 1(\/ . s ( 05)

If C; = jB/k%, in eq. (2-137) and C; = —je1B/k%, in eq. (2-138) then it is clear that
eq. (2-137) and (2-138) are simply truncated series expansions for egs. (2-139) and (2-140).

The allowable modes can be determined by solving the generalized dispersion relation
given by eq. (2-25) For transverse modes the generalized dispersion relation separates into

the following two equations

1 K] (ya) 1 A

70 En(70) T (bmali b - (21410

e K,.(va) 6 €

%Km(7a) (k,ga)zz = 0 (2 - 141b)

where e is the solution for E, in the core evaluated at r = 1 (s = koa), ¢’ = de/dr, h is the
solution for h; in the core evaluated at r = 1, b’ = dh/dr, ky; and ki» are the transverse
wavenumbers, eq. (2-9), evaluated at r = 1. Eq. (2-141a) is the dispersion relation for

transverse electric modes and eq. (2-141b) is the dispersion relation for transverse magnetic
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modes. For transverse electric modes the ratio h'/h is given by

[~ B _kb(s) sEs
h ™ h, k. k¢ k.
r=1 s=koa s=koa
- ,ktzz(koa) Pgl(koa)

2 — 142
kg Pu(koa) ( )

where k2, is given by eq. (2-9). For transverse magnetic modes the ratio e'/e is given by

¢ _ koa 42 ki (s) sho
— = = — =73
e E, - E, sekoa ke (s) E; vkoo
kfl(kga) le(koa)
_ 2 — 143
kgél(koa) Pu(koa) ( )

where k7, is given by eq. (2-9).

2.3.5 Solution for Hybrid Modes

As was the case for the solution of eqs. (2-66) and (2-67) for the transverse modes it is
possible to generate a general solution for eq. (2-65) in terms of the elements of the coefficient
matrices from the series expansion of A(s). In practice, however, it is not desirable to
generate such a solution. Instead for mathematical convenience consider the solutions of
eq. (2-65) for some particular permittivity profiles.

The two example which will be discussed are a biaxial graded-index fiber where ¢;(s)
is a constant and a uniaxial graded-index fiber. In both cases €;(s) and €3(s) are chosen
to have parabolic profiles. These two examples contain as special cases the solutions for a

step-index fiber, either isotropic or uniaxial, and an isotropic graded-index fiber.

For the example of a biaxial graded-index fiber, if €, (s) and e3(s) are given by eq. (2-122)
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the matrix A(s) can be expanded in terms of the following matrices

0 o g
—joe R
im? cme
Ag=| O 0 a e (2 - 144a)
jmk  —jk%, 0 0
—jm? —jmx 0 0
. mx e
0 0 —j2E(247) -j5(247)
{m?9A0y _ sme (o AD
A= 0 j[=eag-1] meay (2 - 144b)
0 0 0 0
jes 0 0 0
~ TR 'ﬂz
0 0 —j2E(249)7 —j%(249)°
jm? 0\2 - ma 042
A4 _ O 0 € (2A1) € (2A1) (2 _ 144C)
0 0 0 0
—-jes(243) © 0 0
0 0 —jmk —jr?
on |0 0 jm? K
Ay = 22 d g n=134,5,... (2 — 144d)
€1 0 0 0 0
00 0 0
and Ay, ; = 0forn=1,2,3,... where ki,l = €; — k%. Note, €, does not appear in eq. (2-

144) since €2(0) = €,(0) = €. For the example of a uniaxial graded-index fiber where €;(s)

and €3(s) are again given by eq. (2-122) the matrix A(s) can be expanded as a series using

2
0 0o -7 j'-‘f,‘*
m? ime
Ag = 0 0 o« Ja (2 — 145a)
jmK "J'kfn 0 0
—jm? —jmk 0 0
0 0 —jmE(249)  -j=(249)
0 0 |mi2a9) -1 j2E(249
A, = J[e, (247) ] i (243) (2 — 145b)
0 jea(249) 0 0
jes 0 0 0
. . k2
0 0 —j28(281)° —j%(247)
jm? 02 ;me 0y2
Aue 0 0 I(249)7  jE(24)) (2 - 145¢)
0 0 0 0
—.763(2Ag) 0 0 0
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0 0 —jmk —jk?
2A% | 0 0 jm? j
A,, = ZA1)° jme JmR n=34,5,... (2 - 145d)
a |00 o0 0
00 0 0

and A,,_; = 0forn=1,2,3,... where kf“ = ¢, — k2. Comparing eqgs. (2-144) and (2-145)
it can be readily seen that the series expansion for both cases are identical except for the
presence of an additional element in A for the uniaxial graded-index case. The eigenvalues
of Ao for both cases are m. Since the Ag’s have repeated eigenvalues, in general, the choice
for the matrix Py should at best cause By to be a Jordan canonical matrix. Note, this is
the only restriction which the solution method places on the form of Pg. Any Py which
causes Bg to be a Jordan canonical matrix can be expected to result in a valid solution.
Since it is posssible for several different choices of Pg to satisfy this condition, conceivably

there may exist several possible mathematical solutions to the problem.

Since the solution for a step-index fiber exists as a special case of the solution for a
graded-index fiber it is reasonable to choose Pg based on the knowledge of the exact solution
for a step-index fiber. For the case of a uniaxial step-index fiber the exact solutions for E,
and h, as given by eq. (2-30) suggest that P should be chosen so that the resulting P(s)

yields E, = P11vy + Pisvs and h, = Papv2 + P34v4 as solutions. If Pg is chosen as

k%, 0 k%, 0
me jm mk —jm
0 Kn 0 kh

—jme, MK jme MK

(2 - 146)

this additional requirement is at the least satisfied for the lowest order solution where

P(S) = Po.
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Using eq. (2-102) By is given by

m 0 0 0
0 m O 0

By = 0 0 —-m 0 (2 - 147)
0 © 0 -m

This is the more convenient form for By since eq. (2-88) can be easily satisfied by choosing
B, and W,, according to eq. (2-89) and hence W,, can be found using eqgs. (2-92) and
(2-93). If By was not a diagonal matrix then W, would have to be found from a more
complicated expression similiar to eq. (2-128).

Since By is a diagonal matrix, choosing B,, according to eq. (2-89a) makes B(s) a

diagonal matrix. Therefore, in general, B(s) can be written as

Bi(s) 0 0 0
0 Bao(s 0 0
B(s) = 0 2(2)( ) Bas(s) 0 (2 - 148a)
0 0 0 B44(S)
where
N
Ba(s)=+m+ ) (Bp);s" i=1,2,3,4, (2 - 148b)
n=1

N is the number of iterations and the upper(lower) sign corresponds to i = 1,2(i = 3,4).
Using eq. (2-74) the differential equation for v(s) can be simply written as

dvi 1

— == 11 d | = y by Uy T -

Ts 3B, (s)ds 1=1,2,3,4 (2 - 149)
The solution of eq. (2-149) for v, is then given by

vi(s) = CisTmeM) i =1,2,3,4 (2 - 150a)

where C; 1=1,2,3,4 is a constant,

Als) =/%[Bﬁ(s):}:m] ds  i=1,2,34

N n
=Y BT  i=1234 (2 - 1508)
n=1
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and the upper(lower) sign corresponds to 7 = 1,2(¢ = 3,4). Since u(s) must be finite at
s = 0 v(s) must also be finite at 8 = 0 and it is therefore necessary to set C3 = C4 = 0.

The solution to eq. (2-65) can then be written as

E; Pu(s) Plz(s)
E P P CieM(®)
sBe | _ m 1(s)  Pza(s) ( 1€A ) (2 - 151a)
h, P3;(s)  Psafs) Cqe?2(2)
3h¢ P41(3) P42(s)
where .
N
Pij(s) =Y (Pn);s"  i=1,2,3,4; j=1,234. (2 — 151b)
n=0

For the example of a biaxial graded-index fiber the following expressions for A;(s) and

P;j(s) are obtained after two iterations

M(s) = _ﬁ [Z—j(el ~ k)4 :%‘:—2(2A?)] s? (2 - 152a)
Aa(s) = ‘erﬁ (e = &%) - el’"_zeiz(mg’)] 2 (2 - 1520)
Pua(s) = (1 — &) + m (S - w2y - mi(2a9)]s? (2 152)
Puals) = 355 (27 ) (2aD)¢ (2~ 1524

Pai(s) = mk + 4(—mi+-1—){z—j(el - x?)
+ ’—"612(—_2%;—) (e - k%) + (m + 1)er] }32 (2 - 152¢)

Pas) = im - gL f (o - )

%—? [(m + 1R~ (e - nz)] }32 (2 - 152f)
Puls) = - s 20 (2 - 1529)

1

Pule) = (6 =)+ oy

[(61 - k%)? - m261(2A(1’)] s? (2 - 152h)
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: 2 2
Pa(s) = —jme; + -2 — [ffﬁ(e1 - k?) - T—(&l)f—(m?)] 2 (2-152i)

4m+1)le € — k2
2
- R e — x2y - MAmt L g p0y] 2 _ 152
Pua(s) = mr + gy [(e1 W) - T (2A1)]s . (2 - 1525)

This should not be considered an accurate solution for u(s) since the term A3 does not
appear anywhere in eq. (2-152). This solution is identical to the solution obtained after two
iterations for a biaxial graded-index fiber where ¢;(s) has a parabolic profile and €3(s) and
€3(s) are constant. Since AJ only appears in the matrix A4 at least four iterations must be
performed in order to obtain the effects of a non-constant €3. A solution for a uniaxial or
a step index-fiber can be obtained from eq. (2-152) by setting AY( and AY) equal to zero.
For the example of a uniaxial graded-index fiber two iterations produce the following

expression for \;(s) and Py;(s)

Ai(s) = ——m—l—(el — k?)s? (2 — 153a)

Xa(s) = ~ (a2 - <) (2 - 153b)

and

Pii(s) = (e — &%) + 4—m(_r—n1?). [:—j(el - k%) - 2m2K42(2A(1’)] s? (2 -153c)

Pua(s) = — jﬁ-ﬁ(zag)sﬁ (2 - 153d)
Pa(s) = mx + 4—(-7;1'1—1) [:—j(q ~ &%) + 2m3(2A9)] ¢ (2 - 153¢)
Pals) = jm = gt - ) - 2m?(249)] 6° (2 - 153f)
Pun(s) = §50 13 24D (2 - 1539)

Pas(s) = (a1 = k%) + )(61 - k?)%s? (2 - 153h)

1
4m(m +1
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—:T——(el — k?)s? (2 - 1531)

(& — K?)s? (2 - 1535)

As was the case for the example of a biaxial fiber, the expressions in eq. (2-153) are not an
accurate solution since the term AJ does not appear in any equation. Again, in order to
see the effects of €3(s) it is necessary to perform at least four iterations.

For the solutions of eq. (2-65) the generalized dispersion relation, given by eq. (2-25)
can not be used. For the hybrid modes it is possible to derive from eq. (2-64) expressions
for ¢'/e and h'/h' similar to eqs. (2-142) and (2-142). However, in general ¢’/e and h'/h
are functions of the unknown constants C; and C; which appear in the general solution
for u(s). For special cases, such as a step-index fiber, where E, and h, are decoupled it
may be possible to set either C; or C; equal to zero without losing a a complete solution.
The generalized dispersion relation can only be used if either C; or C; can be set to zero.
Instead, using the solutions for eq. (2-65) a new dispersion relation must be derived by
enforcing the electromagnetic boundary conditions at the core-cladding interface.

Using eq. (2-21), (2-22) and (2-151) the boundary conditions at s = koa is satisfied

provided
Pn P —Km 0 Ci(koa)™eM 0
mA N a 17!
oo ] fonre) ),
Py Py -juReK) 2 K D 0

where Pij = Pij(koa), \i = Xi(koa), Km = Km(koavn), Koy = K/n(koayn) and 7} =
k2 — €. A non-trivial solution of eq. (2-154) exists whenever the determinant is equal to

zero. An explicit equation for the determinant is not provided since it cannot be expressed



53

in a convenient form as was the case for the generalized dispersion relation derived in section

2.2.2. Instead the zeroes of the determinant are found directly from eq. (2-154).

2.3.6 Numerical Results

As was previously stated the solutions for the biaxial graded-index fiber and the uniaxial
graded-index fibers given by eq. (2-152) and (2-153) do not include the effects of a non-
constant €3(s). Obtaining a more accurate solution requires performing more than four
iterations. For the example problem shown in section 2.3.3 performing more than four
iterations is feasible since A, = 0 when n > 2 and A(s) is a 2 x 2 matrix. In contrast,
performing more than two iterations in order to solve eq. (2-65) is much more difficult since
A(s) is a 4 x 4 matrix and in general A, # 0 for n > 2 when ¢,(s) is not constant.
Instead of deriving algebraic equations for the elements of F,,, B, W, and P, the
values of these matrices can be determined numerically if the values of m, x and koa are
known in advance. There are two difficulties with this appoach. First, numerical errors can
develop since the accuracy of the matrices obtained in the ¢’th iteration depends upon the
accuracy of the matrices obtained in the previous ¢ — 1 iterations. The second and more
important problem comes from method in which the matrices B,, and W, are chosen. As
previously mentioned, it may not be possible to find W, whenever A; - Aj —n = 0 where );
and ); are eigenvalues of Ag. In the analytic solution one could si£np1y ignore the problem
during the iteration process and then at the end of the process throw out the unbounded
solutions with an appropriate choice of constants. The ability to do this appears to depend
upon the form of A(s) and the ordering of the eigenvalues of Ao in Bo. Luckily, due to

the form of A(s) setting the third and fourth columns of Wy, equal to zero is equivalent to
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setting C3 and Cj4 equal to zero as was done in the solution of v(s) given by eq. (2-150).

Figures 11, 12 and 13 are plots of x versus kga when m = 1 for the examples of
the five possible types of fiber cores previously discussed. In each example ¢; = nf and
€. = n? where n; = 1.515 and n. = 1.5. For the uniaxial fibers, step-index and graded-
index, €3 = nZ where ng = 2.0. For the isotropic and uniaxial graded-index fibers all the
permittivity profiles are parabolic. For the biaxial graded-index fiber ¢; and 637 are parabolic
while €, is a constant. Due to the form of the solutions when m # 0 only the mode with
the lowest cutoff frequency can be found for a given value of m, which for m = 1 is the
HE;; mode. Based upon the extremely poor agreement between the asymptotic and exact
solution method for a step-index fiber no results are given for the solutions of egs. (2-66)
and (2-67). For the case when m = 0 the asymptotic solution for a step index fiber is
equivalent to finding a series solution for u(s). The poor agreement can then be attributed
to using too few terms in the series to approximate the solution and can also be due to

numerical errors from the evalution of the series.

In both figures 11 and 12 the asymptotic solutions for the isotropic and uniaxial step-
index fibers are in good agreement with exact results. For the isotropic step-index fiber the
HE;; mode for the asymptotic and exact solutions are almost identical when k¢a < 10. For
koa > 10 the asymptotic solution begins to diverge from the exact solution but for koa > 20
the distance between the two curves is approximately constant. For the uniaxial step-index
fiber the asymptotic solution begins to diverge from the exact solution around k¢a = 8 but

the separation distance is reasonably constant for koa > 20.

Figure 13 is a plot of x versus kga for an isotropic, a uniaxial and a biaxial graded-index
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fiber. As was the case for the step-index fiber the HEn' mode for the uniaxial graded-
index fiber is slightly displaced from the HE;; mode for the isotropic case. However, the
displacement for the uniaxial graded-index fiber is not as large as the displacement for the
uniaxial step-index fiber. A comparison of figure 13 with either figures 3 and 5 of figures
11 and 12 shows that for a given value of koa the value of x for the HE,; mode in either
an isotropic or uniaxial graded-index fiber is less than the value for the corresponding step-
index fiber. Also for the HE;; mode x as a function of koa for an isotropic or uniaxial
graded-index fiber increases less rapidly than in a step-index fiber. This indicates the pulse
delay which is proportional to dx/d(koa) is smaller for the HE,; mode in either type of
graded-index fiber than in a step-index fiber.

For the biaxial graded-index fiber the HE, mode is noticeably displaced from the HEy,
modes for the isotropic and uniaxial graded-index fibers. A comparison with figure 3 shows
that it lies approximately half the distance between the curves for the isotropic step-index

fiber and the isotropic graded-index fibers.
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3. Stratification Technique

3.1 Formulation of Problem

A purely numerical approach to the problem of solving eq. (2-17) is to subdivide the core
into N homogeneous layers as shown in figure 14 and then solve an easier problem in each
layer [17]. Note, this solution method is valid for all modes of an isotropic or uniaxial fiber
and the transverse modes, i.e. m = 0, for a biaxial graded-index-fiber. For the case m # 0

in a biaxial fiber eqs. (2-17a) and (2-17b) remain coupled and this solution method does

not work.

c(N-o»l) =€,

Figure 14 Geometry for stratification technique

For the case of an isotropic or uniaxial fiber ¢;(r) = €3(r). In the n’th layer eq. (2-17)
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can be written as

dzE(") 1 dEﬁ") 2| () egn) 2 m?
=~ 1 n)_ €& 2| M Lpm _
Inz o= +4A [63 E(ln)n] ) E, 0 (3 - 1a)
a2h{™  1dn{™ n m?)
T T; d; +.{A2[e(3)—n2]—?}h(,):0 (3 — 1b)

where e("), i = 1,3, is the approximate value of ¢;(r) in the n’th layer. If we let

() = [ - 5] o)
1
(p(z"))z = A? [egn) - K2] , (3 - 2b)
n 2 n 2
(q§ )) _ _(p(l )) (3 - 3a)
and
(qgn))z - (pgn))’ (3 - 3b)

then the solution of eq. (3-1) in the n’th layer is given by

(n) g {n) (n)
Ein) _ AnJm(py r)+ CuYm(p; r), (Pl )2 >0 (3 - 4a)
AnIm(‘]:(ln)") + CnKm(qgn)r), (p(ln) <0
2
Bn m (") DnYm (“) , (n) 0
o _ | BeIm ) DY), (687) > .
* (

n n n 2 ’
BnIm(qg )r) + DnKm(qg )r), (p2 )) < 0.

In order for the fields to be finite in the first layer C; and D; must be identically zero. In

the cladding, N + 1 layer, we require that Ay;1 = By41 = 0 and
N+1)\? N+1))2

so that the fields are exponentially decaying.

Recall that
(n) (n)
(M2 _ a2|(n) & 2 263 [ (n) _ .2
(Pl)—A[S "(n)"] A(n)[l "]
€ &
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But

) =l

Therefore
e

) = ) = 1) 69

where f(") = egn)/eg"). Since 6(1") and eg") are both positive in the core of the fiber (p(ln))2

’_‘H

and (p(zn))2 will always have the same sign. For (;)(2"))2 > 0 the tangential components of

the electric and magnetic fields are given by

E™ = Apdm(y/ FpP) 4 CoYon(y/ FB5r) (3 - 7a)
R = BoJm(P7) + DpYm(pi™r) (3 — 7b)
z n 2 nimits
(n) _ / (n), [fin
TE¢ k(n [ n m P +C Y, ( p ]
ikorpl™ n
+ BB [ 40 + DY) (3-1¢)
a'(kt )2
(ny_ _mB (n) ;oo(n)
= [Badm(p7) + DaYm(p§r)]

Jkorfl \/_p2 [A J!( f(ﬂp") + CnY \/—P<n) ] (3-17d)

where Ei") and h(,") follow from eq. (3-1), rEé") and rh‘(ﬁ") follow from eq. (2-8) and (kt("))2 =

kg(e(l") — k2). Note that egs. (3-7c) and (3-7d) can be simplified by using the following

(n)
n n € n
7 = | 8 -9
1
and
Y ak™ _ 1 (3-9)

a(kMy  a(kMy K
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For (p(zn) )2 < 0 the tangential fields are given by eq. (3-7) provided we make the following

substitutions
P(zn) - qgn)
I — Im, J — I
3-10
Y — Kpn, Y, — K] ( )
mf - — mf jkor - rkor
G(kin) )2 a(-y("))z ' %S:Y J-;(-’TT
where (7(™)? = —(kﬁ"))’. Eq. (3-7) can be written in matrix form as
EM A
™ B,
rEén) =M, Cn
rhfﬁn) D,
where M,, is the chain matrix for the n’th layer and is given by
61(1') 0 d](T‘) 0
0 ex(r) 0 f(r)
M, = kyey(r) kzez(f) kyd(r) ka fa(r) (3-12)
—kz\/fg")fgn)C2(f) kiei(r) —k-ﬂ/e(lﬂ)e(3 )dz( ) kifi(r)
and
for ()2 > 0 for (V)2 < 0
(r) = Jm(V/ F?) p2 r c1(r) = Im( f(")qg")r)
(r) = Yo (/7R pz r) di(r) = Em(v/FPgr)
ex(r) = Jm(py7r) er(r) = In(g3"')
fi(r) = Yo (py"r) Hi(r) = Km(gs™r)
ea(r) = JL(VIPpr)  ea(r) = In(v/F™gr) | (3 - 13)
do(r) = Yi(VFRr)  da(r) = Kin(v/FPg5Vr)
ex(r) = Jn(p3'r) ea(r) = In(g5r)
fa(r) = Yon(p"'r) fa(r) = Kin(gyr)
_ _mf —
b= b= -y
ky = iker ky = -2k
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Matching the tangential fields at the surfaces of each layer gives

(A1) (A2
M, (1) %‘ = My(ry) g2

\ 0/ \ D
A, As
( \ (Bs\

B,

Melre) Ca |~ Melr) Cs (3 - 14)
\D2/ \Ds
AN 0
B 0
Mn(rn) C:;' = Mps1(rw) Chas
Dy Dyy

where 7y, is the normalized radius of the n’th layer. Eq. (3-14) is essentially a system of 4N
equations ir.x 4N unknowns. The propagating modes can be found directly from eq. (3-14)
by setting the determinant of the system matrix equal to zero. The time required to find a
determinant of a n X n matrix is proportional to n®. If we double the number of layers then
it takes 8 times as much time to find the determinant. What is needed is a more efficient
algorithm for determining the allowable modes from eq. (3-14).

If we recognize that the i’th coefficient vector can be written in terms of the i + 1'th

coefficient vector as

A; Aitr
Bi |l _ Mt M (e | B _
C; - Mi (r‘)Mt+1(rl) Ci+1 (3 15)
Di D:’+1
then eq. (3-14) can be more conveniently written as
A
B - -
Mi(ry) [ ' | = Ma(r)M7? (72)Ma(r2)M5 () -
0
0
- 0
"'MN(rN—l)MNl(TN)MN+1(7'N) C (3-186)
N+1

DN
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Defining an overall chain matrix product, M, where

N
M = Ma(ry) [T M7 (i) Misa(ri) (3-17)

1=2

eq. (3-16) can then be written as

A
‘B
Mind CN1+1 -

Dy
(Ml)u (M1)12 '(M)w "(M)u Ay 0

— (M1)21 (Ml)zz —(M)zs ‘(M)u B, — 0 (3—18)
(M1)31 (Ml)sz “(M)aa ‘(M)34 Cnt1 0
(M1)y;, (Mi)ge —(M)gs - (M) Dyt 0

where (M, );; is an element of M; and (M),; is an element of M. The problem has been
effectively reduced from a system of 4N equations in 4N unknowns into a system of 4
equations in 4 unknowns. Propagating modes are found by requiring the determinant of
M, to be identically equal to zero. For the special case of an isotropic or uniaxial step-
index fiber N = 1 and eq. (3-18) reduces to either eq. (2-29) for the isotropic case or
eq. (2-31) for the uniaxial case.

From eq. (3-17) it can be seen that calculating the overall chain matrix, M, requires N —
1 matrix inversions and 2(N —1) matrix multiplications. Since the size of individual matrices

is fixed the time needed to find M and hence find the determinant of Mpnq grows linearly

with increasing N. The chain matrix approach is therefore a more desirable algorithm for

determining what modes propagate.
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3.2 Numerical Results
The accuracy of this solution method increases with the number of layers, however, with
this increase in accuracy comes an increase in computation time. For a parabolic profile, a
choice of five layers giv;zs reasonable accuracy with a minimum of computation time [22]

Figures 15 and 16 are plots of x versus koa for the cases m = 0 and 1 of an isotropic
graded-index fiber with a parabolic permittivity profile. As in the previous example the
values of n, and n. are taken to be 1.515 and 1.5 respectively. Comparing figures 15 and
16 with figures 2 and 3 several differences can be seen in the dispersion curves for the step-
index and graded-index fibers. The most important difference is the value of x as a function
of koa increases less rapidly for the graded-index fiber than for the step-index fiber. This
indicates that the pulse delay which is proportional to dx/d(kpa) is smaller for an isotropic
fiber with a parabolic permittivity profile than one with a step profile. The other notable
features are the increase in the cutoff frequencies of all modes except the HE,; compared
with the step-index fiber and several of the hybrid modes have become degenerate or nearly
degenerate.

Figures 17 and 18 are plots of x versus koa for a uniaxial graded-index fiber with
parabolic permittivity profiles where n; = 1.515, n3 = 2.0 and n. = 1.5. Comparing figures
15 and 16 with figures 3 and 4 it can be seen that like the isotropic graded-index fiber the
value of k versus koa increases less rapidly than in a uniaxial step-index fiber. The uniaxial
graded-index also exhibits an increase in the cutoff frequencies for all modes except the

HE,; mode as compared with the uniaxial step-index fiber.
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4. Discussion

A total of five types of fiber cores have been discussed. For an isotropic or uniaxial step-
index fiber either the wave equation formulation or the matrix equation formulation can
be solved exactly in terms of Bessel functions. The wave equation formulation can be
solved using WKB analysis for all types except a biaxial graded-index fiber. The matrix
equation formulation can be solved for all five types of fibers using the method of asymptotic

partitioning of systems of equations.

For an isotropic or uniaxial graded-index fiber the WKB solutions are solution of an
associated scalar wave equation not the full vector problem as given in egs. (2-17) and (2-18).
For an isotropic graded-index fiber when the permittivity profile is parabolic and the fields
are assumed to be far from cutoff an approximate solution of the vector problem is possible.
A comparison of the WKB solutions and the vector solutions shows the vector solutions can
be obtained from the WKB analysis by renumbering the WKB modes. Strictly speaking this
comparison is valid only for an isotropic parabolic-index fiber. However, it seem reasonable
to extend the comparison to isotropic graded-index fibers where the permittivity profiles are
not parabolic and also to uniaxial graded-index fibers. This renumbering of the WKB modes
has been used as the basis for a more general vector analysis of an isotropic graded-index

fiber using a generalized WKB technique [10), [15].

The negative aspect to the WKB solutions lies with the assumption that the core is
infinite in extent and therefore there is no need to impose boundary conditions on the
electric and magnetic fields. For a WKB solution the allowable values of x are determined

in the process of determining the solution. In contrast, for a step-index fiber, where an
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exact solution is possible, the allowable values of x are determined by imposing boundary
conditions. If the renumbered WKB modes are compared with results obtained using the
stratification technique one finds a poor agreement between the two methods. For example
according to eq. (2-61) an HE;, mode is equivalent to a WKBg;-3 mode. However, a
comparison of figures 6 and 16 shows the HE;, and HE;3 modes do not correspond to the
WXKBy, and WKBp; modes. The HE;; and HE;3 modes do agree very well with the WKBo:
and WKBo4 respectively. This suggests the boundary conditions are important even when
a mode is far from cutoff. This suggests that further investigation is needed to determine
whether the WKB modes can be renumbered in such a way as to be valid for a graded-index

fiber with a finite core and cladding.

In theory the matrix equation can be solved for any type of fiber core using the method
of partitioning of systems of equations. The solution obtained is valid wherever the Taylor
series expansion for the matrix A(s) is valid. Simply because it is theoretically possible to
solve eq. (2-65) does not mean the solutions obtained are of practical interest. It would be
useful to compare the asymptotic solution of eq. (2-65) with some known solution, preferably
an exact solution, in order to determine whether a valid solution has been found. The only
case where an exact solution is known is for a step-index fiber.

The asymptotic solution for a step-index fiber can be obtained as a special case of the
asymptotic solution for either the uniaxial parabolic-index fiber, eq. (2-152) or the biaxial
graded-index fiber, eq. (2-163). Setting AJ and A} equal to zero in either eq. (2-152) or

(2-153) the asymptotic solutions for E, and h, for a step-index fiber can be written as

E, = C]SmPu(S)e'\l(‘) (4 - 1(1)
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hy = Cas™ P3y(s)e™(®) (4 — 1b)
where
M(s) =~ 3= 2 - K (4-10)
Mofs) = (1 = K)s? (4-14)
Pia(s) = (o1 = 1)1 + —4—(,,1171) % (e - x7)e?) (4-10)
Pafs) = (6 = K1) [1 + gy (0= #2)5] (4- 1)

and m > 0. Comparing eq. (4-1) with the asymptotic solution of Bessel’s equation given

by eq. (2-114) E, and h, can be written as
E. = k?VICIy(Pkle) (4 - 2d)
h, = k?v]ng(kle) (4 - 2b)

where k3, = ¢ — x?, p? = €3/€; and y(z) is the asymptotic solution for the Bessel function

Jm and is given by
2

y(z) = %.’c"‘ [1 + Z—-(L——

2
e im . (4 - 2¢)

mm+1)]

Since the exact solution for E, and h, are proportional to J,,(pkn138) and J,(kn1a) respec-

tively the asymptotic solutions for E, and h, appear correct.

In general, when m # 0 the solutions to the matrix equation using the method of

asymptotic partioning of systems of equations appear to be of the general form
y(z) = p(z)e™ ) (4-3)

where p(z) is a monotonic function and g(z) is a positive real monotonically increasing

function. This implies the solutions will not behave in an oscillatory manner. For example,
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the asymptotic solution to Bessel’s equation accurately reproduces the form of Jp(z) in the
region 0 < z < z; —§ where z; is the first gero of J,, and § is a small positive number which
depends on the order of the solution. In the region z > z; — ¢ the asymptotic solution falls
rapidly to zero and can be taken to be identically equal to zero a short distance past z;. As
a consequence only the mode with the lowest cutoff frequency for a given value of m will
be found when the boundary conditions are imposed.

This is main disadvantage in solving the matrix equation using the method of asymp-
totic partitioning of systems of equations. However, the solutions obtained are in good
agreement with exact and numerical results. On the other hand, the WKB analysis of the
wave equation produces results which can not be directly compared with either exact or
numerical results.

A potental area of further rgsearch involves the comparison of the asymptotic solutions
of the matrix equation with the asymptotic forms of well known functions in an attempt
either to simplify the problem so as to get better asymptotic solutions or to determine the

form of the exact solution.
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Appendix: Computer Programs

This appendix contains three programs, WKB, ASYMP, and STRAT which were used to
find the dispersion curves in figures 3-13 and 15-18. The program WKB numerically solves
the mode condition, eq. (2-43) for either isotropic or uniaxial graded-index fibers where
the permittivity profiles are given by eq. (2-44). The program ASYMP uses a numerical
implementation of the method of asymptotic partitioning of systems of equations to solve
eq. (2-65) and then finds the allowable modes using eq. (2-154). The type of fiber core for
which ASYMP solves eq. (2-65) is determined by the procedure findAn. A version of findAn
is given for the cases of a uniaxial step-index, a uniaxial graded-index fiber with parabolic
permittivity profiles and a biaxial graded-index fiber where ¢;(s) is a constant and €;(s) and
€3(s) have a parabolic profile. The program STRAT implements the chain matrix version of
the stratification technique described in section 3. The dispersion curves for the step-index
fibers, figures 2-5, are obtained using STRAT with the number of layers equal to one.

All three programs make use of some or all of the following IMSL subroutines:

bsjO  Bessel function of the first kind, order zero

bsj1  Bessel function of the first kind, order one

bsjs  Bessel function of the first kind, real order

bsy0  Bessel function of the second kind, order zero

bsyl  Bessel function of the second kind, order one

bsys  Bessel function of the second kind, real order

bsi0 Modified Bessel function of the first kind, order zero

bsil ~ Modified Bessel function of the first kind, order one

bsis Modified Bessel function of the first kind, real order

bsk0 Modified Bessel function of the second kind, order zero

bski  Modified Bessel function of the second kind, order one

bsks Modified Bessel function of the second kind, real order

1ftcg Find LU factorization for a complex general matrix

1fdcg Find determinant of a complex general matrix from LU factorization
mcrcr Multiply two complex rectangular matrices

ccgeg Copy complex general matrix

zbren Find zero of a real function which changes sign over a given interval
zreal Find zeroes of a real function

qdag Integrate real function using adaptive quadrature

If any of the above subroutine names is preceeded by the letter d, such as dbsjs, then the
double precision version is being used. In addition ASYMP has it’s own procedures to perform
addition, subtraction and multiplication for complex numbers and complex matrices and
also a procedure to find the determinant of a complex matrix.
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C This program integerates the phase term of a WKB solution for

C a graded index fiber in order to find the dispersion curve

C
C e o o 3 ok oo o o o 0 o o o o ol o o o a0 o o 0o oo o o ol ok o ol o o o o e o o ok o o o o o o o ok o ol R R O

(o

C - Global Constants

C
integer numMax, dSize, maxLvl, maxPnt, iso, uniaxl
real pi

(g

parameter ( numMax=5, dSize=100 )
parameter ( iso = 1, uniaxl = 2 )

Input Parameters

type = 1 for isotropic fiber

2 for uniaxial fiber
n(1) = maximum value of the refractive index of the core
in the rho direction
maximum value of the refractive index of the core in
the phi direction
refractive index of the cladding
mu = mode order of the solution
alf(n) = parameters which describes the shape of the

refractive index profiles

Kamin = minimum value of Ka
Kamax = maximum value of Ka
numKa = number of divisions between Kamax and Kamin
KppMin = minimum value of normalized propagation constant
KppMax = maximum value of normalized propagation constant
numKpp = number of division between KppMin and KppMax

o
—~
N
~
(1]

nc

real n(3), alf(3), nc, Kamax, Kamin, KppMax, KppMin
integer mu, numKa, numkKpp, type

Computed Parameters

e(i) = maximum value of permittivity in the core

= n(i)*=»2

ec = permittiviy of cladding = nc*»*2

delKa = increment for Ka = ( Kamax-Kamin )/numKa

delKpp = increment for kappa = ( KppMax-KppMin )/numKpp
real e(3), ec, delKa, delKpp
Program Variables

Ka = ko * a = normalized wave number
kappa = normalized propagation constant = B/ko

i,j,k,loopKp,loopKa = loop variables
real Ka, kappa, Kpp(dsize), IntDvPi(dSize,2), slope, Ksoln,
& result, delY
integer i, loopKa, loopKp
logical*1 flag(2), modes(2), iroots, uroots

Root finding and integration parameters

QOO

integer irule
parameter( irule=2 )

real errabs, errrel, errest, ri(2), r2(2), eps, eta
parameter ( errabs=0.001, errrel=0.001 ,eps=1.0e-07, eta=0.1 )

[2X2X g

Phase function declarations
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70 C

71 real psil, psi2

72 external psil, psi2

73 common kappa, Ka, e, ec, alf, mu, type
74 C

£ R R R
76 C

77 pi = acos( -1.0)

78 C

TG B o teeeeeeeeeonuesssssesesansacsnsssnnensaassssssesaesnsanccssasansosnesas
80 C

81 C Read input parameters

82 C

83 read (53, *) type

84 do 10 i =1,

85 read (53, *) n(1), alf(i)

86 print 101, i, n(i), i, alf(i)

87 e(i) = n(1)**2

88 it ( alf(i) .1t. 1 ) then

89 print 102, i

90 stop

91 endif

92 10 continue

93 if ( n(1) .ne. n(2) ) then

94 print *, '>>Error: n(1) and n(2) must be equal’
95 stop

96 endif

97 C

98 read (53,*) mu, nc

99 print *, ’nc = ', nc

100 print =, ’mu = ', mu

101 eC = nNc**2

102 do 11 i =1, 3

103 if ( n(i) .le. nc ) then

104 print 104, i

105 stop

106 endif

107 11 continue

108 C

109 read (53,*) KaMin, KaMax, numKa
110 read (53,*) KppMin, KppMax, numKpp
111 if ( numKpp .gt. dsize ) numKpp = dsize
112 €

113 delKa = (KaMax-KaMin)/numKa

114 delKpp = (KppMax-KppMin)/numKpp
115 C

116 € Loop through values of Ka

117 C

118 delKa = ( Kamax-Kamin )/numKa

119 Ka = Kamin

120 do 70 loopKa = 1, numKa+tl

121 C

122 C Loop through values of B

123 C

124 kappa = KppMax + delKpp

125 flag(1) = .false.

126 flag(2) = .false.

127 C

128 do 40 loopKp = 1, numKpp

129 kappa = kappa - delKpp

130 Kpp(loopKp) = kappa

131 IntDvPi(loopKp,1) = 0.0

132 IntDvPi(loopKp,2) = 0.0

133 C

134 C Find turning points r and r for psii and psi2
135 C 1 2
136 C

137 modes(1) = .false.

138 modes(2) = .false.
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if ( mu .eq. 0 ) then
do 30 i =1, 2
if ( n(i) .ge. kappa ) then
r2(i) = ((e(i)-kappa**2)/(e(i)-ec))**(1.0/alf(i))
ri(i) = -1.0*x2(i)
modes(i) = .true.
else
ri(i)
r2(i)
endif
continue
if ( type .eq. iso ) then
modes(2) = .false.
endif
else
if ( type .eq. iso ) then
modes (1) = iroots( ri(1), r2(1), 1)

0.0
0.0

else
modes (1) = uroots( r1(1), r2(1) )
modes(2) = iroots( r1(2), r2(2), 2 )
endif
endif

Integrate phase terms fromr tor
1 2

if ( modes(i) ) then
call qdag( psii, r1(1), r2(1), errabs, errrel, irule,
result, errest )
endif
IntDvPi(loopKp,1) = result/pi
flag(i) = .true.
else
IntDvPi(loopKp,1) = 0.0
endif
if ( modes(2) ) then
call qdag( psil, r1(2), r2(2), errabs, errrel, irule,
result, errest )

endif
IntDvPi(loopKp,2)

= result/pi
flag(i) = .true.
else
IntDvPi(loopKp,2) = 0.0
endif
continue

Determine values of kappa for which the integral between the
turning points satisfies the phase condition.

do 60 i =1, 2
if ( flag(i) ) then
delY = 0.5
if ( ( intDvPi(1,i) - delY ) .gt. 0.0 ) then
delY = delY + 1.0
goto 45
endif
do 50 loopKp = 2, numKpp
if ( ( intDvPi(loopKp,i) - delY ) .gt. 0.0 ) then
slope = (intDvPi(loopKp-1,i) - intDvPi(loopKp,i))
/ ( Kpp{(loopKp-1) - Kpp(loopKp) )
Ksoln = Kpp(loopKp)+(delY-intDvPi(loopKp,i))/slope
delY = delY + 1.0
print 100, i, Ka, Ksoln
endif
continue
endif
continue
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C
Ka = Ka + delKa

70 continue
c
ettt tieeeeeeoesosnsensamnosasnsesennoaanossasossnesnssssnseanannsscnaes
C
100 format( 1X, ’>>Phase condition satisfied for psi’, 11,

& ' at Ka = ’, F6.2, * B/Ko = ’, F16.10 )
101 format( 1X, ’'n(’, I1, ’) = *, £8.6, *, alf(’, I1, ’) = ', F6.3 )

102 format( 1X, ’>>Error: alf(’, I1, ') must be greater than 0’ )
103 format (1X, ’>>Error: n(’, I1, ’) must be greater than nc’ )

C ittt eeneenaseoneseessosaesunassesanensossonosstonsoonsnsssasssssononsns
C
stop
end
C
e e P e T L L RS T L L A L A e L e e it It il L

C

logical function iroots( ri, r2, select )
C
Ctt##“t#*t##it#*t****t#t*#*‘*l‘*#*‘ﬁ.###l**#*#*#*##*ﬂ**#*t**#*###***‘*‘

C

real ri, r2
integer select
Cc
real delR, delta, errabs, errrel, dOne
integer i, maxfn, num, iso, uniaxl, biaxl
parameter ( delR=0.1, delta=1.0e-6, num=10 )
parameter ( errabs=0.0, errrel=1.0e-5, dOne=1.0 )
parameter ( iso = 1, uniaxl = 2, biaxl = 3 )
C
real r(num+1), er(num+1), a, b, newSgn, oldSgn
integer count
C
real e(3), alf(3), ec, kappa, Ka
integer mu, type
common kappa, Ka, e, ec, alf, mu, type
C
real gi, g2
external g1, g2
c
o4
C
c Calculate values of function between 0 and 1
C
do 10 i = 1, num+l
(i) = (i-1)=delR
if (i .eq. 1 ) then
r(i) = delta
endif
if ( select .eq. 1 ) then
er(i} = g1( r(i) )
else
er(i) = g2( r(i) )
endif
éo continue
c Look for sign change and then use library routine to find root
C
count = 0
oldSgn = sign( dOne, er(1) )
do 20 i = 2, num+1
newSgn = sign( dOne, er(i) )
if ( newSgn .ne. oldSgn ) then
count = count + 1
a = r(i-1)
b = r(i)

maxfn = 15
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276 if ( select .eq. 1 ) then

277 call zbren( g1, errabs, errrel, a, b, maxfn )
278 else

279 call zbren( g2, errabs, errrel, a, b, maxfn )
280 endif

281 if ( count .eq. 1 ) then

282 ri=» °

283 else

284 r2="50

285 endif

286 endif

287 oldSgn = newSgn

288 20 continue

289 C

290 if ( count .eq. 2 ) then

291 iroots = .true.

292 else

293 - ri = 0.0

294 r2 = 0.0

295 iroots = .false

296 endif

-297 return

298 end

299 C

3OO0 €t s s oo e o o o o o ook oo ook oo o o oo o o oo o o o oK o oK oK A oK o ok o R R o R R
301 C

302 logical function uroots( r1, r2 )

303 C

304 Comkokok ok sk ok ok ok ok sk ok ol ok ok ok ko o o o o o o ok o oo O S 3o o o o o o oo o o oo o o o o oo o oo e o K
305 C

306 real ri, r2

307 C

308 real errabs, errrel, dOne

309 integer maxfn, num, iso, uniaxl, biaxl

310 parameter ( num=10 )

311 parameter ( errabs=0.0, errrel=1.0e-5, dOne=1.0 )

312 parameter ( isoc = 1, uniaxl = 2, biaxl = 3 )

313 C

314 real r(num+i), er(num+1), Rmax, delR, delta, a, b, newSgn, oldSgn
315 integer count, i

316 C

317 real e(3), alf(3), ec, kappa, Ka

318 integer mu, type

319 common kappa, Ka, e, ec, alf, mu, type

320 C

321 real g1

322 external gl

323 C

72 S
325 C

326 g Calculate values of function between 0 and 1

327

328 delR = 0.1

329 if ( type .eq. biaxl ) then

330 Rmax = ((e(2)-kappa**2)/(e(2)-ec))**(1.0/alf(2))
331 delR = (Rmax-1.0e-12)/num

332 endif

333 delta = 1.0e-5 * delR

334 do 10 i = 1, num+il

335 r(i) = (i-1)=delR

336 if (i .eq. 1 ) then

337 r(i) = delta

338 endif

339 er(i) = g1( r(i) )

340 10 continue

341 C

342 C Look for sign change and then use library routine to find root
343 C

count = 0
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c

oldSgn = sign( dOne, er(1) )
do 20 i = 2, num+i
newSgn = sign( dOne, er(i) )
if ( newSgn .ne. 0ldSgn ) then
count = count + 1
a = r(i-1)
b = r(i)
maxfn = 15
call zbren( g1, errabs, errrel, a, b, maxfn )
if ( count .eq. 1 ) 1l =
if ( count .eq. 2 ) 12 =
endif
0ldSgn = newSgn
continue

b
b

if ( count .eq. 2 ) then
uroots = .true.
else
if ( (count.eq.1)

.and. (type.eq.biax1).and.(alf(2).gt.alf(1)) ) then
uroots = .true.
r2 = Rmax

else
ri = 0.0
r2 = 0.0
uroots = .false.
endif
endif
return
end

C*‘t#**t#####*#*#*#‘t.##*#*tt**###t####*‘*#**#‘t######“##***###t“ttt*#

c
C

function psil( r )

C*#*##‘#l"#t‘#*‘*i#*‘##*#t"##**####‘#t#***#*t*#‘**t*#####l#**‘#‘t‘##t*

C
c

Teal r

integer iso, uniaxl, biaxl

parameter ( iso = 1, uniaxl = 2, biaxl = 3 )
real e(3), alf(3), ec, kappa, Ka

integer mu, type

common kappa, Ka, e, ec, alf, mu, type

real eri, er2, er3, x, KppSqr, term2

KppSqr = kappa*#*2
if ( type .eq. iso ) then
x = e(1) - ( e(1) ~ ec )*abs(r)=*=alf(i) - KppSqr

1

° ::1 = a(1) - ( e(1) - ec )*abs(r)*+alf(1)
er2 = e(2) - ( e(2) - ec )*abs(r)*xalf(2)
er3 = e(3) - ( e(3) - ec )*abs(r)»*alf(3)

x = er3 - er3*(KppSqr)/erl
endif
if ( mu .ne. 0 ) then
term2 = (mu/(Ka*abs(r)))=*2
if ( type .eq. biaxl ) then
term2 = term2*er2+(er1-KppSqr)/(eris(er2-KppSqr))
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psil = 0.0
endif
return
end
C
Ct*tt##tt‘#t###***##t*‘&lt#t#ttt#t#tttttt*#t###t#*t##‘*##*##*##***t*#*##

o

function psi2( r )
C
C‘*#“#####‘t“*#“#*##**#***t“#*‘**##*#*##****##******###**#**#*#‘**#*

c

real r
C
integer iso, uniaxl, biaxl
parameter ( iso = 1, uniaxl = 2, biaxl = 3 )
C
real e(3), alf(3), kappa, Ka
integer mu, type
common kappa, Ka, e, ec, alf, mu, type
C
real er2, x
c
e eneeestesee st assseseeenonesssnessesaessassesansennnasssnssosssonannss
c
er2 = e(2) - ( e(2) - ec )*abs(r)**alf(2)
X = er2 - kappax*2
if ( mu .ne. 0 ) then
x = x - (mu/(Ka*r))#**2
endif
if ( x .ge. 0.0 ) then
psi2 = Ka*sqrt( x )
else
psi2 = 0.0
endif
return
c end
(€ oo o o o o o o oo oo R R R R R R R R

c
function gi( r )

C
c##***#*######‘*##‘t*****‘*###ﬁ#**‘*##*#**ﬁ*‘#*#t***#i‘*#*#***##t*t*‘***

C
real r
C
integer iso, uniaxl, biaxl
parameter ( iso = 1, uniaxl = 2, biaxl = 3 )
C
real e(3), alf(3), ec, kappa, Ka
integer mu, type
common kappa, Ka, e, ec, alf, mu, type
C
real erl, er2, er3, KppSqr, termi, term2
C
Lo
C
erl = e(1) - ( e(1) - ec )+*abs(r)*»alf(1)
er2 = e(2) - ( e(1) - ec )*abs(r)**alf(2)
er3 = e(3) - ( e(3) - ec )*abs(r)**alf(3)
KppSqr = kappa*x2
terml = erl - KppSqr
term2 = ( mu / (Ka*abs(r)) )#=*2
if (type .ne. iso ) terml = er3*termi/erl
if ( type .eq. biaxl ) then
term2 = term2*er2*(eri-KppSqr)/{(eri*(er2-KppSqr))
endif
gl = terml - term2
return
end
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483 C

484 CORBBRRRRRRERRERERERRRERRRERRREER E RN R kR kR KRR AR KRR R RN
485 C

486 function g2{( r )

487 C

488 CHEMARERERERRERERRERREREEREEEREEEEBRRRRRRKRRRRRERE KRR ERREERRRE KRR R KRRk
489 C

490 real r

491 C

492 integer iso, uniaxl, biaxl

493 parameter { iso = 1, uniaxl = 2, biaxl = 3 )

494 C

495 real e(3), alf(3), ec, kappa, Ka

496 integer mu, type

497 common kappa, Ka, e, ec, alf, mu, type

498 C

T o
500 C

501 g2 = e(2) - ( e(2) -ec )*abs(r)**alf(2) - kappa##2

502 & - (mu/(Ka*abs(r)))**2

503 return

504 end



1 program Asymp{ output );

2

3 const

4 maxSolnOrder = 10;

5 maxSize = 100;

6 mMaxPlus2 = 6;

7

8 type

9 integer2 = -32768..32767;

10 complex = record

11 X, ¥ : real;

12 end;

13 modeType = ( HE, EH );

14 matrix = arrayl1..4,1..4] of complex;

15 superMatrix = array[0..maxSolnOrder] of matrix;

16 eigenvalues = array[1..4] of real;

17 vector = array[1..mMaxPlus2] of real;.

18

19 var

20 noRootsFound : boolean;

21 i, j, 1, n, m, solnOrder, numKa, numKappa, 0ldSign,
22 newSign, debug, colNum : integer2;

23 ni, el, n3, e3, nc, ec, Ka, KaMin, KaMax, kappaMin, kappaMax,
24 delKappa, delKa, lowerKappa, upperKappa, lowerDet,
25 upperDet, det, root, oldRoot : real;

26 cmplxDeterminant : complex;

27 kappa, determinant : array[1..maxSize] of real;

28 data : text;

29"

30 procedure cmplx( a, b : real; var z : complex );

31 begin { cmplx }

32 zZ.X = a;

33 z.y := b;

34 end; { cmplx }

35

36 procedure cmpledd( z1, 22 : complex; var result : complex )
37 begin { cmplxAdd }

38 result.x := zl.x + z2.x;

39 result.y := z1.y + z2.y;

40 end; { cmplxAdd }
41
42 procedure cmplxSub( z1, 22 : complex; var result : complex );
43 begin { cmplxSub }
44 result.x := z1.x - z2.x;
45 result.y := z1.y - z2.y;
46 end; { cmplxSudb }

47

48 procedure cmplxMult( z1, z2 : complex; var result : complex );
49 var

50 temp : complex;

51 begin { cmplxMult }

52 temp.x := zl.x%z2.x - zl.y*z2.y;

53 temp.y := zl1.x*z2.y + z2.x*zl.y;

54 result := temp;

55 end; { cmplxMult }

56

57 procedure scalarMult( a: real; z : complex; var result : complex
58 begin { scalarMult }

59 result.x := a*z.x;

60 result.y := a*»z.y;

g% end; { scalarMult }

63 function RealPart( z : complex ) : real;
64 begin { RealPart }

65 RealPart := z.x;

66 end; { RealPart }
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procedure matAdd( A, B : matrix; var C : matrix )

var

i, j : integer2;
begin { matAdd }

for i := 1 to 4 do

for j := 1 to 4 do
cmplxAdd( A[i,j], BIi,j], cli,jl );

end; { matAdd }

procedure matSub( A, B : matrix; var C : matrix )

var

i, j : integer2;
begin { matSub }

for i := 1 to 4 do

for j := 1 to 4 do
Cmplxsub( A[ipj]’ B[i’jly c[lyj] );

end; { matSub }

procedure matMult( A, B : matrix; var C : matrix );
var
i, j, k : integer2;
sum, product : complex;
begin { matMult }
for i := 1 to 4 do
for j := 1 to 4 do
begin
cmplx( 0.0, 0.0, sum );
for kK := 1 to 4 do
begin
cmplxMult( A[i,k], Blk,j], product );
cmplxAdd( sum, product, sum );
end;
Cli,j) := sum;
end;
end; { matMult }

procedure cmplxDet( A : matrix; var determinant : complex );

type
mat2 = array[1..2,1..2] of complex;
mat3 = array[1..3,1..3] of complex;
var

subDet, sum, product : complex;
subMat : mat3;
i, j, k, linePnt : integer2;

procedure cmplxDet2( A : mat2; var determinant : complex );
var
producti, product2 : complex;

begin { cmplxDet2 }
cmplxMult( A[1,1], A[2,2], productl );
cmplxMult( A[1,2], a[2,1], product2 );
cmplxSub( productl, product2, determinant );
end; { cmplxDet2 }

procedure cmplxDet3( A : mat3; var determinant : complex )
var
subDet, sum, product : complex;
subMat : mat2;
i, j, k, linePnt : integer2;
begin { cmplxDet3 }
cmplx{ 0.0, 0.0, sum );
for i := 1 to 3 do

begin
linePnt := 1;
for j := 1 to 3 do
if ( j <> 1) then
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begin
for k := 1 to 2 do
subMat[linePnt k] :=
linePnt := linePnt + 1;
end;
cmplxDet2( subMat, subDet );
cmplxMult ( A[i,1], subDet, product );
if odd(i)
then cmplxAdd( sum, product, sum )
else cmpleub( gum, product, sum )
end;
determinant := sum;
end; { cmplxDet3 }

Alj,K+1];

begin { cmplxDet }
cmplx( 0.0, 0.0, sum );
for i := 1 to 4 do
begin
linePnt := 1;
for j := 1 to 4 do
if (<
begin
for k := 1 to 3 do
subMat [1inePnt,k] := A[j,K+1];
linePnt := linePnt + 1;
end;
cmplxDet3( subMat, subDet )};
cmplxMult( A[i,1], subDet, product );
if odd(i)
then cmplxAdd( sum, product, sum )
else cmplxSub( sum, product, sum );
end;
determinant := sum;
end; { cmplxDet }

procedure IdentMat( var A& : matrix )
var
cmplxZero, cmplxOne : complex;
i, j : integer2;
begin { IdentMat }
cmplx( 0.0, 0.0, cmplxZero );
cmplx( 1.0, 0.0, cmplxOne );
for i := 1 to 4 do
begin
for j := 1 to 4 do
Ali,j] := cmplxZero;
Afli,i] := cmplxOne;
end;
end; { IdentMat }

procedure ZeroMat( var A : matrix );

cmplxZero : complex;
i, j : integer2;
begin { ZeroMat }
cmplx( 0.0, 0.0, cmplxZero );
for i := 1 to 4 do
for j := 1 to 4 do
A[i,j] := cmplxZero;
end ; { ZeroMat }

function power( x : real; n : integer ) : real;
var
i : integer2;
product : real;
begin { power }
product := x;
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for i := 1 to n-1 do

product := x * product;

power := product;
end ; { powver }

procedure findP0 (m: integer; er, kappa, Ka: real;

var
facl, fac2, fac3: real;

begin { £indPO }
ZeroMat (PO);
facl := m * kappa;

fac2 :=m * er;

fac3 := er - kappa * kappa;
Po[1, 1].x := fac3;
Po[1, 3].x := fac3;
Po[2, 1]).x := facl;
Pol[2, 2].y := m;

Po[2, 3]).x := faci;
Po[2, 4).y := -1.0 * m;
Po[3, 2].x := fac3;
Po[3, 4] .x := fac3;
Po[4, 1].y := -fac2;
Po[4, 2].x := faci;
pPo[4, 3].y := fac2;
Po[4, 4].x := facl;

end; { findP0O }

procedure findP0inv (m: integer;
er, kappa, Ka: real;
var POinv: matrix );
var

fac0, facl, fac2, fac3, fac4, facb: real;

begin { findPOinv }
ZeroMat (POinv);

facl := 1.0 / (2 * (er - kappa * kappa));
fac2 := kappa * factl;
fac3 := fac2 / er;
facd := 1.0 / (2 * m);
facs := fac4 / er;
Poinv{1, 1].x := faci;
poinv(1, 3].y := -1.0 * fac3;
POinv[1, 4).y := fach;
POinv[2, 1].y := fac2;
POinv[2, 2]).y := -1.0 * fac4;
POinv[2, 3].x := facl;
POinv([3, 1].x := faci;
POinv(3, 3].y := fac3;
POinv[3, 4].y := -1.0 * fach;
POinv[4, 1].y := -1.0 *= fac2;
POinvi4, 2]} .y := fac4;
Poinv[4, 3] .x := facl;

end; { findPOinv }

{ The implementation

var PO: matrix);

of findAn depends upon the type of fiber }

{ for which the problem is being solved. Separate version of }
{ findAn for a uniaxial step-index fiber, a uniaxial }
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{ parabolic-index fiber and a biaxial graded-index fiber can

{ be found following this program listing.

procedure findAn( n, m : integer2;
el, e3, ec, kappa, Ka : real;
var An : matrix );

begin { findAn }
end ; { findAn }

procedure findBn( Fn : matrix; var Bn : matrix )

var

i : integer2;
begin { findBn }

ZeroMat( Bn );

for i := 1 to 4 do

Bn[i,i] := Fnl[i,i];

end; { findBn }

procedure findWn{ Fn : matrix; n : integer2;
evals : eigenvalues; type0fMode
var Wn : matrix );
var
i, j, jLow, jHigh : integer2;
cmplxZero : complex;
begin { findWn }
ZeroMat( Wn );

jLow := 1;
jHigh := 2;
it ( typeOfMode = EH ) then
. begin
jLow := 3;
jHigh := 4;
end;

for i := 1 to 4 do
for j := jLow to jHigh do
if (i< 3)

: modeType;

}
}

then scalarMult{ -1.0/(evals[il-evals[jl-n), Fnli,j],

wnli,jl);
end; { findwn }

procedure findFn( POinv : matrix;
var A, B, P : superMatrix;
n : integer2; var Fn : matrix )
var
termi, producti, product2, sum : matrix;
1 : integer2;
begin { findFn }
matMult( A[nl, P[0], terml );
if ( n > 1 ) then
begin
ZeroMat( sum );
for 1 := 1 to n-1 do
begin
matMult( A[n-1], P[1], productl );
matMult( P[1], BIn-1], product2 );
matAdd( sum, productl, sum );
matSub( sum, product2, sum );
end;
end;
matAdd( terml, sum, sum );
matMult( POinv, sum, Fn );
end; { findFn }

function dbskO{ var x : real ) : Teal;
fortran;
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function dbski( var x : real ) : real;
fortran;

procedure dbsks( var xnu, x : real;
var n : integer2;
var bsk : vector );
fortran;

procedure vsFort; fortran;

procedure WriteMat( A : matrix );
var
i, j : integer2;
begin { WriteMat }
for i := 1 to 4 do
begin
for j := 1 to 4 do
write( '(’, Ali,jl.x, *,?, Ali,j).y, ?) * )
writeln;
end;
end; { WriteMat }

procedure findDet( solnOrder, m : integer?2;
el, e2, e3, kappa, Ka : real;
var determinant : real );
var
typeOfMode : modeType;
i, n, r, ¢, col, clow, cHigh, delC, size, absM : integer2;
power0fS, KaSqr, gmmNSq, gmmN, x, Km, KmPrime, xnu : real;
cmplxDeterminant : complex;
Vi, bsk : vector;
evals : eigenvalues;
temp : complex;
A, B, F, P, ¥ : superMatrix;
POinv, zero, approxP, bndCon : matrix;

begin { findDet }
if (m>0)

then typeOfMode := HE
else typeOfMode := EH;
ZeroMat( zero );
for i := 0 to solnOrder do
begin
A[i) := zero;
B[i] := zero;
F[i] := zero;
P[i] := zero;
Wil := zero;
end;
evals[1] := m;
evals[2] := m;
evals[3] := -1#nm;
evals[4] := -1=xm;

for i := 1 to 4 do
cmplx( evals[1],

£indPO( m, el1, kappa, Ka, P[0] );
findPOinv( m, el, kappa, Ka, POinv );
findAn( 0, m, el, e3, ec, kappa, Ka, A[0] );

0.0, B[0,i,i] );

if ( solnOrder > 1 ) then
for n := 2 to solnOrder do
begin
findAn( n, m, el, e3, ec, kappa, Ka, A[n] );
findFn( POinv, A, B, P, n, F[n] );
findBn( F[n], Bln] );
findWn( F[n], n, evals, typeOfMode, W[n] );
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end;

{ Find boundary condition matrix }

power0fS := i;
KaSqr := Ka » Ka;
approxP := zero;
clow := 1;

cHigh := 2;
delC := 0;
if ( typeOfMode = EH ) then
begin
clow := 3;
cHigh := 4;
delC := -2;
end;

for n := 0 to solnOrder do
if not odd(n) then
begin
forr := 1 to 4 do
for ¢ := cLow to cHigh do
begin
scalarMult( power0fS, P[n,r,c], temp);
CmplxAdd( approxP[r,c],
temp,approxPr,c] );

end;
if (n =0 ) then
begin
Vi{1] := power( Ka, abs(m) );
vi[2] := vi[1];
end
else
begin
Vi[1] := Vi[1] * exp( RealPart( BIn,cLow,cLow] )
* power0fS / n );
Vi[2] := Vi[2] * exp( RealPart( Bln,cHigh,cHigh] )
* power0fS / n );
end;
power0fS := KaSqr * power0fS;
end;
bndCon := zero;

for r := 1 to 4 do
for ¢ := cLow to cHigh do
begin
col := ¢ + delC;
scalarMult( Vil[col], approxP[r,c]l, bndCon[r,col] );
if not odd( r ) then
q scalarMult( 1.0/Ka, bndCon[r,c], bndCon[r,col] );
end;

gmmiSq := kappa * kappa - ec;
gmmN := sqrt( gmmNSq );

x := Ka * gmnmN;

if (m =0 ) then

begin
Km := dbsko( x );
KmPrime := -1.0 * dbski( x );
end
else
begin
abs¥ := abs( m );
gize := absM + 2;
xnu := 0.0;

dbsks( xnu, x, size, bsk );
Km := bsk[absM+1];
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KmPrime := -0.5%(
end;

bsk[absM] + bsk[absM+2] );

Cwplx( -1.0%*Km, 0.0, bndCon[1,3] );

bndCon[3,4] := bndCen[1,3];

Cmplx( mekappa*Kn/(Ka*gmmlsq), 0.0, bndCon[2,3] );
bndCon[4,4] := bndCon[2,3];

Cmplx( 0.0, KmPrime/gmmN, bndCon([2,4] );

Cmplx( 0.0, -1.0*ec*KmPrime/gmmN, bndCon{4,3] );

CmplxDet( bndCon, cmplxDeterminant );
determinant := cmplxDeterminant.x;

end; { findDet }

function sign( x : real )
begin { sign }
if ( x < 0.0
then sign :
else sign :

end; { sign }

-1
1;

LI g

: integer2;

function findRoot( x1, y1, x2, y2 : real ) : real;

var
slope : real;
begin { findRoot }

slope := ( y2-y1 )/( x2-x1 Y:
findRoot := x1 - yl/slope;

end; { findRoot 1}

begin { Asymp }
veFort;

reset( data );

readln( data, m, solnOrder );
readln( data, ni, n3, nc );
readln( data, KaMin, KaMax, numKa )i

readln( data, kappaMin,

kappaMax, numKappa );

readin( data, debug, colNum );

el := ni*nl;
e3 := n3*n3;
ec := Nc*nc;

delKa := ( KaMax-KaMin )/numKa;
delKappa := ( kappaMax-kappaMin ) /numKappa;

Ka := KaMin;
for i:= 1 to numKa do
begin

for j := 1 to numKappa do

begin

xappalj] := kappaMax - (j-1)*delKappa;
findDet( solnOrder, m, el, el, e3,

kappaljl, Ka, determinant(jl );
if ( debug = 0 ) then

writeln( Ka:5
end; { for j }

{ Find roots by looking for changes in sign of determinant }

:2, kappalj]:11:6, determinant [j] );

oldsign := sign( determinant[1] );

noﬁoot;Found := true;
ghile ( noRootsFound and ( j <= numKappa ) ) do

begin { while }
j=iv Yy
newSign := sign

( determinant[j] );
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if ( newSign <> oldSign )
then
begin
noRootsFound := false;
lowerKappa := kappaljl;
lowerDet := determinant[j];
upperKappa := kappalj-1];
upperDet := determinant[j-1];
oldRoot := 1.49;
root := lowerKappa;
while ( abs( oldRoot-root )} > 1.0e-6 ) do
begin
oldRoot := root;
root := findRoot{ lowerKappa, lowerDet,
upperKappa, upperDet )
findDet( solnOrder, m, el, el, e3,
root, Ka, det );
if ( det < 0.0 )
then
begin
lowerKappa := root;
lowerDet := det;
end
else
begin
upperKappa := root;
upperDet := det;
end;
end; { while }
end;
0ldSign := newSign;
end; { while }
if noRootsFound
then writeln( Ka:4:1,’ no roots’ )
else writeln( Ka:4:1, ’<’, colNum:1,’> ’, root:10:8);

Ka := Ka + delKa
end; { for i }
end. { Asymp }

{ findAn for a step-index fiber }

procedure findAn( n, m : integer;
el, e3, ec, kappa, Ka : real;
var An : matrix );

var
facl, fac2, fac3, fac4, facb, facé, fac7, del : real;

begin { findAn }
ZeroMat( An );
if ( n = 0 )then

begin
facl := m * kappa;
fac2 := kappa * kappa;
fac3 := el - fac2;
fac4 :=m * m;
An[1,3].y := -1.0*faci/el;
An[1,4].y := fac3/el;
aAn[2,3].y := facd/el;
anf2,4) .y := facl/el;
An[3,1].y := faci;
An[3,2] .y := -1.0*%fac3;
An[4,1].y := -1.0%fac4;
An[4,2} .y := ~-1.0%facil;
end;
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if (n =2 ) then

begin
An[2,3].y := -1;
Anf4,1].y := e3;
end;
end ; { findAn } N

{ findAn for an uniaxial graded-index fiber }
{ where el and e3 have parabolic profiles }

procedure findAn( n, m : integer;
el, e3, ec, kappa, Ka : real;
var An : matrix );

var
facl, fac2, fac3, fac4, fach, fac6, fac7, del : real;

begin { findAn }
ZeroMat( An );
if not odd(n) then

begin
facl := m *= kappa;
fac2 := kappa * kappa;
fac3 := el - fac2;
fac4 :=m * m;
if ( n = 0 ) then
begin
An[1,3] .y := -1.0%facl/el;
Anl1,4).y := fac3/etl;
Anf[2,3] .y := fac4/el;
An[2,4] .y := faci/el;
An[3,1}.y := faci;
An[3,2].y := ~-1.0*fac3;
Anf[4,1].y := -1.0%*fac4;
Anf4,2] .y := -1.0%facl;
end
else
begin
del := (el -ec ) / (2 * el );
fach := 2 » del / ( Ka * Ka );
fac6 := power( fac5, n div 2 );
fac7?7 := facil*fac6/el;
An[1,3).y := -1.0%fac7/el;
An[2,4) .y := fac7;
An[1,4) .y := -1.0%fac2*fac6/el;
if (n=2) or (n=4) then
case n of
2 : begin
An[2,3].y := fac4*fac6/el - 1.0;
An[3,2].y := elsfac6;
An[4,1].y := e3;
end;
4 : begin
An[2,3].y := fac4*fac6/el;
Anf4,1].y := ( ec - e3 )/( Ka * Ka );
end;
end
else An[2,3].y := fac4*fac6/el;
end;
end;

end ; { findAn }

{ findAn for a biaxial graded-index fiber }
{ where e1 and e3 have a parabolic profile }
{ and e2 is constant }
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671
672 procedure findin( n, m : integer2;

673 el, e3, ec, kappa, Ka : real;
674 var An : matrix );

675

676 var

677 facl, fac2, fac3, fac4, fachs, fac6, fac7, del : real;
678

679 begin { findiAn }

680 ZeroMat( An );

681 if not odd(n) then

682 begin

683 facl := m * kappa;

684 fac2 := kappa * kappa;

685 fac3 := el - fac2;

686 facd :=m * m;

687 if ( n = 0 ) then

688 begin

689 An[1,3].y := -1.0*faci/el;

690 An[1,4].y := fac3/el;

691 An[2,3].y := facd/el;

692 An[2,4].y := facl/el;

693 An[3,1].y := faci;

694 An[3,2].y := -1.0%fac3;

695 An[4,1].y := -1.0%xfac4;

696 An[4,2].y := -1.0*faci;

697 end

698 else

699 begin

700 del := (el -ec )/ (2% el);
701 facS := 2 * del / ( Ka * Ka );
702 fac6é := power( fac5, n div 2 );
703 fac7? := facixfac6/el;

704 An[1,3).y := -1.0%fac7/el;

705 An[2,4].y := fac7;

706 An[1,4].y := -1.0%fac2*fac6/el;
707 if (n=2)or ( n=4) then
708 case n of

709 2 : begin

710 An[2,3].y := fac4sfac6/el - 1.0;
711 An[4,1].y := e3;

712 end;

713 4 : begin

714 An[2,3] .y := fac4*fac6/el;
715 anl4,1].y := ( ec - €3 )/( Ka * Ka
716 end;

717 end

718 else An[2,3].y := fac4*fac6/el;
719 end;

720 end;

721 end ; { findAn }
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c

C This program uses an approximate analytical method to calculate
C the dispersion curves for an uniaxial graded index fiber.

c
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Global Constants

numMax = maximum number of layers
dSize = size of determinant array

integer numMax, dSize
parameter ( numMax=10, dSize=100 )

Input Parameters

nl = maximum value of the refractive index of the core

in the rho and phi directions
n3 = maximum value of the refractive index in the z direction
nc = refractive index of the cladding

a = radius of the core

mu = mode order of the solution

alfi, alf3 = parameters which describes the shape of the
refractive index profiles

num = number of layers { num .le. numMax )

KaMin = minimum value of Ka

KaMax = maximum value of Ka

numKa = number of divisions between KaMax and KaMin

KppMax = maximum value of kappa

KppMin = minimum value of kappa

numKpp = number of divisions between KppMax and KppMin

real*8 ni, n3, nc, alfi, alf3, KaMax, KaMin, KppMax, KppMin,

delKa, delKpp

integer mu, num, numKa, numKpp

Computed Parameters

el = maximum value of permittivity of the core in the rho and
phi directions )
= ni*x2
e3 = maximum value of permitivity of the core in the z
direction
= n3xx2
ec = permittiviy of cladding = nc*#*2
delt = ( el-ec )/( 2%el )
del3 = ( e3-ec )/( 2%e3 )
delKa = increment for Ka = ( KaMax-KaMin )/numKa
delKpp = increment for kappa = ( KppMax-KppMin )/numKpp
rStep = increment for radius of layers = 1.0/num
rm = array containing radius for each layer
eml = array containing permittivity in the rho and phi direction
for each layer
em3 = array containing permittivity in the z direction

real*8 el, e3, ec, dell, del3, Kastep, rstep, rm(numMax+1),

eml (numMax+1), em3(numMax+1)

Program Variables

Ka = ko * a = normalized wave number

kappa = normalized propagation constant in the longitudinal
direction
i,j,k,loopKp,loopKa = loop variables

real*8 Ka, kappa, K(dsize), D(dSize), nrMin,
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ann

(2 XeXe]

11

0ldSgn, newSgn, oldDel, newDel
integer i, loopKa, loopKp, loopB

Parameters for finding roots

real*8 errabs, errrel, a, b, eps, eta, xguess(2), x(2)

integer maxfn, nroots, itmax, infer(2)
parameter ( errabs = 0.0, errrel = 1e-6, maxfn
parameter ( eps = 0.0, eta = le-5 )

parameter ( nroots = 2, itmax = 10 )

10 )

Declarations needed to make findD a function of one variable

go that it can be used with dzbren and dzreal.

real*8 f£indD
external findD
common emi, em3, rm, Ka, mu, num

Read input parameters

read (7,*) num

read (7,*) n1, alf1l

read (7,*) n3, alf3

read (7,*) nc, mu

read (7,*) KaMin,KaMax,numKa
read (7,*) KppMin, KppMax, numKpp

if ( num .gt. numMax ) num = numMax
if ( numKpp .gt. dsize ) numKpp = dsize

print *, 'n1 = ’, ni1, ’profile parameter = alfl
print *, ’n3 = ’, n3, ’profile parameter = alf3
print *, ’nc = ’, nc

print =*, ’number of layers = ’, num

print *, ’'mu = ’, mu

Calculate radius of each layer

rstep = 1.0/num
rm(1) = rstep
if ( num .gt. 1 ) then
do 10 i=2,num
rm(i)=rm(i-1)+rstep
continue
endif

Calculate values of em

dell = ( el-ec )/( 2+%eil )
del3 = ( e3-ec )/( 2*e3 )

emi(1) = el

em3(1) = e3

do 11 i = 2, num
emi(i) = e1*( 1 - 2xdeli*rm(i-1)**alfl )
em3(i) = e3*( 1 - 2*del3*»rm(i-1)»*alf3 )

continue

emi (num+i) = ec

en3(num+1) = ec

delKa = ( KaMax-KaMin )/numKa

nrMin = dMini( n1, n3 )

if ( KppMax .gt. nrMin ) KppMax = nrMin
delKpp = ( KppMax-KppMin )/numKpp

.......................................................................

', alfi
', alf3
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c Loop through values of Ka

Ka = KaMin
do 70 loopKa = 1, numKa+1

Loop through values of B

ana

kappa = KppMax + delKpp
do 40 loopKp = 1, numKpp
kappa = kappa - delKpp
K(loopKp) = kappa
D(loopKp) = findD( kappa )
0 continue

Find roots by looking for a change in the
sign of the determinant

oldSgn = dsign( 1.040, D(1) )
do 50 i = 2, numKpp
newSgn = dsign( 1.0d0, D(i) )
if ( newSgn*oldSgn .1t. 0.0 ) then
a = K(1)
b = K(i-1)
call dzbren( findD, errabs, errrel, a, b, maxfn )
print 100, Ka, b
endif
0ldSgn = newSgn
0 continue

QO QOd

Look for closely spaced roots

oldDel = D(2) - D(1)
0ldSgn = dsign( 1.0d0, oldDel )
do 60 i = 3, numKpp
newDel = D(i) - D(i-1)
newSgn = dsign( 1.0d0, newDel )
if ( newSgn .ne. 0ldSgn ) then
if ((D(i)*D(i-1) .gt. 0.0).and.(D(i)*newDel .gt. 0)) then
xguess (1) = K(i-1)
xguess(2) = K(i)
call dzreal( findD, errabs, errrel, eps, eta, nroots,
& itmax, xguess, x, infer )
print 100, Ka, x(1)
print 100, Ka, x(2)
endif
endif
oldDel = newDel
01dSgn = newSgn
60 continue

aaom

Ka = Ka + delKa
70 continue

100 format( 1X, ’>>Root at Ka = ’, F5.0, ' , kappa = ’, F10.8 )

o2
C

stop

end
C

C‘*.#“t*‘#‘t#“t#‘tt#“t“ttt#‘####t*t##**#‘****#“##“.#‘t##.li#'tt*!t
C

C
C"‘#“!#t#*‘*#‘#l‘ttti#t*tt*#*‘t#‘l#t**#*#t#*#*‘*#‘#*#"t*##*####‘##t##

subroutine ident( mat )
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207 C

208 complex*16 mat(4,4)

209 integer i, j

210 C

5 1 TR 45 S R
212 C

213 do 92 i=1, 4

214 do 91 j = 1, 4

215 mat{i,j) = ( 0.0, 0.0 )

216 if ( i.eq.j ) then

217 mat(i,j) = ( 1.0, 0.0 )
218 endif

219 91 continue

220 92 continue

221 return

222 end

223 C

D04 Gk sk ok ook o ok ok ok o o o o o o O o R K R Ko R K B K R ok
225 C
226 double precision function findD( kappa )

227 C
228 Ct*#*#t##**#*‘**#‘*#*****##****‘*t*****#******#t*#t‘***#********#*####"

229 C

230 integer numMax

231 parameter ( numMax = 10 )

232 C

233 real*8 kappa

234 C

235 real*8 emi(numMax+1), em3(numMax+1), rm(numMax+1), Ka
236 integer mu, num

237 common eml, em3, rm, Ka, mu, num

238 C

239 complex*16 M1(4,4), Mm(4,4), Mtotal(4,4), MmInv(4,4),
240 & prod(4,4), bndcon(4,4)

241 real*8 KppSq, pm2(numMax+1), D

242 integer i, j, 1, m

243 C

.27 S L T T
245 C

246 C (m)

247 C Calculate values of transverse wave number p

248 C 2

249 C

250 KppSq = kappa**2

251 do 15 i = 1, num+i

252 pm2(i) = emi(i) - KppSq

253 15 continue

254 C

255 C Find M (z )

256 C 1 1

257 C

258 call findM( M1, rm(1), pm2(1), emi(1),

259 & em3(1), kappa, Ka, mu, 1, num )

260 C

261 C -1 -1

262 C Find product M (r )*M (r )*...*M (r YxM  (r )
263 C 2 1 2 2 num num-1 num num
264 C

265 call ident( Mtotal )

266 if ( num .gt. 1 ) then

267 do 20 m = 2, num

268 C

269 C Find M (r )

270 C m m-1

271 C

272 call findM( Mm, rm(m-1), pm2(m), emi(m),

273 & em3(m), kappa, Ka, mu, m, num )

274 call dmcrcr( 4, 4, Mtotal, 4, 4, 4, Mm, 4, 4, 4, prod, &4 )

275 call dccgeg( 4, prod, 4, Mtotal, 4 )



276 C

277 C -1

278 C Find ¥ (xr )

279 C m m

280 C

281 call findMI( MmInv, rm(m), pm2(m), emi(m),

282 & em3(m), kappa, Ka, mu, m, num )

283 call dmcrcr( 4, 4, Mtotal, 4, 4, 4, MmInv, 4, 4, 4, prod,4 )
284 call dccgcg( 4, prod, 4, Mtotal, 4 )

285 20 continue

286 endif

287 C

288 C Find M r )

289 C num+1 num

290 C .

291 1 = num+i

292 call £findM( Mm, rm(num), pm2(1), emi(1),

293 & em3(1), kappa, Ka, mu, 1, num )

294 call dmcrcr( 4, 4, Mtotal, 4, 4, 4, Mm, 4, 4, 4, prod, 4)
295 call dccgeg( 4, prod, 4, Mtotal, 4 )

296 C

297 C Find overall matrix which combines all the boundary

298 C conditions and find determinant

299 C

300 do 32i=1, 4

301 do 30 j =1, 2

302 bndcon(i,j) = M1(i,j)

303 30 continue

304 do 31 j = 3,4

305 bndcon(i,j) = -1.0*Mtotal(d,j)

306 31 continue

307 32 continue

308 call det( bndcon, D )

309 findD = D

310 return

311 end

312 C

313 C#‘t##t#*#***‘#t#t#*tt*##‘*t**‘#ll#*#t*#**I‘l#*##tl##!t“‘*tt#t***#‘*##***
314 C

315 subroutine findM( M, r, ktNsq, epsl, eps3, kappa, Ka, mu, layer,
316 & num

317 C

318 C**t###t*#‘#t**t#tt####‘t**#‘#**lk#*#“l*#*t######‘t##*t‘itt##*#*###**t#*
319 C

320 complex*16 M(4,4)

321 real*8 r, ktNSq, epsil, eps3, kappa, Ka

322 integer mu, layer, num

323 C

324 real*8 c1, c2, d1, d2, e1, e2, fi, £2, x, gmmN, ktN, ki1,
325 & k2, zero, facl, fac2

326 C

327 data zero / 0.0 /

328 C

320 Cui sttt e snenoononaceesssanasaasoansasannssnsessssssssoasasasnasssannaesess
330 C

331 facl = deqrt( eps3/epsl )

332 fac2 = dsqrt( epsi*eps3 )

333 if ( mu .eq. 0 ) then

334 k1 = 0.0

335 else

336 k1 = muxkappa/(Ka*ktNSq)

337 endif

338 if ( ktNSq .gt. 0.0 ) then

339 XxtN = sqrt( ktNSq )

340 k2 = v/ ktXN

341 x = Ka*ktN=*r

342 call bessel( facl*x, mu, ci, c2, d1, d2, layer )

343 call bessel( x, mu, el, e2, f1, £2, layer )

344

else

‘
|



345
346
347
348
349
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357
358
359
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365
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367
368
369
370
371
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373
374
375
376
377
378
379
380
381
382
383
384
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412

gmmN = sqrt( -1.0+ktNSq )
k2 = -1.0*%r / gmmN

x = Ka*gmmN=*r

call mbessl( faci*x, mu, ci, c2, di, d2, layer, num )
call mbessl( x, mu, el, e2, £f1, £f2, layer, num )

c endif
M(1,1) = demplx( c1 )
M(1,2) = ( 0.0, 0.0 )
M(1,3) = demplx( d1 )
M(1,4) = ( 0.0, 0.0 )
C
M(2,1) = ( 0.0, 0.0 )
M(2,2) = demplx( el )
M(2,3) = ( 0.0, 0.0)
M(2,4) = demplx( f1 )
C
M(3,1) = demplx( kixci )
M(3,2) = dcmplx( zero, k2%e2 )
M(3,3) = demplx( ki=dl )
M(3,4) = dcmplx( zero, k2*f2 )
C
M(4,1) = dcmplx( zero, -1.0xk2*fac2*c2 )
M(4,2) = dcmplx( kixel )
M(4,3) = demplx( zero, -1.0%k2%fac2*d2 )
M(4,4) = dcmplx{ kixf1 )
C
return
end
C

C***‘tt***#‘***ﬁt#***##*t*#****#*#t*##**#***#‘**t**t**#***l**#*###*tl##*
c
subroutine findMI( M, r, ktNSq, epsl, eps3, kappa, Ka, mu, layer,
& num )

C
C*#*#**#**‘*‘#ﬁ#‘*****#*#**#**##t#**t#*####*#‘*#t*t#*t*#**‘#*ﬁ‘#*t**#t##

complex*16 M(4,4)
real*8 r, ktNSq, epsil, eps2, kappa, Ka
integer mu, layer, num

C
o T I
C
call findM( M, r, ktNSq, epsi, eps3, kappa, Ka, mu, layer, num )
call dlincg( 4, M, 4, M, 4)
return
end
C

P rrmp——————s e TP P VTR E LR TR R ST L B L S L L L R Al bbb d s
¢ subroutine bessel( x, mu, ci, c¢2, di, d2, layer )
g#tt#tt#t*#ttt#t*##*###*t*t##*t*t#*tt##**t*t*#t***t#ttt*#ttt#ttttt#tttt#
¢ real*8 x, ci, c2, d1, d2

integer mu, layer

c

real*8 xnu

integer mumax

parameter ( xnu = 0.0, mumax = 4 )
c

real#*8 bsj(mumax+2), bsy(mumax+2)
c
oS L R
c

if ( mu .gt. mumax ) then
print =*,’>>>Error: mu must be less than or equal to’,mumax
print *,’>>> Program terminated due to error.’
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C

stop
endif
if ( layer .eq. 1 ) then
di = 0.0

if ( mu .eq. 0 ) then
cl = dbsjo( x )
= -1.0*dbsj1( x )

call dbsjs( xnu, x, mumax+2, bsj )
c1 = bsj(mu+1)

c2 = 0.5%( bsj(mu)-bej(mu+2) )
endif
else
if ( mu .eq. 0 ) then
ci = dbsjo( x )
c2 = -1.0*dbsji( x )
d1 = dbsyo( x )
d2 = -1.0%dbsy1( x )
else
call dbsjs( xnu, x, mumax+2, bsj )
call dbsys( xnu, x, mumax+2, bsy )
cl = bsj(mu+l)
c2 = 0.5*( bsj(mu)-bsj(mu+2) )
d1 = bsy(mu+1)
d2 = 0.5*( bsy(mu)-bsy(mu+2) )
endif
endif
return
end

(C s ot s o o e o ke e e ok e o e ok ok o o o e ok e o ok 3ok o ko o e o ok o ko ko ok s o o e e o ok e ol ol ook o ol ok e o e ol ok e o ok ok o Ok K

c
c

subroutine mbessl( x, mu, ci, c¢2, di, d2, layer, num )

(302 e o o o a0 o o e b o ol o ok ok e ok 3 e ok ok ok e ok ak 3 e ok o e i ok o o ok o o e e ke o e ol sk ofe sk ol o e oo e ok o o ok ok ke ok ok ok ok ok

c

real*8 x, ci, c2, di, d2
integer mu, layer, num

real*8 xnu
integer mumax
parameter ( xnu = 0.0, mumax = 4 )

real*8 bsi(mumax+2),bsk(mumax+2)

.......................................................................

if ( mu .gt. mumax ) then
print =, ’>>>Error: mu must be less than or equal to’,mumax
print *,°>>> Program terminated due to error.’
stop
endif
if ( layer .eq. 1 ) then
di = 0.0
d2 = 0.0
if ( mu .eq. 0 ) then
c1 = dbsi0( x )
c2 = dbsil( x )

se
call dbsis( xnu, x, mumax+2, bsi )
ci = bsi(mu+1)
c2 = 0.5%( bsi(mu)+bsi(mu+2) )
endif
endif
if (( layer .gt. 1 ) .and. ( layer .le. num )) then
if ( mu .eq. 0 ) then
c1 = dbsi0( x )
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c

C*#**#***##**#*t*****#*###**t#*‘##*#**t#‘##*****###**lt*t#**t*t‘#*‘***#*

C
C

C*#ﬁ*‘*#**#**#***##****##*‘*##*#*#*#*#*****t##*#***‘#**“#"***t‘##l#**‘

C

c2 = dbsit( x )

di = dbsk0( x )

d2 = -1.0%dbski( x )
else

call dbsis( xnu, x, mumax+2, bsi )
call dbsks( xnu, x, mumax+2, bsk )

¢l = bsi(mu+1)
c2 = 0.5+( bsi(mu)+bsi(mu+2) )
d1 = bsk(mu+1)
d2 = -0.5%( bsk{(mu)+bsk(mu+2) )
endif
endif
if ( layer .eq. num+l ) then
cl = 0.0
c2 = 0.0

if ( mu .eq. 0 ) then
dt = dbskO( x )

d2 = -1.0%dbski( x )
else
call dbsks{ xnu, x, mumax+2, bsk )
d1 = bsk(mu+l)
d2 = -0.5*%( bsk(mu)+bsk(mu+2) )
endif
endif
return
end

subroutine det( mat, D )

complex*16 mat(4,4)
real*8 D

complex*16 fac(4,4),detl
real*8 det2
integer n,lda,ldafac,ipvt(4)

parameter ( n = 4, lda = 4, ldafac = 4 )

.......................................................................

call dlftcg( n, mat, lda, fac, ldafac, ipvt )
call dlfdcg( n, fac, ldafac, ipvt, detl, det2 )
D = dreal( detl * 10.0%*det2 )

return

end
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